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Abstract. This paper presents an extended version of adaptive method
of linear programming to be used for constructing optimal open loop
controls of hybrid dynamic systems. We particularly consider a class of
hybrid systems described by a finite set of linear subsystems and a com-
mutation law. The active subsystem and the commutations between the
subsystems can be defined by the autonomous transitions (autonomous
model switchings). In general, such problems are solved in two steps to
find both optimal continuous inputs and optimal switching times.The
results are illustrated by an example.

1 Introduction

Traditionally, most of research work in process control has been concerned with
the control of continuous dynamic processes described by ordinary differential
equations [1] , or discrete time systems described by finite automaton [2]. The in-
creasing role of the control of physical processes and the need to design effective
control systems that can explicitly take into account the continuous and discrete
dynamics, are the reasons for the increased interest in hybrid systems[3]. Hybrid
system is a dynamical system whose evolution depends on a coupling between
variables that take values in a continuum and variables that take values in a
finite or countable set. The development of specific methods of representation,
analysis and control is necessary to take into account the complexity of these
systems.

In recent years, there has been an increasing interest in the study of autonomous-
switching systems because of its significance in both academic research and prac-
tical applications [4, 11]. This systems are an important class of hybrid dynamical
systems which consist of a family of subsystems and a switching law specifying
the active subsystem at each time instant. Examples of autonomous-switching
systems can be found in chemical processes, air traffic management, telecommu-
nication and computer networks, electrical circuit systems, etc.
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Recently, optimal control problems of switched systems have been attracting
researchers from various fields in science and engineering, since this system type
represents a powerful tool for approximating non linear systems. Various efforts
have been made to extend the classical optimal control methods to hybrid sys-
tems [5, 6, 9, 14]. hybrid versions of the maximum principle have been presented
in [6], more complicated versions of maximum principle are proved by [12] and
by [16], Capuzzo Dolcetta and Kratz [10, 16] study systems with switchings us-
ing the dynamic programming approach to drive the Hamilton-Jacobi-Bellman
(HJB) equations and prove the existence and uniqueness of viscosity solutions.
Branicky in [5] formulates optimal control problems for hybrid systems modeled
by his unified model approach; he also proposes some theoretically algorithmic
approaches related to some inequalities of the value functions.

The main purpose of this paper is to extend the principle of adaptive method
for linear programming to solve optimal control problem of autonomous-switching
systems. This method originated from an approach to the solution of linear pro-
gramming problems given in [8, 7] which is based on the concept of the support
matrix for the problem. The paper is organized as follows. In section 2, the op-
timization problem for a switched system is formulated in the class of discrete
controls. In section 3, an algorithmic resolution of the hybrid optimal control
problem is suggested. In section 4 we calculate optimal time instants of transi-
tion. As an illustration, an example considered in section 5, demonstrate that
the algorithm is efficient in constructing optimal open loop controls and can
therefore be implemented.

1.1 Autonomous switching Systems

The autonomous systems are characterized by a finite number of linear dynam-
ical models together with a set of rules for switching among these models. Here
the vector field changes discontinuously when the state x(t) hits certain bound-
aries. An example of autonomous switching systems is the following:

Consider a thermostat that is used to control the temperature of a room.
The thermostat consists of a heater and a thermometer. Its lower and upper
thresholds are set at θm and θM . Such that θm ≺ θM . The heater is maintained
on as long as the room temperature is below θM , and it is turned off whenever
the thermometer detects that the temperature reaches θM . Similarly, the heater
remains off if the temperature is above θm and is switched on whenever the
temperature falls to θm. The evolution of the temperature is described as follows:
If the heater is off the temperature dynamics is given by

Ṫ (t) = −T + 15,

and if it is on the temperature dynamics is given by

Ṫ (t) = −T + 25.
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The hybrid system describing the heating of the room can be modeled as the
graph shown in figure 1. The two vertices of the graph represent the two discrete
modes ’on’ and ’off ’. We associate with the edges the conditions for switching
from one mode to another.

�

Fig. 1. The model for the thermostat

The trajectory of the temperature alternates between two phases correspond-
ing to the two operation modes of the thermostat (see figure 2).

 

Fig. 2. The trajectory of the thermostat

2 Problem formulation

Given a fixed time interval T = [t0, tf ] and a sequence of switching times τ =
{τ1, τ2, ..., τr} at which the trajectory x(t), t ∈ [t0, tf ] hits certain boundaries.
We note that τ0 = t0, τr+1 = tf and τ0 ≺ τ1 ≺ ... ≺ τr+1.
For all t ∈ [τi−1, τi], i = 1, r + 1 and for every q ∈ Q = {q1, q2, ..., qr+1}, The
dynamical system takes the form:

ẋ(t) = Aqix(t) + Bqiu(t), (1)

Where x ∈ Rn is the continuous state, q ∈ Q is the discrete state (it is sometimes
called the mode), Q = {q1, q2, ..., qr+1} is the finite set of the value of the discrete
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state, r + 1 is the number of the discrete state, u(t), t ∈ [t0, tf ] is the control
input, Aq and Bq the n× n and n× 1 constant matrices for mode Q.
Let h = (tf−t0)/N , where N is a positive integer. Th = [t0, t0+h, t0+2h, ..., tf−
h]. Thi

= [τi−1, τi−1+h, τi−1+2h, ..., τi−h], i = 1, r + 1 and Th1∪Th2∪...∪Thr+1 =
Th.
The optimal control problem is to maximize the cost function:

L(u, τ) = c′x(tf )→ max, (2)

Subject to: {
Hx(τi) = gi,
d∗ ¹ u(t) ¹ d∗, (3)

While bringing the system from an initial state x0 at time t0, to a final state xf

at time tf where the end time is fixed.
Here, gi, i = 1, r + 1 is a m−vector, H is a m× n−matrix, d∗, d∗ the scalars,
c an n−cost vector. u(t), t ∈ T is said to be a discrete control with the quanti-
zation period h, if u(t) = u(t0 + kh), t ∈ [t0 + kh, t0 + (k + 1)h], k = 0, N − 1.
In This paper, we consider a class of hybrid system that it has no discontinuities
of the state x at the switching instants. Then, we have:

x(τ+
i ) = x(τ−i ) = x(τi), i = 1, r,

The notation τ−i , τ+
i is used for the left (resp. right) hand limit of x at τi

Definition 1. For autonomous switched system, the control input of the system
consists of both a control input u(t), t ∈ [t0 + kh, t0 + (k + 1)h], k = 0, N − 1
and a switching instants τ = {τ1, τ2, ..., τr}.

Definition 2. The discrete control u(t), t ∈ T and the vector τ are called the
feasible control for problem (1-3) if they satisfy constraints (2-3).

Definition 3. The admissible control (u0(t), τ0) and the corresponding trajec-
tory x0(t), t ∈ T are said to be optimal open loop control and trajectory if the
control criterion reaches its maximal value:

c′x0(tf ) = max
(u,τ)

c′x(tf ).

Definition 4. For given ε º 0, an ε−optimal control (uε(t), τ ε) t ∈ T are de-
fined with inequality:

c′x0(tf )− c′xε(tf ) ¹ ε.

The purpose of this study is to realize the adaptive method of linear program-
ming for constructing the optimal open loop control of a class of hybrid system.
In general, we need to find an optimal or ε−optimal control solution (u0(t), τ0)
(resp. (uε(t), τ ε)) for problem (1-3). This problem is solved in two steps.
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1 The first step consists in fixing the vector τ corresponding to a feasible trajec-
tory. Then, problem (1-3) reduces to an optimal control input u(t), t ∈ T
that maximizes Lτ (u) = L(u, τ), the problem is solved by applying the adap-
tive method presented in [7].

2 In second step, the switching instants are corrected by choosing optimal in-
stants of transition from one mode to another.

Step 01: In order to use the concepts and to adapt the methods of linear
programming, we reduce the problem (1-3) to a linear programming problem.
Let ψc(t), t ∈ T , be a solution to the adjoint equation:

ψ̇c(t) = −A′qi
ψc(t), i = 1, r + 1,

with the initial condition ψc(tf ) = c.
G(t), t ∈ T , be an m× n matrix function satisfying the equation:

Ġi = −Gi(t)Aqi ,

with the initial condition G(tf ) = H.
We assume that:

pqi(t) =
∫ t+h

t

ψ′c(υ)Bqidυ,

and

ϕqi(t) =
∫ t+h

t

Gi(υ)Bqidυ.

Thus, we obtain a linear optimal control problem:

L(u) =
r+1∑
i=1

∑
t∈Thi

pqi(t)u(t)→ max, (4)

∑
t∈Thi

ϕqi(t)u(t) = ḡi, q ∈ Q = {q1, q2, ..., qr+1}, i = 1, r + 1, (5)

d∗ ¹ u(t) ¹ d∗, t ∈ Th, (6)

where ḡi = gi − Hx0(τi), x0(τi), t ∈ Thi , is the trajectory of system (1) with
u(t) = 0, t ∈ [τi−1, τi], i = 1, r + 1.
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2.1 Support control and the accompanying elements

We choose from Th an arbitrary subset Tsup = {tl, l = 1,m} and from ϕqi
(t)

an m×m−matrix ϕsup = {ϕqi
(t), t ∈ Tsup, qi ∈ Q = {q1, q2, ..., qr+1}}. A set

Tsup is said to be a support of problem (4-6) if det(ϕsup) 6= 0.
A pair {u(t), Tsup} made up of an admissible control and a support is called a
support control.

Define the support accompanying elements:
On the base of the support Tsup we find the Lagrange m−vector y as a solution
to the equation y′ϕsup = p′sup, where psup = {pqi

, t ∈ Tsup}.
With the knowledge of the Lagrange vector y, we construct a co-control which

is an analogue of an estimate vector: ∆qi(t) = pqi(t)− y′ϕqi(t), t ∈ [τi−1, τi],
Using a solution of the adjoint equation, it is not difficult to show that

∆qi(t) =
∫ t+h

t

ψ′(υ)Bqidυ, t ∈ Thi , (7)

where ψ(t), t ∈ T , is a solution to the adjoint equation with the initial condition
ψ(tf ) = c−H ′y. (Transversally condition).

To construct a pseudo-control w(t), t ∈ T , based on Tsup, we first define the
w(t), t ∈ Tn, Tn = T\Tsup:

w(t) = −1, if ∆qi(t) ≺ 0,
w(t) = 1, if ∆qi(t) Â 0,
w(t) ∈ [−1, 1], if ∆qi(t) = 0.

(8)

and w(t), t ∈ Tsup is constructed with the use of the equation (5):

∑
t∈Tsup

ϕqi(t)w(t) +
∑
t∈Tn

ϕqi(t)w(t) = ḡi, (9)

If d∗ ¹ w(t) ¹ d∗, t ∈ Tsup, then, u0(t) = w(t), t ∈ Th is an optimal control.
A solution æ(t), t ∈ Th to equation (1) with the discrete control u(t) =

w(t), t ∈ Th and the initial condition x(t0) = x0 will be called a pseudo-
trajectory.

A suboptimality estimate of the support control u(t), Tsup, can be defined
by:

β(u(t), Tsup) = c′æ(tf )− c′x(tf ). (10)
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3 Method of calculation of the optimal control with a
fixed τ

The adaptive method is based on an iteration in which a current support control
is replaced by a new one:

{u(t), Tsup} → {ū(t), T sup},

so that β(ū(t), T sup) ¹ β(u(t), Tsup).

Suppose that for a given ε º 0 at an initial support control {u(t), Tsup}, the
suboptimality estimate β(u(t), Tsup) Â ε and inequalities d∗ ¹ w(t) ¹ d∗, t ∈
Tsup do not hold. An iteration consists of two procedures:

1. Change of an admissible control u(t)→ ū(t).
2. Change of a support Tsup → T sup.

3.1 Change of an admissible control

A new feasible control is constructed according to the formula:

ū(t) = u(t + ∂u(t) = u(t) + θ0l(t), t ∈ Th), (11)

where the direction l(t) is defined by:

l(t) = w(t)− u(t).

A step θ0 is computed as:

θ0 = min{1, θ(t)}, t ∈ Tsup,

where

θ(t) =

 (−1− u(t))/l(t), if l(t) ≺ 0,
(1− u(t))/l(t), if l(t) Â 0,
+∞, if l(t) = 0, t ∈ Tsup.

The new admissible control ū(t) satisfies the relation:

β(ū(t), Tsup) = (1− θ0)β(u(t), Tsup).

If β(ū(t), Tsup) ¹ ε then ū(t), t ∈ Th, is an ε−optimal control of problem
(4-6). Otherwise we go on to the change of support.
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3.2 Change of a support

In this procedure, the support of problem (4-6) is transformed into the optimal
support T 0

sup.

The transformation of the current support Tsup to the new support T sup is
done as follows, first, an instant t0 ∈ Tsup corresponding to θ0 is eliminated from
the support Tsup. In order to determine the instant of time or the index to be
added to the support, we calculate a step σ0 along the variation ∂y.

A construction of the new support starts with the calculation of the variation
(direction of changing) ∂y of the Lagrange vector y. ∂y is obtained from the
equation:

−ϕ′sup∂y = ∂δ(t), t ∈ Tsup.

where ∂δ(t0) = sign(ū(t0)), ∂δ(t) = 0, t ∈ Tsup\t0.

Define

∂δqi(t) = −∂yϕqi = −∂y

∫ t+h

t

Gi(υ)Bqidυ.

A new estimate vector is given by:

∆qi(t) = ∆qi(t, σ) = ∆qi(t) + σ∗∂δqi(t), t ∈ Thi , σ º 0. (12)

Let Tn0 = {t ∈ Tn, if ∆qi(t) = 0} be a subset of nonsupport zeroes. For every
point t ∈ Tn0 we calculate a value σ(t̃) for which a new zero of function (12)
arises at one of the nodes:

1. If ∆qi(t)∂δqi(t) ≺ 0, then t̃ = t, t ∈ Tn0 .
2. If ∆qi(t)∂δqi(t) Â 0, then t̃ = t− h, t ∈ Tn0 .

Calculate:
σ(t̃) = −∆qi(t̃)/∂δqi(t̃),

σ(t0) =
{−∆qi(t0)/∂δqi(t0), if ∆qi(t0).∂δqi(t0) ≺ 0,

+∞, if ∆qi(t0).∂δqi(t0) Â 0.

σ(tf ) =
{−∆qi(tf )/∂δqi(tf ), if ∆qi(tf ).∂δqi(tf ) ≺ 0,

+∞, if ∆qi(tf ).∂δqi(tf ) Â 0.

Introduce a set T 0
n = Tn0 ∪ {t0} ∪ {tf}. From the sequence σ(t), t ∈ T 0

n , we
choose:

σ∗ = σ(t∗) = min
t∈T 0

n

σ(t).

Construct a new support:

T sup = (Tsup\{t0}) ∪ {t∗}. (13)

Thus, the algorithm presented is used to construct an optimal support control
{u0(t), T 0

sup} for problem (4-6) with a fixed τ .
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4 Optimal time instant of transition

The adaptive method is used to construct an optimal support control for prob-
lem (4-6), with a fixed switching instants.

The method that can invoked to determine the optimal instant τ is based on
the gradient of objective functional of problem (4) with respect to the instants
τ1, τ2, ..., τr. Thus, we must calculate the derivative ∂L(u, τ)/∂τs, s = 1, r of
the objective functional with respect to the instants τ1, τ2, ..., τr.

Denote by (u0
sup = {u(t), t ∈ T 0

sup}) the support values of the optimal control
u0(t), t ∈ Th for the fixed instant τ . Consider a small variation ∆τs of τs that
does not change the support T 0

sup, the optimal control corresponding to τs+∆τs,
differs from u0(t), t ∈ Th only in the support components u0

sup + ∆u0
sup.

5 Example

Example 1 (Mass oscillatory system). To illustrate some of the results obtained
here, consider the system presented in figure 3 :

�

�
�

�

�

�

�

Fig. 3. Mass oscillatory system

The mathematical model of the problem has the form:

L(u, τ) = ẋ(tf )→ max,

There are two discrete modes:

ẋ(t) =
{

x2(t),
−x1(t) + u, if x º α.
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ẋ(t) =
{

x2(t),
−3x1(t)− 2α + u, if x ¹ α.

x0 = (1, 0), t0 = 0, tf = 6, α = 0.5.

To solve the problem, we consider tree initial switching instants τ = {0.77, 3.3, 3.96}.
As an initial support, a set Tsup = {1.5}. this support corresponds to the set
of nonsupport zeroes of the co-control Tn0 = {3.327, 5.908}. the problem was
solved in 46 iterations to construct the optimal open loop control. The optimal
value of the control criterion corresponding to the fixed instants was equal to
0.8754. The result is shown in figure 4:�
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�

Fig. 4. A trajectory with the fixed instants

The optimal control corresponding to a fixed instants is shown in figure 5:

0 1 2 3 4 5 6
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-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t

u(t)

�

Fig. 5. Control with the fixed instants

The optimal values of transition times are τ∗ = {0.76, 3.26, 3.98}. The corre-
sponding optimal value of the objective functional is L(u∗, τ∗) = 0.9268. And
the corresponding optimal control is illustrated by:
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Fig. 6. Optimal control with optimal switching instants

The optimal control corresponding to the optimal switching instants differs from
the control obtained with the fixed instants, only in the support component.
Thus, T 0

sup = {0.5} and usup = u(T 0
sup) = 0.85.

6 Conclusion

In this paper, we formulated an optimal control problem of autonomous switch-
ing systems. A classical adaptive method of linear programming is extended to
this class of hybrid systems. Particularly, we proposed a study of a problem
where the number of switching instants is given.

This method however guarantees both optimal piecewise controls and optimal
switching instants. It can be extended to optimal control problems for other
classes of hybrid system.
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