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Notations and Conventions

(2 : is a domain in R" .

0f) : boundary of €2 .

Loo(2): = {u: Q — R mesurable ; |u(t)| < +oo} .

Ly(€2) : The space of square integrable functions Lebesgue measure dz .
(.,.): The inner product in Ly(€2) .

L,(€2): the space of measurable functions on 2 such that |ul? is integrable (1 < p < c0) .

||U,||LP(Q) = (f|u|pdx)1/p for u € L,() .

Q
Wn(Q) = {ue LP(Q), D% € LX(Q), |a| < m} .
oo1t-ton
D~ ,a=qo1+ ... +aq, .

:—041
Oz, ...0%m

WHQ) =H'Y(Q) .
Wi(Q) = H™(Q) .

lull ey = ( 32 (1D%ul[2)?)"? for u € H™(Q) .

lal<m
H™™(Q) = (H§"(Q)

ou

HY Q) : {u/u € L*(Q), o

€ L*(Q), i=1.n}.
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n . Ou
Lo — (lul? G 2y12
sy = (ul? + 33122
H*(§2) : Sobolev space of order s ( s real number).
IIlls: The norm in H*(Q) .
Ly(0,T,X) = {f: (0,T) — X; measurable : [/ || f|[2 < oo} .

Loo(I; X): the space of measurable functions u on I such that there exists C such that

|lu(x)|| < C for almost every x € I .
[ull o) = supess|ju(t)|x -
0<t<T
[u,v | =07 (u-02,v) + 02, (u-02v) —2-02 ,, (u-02 ,,v). : The bracket of von Karmén.
C(Q2) = D(Q) (Test function).
A%: The biharmonic operator with Dirichlet boundary conditions on 95 .
(A%)7!: The inverse biharmonic operator.

Py: The projector in L?(2).



Introduction

From one century ago it has been appear the justification of the classical von Karman theory
of plates. This theory, originally proposed in [I] by Theodore von Karmén 1881-1963, which
play on important role in applied mathematics.

In 1980, Ciarlet [2] justified the classical von Karmén equations by means of the formal
asymptotic analysis.

The von Kéarman model epitomizes many important features and mathematical difficul-
ties that arise in the study of attractors for various non linear PDEs.

Chueshov and Lasiecka [3] developed and presented an array of new methods that are
capable of handling some of these difficulties for von Karman evolutions equations; one of
these, the uniqueness result for von Karméan evolution equations.

The propose of this study is to prove the uniqueness theorem for von Karman evolutions

equations. This result obtained in [4] and detailed in [3].
To this end, we give a positive answer to a question posed by Vorovich [5] in 1957 and
Lions [6] in 1969.



Chapter 1

Preliminaries



1.1 Sobolev spaces and embedding theorems

Let © is a domain in R" whose boundary 0f2 is a (n-1)-dimensional sufficiently smooth
manifold. It is assumed that € lies locally on one side of the boundary 0f2.
For any integer £ > 0 and for 1 < p < 0o, we denote by Wf(Q) the Sobolev space:

WEQ) = {u € L,(Q) : 0%u € L,(Q) forall|a|< k}

p
where: 0 = 0, = (Opy,...,0,,) is the gradient operator, and o = (aq,ag,...,ay), |a] =
ay + ...+ oy, and, 0% = (031, ...,00m).

We denote by [|ullwg (o) the norm in WH(Q).

lallwso = (S 1Dl )7 /p < o0

laf<k

and

_ o
Jullws ) = maz D"l o)

||
We also define the Sobolev space W;(Q) for positive real superscripts s ¢ Nand 1 < p < o0
by the formula:

W) = {u e W) ullfyyq) = el + D Lp(@%u) < 00}, (1.1)

|a|=k
where s = k+ 6 with k € Nand 0 < § < 1, and

|u(x) — uly)”
L;’p(U) = W dl’dy

QxN

We denote H*(Q2) = W3(Q2), and consider the space HF(2) defined as the closer in H*((2)
of the space of infinite differentiable functions on €2 with compact support in 2 and the
space : H™*(Q) = [H5()] of distributions on 2. We often use the notation |-||, for the
norm in H*(Q2) for each s € R, We denote the norm in Ly(€2) by ||-|.



Theorem 1.1 Assume that 02 € C*(Q2) and Q lies locally on one side of the boundary

Q2.

1- The following continuous embeddings are valid
vﬁmnuﬁm)ﬁs—g>5ﬂ<p<m,&5zo

(if § is not an integer the embedding holds also for 6 = s — - Jand:

s s* . n * n * *
WiQ)CWy.(Q) if s——=2>s ~ o 1 <p<p"<oo,s* >0.

p

(1.2)

(1.3)

2- The trace operator u — u/0Q is continuous from W3 (§2) into W, *(99) for every:

s>%cmd1<p<oo.

In particular, from ([1.5 ) We have that:

n

H*(Q) C Ly(QY) ,if s=—=——, p>2; n=dimf.

|3
3

In the case n = 2 so:
H*(Q) C Loo(Q) ,5>1,0CR%

and

HS(Q) C Lg/(l_s)(Q) ,0<s<1,QC R,

For the proof see [3].

(1.4)

(1.5)

(1.6)



1.2 Vector-valued spaces

Let X be a Banach space and [a,b] C R. We denote by C™(a,b; X) = C™([a,b]; X) the
space of m-differentiable (in the norm topology) functions on [a,b] with values in X. If

la,b] is a finite interval, then C™(a,b; X) equipped with the norm

cmiapx) = maz{|[u®(t)||x : t € [a,b],k =0,1,...,m}

[Jul

becomes a Banach space. Here u®)(t) = dFu(t) is the strong derivative of u of order k.

We denote by C™([a, b[; X) the space of functions u : [a, b[— X such that u € C™([a,b]; X)

for any b €]a,b[. A similar meaning has a notations C"(]a,b); X) and C™(Ja,b[; X). We

also use the notation Cy(a, b; X) for the space of the functions on [a, b] that are continuous
with respect to weak topology on X.

L,(a,b;X), 1 <p < oo are classical L, spaces defined as sets of (classes of almost every-

where equal) strongly Bochner-measurable functions f(¢) with values in X such that
lf()|x €Ly(a,b;R), Each Ly(a,b; X) is a Banach space with the norm

b
1) = ( / OB 1< p < oo

[ f |2 (apixy = esssup{||f(t)||x : ¢ € [a, b]}
Let X C Y be a couple of Banach spaces. Given f € L,(a,b;X) , p > 1, the function
g € L,(a,b;Y) is called the derivative of f in the distributional sense, if

b

b
/g(t)gb(t)dt = —/f(t)gb'(t)dt forall ¢ € C°(a,b;R).

a
This relation is equivalent to the equality

t

ft)=fo+ /g(T)dT inY foralmosteveryt € |a, b,

a

where fy € Y. We use the notation g = 0,f = f, = f .
For every 1 < p,q < oo we define the Banach space

W, (a,b; X,Y) ={f € Ly(a,b; X) : f € Lya,b;Y)}

6



with the norm
1 fllwi,@bxyy = 1l zp@six) + 1L zg@py)-

For brevity, we use the notation T/Vp1 (a,b; X) = Wpl,p(a, b; X, X). Below we also need higher-

order spaces of L,-differentiable functions

W (a,b; X) = {f € Ly(a,b; X) : f*¥ € Ly(a,b;X), k=1,...,m}, m>1.

Theorem 1.2 Let X C Y C Z be a triple of Banach spaces such that X is compactly
embedded in'Y . Then

e The space Wpl,q(a, b; X, Z) is compactly embedded in L,(a,b;Y") for every 1 < p,q < cc.
e The space Woloﬂ(a, b; X, Z) is compactly embedded in C(a,b;Y") for every q > 1.

For the proof of this theorem which is based on the argument given in [3].

1.3 Biharmonic operator

The Dirichlet boundary conditions are the most widely known and frequently used bound-
ary conditions in plate theory.

We denote by A% : L?(Q) — L*(Q) biharmonic operator with the zero clamped conditions:

u]aQ: vu’aQ: O

this is to say :
AZu= A%, ue DAL =H(Q)NHQ)

The operator A% is self-adjoint and strictly positive. It also possesses a discrete spectrum.

We recall the following definition.



Definition 1.3 A positive self-adjoint operator A in a Hilbert space H is said to be an
operator with a discrete spectrum iff there exists an orthonormal basis {ey} in H consisting

of eigenvectors of the operator A:

Ae, = \per, e € D(.A), k=1,2,...,

and the corresponding eigenvalues {\} have the properties 0 < A\ < Ay < ...,
and lim A\, = oo.
k—o0

The operator A%, generates on H(Q) the bilinear form

A(u,v) = /AuAvdx = ((AQD)I/QU, (AQD)1/2/U)L2(Q) , U,V E HS(Q)
Q

Let (A%)~! denote the inverse of A, , Which is defined as a bounded operator from L,()
into W;(Q) forall1 < p < oco. To study properties of the Airy stress function we use the
fact that the operator A% is an isomorphism from H*(Q2) N HZ(QY) onto H*4(Q) for s > 2
and

(A2)H HA(Q) — HMY Q)N HE(Q), s> —2.



1.4 Some inequalities

Lemma 1.4 Holder’s inequality

Let p,q € [1,00] with % + é =1.IffeL,(Q) and g € L,(). Then fg € L1(2) and

1Fgllzi@) < 1 Fllpllglla-

An extension of Hélder’s inequality suppose p,q,r € [1,00] with % + é = % If f € Lp(Q)
and g € L,(). Then fg € L,.(2) and

1f9llz.) < [Ifllpllgllq-

Lemma 1.5 Gronwall’s inequality
Let I denote an interval of the real line of the form |a, o0[ or [a,b] or [a,b] with: a < b,
let a,, B and p be real-valued functions defined on I, assume that B an u are continuous and

that the negative part of a is integrable on every closed and bounded subinterval of I.

(a) if B is non-negative and if u satisfies the integral inequality:

u(t) < aft) + /ﬁ(s)u(s)ds Vtel,

then

u(t) < at) + /a(s)ﬁ(s)exp(/ﬁ(r)dr)ds Vtel.

a

(b) if in addition the function « is increasing. Then:

u(t) < a(t)exp (/B(s)ds), tel



Lemma 1.6 Hausdorff- Young inequality
Let F the Fourier transform in the space S (R™), as usual, LP(R™) are the lebesque
spaces with respect to the lebsque measure in R™.

If1 <p<2, then

1 1
F e L(L,(R"), L,(R"),where —+ —-=1
P q
and
1Fl2, -z, < (2m) 672,
For the proof see [7]
Lemma 1.7 Let Q be a smoth bounded domain in R2.
1. If f € H*(QQ) for some 0 < s < 1, then
1 gl < ClFlls - Tlglli-s, (1.7)
provided that g € H'~5(Q), and
1 - gll-1s < ClIflls - llgll, (1.8)

provided that g € Ly(12).

2. If fe H(Q) andg € H7(Q) ,0<s<1and0<o<1—s, then f-ge H*(Q)

and
1f - glls < Cllfllsto - 9l —o- (1.9)

For the proof see Lemma 1.4.1 in [3].
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1.5 Preliminary lemmas

Here ) is a smooth bounded domain in R2.

We also rely on the following representations of the von Karmén bracket:

[u, 0] =02 (u-920) + 02 (u-2v) —2- 02, (u-02 .. v), (1.10)

T1T2 r1T2

and

[u, v] = Oy, (O 02,0 — Dy - B2, V) + Oy (Oyuu - 02 0 — Dyyu - D2, 0). (1.11)

T1T2 T1T2

We will denote by A% the biharmonic operator with Dirichlet boundary conditions on 9.
It is well known that A% is an isomorphism from H*(Q) N HZ(2) onto H** for s > 2 and,

therefore,
G=(AL) ™ H Q) — HMH Q) NHF(Q), s> —2. (1.12)
We note also that the norm in H(€2) can be defined by the formula
S 1
Il = [[(A2)5- for—2§s§2and37éi§,ig. (1.13)

Let {ey} be a basis in L*(2) of eigenvectors of the operator A% and let {\.} be the

corresponding eigenvalues:
AQDek = /\k€k7 k?” = 1727"'7 0< )\1 S )\2 S Ut

Bellow we will denote by Py the projector in L?(£2) into the space spanned by {ey, €3, ..., en }.

The following lemmas are of prime importance in the subsequent considerations.

Lemma 1.8 The bracket [u,v] defined by[1.1( satisfies

et w0 Cllalla—oss-[0lls—ios, (1.14)

where j =0,1 and 0 < <0 < 1.

et o5 < Cllulla-s-ollss (1.15)
Where j =1,2,0< <1 .

11



Proof.

To prove estimate ((1.14) and ((1.15) we use the representation in ([1.10) for the von
Kérman bracket and also the relation

[u, v] = =02 (05, u0p,v) — 07, Oy, udy,v) + O

T1T2

(O U0z, 0 + Oy U0y, ) (1.16)

Let D and D? denote differential operators of the first and second order with constant

coefficient. We have
|D*(Du - Dv)||_1_9 < C||Du - Dvl|;_g.

We use the inequality with s =1 — 6 and 0 = 3 we have
|ID*(Du - Dv)||-1-¢ < C||Du- Dv|l1-g < C||Dulli-g+5 - || Dv[li-s-
In addition, we have
ID(Du - D*v)||- < C||Dull1-+5] D*v[l1-5

Thus estimate ((1.15)) applied for 0 < § < 6 < 1 follows from ((1.16)) and ([1.11]).
When [ = 6, using the embedding

Loj1+9() € H(Q),

we use (|1.6), we have
| D*u - D*v||_g < C||D*u - D*v||2/140

0
and using 1) we fined

I1D*u - D*v|—p < ClID*ull[|D*v] 1210 < ClID*ull[[D*v]}1p-

Applying the Holde'r inequality with p = 1+ 6 and ¢ =
that:

In addition
|ID(D*u - Dv)||—1—s < C||D?ul|[| Dv]| 1210 < C||D?ull|| Dvll1—p.

These inequalities along with (1.11]) imply (1.14) for g = 0.

12



For the proof we use the two cases
Case 0 < f<1
Using (1.7, we obtain

ID(Du - D*v)||-y < C||Du - D*v]| < C||Dulli—s[ D*v]l,

and
|D*(Du - Dv)||—5 < C||Du - Do|| < || Dully_|| Dv| .

From (|1.11)) and (|1.16)) we obtain (1.15)) with 0 < 8 < 1.

Case 3 =0 For u € H?*(Q2) we denote by A, the operator from H?*(2) into H~2(2) defined
by the formula A,v = [u,v]. Note that A, is a linear operator for a fixed u. The
estimate ([1.14)) with, j =1, =0 =1 — « and with: j =1, = 0 = « gives:

A, H*(Q) — H(Q),

and
A, HZ*"‘(Q) — Hﬁlfa(Q),

respectively.

Therefore from interpolation theory we have that
A, H*(Q) — H1(Q) and, consequently, we have (1.15) with j =1 and 8 = 0.
Because

|([u, v], @) = [([u, ¢}, )| < [[u, @1l -1 - [Jollx

for any ¢ € HZ(Q), we obtain (1.15) for j =2, 8 =0 from (1.15) with j = 1 and
B—0.

]
Lemma 1.9 Let f(z) € HY(Q). Then there exists Ny > 0 such that
mag|(Py )(2)|< O {log(1+ M)} ] (1.17)
for all N > Ny. The constant C' does not depend on N.

13



Proof. Let ¢ € C5°(R?) with supp ¢ C Q2. We have
1 .
maz|o(z)] < 5— - [|o(k)|dk,
T o

where

(k) = Flol(k) = 5 [ ole) exp(~ike)do

is the Fourier transform of ¢(x). Therefore, we use the inequality Cauchy Schwarz

maglo(n)| < 5 - (] (1+ B2 I6RPAR)S - ([ (1 +k2)dk)?,

€S R2 R2

for s > 1.
Using this inequality along with the density of C§°(Q2) in H§(2), we conclude that

_ 1
mazlg(a)| < C 07 glhio, 0<0 <3, (1.18)
xe

for any g(z) € H'7(Q) N Hy (). Therefore, ([1.13]) implies
maz| Py f(2)|< C - o 2 AL(AR) 1| < C- o720k .

If we choose o = [log(1 + Ay)]™!, we obtain ([1.17]). =

Lemma 1.10 Let f(x) € H?() for 0 <o < 1. Then

p—1 _
[fllzop) < C- (Wm)(p R [ (1.19)

foralll<p<(1—o0)7t.
Proof. Let g(x) be the extension of f(z) on R? such that
allflle < llglls < el fllo; 0 <o <1.

Using Hausdorff-Young inequality, which states that Fourier transforms F and F~! are
bounded from L,(R™) into L,(R™) for 1 <p <2, % + % =1, and

i 11
|| (L @), Lo(rmyy < (20) PP <1 1< p<2, st h

14



In addition

_ (o 1
| F M (g &), 1, mmy) < (27) P < 1<p<2, S - =1,

this inequality obtain
. 1 1
1l zop) < NgllLop@2y < 1192,@2), Q_p +}—3 =Lp>1,
where ¢ is the Fourier transform of g. Then Hélder’s inequality implies

19l zpee) < (J (L +E2)71g(R)[PdR)2 - ([ (1 + k2)=dk) =P/,

R? R?
where ¢ = po - (2 —p)~ L.
. p—1
N <O (n—Et—_—— \-1/2p. o
||g||Lp(R2) > (Fap - 1) gl
Then we obtain ((1.19)). =

Lemma 1.11 Let f(z) € Ly(Q) and g(x) € H'(Q). Then there exists Ny > 0 such that

I(Pxf) - gl|< C - {log(1 + Ax)}2 (| £II-llglls (1.20)

for all N > Ny. The constant C' does not depend on N.

Proof. Using Holder’s inequality, we obtain

1PN ) - gl < PN Fllzsgy@) - [19ll2s 0000, 0 <8 <T. (1.21)
Using Lemma for p=(1—6)"! and o = 260 , we have

1PN )|y @) < C - 1P f)ll2o < C- XN,

for 0 < 6 < % If we apply Lemma with p = 6~ and o = 1, we obtain

1—-6

7 )A=072 igll,, 0<0<1.

191lL,,000) < C - (7
Consequently, (1.21]) implies

15



I(Px ) gll < C-0-2 2PN F] - gl

If we set 6 = {log(1 + Ay)}~! we obtain (1.20). m
Lemma 1.12 let u € H?(Q) and v € H*5(Q) , where 0 < 8 < 1 then

[u - wl|< lull-vlli-s, (1.22)
and

lu- vl —145< Clluls-lv]l- (1.23)

Proof. Estimate ([1.22)) follows from Hélder’s inequality and the continuity of the embed-
ding H'7°(Q) C Lg/s5(€2) for 0 < 6 < 1 (see,[8]), which also implies tha we have a continuous
embedding Lg/(g,(;)(Q) C H_1+6(Q).

Therefore, using Holder’s inequality, when § = o we have
Ju-vl|-145 < C - |Ju- UHL2/<273) <C- Hu||L2p/(2—B) : ||U||L2q/2—ﬁ7

where p~! 4+ ¢! = 1. Setting ¢ =2 — S and p = (2 — 3)(1 — 8)~!, we obtain ((1.23) from
the embedding result: H?(Q) C Ly/1-5)(2). =

16



Chapter 2

Existence and uniqueness results for
von Karman evolution equations
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2.1 Existence result for von Karman evolution equa-
tion

We consider the following system of equations which arises in the nonlinear oscillation the-

ory of elastic plates:

OPu+ A%u — [u,v] = p(z), €Q, t>0, (2.1)
0
ulon= a—Z|aQ= 0, uli=o=uo(), Opuli=o= u1(z), (2.2)

where v = v(u) is defined as a solution of the problem

)
A%+ [u,u] = 0, v|po= a—zbg = 0. (2.3)

Here Q is a smooth bounded domain in R?, A? is the biharmonic operator,

[u, 0] =2 -2 v+ 02 u-92v—202 , u-05 v (2.4)

Tr1I2 Tr1xo 7

it is assumed that p(z) € La(Q) , ug(z) € HZ(Q), and ui(z) € Ly(Q) are known. Here
and below H*(2) is the sobolev space of order s on Q and H{(f2) is the closer of C*
functions with compact support in 2, in H*((Q2).

We denote by ||.||s the norm in H*(Q2) and by |.|| and (.,.) the norm and the inner
product in L?(Q).

Definition 2.1 the function u(x,t) is said to be a weak solution of the problem (2.1)-(2.3)

on the interval [0,T], if
u(z,t) € Loo(0,T; H3(Q)) and Oyu(z,t) € Loo(0,T; Ly(Q2)) (2.5)

and the following properties are fulfilled:

(i) Equation is satisfied in the sense of distributions (taking into account (2.5)).

18



(ii) The vector-valued function t — (u(t), dyu(t)) € HZ(Q) x Lo(Q) is weakly continuous,

and u(0) = ugy , Jru(0) = uy.

Here Lo (0,T;X) is the space of essentially bounded measurable functions on [0,T] with

values in X .
Theorem 2.2 We assume that
f € Ly(2x]0,T)), up € HF(),u; € Ly(R2)
Then there exists a weak solutions (u,v) to the problem (2.1)-(2.5), such that

u € Loo(0,T; Hg(Q)),
Owu € Loo(0,T; La(Q2)),
v € Loo(0,T; HZ(R)).
For the proof see theorem 4-1 in [6].

The weak solutions of (2.1))-(2.3|) are constructed by the standard Faedo-Galerkin approxi-

mation and compactness method; see also [9].

2.2 Uniqueness theorem for weak solutions of von Karman

evolution equations

We use the method developed by Sedenko [10]-[I1] for Marguerre-Vlasov equations arising
in the theory of elastic shallow shells. This method relies on the energy inequality in

negative spaces and on estimates of the form:

mag|(Ty f)(@)| < collogN)? [ flr, (T = Tw) fIl < N7 flla:

€N

For certain sequences of operators Ty, N = 2,3.... We show that in our case one can

choose Ty = Py, where Py is the projector in L?(Q2) onto the space spanned by the first N

19



eigenvectors of the biharmonic operator A% with Dirichlet boundary conditions on 5.
We also rely on the estimates of the von karman bracket which were used earlier in
[12]-[14].

We note that from the mechanical point of view the system — is a special case of
the system of Marguerre-Vlasov equations.

If u(t) is a weak solution on the interval [0, 7], then (2.1) and Lemma(L.8) imply that

OPu(z,t) € Loo(0,T; H2(R)).

Therefore, by interpolation we can conclude that u(t) and d,u(t) are strongly continuous
functions with values in H}(Q) and H~!(), respectively.
Let u;(t) and us(t) be weak solutions of the problem ([2.1)-(2.3) and w(t) = uq(t) — ua(t).

Then uy(t) = Pyu(t) is a solution of the linear problem

O*w + A*w = (PyM)(z,t), =€ Q,t>0, (2.6)
ow
UJ|Q: @_n |8Q: 0, U}|t:0: O, 5’tw\t:0: 0 (27)

Here, Py is the projector in Ly(€2) on the space spanned by the first N eigenvectors of the
biharmonic operator A% with dirichlet boundary conditions on 9

and
M, t) = M(t) = [ur(8), v(ur(£))] = ua(t), v(uz(t))];
Where v = v(u(t)) is determined from u by . Using the multiplier Py(A2)~1/2y,
in from relation and we obtain that

t
1PN O () |12+ Pru() [ < C'/HPNM(T)||—1'||PNatu(7—)||—1dT
0

for all ¢ € [0, T]. From this we see that the remainder u(t) of two weak solutions satisfies
¢
10u@)IZ,+Hu@) i< C'/||M(T)||1'H3W(T)H1dT- (2.8)
0

We use the following lemmas make it possible to estimate the quantity || M (¢)]]-1.
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Lemma 2.3 Let uy and uy belong H3(Q) and ||u;|2< R for some R > 0. Then for some

£ >0 we have
s, o) — ()l 1< Cr - Llog(1+ A s — wlli+Co Ay, (29)

where the constants C1,Cy depend on R and 3 only.

Proof. It follows from (1.11)) that [u,v] is sum of terms of the form w = D(D?u - Dv),
where D and D? are certain differential operations with constant coefficients of first and

second order, respectively. Consequently,
lwlj-1 < C - (mag|(Py Dv)(2)| + maz|(Qn Dv)(z)]), (2.10)

where Qy = I — Py. Let v = v(u;) — v(ug). Lemmall.§implies that v € HZ(Q) (N H**(Q)
for any § < 1 (for details see Lemma 1.3 of [I4]). Therefore, we have Dv € Hi*(Q) for
any 0 < % Consequently, Lemma implies that
maz|(PyDv)(z)| < C'- {log(1 + An)}'"?|| Dol
z€Q (2.11)
< C-{log(1+Aw)}2[lvll2, N > N,
Since Hy™(Q) C Loo(Q) for 6 > 0, from (1.18)) and (1.19) we obtain
mag|(QuDv)(x)| < Cy - [(A3)*+/Qu D]
< Cp - A [(AD) Do 2.12)
<Cs- )‘J:fﬁ-l [ Dvl118p
< Cp - M- [vllasss

for 0 < 8 < %. Since v = —G([u, u1 + us]), it follows from (1.12) and (1.14) that
[v]|2485 < Cg for 0 < 8 < 15 . Then, (2.10)-(2.12) imply that

s o) — ()]l 1 < Cr - ({og(1 + M) F200(un) — v(wa) o+ A%y)  (213)
for some B > 0. It follows from that
[o(ur) —v(ug)ll2 < C - ([[Pyvu, ur + ugll| -2 + [[[@nu, ur + us]l| -2) (2.14)

where u = u; — us.
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Lemma (1.8]) gives
1[Q@nu, ur + ug]l| 2 < Cll@nulla—ap - lur + uollisas, 0 <8< 3.

We can conclude that

1Qnu,ur +usll| 2 < Crp - Ay, 0<pB< i. (2.15)

Using and Lemma , we have
|[Prt, wr + )| < Cr - log(1+ Ax)?Jul, (2.16)
then
lo(u)=v(u) |z < C-(Cr-{log(LHAN)}*|ulli+Crs- A1) < C-(AG+Hlog(1+An)} 2 Julh),
we conclude that
[ur, v(ur) = v(ua)] -1 < Ct - {log(1+ An) Hlug — uz|li+Ca - Ay,

imply ]
Lemma 2.4 Let uy and uy belong to HZ(Q) and ||u;]|< R for some R > 0 . then for some

£ >0 we have
fur = ws, v(us)]|| 1< Cr - {log(1+ An)H|ur — usl[1+Ca - AR, (2.17)

for N > Ny , where the constants Cy, Cy depend on R and B only.

Proof. Let u = u; — uy. From (1.11)) it follows that the quantity [u,v(ug)] can be written

as a sum of terms of the form
w = D{Du - D*G[D(Dusy - D*uy)|} = w(Du, Dusy, D*us),

where G = (A%)~! and, as above, D and D? are certain differential operations with constant

coefficients of first and second order,respectively. We obtain
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w = w1 (QnDu, Dus, D*us) 4+ wa(PyxDu, QnDus, D*us)
+ws( Py Du, Py Dugy, D*uy)

= wp + Wy + Ws

Now we estimate every quantity w; separately. It follows from that
lwill-1 < |@nDulli—g - [[DuaD?us|-11p, 0 <5< L.
Using and .We give
lun || < Crg- Ay, 0<pB<1. (2.18)
In the same way, Lemma implies
lwal| -+ < Cl|PxDully - |QnDusllg - [|D*us]l, 0<f<1.
Then, for B =1 — 3 we obtain
lwal| -1 < Crg- Ay, 0<pB<1. (2.19)
We now consider the term ws. Because
|lws||-1 < C||PyDu - D*GD(PyDug - D*uy)||.
Lemma and property imply that
[wsl| 1 < C - {log(1 + An)}'?[[ulls - | Px Dus - D?us]|.
Using Lemma, we have
lws[| -1 < C - {log(1 + Ax)}2[Jullr- (2.20)

The estimates (2.18) - (2.20) imply (2.17) m

Theorem 2.5 Let ug € HZ(2), ui € Lo(Q) and p(z) € Ly(Q). Then the problem (2.1))-
has a unique weak solution for any interval [0, T].
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Proof. We use Lemmas ((2.3) and (2.4) to estimate the quantity M (¢).
We have

IM(t)]|-1 < Cr - {log(1+ Aw)Hu() 1 + Co - A, ¢ € [0,T],

where u(t) = uy(t) — ua(t) is the remainder of two weak solutions and the constants C; and
Cy depend on the norms of u;(t) in Loo(0,T; HZ(R2)). Let

Y(t) = [10au) |2, + [lu®)]-

From ([2.8) that we obtain

W(t) < Oy - {log(1 + AN)}/w(T)dT L C-T AL, te0,T).
0

Using Gronwall’s lemma, we conclude that
V() < Co TN - (T4 A0S, teo,d].

If we let N — oo, then, for 0 < ¢t < tqg = /C1, we obtain ¢» = 0. Thus u(t) = us(t) for
0 <t < tg. Then we conclude that ui(t) = us(t) for all 0 <t < T, which is what had to be

proved.
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Conclusion

In this study, we prove the uniqueness theorem for weak solutions of von Karméan evolution

equations, by using Sedenko’s method.

Note that, we can use this method to prove the uniqueness of solution for the following

system of non linear oscillation theory of shallow shells:

O*u + yOu + A*u — [u+ f,v+ 0] + pdy,u = p(x),x € Ot >0,

ou
U’@Q: %bﬂz 0, U\t:oz U0(33)> 8tu’t:0: Ul(fﬁ)a
9 v
Av+u+2f,ul =0, vlpg= %bg =0.

where v,p are non-negative parameters and f,f are given functions.
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/ Abstract \

In this work, we use the method developed by Sedenko
to prove the uniqueness theorem for von Karman
evoloution equations.

Key words : von Karman plates, evolution equations,

\uniqueness of solutions /
/ Résumé \

Dans ce travail, on utilise la méthode développée par

Sedenko pour prouver le théoreme d’unicité pour les
équations d’évolution de von Karman.

Mots clés : plaques de von Karman, équations

Q’évolution, unicité des solutions. /
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