N• *d'ordre* :

N• *de série* :

République algérienne démocratique et populaire Ministère de l'enseignement supérieur et de la recherche scientifique

Faculté des hydrocarb<mark>ur</mark>es, énergies renouvelables et science de la terre et de l'univers. UNIVERSITE KASDI MERBAH OUARGLA

Département de production des hydrocarbures

Mémoire de fin d'étude

Pour obtenir le diplôme de Master

Spécialité : Production Académique

Présenté par : * Hadjadj Ahmed * Goudjil Ismail

Thème :

Les performances de l'injection des eaux carbonatées sur le drainage des huiles dans des modèles capillaires

> Soutenu le 22/05/2016 Devant le jury composé de :

Président : Mr. Dadena Abdelghafore Examinateurs : Mr. Brahmia Nabil Encadreur : Mr. Lebtahi Hamid

2015-2016

Table des matières

Résumé

Remerciements

Dédicaces

Liste des figures

Liste des tableaux

Symboles et abréviations

Introduction	1
Aspect historique sur L'EOR	2
Aspect technique du L'EOR	3
Le but de travail	4

Partie théorique

Chapitre I : Présentation de champ de ''Haoud Berkaoui''.	
I.1. Historique de champ HBK	5
I.2. Situation du champ	5
I.2.1 situation géographique	5
I.2.2. Situation géologique	6
I.3. Les caractéristiques des réservoirs	8
I.4. La structure générale des réservoirs de la région	8
Chapitre II : Le mécanisme d'obtention d'eau carbonatée.	
II.1. L'obtention d'eau carbonaté	9
II.1.1. Par barbotage de CO2 avec l'eau	9
II.1.2. Par saturation en CO ₂ avec un premix	10
II.3. La solubilité de dioxyde de carbone dans l'eau	11
II.3.1. La distribution de CO ₂ dans l'eau	11
II.3.2. Le titrage de CO ₂	15
Chapitre III : L'écoulement en milieu poreux.	
III.1. Écoulements diphasiques en milieux poreux	16

Partie pratique	
V.1.10. Les blocages par émulsion	30
IV.1.9. Le mécanisme de drainage	30
IV.1.8. La pression et la durée de vie de réservoir	30
IV.1.7. L'augmentation de la perméabilité	30
IV.1.6. Les perméabilités relatives	30
IV.1.5. L'altération de la mouillabilité	<i>29</i>
IV.1.4. La viscosité	28
IV.1.3. Le taux de récupération	28
IV.1.2. Le nombre capillaire	28
IV.1.1. La tension interfaciale	28
Chapitre IV : Les influences d'eau carbonatée.	
III.2.5. Le mécanisme de piégeage de l'huile	25
III.2.4. Emulsion	25
III.2.3. Relation entre la pression capillaire et saturation	24
III.2.2. La Perméabilité relative	23
III.2.1. Les digitations	21
III.2. Drainage en milieux poreux	21
III.1.4. Nombre capillaire et le rapport de viscosité	20
III.1.3. Le mouillage	18
III.1.2. La tension de surface	17
III.1.1. Écoulements locaux à l'échelle du pore	16

Partie pratique

Chapitre V : Les essais réalisés sur les modèles capillaires.	
V.1. Caractéristiques des échantillons	31
V.1.1 L'huile brute	31
V.1.2 Le gasoil	31
V.1.3 HCl	31
V.1.4 Le Calcaire	31
V.1.5 L'eau	31
Les étapes d'obtention d'eau carbonatée	31

V.2. Caractéristiques des modèles capillaires	
	32
V.2. Caractéristiques de modèle capillaire Oil-Wet (PVC)	32
V.2.1. Vue de dessus de modèle capillaire	32
V.3. Caractéristiques de modèle capillaire Mixte-Wet (Verre)	32
V.3.1. Vue de dessus de modèle capillaire	32
V.4. Caractéristiques de modèle capillaire Water-Wet (Verre)	33
V.4.1. Vue de dessus de modèle capillaire	33
V.4.2. Vue de profile des modèles capillaires	34
V.5. Plan de travail	34
V.5.1. Mise en évidence des pressions capillaires selon la mouillabilité	34
V.5.2. Tests de drainage de gasoil et d'huile brute dans trois modèles capillaires :	34
<i>V.5.3. Etude de l'influence de la température sur le taux de drainage par l'eau carbonatée. (à 25. 35. 40 et 60 °C)</i>	34
V.6. Mise en évidence des pressions capillaires selon la mouillabilité	35
V.7. Tests de drainage de gasoil et d'huile brute dans trois modèles capillaires	36
V.7.1. Les essais de drainage de gasoil dans le modèle capillaire Oil-Wet	36
V.7.2. Les essais de drainage d'huile dans le modèle capillaire Oil-Wet	37
V.7.3. Les essais de drainage de gasoil dans le modèle capillaire (Mixte-Wet)	39
V.7.4. Les essais de drainage d'huile dans le modèle capillaire Mixte-Wet	40
V.7.5. Les essais de drainage de gasoil dans le modèle capillaire Water-Wet	41
V.7.6. Les essais de drainage d'huile dans le modèle capillaire Water-Wet	42
V.8. Etude de l'influence de la température sur le taux de drainage par l'eau carbonatée. (à 25, 35, 40 et 60 °C)	43
v.y. L'interpretation des resultats	44
V.9.2. Tests de drainage de gasoil et d'huile brute dans trois modèles capillaires	45
V.9.3. Etude de l'influence de la température sur le taux de drainage par l'eau carbonatée. (à 25, 35, 40 et 60 °C)	46

Chapitre VI : Les extrapolations	
VI .1. Extrapolation dans les conditions de gisement à l'aide du logiciel MBAL	47
VI.1. Présentation du logiciel MBAL	47
VI.1.1. L'historique de puits BKHE 1 :	4 8
VI.1.2.1. Données PVT de puits BKHE 1 :	<i>49</i>
VI.1.2.2. La variation de pression de réservoir (Eruptif)	<i>49</i>
VI.1.2.3. Le mécanisme de drainage	50
VI.1.3. Le drainage par l'injection d'eau	50
VI.1.3.1. La variation des perméabilités relatives en fonction de saturation en eau.	50
VI.1.3.2. Le débit fractionnel	52
VI.1.3.3. La production cumulée et la durée de vie de réservoir	52
VI.1.3.4. La variation de pression de réservoir par l'injection d'eau	53
VI.3.5. Le mécanisme de drainage	54
VI.1.4. Le drainage par l'injection d'eau carbonatée	55
VI.1.4.1. La variation des perméabilités relatives en fonction de saturation en	
eau VI.1.4.2. Le débit fractionnel	55 56
VI.1.4.3. La production cumulée et la durée de vie de réservoir	56
VI.1.4.4. La variation de pression de réservoir par l'injection d'eau carbonatée	
VI.4.5. Le mécanisme de drainage d'huile dans le réservoir par l'injection d'eau	57
carbonatée Conclusion	58 59

Les références

Annexes

الملخص

هذه المذكرة تعتمد على دراسة تأثير دفع البترول باستخدام الماء المشبع بثنائي أكسيد الكربون والزيادة في مردودية الإنتاج. حيث يتم ذالك بلإعتماد على عدة تجارب تجرى على ثلاث نماذج مختلفة لمحاكاة حركية السوائل في الخزان البترولي واجراء مقارنة بين الدفع باستخدام الماء والدفع باستخدام الماء الذي يحتوي على ثنائي أكسيد الكربون.

تم اختيار هذه النماذج المتباينة في مواد التركيب والمتمثلة في البلاستيك والزجاج وهذا من أجل توضيح تأثير قابلية التبلل الخاصة بالصخور الموجودة في الخزانات البترولية على الخاصية الشعرية، وتوضيح قدرة الماء المشبع بثاني أكسيد الكربون على زيادة استخراج الكميات المتبقية في باطن لأرض وهذا يعود الى ذوبان ثنائي أكسيد الكربون في كل من الماء والبترول الذي يؤدي الى: خفض قوة الشد بين الماء و البترول و لزوجة النفط الخام ,تغيير خاصية جذب الصخور من قابلية جذب البترول الى قابلية جذب الماء المشبع بثاني أكسيد الكربون, زيادة مدة استغلال الخزانات البترولية.

الدفع باستخدام الماء الذي يحتوي على ثنائي أكسيد الكربون يرفع من مردودية الإنتاج الى خمسون بالمائة مقارنة بالدفع باستخدام الماء الذي لا يحتوي على ثاني أكسيد الكربون.

إضافة الى هذه التجارب تم استعمال البرنامج أمبال لدر اسة أنواع حركيات السوائل ومحاكات النتائج المتوصل إليها من التجارب على خصائص الخزان البترولي.

تم انجاز هذا العمل خلال شهرين ونصف: من 2016/02/01 الى 2016/04/15.

<u>Résumé</u>

Cette thèse est basée sur l'étude de l'influence de l'injection d'eau carbonatée sur le drainage d'huile brute et l'augmentation de taux de récupération.

Des essais ont été réalisés sur trois modèles capillaires différents pour simuler la dynamique des fluides dans les réservoirs puis faire la comparaison entre les essais de drainage d'huile brute par l'eau et par l'eau carbonatée.

Trois modèles capillaires (Oil-Wet, Mixte-Wet, Water-Wet) ont été montés par assemblage de tubes capillaires en matières plastique (PVC) et en verre, pour une simulation de l'effet de la mouillabilité et de la capillarité des réservoirs de pétrole. Des tests d'injection d'eau carbonatée ont été réalisés dans le but d'évaluer l'efficacité de cette solution sur le taux de récupération d'huile.

L'injection d'eau carbonatée fait croitre le taux de récupération de 50% par rapport à l'injection d'eau.

En plus de ces expériences, le logiciel MBAL de Petroleum Expert a été utilisé pour simuler le mécanisme de drainage des fluides dans les conditions de gisements.

Ce travail se réalise avec une durée de deux mois et demi :de 01/02/2016 à 15/04/2016.

<u>Abstract</u>

This thesis based on the study of the influence of the carbonated water injection for a crude oil displacement and his increased in oil recovery rate.

A tests are done on three different capillary models, for simulate the fluids dynamics in the hydrocarbon tanks, then a making a comparison between crude oil displacement by simple water and his displacement by carbonated water.

The models (Oil-Wet, Mixed-Wet, Water- Wet) are mounted with assembling of capillary tubes by plastic material (PVC) and glass, for the simulation of the wettability and the reservoir capillary effects. The tests of carbonated water injection were effectuated for evaluate the efficiency of this solution on the oil recovery rate.

The carbonated water injection increases the recovery rate of 50% compared to water injection.

In addition to these experiences, the software MBAL among the petroleum software, was used to simulate the mechanism of fluid displacement with the tank conditions.

This work realised in two months and a half: from 01/02/2016 to 15/04/2016.

<u>REMERCIEMENTS</u>

Nos remerciements s'adressent en premier lieu à notre Dieu pour nous avoir donné l'esprit et les moyens pour arriver à ce niveau de connaissance, nous prions pour que nous restions fidèles à lui.

Nous exprimons toute notre gratitude à l'encadreur M^{er} Dr. *Lebtahi Hamid* pour les efforts fournis, les conseils prodigués, sa patience et sa persévérance dans le suivi.

Nous adressons également nos remerciements, à tous nos enseignants du département de production de l'université de Kasdi Merbah, qui nous ont donné les bases de l'étude.

De même façon nous souhaitons de remercier tous l'ensemble des personnes de Division de Production de la région de Haoud Berkaoui surtout M^{er}: *Saim Ahcen, Bounouni Taha, Breack Mohamed,* et les autres personnes de service de Technique puits.

Nous remercions très sincèrement, les membres de jury d'avoir bien accepter de juger ce travail.

Nos remerciements vont enfin à toute personne qui a contribué de près ou de loin à l'élaboration de ce travail et surtout nos familles. **Dédicace**

Je dédie ce modeste travail en premier lieu, A ma Chère Mère pour ces efforts, ces défis et ces encouragements pour que je m'arrive à ce stade. A mon cher Père رحمه الله.

A mes frères Farouk, Akrame, et ma Chère sœur Lamia.

*A toute ma famille.

A tous mes amis, spécialement ISMAIL. Sieffe Edine. Mohemed Hocine. Bilal. Mouhamed - El - Mouatemed. et tous mes collègues au promotion 2016, surtout notre groupe Production Académique -

* A tous ceux qui ont contribué de prés ou de loin à la réalisation de ce travail.

Ahmed

www.MzePhotos.com

Dédicace.

Cette thèse représente l'aboutissement du soutien et des encouragements que mes parents m'ont prodigué tout au long de ma scolarité.

Je dédie ce mémoire

* A ma Chère Mère.
* A mon cher Père.
* A mes Frères (Ishak, Yaacouba) et ma sœur(Malak).
* A toute ma famille.
* A mes camarades surtout : Ahmed, Bilal, Hocine, Sifedine, Mohamed.

* Goudjil Ismail.

La liste des figures

Figure (1): Classification of Enhanced Oil Recovery Processes (Lake, 1989; Lyons & Plisga,	
2005)	2
Figure (2) : Consommation d'huile projeté à 2030 et proportion des sources de production	3
Figure (3) : La situation géographique de champ Haoud Berkaoui	6
Figure (4) : La colonne stratigraphique du champ HBK	7
Figure (5) : Les caractéristiques des réservoirs de la région Haoud Berkaoui	8
Figure (6) : La structure générale des réservoirs de Haoud Berkaoui	8
Figure (7) : Le principe de fonctionnement d'un premix	9
Figure (8) : La distribution de CO ₂ total dans l'eau	11
Figure (9) : Schéma d'expérience de mesure la solubilité de CO ₂ dans l'eau, avec Texp = 25 •C	12
Figure (10) : La variation de solubilité de CO ₂ en fonction de la pression et température.	
◆Duan and Sun (2003); ■ Wiebe & Gaddy (1939, 1940)	12
Figure (11) : La solubilité de CO ₂ dans l'eau pure en fonction de pression et température	<i>13</i>
Figure (12) : Solubilité de CO2 dans l'eau pure (pure water) et (2.0 wt.% brine) dans la	
pression Peq = 4.1 M Pa et différentes température	<i>13</i>
Figure (13) : L'équilibres carboniques dans l'eau en fonction du pH à 20°C	14
Figure (14) : Diagramme logarithmique avec CO2 total égale à 1	14
Figure (15) : Représentation schématique du dispositif expérimental utilisé pour déterminer la	
solubilité du CO ₂ dans une solution aqueuse	15
Figure (16) : Vision schématique de l'interface	17
Figure (17) : La présentation de la pression capillaire	18
Figure (18) : Mouillage d'un solide par deux liquides non miscibles	19
Figure (19) : Loi de Jurin appliquée au cas eau/air	19
Figure (20) : Description des types des digitations	22
Figure (21) : Déplacement d'huile à travers un réservoir à deux couches	22
Figure (22) : Perméabilités relatives	23
Figure (23) : Pression capillaire en fonction de saturation	24
Figure (24) : Modèle de doublet de pores	26
Figure (25) : Modèle de Snap-off	26
Figure (26) : Courbe de désaturation	27
Figure (27) : image de gonflement de molécule d'huile avec le drainage par l'eau carbonaté	29

avec la courbe de déplacement et gonflement en fonction de temps	
Figure (28) : L'influence de l'altération de la mouillabilité sur les perméabilités relatives	30
Figure (29) : Vue de dessus de modèle capillaire Oil-Wet	32
Figure (30) : Vue de dessus de modèle capillaire Mixte-Wet	32
Figure (31) : Vue de dessus de modèle capillaire Water-Wet	33
Figure (32) : Vue de profil des modèles capillaires	34
Figure (33) : L'effet de la mouillabilité sur la pression capillaire	35
Figure (34) : Image d'une partie de modèle capillaire Mixte-Wet qui représente les types de	
mouillabilité	35
Figure (35) : La mobilisation de l'huile piégée	35
Figure (36) : Image de drainage d'huile par l'eau dans le modèle capillaire Oil-Wet	<u>38</u>
Figure (37) : Image de drainage d'huile brute par l'eau dans le modèle capillaire Water-Wet .	40
Figure (38) : Image de drainage d'huile par l'eau dans le modèle capillaire Water-Wet	42
Figure (39) : Le taux de récupération en fonction de la température	44
Figure (40) : Le taux de récupération en fonction des types de drainages d'huile brut à 25 °C.	
(Oil-Wet)	45
Figure (41) : Le taux de récupération en fonction des types de drainages d'huile brute à 25	
°C.(<i>Mixte-Wet</i>)	45
Figure (42) : Le taux de récupération en fonction des types de drainages d'huile brute à 25	
°C.(Water-Wet)	45
Figure (43) : Fiche technique de puits BKHE 1	<i>48</i>
Figure (44) : La variation de pression et la production d'huile cumulé de réservoir par la	
récupération primaire dans logicielle (MBAL)	49
Figure (45) : Le mécanisme de drainage dans la récupération primaire	50
Figure (46) : l'évolution des perméabilités relatives en fonction de saturation d'eau	50
Figure (47) : la variation des perméabilités relatives dans le cas de drainage par l'eau simulé	
dans le logicielle Mbal	51
Figure (48) : Le débit fractionnel dans le cas de drainage par l'injection d'eau	52
Figure (49) : la variation des pressions en fonctions de temps	53
Figure (50) : Le mécanisme de drainage dans le cas d'injection d'eau	54
Figure (51) : la variation des perméabilités relatives dans le cas de drainage par l'eau	
carbonatée simulé dans le programme Mbal	55
Figure (52) : Le débit fractionnel dans le cas d'injection d'eau carbonatée	56

Figure (53) : la variation des pressions par l'injection d'eau carbonatée	57
Figure (54) : Le mécanisme de drainage dans le cas d'injection d'eau	58
Annexées	
Figure (55) : Image de modèle capillaire Oil-Wet	A
Figure (56) : Image de modèle capillaire Water-Wet	A
Figure (57) : Image de modèle capillaire Mixte-Wet	A
Figure (58) : Image représente les différentes mouillabilités dans le modèle Mixte-Wet	A
Figure (59) : Image de l'eau carbonatée	A
Figure (60) : Image de mesure de PH de l'eau carbonatée	A
Figure (61) : Image de modèle capillaire Mixte-Wet remplie par l'huile brute	A
Figure (62) : Image de drainage d'huile brut par l'eau dans le modèle capillaire Mixte-Wet	A
Figure (63) : Image de drainage d'huile brut par l'eau carbonatée dans le modèle capillaire	
Mixte-Wet	A
Figure (64) : Image de drainage d'huile saturée en CO2 par l'eau carbonatée dans le modèle	
capillaire Mixte-Wet	A

La liste des tableaux

Tableau 1 : Drainage de gasoil par l'eau à 25°C	36
Tableau 2 : Drainage de gasoil par l'eau carbonatée à 25°C	37
Tableau 3 : Drainage de gasoil saturé en CO2 par l'eau carbonatée	37
Tableau 4 : Drainage d'huile brute par l'eau à 25 °C	37
Tableau 5 : Drainage d'huile brute par l'eau carbonatée à 25 °C	<i>38</i>
Tableau 6 : Drainage d'huile saturée en CO2 par l'eau carbonatée à 25°C	<u>38</u>
Tableau 7 : Drainage de gasoil par l'eau à 25 °C	<i>39</i>
Tableau 8 : Drainage de gasoil par l'eau carbonatée à 25 °C	<i>39</i>
Tableau 9 : Drainage de gasoil saturé en CO2 par l'eau carbonaté à 25 °C	<i>39</i>
Tableau 10 : Drainage d'huile brute par l'eau à 25 °C	40
Tableau 11 : Drainage d'huile brute par l'eau carbonatée à 25 °C	40
Tableau 12 : Drainage d'huile brute saturée en CO ₂ par l'eau carbonaté à 25 °C	41
Tableau 13 : Drainage de gasoil par l'eau à 25 °C	41
Tableau 14 : Drainage de gasoil par l'eau carbonatée à 25 °C	41
Tableau 15 : Drainage de gasoil saturé en CO $_2$ par l'eau à 25 ${\mathscr C}$	42
Tableau 16 : Drainage d'huile brute par l'eau à 25 °C	42
Tableau 17 : Drainage d'huile brute par l'eau carbonatée à 25 $ {\cal C} \dots \dots$	43
Tableau 18 : Drainage d'huile brute saturée en CO ₂ par l'eau carbonatée à 25 °C	43

Symboles et abréviations

Oil-Wet : Hydrophobe.

Water-Wet: Hydrophile.

Eau carbonaté : Eau saturé en CO₂.

TAG : Trias argilo-gréseux

GOR :Gas Oil Ratio , m^3/m^{3} .

GWR : Gas to Water Ratio

IP :Index de productivité.

Np : Production cumulée.

xb : la solubilité de CO_2 dans l'eau salée (mole /kg).

 \mathbf{K}_{H} : constant de Henry.

CMT : Carbone Minéral Total.

C_{CO2-O}: Concentration de CO₂ au l'huile.

 C_{CO2-w} : Concentration de CO_2 dans l'eau.

 $\mathbf{K}_{\text{CO2-w/o}}$: Coefficient d'équilibre entre les phases de concentration de CO_2 .

Cmax: Concentration maximale de H2CO3 (à saturation).

KH : constant de Henry en fonction de pression et la température.

T_{exp} :la température lors de l'expérience.

Wt : Quantité de sel en solution (%)

ρ**air** : Masse volumique de l'air.

ρeau : Masse Volumique de l'eau.

N_{ca} : Nombre Capillaire.

Pb : Pression de bulle

μο : Viscosité d'huile.

Bo : Facteur Volumétrique d'huile.

Boi : Facteur Volumétrique d'huile initiale.

Ø: Porosité

K: Perméabilité

C: Compressibilité

S: Saturation

Pi : Pression initial de réservoir.

Introduction.

L'exploitation du pétrole est aujourd'hui un des piliers de l'économie moderne. Elle est à ce jour la première source d'énergie mondiale et de matières premières.

Le grand et très rapide développement technologique du XX^{éme} siècle est dû en grande partie au pétrole. **[1]**

La récupération du pétrole s'effectue en plusieurs étapes :

La récupération primaire : correspond à la récupération dite primaire, le pétrole remonte spontanément à la surface, grâce à la différence de pression entre l'intérieur du réservoir pétrolier et la surface.

Ce procédé permet, selon les réservoirs, de récupérer entre 5 et 30 % du pétrole en place.

La récupération secondaire : consiste à injecter par un puits d'injection du gaz ou d'eau afin de venir « pousser » le pétrole et de récupérer par le puits de production la fraction restée en place lors de la récupération primaire Pour augmenter ce taux de récupération.

Ces méthodes sont employées couramment sur les gisements suffisamment importants ; elles permettent d'atteindre un taux de récupération de l'ordre de 25% à 35% du pétrole en place.

La récupération tertiaire (Enhanced Oil Recovery - EOR en anglais): qui permet d'accroitre d'avantage le taux de récupération. [1]

Trois techniques distinctes peuvent être utilisées :

l'EOR chimique : qui consiste à améliorer le balayage du pétrole par l'eau ; l'application vient de fait que ces procédés consistent à ajouter des produits chimiques dans l'eau injectée.
 Deux procédées sont essentiellement utilisée à l'heure actuelle.

- * Les micro-émulsions
- * Les polymères

2) *L'EOR miscible :* par l'injection de gaz tel que le CO₂ qui en se mélangeant au pétrole va favoriser sa production.

3) L'EOR thermique : qui en chauffant le pétrole pour augmenter sa mobilité : l'élévation de la température dans un gisement va augmenter la production d'huile qu'il contient puisque la viscosité diminue lorsque la température croit.

Ces techniques permettraient un gain de 20% des taux de récupération pour la plupart des champs. **[1.2]**

Il y a une autre classification de l'EOR :

- ✓ *Thermique* : (pour le brut lourd).
- Non thermique : (pour les bruts légers), elles-mêmes classées en miscibles, immiscibles et chimiques. [3]

Figure (1): Classification of Enhanced Oil Recovery Processes (Lake, 1989; Lyons & Plisga, 2005). [4]

Ces méthodes ont une grande importance, puisqu'à l'échelle mondiale, l'augmentation de 1% du taux de récupération correspond à 2 ans de consommation au rythme actuel. **[5]**

1. <u>Aspect historique sur L'EOR :</u>

Avants de 1970 le pétrole est 2\$ par baril.

La forte demande par les pays industriels au début de 1970 crée des circonstances favorables aux pays producteurs pour Augmenter les prix.

Introduction

Introduction générale

Suite au conflit israélo-arabe, le prix du pétrole est multiplié par plus de 4 fois, et passe de 2.59 \$/baril en octobre 1973 à [40\$,65 \$] / baril entre 1974 et1981.

Par la suite, la chute des prix du pétrole dans les années 1980 a rendu non rentable économiquement l'utilisation de ces techniques de récupération améliorée.

Avec un prix moyen du pétrole autour de 65 \$/baril pour l'année 2009, l'EOR redevient maintenant une option raisonnable économiquement. **[2]**

Mais dans les années 2015 et 2016 le prix de brut est variable entre [20\$ -50\$] /bbl.

Figure (2) : Consommation d'huile projeté à 2030 et proportion des sources de production estimé. L'EOR représente une fraction importante de la production d'huile. [2]

2. Aspect technique du L'EOR :

A cause des forces capillaires (cas de pétrole léger) ou l'effet de la viscosité élevée (cas de pétrole lourd), une quantité de pétrole importante ne peut pas être extraite par la récupération primaire ni par la secondaire, donc il faut faire l'EOR. [2]

Enfin dans notre travail en se basant sur la récupération assistée d'huile par l'injection d'eau carbonaté dans des modèles capillaires avec des extrapolations des résultats obtenues sur le champ de Haoud Berkaoui par logiciel MBAL.

Le but de travail

<u>Le but de travail.</u>

Dans ce travail, nous avons étudié le rôle de l'injection des eaux carbonatées sur l'augmentation de taux de récupération d'huile et son effet sur les forces capillaires (Nombre capillaires, Mouillage, tension interfaciale).

Des expériences sur des modèles PVC (oil-wet), verre (water-wet), Mixte-wet ont été réalisées dans le but de mettre en évidence l'efficacité de l'injection des eaux carbonatées sur :

- L'augmentation de nombre capillaire.
- > La réduction de la tension interfacial et la pression capillaire.
- La diminution de la viscosité d'huile.
- Le maintien de pression de réservoir (augmenté la durée de vie de puits).
- La réduction des blocages par émulsion.
- L'augmentation de l'indice de productivité « IP » et le réserve (Np).
- La mobilisation d'huile résiduelle.
- L'amélioration d'efficacité de déplacement (drainage).

Enfin des extrapolations des résultats sur les paramètres de gisement (pression, température, quantité d'hydrocarbure en place, ...) ont été proposées, avec des simulations des différents scénarios de production avec le drainage par l'eau, et par l'eau carbonatée à l'aide de logiciel MBAL de Petroleum Expert.

Chapitre I

Présentation de champ de ''Haoud Berkaoui''

I.1. Historique de champ HBK.

Les études géophysiques réalisées dans la région de Ouargla ont permis de révéler l'existence de deux (02) structures appelées : Haoud Berkaoui et Benkahla, toutes les deux situées sur une surface d'exploitation de 1600 km². **[6]**

Le premier sondage de la région était OA01 à Ouargla en 1963. C'était en mars 1965 que le premier sondage OK101 est implanté au sommet de la structure de Haoud Berkaoui localisant une accumulation d'huile légère d'une densité de 43 °API (d = 0.8) dans la série inférieure du Trias argilo-gréseux (TAG) par la compagnie française de pétrole algérien (CFPA). Ce forage a atteint le Gothlandien à 3327.8 m (premier horizon paléozoïque rencontré sous la discordance hercynienne).

Le test de production effectué par la CFPA donna un débit de 11 m³/h avec une pression de gisement de 520 kg/cm² et un GOR de 101 m³/m³. [6]

A ce jour, 100 puits sont en exploitation, repartis sur l'ensemble des champs, dont 73 puits en gaz lift et 27 puits éruptifs. Les autres puits qui sont au nombre de 26 sont des puits injecteurs d'eau pour le maintien de la pression. La production cumulée depuis l'origine est de 86 millions de m3, pour des réserves en place de 472 millions de m3.

La production d'huile est reliée au 28'' Haoud El Hamra/Arzew par un 10'' à partir des centres de production de Haoud Berkaoui (production de Haoud Berkaoui et de Benkahla) et un 8'' à partir du centre de Guellala (production de Guellala et la périphérie). **[6]**

I.2 Situation du champ.

I.2.1 Situation géographique.

La région de Haoud Berkaoui représente une des 10 (dix) principales zones productrices d'hydrocarbures du Sahara algérien. Elle se situe à environ 800 Km au sud-est de la capitale Alger, à 100 km au nord-ouest de Hassi Messaoud et à 30 km à la wilaya d'Ouargla. Elle s'étend du sud-est de Ghardaïa jusqu'au champ extrême Boukhzana près de la route de Touggourt, au Nord –Ouest, le môle de Talemzane – Hassi R'mel. [6]

La région de Haoud Berkaoui fait partie du bassin d'Oued Mya, elle se situe au Nord de la dépression.

I.2.2. Cadre géologique.

Dans la dépression d'Oued Mya, les réservoirs triasiques sont classiquement subdivisés en trois termes dont les domaines d'extension sont assez semblables, mais dans lesquels la distribution des réservoirs et leurs qualités sont variables.

Le Trias argilo-gréseux (TAG) est relativement peu puissant, renfermant les principaux réservoirs, constitués par les séries suivantes :

La série inférieure, le (TAG) Trias T₁, le (TAG) Trias T₂.

Les trois (3) gisements de la région produisent de l'huile à partir de la série inférieure et du réservoir **T**₁. **[6]**

Chapitre I

Présentation de champ de ''Haoud Berkaoui''

ST	RATIGRAPHIE	PROF(m	LITHO	Descript-	Couve	PROGRAM	ME	DE I	ORAC)E	PROGRAMME BOUE
rer	Miopliocène	Surf		Sables&Grés Grés&Calc		3"3/8	5/8	F			I / Boue Bentonitique D : 1.0
5	Sén Carbon-			Calc&Dolom-	3		4 z 9'	2 = 7			
	Sén Anhydr-			Anh&Calc&A		211m	2-1/	S-1,	1.1		II /Boue Emuls.Invers
	Sén Salifère	401	SSSS	Sel&Arg&Calc	1		1				D :1.26
	Turonien	595		Calc&Marne-	1		3m				
ACE	Cénomanien	664	444	Anh&Ang&Cal	1	723m					
RET	Albien	795	·	Arg&Grés&D	1				11		
5	Aptien	1286		Calc&Marne-	1						III /BoueEmuls.Invers
	Barrémien	1307		Grés&Arg&C	1 20						D: 1,26-1,28
	Néocomien	1625		Arg&Grés&C	1						
	Malm	1803		AltGrés6Arg	1					6 i	
	Dogger Argil-	2037	000000	Grés&Arg&C	1						
63	Dogger Lagu-	2180	And the second	Arg&Anhy&C	1						
ine	Lias Anhydr-	2287		Anhydr-&Cale	100 10	2295m	A				
ISSI	Lias Salifère	2550,5	SSSS	Sel&Arg			_				
UR	Lias Horiz"B"	2604	1. And the	Cal&Arg&Anh							IV /BoueEmuls.Invers
2	Lias S1+S2	2633	SSSS	Sel&Arg							D:1,95
	Lias S3	2859	SSSS	Sel&Arg		Packer du liner 4"1/2 à			-		
	Lias Argileux	3066		Arg&Sel							
22	Argilo-Sal S4	3130	22222	Alt&Sel&Arg		3200m				ł	States and
14	Argiles Infér-	3174,5		Argiles				1			
SVI	T2	3193		Grés&Arg							
E	T1 Baches Emm	3223,5	00000	GresotArg	111	2245m					
	Roches Erup-	3237,5	$\infty \infty \infty$	Cróc&Ard	-	324511					
-	Devonien Inf	3312		AroGris-N	Q						
	Silurien	3423,5		ArgRadioa		S			N		
	(O)D-M'kratta	3485,5		Grés Qz	111				7	811	IV /BoueEmuls.Invers
	(O)Arg.microc.	3497,5		Argiles	1720118	1			4		
	GrésdeOuedSaret	3593	destature.	Grés+Arg	111						D:1,52
6	Argiles d'Azzel	3648		Argiles							
5	Grés de Ouargla	3694	and and	Gres+Arg	111	crépines de 3818m					
2	Quartz-de Hamra	3830,5	Substantian (GrésQzF	121						
	Grés d'elAtchane	3926	APPENDED.	GrésQzt8Arg	191	3920m				8	
1	Argiles d'El gassi	3975	cicicae)	Argiles		3080m				1	
	Profond-Finale	3984,5			2 3		1900	ALL	1		

Figure (4) : La colonne stratigraphique du champ HBK.

7

Présentation de champ de ''Haoud Berkaoui''

CARACTERISTIQUES	HAOUD BERKAOUI	BENKAHLA	GUELLALA	
Profondeur moyenne (m)	3550	3300	3500	
Pression initiale (kgf/cm ²)	518	532	532,5	
Pression de bulle (kgf/cm ²)	188	180	185	
Contact huile/eau initial (m)	3324	3324	3370	
Porosité moyenne $\Phi(\%)$	8,8	9,3	9,3	
Perméabilité moyenne K (md)	56,2	70,4	232	
Saturation moyenne Sw(%)	32,7	32	22,3	
Les réserves (m ³)	143,9.10 ⁺⁶	100.10^{+6}	103,6. 10 ⁺⁶	

I.3. Les caractéristiques des réservoirs :

Chapitre I

Figure (5) : Les caractéristiques des réservoirs de la région Haoud Berkaoui.

[6]

I.4. La structure générale des réservoirs de la région.

Les forages supplémentaires vont affiner l'image approchée du réservoir, préciser le (ou les) interface (s) et les valeurs des quantités en place prouvées et vont se rapprocher au fur et à mesure des quantités réelles. **[6]**

II.1. L'obtention d'eau carbonaté.

II.1.1. <u>Par barbotage de CO₂ avec l'eau.</u>

Ce procédé permet de saturer l'eau par le dioxyde de carbone avec agitation de CO₂ (soit compté ou qui résulte par des réactions chimiques) avec l'eau pour former l'eau carbonatée

selon cette réaction :

Chapitre II

 $CO_2 (gaz) + H_2O_{(liquide)} \longrightarrow H_2CO_{3(liquide)}$

La dissolution est régie par la loi de Henry si le temps de contact est suffisamment long, le CO_2 réagit avec l'eau et l'on peut représenter cette réaction par la formation d'un acide : l'acide carbonique (H_2CO_3) qui lui-même réagit pour former l'ion carbonate CO_3^{2-} et l'ion hydrogénocarbonate (couramment nommé ion bicarbonate) HCO_3^{-} .

De plus lors de sa dissolution le CO₂ va plus ou moins s'hydrater : la formulation fournie (H_2CO_3) , est une simplification d'écriture.

Lors d'une mesure du CO₂ libre on réalise en fait le dosage de $[H_2CO_3]$: on ne peut mesurer distinctement le CO₂ "gaz" et les formes hydratées de CO₂ seulement.

II.1.2. <u>Par saturation en CO₂ avec un premix.</u>

Une eau peut être carbonatée par injection de CO₂ en suivant deux étapes :

- ✤ Désaération : par écoulement sur les grilles, les chicanes et une pompe à vide.
- ★ *Saturation en CO*₂ : avec un premix.

Un Premix est utilisé pour traiter l'eau, et la saturer de gaz carbonique.

La désaération consiste à éliminer l'oxygène, responsable de phénomènes oxydatifs dangereux et la dégradation de mélange et faire un prétraitement d'eau avant la saturation par le dioxyde de carbone.

Le réservoir de désaération est maintenu sous pression négative par une pompe à vide à anneau liquide.

L'eau introduite par le haut dans le réservoir, est vaporisée dans une boule d'aspersion augmentant la surface de contact entre l'eau et le vide.

De cette manière les gaz naturellement contenus dans l'eau sont expulsés par l'eau même, facilitant la phase successive de carbonatation.

Dans ce réservoir, est aussi convoyée l'anhydride carbonique en excès dans le réservoir de saturation.

Le CO₂, en plus de faciliter la désaération, provoque une légère pré-carbonatation.

Le dispositif de carbonisation injecte directement le CO₂ dans le liquide pour obtenir l'eau carbonatée.

La quantité de CO₂ est ajustée par une vanne modulante ou bien par un débitmètre massique permettant d'avoir différents degrés de carbonatation.

Le mélangeur statique doit ensuite bien mélanger l'eau et le dioxyde de carbone et casser les bulles de CO₂ pour en faciliter donc l'absorption par l'eau.

* **Propriétés de CO₂ :**

Chapitre II

Le dioxyde de carbone, aussi appelé gaz carbonique ou anhydride carbonique, est un composé inorganique dont la formule chimique est CO₂, la molécule ayant une structure linéaire de la forme O=C=O. il se présente, sous les conditions normales de température et de pression, comme un gaz incolore, inodore, à la saveur piquante avec une masse molaire : CO₂ (M = 44.01 g/mol).

Propriétés chimiques :

Masse volumique de la phase gazeuse $CO_2(1,013 \text{ bar et } 15 \text{ }^\circ\text{C})$: 1.8714 kg/m3.

> Volume spécifique de CO₂ (1,013 bar et 25 °C) : $0.5532 \text{ m}^3/\text{kg}$

Propriétés physiques :

- ➤ Température de fusion -78,48 °C (sublimation, 760 mm Hg).
- Température d'ébullition -56,6 °C (5,12 atm), Viscosité dynamique 0,07 mPa.s à -78°C.
 [7,8]

Chapitre II La

Le mécanisme d'obtention d'eau carbonatée

II.3. La solubilité de dioxyde de carbone dans l'eau.

II.3.1. La distribution de CO₂ dans l'eau.

CO2 total représente la somme des espèces carbonatées :

CO₂ dissous moléculaire, et H₂CO₃ (HCO₃, CO₃⁻).

Dioxyde de carbone il est plus soluble dans l'eau froide que l'eau chaud pour former l'acide carbonique (H₂CO₃). [10]

Montre qu'il faut une certaine quantité de CO_2 libre (ou H_2CO_3) présent dans l'eau pour que les bicarbonates ne se transforment pas en carbonates qui précipiteraient.

Cette quantité est appelé « CO2 équilibrant ».

Environ 1 L de CO₂ sous forme gazeuse se dissout dans 1 L d'eau (à température ambiante) à la pression de 1 bar (pression atmosphérique) ; 2 l de CO₂ à 2 bar.

Dans l'eau à 20 °C : 88 ml /100 ml sous 1 bar de CO₂, soit 1,69 g par kg d'eau (3,35 g à 0 °C ; 0,973 g à 40 °C ; 0,576 g à 60 °C). **[11]**

Pour calculer la solubilité de CO₂ dans l'eau salée il faut déterminer le *GWR* (gas to water ratio) et x_b (la solubilité de CO₂ dans l'eau salée, de mole CO₂/kg sels).

 $GWR = ProducedCO_2, \, cm^3 \left(P_{atm}, \, T_{exp} \right) / Produced Water, \, cm^3 \left(P_{atm}, T_{exp} \right)$

 $x_b = GWR. \ (\ \rho_{co2}/\rho_b). \ (1000 / MW_{co2})$

[12]

Chapitre II

Figure (9) : Schéma d'expérience de mesure la solubilité de CO_2 dans l'eau, avec $T_{exp} = 25$ °C. [12]

Figure (10) : La variation de solubilité de CO₂ en fonction de la pression et température. ◆Duan and Sun (2003); ■ Wiebe & Gaddy (1939, 1940). [8]

Figure (11) : La solubilité de CO₂ dans l'eau pure en fonction de pression et température.

En remarque que la pression et la température ont un effet important sur la solubilité.

La condition d'équilibre entre les phases est quantifiée par la solubilité molaire K_H (Loi de

Henry):

Chapitre II

 $[H_2CO_3] = PCO_2 K_H$

Où la pression partielle du CO₂ atmosphérique P_{CO2}, est exprimée en atm , K_H est la solubilité molaire en mol L⁻¹atm⁻¹, et [H₂CO₃] est la concentration en CO₂ dissous en mol / kg d'eau.

On a la loi de Dalton :

 $P_{CO2} = P_{totale}$. Fraction molaire CO_2

K_{H=} **C** max / **P**_{CO2}

Dans le cas d'eau carbonatée qui drainée l'huile brut :

Le CO_2 se dissout dans l'eau, mais sa solubilité dépend beaucoup du PH. Pour une concentration donnée en CMT la répartition des différentes espèces est en fonction du pH. Avec ; **CMT** : Le carbone minéral total : ou CO_2 total. Diagrammes qui suivent présentent les résultats de l'étude des équilibres carboniques en fonction du pH à la température de 20°C.

Chapitre II

Pour pH<4,4 l'espèce prédominante est le dioxyde de carbone : c'est le cas des eaux carbonatée.

Pour pH=6,4 (pH=pK1) on a égalité des concentrations en dioxyde de carbone et en ions bicarbonates ; de même pour pH=10,4 (pH=pK2) on a égalité des concentrations en ions bicarbonates et en ions carbonates, les points notés 1 et 2 correspondent à ces égalités de concentration. Au-dessus de pH=12,4 l'espèce prédominante est l'ion carbonate.

En dessous de pH=8,3 l'espèce carbonate se trouve en quantité négligeable. On peut aussi tracer cette répartition sur un diagramme logarithmique (en prenant un CMT égal à 1) :

Chapitre II Le mécanisme d'obtention d'eau carbonatée

Les points notés 1 et 2 correspondent à l'égalité des concentrations de deux espèces : soit pour pH = pK1 et pH = pK2 (ordonnée de - 0,3 = -log2). Les courbes sont quasiment constituées de segments de droite de pente 0, 1 ou 2 en fonction du domaine de pH.

II.3.2. <u>Le titrage de CO₂.</u>

Les types de procédures expérimentales pour les études d'équilibres de phases de systèmes gaz-eau-(sel) sont très nombreux. Il apparaît que les mesures effectuées le plus souvent utilisent une méthode analytique sous une forme ou une autre. Ainsi, dans les cas impliquant des gaz purs, les phases vapeur sont habituellement mesurées volumétriquement, dans les cas de mélanges de gaz, l'analyse est généralement réalisée grâce à un chromatographe en phase gazeuse. Pour leur part, les échantillons de la phase liquide sont le plus souvent analysés soit par volumétrie, soit par pesage. Cependant, dans des cas spéciaux, les mesures peuvent impliquer une analyse chimique (titration) de la phase condensée. A titre d'exemple, la Figure 15 représente un schéma d'appareil de mesures de solubilités de CO₂ en phase aqueuse.

Figure (15) : Représentation schématique du dispositif expérimental utilisé pour déterminer la solubilité du CO₂ dans une solution aqueuse. [7]

III.1. Écoulements diphasiques en milieux poreux.

Les premiers travaux concernant la description rationnelle des écoulements diphasiques en milieux poreux ont été publiés par Darcy en 1856, dont la loi empirique lie le débit d'un fluide newtonien à la perte de charge. **[3]**

Les écoulements ayant généralement lieu à faible vitesse, les forces d'inertie sont pratiquement toujours négligeables lorsque nous ne sommes pas à proximité des puits.

III.1.2. <u>Écoulements locaux à l'échelle du pore :</u>

Permettant de rendre compte des écoulements microscopiques qui peuvent être décrits par l'équation de Navier-Stokes. [14]

$$-\nabla P_{\beta} + \rho_{\beta} g + \mu_{B} \nabla^{2} v_{\beta} = \rho_{\beta} [(\partial V_{\beta} / \partial t) + v_{B} \nabla v_{\beta}]$$
[14]

L'échelle locale caractérisée par une dimension de l'ordre du mm au cm, à cette échelle, le milieu poreux est considéré comme un milieu continu et homogène.

En particulier, il faut regarder les effets du mouillage et de la capillarité entre les deux fluides.

Ces deux propriétés sont essentielles pour décrire les écoulements à travers des pores microscopiques à très basse vitesse.

Dans cette partie, sont présentés des résultats très généraux sur le mouillage, Puis la notion de nombre capillaire et les différents types de mouillage et leur caractérisation. **[14]**

Les principales forces intervenant sur une particule fluide dans un milieu poreux sont :

✤ Les forces de pression.

Chapitre III

- ✤ Les forces de frottements.
- ✤ Les forces de pesanteur.
- Les forces d'inertie.
- Les forces superficielles.

On définit le nombre de Reynolds comme le rapport entre les forces d'inertie et les forces visqueuses. Il s'écrit sous la forme : $Re = \rho_{\beta} . v_{\beta} . D / \mu_{\beta}$ [14]

Où ρ_{β} est la masse volumique du fluide β , v_{β} sa vitesse moyenne, μ_{β} sa viscosité dynamique et D une dimension caractéristique de l'écoulement.

Dans le cas des écoulements en milieux poreux, la dimension caractéristique peut être soit le diamètre de grain, soit le diamètre de pore.

Chapitre III

III.1.3. La tension de surface.

Au sein de chacun des liquides, les molécules s'attirent entre elles, ces forces attractives sont responsables de la cohésion des liquides. A l'interface des deux fluides, les interactions sont modifiées, chaque liquide perdant des interactions attractives à cause de l'interface entre les deux fluides, chaque liquide va alors ajuster sa forme pour minimiser sa surface exposée à l'interface.

Exposée à une surface, une molécule est donc dans un état d'énergie défavorable. La tension de surface mesure directement cet accroissement d'énergie par unité de surface. **[14]**

Considérons une goutte d'eau, en équilibre avec sa vapeur, les forces gravitationnelles sont négligées, la goutte adopte une forme sphérique pour minimiser son énergie de surface.

La courbure de la surface traduit une différence de pression entre la phase liquide et la phase gaz, La pression à l'intérieur de la goutte du côté concave est supposée être supérieure à la pression du côté convexe.

L'énergie libre de surface de la goutte est donnée par $4\pi R^2 \gamma$ où R désigne le rayon de la goutte.

Augmentons de dR le rayon de cette goutte. L'incrément d'énergie de surface correspondant est donné par 8. π .R. γ . dR, cette énergie doit être compensée par les forces de pression entre l'eau et la vapeur.

On note $\Delta p > 0$ la différence de pression entre l'eau et la vapeur, le travail nécessaire pour augmenter la taille de la goutte de dR est donné par :

 $\Delta p \cdot 4\pi R^2 dR = 8\pi R \gamma \ dR.$ [14]

Par conséquent, la pression entre la surface de la goutte et sa vapeur devient :

L'écoulements en milieux poreux

Cette équation est appelée équation de Young - Laplace, elle a été établie en 1805.

Dans le cas général, elle s'écrit :

 $\Delta \mathbf{p} = \gamma \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$ [14]

Où R1 et R2 désignent les principaux rayons de courbure de l'interface, le cas précédent est simplement un cas particulier, puisque dans le cas d'une sphère ; R = R1 = R2.

Cette différence de pression entre deux phases est appelée pression capillaire ou pression de Laplace. [1]

III.1.4. <u>Le mouillage.</u>

Chapitre III

Le mouillage d'un liquide sur une surface est caractérisé par l'angle de contact formé entre une goutte de ce liquide et une surface horizontale, on note cet angle θ .

Cet angle dépend des tensions de surface impliquées dans l'équilibre de la goutte. [1]

Pour un écoulement diphasique en milieu poreux, cette surface est d'autant plus mouillable à l'un de ces fluides que l'angle de contact est proche de zéro.

On note r le rayon d'un pore, θ l'angle entre l'interface et la surface du pore, la pression capillaire de ce pore est expliquée dans la figure suivante :

- (a) Écoulement diphasique dans un tube cylindrique de rayon r, le fluide non mouillant est foncé, La différence de pression à l'interface des deux fluides est donnée par la pression capillaire $p_c = p_w p_o$.
- (b) Représentation géométrique d'une surface incurvée avec un angle de mouillage θ dans un tube de rayon r.

Le fluide le plus mouillant tend à occuper les pores les plus petites, tandis que le fluide le moins mouillants tend à occuper les pores les plus grand à cause des propriétés capillaires.

L'écoulements en milieux poreux

La mouillabilité contrôle la distribution des phases en milieu poreux qui a un rôle sur l'écoulement des fluides dans le réservoir.

 $P_{c(labo)} = [(2.\gamma.cos\theta)_{(labo)}/r] = P_{c(gisement)} = [(2.\gamma.cos\theta)_{(gisement)}/r]$

[14]

 $P_c/(\gamma.cos\theta)$: est une variable en fonction de saturation.

Chapitre III

On définit un coefficient d'étalement S dont le signe permet de déterminer si le mouillage est total (S > 0) ou partiel (S < 0).

 $S = \gamma \sigma \beta 1 - (\gamma \sigma \beta 2 + \gamma \beta 1 \beta 2)$ [14]

La distribution des fluides dans les pores joue un rôle important dans les déplacements polyphasiques.

Les réservoirs pétroliers sont généralement de mouillabilité intermédiaire. [15]

Chapitre III

III.1.5. Nombre capillaire et le rapport de viscosité.

Considérons un écoulement diphasique (par exemple eau-huile) au cours duquel le fluide non mouillant est déplacé par le fluide mouillant. Les forces en présence sont :

- * Les forces capillaires liées à l'interface entre deux fluides,
- * Les forces visqueuses liées au fluide déplaçant et celles liées au fluide déplacé.

On peut définir un nombre adimensionnel, le nombre capillaire (N_{ca}), qui est le rapport des forces visqueuses (fv) aux forces capillaires (fc).

$$N_{ca} = f v / f c = v \mu / \sigma . cos \theta$$
 [14]

v: vitesse, σ :interfacial entre l'huile et l'eau, θ : L'angle de contact.

Lorsque $N_{ca} < 1$, les effets capillaires dominent les effets visqueux, alors Le nombre capillaire donne une aidé sur les forces qui régissent l'écoulement.

On peut aussi définir un rapport de viscosité :

 $\frac{R\mu=\mu_1/\mu_2}{[14]}$

Avec μ_1 la viscosité du fluide déplaçant et μ_2 la viscosité du fluide déplacé.

La différence entre les viscosités des fluides déplaçant et déplacé conduit à des phénomènes d'instabilités tels que les digitations visqueuses, celles-ci se manifestent lorsque la viscosité du fluide déplaçant est inférieure à la viscosité du fluide déplacé.

Dans ce cas, l'écoulement est plus facile dans les zones où le fluide déplacé a été remplacé par le fluide déplaçant ; ainsi, une petite irrégularité dans le front aura tendance à être amplifiée.

Cette irrégularité est en général due à une inhomogénéité locale de la roche. Lorsque la viscosité du fluide déplacé est supérieure à la viscosité du fluide déplaçant les digitations naissantes se résorbent. **[14]**

Pour les éviter il « suffit » donc de diminuer le rapport de viscosité, soit en rendant le fluide déplacé moins visqueux, soit en rendant le fluide déplaçant plus visqueux.

L'écoulements en milieux poreux

Conclusions sur le diagramme de phase qu'a été proposé par Lenormand qui est en fonction de N_{ca} et $R\mu$:

- Lorsque le nombre capillaire est élevé avec un rapport de viscosité inférieur à 1, on observe la formation de digitations visqueuses.
- Dans le cas d'un nombre capillaire élevé et d'un rapport de viscosité supérieur à 1, un front stable se propage dans le milieu poreux.
- Lorsque le nombre capillaire est faible, on a selon les valeurs, un domaine capillaire continu ou un domaine capillaire discontinu.

Les différentes forces mises en jeu à l'échelle du pore jouent un rôle dans l'efficacité de la production de pétrole, via le nombre capillaire. Ainsi, selon les roches, il advient que plus le nombre capillaire est élevé, plus la saturation résiduelle en huile diminue, donc plus la production augmente. **[14]**

III.2. Drainage en milieux poreux :

Le drainage en milieu poreux est un mécanisme où un fluide non mouillant vient déplacer un fluide mouillant, ces déplacements entraînent la formation de structures plus ou moins ouvertes.

Trois types de comportements peuvent être observés : digitations visqueuses (type Saffman Taylor), digitations capillaires (modèle de l'invasion percolation) (capillary fingering) ou front stable, ces comportements se rencontrent aussi dans le cas de l'imbibition. **[1]**

III.2.1. Les digitations :

Chapitre III

Les digitations, qui se forment au départ à petite échelle, sont rendues possibles par l'hétérogénéité de la roche (variation de la perméabilité) et se développent à l'échelle métrique ou décamétrique dans le cas ou' le rapport de mobilité M > 1, par contre dans le cas ou M < 1, ces digitations naissant se résorbent. [7]

Ces digitations sont d'autant plus développées que M est plus grand et que les hétérogénéités de réservoirs sont plus marquées

Chapitre III

L'écoulements en milieux poreux

Digitation (visqueuse « homogène »), et (par écoulement d'un fluide miscible).

 Figure (20) : Description des types des digitations.
 [16]

Lors de l'injection d'un fluide déplaçant on décrit la capacité de d'huile à se déplacer dans un réservoir, ou milieu poreux, par le paramètre de rapport de mobilité qui est défini par la relation.

 $M = \lambda d / \lambda h = k d. \mu h / \mu d. k h$ [14]

 μ d et μ h sont les viscosités du fluide déplaçant et de l'huile, kd et kh les perméabilités relatives de ces fluides. Les rapports $\lambda d = kd/\mu d$ et $\lambda h = kh/\mu h$ sont les mobilités du fluide déplaçant et de l'huile.

 Figure (21) : Déplacement d'huile à travers un réservoir à deux couches.
 [14]

La proportion de la zone non balayée dépend fortement de ce rapport de mobilité M, en particulier, lorsqu'il est supérieur à 1, on assiste à un phénomène de digitations visqueuses qui induisent une percée précoce du fluide déplaçant au niveau du puits producteur. Les hétérogénéités du réservoir peuvent aussi avoir une incidence sur la vitesse de déplacement des deux fluides et en l'occurrence favoriser la vitesse du fluide déplaçant, induisant ainsi des zones non balayées et amplifié la digitation. **[14]**

L'écoulements en milieux poreux

Le rapport de mobilité est un paramètre utilisé dans l'industrie pétrolière pour évaluer la capacité de la solution d'injection à pousser l'huile en place dans le réservoir : plus ce rapport est élevé, plus la situation est favorable.

III.2.2. La Perméabilité relative.

Chapitre III

Considérons un écoulement diphasique et unidirectionnel dans un milieu homogène et isotrope, d'une manière générale, on définit la perméabilité relative kri(Si) du milieu poreux à la phase i, pour une saturation Si, à l'aide de la perméabilité effective ki du milieu à cette même phase et d'une perméabilité de référence k, de la manière suivante :

Pour un couple eau-huile, où l'eau est le fluide mouillant, l'allure des courbes de perméabilités relatives est donnée par la figure suivante, ces courbes peuvent être obtenues expérimentalement par des méthodes stationnaires ou instationnaires.

Dans le cas d'un milieu mouillable à l'eau, on note que la perméabilité relative à l'eau k_{rw} au S_{or} est nettement inférieure à la perméabilité à l'huile k_{ro} au S_{wi} .

La mouillabilité d'un milieu a effectivement un effet sur les perméabilités relatives eau/huile du milieu, si un milieu poreux est mouillable à l'eau, alors l'eau s'écoule à travers un réseau de pores de petites tailles, donc de faible perméabilité, tandis que l'huile, ne pouvant pas accéder aux petits pores, circule au centre des gros pores constituant un réseau de forte perméabilité, c'est pourquoi pour un tel milieu, la perméabilité relative à l'huile à la

L'écoulements en milieux poreux.

saturation irréductible à l'eau est toujours supérieure à la perméabilité relative à l'eau à la saturation résiduelle en huile.

Dans un milieu poreux mouillable à l'eau, l'huile s'écoulant plus facilement du fait de la présence d'un film d'eau à la paroi, on parle d'effet de lubrification de la phase huile. La perméabilité relative à l'huile à la saturation irréductible en eau $k_{ro}(S_{wi})$ peut ainsi être supérieure à la perméabilité absolue du milieu à l'eau. [14]

III.2.3. <u>Relation entre la pression capillaire et saturation.</u>

Chapitre III

Les forces capillaires se décrivent de façon relativement satisfaisante à l'échelle du pore. Définir la capillarité à plus grande échelle nécessite d'avoir recours à des mesures expérimentales portant sur des échantillons de milieu poreux.

L'équation de Laplace présentée à l'équation qui exprime que la pression capillaire entre les fluides dépend de la courbure ξ de l'interface. **[14]**

$$Pc = P1 - P2 = \gamma.\xi$$
 [14]

Soit un milieu perméable (p) contienne des gros pores et le deuxième est moins perméable (l) avec des petits pores, pour une même saturation S_1 nous aurons une pression capillaire $P_{cl} > P_{cp}$.

Le fluide 1 mouillant injecté, l'eau par exemple, occupe plus rapidement les gros pores (perméabilité plus grand) donc $S_w p > S_w l$ a un instant donné. [5]

Chapitre III

La courbe 1 : représente le processus de drainage initial d'un échantillon entièrement saturé en eau.

La courbe 2 : associée au processus d'imbibition. L'augmentation de la saturation en eau s'accompagne d'une diminution de la pression capillaire, qui tend vers 0 pour la saturation résiduelle en huile Sor.

La courbe 3 : représente le processus de second drainage d'un échantillon saturé en eau, en présence d'huile résiduelle. **[5]**

III.2.4. <u>Emulsion.</u>

Une émulsion est constituée de gouttelettes d'un liquide dispersé au sein d'un autre liquide non miscible au premier. Pour que la dispersion soit une émulsion, il faut qu'elle soit stable : les deux liquides ne doivent pas se séparer rapidement.

Il existe des émulsions :

1) *Huile/eau*, caractérisées par des gouttes d'huile dispersées dans l'eau (le lait, la crème fraîche, la mayonnaise).

2) Eau/huile, émulsions inverses.

3) Liquide/gaz, comme la Chantilly ou la glace italienne.

III.2.5. <u>Le mécanisme de piégeage de l'huile</u>

En général, lors de l'exploitation d'un réservoir, l'huile initialement en place est déplacée vers le puits de production par un autre fluide. Les causes de récupération non-totale peuvent être analysées à différentes échelles : l'échelle du pore, l'échelle d'un tube d'écoulement et l'échelle du réservoir. Nous ne nous intéresserons ici qu'à l'échelle du pore. Il existe des modèles de piégeage tels que le modèle du doublet de pore ou le Snap-off qui présente le modèle du doublet de pore.

Ce modèle permet d'illustrer une hétérogénéité locale qui consiste en une différence de rayon entre deux chemins d'écoulement possibles. **[14]**

Il y a aussi le modèle d'étranglement en amont comme en aval qu'est l'un des mécanismes de piégeage conduisant directement aux notions de saturations résiduelles et irréductible.

Le modèle de doublet de pores est développé par More et Slobed. Il fait l'hypothèse que dans chaque pore, il y a dans leur modèle un écoulement de type poiseuille et que la présence de l'interface ne perturbe pas l'écoulement. Ces hypothèses sont vérifiées si les pores sont bien plus longs que larges et que le déplacement se fait lentement.

Ils font aussi l'hypothèse que lorsque l'interface arrive à la fin du doublet, la phase restante dans l'un ou l'autre des pores reste piégée .dans le cas où les forces capillaires sont négligeables, la vitesse d'avancée du front est supérieure dans le gros pore et le piégeage de l'huile a lieu dans le pore fin .par contre , dans le cas où les forces capillaires sont dominants sur les forces visqueuses ,la vitesse d'avancée est plus grande dans le pore fin et les piégeages dans la phase non mouillante a lieu dans le pore le plus large .

Le modèle de Snap-off permet d'illustrer des différences de sections transversales le long de l'écoulement si la force appliquée est insuffisante pour forcer le passage de l'huile, celle-ci se divise en gouttes qui restent piégées à l'intérieur des pores tandis que l'eau les contourne.

L'augmentation considérable du nombre capillaire permet de diminuer la saturation résiduelle en huile comme le montre la courbe de désaturation. On peut voir que la saturation résiduelle en huile qui commence à descendre que lorsque le nombre capillaire est de l'ordre de 10⁻⁵ et qu'elle tend vers zéro lorsque le nombre capillaire est de l'ordre de 10⁻². Or nous avons déterminé plus haut que le nombre capillaire moyen d'une imbibition est de 10⁻⁷. Ce qui signifie

Chapitre III

L'écoulements en milieux poreux

qu'il faut réussir à le baisser de deux ordres de grandeurs au moins avant d'avoir un effet sur la saturation. **[14]**

IV.1. Les influences d'eau carbonatée.

L'eau carbonatée a des effets sur plusieurs paramètres de réservoir à cause de la miscibilité de CO₂ dans l'eau et l'huile. Ces effets favorisent le déplacement des huiles piégées. Parmi ces paramètres on distingue :

IV.1.1. La tension interfaciale.

L'injection d'eau carbonatée permet de diminuer les tensions interfaciales eau / huile et conduit à la réduction d'émulsions et disparation des agrégats de petites tailles. **[17]**

IV.1.2. <u>Le nombre capillaire.</u>

L'eau carbonatée a un effet important sur l'augmentation de nombre capillaire par la réduction des forces capillaires. Elle favorise l'écoulement de l'huile et libère une quantité importante de pétrole piégés dans les pores. **[17]**

IV.1.3. Le taux de récupération.

L'eau carbonatée améliore le déplacement du brut piégé dans les pores et la mobilisation d'huile résiduelle. On aura donc une augmentation dans le taux de récupération. **[18]**

IV.1.4. La viscosité :

La dissolution du CO₂ dans l'eau et l'huile entraine une réduction sensible de la viscosité. La viscosité de l'huile diminue de 2 à 10 fois alors que son volume augmente de 20% à 50%. **[19]**

Les influences d'eau carbonatée

Figure (27) : image de gonflement de molécule d'huile avec le drainage par l'eau carbonaté avec la courbe de déplacement et gonflement en fonction de temps. [19]

IV.1.5. L'altération de la mouillabilité.

Chapitre IV

Le phénomène d'altération de la mouillabilité est observé durant :

- Le forage : le fluide de forage à base d'huile crée une altération de la mouillabilité.
- La complétion : avec sa filtration dans les pores par le phénomène de pistonnage.
- L'exploitation : le changement des paramètres des gisements (pression Pg < Pb, température) sont les causes principales de la précipitation de la fraction lourd de brut (les paraffines, les cires, les asphalténes, les résines). Ils sont adsorbés sur les parois des pores et capillaires la modifie la mouillabilité de la roche de Water-Wet à Oil-Wet. [20]

L'injection d'eau carbonatée favorise la dissolution des dépôts organiques (précipitation de la fraction lourde de pétrole) donc la restauration de la mouillabilité des roches à water-Wet soit dans les roches gréseuses ou les roches carbonatées. **[18]**

Les roches réservoirs gréseux :

Sont généralement mouillable à l'eau avec un grand affinité de cation H⁺, puisque la surface des roches gréseux est chargé négativement, et l'eau carbonatée qui contient les charges positive de H⁺ plus en plus que l'eau, donc est le plus favorable pour l'altération de mouillabilité. **[21]**

Les roches carbonatées :

Généralement 50% des réserves d'huile sont piégées. Ces roches sont mouillables à l'huile à cause de leurs surfaces chargées positivement et qui attirent les charges négatives des groupes carboxyliques COO⁻ renfermés dans les molécules des fractions pétrolières. Ces fractions forment une couche mouillable à l'huile sur la surface des roches. L'injection d'eau carbonatée provoque une inversion de la mouillabilité des roches carbonatées de Oil-Wet à Water-Wet par la réduction des charges négatives des groupes carboxyliques et la dissolution de cette couche hydrophobe. **[18]**

IV.1.6. Les perméabilités relatives.

Le drainage par l'injection d'eau carbonatée a un effet important sur le changement d'évolution des perméabilités relatives de l'eau et de l'huile qui sont des conséquences de l'altération de mouillabilité et l'amélioration du rapport de mobilité donc l'augmentation à l'imbibition de l'eau injectée dans le réservoir. **[18]**

Figure (28) : L'influence de l'altération de la mouillabilité sur les perméabilités relatives. [22]

IV.1.7. L'augmentation de la perméabilité.

L'eau carbonatée maintient un environnement acide généralement (PH<6) qui disloque et favorise la dissolution des dépôts, donc augmenter la perméabilité des formations. **[23]**

IV.1.8. La pression et la durée de vie de réservoir.

L'injection d'eau carbonatée maintient la pression de réservoir et décroit le déclin de la pression de gisement et favorise l'augmentation de la durée de vie de réservoir. [17]

IV.1.9. Le mécanisme de drainage et le front.

L'eau carbonatée donne une énergie additionnelle au réservoir par l'augmentation de gaz dissout dans l'huile. La dissolution de CO₂ et augmente aussi l'efficacité du front par l'amélioration des rapports de mobilité et de viscosité. **[23, 19]**

IV.1.10. Les blocages par émulsion.

La miscibilité de CO_2 dans l'eau et l'huile réduit la tension interfaciale entre elles et libére une grande quantité d'huile bloquée par l'émulsion. [17]

Les essais réalisés sur les modèles capillaires

V.1. Caractéristiques des échantillons :

V.1.1 L'huile brute :

Chapitre V

C'est un échantillon de réservoir du champ Haoud Berkaoui par le puits BKHE1 de :

- ➢ Viscosité : 0.25 CP.
- ➢ Densité : 0.82.

V.1.2 Le gasoil :

C'est un gasoil carburant commerciale de société Naphtal de :

- Viscosité :0.30 CP.
- Densité : 0.85.

V.1.3 <u>HCl (L'acide chlorhydrique)</u> :

Est un produit commercial (Esprit de sel).

- Dosage d'acide chlorhydrique : 33%.
- Bichromate de potassium, eau.
- ▶ La marque de HCl : TDNR.

V.1.4 Le Calcaire :

Utilisation de craies scolaires (teneur en CaCO₃ de 90% ou plus) :

➤ La marque des craies : Wilson.

V.1.5 <u>L'eau</u>:

Eau potable de la ville de Ouargla.

Les étapes d'obtention d'eau carbonatée.

L'eau carbonatée est préparée par barbotage de gaz CO_2 produit de la réaction entre le CaCO₃ et HCl.

Les essais réalisés sur les modèles capillaires

V.2. <u>Caractéristiques des modèles capillaires :</u>

V.2.1. Caractéristiques de modèle capillaire Oil-Wet (PVC) :

V.2.3. <u>Vue de dessus de modèle capillaire.</u>

Ce modèle est constitué de cinq tubes capillaires en matière plastique, PVC, (Oil-Wet), connectés par deux tubes latéraux en PVC.

Les tubes sont caractérisés par :

- Diamètre intérieur de 2 mm.
- ▶ Longueur de 24 cm.

Le volume total de modèle capillaire *Oil-Wet* est 29 ml.

V.3. <u>Caractéristiques de modèle capillaire Mixte-Wet (Verre) :</u>

V.3.1. <u>Vue de dessus de modèle capillaire.</u>

Ce modèle il constitue de cinq tubes capillaires de deux types. Deux tubes (2) Water-Wet et Trois (3) tubes Oil-Wet sont monté parallèlement.

• Les tubes Water-Wet :

Ils sont des tubes en verre, qui construire par SOMETVERRE - THENIA -

BOUMERDESS de diamètre intérieur 2 mm et de longueur 28 cm.

• Les tubes Oil – Wet :

Ils sont des tubes en PVC ont les mêmes caractéristiques du tube de verre (diamètre,

longueur). Il se connecte entre eux par des T en PVC et en Cuivre.

Le volume total de modèle capillaire *Mixte-Wet* est 35.294 ml.

V.4. Caractéristiques de modèle capillaire Water-Wet (Verre) :

V.4.1. <u>Vue de dessus de modèle capillaire.</u>

Figure (31) : Vue de dessus de modèle capillaire Water-Wet.

Ce modèle il constitue de cinq tubes capillaires en verre (Water-Wet), connecté par des T en Cuivre.

Les tubes sont de :

- Diamètre intérieur de 2mm.
- ➢ Longueur de 28 cm.

Le volume total de modèle capillaire Water-Wet est 45.85 ml.

Les essais réalisés sur les modèles capillaires

V.4.2. Vue de profil des modèles capillaires.

V.5. <u>Plan de travail :</u>

V.5.1. Mise en évidence des pressions capillaires selon la mouillabilité

Deux types de tubes capillaires ont été placés aux interfaces huile / eau pour mettre en évidence les effets de la mouillabilité sur les pressions capillaires.

Un tube Oil-Wet (mouillable à l'huile) en matière PVC et l'autre Water-Wet (mouillable à l'eau) en verre de même diamètre intérieure 2 mm à température 25°C.

V.5.2. <u>Tests de drainage de gasoil et d'huile brute dans trois modèles</u> <u>capillaires :</u>

Oil-Wet (en PVC), Water-Wet (en verre) et Mixte-Wet (en PVC et en Verre).

Trois types d'injections ont étaient effectuées à 25 °C dans chaque modèle :

- Injection d'eau.
- Injection d'eau carbonatée.
- Injection d'eau carbonatée pour drainer des huiles saturées en CO₂.

Après chaque injection les taux de récupération ont été déterminés.

V.5.3. <u>Etude de l'influence de la température sur le taux de récupération par</u> <u>injection d'eau</u> carbonatée. (à 25, 35, 40 et 60 °C).

V.5.4. Extrapolation dans les conditions de gisement à l'aide du logiciel MBAL

V.6. Mise en évidence des pressions capillaires selon la mouillabilité.

Les expériences sont réalisées avec deux tubes capillaires *Oil-Wet (PVC) (1)* et *Water-Wet*

Figure (34) : Image d'une partie de modèle capillaire Mixte-Wet qui représente les types de mouillabilité.

 P_{A} '- $P_{A} = 2.\gamma . \cos\theta / R$, P_{B} ' - $P_{B} = 2.\gamma . \cos\theta / r$

On a : $P_{A}' = P_{B}'$ donc, $P_{A} - P_{B} = (2 \gamma) [(1/R) - (1/r)] \cos(\theta)$

Les essais réalisés sur les modèles capillaires

V.7. <u>Tests de drainage de gasoil et d'huile brute dans trois modèles</u> capillaires :

V.7.1. Les essais de drainage de gasoil dans le modèle capillaire Oil-Wet.

Les essais sont réalisés sur un modèle capillaire, selon la procédure suivante :

- Le modèle est rempli par du gasoil.
- Un drainage est effectué par injection d'eau sous pression constante (1.015 bar) et température ambiante.
- Le drainage est interrompu lorsque la première goutte d'eau est recueillie à la sortie du modèle capillaire. Le volume d'huile récupéré est mesuré.
- Le modèle est à nouveau rempli par du gasoil.
- Le balayage avec la solution carbonatée est opéré et achevé lorsque la dernière goutte d'huile est récupérée.
- La même procédure est effectuée avec un modèle rempli de gasoil saturée avec CO₂ puis drainé par une solution carbonatée.

Enfin les données suivantes sont enregistrées :

- La pression indiquée par les manomètres graduée (hauteur).
- > Le taux de récupération primaire (déplacement par l'eau) par mesure de volume récupéré.
- Le taux de récupération secondaire (déplacement par l'eau carbonatée).
- Le taux de récupération (déplacement de gasoil saturé en CO₂ par l'eau carbonatée).

On calcule le taux de récupération par la relation suivant :

Taux de de récupération = volume sort / volume totale de modèle capillaire

Les résultats sont représentés dans les tableaux suivants à 25°C :

Expériences	ΔH	Pression	Volume sort	Rendement
	(<i>cm</i>)	(<i>bar</i>)	(<i>ml</i>)	(%)
	$H_{entre} = 15$	8.75 *10 ⁻³		
Ι	$H_{sort} = 4.5$	+	9.52	31.76
	$\Delta H = 10.5$	1.0132		
	$H_{entre} = 15$	7.91 *10 ⁻³		
II	$H_{sort} = 5.5$	+	8.82	29.41
	$\Delta H = 9.5$	1.01325		
		8.75*10 ⁻³		
Moyen	$\Delta H = 10.5$	+	9.17	30.56
5		1.01325		

Les essais réalisés sur les modèles capillaires

l	Tableau 2 : Draina	c.		
Expériences	∆ <i>H</i> (<i>cm</i>)	Pression (bar)	Volume sort (ml)	Rendement (%)
Ι	$H_{entre} = 15$ $H_{sort} = 5.5$ $\Delta H = 9.5$	7.91 *10 ⁻³ + 1.0132	17.30	59.65
II	$H_{entre} = 15$ $H_{sort} = 6$ $\Delta H = 9$	7.50 *10 ⁻³ + 1.01325	17.35	59.82
Moyen	$\Delta H = 9.25$	7.70 *10 ⁻³ + 1.01325	17.325	59.735

Tableau 3 : Drainage de gasoil saturé en CO₂ par l'eau carbonatée.

E an í ai an a an	A TT	D	XZ-1	Dendement
Experiences	ΔH	Pression	Volume sort	Kendement
	(<i>cm</i>)	(bar)	(<i>ml</i>)	(%)
	$H_{entre} = 15$	7.08 *10 ⁻³		
Ι	$H_{sort} = 6.5$	+	19.05	65.68
	$\Delta H = 8.5$	1.01325		
	$H_{entre} = 15$	6.66 *10 ⁻³ +		
II	$H_{sort} = 7$	1.01325	19.10	65.86
	$\Delta H = 8$			
Moyen		6.87 *10 ⁻³		
	$\Delta H = 8.25$	+	19.23	65.77
		1.01325		

V.7.2. Les essais de drainage d'huile brute dans le modèle capillaire Oil-Wet.

Les mêmes essais de drainage mais pour l'huile à 25°C.

Expériences	∆H (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)
Ι	$H_{entre} = 15$ $H_{sort} = 6$ $\Delta H = 9$	7.23 * 10 ⁻³ + 1.01325 (1 atm)	10.23	35.27
II	$H_{entre} = 15$ $H_{sort} = 6$ $\Delta H = 9$	7 .23 * 10 ⁻³ + 1.01325	10.41	35.89
Moyen	$\Delta H = 9$	7.23 * 10 ⁻³ + 1.01325	10.32	35.58

Les essais réalisés sur les modèles capillaires

Chapitre V

Figure (36) : Image de drainage d'huile brute par l'eau dans le modèle capillaire Oil-Wet.

Tableau 5 : Drainage d'huile brute par l'eau carbonatée à 25°C.				
Expériences	ΔH (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)
Ι	$H_{entre} = 15$ $H_{sort} = 6.5$ $\Delta H = 8.50$	6.66 * 10 ⁻³ + 1.01325	17.29	59.62
Ш	$H_{entre} = 15$ $H_{sort} = 6.5$ $\Delta H = 8.50$	6.66 * 10 ⁻³ + 1.01325	17.64	60.85
Moyen	$\Delta H = 8.50$	6.66 * 10 ⁻³ + 1.01325	17.465	60.235

Tableau 6 : Drainage d'huile saturée en CO₂ par l'eau carbonatée à 25°C.

Expériences	ΔH	Pression (bar)	Volume sort (ml)	Rendement
	(<i>cm</i>)			(%)
	$H_{entre} = 15$	6.20 * 10 ⁻³		
Ι	$H_{sort} = 7.5$	+	19.05	65.68
	$\Delta H = 7.50$	1.01325		
	$H_{entre} = 15$	6.02 * 10 ⁻³		
II	$H_{sort} = 7.5$	+	19.20	66.20
	$\Delta H = 7.50$	1.01325		
Moyen		6.02 × 10 ⁻³		
	$\Delta H = 7.5$	+	19.125	65.94
		1.01325		

Les essais réalisés sur les modèles capillaires

V.7.3. Les essais de drainage de gasoil dans le modèle capillaire (Mixte-Wet).

	Tableau 7 : Dro			
Expériences	ΔH (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)
Ι	$H_{entre} = 15$ $H_{sort} = 3.5$ $\Delta H = 11.5$	9.58 *10 ⁻³ + 1.0132	15.32	43.40
II	$H_{entre} = 15$ $H_{sort} = 3.2$ $\Delta H = 11.8$	9.83 *10 ⁻³ + 1.01325	15.30	43.35
Moyen	$\Delta H = 11.65$	9.70*10 ⁻³ + 1.01325	15.31	43.38

	Tableau 8 : Drainag	С.		
Expériences	$\Delta \boldsymbol{H}$ (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)
Ι	$H_{entre} = 15$ $H_{sort} = 5$ $\Delta H = 10$	8.33 *10 ⁻³ + 1.0132	22.23	63
II	$H_{entre} = 15$ $H_{sort} = 4.5$ $\Delta H = 10.5$	8.75 *10 ⁻³ + 1.01325	22.25	63.04
Moyen	$\Delta H = 10.25$	8.50*10 ⁻³ + 1.01325	22.24	63.01

Tableau 9 : Draina	ge de gasoil satur	é en CO2 par l'eau	<i>carbonaté à 25</i> °C.
I worown > . Drama	Se de Subori buill	c cn co_2 par i can	

Expériences	∆H (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)
Ι	$H_{entre} = 15$ $H_{sort} = 6$ $\Delta H = 9$	7.50 *10 ⁻³ + 1.0132	24.70	70
II	$H_{entre} = 15$ $H_{sort} = 6.4$ $\Delta H = 8.6$	7.16 *10 ⁻³ + 1.01325	25.05	71
Moyen	$\Delta H = 8.8$	7.33*10 ⁻³ + 1.01325	24.87	70.5

Les essais réalisés sur les modèles capillaires

V.7.4. Les essais de drainage d'huile brute dans le modèle capillaire Mixte-Wet.

	Tableau 10 : Dra			
Expériences	$\Delta \boldsymbol{H}$ (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)
I	$H_{entre} = 15$ $H_{sort} = 3$ $\Delta H = 12$	9.64 *10 ⁻³ + 1.0132	16.23	46
II	$H_{entre} = 15$ $H_{sort} = 3$ $\Delta H = 12$	9.64 *10 ⁻³ + 1.01325	16.20	45.90
Moyen	$\Delta H = 12$	9.64*10 ⁻³ + 1.01325	16.215	45.95

Figure (37) : Image de drainage d'huile brute par l'eau dans le modèle capillaire Water-Wet.

Expériences	ΔH (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)
Ι	$H_{entre} = 15$ $H_{sort} = 4$ $\Delta H = 11$	8.84 *10 ⁻³ + 1.0132	22.58	64.05
II	$H_{entre} = 15$ $H_{sort} = 4.5$ $\Delta H = 10.5$	8.44 *10 ⁻³ + 1.01325	22.62	64.10
Moyen	$\Delta H = 10.75$	8.95*10 ⁻³ + 1.01325	22.6	64.075

Les essais réalisés sur les modèles capillaires

	Tableau 12 : Drainage d'huile brute saturée en CO ₂ par l'eau carbonaté à 25 °C.									
Exp	ériences	∆H (cm)	Volume sort (ml)	Rendement (%)						
	I	$H_{entre} = 15$ $H_{sort} = 6$ $\Delta H = 9$	7.23 *10 ⁻³ + 1.0132	25.41	72					
II		$H_{entre} = 15$ $H_{sort} = 5.6$ $\Delta H = 9.4$	7.55 *10 ⁻³ + 25.43 1.01325		72.05					
Moyen		$\Delta H = 9.2$	7.39*10 ⁻³ + 1.01325	25.42	72.025					

V.7.5. Les essais de drainage de gasoil dans le modèle capillaire Water-Wet.

	Tableau 13 : Drainage de gasoil par l'eau à 25 °C.							
Expériences	∆H (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)				
Ι	$H_{entre} = 15$ $H_{sort} = 3$ $\Delta H = 12$	10 *10 ⁻³ + 1.0132	22.95	50.01				
II	$H_{entre} = 15$ $H_{sort} = 3$ $\Delta H = 12$	10 *10 ⁻³ + 1.01325	22.96	50.03				
Moyen	$\Delta H = 12$	10*10 ⁻³ + 1.01325	22.955	50.02				

	Tableau 14 : D	Tableau 14 : Drainage de gasoil par l'eau carbonatée à 25 °C.								
Expériences	ΔH (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)						
Ι	$H_{entre} = 15$ $H_{sort} = 4$ $\Delta H = 11$	8.33 *10 ⁻³ + 1.0132	29.36	63.97						
II	$H_{entre} = 15$ $H_{sort} = 4$ $\Delta H = 11$	8.33 *10 ⁻³ + 1.01325	29.46	64.19						
Moyen	$\Delta H = 11$	8.33*10 ⁻³ + 1.01325	29.41	64.08						

	Tableau 15 : Drainage de gasoil saturé en CO ₂ par l'eau à 25 °C.							
Expériences	∆ H (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)				
Ι	$H_{entre} = 15$ $H_{sort} = 5.5$ $\Delta H = 14$	7.91 *10 ⁻³ + 1.0132	33.50	73				
II	$H_{entre} = 15$ $H_{sort} = 5.5$ $\Delta H = 14$	7.91 *10 ⁻³ + 1.01325	33.51	73.02				
Moyen	$\Delta H = 9.5$	7.91*10 ⁻³ + 1.01325	33.505	73.01				

V.7.6. Les essais de drainage d'huile brut dans le modèle capillaire Water-Wet.

	Tableau	16 : Drainage	d'huile brute par l'e	zau à 25 °C.
Expériences	Δ Η (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)
Ι	$H_{entre} = 15$ $H_{sort} = 3.5$ $\Delta H = 11.5$	9.24 *10 ⁻³ + 1.0132	22.945	50
II	$H_{entre} = 15$ $H_{sort} = 3.5$ $\Delta H = 11.5$	9.24 *10 ⁻³ + 1.01325	23.01	50.15
Moyen	$\Delta H = 11.5$	9.24*10 ⁻³ + 1.01325	22.97	50.075

Figure (38) : Image de drainage d'huile brute par l'eau dans le modèle capillaire Water-Wet.

	Tableau 17 : Drainage d'huile brute par l'eau carbonatée à 25 °C.								
Expériences	ΔH (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)					
Ι	$H_{entre} = 15$ $H_{sort} = 5$ $\Delta H = 10$	8.03 *10 ⁻³ + 1.0132	33.52	73.04					
II	$H_{entre} = 15$ $H_{sort} = 5$ $\Delta H = 10$	8.03 *10 ⁻³ + 1.01325	33.53	73.06					
Moyen	$\Delta H = 10$	8.03*10 ⁻³ + 1.01325	33.525	73.05					

Tableau 18	Tableau 18 : Drainage d'huile brute saturée en CO ₂ par l'eau carbonatée à 25 °C.									
Expériences	$\Delta \boldsymbol{H}$ (cm)	Pression (bar)	Volume sort (ml)	Rendement (%)						
I	$H_{entre} = 15$ $H_{sort} = 6.5$ $\Delta H = 8.5$	6.83 *10 ⁻³ + 1.0132	37.066	80.77						
II	$H_{entre} = 15$ $H_{sort} = 6.5$ $\Delta H = 8.5$	6.83 *10 ⁻³ + 1.01325	37.058	80.755						
Moyen	$\Delta H = 8.5$	6.83*10 ⁻³ + 1.01325	37.062	80.76						

V.8. <u>Etude de l'influence de la température sur le taux de drainage par l'eau</u> <u>carbonatée, (à 25, 35, 40 et 60 °C).</u>

L'influence de la température sur l'augmentation de taux de récupération des expériences sont réalisées selon les étapes des essais précédentes avec drainage d'huile brut par l'eau carbonatée dans les trois modèles capillaires.

Les essais réalisés sur les modèles capillaires

Les résultats sont représentés dans le graphe suivant.

Figure (39) : Le taux de récupération en fonction de la température.

V.9. <u>L'interprétation des résultats.</u>

V.9.1. Mise en évidence des pressions capillaires selon la mouillabilité :

La figure 33 représente l'effet de la mouillabilité sur la pression capillaire, dans le tube capillaire Oil-Wet (mouillable à l'huile) avec une descente capillaire.

Dans le tube Water-Wet (mouillable à l'eau) on observe une montée capillaire.

Dans les deux tubes le processus se déroule conformément à la loi de Jurin.

La figure 34 représente l'angle de contact et le type de la mouillabilité des tubes capillaires par la forme des goutes concave (mouillable) ou convexe.

Les essais réalisés sur les modèles capillaires

V.9.2. <u>Tests de drainage de gasoil et d'huile brut dans trois modèles</u> capillaires :

Figure (40) : Le taux de récupération en fonction des types de drainages d'huile brut à 25 °C. (Oil-Wet).

Figure (41) : Le taux de récupération en fonction des types de drainages d'huile brut à 25 °C.(Mixte-Wet).

Selon les figures (40, 41, 42) qui résume les tableaux précédents :

- *1*) Le drainage par l'eau ne permet pas d'extraire l'huile complétement du réseau capillaire à cause de la mouillabilité de l'eau.
- 2) Le drainage par l'eau carbonatée est favorisé par la présence de CO₂ miscible dans l'eau et l'huile grâce à diminution de la tension interfaciale (réduction des forces capillaires).
- Le drainage de l'huile saturé en CO₂ est encore plus marqué suite à une diminution plus accentuée de la tension interfaciale et de la pression capillaire.
 La présence de CO₂ à miscibilité réciproque contribue à l'élévation du nombre capillaire.

V.9.3. <u>Etude de l'influence de la température sur le taux de drainage par l'eau</u> carbonatée. (à 25, 35, 40 et 60 °C).

Avec l'élévation de température la tension interfaciale diminue. Cela entraine une augmentation de nombre capillaire et du rendement (taux de récupération).

VI.1. Extrapolation dans les conditions de gisement à l'aide du logiciel MBAL.

Les résultats obtenus par les essais réalisés sur les modèles capillaires sont extrapolés sur les données de réservoir de Benkahla, puits BKHE 1, champ Haoud Berkaoui avec des simulations par logiciel MBAL.

VI .1.1. Présentation du logiciel MBAL.

MBAL est un logiciel parmi les logiciels de Petroleum Expert. Il se caractérise par sa facilité, rapidité, précision et son extensivité.

L'utilisation de l'MBAL aide l'ingénieur de bien comprendre les mécanismes de drainage et le débit de production des réservoirs par la modélisation de la dynamique des réservoirs à des modèles numériques pour résoudre les problèmes qui peuvent surgir lors de l'exploration de gisement. Il Permet de faire plusieurs usages comme :

- Prédire sur la production en cas de changement dans les paramètres de réservoir ou des fluides avec le contrôle de la miscibilité.
- > Donner les graphes de l'histoire de production et la pression.
- Estimer la production cumulée en fonction de temps.
- Indiquer les mécanismes de drainage en fonction de type de récupération (primaire. Secondaire. Tertiaire).
- Prédire de pression et production des réservoirs en fonction de temps (duré de vie de réservoir).
- Donne une idée sur les Perméabilités relatives des fluides de réservoir.

Ce logiciel nécessite les paramètres des fluides (les données PVT) et paramètres des réservoirs (Compressibilité de la roche. Perméabilité. Saturation) avec l'utilisation des corrélations et des formules bien précises pour atteindre de bons résultats.

Les extrapolations

VI.1.2. <u>L'historique de puits BKHE 1 :</u>

Le puits BKHE 1 a été mis en service en 1999, c'est un puits éruptif avec une pression initiale de 510 bars et un débit d'huile de 12 m³/ h. Le déclin de la pression de réservoir est de 11bar/an à cause du soutirage d'huile par une production cumulée de 1175040 m³ par an. La réalisation des différents scénarios sur cette réservoir en cas d'injection d'eau et l'injection d'eau carbonatée.

SONATRACE SONATRACE SONATRACE			B	KHI	E 1		
FOULP	EMEN	VT DE	SUPE	ACE			
Designation	Const	Type	Dime	ACL	Ohs	l v~vL	K~~₩~~₩
Top cap	CIW	Unibolt	21110	4" x 5000	0.03	H 7	. 2 .
Vanne de curage	CIW	F		4" x 5000		H 🖻	·
Croix	FMC	-	4" x	3" x 5000		11 Z	. 2
Vanne laterale	FMC			3" x 5000		11 ਵੱ	
1 Bride thermometrique	CIW	F		3" x 5000			
1 Vanne safomatic		-		3" x 5000			1 [[[] ₁] .
Portes duses	FMC			3" x 5000			
Portes duses	CIW			3" x 5000		11 5-4	
2 Vanne maitresse	FMC	M120	4'	" x 5000			Let l
Adapteur	FMC		6" x 4'	" x 5000		11 541	
Tbg head	FMC		10" x 6'	" x 5000			
2 Vannes annulaires	FMC		2'	" x 5000		19" 5/9	310.00 m
T.W.Flange	CIW		10" x 100	00 x 5000		12"2/9	012.00 m
							912.00 m
						9"5/8	► 2555.00 m
						11 1	1 1 1
						11 1	1 1 1
						11 1	1 1 1
EQU	IPEM	ENT	DE FO	ND		Tbg 4"1/2	
Designation	Const.	Туре	Long	C/sond	C/ SPE-m		
HTR			6,05	6,15		11 1	1 1 1
Olive de suspension	FMC	5"AcmeM	0,40	6,55		11 1	1 1 1
1 Tbg 4"1/2 Vam	Sumito	12,60 #	9,21	15,76		11 1	1 1 1
Pup Joint 4"1/2 Vam	Sumito	12,60 #	2,97	18,73		11 1	1 1 1
Pup Joint 4"1/2 Vam	Sumito	12,60 #	1,97	20,70		11 1	1 1 1
338 tbg 4"1/2 Vam N80	Sumito	12,60 #	3242,53	3263,23		11 1	1 1 1
Vanne de circulation SSD	OTIS	RA	1,20	3264,43		11 1	1 1 1
1 1bg 4"1/2 Vam	Sumito	12,60 #	9,60	3274,03		11 1	1 1 1
Landing nipple 4"1/2	OIIS		0,41	3274,44		11 1	
1 10g 4"1/2 Vam	Sumito	12,00 #	9,01	3284,03		SSDRA	3264.43 m
Pactor do production	OTIS	AWK	0,45	3284,50		11 1	1 1 1
Tâte Liper 4"1/2	0115	AWK		3284,50		11 1	
Sabot du osg 7"				3400.00		L.N RN	3274.44 m
Anneau du 4"1/2				3409,00		11 1	1 1 1
Sabot du csg 4"1/2				3504 56			
TD				3507.00		Packer 듣	3284.50 m
CON	CEN	TRI	OUE2	" 3/8		Tête Liner 🖂	≥ ^{3286.10} m
Désignation	Const.	Туре	Long (m)	C/sond	C/ SPE-m	Sabot 7"4,	,⊾ 3408.00 m
-						11 1	}
		Néant				11 1	
						H Perfos	3421 00 m
							3 5421.00 m
PE	RFOR	ATION	S-(m)			B Parfor	3443.00 m
	3421,0	0 @ 3423	,40			D.Ferlos {	1 S445.00 m
	3425,0	0 @ 3426	,50			1	1 2400 40
	3427,3	0 @ 3428	,00			Cabat 4"1/2 }	3480.48 m
	3430,0	0 @ 3432	,00			Sabot 4"1/2 }	3504.50 m
	3438,5	0 @ 3439	,20				3500.00 m
	3440,0	0 @ 3443	,00			Complétion réalisée	Fiche réalisée par Mosbah
	tota	1 = 10,30 m	L			le : 20/09/1999	Data.B le 04/06/2005
						NB: Toutes les côtes	sont données / à la table de
						rotation de l'appareil	TP 184.& sont des côtes SPE

Figure (43) : Fiche technique de puits BKHE 1.

Les extrapolations

VI.1.2.1. Données pvt de puits BKHE 1 :

Pb	Rs	μο	Bo	Boi	Po	K		Cpore	Ceau	Coi	il	S (eau)
Bars	m ³ /sm ³	ср	$\mathbf{>}$		g/cm ³	md	cr	n ³ /bars	cm ³ /Ba	ars cm ³ /B	Bars	g/ l
182	181	0.25	1.54	1.5	0.621	55.5	0.	75. 10-4	0.25. 1	0 ⁻⁴ 1.96.	10-4	250
Swi	So	Ø	l	Np	Ν	Pi		Р	Т	OOIP		
%	%	%	Ν	1m ³	Mm ³	Bars		Bars	°C	Mm ³		
27.2	72.8	0.1	1 1.1	75040	14.27	514		340.301	1 98	21,9758		

VI.1.2.2. La variation de pression de réservoir (Eruptif).

Les extrapolations

VI.1.2.3. Le mécanisme de drainage.

Figure (45) : Le mécanisme de drainage dans la récupération primaire.

VI.1.3. <u>Le drainage par l'injection d'eau.</u>

VI.1.3.1 <u>La variation des perméabilités relatives en fonction de saturation en</u>

Figure (46) : l'évolution des perméabilités relatives en fonction de saturation d'eau.

Le mécanisme de drainage dans la figure ci-dessus est le drainage par l'expansion de gaz dissous qui a une récupération entre 5% à 25%. Il dépend du pourcentage de gaz contenu dans l'huile (Rs). Les estimations faites par les ingénieurs conduisent à un taux de récupération de *12%*.

Les extrapolations

VI.1.3.2. Le débit fractionnel.

Figure (48) : Le débit fractionnel dans le cas de drainage par l'injection d'eau.

D'après la figure de débit fractionnel au breakthrough la saturation moyenne d'eau augmente de 0.272 au 0.58. La saturation d'huile est ainsi réduite de 0.728 à 0.42.

Avec l'application de l'expression de calcul de taux de récupération :

 $(S_{oi}-S_{or}) / S_{oi} = (0.728-0.42) / 0.728 = 42.30\%$

La récupération primaire est de l'ordre de 12%. Donc la récupération de drainage avec l'injection d'eau est de l'ordre de 30.30%. (42.30 - 12 = 30.30).

VI.1.3.3. La production cumulée et la durée de vie de réservoir.

 $N = Taux \ de \ récupération * OOIP = 0.4230 * 21.9758 * 10^6 = 9.2957634 * 10^6 m^3$

Duré de vie = N/débit de production = 9.2957634* 10⁶ /12=0.77464695*10⁶ h= 89.65821181 ans

Les extrapolations

VI.1.3.4. La variation de pression de réservoir par l'injection d'eau.

Le début d'injection d'eau en 2002 sous une pression de 480 bar avec un débit constant de 12 m³/h avec un débit de production de 15m³/h, le déclin de pression de réservoir diminue de 11 bar/an jusqu'à 9 bar/ an.

Les extrapolations

VI.1.3.5. Le mécanisme de drainage.

Figure (50) : Le mécanisme de drainage dans le cas d'injection d'eau.

Le mécanisme de drainage dans ce cas est composé de drainage par l'expansion de gaz dissous et le drainage par l'injection d'eau avec la participation de chaque mécanisme qui donne l'énergie au réservoir pour maintient la pression.

VI.1.4. Le drainage par l'injection d'eau carbonatée.

VI.1.4.1. La variation des perméabilités relatives en fonction de saturation en <u>eau.</u>

simulé dans le programme MBAL.

Les extrapolations

VI.1.4.2. Le débit fractionnel.

Figure (52) : Le débit fractionnel dans le cas d'injection d'eau carbonatée.

Au breakthrough la saturation moyenne d'eau augmente de 0.272 au 0.797. La saturation d'huile sera réduite de 0.728 à 0.203.

Avec l'application de l'expression de calcul de taux de récupération :

 $(S_{oi}-S_{or}) / S_{oi} = (0.728-0.203) / 0.728 = 72.11\%$

La récupération primaire est de l'ordre de 12%. Donc la récupération après drainage avec l'injection d'eau est de l'ordre de 60.11%. (72.11 - 12 = 60.11).

VI.1.4.3. La production cumulée et la durée de vie de réservoir.

 $N = Taux \ de \ récupération * OOIP = 0.7211 * 21.9758 * 10^6 = 15.84674938 * 10^6 m^3$

Duré de vie = N/débit de production = $15.84674938 \times 10^6 / 12 = 1.320562448 \times 10^6 h = 152.842876$ ans

Les extrapolations

VI.1.4.4. <u>La variation de pression de réservoir par l'injection d'eau</u> <u>carbonatée.</u>

L'injection d'eau carbonatée réduit le déclin de pression de réservoir de 11 bar/an à 6.5 bar/an avec les mêmes conditions de l'injection d'eau (pression, débit, l'année de début d'injection) et de débit de production.

Les extrapolations

VI.1.4.5. <u>Le mécanisme de drainage d'huile dans le réservoir par l'injection</u> <u>d'eau carbonatée.</u>

Conclusion et recommandations

<u>Conclusion.</u>

Cette thèse consiste à étudier les performances de l'injection d'eau carbonatée sur le taux de récupération d'huile en utilisant 3 types de modèles capillaires.

Il est remarquable à travers cette étude, que l'eau carbonatée stimule la production d'huile en réduisant la tension interfaciale grâce à la miscibilité réciproque de CO₂ dans l'huile et l'eau.

Le drainage par l'eau carbonatée améliore le taux de récupération et augmente la perméabilité relative à l'huile en réduisant sa saturation résiduelle. Son application sera efficace dans tous les types de réservoirs gréseux ou carbonatée. Il a un effet important sur :

- L'augmentation de nombre capillaire Nc.
- La diminution de tension interfaciale entre eau / huile et la viscosité d'huile.
- L'amélioration du déplacement et évite les digitations capillaires et visqueuses.
- Le maintien de pression de réservoir.
- La diminution de la saturation d'huile résiduelle.
- L'augmentation de la durée de vie des puits.

La récupération assistée par l'injection d'eau carbonatée a permis de relever le taux de récupération de 30 % avec l'eau à un taux de 60 % avec de l'eau carbonatée.

L'utilisation des modèles capillaires permet de reproduire les mouillabilités rencontrées dans les milieux poreux des roches réservoirs. Ces modèles présentent l'avantage de ne pas être couteux et se distinguent par la rapidité des tests. Ils offrent la possibilité d'observer et d'analyser les mobilités et les écoulements biphasiques des fluides dans des capillaires transparents.

<u>Recommandations.</u>

Pour les prochains travaux de recherche on recommande :

- De faire des Comparaisons dans des modèles capillaires Oil-Wet, Mixte-Wet et Water-Wet entre les techniques de drainages alternés: WAG, SWAG.
- * D'effectuer des tests similaires en coreflooding pour évaluer l'efficacité des modèles.

Les références

[1] : Christophe COTTIN. Octobre 2010. Drainage dans des micromodèles de milieux poreux Application à la récupération assistée du pétrole.

[2] : Jorge Avendano. 2012. French. Viscoélasticité et récupération améliorée du pétrole. Université Paris Est.

[3] : Alioui Smail. Novembre 2012. Modélisation et simulation à base de méthodes numériques alternatives des déplacements diphasiques en milieu peureux. Mémoire de magister.

[4] : Laura Romero-Zerón. Advances in Enhanced Oil Recovery Processes.University of New Brunswick. Canada.

[5] : R. Cossé. 1988.Le gisement.

[6] : Rapport de stage.

[7] : Sandrine PORTIER. SOLUBILITE DE CO₂ DANS LES SAUMURES DES BASSINS SEDIMENTAIRES Application au stockage de CO₂ (gaz à effet de serre).

[8] : S.J.T.Hangx. Subsurface mineralisation: Behaviour of the CO₂-H₂O system and preliminary mineralisation model and experiments. HPT Laboratory, Department of Earth Sciences . Utrecht University.

[9]: Gilles MORVAN – http://gmorvan.wordpress.com

[10] : BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES. Octobre 1997. Les eaux minérales et le gaz carbonique. [11] : application of CO₂-saturated water flooding as a prospective improved oil recovery and CO₂ storage strategy. Experimental and simulation study.

[12] : Nader Mosavat , Ali Abedini, Farshid Torabi. Phase Behaviour of CO₂– Brine and CO₂–Oil Systems for CO₂ Storage and Enhanced Oil Recovery: Experimental Studies. University of Regina.

[13] : Enhancing oil recovery and CO₂ storage by carbonated water injection.

[14] : Djivedé Elvire Tognisso . Novembre 2009. Ecoulements de fluides complexes en milieu poreux : utilisation des micelles géant pour la récupération améliorée de pétrole. Doctorat. Université de BORDEAUX.

[15] : Wael Abdallah , Jill S. Buckley, Andrew Carnegie, John EdwardsBernd Herold, Edmund Fordham, Arne Graue, Tarek Habashy, Hassan Hussain, Bernard Montaron, Murtaza Ziauddin. Fundamentals of Wettability.

[16] : TEAM MISCIBLE, REACTIVE AND DISPERSED FLOWS, Flow in porous media J. Martin, N. Rakotomalala, D. Salin and L. Talon, Interfacial instability with miscible fluids M. D'Olce, J. Martin, N. Rakotomalala, D. Salin and L. Talon.

[17]: Masoud Riazi· Mehran Sohrabi·Mahmoud Jamiolahmady 2010.
-Experimental Study of Pore-Scale Mechanismsof Carbonated Water Injection.
Springer Science ; Business Media B.V.

[18] : Mojtaba seyyedi, Mehran Sohrabi; Enhancing water imbibition rate and oil recovery by carbonated water in carbonated and sand stone Rocks. Heriot-Watt University.

[19] : Sohrabi, M. Riazi, M. Jamiolahmady, S. Ireland and C. Brown
 CARBONATED WATER INJECTION FOR OIL RECOVERY AND CO₂
 STORAGEM. Institute of Petroleum Engineering, Heriot-Watt University,
 Edinburgh, Scotland.

[20] : Dominique veillon ,La liaison Couche-trou .

[21] : Chapter in a new book: "Enhanced Oil Recovery Field Cases." Editor: James Sheng, Elsevier, To be published 2012. Water Based EOR in Carbonates and Sandstones: New Chemical Understanding of the EOR-Potential Using "Smart Water".

[22]: Silvio criollo Castillo. Master's Thesis. Water and surfactant flooding at different wettability conditions.

[23]: Chi Bo, Li Min, Zhou XiSheng, Shi GuangZhi, Wang Xin, Jiang Yu, Li
 Qi- CO₂ Flooding in Ultra-low Permeability Reservoir. Exploration And
 Development Research Institute, Daqing Oilfield Company, HeiLongJiang
 Province, China. Corresponding author: <u>chibo@petrochina.com.cn</u>.

Figure (55) : Image de modèle capillaire Oil-Wet.

Figure (57) : Image de modèle capillaire Mixte-Wet.

Figure (58) : Image représente les différentes mouillabilités dans le modèle Mixte-Wet.

Figure (59) : Image de l'eau carbonatée.

Figure (61) : Image de modèle capillaire Mixte-Wet remplie par l'huile brut.

Figure (62) : Image de drainage d'huile brute par l'eau dans le modèle capillaire Mixte-Wet.

Figure (63) : Image de drainage d'huile brute par l'eau carbonatée dans le modèle capillaire Mixte-Wet.

Figure (64) : Image de drainage d'huile saturée en CO₂ par l'eau carbonatée dans le modèle capillaire Mixte-Wet .