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Notations and Conventions

Ω : is a domain in Rn .

∂Ω : boundary of Ω .

L∞(Ω): = {u : Ω→ R mesurable ; |u(t)| < +∞} .

L2(Ω) : The space of square integrable functions Lebesgue measure dx .

(., .): The inner product in L2(Ω) .

Lp(Ω): the space of measurable functions on Ω such that |u|p is integrable (1 ≤ p <∞) .

‖u‖Lp(Ω) = (
∫
Ω

|u|pdx)1/p for u ∈ Lp(Ω) .

Wm
p (Ω) = {u ∈ Lp(Ω), Dαu ∈ Lp(Ω), |α| ≤ m} .

Dα =
∂α1+...+αn

∂α1
x1 ...∂αnx1

, α = α1 + ...+ αn .

W 1
2 (Ω) =H1(Ω) .

Wm
2 (Ω) = Hm(Ω) .

‖u‖Hm(Ω) = (
∑
|α|≤m

(‖Dαu‖L2)2)1/2 for u ∈ Hm(Ω) .

H−m(Ω) = (Hm
0 (Ω))

′

H1(Ω) : {u/u ∈ L2(Ω),
∂u

∂xi
∈ L2(Ω), i = 1...n} .
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‖u‖H1(Ω) = (|u|2 +
n∑
i=1

| ∂u
∂xi
|2)1/2 .

Hs(Ω) : Sobolev space of order s ( s real number).

‖·‖s: The norm in Hs(Ω) .

Lp(0, T,X) = {f : (0, T )→ X; measurable :
∫ T

0
‖f‖px <∞} .

L∞(I;X): the space of measurable functions u on I such that there exists C such that

‖u(x)‖ ≤ C for almost every x ∈ I .

‖u‖L∞(I;X) = supess
0≤t≤T

‖u(t)‖X .

[u, v ] =∂2
x1

(u · ∂2
x2
v) + ∂2

x2
(u · ∂2

x1
v)− 2 · ∂2

x1x2
(u · ∂2

x1x2
v). : The bracket of von Kármán.

C∞0 (Ω) = D(Ω) (Test function).

∆2
D: The biharmonic operator with Dirichlet boundary conditions on ∂Ω .

(∆2
D)−1: The inverse biharmonic operator.

PN : The projector in L2(Ω).
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Introduction

From one century ago it has been appear the justification of the classical von Kármán theory

of plates. This theory, originally proposed in [1] by Theodore von Kármán 1881-1963, which

play on important role in applied mathematics.

In 1980, Ciarlet [2] justified the classical von Kármán equations by means of the formal

asymptotic analysis.

The von Kármán model epitomizes many important features and mathematical difficul-

ties that arise in the study of attractors for various non linear PDEs.

Chueshov and Lasiecka [3] developed and presented an array of new methods that are

capable of handling some of these difficulties for von Kármán evolutions equations; one of

these, the uniqueness result for von Kármán evolution equations.

The propose of this study is to prove the uniqueness theorem for von Kármán evolutions

equations. This result obtained in [4] and detailed in [3].

To this end, we give a positive answer to a question posed by Vorovich [5] in 1957 and

Lions [6] in 1969.
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Chapter 1

Preliminaries
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1.1 Sobolev spaces and embedding theorems

Let Ω is a domain in Rn whose boundary ∂Ω is a (n-1)-dimensional sufficiently smooth

manifold. It is assumed that Ω lies locally on one side of the boundary ∂Ω.

For any integer k ≥ 0 and for 1 ≤ p ≤ ∞, we denote by W k
p (Ω) the Sobolev space:

W k
p (Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω) for all |α|≤ k}

where: ∂ = ∂x = (∂x1 , . . . , ∂xn) is the gradient operator, and α = (α1, α2, . . . , αn), |α| =

α1 + ...+ αn and, ∂α = (∂α1
x1
, . . . , ∂αnxn ).

We denote by ‖u‖Wk
p (Ω) the norm in W k

p (Ω).

‖u‖Wk
p (Ω) = (

∑
|α|≤k

‖Dαu‖pLp(Ω))
1/p/p <∞

and

‖u‖Wk
∞(Ω) = max

|α|≤k
‖Dαu‖L∞(Ω)

We also define the Sobolev space W k
p (Ω) for positive real superscripts s /∈ N and 1 ≤ p <∞

by the formula:

W s
p (Ω) = {u ∈ W k

p (Ω) : ‖u‖pW s
p (Ω) ≡ ‖u‖

p
Wk
p (Ω)

+
∑
|α|=k

Iδ,p(∂
αu) <∞}, (1.1)

where s = k + δ with k ∈ N and 0 < δ < 1, and

Iδ,p(u) =

∫
Ω×Ω

|u(x)− u(y)|p

|x− y|n+δp
dxdy.

We denote Hs(Ω) ≡ W s
2 (Ω), and consider the space Hs

0(Ω) defined as the closer in Hs(Ω)

of the space of infinite differentiable functions on Ω with compact support in Ω and the

space : H−s(Ω) ≡ [Hs
0(Ω)]

′
of distributions on Ω. We often use the notation ‖·‖s for the

norm in Hs(Ω) for each s ∈ R, We denote the norm in L2(Ω) by ‖·‖.
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Theorem 1.1 Assume that ∂Ω ∈ C∞(Ω) and Ω lies locally on one side of the boundary

∂Ω.

1- The following continuous embeddings are valid

W s
p (Ω) ⊂ Cδ(Ω̄) if s− n

p
> δ , 1 < p <∞, s, δ ≥ 0. (1.2)

(if δ is not an integer the embedding holds also for δ = s− n
p

)and:

W s
p (Ω) ⊂ W s∗

p∗ (Ω) if s− n

p
≥ s∗ − n

p∗
, 1 < p ≤ p∗ <∞, s∗ ≥ 0. (1.3)

2- The trace operator u 7−→ u/∂Ω is continuous from W s
p (Ω) into W

s− 1
p

p (∂Ω) for every:

s > 1
p

and 1 < p <∞.

In particular, from ( 1.3 ) We have that:

Hs(Ω) ⊂ Lp(Ω) , if s =
n

2
− n

p
, p ≥ 2; n = dimΩ. (1.4)

In the case n = 2 so:

Hs(Ω) ⊂ L∞(Ω) , s > 1 ,Ω ⊂ R2. (1.5)

and

Hs(Ω) ⊂ L2/(1−s)(Ω) , 0 ≤ s < 1 ,Ω ⊂ R2. (1.6)

For the proof see [3].
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1.2 Vector-valued spaces

Let X be a Banach space and [a, b] ⊂ R. We denote by Cm(a, b;X) ≡ Cm([a, b];X) the

space of m-differentiable (in the norm topology) functions on [a, b] with values in X. If

[a, b] is a finite interval, then Cm(a, b;X) equipped with the norm

‖u‖Cm(a,b;X) = max{‖u(k)(t)‖X : t ∈ [a, b], k = 0, 1, ...,m}

becomes a Banach space. Here u(k)(t) = ∂kt u(t) is the strong derivative of u of order k.

We denote by Cm([a, b[;X) the space of functions u : [a, b[7→ X such that u ∈ Cm([a, b
′
];X)

for any b
′ ∈]a, b[. A similar meaning has a notations Cm(]a, b];X) and Cm(]a, b[;X). We

also use the notation Cw(a, b;X) for the space of the functions on [a, b] that are continuous

with respect to weak topology on X.

Lp(a, b;X), 1 ≤ p ≤ ∞ are classical Lp spaces defined as sets of (classes of almost every-

where equal) strongly Bochner-measurable functions f(t) with values in X such that

‖f(·)‖X ∈Lp(a, b;R), Each Lp(a, b;X) is a Banach space with the norm

‖f‖Lp(a,b;X) = (

b∫
a

‖f(t)‖pXdt)
1/p 1 ≤ p <∞

‖f‖L∞(a,b;X) = esssup{‖f(t)‖X : t ∈ [a, b]}

Let X ⊆ Y be a couple of Banach spaces. Given f ∈ Lp(a, b;X) , p ≥ 1, the function

g ∈ Lq(a, b;Y ) is called the derivative of f in the distributional sense, if

b∫
a

g(t)φ(t)dt = −
b∫
a

f(t)φ
′
(t)dt for all φ ∈ C∞0 (a, b;R).

This relation is equivalent to the equality

f(t) = f0 +

t∫
a

g(τ)dτ in Y for almost every t ∈ [a, b],

where f0 ∈ Y . We use the notation g = ∂tf = ft = f
′
.

For every 1 ≤ p, q ≤ ∞ we define the Banach space

W 1
p,q(a, b;X, Y ) = {f ∈ Lp(a, b;X) : f

′ ∈ Lq(a, b;Y )}

6



with the norm

‖f‖W 1
p,q(a,b;X,Y ) = ‖f‖Lp(a,b;X) + ‖f ′‖Lq(a,b;Y ).

For brevity, we use the notation W 1
p (a, b;X) = W 1

p,p(a, b;X,X). Below we also need higher-

order spaces of Lp-differentiable functions

Wm
p (a, b;X) = {f ∈ Lp(a, b;X) : f (k) ∈ Lp(a, b;X), k = 1, ....,m}, m ≥ 1.

Theorem 1.2 Let X ⊂ Y ⊂ Z be a triple of Banach spaces such that X is compactly

embedded in Y . Then

• The space W 1
p,q(a, b;X,Z) is compactly embedded in Lp(a, b;Y ) for every 1 ≤ p, q <∞.

• The space W 1
∞,q(a, b;X,Z) is compactly embedded in C(a, b;Y ) for every q > 1.

For the proof of this theorem which is based on the argument given in [3].

1.3 Biharmonic operator

The Dirichlet boundary conditions are the most widely known and frequently used bound-

ary conditions in plate theory.

We denote by ∆2
D : L2(Ω) 7−→ L2(Ω) biharmonic operator with the zero clamped conditions:

u|∂Ω= ∇u|∂Ω= 0

this is to say :

∆2
Du ≡ ∆2u, u ∈ D(∆2

D) ≡ H4(Ω) ∩H2
0 (Ω)

The operator ∆2
D is self-adjoint and strictly positive. It also possesses a discrete spectrum.

We recall the following definition.
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Definition 1.3 A positive self-adjoint operator A in a Hilbert space H is said to be an

operator with a discrete spectrum iff there exists an orthonormal basis {ek} in H consisting

of eigenvectors of the operator A:

Aek = λkek, ek ∈ D(A), k = 1, 2, ...,

and the corresponding eigenvalues {λk} have the properties 0 ≤ λ1 ≤ λ2 ≤ ...,

and lim
k→∞

λk =∞.

The operator ∆2
D generates on H2

0 (Ω) the bilinear form

A(u, v) =

∫
Ω

∆u∆vdx = ((∆2
D)1/2u, (∆2

D)1/2v)L2(Ω) , u, v ∈ H2
0 (Ω).

Let (∆2
D)−1 denote the inverse of ∆2

D , Which is defined as a bounded operator from Lp(Ω)

into W 4
p (Ω) for all 1 < p < ∞. To study properties of the Airy stress function we use the

fact that the operator ∆2
D is an isomorphism from Hs(Ω) ∩H2

0 (Ω) onto Hs−4(Ω) for s ≥ 2

and

(∆2
D)−1 : Hs(Ω)→ Hs+4(Ω) ∩H2

0 (Ω), s ≥ −2.

8



1.4 Some inequalities

Lemma 1.4 Holder’s inequality

Let p, q ∈ [1,∞] with 1
p

+ 1
q

= 1 . If f ∈ Lp(Ω) and g ∈ Lq(Ω). Then fg ∈ L1(Ω) and

‖fg‖L1(Ω) ≤ ‖f‖p‖g‖q.

An extension of Hölder’s inequality suppose p, q, r ∈ [1,∞] with 1
p

+ 1
q

= 1
r
. If f ∈ LP (Ω)

and g ∈ Lq(Ω). Then fg ∈ Lr(Ω) and

‖fg‖Lr(Ω) ≤ ‖f‖p‖g‖q.

Lemma 1.5 Gronwall’s inequality

Let I denote an interval of the real line of the form [a,∞[ or [a, b] or [a, b[ with: a < b,

let α, β and µ be real-valued functions defined on I, assume that β an µ are continuous and

that the negative part of α is integrable on every closed and bounded subinterval of I.

(a) if β is non-negative and if u satisfies the integral inequality:

u(t) ≤ α(t) +

t∫
a

β(s)u(s)ds , ∀t ∈ I,

then

u(t) ≤ α(t) +

t∫
a

α(s)β(s)exp(

t∫
s

β(r)dr)ds ,∀t ∈ I.

(b) if in addition the function α is increasing. Then:

u(t) ≤ α(t)exp (

t∫
a

β(s)ds), t ∈ I.

.
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Lemma 1.6 Hausdorff-Young inequality

Let F the Fourier transform in the space S
′
(Rn), as usual, Lp(Rn) are the lebesgue

spaces with respect to the lebsgue measure in Rn.

If 1 ≤ p ≤ 2, then

F ∈ L (Lp(Rn), Lq(Rn), where
1

p
+

1

q
= 1

and

‖F‖Lp→Lq ≤ (2π)−n( 1
p
− 1

2
).

For the proof see [7]

Lemma 1.7 Let Ω be a smoth bounded domain in R2.

1. If f ∈ Hs(Ω) for some 0 < s < 1, then

‖f · g‖ ≤ C‖f‖s · ‖g‖1−s, (1.7)

provided that g ∈ H1−s(Ω), and

‖f · g‖−1+s ≤ C‖f‖s · ‖g‖, (1.8)

provided that g ∈ L2(Ω).

2. If f ∈ Hs+σ(Ω) and g ∈ H1−σ(Ω) , 0 < s < 1 and 0 < σ < 1− s , then f · g ∈ Hs(Ω)

and

‖f · g‖s ≤ C‖f‖s+σ · ‖g‖1−σ. (1.9)

For the proof see Lemma 1.4.1 in [3].
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1.5 Preliminary lemmas

Here Ω is a smooth bounded domain in R2.

We also rely on the following representations of the von Kármán bracket:

[u, v] = ∂2
x1

(u · ∂2
x2
v) + ∂2

x2
(u · ∂2

x1
v)− 2 · ∂2

x1x2
(u · ∂2

x1x2
v), (1.10)

and

[u, v] = ∂x1(∂x1u · ∂2
x2
v − ∂x2u · ∂2

x1x2
v) + ∂x2(∂x2u · ∂2

x1
v − ∂x1u · ∂2

x1x2
v). (1.11)

We will denote by ∆2
D the biharmonic operator with Dirichlet boundary conditions on ∂Ω.

It is well known that ∆2
D is an isomorphism from Hs(Ω)∩H2

0 (Ω) onto Hs−4 for s ≥ 2 and,

therefore,

G ≡ (∆2
D)−1 : Hs(Ω) −→ Hs+4(Ω) ∩H2

0 (Ω), s ≥ −2. (1.12)

We note also that the norm in Hs
0(Ω) can be defined by the formula

‖·‖s = ‖(∆2
D)

s
4 ·‖ for − 2 ≤ s ≤ 2 and s 6= ±1

2
,±3

2
. (1.13)

Let {ek} be a basis in L2(Ω) of eigenvectors of the operator ∆2
D and let {λk} be the

corresponding eigenvalues:

∆2
Dek = λkek, k, n = 1, 2, ..., 0 < λ1 ≤ λ2 ≤ · · ·.

Bellow we will denote by PN the projector in L2(Ω) into the space spanned by {e1, e2, ..., eN}.
The following lemmas are of prime importance in the subsequent considerations.

Lemma 1.8 The bracket [u,v] defined by 1.10 satisfies

‖[u, v]‖−j−θ≤ C‖u‖2−θ+β·‖v‖3−j−β, (1.14)

where j = 0, 1 and 0 < β ≤ θ < 1.

‖[u, v]‖−j≤ C‖u‖2−β·‖v‖3−j+β, (1.15)

Where j = 1, 2, 0 ≤ β < 1 .
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Proof.

To prove estimate (1.14) and (1.15) we use the representation in (1.10) for the von

Kármán bracket and also the relation

[u, v] = −∂2
x1

(∂x2u∂x2v)− ∂2
x2

(∂x1u∂x1v) + ∂2
x1x2

(∂x1u∂x2v + ∂x2u∂x1v) (1.16)

Let D and D2 denote differential operators of the first and second order with constant

coefficient. We have

‖D2(Du ·Dv)‖−1−θ ≤ C‖Du ·Dv‖1−θ.

We use the inequality (1.9) with s = 1− θ and σ = β we have

‖D2(Du ·Dv)‖−1−θ ≤ C‖Du ·Dv‖1−θ ≤ C‖Du‖1−θ+β · ‖Dv‖1−β.

In addition, we have

‖D(Du ·D2v)‖−θ ≤ C‖Du‖1−θ+β‖D2v‖1−β

Thus estimate (1.15) applied for 0 < β < θ < 1 follows from (1.16) and (1.11).

When β = θ, using the embedding

L2/1+θ(Ω) ⊂ H−θ(Ω),

we use (1.6), we have

‖D2u ·D2v‖−θ ≤ C‖D2u ·D2v‖L2/1+θ

Applying the Hölde’r inequality with p = 1 + θ and q =
1 + θ

θ
and using (1.6) we fined

that:

‖D2u ·D2v‖−θ ≤ C‖D2u‖‖D2v‖L2/θ ≤ C‖D2u‖‖D2v‖1−θ.

In addition

‖D(D2u ·Dv)‖−1−θ ≤ C‖D2u‖‖Dv‖L2/θ ≤ C‖D2u‖‖Dv‖1−θ.

These inequalities along with (1.11) imply (1.14) for β = θ.

12



For the proof 1.15 we use the two cases

Case 0 < β < 1

Using (1.7), we obtain

‖D(Du ·D2v)‖−1 ≤ C‖Du ·D2v‖ ≤ C‖Du‖1−β‖D2v‖β,

and

‖D2(Du ·Dv)‖−2 ≤ C‖Du ·Dv‖ ≤ ‖Du‖1−β‖Dv‖β.

From (1.11) and (1.16) we obtain (1.15) with 0 < β < 1.

Case β = 0 For u ∈ H2(Ω) we denote by Aµ the operator from H2(Ω) into H−2(Ω) defined

by the formula Aµv = [u, v]. Note that Aµ is a linear operator for a fixed u. The

estimate (1.14) with, j = 1,β = θ = 1− α and with: j = 1,β = θ = α gives:

Aµ : H2+α(Ω) 7→ H−1+α(Ω),

and

Aµ : H2−α(Ω) 7→ H−1−α(Ω),

respectively.

Therefore from interpolation theory we have that

Aµ : H2(Ω) 7→ H−1(Ω) and, consequently, we have (1.15) with j = 1 and β = 0.

Because

|([u, v], φ)| = |([u, φ], v)| ≤ ‖[u, φ]‖−1 · ‖v‖1

for any φ ∈ H2
0 (Ω), we obtain (1.15) for j = 2 , β = 0 from (1.15) with j = 1 and

β = 0.

Lemma 1.9 Let f(x) ∈ H1
0 (Ω).Then there exists N0 > 0 such that

max
x∈Ω
|(PNf)(x)|≤ C · {log(1 + λN)}

1
2‖f‖1 (1.17)

for all N ≥ N0. The constant C does not depend on N.
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Proof. Let φ ∈ C∞0 (R2) with supp φ ⊂ Ω. We have

max
x∈Ω
|φ(x)| ≤ 1

2π
·
∫
R2

|φ̂(k)|dk,

where

φ̂(k) ≡ F [φ](k) =
1

2π

∫
R2

φ(x) exp{−ikx}dx

is the Fourier transform of φ(x). Therefore, we use the inequality Cauchy Schwarz

max
x∈Ω
|φ(x)| ≤ 1

2π
· (
∫
R2

(1 + k2)s|φ̂(k)|2dk)
1
2 · (

∫
R2

(1 + k2)−sdk)
1
2 ,

for s > 1.

Using this inequality along with the density of C∞0 (Ω) in Hs
0(Ω), we conclude that

max
x∈Ω
|g(x)| ≤ C · σ

−1
2 ‖g‖1+σ, 0 < σ <

1

2
, (1.18)

for any g(x) ∈ H1+σ(Ω) ∩H1
0 (Ω). Therefore, ( 1.13 ) implies

max
x∈Ω
|PNf(x)|≤ C · σ−

1
2λ

σ
4
N‖(∆

2
D)

1
4f‖ ≤ C · σ−

1
2λ

σ
4
N‖f‖1.

If we choose σ = [log(1 + λN)]−1, we obtain ( 1.17 ).

Lemma 1.10 Let f(x) ∈ Hσ(Ω) for 0 < σ ≤ 1. Then

‖f‖L2p(Ω) ≤ C · (π p− 1

σp− p+ 1
)(p−1)/2p · ‖f‖σ, (1.19)

for all 1 < p < (1− σ)−1 .

Proof. Let g(x) be the extension of f(x) on R2 such that

c1‖f‖σ ≤ ‖g‖σ ≤ c2‖f‖σ, 0 < σ ≤ 1.

Using Hausdorff-Young inequality, which states that Fourier transforms F and F−1 are

bounded from Lp(Rn) into Lq(Rn) for 1 ≤ p ≤ 2 , 1
p

+ 1
q

= 1 , and

‖F‖L (Lp(Rn),Lq(Rn)) ≤ (2π)−n(2−p)/p ≤ 1, 1 ≤ p ≤ 2,
1

p
+

1

q
= 1,

14



In addition

‖F−1‖L (Lq(Rn),Lp(Rn)) ≤ (2π)−n(2−p)/p ≤ 1, 1 ≤ p ≤ 2,
1

p
+

1

q
= 1,

this inequality obtain

‖f‖L2p(Ω) ≤ ‖g‖L2p(R2) ≤ ‖ĝ‖Lp̃(R2),
1

2p
+

1

p̃
= 1, p > 1,

where ĝ is the Fourier transform of g. Then Hölder’s inequality implies

‖ĝ‖Lp̃(R2) ≤ (
∫
R2

(1 + k2)σ|ĝ(k)|2dk)1/2 · (
∫
R2

(1 + k2)−σ̃dk)(2−p̃)/2p̃,

where σ̃ = p̃σ · (2− p̃)−1.

‖ĝ‖Lp̃(R2) ≤ C · (π p− 1

σp− p+ 1
)p−1/2p · ‖g‖σ.

Then we obtain ( 1.19 ).

Lemma 1.11 Let f(x) ∈ L2(Ω) and g(x) ∈ H1(Ω).Then there exists N0 > 0 such that

‖(PNf) · g‖≤ C · {log(1 + λN)}
1
2‖f‖·‖g‖1, (1.20)

for all N ≥ N0. The constant C does not depend on N.

Proof. Using Hölder’s inequality, we obtain

‖(PNf) · g‖ ≤ ‖PNf‖L2/(1−θ)(Ω) · ‖g‖L2/θ(Ω), 0 < θ < 1. (1.21)

Using Lemma 1.10 for p = (1− θ)−1 and σ = 2θ , we have

‖(PNf)‖L2/(1−θ)(Ω) ≤ C · ‖(PNf)‖2θ ≤ C · λθ/2N ‖f‖,

for 0 < θ < 1
2
. If we apply Lemma 1.10 with p = θ−1 and σ = 1, we obtain

‖g‖L2/θ(Ω) ≤ C · (π · 1− θ
θ

)(1−θ)/2 · ‖g‖1, 0 < θ < 1.

Consequently, (1.21) implies
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‖(PNf) · g‖ ≤ C · θ−1/2 · λθ/2N ‖f‖ · ‖g‖1.

If we set θ = {log(1 + λN)}−1 we obtain (1.20).

Lemma 1.12 let u ∈ Hβ(Ω) and v ∈ H1−β(Ω) , where 0 < β < 1 then

‖u · v‖≤ ‖u‖β·‖v‖1−β, (1.22)

and

‖u · v‖−1+β≤ C‖u‖β·‖v‖. (1.23)

Proof. Estimate (1.22) follows from Hölder’s inequality and the continuity of the embed-

ding H1−δ(Ω) ⊂ L2/δ(Ω) for 0 < δ ≤ 1 (see,[8]), which also implies tha we have a continuous

embedding L2/(2−δ)(Ω) ⊂ H−1+δ(Ω).

Therefore, using Hölder’s inequality, when β = σ we have

‖u · v‖−1+β ≤ C · ‖u · v‖L2/(2−β) ≤ C · ‖u‖L2p/(2−β) · ‖v‖L2q/2−β ,

where p−1 + q−1 = 1. Setting q = 2 − β and p = (2 − β)(1 − β)−1, we obtain (1.23) from

the embedding result: Hβ(Ω) ⊂ L2/(1−β)(Ω).

16



Chapter 2

Existence and uniqueness results for
von Kármán evolution equations
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2.1 Existence result for von Kármán evolution equa-

tion

We consider the following system of equations which arises in the nonlinear oscillation the-

ory of elastic plates:

∂2
t u+ ∆2u− [u, v] = p(x), x ∈ Ω, t > 0, (2.1)

u|∂Ω=
∂u

∂n
|∂Ω= 0, u|t=0= u0(x), ∂tu|t=0= u1(x), (2.2)

where v = v(u) is defined as a solution of the problem

∆2v + [u, u] = 0, v|∂Ω=
∂v

∂n
|∂Ω = 0. (2.3)

Here Ω is a smooth bounded domain in R2, ∆2 is the biharmonic operator,

[u, v] = ∂2
x1
u · ∂2

x2
v + ∂2

x2
u · ∂2

x1
v − 2∂2

x1x2
u · ∂2

x1x2
v, (2.4)

it is assumed that p(x) ∈ L2(Ω) , u0(x) ∈ H2
0 (Ω), and u1(x) ∈ L2(Ω) are known. Here

and below Hs(Ω) is the sobolev space of order s on Ω and Hs
0(Ω) is the closer of C∞

functions with compact support in Ω, in Hs(Ω).

We denote by ‖.‖s the norm in Hs(Ω) and by ‖.‖ and (., .) the norm and the inner

product in L2(Ω).

Definition 2.1 the function u(x, t) is said to be a weak solution of the problem (2.1)-(2.3)

on the interval [0, T ], if

u(x, t) ∈ L∞(0, T ;H2
0 (Ω)) and ∂tu(x, t) ∈ L∞(0, T ;L2(Ω)) (2.5)

and the following properties are fulfilled:

(i) Equation (2.1) is satisfied in the sense of distributions (taking into account (2.3)).

18



(ii) The vector-valued function t→ (u(t), ∂tu(t)) ∈ H2
0 (Ω)× L2(Ω) is weakly continuous,

and u(0) = u0 , ∂tu(0) = u1.

Here L∞(0, T ;X) is the space of essentially bounded measurable functions on [0, T ] with

values in X .

Theorem 2.2 We assume that

f ∈ L2(Ω×]0, T [), u0 ∈ H2
0 (Ω), u1 ∈ L2(Ω)

Then there exists a weak solutions (u, v) to the problem (2.1)-(2.3), such that

u ∈ L∞(0, T ;H2
0 (Ω)),

∂tu ∈ L∞(0, T ;L2(Ω)),

v ∈ L∞(0, T ;H2
0 (Ω)).

For the proof see theorem 4-1 in [6].

The weak solutions of (2.1)-(2.3) are constructed by the standard Faedo-Galerkin approxi-

mation and compactness method; see also [9].

2.2 Uniqueness theorem for weak solutions of von Kármán

evolution equations

We use the method developed by Sedenko [10]-[11] for Marguerre-Vlasov equations arising

in the theory of elastic shallow shells. This method relies on the energy inequality in

negative spaces and on estimates of the form:

max
x∈Ω
|(TNf)(x)| ≤ c0(logN)

1
2‖f‖1, ‖(I − TN)f‖ ≤ c1N

−1‖f‖2.

For certain sequences of operators TN , N = 2, 3.... We show that in our case one can

choose TN = PN , where PN is the projector in L2(Ω) onto the space spanned by the first N

19



eigenvectors of the biharmonic operator ∆2
D with Dirichlet boundary conditions on ∂Ω.

We also rely on the estimates of the von karman bracket (2.4) which were used earlier in

[12]-[14].

We note that from the mechanical point of view the system (2.1)-(2.3) is a special case of

the system of Marguerre-Vlasov equations.

If u(t) is a weak solution on the interval [0, T ], then (2.1) and Lemma(1.8) imply that

∂2
t u(x, t) ∈ L∞(0, T ;H−2(Ω)).

Therefore, by interpolation we can conclude that u(t) and ∂tu(t) are strongly continuous

functions with values in H1
0 (Ω) and H−1(Ω), respectively.

Let u1(t) and u2(t) be weak solutions of the problem (2.1)-(2.3) and u(t) = u1(t) − u2(t).

Then uN(t) = PNu(t) is a solution of the linear problem

∂2
tw + ∆2w = (PNM)(x, t), x ∈ Ω, t > 0, (2.6)

w|Ω=
∂w

∂n
|∂Ω= 0, w|t=0= 0, ∂tw|t=0= 0. (2.7)

Here, PN is the projector in L2(Ω) on the space spanned by the first N eigenvectors of the

biharmonic operator ∆2
D with dirichlet boundary conditions on ∂Ω

and

M(x, t) ≡M(t) = [u1(t), v(u1(t))]− [u2(t), v(u2(t))],

Where v = v(u(t)) is determined from u by (2.3). Using the multiplier PN(∆2
D)−1/2ut

in (2.6) from relation (1.13) and (2.7) we obtain that

‖PN∂tu(t)‖2
−1+‖PNu(t)‖2

1≤ C ·
t∫
0

‖PNM(τ)‖−1·‖PN∂tu(τ)‖−1dτ

for all t ∈ [0, T ]. From this we see that the remainder u(t) of two weak solutions satisfies

‖∂tu(t)‖2
−1+‖u(t)‖2

1≤ C ·
t∫
0

‖M(τ)‖−1·‖∂tu(τ)‖−1dτ. (2.8)

We use the following lemmas make it possible to estimate the quantity ‖M(t)‖−1.
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Lemma 2.3 Let u1 and u2 belong H2
0 (Ω) and ‖uj‖2≤ R for some R > 0. Then for some

β > 0 we have

‖[u1, v(u1)− v(u2)]‖−1≤ C1 · {log(1 + λN)}‖u1 − u2‖1+C2 · λ−βN+1, (2.9)

where the constants C1,C2 depend on R and β only.

Proof. It follows from (1.11) that [u, v] is sum of terms of the form w = D(D2u · Dv),

where D and D2 are certain differential operations with constant coefficients of first and

second order, respectively. Consequently,

‖w‖−1 ≤ C · (max
x∈Ω
|(PNDv)(x)|+max

x∈Ω
|(QNDv)(x)|), (2.10)

where QN = I −PN . Let v = v(u1)− v(u2). Lemma 1.8 implies that v ∈ H2
0 (Ω)

⋂
H2+δ(Ω)

for any δ < 1 (for details see Lemma 1.3 of [14]). Therefore, we have Dv ∈ H1+δ
0 (Ω) for

any δ < 1
2
. Consequently, Lemma 1.9 implies that

max
x∈Ω
|(PNDv)(x)| ≤ C · {log(1 + λN)}1/2‖Dv‖1

≤ C · {log(1 + λN)}1/2‖v‖2, N ≥ N0.
(2.11)

Since H1+δ
0 (Ω) ⊂ L∞(Ω) for δ > 0, from (1.18) and (1.19) we obtain

max
x∈Ω
|(QNDv)(x)| ≤ Cβ · ‖(∆2

D)1/4+βQNDv‖

≤ Cβ · λ−βN+1 · ‖(∆
2
D)1/4+2βDv‖

≤ Cβ · λ−βN+1 · ‖Dv‖1+8β

≤ Cβ · λ−βN+1 · ‖v‖2+8β

(2.12)

for 0 < β < 1
16

. Since v = −G([u, u1 + u2]), it follows from (1.12) and (1.14) that

‖v‖2+8β ≤ CR for 0 < β < 1
16

. Then, (2.10)-(2.12) imply that

‖[u1, v(u1)− v(u2)]‖−1 ≤ CR · ({log(1 + λN)}1/2‖v(u1)− v(u2)‖2 + λ−βN+1) (2.13)

for some β > 0. It follows from (1.12) that

‖v(u1)− v(u2)‖2 ≤ C · (‖[PNu, u1 + u2]‖−2 + ‖[QNu, u1 + u2]‖−2) (2.14)

where u = u1 − u2.
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Lemma (1.8) gives

‖[QNu, u1 + u2]‖−2 ≤ C‖QNu‖2−4β · ‖u1 + u2‖1+4β, 0 < β < 1
4
.

We can conclude that

‖[QNu, u1 + u2]‖−2 ≤ CR,β · λ−βN+1, 0 < β <
1

4
. (2.15)

Using (1.10) and Lemma (1.9), we have

‖[PNu, u1 + u2]‖−2 ≤ CR · log(1 + λN)1/2‖u‖1, (2.16)

then

‖v(u1)−v(u2)‖2 ≤ C·(CR·{log(1+λN)}1/2‖u‖1+CR,β·λ−βN+1) ≤ C·(λ−βN+1+{log(1+λN)}1/2‖u‖1),

we conclude that

‖[u1, v(u1)− v(u2)]‖−1≤ C1 · {log(1 + λN)}‖u1 − u2‖1+C2 · λ−βN+1,

imply (2.9)

Lemma 2.4 Let u1 and u2 belong to H2
0 (Ω) and ‖uj‖≤ R for some R > 0 . then for some

β > 0 we have

‖[u1 − u2, v(u2)]‖−1≤ C1 · {log(1 + λN)}‖u1 − u2‖1+C2 · λ−βN+1 (2.17)

for N ≥ N0 , where the constants C1, C2 depend on R and β only.

Proof. Let u = u1 − u2. From (1.11) it follows that the quantity [u, v(u2)] can be written

as a sum of terms of the form

w = D{Du ·D2G[D(Du2 ·D2u2)]} ≡ w(Du,Du2, D
2u2),

where G ≡ (∆2
D)−1 and, as above, D and D2 are certain differential operations with constant

coefficients of first and second order,respectively. We obtain
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w = w1(QNDu,Du2, D
2u2) + w2(PNDu,QNDu2, D

2u2)

+w3(PNDu, PNDu2, D
2u2)

≡ w1 + w2 + w3

.

Now we estimate every quantity wj separately. It follows from (1.22) that

‖w1‖−1 ≤ ‖QNDu‖1−β · ‖Du2D
2u2‖−1+β, 0 < β < 1.

Using (1.23) and (1.13).we give

‖w1‖−1 ≤ CR,β · λ−β/4N+1 , 0 < β < 1. (2.18)

In the same way, Lemma (1.12) implies

‖w2‖−1 ≤ C‖PNDu‖1−β̂ · ‖QNDu2‖β̂ · ‖D
2u2‖, 0 < β̂ < 1.

Then, for β̂ = 1− β we obtain

‖w2‖−1 ≤ CR,β · λ−β/4N+1 , 0 < β < 1. (2.19)

We now consider the term w3. Because

‖w3‖−1 ≤ C‖PNDu ·D2GD(PNDu2 ·D2u2)‖.

Lemma 1.11 and property (1.13) imply that

‖w3‖−1 ≤ C · {log(1 + λN)}1/2‖u‖1 · ‖PNDu2 ·D2u2‖.

Using Lemma(1.9), we have

‖w3‖−1 ≤ C · {log(1 + λN)}1/2‖u‖1. (2.20)

The estimates (2.18) - (2.20) imply (2.17)

Theorem 2.5 Let u0 ∈ H2
0 (Ω), u1 ∈ L2(Ω) and p(x) ∈ L2(Ω). Then the problem (2.1)-

(2.3) has a unique weak solution for any interval [0, T ].
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Proof. We use Lemmas (2.3) and (2.4) to estimate the quantity M(t).

We have

‖M(t)‖−1 ≤ C1 · {log(1 + λN)}‖u(t)‖1 + C2 · λ−βN+1, t ∈ [0, T ],

where u(t) = u1(t)−u2(t) is the remainder of two weak solutions and the constants C1 and

C2 depend on the norms of uj(t) in L∞(0, T ;H2
0 (Ω)). Let

ψ(t) = ‖∂tu(t)‖2
−1 + ‖u(t)‖2

1.

From (2.8) that we obtain

ψ(t) ≤ C1 · {log(1 + λN)}
t∫
0

ψ(τ)dτ + C2 · T · λ−βN+1, t ∈ [0, T ].

Using Gronwall’s lemma, we conclude that

ψ(t) ≤ C2 · T · λ−βN+1 · (1 + λN)C1t, t ∈ [0, t].

If we let N → ∞, then, for 0 ≤ t ≤ t0 ≡ β/C1, we obtain ψ ≡ 0. Thus u1(t) ≡ u2(t) for

0 ≤ t < t0. Then we conclude that u1(t) ≡ u2(t) for all 0 ≤ t ≤ T , which is what had to be

proved.
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Conclusion

In this study, we prove the uniqueness theorem for weak solutions of von Kármán evolution

equations, by using Sedenko’s method.

Note that, we can use this method to prove the uniqueness of solution for the following

system of non linear oscillation theory of shallow shells:

∂2
t u+ γ∂tu+ ∆2u− [u+ f, v + θ] + ρ∂x1u = p(x), x ∈ Ω, t > 0,

u|∂Ω=
∂u

∂n
|∂Ω= 0, u|t=0= u0(x), ∂tu|t=0= u1(x),

∆2v + [u+ 2f, u] = 0, v|∂Ω =
∂v

∂n
|∂Ω = 0.

where γ,ρ are non-negative parameters and f ,θ are given functions.
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 Abstract 

In this work, we use the method developed by Sedenko 

to prove the uniqueness theorem for von Kármán 

evoloution equations. 

Key words :  von Kármán plates, evolution equations, 

uniqueness of solutions 

 

Résumé 

Dans ce travail, on utilise la méthode développée par 

Sedenko pour prouver le théorème d’unicité pour les 

équations d’évolution de von Kármán. 

Mots clés : plaques de von Kármán, équations 

d’évolution, unicité des solutions. 

 

 ملخص

 لإثبات سدنكو طرف من المطورة الطريقة استخدمنا العمل هذا في

 .كارمان لفون التطور لمعادلات الوحدانية نظرية

 وحدانية التطور، معادلات كارمان، فون صفائح : المفتاحية الكلمات

 .الحل
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