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Notations and conventions

1. Let A,B be arbitary sets and f : A→ B

• imf = {y ∈ B /∃x ∈ A, f(x) = y}.
• ker f = {x ∈ A /f(x) = 0}.
• cokerf = B/imf .

• End(A) = the set of the endomorphims of A.

2. ⊗: Tensor Product.
3. ⊕ : Direct Sum .

4. AB: The abelian groups category.

5. Λ-moudule: The set of all modules of the ring Λ.

6. Iab: I/[I, I] . Such that I is an ideal.

7. MZ

Λ: The category of graded (left) modules
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Introduction

The enveloping algebras seem to be very interesting objects for several reasons.
First,these algebras are important for statisyical mechanics, conformal field theory and passion
geometry. In addition, a number of things about algebric groups, Lie algebras and their represen-
tation are now seen to be shadows from the corresponding quntized objects, and this gives new
insight about them. For example,the finite dimensional irreductible representation of the quantized
enveloping algebra. This fact has led to a costruction of a canonical basis of these representation
with very favourable propereties.
As is well known, every associative algebra A can be turned into a Lie algebra L(A) by replacing
its multiplication (a, b) �→ ab by the commutator [a, b] = ab− ba . We consider a functor U , where
a Lie algebra L is embedded into the corresponding associative algebra U(L). The algebra U(L)
is called the universal enveloping algebra of the Lie algebra L ; It was first considered in the year
1899.
This work divided into three chapters:
In the first chapter, we intoduced some basic defintions and notations which we will need later. In
chapter two, we present the Poincare-Brikhoff-Witt theorem, that Poincare was the first in (1900)
who published a fundamental result in this theorem. In 1977, Brikhoff and Witt indepedently for-
mulated and proved the version of the theorem that we use today. Finally, in the last chapter we
discuss some aspects of the the cohomology of Lie algebras. Universal enveloping algebras permite
us to move into the universe of associative algebras, in which the the theory of derived functors
applies, and hence the cohomology of Lie algebras can be defined in a natural way. Some applica-
tions of Lie algebras cohomology was mentioned, like Weyl theorem and Levi-Malcev theorem are
given in the last section.

1



Chapter 1

Preliminaires

Modules will be needed later (at least) to treat the cohomology of Lie algebras in its natural
framework: the theory of derived functors. For this reason, a reminder on categories and functors
seems necessary.
The definiton of a Lie algebra does not need advanced tools, so we decided to treat it in this
chapter.

1.1 Modules

Throughout this section, Λ denotes an associative unital ring, which is not necessary commutative.

1.1.1 Modules

Definition 1.1.1 A left Λ-module is an abelian group A together with an operation Λ×A→ A,
satisfying for all a, a1, a2 ∈ A, λ, λ1, λ2 ∈ Λ:
M1: (λ1 + λ2)a = λ1a+ λ2a.

M2: (λ1λ2)a = λ1(λ2a).

M3: 1Λa = a.

M4: λ(a1 + a2) = λa1 + λa2.

Denote by Λopp the opposite ring of Λ. The elements λopp ∈ Λopp are in one-to-one correspon-
dance with the elements λ ∈ Λ. As abelian groups Λ and Λopp×A→ A are isomorphic under this
correspondence. The product in Λopp is given by λopp1 λopp2 = (λ1λ2)

opp. We naturally identify the
underlying sets of Λ and Λopp.

A right module over Λ or right Λ-module is simply a left Λopp-module, where Λopp is the opposite
ring of Λ. that is, an abelian group A together with an operation Λopp. Such that the following
rules are satisfied for all lowing rules are satisfied for all a, a1, a2 ∈ A, λ, λ1, λ2 ∈ Λ:
M’1: a(λ1 + λ2) = aλ1 + aλ2.

2



CHAPTER 1. PRELIMINAIRES U.K.M.O

M’2: a(λ1λ2) = (aλ1)λ2.

M’3: a1Λ = a.

M’4: (a1 + a2)λ = a1λ+ a2λ.

Clearly, if Λ is commutative, the notions of a left and a right module over Λ coincide.
For convenience, we shall use the term "module" always to mean "a left module".

Examples

1. The multiplication in Λ defines a left operation of Λ on the underlying abelian group of Λ,
which satisfies M1, .....,M4. Thus Λ is a left module over itself; and similarly Λ can be
viewed as a right module over itself.

Analogously, any left ideal of Λ becomes a left module over Λ, and any right ideal of Λ
becomes a right module over Λ.

2. Let Λ = Z, the ring of integers. Every abelian group A possedes the structure of a Z-module:
for a ∈ A, n ∈ Z define

⎧⎪⎨
⎪⎩
na = 0 if n = 0

na = a+ ...+ a (n times) if n > 0

na = −(−na) if n < 0.

3. Let Λ = K, a field. A K-module is a vector space over K.

Definition 1.1.2 Let A,B two Λ-modules. A homomorphism (or map) of Λ-modules ϕ :
A→ B is a homomorphism of abelian groups which satisfies

ϕ(λa) = λϕ(a) for all a ∈ A, λ ∈ Λ.

Definition 1.1.3 The identity map of A is a homomorphism of Λ-modules; we denote it by
1A : A→ A.
If ϕ is surjective, we call it also an epimorphism, and we use the symbol ϕ : A� B to denote it.
If ϕ is injective, or a monomorphism, we write ϕ : A� B.
We call ϕ : A→ B an isomorphism, and write ϕ : A

∼→ B, if ϕ is surjective and injective.

Let HomΛ(A,B) denote the set of all Λ-module homomorphisms from A to B. Clearly, this set
has the structure of an abelian group; if ϕ : A→ B and ψ : A→ B are Λ-module homomorphisms,
then ϕ+ ψ : A→ B is defined as (ϕ+ ψ)(a) = ϕ(a) + ψ(a) for all a ∈ A.

page 3
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Remark. ϕ+ ψ is a Λ-module homomorphism.

Definition 1.1.4 A submodule of A is a subgroup A′ of A with λa′ ∈ A′ for all λ ∈ A and all
a′ ∈ A′.

Let A′ be a submodule of A. Then the quotient group A/A′ may be given the structure of a Λ-
module by defining λ(a+A′) = λa+A′ for all λ ∈ Λ, a ∈ A.
We have an injective homomorphism μ : A′ � A and a surjective homomorphism π : A� A/A′.

Definition 1.1.5 Let ϕ : A→ B and ψ : B → C be homomorphisms of Λ-modules. The sequence
A

ϕ→ B
ψ→ C is called exact (at B) if kerψ = imϕ.

If a sequence A0 → A1 → ... → An → An+1 is exact at A1, ..., An, then the sequence is simply
called exact.

Theorem 1 Let A′
μ
� A

ε� A′′ be an exact sequence of Λ-modules. For every Λ-module B the
induced sequence

0→ HomΛ(A
′′, B)

ε∗� HomΛ(A,B)
μ∗
� HomΛ(A

′, B)

is exact.

Proof. See [2].

1.1.2 Free, Projective and Injective Modules

Free Module

Let A be a Λ-module and let S be a subset of A.
We consider the set A0 of all elements a ∈ A of the form a =

∑
λss where λs ∈ A and λs �= 0 for

only a finite number of elements s ∈ S. It is trivially seen that A0 is a submodule of A; hence it
is the smallest submodule of A containing S. If for the set S the submodule A0 is the whole of A,
we shall say that S is a set of generators of A. If A admits a finite set of generators it is said to be
finitely generated. A set S of generators of A is called a basis of A if every element a ∈ A may
be expressed uniquely in the form a =

∑
λss with λs ∈ Λ and λs �= 0 for only a finite number of

elements s ∈ S.
It is readily seen that a set S of generators is a basis if and only if it is linearly independent, that
is, if

∑
λss = 0 implies λs = 0 for all s ∈ S.

We should note that not every module possesses a basis.

Definition 1.1.6 A Λ-module P is free on some subset S ⊆ P If S is form a basis of P .

Projective Module

Definition 1.1.7 A Λ-module P is projective if to every surjective homomorphism ε : B � C
of Λ-modules and to every homomorphism γ : P → C there exists a homomorphism β : P → B
with εβ = γ.

page 4
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Equivalently, to any homomorphisms ε, γ with ε surjective in the diagram below there exists β such
that the triangle

P

β
��

γ

��
B ε

�� �� C

is commutative.

Injective modules

Definition 1.1.8 A Λ-module I is called injective if for every homomorphism α : A → I and
every monomorphism μ : A � B there exists a homomorphism β : B → I such that βμ = α, i.e.
such that the diagram

A �� μ ��

α
��

B

β��
I

is commutative.

1.2 The tensor product

Definition 1.2.1 Let A and B be two Λ-modules. The tensor product of A and B over Λ is the
abelian group, A⊗ΛB, endowed by a map: s : A×B → A⊗ΛB verify: For each map f : A×B → G
(with G an abelian group) wich satisfy:

1. bi-additif:

{
f(a1 + a2, b) = f(a1, b) + f(a2, b), a1, a2 ∈ A, b ∈ B;

f(a, b1 + b2) = f(a, b1) + f(a, b2), a ∈ A, b1, b2 ∈ B.

2. f(aλ, b) = f(a, λb), a ∈ A, b ∈ B, λ ∈ Λ .

Exists a unique group homomorphism f̃ : A⊗Λ B → G such that the diagram:

A×B s ��

f
��

A⊗Λ B

f̃��
G

is commutative.

page 5
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1.3 Categories and Functors

1.3.1 Categories

Definition 1.3.1 To define a category C we must give three pieces of data:
1. A class of objects A,B,C, ....

2. To each pair of objects (A,B) of C , a set C(A,B) of morphisms from A to B,

3. To each triple of objects (A,B,C) of C, a law of composition

C(A,B)× C(B,C)→ C(A,C).

Before giving the axioms which a category must satisfy we introduce some auxiliary notations:
this should also serve to relate our terminology and notation with ideas which are already very
familiar.
If f ∈ C(A,B) we may think of the morphism f as a generalized "function" from A to B and
write:

f : A→ B or A
f−→ B

we call f a morphism from the domain A to the codomain (or range) B.
The set C(A,B)× C(B,C) consists, of course, of pairs (f, g) where f : A→ B, g : B → C and we
will write the composition of f and g as g ◦ f or, simply, gf . The rational for this notation lies
in the fact that if A,B,C are sets and f , g are functions then the composite function from A
to C is the function h given by:

h(a) = g(f(a)) a ∈ A.
We are now ready to state the axioms.

A1: The sets C(A1, B1), C(A2, B2) are disjoint unless A1 = A2, B1 = B2.

A2: Given f : A→ B, g : B → C, h : C → D, then

h(gf) = (hg)f (Associativity of composition).

A3: To each object A there is a morphism 1A : A→ A such that, for any f : A→ B, g : C → A,

f1A = f, 1Ag = g (Existence of identities).

It is easy to see that the morphism 1A is uniquely determined by Axiom A3.
We call 1A the identity morphism of A, and we will often suppress the suffix A, writing simply

f1 = f 1g = g.

page 6
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Examples

1. The categoryM of Λ-modules and module-homomorphisms.

2. The category C of sets and functions.
3. The category I of topological spaces and continuous functions.

4. The category G of groups and their homomorphisms.

5. The category R of rings and ring-homomorphisms.

1.3.2 Functors

Within a category C we have the morphism sets C(X,Y ) which serve to establish connections
between different objects of the category.
Now the language of categories has been developed to delineate the various areas of mathematical
theory; thus it is natural that we should wish to be able to describe connections between different
categories.
We now formulate the notion of transformation from one category to another. Such a transforma-
tion is called a functor.

Definition 1.3.2 A functor F : C → D is a rule which associates with:

a1: every object X of C an object F (X) of D .

a2: every morphism f ∈ C(X,Y ) a morphism F (f) ∈ D(F (X), F (Y )), subject to the rules:

F (fg) = F (f)F (g), F (1A) = 1F (A).

Such a functor is called covariant functor; There also exist contravariant functors wich
changing the direction of the Arrows i.e. If f ∈ C(X,Y ) than F (f) ∈ D(F (Y ), F (X)) and
F (fg) = F (g)F (f).

Note. We have evidently the notion of an identity functor and of the composition of functors.
Composition is associative and we may thus pass to invertible functors and isomorphic categories.

Examples

1. The embedding of a subcategory C0 in a category C; is a functor.
2. Let S be a set and let F (S) be the free abelian group on S as basis. This construction yields

the free functor F : C → AB. Similarly there are free functors F : C → G, F : C → BF , ...
etc.

3. The fundamental group may be regarded as a functor π : I0 → G, where I0 is the category
of spaces-with-base-point .
It may also be regarded as a functor π̄ : I0h → G , where the subscript h indicates that the
morphisms are to be regarded as (based) homotopy classes of (based) continuous functions.
Indeed there is an evident classifying functor Q : I0 → I0h and then π factors as π = π̄Q.

page 7
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1.4 Lie Algebras

In this section Λ denotes a commutative ring with unity.

Lie algebras are algebraic structures which arose first in Sophus Lie’s theory of continuous groups.
These objects form now an independent major area of research, and have important applications
to many branchs of pure mathematics and physique.
We start by the definition of an algebra.

Definition 1.4.1 An algebra A over Λ, or Λ-algebra A is a ring on which we define the vector
product · : A×A→ A, such that for all x, y, z ∈ A and λ ∈ Λ:
1. x.(y + z) = x.y + x.z and (y + z).x = y.x+ z.x.

2. λ(x.y) = (λx).y = x.(λy).

Definition 1.4.2 A Lie algebra L is a module over a ring Λ, endowed with a bilinear map

L× L → L

(x, y) �−→ [x, y]

satisfying the following two axioms:

1. [x, x] = 0, for all x ∈ L.
2. For all x, y, z ∈ L, we have [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. 1

Remark. The condition (1) implies [x,y] =-[y,x]. Indeed, we have 0 = [x+y, x+y] = [x, y]+[y, x].

Examples

1. Let G be any Λ-module. Define [x, y] = 0 for all x, y ∈ G; such a G is called a commutative
Lie algebra.

2. Let A be an associative algebra over Λ, then A has a canonical structure of Lie algebra with
the commutator [x, y] = xy − yx, x, y ∈ A.

3. Let V be any vector space. The space of End(V ) forms an associative algebra under function
composition. It is also a Lie algebra with the commutator [f, g] = fg − gf, f, g ∈ End(V ).
Whenever we think of it as a Lie algebra we denote it by gl(V ) . This is the General Linear
Lie algebra.

4. Let V be a finite dimentional vector space over a ring Λ. Then we identify the Lie algebra
gl(V ) with set of n× n matrices gln(V ) , where n is the dimension of V .
The set of all matrices with the trace zero sln(V ) is a subalgebra of gln(V ).

1This axiome is called Jacobi identity.

page 8
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5. Heisenberg algebra: We look at the vector space H generated over Λ by the matrices:⎛
⎝0 1 0
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 1
0 0 0
0 0 0

⎞
⎠ ,

⎛
⎝0 0 0
0 0 1
0 0 0

⎞
⎠ This is a linear subspace of gl3(V ) and becomes a

Lie algebra under the commutator bracket.
The fact that H is closed under the commutator bracket follows from the well-known com-
mutator identity on the standard basis of n× n matrices:

[Eij , Ekl] = δjkEil − δliEkj
where δij is the Kronecker delta.

6. Definition 1.4.3 Let A be an algebra over Λ. A derivation D : A → A is a Λ-linear map
with the property D(x.y) = D(x).y + x.D(y).

The set Der(A) of all derivations of an algebra A is a Lie subalgebra (we will define it next)
of End(A) with the product

[D,D′] = DD′ −D′D.
Definition 1.4.4 A Lie algebra homomorphism f : L→ H is a Λ-linear map with f([x, y]) =
[f(x), f(y)], x, y ∈ L.
Definition 1.4.5 Let L be a Lie algebra over Λ. A Lie subalgebra S is a submodule S ⊂ L such
that: [x, y] ∈ S for all x, y ∈ S.
Definition 1.4.6 Let I be a submodule of a Lie algebra L. We say that I is an ideal of L if
[x, y] ∈ I whenever x ∈ I and y ∈ L .

Definition 1.4.7 Let U a non empty subset of L, and let:

〈U〉 =
⋂
{I ⊂ L : I is a Lie subalgebra (ideal) containing U}

we call 〈U〉 a Lie subalgebra (ideal) generated by U .

Definition 1.4.8 A Lie algebra L is called semi-simple if {0} is the only abelian ideal of L.

Definition 1.4.9 A representation of a Lie algebra L is a Lie algebra homomorphism from L
to the Lie algebra gl(Λ):

ρ : L→ gl(Λ).

For a Lie algebra L and any x ∈ L we define a map:

adx : L→ L

y �→ [x, y]

which is the adjoint action.
Every Lie algebra has a representation on itself, the adjoint representation defined via the map:

ad : L→ gl(L)

x �→ adx.

page 9



Chapter 2

Poincare-Brikhoff-Witt Theorem

Now, we shall talk about the main subject of our thesis wich is the universal envelopping algebra,
and a very important result of it, the Poincare-Brikhoff-witt theory (often abbreviated to PBW
theorem).
Before passing to this theorem, we shall speak,a little, about what’s a symmetric algebra of a
module and the construction of the gradued algebra.

2.1 Universal Algebra of a Lie Algebra

For any associative algebra we construct a Lie algebra by taking the commutator as the Lie bracket.
Now let us think in the reverse direction. We want to see if we can construct an associative algebra
from a given Lie algebra and its consequences. With this construction, instead of non-associative
scructures;Lie algebras, we can work with nicer and better developed structures: Unital associative
algebras that captures the important properties of our Lie algebra.

2.1.1 Universal algebra of a Lie Algebra

Let Λ be a commutative ring and let L be a Lie algebra over Λ.

Definition 2.1.1 A universal enveloping algebra of L is a pair (U(L), ι), where U(L) is an
associative algebra with 1 over Λ, ι : L→ U(L) is a map satisfying:

1. ι is a Lie algebra homomorphism, and i.e., ι is Λ-linear and ι([x, y]) = ι(x).ι(y)− ι(y).ι(x).
2. If A is any associative algebra with a unit and α : L→ A is any Lie algebra homomorphism,

there is a unique homomorphism of associative algebras ϕ : U(L)→ A such that the diagram

L
ι ��

α
��

U(L)

ϕ

��
A

is commutative.

10
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The uniqueness of such a pair (U(L), ι) is easy to prove. Indeed, given another pair (U ′(L), ι′)
satisfying the same hypotheses, we get homomorphisms ϕ : U(L)→ U ′(L), ψ : U ′(L)→ U(L).
By definition, there is a unique dotted map making the following diagram commute:

L
ι ��

ι
��

U(L)

��
U(L)

But 1U(L) and ψ ◦ ϕ both do the trick, so ψ ◦ ϕ = 1U(L). Similarly, ϕ ◦ ψ = 1U ′(L) .
To prove its existence, we use the tensor algebra T (L) of L, ie.,

T (L) =
∞⊕
k=0

T k(L) where T k(L) = L⊗ ...⊗ L︸ ︷︷ ︸
k−times

.

Now let I be the two-sided ideal of T (L) generated by the elements of the form

x⊗ y − y ⊗ x− [x, y].

Take
U(L) = T (L)/I

Let α be a Lie homomorphism of L into an associative algebra A. Since α is Λ-linear, it extends to
a unique homomorphism ψ : T (L)→ A. It is clear that ψ(I) = 0, hence ψ defines ϕ : U(L)→ A,
and we have checked the universal property of U(L).

2.1.2 Symmetric algebra of a module

Definition 2.1.2 Let L be a Λ-module and define [x, y] = 0 for all x, y ∈ L.
In this case, the universal algebra U(L) of L is called the symmetric algebra of the Λ-module L
and it is denoted by S(L).

We can define S(L) as the largest commutative quotient of T (L), i.e.,

S(L) =
∞∑
n=0

Sn(L) =
∞∑
n=0

(⊗nL)/J

where J is generated by the elements of the form x⊗ y − y ⊗ x and x, y ∈ L.
We will consider the case where L is a free Λ-module with basis (ei)i∈I .
Let ι : L→ Λ[(Xi)i∈I ] be the homomorphism given by ι(ei) = Xi where Λ[(Xi)i∈I ] is the polyno-
mial ring in the indeterminates Xi, i ∈ I.
Then (ι, Λ[(Xi)i∈I ]) has the universal property of (condition 1 in definition 2.1.1 ,p.10), i.e., ι
is a Λ-linear map such that ι(x)ι(y) = ι(y)ι(x) and if f : L → A is a Λ-linear map with
f(x)f(y) = f(y)f(x) for all x, y ∈ L where A is an associative algebra, then there exists an asso-
ciative algebra homomorphism f∗ : Λ[(Xi)] → A such that f∗ = f ◦ ι. In fact if P (Xi) ∈ Λ[(Xi)]
then f∗(P ) = P (f(ei)).
This shows that we can identify S(L), with the polynomial algebra Λ[(Xi)].
If we assume that I is totally ordered, then S(L) has for basis the set of monomials ei1 , ..., ein , i1 ≤
i2 ≤ ... ≤ in, n ≥ 0.
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2.1.3 Filtration of UL

Definition 2.1.3 A filtration on an algebra G is an increasing sequence (Gn)n∈Z of subalgebras of
G such that G =

⋃
n∈Z Gn

Let L be a Lie algebra over Λ, and let U(L) be the universal algebra of L. We define a filtration
of U(L) as follows:
Let Un(L) be the submodule of U(L) generated by the products ι(x1)...ι(xm),m ≤ n, where xi ∈ I.
We have:

U0(L) = Λ
U1(L) = Λ⊕ L

and U0(L) ⊂ U1(L) ⊂ ... ⊂ Un(L) ⊂ Un+1(L) ⊂ ...

Now we define

grU(L) =

∞∑
n=0

grnU(L) where grnU(L) = Un(L)/Un−1(L)

The map

Up(L)× Uq(L) → Up+q(L)

(a, b) �−→ ab

defines, by passage to quotient, a bilinear map

grp(L)× grq(L)→ grp+q(L)

We then obtain a structure of graded algebra on grU(L); with this structure grU(L) is called the
graded algebra associated to U(L). It is associative and has a unit.

2.2 Poincare-Brikhoff-Witt Theorem

There is usually no isomorphism of Λ-algebras, but there is often an isomorphism of Λ-modules,
sometimes one of L-modules, and often one between the associated graded Λ-algebras. Here we
are interested in the latter.

2.2.1 Theorem

For a Lie algebra L, the symmetric algebra of L and graded algebra associated to U(L) are
isomorphic ,i.e.,

S(L) � grU(L).
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2.2.2 Proof

Let {xi}i∈Ω be an ordered basis for L. Let yi be the image of xi ∈ U(L) under the canonical map
ι : L→ U(L). For I = (i1, ..., in), let yI denote yi1 ...yin ∈ U(L). We say I ≤ m if ij ≤ m for all j.
Call I increasing if i1 ≤ i2 ≤ ... ≤ in .

Lemma 1 The set of all yI with I increasing and I ≤ n generates Un(L).

Proof. Let π be a permuation of n elements. We claim that
ι(g1)...ι(gn)− ι(gπ(1))...ι(gπ(n)) ∈ Un−1(L). As the symmetric group is generated by the transposi-
tions flipping i and i+1, it suffices to check our claim in this case: Then ι(g1)...ι(gi)ι(gi+1)...ι(gn)−
ι(g1)...ι(gi+1)ι(gi)...ι(gn) = ι(g1)...ι([gi, gi+1])...ι(gn) ∈ Un−1.
Now Un(L) is generated by elements of the form yJ = ι(xj1)...ι(xjn) where J = (j1, ..., jn) is not
necessarily increasing.
Let π be the permutation with π(j1) ≤ π(j2)... ≤ π(jn). Then

yJ = ι(xj1)...ι(xjn) = ι(xπ(j1))...ι(xπj(n)) + r.

where the first term is increasing and the second is in Un−1(L).
Then by induction yJ is expressable in terms of yI with I increasing and I ≤ n .

Now let P be the algebra of polynomials in variables x1...xn.... To avoid confusion, we’ll denote
the variables as zi instead to make clear which algebra the elements lie in. Filter P so Pn is the
polynomials of degree at most n. Set zI = zi1 ...zin for I = (i1...in).

Lemma 2 For all n, there exists a unique function fn : L⊗ Pn → P such that:

An : fn(xi ⊗ zI) = zizI for i ≤ I, zI ∈ Pn.
Bn : fn(xi ⊗ zI) = zizI mod Pq for zI ∈ Pq and q ≤ n.

Cn : fn(xi ⊗ fn(xj ⊗ zJ)) = fn(xj ⊗ fn(xi ⊗ zJ)) + fn([xi, xj ]⊗ zJ) for zJ ∈ Pn−1
Furthermore, the restriction of fn to L⊗ Pn−1 is fn−1.

Proof. First, note that Condition Cn is actually well defined because fn(xj ⊗ zj) is in Pn by
condition Bn. We will proceed by induction. The base case is when n = 0, in which case f0 must
map xi ⊗ 1 to zi to satisfy A0. Then conditions B0 and C0 are vacuously satisfied.
Now suppose we have a unique fn−1 satisfying An−1, Bn−1 and Cn−1. We need to define fn on
elements of the form xi ⊗ zJ where J can be of length n. We may as well assume J is increasing
since P is commutative. If i ≤ J , then fn(xi ⊗ zJ) = zizJ in order to fulfil An.
Now suppose J = (j, J ′) and i > j. Then

fn(xi ⊗ zjzJ ′) = fn(xi ⊗ fn(xj ⊗ zJ ′))

= fn(xi ⊗ fn−1(xj ⊗ zJ ′))

= fn(xj ⊗ fn−1(xi ⊗ zJ ′)) + fn−1([xi, xj ]⊗ zJ ′)
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using the fact that fn and fn−1 agree where they are both defined and trying to satisfy condition
Cp. But now j < i and j ≤ J ′ so by property Bn−1

fn(xj ⊗ fn−1(xi ⊗ zJ ′)) = fn(xj ⊗ (zizJ ′ + ω))

where ω ∈ Pn−1. By property An, this equals zjzizJ ′ + fn−1(xj ⊗ ω). Thus we should define
fn(xi ⊗ zJ) = zizJ when i ≤ J , and otherwise

fn(xi ⊗ zjzJ ′) = zizJ + fn−1(xj ⊗ ω) + fn−1([xi, xj ]⊗ zJ ′) (2.1)

If this satisfies An, Bn and Cn it will be the unique extension of fn−1, for conditions An, Bn and
Cn when restricted to Pn−1 are conditions An−1, Bn−1 and Cn−1 which are satisfied by a unique
fn−1. Property An is obviously satisfied, and so is Bn, since the second and third terms are in
Pn−1 by Bn−1. It remains to verify Cn.
Now we need to check fn(xi ⊗ fn(xj ⊗ zJ)) = fn(xj ⊗ fn(xi ⊗ zJ)) + fn([xi, xj ] ⊗ zJ) for zJ in
Pn−1. By the way we constructed fn, Cn is satisfied if j < i and j ≤ J since

fn(xi ⊗ fn−1(xj ⊗ zJ)) = fn(xi ⊗ zjzJ)
= zizjzJ + fn−1(xj ⊗ ω) + fn−1([xi, xj ]⊗ zJ)
= fn(xj ⊗ fn−1(xi ⊗ zJ)) + fn−1([xi, xj ]⊗ zJ).

Furthermore, if we flip the role of i and j since [xi, xj ] = −[xj , xi] this holds as long as i ≤ J ′ and
i < j.
If i = j, there is nothing to prove.
Thus the only remaining cases are when neither i ≤ J or j ≤ J : J = (k,K) where k < i, j. Then
by induction (zJ in Pn−1)

fn(xj ⊗ zJ) = fn(xj ⊗ fn(xk ⊗ zK))

= fn(xk ⊗ fn(xj ⊗ zK)) + fn([xj , xk]⊗ zK).

Now fn(xj ⊗ zK) = zjzK + ω where ω ∈ Pn−2 by Bn−1. Then

fn(xk ⊗ fn(xj ⊗ zJ)) = fp(xi ⊗ fn(xk ⊗ (zjzK + ω))) + fn(xi ⊗ fn([xj , xk]⊗ zK)))

Since i > k and k ≤ j;K and ω ∈ Pn−2, Cn holds for the first term. Cn holds for the second term
by induction. Thus this expands as

fn(xi ⊗ fn(xk ⊗ fn(xj ⊗ zK))) + fn(xi ⊗ fn([xj , xk]⊗ zK))) = fn(xk ⊗ fn(xi ⊗ fn(xj ⊗ zK)))

+ fn([xi, xk]⊗ fn(xj ⊗ zK))

+ fn([xj , xk]⊗ fn(xi ⊗ zK))

+ fn([xi, [xj , xk]]⊗ zK)
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A similar statement holds if interchange the role of i and j. Then

fn(xi ⊗ fn(xj ⊗ zJ))− fn(xj ⊗ fn(xi ⊗ zJ)) = fn(xk ⊗ [fn(xi ⊗ fn(xj ⊗ zK))− fn(xj ⊗ fn(xi ⊗ zK))])

+ fn([xi, [xj , xk]]⊗ zK)− fn([xj , [xi, xk]]⊗ zK)

= fn(xk ⊗ fn([xi, xj ]⊗ zK)) + fn([xi, [xj , xk]]⊗ zK)

− fn([xj , [xi, xk]]⊗ zK)

= fn([xi, xj ]⊗ fn(xk ⊗ zK)) + fn([xk, [xi, xj ]]⊗ zK)

− fn([xi, [xj , xk]]⊗ zK)− fn([xj , [xi, xk]]⊗ zK)

= fn([xi, xj ]⊗ zJ) + fn(([xk, [xi, xj ]] + [xi, [xj , xk]]

− [xj , [xi, xk]])⊗ zK)

= fn([xi, xj ]⊗ zJ)

by the Jacobi identity. Thus Cp holds in general, completing the proof.

Theorem 2 The yI for I increasing form a basis for U(L) as a vector space.

Proof. Combining the maps for all n, we see there is a bilinear mapping f : L× P → P such
that f(xi, zI) = zizI for i ≤ I and

f(xi, f(xj , zJ)) = f(xj , f(xi, zJ)) + f([xi, xj ], zJ).

This is a representation ρ of L on P with the property that ρ(xi)zI = zizI .
By the universal property of U(L), there is a map ψ : U(L) → End(P ) with ψ(yi)zI = zizI for
i ≤ I. Then by induction if I = (i1, ..., in) is increasing we see

ψ(yi1 ...yin).1 = zi1 ...zin .

But the polynomials on the right hand side are linearly independent, so the yI with I increasing
are linearly independent as well.
We already showed they generate U(L).

This then implies all the forms of the PBW theorem.

Corollary 1 The canonical mapping of L to U(L) is injective.

Proof. Using the construction of the universal enveloping algebra as a quotient of the tensor
algebra, there is a natural filtration on U(L) where Un(L) is generated by products of the form
x1 ⊗ ...⊗ xp where xi ∈ L and p ≤ n.
Remember that grU(L) =

∑∞
n=0 grnU(L) where grnU(L) = Un(L)/Un−1(L) and gr0U(L) = Λ.

Note that gr1U(L) � L.
Multiplication in U(L) makes this into a commutative ring by the first lemma.

Theorem 3 (Main Theorem) S(L) � grU(L).
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Proof. Since grU(L) is commutative, by the universal property of the symmetric algebra the
map L → grU(L) extends to a map S(L) → grU(L). We know that expressions of the form
xv11 ...x

vn
n ... with

∑
vi ≤ n form a basis for Un(L).

The ones with sum exactly n form a basis for grnU(L). Thus elements of this form give a basis
for grU(L), and the map S(L)→ grU(L) sends the standard basis for S(L) to this.
Thus the map is an isomorphism.
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Chapter 3

Cohomology of Lie Algebras

In this chapter, we will introduce an other big result of studing of the universal envelopping
algebra of a Lie algebra, the cohomology of Lie algebras. And we will conclude our chapter by
two theorems (Weyl Theorem and Levi-Malcev Theorem), which are considered as a result of the
cohomlogy of Lie algebras.

3.1 Extensions of Modules

3.1.1 Extensions

Let A,B be two Λ-modules. We want to consider all possible Λ-modules E such that B is a
submodule of E and E/B ∼= A. We then have a short exact sequence

B
k� E

v� A

of Λ-modules; such a sequence is called an extension of A by B.

Proposition 1 The extension B � E1 � A is equivalent to the extension B � E2 � A if there
is a homomorphism ξ : E1 → E2 such that the diagram

B �� �� E1
�� ��

ξ
��

A

B �� �� E2
�� �� A

is commutative.

Proof (See [2] p.89)

3.2 Derived functors

3.2.1 Complexes

Let Λ be a fixed ring with 1. We remind of the category MZ

Λ of graded (left) modules :
An object M ∈ MZ

Λ is a family {Mn}n∈Z, of Λ-modules, a morphism ϕ : M → M ′ of degree p is
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a family {ϕn :Mn →M ′
n+p}n∈Z of module homomorphisms.

Definition 3.2.1 A cochain complex C = {Cn, σn} over Λ is an object inMZ

Λ together with an
endomorphism σ : C→ C of degree +1 with σσ = 0 , σ denotes the differential in C.

In other words we are given a family {Cn}n∈Z, of Λ-modules and a family of Λ-module homo-
morphisms {σn : Cn → Cn+1}n∈Z such that σnσn−1 = 0:

C : ....→ Cn−1
σn−1−−−→ Cn

σn−→ Cn+1 → ...

Definition 3.2.2 A morphism of complexes or a cochain map ϕ : C → D is a morphism
of degree 0 in MZ

Λ such that ϕσ = σ̃ϕ where .
Thus a chain map ϕ is a family {ϕn : Cn → Dn}n∈Z of homomorphisms such that, for every n,
the diagram

Cn
σn ��

ϕn

��

Cn+1

ϕn+1

��
Dn σ̃n

�� Dn+1

is commutative.

We shall now introduce the notion of cohomology.
Let C = {Cn, σn} be a cochain complex. The condition σσ = 0 implies that imσn ⊂ kerσn+1, n ∈
Z. we can associate with C the graded module.

H(C) = {Hn(C)}n∈Z,where Hn(C) = kerσn+1/imσn, n ∈ Z.

Then H(C)(Hn(C)) is called the (nth) cohomology module of C.
By the diagram above a chain map ϕ : C → D induces a well defined morphism, of degree zero,
H(ϕ) = ϕ∗ : H(C)→ H(D) of graded modules. It is clear that, with this definition, H(−) becomes
a functor, called the cohomology functor, from the category of cochain complexes over Λ to the
category of graded Λ-modules. Also, each Hn(−) is a functor into MΛ. Often, in particular
in applications to topology, elements of Cn are called n-cochains; elements of kerσn are called
n-cocycles and kerσn is written Zn = Zn(C); elements of im σn+1 are called n-coboundaries
and im σn+1 is written Bn = Bn(C).

3.2.2 Homotopy

Definition 3.2.3 A homotopy Σ : ϕ→ ψ between two chain maps ϕ, ψ : C→ D is a morphism
of degree +1 of graded modules Σ : C→ D such that: ϕ−ψ = σΣ+Σσ, i.e., such that, for n ∈ Z,

ϕn − ψn = σn+1Σn +Σn−1σn.

We say that ϕ, ψ are homotopic, and write ϕ � ψ if there exists a homotopy Σ : ϕ→ ψ.
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3.2.3 Resolution

Definition 3.2.4 Let A be a Λ-module. We call a projective resolotion of A every exact sequence
of Λ-module:

P : Pn → Pn−1 → · · · → P1 → P0 → A→ 0

where each Pi is projective.

3.2.4 Derived functors

Let T : Λ-module → AB (AB is the category of the abelian groups) be an additive contravariant
functor. The right derived funtors of T are a sequence of functors RnT : Λ-module → AB
defined as follow:

Definition 3.2.5 For an object A in Λ-module; Every projective resolution: P : Pn → Pn−1 →
· · · → P1 → P0 → A→ 0 defines a cochain complex

T (P) : 0→ T (P0)→ T (P1)→ · · · → T (Pn)→ . . . .

So we have cohomology groups Hn(T (P)). We set:

RnT (A) = Hn(T (P))

If f : A→ B is a morphism in Λ-module, then f extends to a morphism of A resolutios:

P : Pn ��

fn
��

Pn−1 ��

fn−1

��

. . . �� P1
��

f1
��

P0
��

f0
��

A ��

f

��

0

Q : Qn �� Qn−1 �� . . . �� Q1
�� Q0

�� B �� 0

Hence, we obtain a morphism of cochain complexes:

T(P) : 0 �� T (P0) ��

T (f0)

��

T (P1) ��

T (f1)

��

. . . �� T (Pn−1) ��

T (fn−1)

��

T (Pn) ��

T (fn)

��

. . .

T(Q) : 0 �� T (Q0) �� T (Q1) �� . . . �� T (Qn−1) �� T (Qn) �� . . .

Therfore, we have for each n ≥ 0 a morphism

RnT (f) : RnT (A)→ RnT (B).

Note that any two projective resolutions of a Λ-module A are homotopic, so they give the same
cohomology groups for the complex:

T(P) : 0→ T (P0)→ T (P1)→ · · · → T (Pn−1)→ T (Pn)→ . . .

That is the definition of RnT is independant from the choice of the projective resolution.
We shall deal only with the funtors of the form

HomΛ(−, A) : Λ-module→ AB.
Where A is a Λ-module. The right derived functors of HomΛ(−, A) are denoted by: ExtnΛ(−, A),
that is

ExtnΛ(−, A) = RnHomΛ(−, A).
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3.3 Cohomology of Lie Algebras

3.3.1 Definition of Cohomology H0, H1

For notational convenience we shall write HomL(−,−), ExtnL(−,−), etc . . . ,
for HomU(L)(−,−), ExtnU(L)(−,−), etc . . . .
Definition 3.3.1 Let L be a Λ-Lie algebra, and A a Λ-module. We say that A is a L-module if
we have a homomorphism of Lie Algebra ρ : L→ gl(A).

For short, we denote ρ(x)(a) by x.a, for x ∈ L, a ∈ A. We say that A is a trivial L-module if
ρ = 0, or equivalently x.a = 0, for all x ∈ L and a ∈ A. We note that every Λ-module A may be
considered as a trivial L-module. In particular, we will always consider Λ as a trivial L-module.

Definition 3.3.2 Given a Lie algebra L over Λ and a L-module A, we define the nth cohomology
group of L with coefficients in A by

Hn(L,A) = ExtnL(Λ, A), n = 0, 1, ...

where Λ is regarded as a trivial L-module.

Note that each Hn(L,A) is actually a Λ-module. We shall compute H0(L,A) and H1(L,A).
As the functors ExtnL(−, A) and HomL(−, A) are naturally equivalent, we have H0(L,A) =
HomL(Λ, A).

Proposition 2 We have HomL(Λ, A) � AL; where AL = {a ∈ A| x.a = 0, for all x ∈ L}.1

Proof. Let f ∈ HomL(Λ, A); we have x.f(λ) = f(xλ) = f(0) = 0, for all x ∈ L and λ ∈ Λ.
Hence, f(λ) ∈ AL, and in particular f(1) ∈ AL. So the map

ω : HomL(Λ, A) → AL

f �−→ f(1)

is well defined. As ω(f+g) = (f+g)(1) = f(1)+g(1) = ω(f)+ω(g), ω is a Λ-homomorphism. We
claim that ω is an isomorphism. Indeed, if f(1) = 0, then for all λ ∈ Λ, we have f(λ) = f(λ.1) =
λ.f(1) = 0; from which it follows that f = 0, that is ω is injective. Now, let a ∈ AL. Define:

f : Λ → A

λ �−→ λa

Then, f is a homomorphism of Λ-modules, and moreover f(x.λ) = x(λa) = λ(x.a) = 0 = xf(λ),
for all x ∈ L; therefore f ∈ HomL(Λ, A), and ω(f) = f(1) = a. Thus ω is surjective as claimed.

We conclude that:
H0(L,A) = {a ∈ A |x.a = 0, for all x ∈ L}. (3.1)

1we call this the subspace of invariant elements in A.
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Let A be an algebra graded by N; that is A =
⊕

n≥0An, where An is a submodule of A and
AnAm ⊆ An+m, for all n,m ∈ N. For any such a graded algebra we have an algebra epimorphism
ε : A→ A0 (note here that A0 is a subalgebra of A). This epimorphism is defined by sending each
elelment of A to its homogeneous component of degree 0; that is if x =

∑
n xn, then ε(x) = x0.

Here we are interested in the tensor algebra T (L). The homogeneous component of T (L) of de-
gree 0 is the base ring Λ. Thus we have ε : T (L) → Λ. For any element of T (L) of the form
a = x⊗ y − y ⊗ x− [x, y], we have ε(a) = 0, since the 0-component of a is 0. Hence ε : T (L)→ Λ
induces a morphism of associative algebras ε : U(L)→ Λ. We call ε the augmentation map for
U(L), and its kernel the augmentation ideal of U(L); this augmentation ideal is denoted by IL.

Note that we have an exact sequence of associative algebras

IL � U(L) � Λ.

Let A be a L-module. We call a derivation from L to A every mapping d : L −→ A which
satisfies

d([x, y]) = x.d(y)− y.d(x)
for all x, y, z ∈ L. These derivations form a Λ-module in the obvious way, which we will denote
Der(L,A).

For any a ∈ A, we can assign a derivation

da : L → A

x �−→ x.a

the da is a derivation, because

da[x, y] = [x, y].a

= x.(y.a)− y(x.a)
= x.da(y)− yda(x).

Such a derivation is called inner. The inner derivations in Der(L,A) form a Λ-submodule,
which we denote by Ider(L,A).
For a derivation d : L → A, let us define a Λ-linear map φd : T (L) → A by sending Λ to 0, and
each homogeneous element x1⊗ x2⊗ ...⊗ xn, (n ≥ 1) to x1.(x2.....(xn−1.dxn) . . . ). For an element
of T (L) of the form x⊗ y − y ⊗ x− [x, y]⊗ t2, where t2 ∈ T (L) and x, y ∈ L, we have:

φd(x⊗ y − y ⊗ x− [x, y]⊗ t2) = x.(ya)− y.(xa)− [x, y](a) = 0,

where a is the element of A obtained from φd(t2). It follows that φd vanishes on every element of
the form

t1 ⊗ (x⊗ y − y ⊗ x− [x, y])⊗ t2, x, y ∈ L, t1, t2 ∈ T (L).

Theorem 4 The functor Der(L,−) is represented by the L-module IL that is, for any L-module
A there is a natural isomorphism between the functors Der(L,−) and HomL(IL,−). In particular,
Der(L,A) ∼= HomL(IL, A), for every L-module A.
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Proof. For a derivation d : L→ A, we have seen how to obtain a Λ-homomorphism Φd : T (L)→
A, which vanishes on all the elements of the form t1⊗(x⊗y−y⊗x−[x, y])⊗t2, x, y ∈ L, t1, t2 ∈ T (L).
It follows that Φd can be lifted to a Λ-homomorphism which we denote by the same symbol
Φd : U(L) → A. Clearly, Φd vanishes on the homogeneous elements of degree 0, hence we have a
map f ′d : IL → A, which is easily seen to be a L-module homomorphism.
On the other hand, if f : IL → A is given, we extend f to U(L) by setting f(Λ) = 0 and then we
define a derivation df : L → A by df = fi, where i : L → U(L) is the canonical embedding. It is
easy to check that f(df) = f and d(fd) = d, and also that the map f �−→ df is Λ-linear.

1. We check that f(df) = f . Viewing IL as an L-module, we have that

f(x1 ⊗ x2 ⊗ ...⊗ xn) = f(x1 ⊗ x2 ⊗ ...⊗ i(xn) . . . )
= x1.(x2.....(xn−1.fi(xn)) . . . )
= x1.(x2.....(xn−1.df (xn)) . . . )
= f(df)(x1 ⊗ x2 ⊗ ...⊗ xn).

2. We check that d(fd) = d. This is easily seen because d(fd)(x) = fdi(x) = d(x) for all x ∈ L.
3. And finally, we check that the map f �−→ df is Λ-linear. Just note that dλf1+f2(x) =

(λf1 + f2)i(x) = λf1i(x) + f2i(x) = λdf1(x) + df2(x) for all x ∈ L.

As we seen we have an exact sequence of L-modules

IL � U(L) � Λ

This gives a long exact sequence when we introduce the functor ExtnL(−, A); and it follows
from it (in low dimension) that

H1(L,A) = coker(HomL(U(L), A)→ HomL(IL, A)). (3.2)

Hence H1(L,A) is isomorphic to the module of derivations from L into A modulo those that arise
from L-module homomorphisms f : U(L)→ A.
If f(1U(L)) = a, then clearly df (x) = x.a, so that these are precisely the inner derivations. We
obtain

Proposition 3 H1(L,A) ∼= Der(L,A)/Ider(L,A). If A is a trivial L-module, H1(L,A) ∼=
HomΛ(Lab, A).

Proof. Only the second assertion remains to be proved.
Since A is trivial, there are no non-trivial inner derivations, and a derivation d : L→ A is simply
a Lie algebra homomorphism, A being regarded as an abelian Lie algebra.
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3.3.2 H2 and Extensions

Let A and H be two Lie algebras over a field Λ. We call extension of A by H every Lie algebra
L which contains A as an ideal, and L/A is isomorphic to the Lie algebra H. This situation gives
rise to an exact sequence of Lie algebra homomorphisms

A
i� L

p
� H.

Conversely, any such an exact sequence detremines an extension L of i(A) by H. The Lie algebra
A will be called the kernel of that extension. We shall deal only with abelian extensions; i.e.,
extensions with abelian kernels.

Two extensions A � L � H and A � L′ � H are said to be equivalent, if there is a Lie
algebra homomorphism f : L→ L′ which makes the following diagram commutative

A �� �� L �� ��

f
��

H

A �� �� L′ �� �� H

Note that such a f is automatically an isomorphism. This relation is an equivalence relation
on the set of all extensions of A by H. We denote the set of equivalence classes of these extensions
by M(H,A). Note that M(H,A) contains at least one element: the equivalence class of the

semi-direct product A
iA� A×H pH� H.

Having an abelian extension of Lie algebras A
i� L

p
� H, we can define a structure of H-

module on A as follows:
Let s : H → L be a section of p, that is, a Λ-linear map such that ps = 1L (note that

such a section exists because Λ is a field; more precisely because i(A) can be complemented in
the Λ-vector space L). Then, we can define in i(A), and hence in A, an action of H by setting
x.i(a) = [s(x), i(a)], a ∈ A, x ∈ h, where the product [s(x), i(a)] is taken in the Lie algebra L.

It follows that, since A is abelian, the H-action thus defined on A does not depend upon the
choice of the section s. This H-module structure on A is called the H-module structure induced
by the extension. Now, we can talk about the cohomology groups Hn(H,A).

Theorem 5 There is a one-to-one correspondence between H2(H,A) and the set M(H,A) of
equivalence classes of extensions of H by A.
The set M(H,A) therefore has a natural Λ-vector space structure and M(H,A) is a (covariant)
functor from H-modules to Λ-vector spaces.

For a proof of this result we refer the reader to [2].

3.3.3 Applications

Let L be a finite dimensional Lie algebra and let A be a finite dimensional L-module.

Theorem 6 (Weyl) Every (finite-dimensional) module A over a semi-simple Lie algebra L is a
direct sum of simple L-modules.
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Proof. Using induction on the Λ-dimension of A, we have only to show that every non-trivial
submodule 0 �= A′ ⊂ A is a direct summand in A. To that end we consider the short exact sequence

A� A′ � A′′ (3.3)

and the induced sequence

0→ HomΛ(A
′′, A)→ HomΛ(A,A

′)→ HomΛ(A,A)→ 0 (3.4)

which is exact since Λ is a ring. We remark that each of the modules in (3.4) is finite-dimensional
and can be made into a L-module by the following procedure:
Let B,C be L-modules; then HomΛ(B,C) is a L-module by

(xf)(b) = xf(b)− f(xb), x ∈ L, b ∈ B.
With this under- standing, (3.4) becomes an exact sequence of L-modules. Note that the invariant
elements in HomΛ(B,C) are precisely the L-module homomorphisms from B to C. Now consider
the long exact cohomology sequence arising from (3.4)

0→ H0(L,HomΛ(A
′′, A′))→ H0(L,HomΛ(A,A

′))→ H0(L,HomΛ(A
′, A′))→ H0(L,HomΛ(A

′′, A′))→ · · ·
(3.5)

Like L is semi-simple than H1(L,HomΛ(A
′′, A′)) is trivial (Proposition 6.1 p.247 in [2]).Passing

to the interpretation of H0 as the group of invariant elements, we obtain an epimorphism

HomΛ(A,A
′) � HomΛ(A

′, A′).

It follows that there is a L-module homomorphism A→ A′ inducing the identity in A′; hence (3.4)
splits.

Theorem 7 (Levi-Malcev). Every (finite-dimensional) Lie algebra L is the split extension of a
semi-simple Lie algebra by the radical r of L.

Proof. We proceed by induction on the derived length of r. If r is abelian, then it is a L/r-module
andH2(L/r, r) = 0 (Proposition 6.3 p.249 in [2]). Since H2 classifies extensions with abelian kernel
the extension r � L � L/r splits. If r is non-abelian with derived length n � 2, we look at the
following diagram

r ��

��

L �� ��

��

L/r

r/[r, r] �� �� L/[r, r] �� �� L/r

The bottom sequence splits by the first part of the proof, say by s : L/r → L/[r, r]. Let h/[r, r]
be the image of L/r under s; clearly s : L/r

∼→ h/[r, r] and [r, r] taust be the radical of h. Now
consider the extension [r, r] � h� h/[r, r]. Since [r, r] has derived length n− 1. it follows, by the
inductive hypothesis, that the extension taust split, say by q : h/[r, r] → h. Finally it is easy to
see that the top sequence of diagramm splits by t = qs, t : L/r

∼→ h/[r, r]→ h ⊂ L.
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Conclusion

In this paper we aim to provide the research with an expository look at several important results
in the study of finite dimensional Lie algebras. In particallar we discuss the construction of the
Universal Enveloping Lie Algebra; The algebraic structure of the universal enveloping algebra
U(L) is not only of an associative unital algebra, but it is a Hopf algebra. That is: there is an
structure of coalgebra such that the multiplication and comultiplication in U(L) are compatible.
This is a much richer structure. Also these structures are used for representation theory of Lie
algebras. To give an example, it had used to construct faithful representations of minimal degree
by certain quotients of the universal enveloping algebra; This helped us to study affine structures
on nilpotent Lie groups. But in this work we just discuss about some of their results such that the
Poincare-Birkhoff-Witt Theorem. It was not easy for the biginer to achieve how its proof made.
In order to more discover the cathegory of Lie Algebra it was necessary to pass a Cohomologie
where we try to show H0, H1 and H2 using some of theorems. Our aim in future inchaAllah is to
continus this research by turning to Lie groups and their representation.
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Abstract

Abstract

Our work is devoted to investigating the notion of universal enveloping algebras of Lie algebras,
and some relevant results as the Poincare-Birkhoff-Witt theorem and the cohomology of Lie

algebras with some applications for this last.

Résumé

Notre travail est consacré à enquêter sur la notion de algèbre enveloppante des algèbres de Lie, et
certains résultats pertinents que le théorème de Poincaré-Birkhoff-Witt et la cohomologie des

algèbres de Lie avec certaines applications pour ce dernier.
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