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Abstract. In this paper, we are concerned with a differentiable multiob-
jective programming problem with inequality constraints. We introduce
new concepts of generalized V-type I invexity problems in which each
component of the objective and constraint functions is considered with
respect to its own function ηi or θj . In the setting of these definitions,
we establish new Karush-Kuhn-Tucker type necessary and sufficient op-
timality conditions for a feasible point to be efficient or properly efficient.
Furthermore, we show, with examples, that the obtained results allow to
prove that a feasible point is an efficient or properly efficient solution
even if it is not an usual vector Karush-Kuhn-Tucker point for a multi-
objective programming problem.
Keywords: Multiobjective programming; Generalized V-type I prob-
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1 Introduction

In optimization theory, convexity plays a very important role especially in the
construction of sufficient conditions of optimality and duality theory see, for ex-
ample, Mangasarian [22] and Bazaraa et al. [6]. Several generalizations were in-
troduced in the literature in order to weaken the hypothesis of convexity in math-
ematical programming and multiobjective problems. Hanson [14] introduced the
concept of invexity for the differentiable functions, generalizing the difference
(x− x0) in the definition of convex function to any function η(x, x0). He proved
that if, in a mathematical programming problem, instead of the convexity as-
sumption, the objective and constraint functions are invex with respect to a
same vector function η, then both the sufficiency of Karush-Kuhn-Tucker con-
ditions and weak and strong Wolfe duality still hold. Later, Hanson and Mond
[15] introduced two new classes of functions called type I and type II functions,
which are not only sufficient but are also necessary for optimality in primal and
dual problems, respectively. In [28], Rueda and Hanson extended type I functions
to pseudo-type I and quasi-type I functions and have obtained sufficient opti-
mality criteria for a nonlinear programming problem involving these functions.
Rueda et al. [29] obtained optimality and duality results for several mathemati-
cal programs by combining the concepts of type I and univex functions defined
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by Bector et al. [7]. For other generalizations of invexity, see [2, 8, 11, 19, 23, 27,
30] and the references cited therein.

On the other hand, Kaul et al. [18] considered a multiobjective problem
involving generalized type-I functions, with scalarization, and obtained some
results on optimality and duality, where the Wolfe and Mond-Weir duals are
considered. Mishra [24] considered a multiple objective nonlinear programming
problem and obtained optimality, duality and saddle point results of a vector
valued Lagrangian by combining the concepts of generalized type-I and uni-
vex functions. Aghezzaf and Hachimi [1] introduced new classes of generalized
type-I vector-valued functions and, without scalarization, derived various duality
results for a nonlinear multiobjective programming problem. Following Jeyaku-
mar and Mond [17] and Kaul et al. [18], Hanson et al. [16] introduced the V-type
I problem with respect to η, including positive real-valued functions αi and βj

in their definition, and they obtained optimality conditions and duality results
under various types of generalized V-type I requirements. For other optimality
conditions and approaches to duality for multiobjective optimization problems,
the reader can refer to the references [3–5, 9, 10, 12, 13, 20, 25, 26, 33].

However, in the literature, the type I functions and the V-type I problems
(the invex problems in general) are considered with respect to a same function
η. Jeyakumar and Mond [17] have observed that one major difficulty in all of
these extensions of convexity is that invex problems require a same function η
for the objective and constraint functions. This requirement turns out to be a
major restriction in applications. In [31], a nonlinear programming is considered
and KT-invex, weakly KT-pseudo-invex and type I problems with respect to
different ηi are defined. A new Karush-Kuhn-Tucker type necessary condition
is introduced and duality results are obtained, for Wolfe and Mond-Weir type
dual programs, under generalized invexity assumptions. In [32], the invexity with
respect to different ηi is used in the nondifferentiable case.

Motivated and inspired by work in [31, 32], in this paper, we define new classes
of generalized V-type I invexity problems in which each component of the objec-
tive and constraint functions is considered with respect to its own function ηi or
θj . These multiobjective programming problems preserve the sufficient optimal-
ity conditions under a generalized Karush-Kuhn-Tucker condition, and avoid the
major difficulty of verifying that the inequality holds for a same function η for
invex functions. This relaxation widens the area of application and allows to get
results which are applicable to prove that a feasible point is an efficient or prop-
erly efficient solution even if it is not an usual vector Karush-Kuhn-Tucker point
for a multiobjective programming problem. Further, we illustrate the obtained
results by some examples where we have a large choice to take the different
functions ηi and θj with respect to which the objective and constraint functions
are considered.
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2 Preliminaries and definitions

The following conventions for inequalities will be used. If x = (x1, ..., xn), y =
(y1, ..., yn) ∈ Rn, then: x 5 y ⇔ xi 5 yi, ∀ i = 1, ..., n; x ≤ y ⇔ x 5 y and
x 6= y; x < y ⇔ xi < yi, ∀ i = 1, ..., n. We also note Rq

= (resp. Rq
≥ or Rq

>) the
set of vectors y ∈ Rq with y = 0 (resp. y ≥ 0 or y > 0).

We consider the following multiobjective optimization problem

(V P )
Minimize f(x) = (f1(x), ..., fN (x)),
subject to g(x) 5 0,

where f : D → RN and g : D → Rk are differentiable functions on the open set
D ⊆ Rn. Let X = {x ∈ D : g(x) 5 0} the set of feasible solutions of (VP). For
x0 ∈ D, we denote by J(x0) the set {j ∈ {1, ..., k} : gj(x0) = 0}, J = |J(x0)| and
by J̃(x0) (resp. J̄(x0)) the set {j ∈ {1, ..., k} : gj(x0) < 0 (resp. gj(x0) > 0)}.
We have J(x0) ∪ J̃(x0) ∪ J̄(x0) = {1, ..., k} and if x0 ∈ X, J̄(x0) = ∅.

We recall some optimality concepts, the most often studied in the literature,
for the problem (VP). For other notions and their connections, see [34].

Definition 1. A point x0 ∈ X is said to be a weakly efficient (an efficient)
solution of the problem (VP), if there exists no x ∈ X such that

f(x) < f(x0) (f(x) ≤ f(x0)). (1)

Definition 2. An efficient solution x0 ∈ X of (VP) is said to be properly effi-
cient, if there exists a positive real number M such that the inequality

fi(x0)− fi(x) 5 M [fj(x)− fj(x0)], (2)

is verified for all i ∈ {1, ..., N} and x ∈ X such that fi(x) < fi(x0), and for a
certain j ∈ {1, ..., N} such that fj(x) > fj(x0).

Kaul et al. [18] and Hanson et al. [16] defined the invex type I functions and the
invex V-type I problem respectively, by taking a same η for the objective and
constraint functions. In what follows, we define vector type I problems, where
each component of the objective and constraint functions is considered with
respect to its own function ηi or θj .

Definition 3. We say that the problem (VP) is of V-type I at x0 ∈ D with
respect to (ηi)i=1,N and (θj)j=1,k, if there exist (N + k) vector functions ηi :
X ×D → Rn, i = 1, N and θj : X ×D → Rn, j = 1, k such that for all x ∈ X:

fi(x)− fi(x0) = [Ofi(x0)]tηi(x, x0), ∀ i = 1, ..., N, (3)

−gj(x0) = [Ogj(x0)]tθj(x, x0), ∀ j = 1, ..., k. (4)

If the inequalities in (3) are strict (whenever x 6= x0), we say that (VP) is of
semi strictly V-type I at x0 with respect to (ηi)i=1,N and (θj)j=1,k.
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Example 1. We consider the following multiobjective optimization problem

Minimize f(x) = (x + sinx, cos x),
subject to g(x) = x− π

6 5 0,

where f : ]0, π
2 [→ R2 and g : ]0, π

2 [→ R. The set of feasible solutions of problem
is X = {x ∈ ]0, π

2 [ : g(x) 5 0} = ]0, π
6 ]. The problem is V-type I at x0 =

π
6 ∈ X with respect to (ηi)i=1,2 and θ defined as follows: η1(x, x0) = (sinx −
sinx0)/ cos x0, η2(x, x0) = (cos x0 − cos x)/ sinx0 and θ(x, x0) = sin(x − π

6 )
(θ(x, x0) may be any negative scalar function on X).

Definition 4. We say that the problem (VP) is of quasi V-type I at x0 ∈ D
with respect to (ηi)i=1,N and (θj)j=1,k, if there exist (N + k) vector functions
ηi : X ×D → Rn, i = 1, N and θj : X ×D → Rn, j = 1, k such that for some
vectors µ ∈ RN

= and λ ∈ Rk
=:

N∑
i=1

µi[fi(x)− fi(x0)] 5 0 ⇒
N∑

i=1

µi[Ofi(x0)]tηi(x, x0) 5 0, ∀ x ∈ X, (5)

k∑
j=1

λjgj(x0) = 0 ⇒
k∑

j=1

λj [Ogj(x0)]tθj(x, x0) 5 0, ∀ x ∈ X. (6)

If the second (implied) inequality in (5) is strict (x 6= x0), we say that (VP) is
of semi strictly-quasi V-type I at x0 with respect to (ηi)i=1,N and (θj)j=1,k.

Example 2. We consider the following multiobjective optimization problem

Minimize f(x) = (sinx, cos x),
subject to g(x) = x− π

3 5 0,

where f : ]0, π
2 [→ R2 and g : ]0, π

2 [→ R. The set of feasible solutions of problem
is X = ]0, π

3 ]. The problem is semi strictly-quasi V-type I at x0 = π
3 ∈ X with

respect to (ηi)i=1,2 and θ defined as follows: η1(x, x0) = x0 − x, η2(x, x0) =
sin(x − x0) and θ(x, x0) = − cos(x + π

6 ) (as it can be seen by taking µ1 =
1
4 , µ2 = 3

4 and λ = 1
2 ).

Definition 5. We say that the problem (VP) is of pseudo V-type I at x0 ∈ D
with respect to (ηi)i=1,N and (θj)j=1,k, if there exist (N + k) vector functions
ηi : X ×D → Rn, i = 1, N and θj : X ×D → Rn, j = 1, k such that for some
vectors µ ∈ RN

= and λ ∈ Rk
=:

N∑
i=1

µi[Ofi(x0)]tηi(x, x0) = 0 ⇒
N∑

i=1

µi[fi(x)− fi(x0)] = 0, ∀ x ∈ X, (7)

k∑
j=1

λj [Ogj(x0)]tθj(x, x0) = 0 ⇒
k∑

j=1

λjgj(x0) 5 0, ∀ x ∈ X. (8)
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If the second (implied) inequality in (7) (resp. (8)) is strict (x 6= x0), we say
that (VP) is of semi strictly-pseudo V-type I in f (resp. in g) at x0 with respect
to (ηi)i=1,N and (θj)j=1,k. If the second (implied) inequalities in (7) and (8) are
both strict (x 6= x0), we say that (VP) is of strictly-pseudo V-type I at x0 with
respect to (ηi)i=1,N and (θj)j=1,k.

Example 3. We consider the following multiobjective optimization problem

Minimize f(x) = (−x,− cos2 x),
subject to g(x) = x− π

3 5 0,

where f : ]0, π
2 [→ R2 and g : ]0, π

2 [→ R. The set of feasible solutions of problem
is X = ]0, π

3 ]. The problem is strictly-pseudo V-type I at x0 = π
3 ∈ X with

respect to (ηi)i=1,2 and θ defined as follows: η1(x, x0) = x − x0, η2(x, x0) =
sinx0(cos x0 − cos x) and θ(x, x0) = sin(x − x0) (as it can be seen by taking
µ1 = 3

4 and µ2 = λ = 1
4 ), but the problem is not V-type I at x0 with respect to

the same (ηi)i=1,2 and θ because f2 is not invex at x0 = π
3 with respect to η2

(take x = π
6 ).

Definition 6. We say that the problem (VP) is of quasi pseudo V-type I at
x0 ∈ D with respect to (ηi)i=1,N and (θj)j=1,k, if there exist (N + k) vector
functions ηi : X ×D → Rn, i = 1, N and θj : X ×D → Rn, j = 1, k such that
for some vectors µ ∈ RN

= and λ ∈ Rk
= the relations (5) and (8) are satisfied.

If the second (implied) inequality in (8) is strict (x 6= x0), we say that (VP) is
of quasi strictly-pseudo V-type I at x0 with respect to (ηi)i=1,N and (θj)j=1,k.

Example 4. We consider the following multiobjective optimization problem

Minimize f(x) = ( 1
x , x),

subject to g(x) = x− 1 5 0,

where f : ]0,+∞[→ R2 and g : ]0,+∞[→ R. The set of feasible solutions of
problem is X = ]0, 1]. The problem is quasi strictly-pseudo V-type I at x0 =
1 ∈ X with respect to (ηi)i=1,2 and θ defined as follows: η1(x, x0) = x2 −
x2

0, η2(x, x0) = x0−x, and θ(x, x0) = x−x0 (as it can be seen by taking µ1 = 3
4

and µ2 = λ = 1
4 ).

Definition 7. We say that the problem (VP) is of pseudo quasi V-type I at
x0 ∈ D with respect to (ηi)i=1,N and (θj)j=1,k, if there exist (N + k) vector
functions ηi : X ×D → Rn, i = 1, N and θj : X ×D → Rn, j = 1, k such that
for some vectors µ ∈ RN

= and λ ∈ Rk
= the relations (7) and (6) are satisfied.

If the second (implied) inequality in (7) is strict (x 6= x0), we say that (VP) is
of strictly-pseudo quasi V-type I at x0 with respect to (ηi)i=1,N and (θj)j=1,k.

Example 5. We consider the following multiobjective optimization problem

Minimize f(x) = (−x2,−x4),
subject to g(x) = (x− 1)3 5 0,
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where f : ]0,+∞[→ R2 and g : ]0,+∞[→ R. The set of feasible solutions of
problem is X = ]0, 1]. The problem is pseudo quasi V-type I at x0 = 1 ∈ X with
respect to (ηi)i=1,2 and θ defined as follows: η1(x, x0) = x2 − x2

0, η2(x, x0) =
x4 − x4

0 and θ(x, x0) = x2 (θ(x, x0) may be any scalar function). The problem
is not V-type I at x0 with respect to the same (ηi)i=1,2 and θ but it is with
respect to other functions η′1(x, x0) = 1

2η1(x, x0), η′2(x, x0) = 1
4η2(x, x0) and

θ′(x, x0) = θ(x, x0).

Figure 1. summarizes the interconnection between the different concepts of prob-
lems defined above.

Fig.1. Connections between the different concepts of problems

In the figure 1., ”concept c1 → concept c2” means that: if the problem (VP) is
of ”concept c1” at x0 with respect to (ηi)i and (θj)j , then (VP) is of ”concept
c2” at x0 with respect to the same functions (ηi)i and (θj)j .
However, the problem (VP) can be, furthermore, of ”concept c2” at x0 with
respect to other functions (η̄i)i and (θ̄j)j without it be of ”concept c1” at x0

with respect to the same functions (η̄i)i and (θ̄j)j .
For example: ”V-type I → pseudo quasi V-type I” means that if the problem
(VP) is V-type I at x0 with respect to (ηi)i and (θj)j , then it is pseudo quasi
V-type I at x0 with respect to the same functions (ηi)i and (θj)j but the converse
is not true in general, see the example 5.

3 Optimality conditions

Weir [33], Kaul et al. [18] and Hanson et al. [16] have given Karush-Kuhn-Tucker
type necessary conditions for x0 to be properly efficient for (VP). Maeda [20,
21] has given the same necessary conditions for x0 to be efficient for (VP).
Osuna-Gómez et al. [26] (resp. Arana-Jiménez et al. [5]) have given Fritz-John
and Karush-Kuhn-Tucker type necessary conditions for x0 to be weakly efficient
(resp. efficient) for (VP). Now, in the setting of the new concepts of generalized
invexity with respect to different ηi, we give a new Karush-Kuhn-Tucker type
necessary optimality condition for x0 to be efficient for (VP) and then we estab-
lish sufficient conditions for a feasible solution to be efficient or properly efficient
for (VP).
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In the following theorem, we extend the Karush-Kuhn-Tucker type necessary
condition established for nonlinear programming programs in [31], to the case of
multiobjective programs.

Theorem 1. (Karush-Kuhn-Tucker type necessary optimality condition) Sup-
pose that x0 is an efficient solution for (VP) and the functions fi, i = 1, N ,
gj , j ∈ J(x0) are differentiable at x0. Then there exist vector functions ηi :
X × D → Rn, i = 1, N, θj : X × D → Rn, j ∈ J(x0), (ηi ≡/ 0, ∀ i =
1, N, θj ≡/ 0, ∀ j ∈ J(x0)) and vectors µ ∈ RN

> and λ ∈ RJ
> such that

(x0, µ, λ, (ηi)i=1,N , (θj)j∈J(x0)) satisfies the following generalized Karush-Kuhn-
Tucker condition

N∑
i=1

µi[Ofi(x0)]tηi(x, x0) +
∑

j∈J(x0)

λj [Ogj(x0)]tθj(x, x0) = 0, ∀ x ∈ X. (9)

Proof. It suffices to take ηi, i = 1, ..., N ; θj , j ∈ J(x0); µ and λ as follows:

• If f is a constant on X, then ηi(x, x0) can be any nonzero function.
If f is not a constant on X, then there exists x̄ ∈ X, f(x̄) 6= f(x0), it follows
that there exists i0 ∈ {1, ..., N}, fi0(x̄) > fi0(x0) because x0 is efficient for
(VP1). For all x ∈ X, consider the set Ix = {i ∈ {1, ..., N} : fi(x)− fi(x0) >
0}. Note that Ix can be empty. Thus, ηi(x, x0) = φi(x, x0)[Ofi(x0)] with

φi(x, x0) =
{

fix(x)− fix(x0), if Ix 6= ∅ (with ix = min Ix);
fi0(x̄)− fi0(x0), otherwise.

• θj(x, x0) = −gj(x)[Ogj(x0)];
• µi = 1

N , for all i = 1, ..., N ; λj = 1
J , for all j ∈ J(x0).

Now, we present some Karush-Kuhn-Tucker type sufficient optimality conditions
for (VP) under various types of generalized V-type I assumptions. We give several
examples to illustrate the obtained results.

Theorem 2. (Karush-Kuhn-Tucker type sufficient optimality conditions) Let
x0 be a feasible solution for (VP) and suppose that there exist (N + J) vector
functions ηi : X × X → Rn, i = 1, N , θj : X × X → Rn, j ∈ J(x0) and

scalars µi = 0, i = 1, N,
N∑

i=1

µi = 1, λj = 0, j ∈ J(x0) such that the generalized

Karush-Kuhn-Tucker condition (9) is satisfied. Moreover, assume that one of
the following conditions is verified:

(a) the problem (VP) is quasi strictly-pseudo V-type I at x0 with respect to
(ηi)i=1,N , (θj)j∈J(x0) and for µ and λ;

(b) the problem (VP) is semi strictly-quasi V-type I at x0 with respect to
(ηi)i=1,N , (θj)j∈J(x0) and for µ and λ;

(c) the problem (VP) is strictly-pseudo V-type I at x0 with respect to (ηi)i=1,N ,
(θj)j∈J(x0) and for µ and λ.

Then x0 is an efficient solution for (VP).
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Proof. Suppose that x0 is not an efficient solution of (VP). Then there exists a
feasible solution x ∈ X such that f(x) ≤ f(x0), which implies that

N∑
i=1

µi[fi(x)− fi(x0)] 5 0. (10)

From the above inequality and the condition (a), we obtain

N∑
i=1

µi[Ofi(x0)]tηi(x, x0) 5 0. (11)

By using the condition (9), we deduce that∑
j∈J(x0)

λj [Ogj(x0)]tθj(x, x0) = 0, (12)

which implies, from the condition (a) (in view of definition 6), that∑
j∈J(x0)

λjgj(x0) < 0.

The last inequality contradicts the fact that gj(x0) = 0, ∀ j ∈ J(x0) and hence
the conclusion follows.
The proof of the part (b) is very similar to the proof of part (a), except that for
this case the inequality (11) becomes strict (<), it follows that the inequality
(12) becomes strict (>) and, using the reverse implication in (6), we get the
contradiction again.
By condition (c), from gj(x0) = 0, λj = 0, ∀ j ∈ J(x0), in view of the reverse
implication in (8), we obtain

∑
j∈J(x0)

λj [Ogj(x0)]tθj(x, x0) < 0, ∀ x ∈ X \ {x0}.

By using (9), we deduce
N∑

i=1

µi[Ofi(x0)]tηi(x, x0) > 0, ∀ x ∈ X \ {x0},
which implies, according to the relation (7) (for strictly-pseudo V-type I prob-
lem), that

N∑
i=1

µi[fi(x)− fi(x0)] > 0, ∀ x ∈ X \ {x0}. (13)

Thus (10) and (13) contradict each other, hence x0 is an efficient solution of
(VP). This completes the proof.

In order to illustrate the obtained result, we shall give an example of multiob-
jective optimization problem in which an efficient solution will be obtained by
the application of theorem 2, whereas it will be impossible to apply for this pur-
pose the sufficient optimality conditions using the usual Karush-Kuhn-Tucker
condition.

519



Example 6. We consider the following multiobjective optimization problem

Minimize f(x) = (x3
1 − x3, x

2
2 − x1 − x3),

subject to g1(x) = x2 5 0
g2(x) = x3

3 − x2 5 0,
g3(x) = x1 5 0,

(14)

where f : R3 → R2 and g = (g1, g2, g3) : R3 → R3. The set of feasible solutions
of problem is X = {x = (x1, x2, x3) ∈ R3 : x2 5 0, x3

3 − x2 5 0 and x1 5 0}.
• We have x0 = (0, 0, 0) ∈ X is not a vector Karush-Kuhn-Tucker point of

problem (14), because the condition of Karush-Kuhn-Tucker at x0 takes a
form µ1Of1(x0)+µ2Of2(x0)+λ1Og1(x0)+λ2Og2(x0)+λ3Og3(x0) = (−µ2+
λ3, λ1−λ2,−µ1−µ2) 6= (0, 0, 0), ∀ (µ1, µ2) ≥ 0, ∀ (λ1, λ2, λ3) = 0, then the
known sufficient optimality conditions using this concept, for example from
[4, 5, 13, 16–18, 24–26, 33] are not applicable.

• However, using the theorem 2, we have: there exist vector functions
η1(x, x0) = (x1, x2, x3), η2(x, x0) = (x1 + x2, x3, x3), θ1(x, x0) =
(x1, x1, x1), θ2(x, x0) = (x2,−x2, x2), θ3(x, x0) = (x3, x3, x3) and scalars
µ1 = 0, µ2 = 1

2 , λ1 = λ2 = λ3 = 1
3 such that the generalized Karush-

Kuhn-Tucker condition (9) is satisfied and the problem (14) is strictly-
pseudo V-type I at x0 with respect to (ηi)i=1,2, (θj)j=1,2,3, µ = (µ1, µ2) and
λ = (λ1, λ2, λ3) (the problem (14) is, in fact, quasi strictly-pseudo V-type
I and semi strictly-quasi V-type I at x0 with respect to the same (ηi)i=1,2,
(θj)j=1,2,3, µ = (µ1, µ2) and λ = (λ1, λ2, λ3)). It follows that, by theorem 2,
x0 is an efficient solution for the given multiobjective optimization problem.

In the above example, we show that the hypothesis of x0 to be a vector Karush-
Kuhn-Tucker point is sometimes a strong sufficient condition and it is not in-
dispensable to prove that x0 is an efficient solution of (VP). In this way, the
obtained optimality conditions may be considered as an extension of previously
known results.

Example 7. The hypothesis of theorem 2 (with the condition (a)) are satisfied
for the problem given in the example 4 at x0 = 1 with respect to the same
functions (ηi)i=1,2, θ and for µ1 = 3

4 and µ2 = λ = 1
4 . Then x0 is an efficient

solution for this problem.

Example 8. The hypothesis of theorem 2 (with the condition (b)) are satisfied
for the problem given in the example 2 at x0 = π

3 with respect to the same
functions (ηi)i=1,2, θ and for µ1 = 1

4 , µ2 = 3
4 and λ = 1

2 . Then x0 is an efficient
solution for this problem.

Remark 1. As particular cases of theorem 2, if the functions ηi, i = 1, N and
θj , j ∈ J(x0) are equal to a same function η and by using the usual Karush-
Kuhn-Tucker condition:

(i) with the condition (a), we obtain the theorem 3.6 of Kaul et al. [18]. If further
there exist (N + k) positive real-valued functions αi, i = 1, N, βj , j = 1, k
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defined on X ×D such that in the definition 6 the implication (5) remains
true when multiplying µi[fi(x)−fi(x0)] by αi(x, x0) and the implication (8)
remains true when multiplying λjgj(x0) by βj(x, x0), we obtain the theorem
3.1 of Hanson et al. [16].

(ii) with the condition (b), we obtain the theorem 3.4 of Kaul et al. [18]. If further
there exist (N + k) positive real-valued functions αi, i = 1, N, βj , j = 1, k
defined on X ×D such that in the definition 4 the implication (5) remains
true when multiplying µi[fi(x)−fi(x0)] by αi(x, x0) and the implication (6)
remains true when multiplying λjgj(x0) by βj(x, x0), we obtain the theorem
3.3 of Hanson et al. [16].

(iii) with the condition (c), and if there exist (N + k) positive real-valued func-
tions αi, i = 1, N, βj , j = 1, k defined on X ×D such that in the definition
5 the implication (7) remains true when multiplying µi[fi(x) − fi(x0)] by
αi(x, x0) and the implication (8) remains true when multiplying λjgj(x0) by
βj(x, x0), we obtain the first case of theorem 3.4 of Hanson et al. [16].

Theorem 3. (Karush-Kuhn-Tucker type sufficient optimality conditions) Let
x0 be a feasible solution for (VP) and suppose that there exist (N + J) vector
functions ηi : X ×X → Rn, i = 1, N , θj : X ×X → Rn, j ∈ J(x0) and scalars
µi > 0, i = 1, N , λj = 0, j ∈ J(x0) such that the generalized Karush-Kuhn-
Tucker condition (9) is satisfied. Moreover, assume that one of the following
conditions is verified:

(a) the problem (VP) is V-type I at x0 with respect to (ηi)i=1,N and (θj)j∈J(x0);
(b) the problem (VP) is pseudo quasi V-type I at x0 with respect to (ηi)i=1,N ,

(θj)j∈J(x0) and for µ and λ;
(c) the problem (VP) is semi strictly-pseudo V-type I in g at x0 with respect to

(ηi)i=1,N , (θj)j∈J(x0) and for µ and λ.

Then x0 is a properly efficient solution for (VP).

Proof. By condition (a), for all x ∈ X, we have
N∑

i=1

µifi(x)−
N∑

i=1

µifi(x0)

(3)︷︸︸︷
=

N∑
i=1

µi[Ofi(x0)]tηi(x, x0)

(9)︷︸︸︷
= −

∑
j∈J(x0)

λj [Ogj(x0)]tθj(x, x0)

(4)︷︸︸︷
=

∑
j∈J(x0)

λjgj(x0) = 0.

Thus
N∑

i=1

µifi(x) =
N∑

i=1

µifi(x0) for all x ∈ X with µ > 0. Hence, from theorem

1 of Geoffrion [12], x0 is a properly efficient solution for (VP).
By condition (b), from gj(x0) = 0, λj = 0, ∀ j ∈ J(x0) (in view of definition 7),
we obtain ∑

j∈J(x0)

λj [Ogj(x0)]tθj(x, x0) 5 0, ∀ x ∈ X.
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From the above inequality and the condition (9), it follows that
N∑

i=1

µi[Ofi(x0)]tηi(x, x0) = 0, ∀ x ∈ X.

By using the relation (7) (in view of definition 7), we deduce that
N∑

i=1

µifi(x) =

N∑
i=1

µifi(x0), ∀ x ∈ X, and the conclusion follows.

For the proof of part (c), we proceed as in part (b) and using the reverse impli-
cation in (8), we get

∑
j∈J(x0)

λj [Ogj(x0)]tθj(x, x0) < 0, ∀ x ∈ X \ {x0}. In the

same way as in (b), we get
N∑

i=1

µifi(x) =
N∑

i=1

µifi(x0), ∀ x ∈ X and it follows

that x0 is properly efficient for (VP). This completes the proof.

In order to illustrate the obtained result, we shall give an example of multi-
objective optimization problem in which the properly efficient solution will be
obtained by the application of theorem 3, whereas it will be impossible to apply
for this purpose the theorem 3.1 of Kaul et al. [18].

Example 9. We reconsider the multiobjective optimization problem given in ex-
ample 1.

• We have: the problem is not V-type I at x0 = π
6 with respect to a same

function η because there exists no a function η : ]0, π
6 ]× ]0, π

6 ]→ R for which
the functions f1 and f2 are both invex at x0, as it can be seen by taking
x = π

12 , then the theorem 3.1 of Kaul et al. [18] is not applicable.
• However, the hypothesis of theorem 3 are verified. In fact: the condition (9)

is satisfied for (ηi)i=1,2 and θ given in the example 1 and µ1 = 1
10 , µ2 =

9
10 , λ = 1

50 ; the problem is V-type I at x0 = π
6 ∈ X with respect to the

same (ηi)i=1,2 and θ. It follows that, x0 is a properly efficient solution for
the given multiobjective optimization problem.

Now, we shall give example of multiobjective optimization problem in which
a properly efficient solution will be obtained by the application of theorem 3,
whereas it will be impossible to apply for this purpose the sufficient optimality
conditions using the usual Karush-Kuhn-Tucker condition.

Example 10. We consider the following multiobjective optimization problem

Minimize f(x) = (−x1, x
2
2 − x1),

subject to g1(x) = x3
1 − x2 5 0

g2(x) = x2 5 0,
(15)

where f : R2 → R2 and g = (g1, g2) : R2 → R2. The set of feasible solutions of
problem is X = {x = (x1, x2) ∈ R2 : x3

1 − x2 5 0 and x2 5 0}.
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• We have x0 = (0, 0) ∈ X is not a vector Karush-Kuhn-Tucker point of
problem (15), because the condition of Karush-Kuhn-Tucker at x0 takes the
form µ1Of1(x0)+µ2Of2(x0)+λ1Og1(x0)+λ2Og2(x0) = (−µ1−µ2,−λ+λ) 6=
(0, 0), ∀ (µ1, µ2) ≥ 0, ∀ (λ1, λ2) = 0, then the known sufficient optimality
conditions using this concept, for example from [4, 5, 13, 16–18, 24–26, 33] are
not applicable.
• However, using the theorem 3, we have: there exist vector functions

η1(x, x0) = (x1, x1), η2(x, x0) = (x1, x2), θ1(x, x0) = (x1,−x2), θ2(x, x0) =
(x2, x1) and scalars µ1 = µ2 = λ2 = 1

2 , λ1 = 0 such that the generalized
Karush-Kuhn-Tucker condition (9) is satisfied and the problem (15) is V-type
I at x0 with respect to (ηi)i=1,2, (θj)j=1,2, µ = (µ1, µ2) and λ = (λ1, λ2) (the
problem (15) is, in fact, pseudo quasi V-type I and (semi) strictly-pseudo
V-type I (in g) at x0 with respect to the same (ηi)i=1,2, (θj)j=1,2, µ and λ).
It follows that, by theorem 3, x0 is a properly efficient solution for the given
multiobjective optimization problem.

In the example 10,we show that the hypothesis of x0 to be a vector Karush-Kuhn-
Tucker point is sometimes a strong sufficient condition and it is not indispensable
to prove that x0 is a properly efficient solution of (VP). In this way, the obtained
optimality conditions may be considered as an extension of previously known
results.

Example 11. The hypothesis of theorem 3 (with the condition (c)) are satisfied
for the problem given in the example 3 at x0 = π

3 with respect to the same
functions (ηi)i=1,2, θ and for µ1 = 3

4 and µ2 = λ = 1
4 . Then x0 is a properly

efficient solution for problem.

Remark 2. As particular cases of theorem 3, if the functions ηi, i = 1, N and
θj , j ∈ J(x0) are equal to a same function η and by using the usual Karush-
Kuhn-Tucker condition:

(i) with the condition (a), we obtain the theorem 3.1 of Kaul et al. [18].
(ii) with the condition (b), we obtain the theorem 3.5 of Kaul et al. [18]. If further

there exist (N + k) positive real-valued functions αi, i = 1, N, βj , j = 1, k
defined on X ×D such that in the definition 7 the implication (7) remains
true when multiplying µi[fi(x)−fi(x0)] by αi(x, x0) and the implication (6)
remains true when multiplying λjgj(x0) by βj(x, x0) and if also there exist
positive real numbers ni and mi such that ni < αi(x, x0) < mi for each
x ∈ X and for all i = 1, N , we obtain the second case of theorem 3.2 of
Hanson et al. [16].

(iii) with the condition (c), if there exist (N + k) positive real-valued functions
αi, i = 1, N, βj , j = 1, k defined on X × D such that in the definition
5 the implication (7) remains true when multiplying µi[fi(x) − fi(x0)] by
αi(x, x0) and the implication (8) remains true when multiplying λjgj(x0) by
βj(x, x0) and if also there exist positive real numbers ni and mi such that
ni < αi(x, x0) < mi for each x ∈ X and for all i = 1, N , we obtain the
second case of theorem 3.4 of Hanson et al. [16].
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4 Conclusion

In this paper, we have defined new classes of problems called V-type I, quasi-,
pseudo-, pseudo quasi-, quasi pseudo- V-type I with respect to (ηi)i and (θj)j ,
as a generalization of invex problems with respect to a same function η. In the
setting of these definitions, we have established new Karush-Kuhn-Tucker type
necessary and sufficient optimality conditions for a feasible point to be efficient
or properly efficient. We illustrated these optimality results with some examples
and we have shown that the obtained results allow to prove that a feasible
point is an efficient or properly efficient solution even if it is not an usual vector
Karush-Kuhn-Tucker point for a multiobjective programming problem. Known
results in the literature (Hanson et al. 2001; Kaul et al. 1994) can be deduced
as particular cases from the obtained results, when the functions (ηi)i and (θj)j

are equal to a same function η. However, the concept of invexity with respect
to different functions ηi may be extended in different directions of the field of
multiobjective programming. It may be used, with and without differentiability
assumption, in the framework of fractional programming, variational problems,
symmetric duality, game theory, etc.
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