N° Série :/2016

Université Kasdi Merbah Ouargla

Faculté des hydrocarbures energies renouvelables et science de la terre et de l'univers

Département de Production des Hydrocarbures

MEMOIRE

Pour obtenir le Diplôme de Master Option : Production

Présenté Par :

BETTAHER Khadidja

-THEME-

Analyse de l'impact des résultats FSI sur les résultats d'interprétation des essais au puits horizontaux

Soutenue le : 23 / 05/ 2016 devant la commission d'examen

Jury :

Présidente:Souici Fatma- ZohraExaminateur :Boudjemaa SouheylaEncadreur :Arbaoui Ali

MMA.UKMO MAB.UKMO MAB.UKMO

Remereciment

Mes vifs remerciements s'adressent premièrement et avant tout à Allah tout puissant, qui m'a aidé à réaliser ce travail, et pour la volonté, la santé et la patience qu'il m'a donnée durant tous ces années d'études que je puis en arriver là.

J'aimerai bien exprimer mes plus profondes gratitudes à mon promoteur Mr. Arbaoui Ali et à tous ceux qui, de près ou de loin ont contribué à l'élaboration de ce travail leur aide fort appréciable a été enrichissante et déterminante lors de toutes les étapes de travail et en particulier le chef service well test DEP Mr. Mahboub yausef et tout l'équipe de service surtout Mrs : Bader Taher, Satouh Ammar et Zaatout Kamel Mlles : Ben Ramadan Meriem, Bekka Leila et Mouna Tout l'équipe de service PLT Département géologie Enfin, tous mes remerciements vont à ma famille et mes amis qui ont été nombreux à m'aider et m'encourager.

Mille merci

DÉDICACE

J'ai l'honneur de dédier ce modeste travail A ma chère mère Saadia Mon cher père Djamoe A mes frères et mes sœurs A mes oncleset mes tantes A mon chère cousin B. Abd Elouahab Atous mes amis et mes collègues de l'université. A tous ceux qui m'aider de près ou de loin pour la réalisation de ce Modest travail.

Π

Liste des figures

Fig.II.01 :	Classification d'après le rayon de courbure	05
Fig.II.02 :	Les planches des courbes types	10
Fig.III.01:	Graphe de la pression et sa dérivée du puits OMPZ812	14
Fig.III.02:	Graphe d'HORNER du puits OMPZ812	15
Fig.III.03:	Graphe de la pression et sa dérivée du puits MDZ509	17
Fig.III.04:	Graphe d'HORNER du puits OMPZ509	18
Fig.III.05:	Graphe de la pression et de sa dérivée du puitsMDZ534	19
Fig.III.05:	Graphe d'HORNER du puits MDZ534	20
Fig.III.06:	Graphe de la pression et sa dérivée du puits MDZ627	21
Fig.III.07:	Graphe d'HORNER du puits MDZ627	22
Fig.III.08:	Flow scanner imager	23
Fig.III.09:	La réponse de FSI	24
Fig.III.10:	Graphe de la pression et sa dérivée du puits OMPZ81	27
Fig.III.12:	Graphe d'HORNER du puits OMPZ812	28
Fig.III.13:	Graphe de la pression et sa dérivée du puits MDZ509	29
Fig.III.14:	Graphe d'HORNER du puits OMPZ509	30
Fig.III.15:	Graphe de la pression et sa dérivée du puits MDZ534	31
Fig.III.16:	Graphe d'HORNER du puits MDZ534	33
Fig.III.17:	Graphe de la pression et sa dérivée du puits MDZ627	33
Fig.III.18:	Graphe d'HORNER de puits MDZ627	35
Fig.III.19:	Graphe de la pression et sa dérivée du puits MDZ557	36
Fig.III.20:	Graphe d'HORNER du puits MDZ557	37
Fig.III.22:	Graphe de la pression et sa dérivée du puits MDZ555	39
Fig.III.23:	Graphe d'HORNER du puits MDZ555	40
Fig.III.24:	Graphe de la pression et sa dérivée du puits OMLZ761	41
Fig.III.25:	Graphe d'HORNER du puits OMLZ761	42
Fig.III.26:	Graphe de la pression et sa dérivée du puits MDZ557	45
Fig.III.27:	Graphe d'HORNER du puits MDZ557	47
Fig.III.28:	Graphe de la pression et sa dérivée du puits MDZ555	47
Fig.III.29:	Graphe d'HORNER du puits MDZ555	48
Fig.III.30:	Graphe de la pression et sa dérivée du puits OMLZ761	49
Fig.III.31	Graphe d'HORNER du puits OMLZ761	51

Liste des tableaux

Tableau.III.01 : données nécessaires à l'interprétation du test SBU du puits OMPZ812 (2007).	14
Tableau. III.02:Résultats d'interprétation de la dérivée de pression du test SBU du puits OMPZ812 (2007)	15
Tableau. III.03 : Résultats d'HORNER du test SBU du puits OMPZ812 (2007) .	16
Tableau. III.04 : données nécessaires à l'interprétation de pression du test BU du puits MDZ509 (2007)	16
Tableau. III.05: Résultats d'interprétation de pression de la dérivée du test BU de puits MDZ509(2007)	17
Tableau. III.06: Résultats d'HORNER du test BU du puits MDZ509 (2007).	18
Tableau. III.07: données nécessaires à l'interprétation du test BU du puits MDZ534 (2013)	19
Tableau. III.08: Résultats d'interprétation de la dérivée de pression du test BU du puits MDZ534 (2013)	19
Tableau. III.09: Résultats d'HORNER du test BU du puits MDZ534 (2013)	20
Tableau. III.10: données nécessaires à l'interprétation du test BU du puits MDZ627 (2011)	21
Tableau. III.11: Résultats d'interprétation de la dérivée de pression du test BU de puits MDZ627 (2011)	21
Tableau. III.12: Résultats d'HORNER du test BU de puits MDZ627 (2011)	22
Tableau. III.13: les zones de contribution à la production du puitsOMPZ812	24
Tableau. III.14: les zones de contribution à la production du puitsMDZ509	25
Tableau. III.15:les zones de contribution à la production du puitsMDZ534	25
Tableau. III.16 : les zones de contribution à la production du puitsMDZ627	26
Tableau. III.17 : la différence entre le hW FSI et le hW interprétation	26
Tableau. III.18: Résultats de réinterprétation de la dérivée de pression du test SBU du puits	28
OMPZ812 (2007).	
Tableau. III.19:Comparaison entre les résultats de l'interprétation et de la réinterprétation	28
Tableau. III.20: Résultats d'HORNER du test SBU du puits OMPZ812 (2007)	29
Tableau. III.21 : Résultats réinterprétation de la dérivée de pression du test BU de puits MDZ509 (2007)	30
Tableau. III.22 : Comparaison entre les résultats de l'interprétation et de la réinterprétation	30
Tableau. III.23: Résultats d'HORNER du test BU du puits MDZ509 (2007)	31
Tableau. III.24 : Résultats de réinterprétation de la dérivée de pression du test SBU du puits	32
MDZ534 (2013)	
Tableau. III.25:Comparaison entre les résultats de l'interprétation et de la réinterprétation	32
Tableau. III.26:Résultats d'HORNER du test BU du puits MDZ534 (2013)	33
Tableau. III.27: Résultats de réinterprétation de la dérivée de pression du test SBU du puits	34
MDZ627 (2011)	
Tableau. III.28: Comparaison entre les résultats de l'interprétation et de la réinterprétation	34

Tableau. III.29:Résultats d'HORNER du test BU du puits MDZ627 (2011).	35			
Tableau. III.30 :données nécessaires à l'interprétation de pression du test LBU du puits MDZ557 (2006)				
Tableau. III.31 : Résultats d'interprétation de la dérivée de pression du test LBU du puits MDZ557 (2006)				
35Tableau. III.32 :Résultats d'HORNER du test LBU du puits MDZ557 (2006)	38			
Tableau. III.33 : données nécessaires à l'interprétation du test DST du puits OMLZ761(2005)				
Tableau. III.34: Résultats d'interprétation de la dérivée de pression du test DST du puits	39			
OMLZ761 (2005)				
Tableau. III.35 : Résultats d'HORNER du test DST du puits OMLZ761 (2007)	40			
Tableau. III.36 : données nécessaires à l'interprétation du test LBU du puits MDZ555 (2005)	41			
Tableau. III.37:Résultats d'interprétation de la dérivée de pression du test LBU du puits MDZ555 (2005)	41			
Tableau. III.38 :Résultats d'HORNER du test LBU du puits MDZ555 (2005)	42			
Tableau. III.39 : les zones de contribution à la production du puitsMDZ557	43			
Tableau. III.40 : les zones de contribution à la production du puitsOMLZ761	44			
Tableau. III.41:les zones de contribution à la production du puitsMDZ555	44			
Tableau. III.42:la différence entre le hW Fsi et le hW interprétation	45			
Tableau. III.43: Résultats de réinterprétation de la dérivée de pression du test LBU du puits	46			
MDZ557 (2005)				
Tableau. III.44: Comparaison entre les résultats de l'interprétation et de la réinterprétation	46			
Tableau. III.45:Résultats d'HORNER du test LBU du puits MDZ557(2005)	47			
Tableau. III.46:Résultats de réinterprétation de la dérivée de pression du test DST du puits	48			
OMLZ761(2007)				
Tableau. III.47 : Comparaison entre les résultats de l'interprétation et de la réinterprétation	48			
Tableau. III.48 : Résultats d'HORNER du test DST du puits OMLZ761 (2007)	49			
Tableau. III.49:Résultats de réinterprétation de la dérivée de pression du test SBU du puits				
MDZ555 (2005)				
Tableau. III.50 : Comparaison entre les résultats de l'interprétation et de la réinterprétation	50			
Tableau. III.51 :Résultats d'HORNER du test SBU du puits MDZ555 (2005)	51			

Nomenclatures

- Kv : perméabilité verticale (md).
- \bullet B₀ : Facteur volumétrique d'huile de fond (B/STB).
- ✤ C_D: Capacité de puits adimensionnelle.
- → C_t : Compressibilité totale (cm²/kg).
- Kh, Kr : perméabilité horizontale(md).
- GOR : Gaz Oïl Ratio.
- Hu : Hauteur utile de réservoir (m).
- ✤ L_w : Longueur effective du drain (longueur utile) (m)
- \blacktriangleright P_D: Pression adimensionnelle.
- → P_g : Pression de gisement (kg/cm²).
- → P_t : Pression en tête (kg/cm²).
- → P_{wf} : Pression de fond (kg/cm²);
- Q : Débit en surface (m^3/h).
- ✤ R_{inv} : Rayon d'investigation (m).
- ✤ Rw : Rayon de puits (m).
- \bullet S_O : Saturation en huile
- ✤ S_m : Skin mécanique de puits ;
- \bullet t_{BU}: Temps de fermeture (hr) ;
- ✤ t_D: Temps adimensionnel ;
- ✤ t_p : Temps de production (hr) ;
- ✤ L : Largueur de la faille (m) ;
- Z_w : Distance entre l'éponte inferieure du réservoir et l'axe du drain horizontal (m).
- ρ : Masse volumique (kg/m³);
- μ_0 : Viscosité (cp) ;
- ♦ Ø : Porosité ;
- \blacktriangleright ΔP_{skin} : Chute de pression du au skin.
- Theta : Angle d'inclinaison (°).
- 🔶 Omega :
- 🔶 Lambda
- Qores, Qgres : le débit d'huile, de gaz au condition de fond (m^3/h)
- Qtres : le débit total au condition de fond(m³/h)
- V= vitesse apparente cm/s
- \bullet A : section de passage de fluide cm².

- → \overline{k} : est le tenseur de perméabilité, md.
- → $\vec{\nabla}$: nabla représente l'opérateur gradient et selon le système de coordonnée, il peut prendre plusieurs formes.

Listes des abréviations

- ✤ ECPs : external casing packers
- DST : drill stem test
- ✤ MDH : Miller, Dyes, Hutchingson
- ✤ BU : build up
- ✦ LBU : longue build up
- ✤ PLT : production logging tool
- ✤ FSI : Flow Scanner Imager
- ◆ POLARIS: production optimization logging and reservoir information system
- ✦ TBG : tubage
- ♦ SBU : short build up
- → WBS : well bore Storage
- 🔶 D : drain
- → ID : inter drain

Remerciements	Ι
Dédicace	II
Liste des figures	III
Liste des tableaux	IV
Nomenclatures	VI
Abréviation	VIII
Sommaire	IX
Introduction générale	01
Chapitre I : Présentation du champ de Hassi Messaoud	
I.1. Situation géographique	02
I.2. Situation géologique	02
I.3.Stratigraphie du champ	02
I.4.Techtonique du champ	02
I.5. Aspect structural de réservoir	03
I.6.Genèse et accumulation des hydrocarbures	04
I.7. Caractéristiques des fluides et de la roche	04
Chapitre II : L'interprétation des essais dans les puits horizontaux	
II.1. Théorie des puits horizontaux	05
II.1.1. Historique	05
II.1.2. Application des puits horizontaux	05
II.1.3. Classification des puits horizontaux	05
II.1.4. Technique de complétion des puits horizontaux	05
II.1.5. Régimes d'écoulement dans les puits horizontaux	06
II.2. Les essais des puits	07
II.2.1. Le principe des essais des puits	07
II.2.2. Les types des essais des puits	08
II.2.3. Méthodes d'interprétation	09
II.4. L'incertitude des résultats d'interprétation des essais des puits	11
Chapitre III : La réinterprétation des essais en utilisant les résultats FSI	
III.1. Description et utilisation du logiciel Saphir	13
III.2. Analyse des résultats des tests	13
III.2.1. Analyse du puits OMPZ812	13
III.2.2. Analyse du puits MDZ509	16
III.2.3. Analyse du puits MDZ534	18
III.2.4. Analyse du puits MDZ627	20
III.3. L'interprétation en utilisant les résultats FSI	22
III.3.1. La diagraphie de production dans les puits horizontaux	22
III.3.2. L'outil flow scanner imager	23
III.3.3. La réponse de flow scanner imager	23

III.3.4. Les résultats FSI du puits OMPZ812	24
III.3.5. Les résultats FSI du puits MDZ509	25
III.3.6. Les résultats FSI du puits MDZ534	25
III.3.7. Les résultats FSI du puits MDZ627	26
III.4. La réinterprétation des résultats	27
III.4.1. Analyse du puits OMPZ812	27
III.4.2. Analyse du puits MDZ509	29
III.4.3. Analyse du puits MDZ534	31
III.4.4. Analyse du puits MDZ627	34
III.5.L'interprétation des résultats des puits ont un modele horizontale	35
III.5.1 Analyse du puits MDZ 557	36
III.6.2 Analyse du puits OMLZ761	38
III.7.3 Analyse du puits MDZ 555	40
III.8. L'interprétation des résultats polaris du puits MDZ557	42
III.9. L'interprétation des résultats FSI du puits OMLZ761	44
III.10. L'interprétation des résultats FSI du puits MDZ555	44
III.11. La réinterprétation des résultats	45
III.11.1. Analyse du puits MDZ557	45
III.11.2. Analyse du puits OMLZ761	47
III.11.3. Analyse du puits MDZ555	49
Conclusion et recommandations	52
Annexe 01	
Annexe 02	
Bibliographie	

Introduction

L'utilisation des tests de puits transitoires pour déterminer les paramètres de réservoir et la productivité des puits horizontaux, est devenue commun en raison de l'augmentation du forage horizontal. Dans un premier temps, des essais de puits horizontaux étaient analysés avec les techniques classiques conçus pour les puits verticaux. Au cours de la dernière décennie, les solutions analytiques ont été présentées pour le comportement de pression des puits horizontaux. Nouveaux régimes d'écoulement ont été identifiés.

Mais il existe toujours une certaine erreur sur l'estimation des paramètres de modèle, donc des données additionnelles peuvent être parfois nécessaires ; des informations géologiques et géophysiques, diagraphie de production tel que le FSI (flow scanner imager ;diagraphie de production pour les puits horizontaux) qui a pour but d'établir le profil de production d'un puits horizontale en détectant les points d'entrées dans le puits provient d'une seule ou de plusieurs zones de productionpour valider les résultats d'interprétation et réduire ces incertitudes.

On tient comme objectif de montrer l'impact des résultats de diagraphie de production (FSI) sur les résultats d'interprétation des essais aux puits horizontaux en faisant la réinterprétation après fixation du well length obtenue de FSI et de présenter les conséquences des incertitudes.

Notre travail est réparti en 4 chapitres. Le premier chapitre présente brièvement quelques généralités sur le champ de HMD. Le second chapitre regroupe l'interprétation des essais aux puits horizontaux ou ona traité quelques notions de base des essais de puits qu'ils ontutilisés comme un outil nécessaire pour l'évaluation du modèle de réservoir et les incertitudes des résultats d'interprétation. Dans le chapitre trois estconsacré àl'analyse analytique des réponses transitoires de septpuits considérés dans cette étude (MDZ509, MDZ534, MDZ661, MDZ627, OMPZ812, MDZ557, MDZ555 et OMLZ761) avant et après d'imposer des résultats FSI.

Finalement, on terminera notre travaille par une conclusion et des recommandations.

1

I.1) Situation géographique :

Le champ de Hassi Messaoud est situé à 650 km Sud-Sud. Est d'Alger et à 350 km de la frontière tunisienne. Sa localisation en coordonnées Lambert Sud Algérie est la suivante :

* 790.000 @ 840.000 Est

* 110.000 @ 150.000 Nord

I.2) Situation géologique :

Le champ de Hassi Messaoud occupe la partie centrale de la province triasique à l'Est de la dépression d'Oued M'Ya dans le district IV qui par sa superficie et ses réserves est la plus grande province pétrogazeïfere. C'est le plus grand gisement d'Algérie qui s'étende sur 53x44 km de superficie.

Il est limité :

* Au Nord-Ouest par les gisements de Ouargla [Gellala, Ben Kahla et Haoud Berkaoui].

* Au Sud-Ouest par les gisements d'El Gassi, Zotti et El Agreb.

* Au Sud-Est par les gisements ; Rhourde El Baguel et Mesdar.

Le gisement fut donc couvert par deux (2) concessions distinctes :

- Au Nord la C.F.P.A.

- Au Sud la SN. REPAL.

La limite coupe le champ dans le sens Est-Ouest en deux parties sensiblement égales. Actuellement le champ est subdivisé en 25 zones productives. Ces zones sont relativement indépendantes et correspondent à un ensemble des puits qui communiquent entre eux lithologiquement et se comportent de la même manière de point de vue pression.

I.3) Stratigraphie du champ :

Sur la dorsale de Hassi Messaoud une bonne partie de la série stratigraphique est absente. Ce sont les dépôts du Paléozoïque reposant sur un socle granitique, qui ont été érodés au centre de la structure au cours de la phase hercynienne.

De ce fait les dépôts mésozoïques reposent en discordance sur le Cambro-Ordovicien

I.4) Tectonique du champ :

La structure du champ de Hassi Messaoud se présente comme un vaste dôme anticlinal aplatit de direction générale Nord-Est, Sud-Ouest. Les accidents affectants le réservoir sont de deux types : * Les failles de direction subméridiennes Nord, Nord- Est, Sud, Sud- Ouest ainsi que d'autres failles qui leur sont perpendiculaires de direction Ouest, Nord-Ouest, Est, Sud-Est, Sud ceci fait ressortir le caractère tectonique en Horst et Graben.

* Les cassures sans rejets qui ont eu un grand effet sur la fracturation du réservoir

I.5) Aspect structurale du champ :

Les grés de Hassi-Messaoud ont été subdivisés au début de la reconnaissance du gisement en trois unités, R1 (Ri, Ra), R2 et R3, qui constituent le **Cambrien**. Chaque zone est subdivisée en drain. D'où :

- Ri : (13% des réserves) Son épaisseur moyenne est de 42 m, elle se compose de grés quartzitiques isométriques, fins bien classés, à ciment argileux et siliceux, avec une présence abondante de tigillites. Elle contient le drain D5.
- Ra: (68% des réserves) Son épaisseur moyenne est de 125 m, elle se compose de grés quartzitiques anisométriques moyens à grossiers, à ciment argileux et siliceux. Elle contient les drains D1, ID, D2, D3 et D4, d'où :
 - **D4**: Il correspond à la zone grossière supérieure. Ce sont des grés à stratifications obliques tabulaires fréquents formant des méga-rides.
 - **D3 :** Il correspond à la zone fine médiane (granulométrie plus faible). La principale caractéristique de ce drain est l'abondance d'inter lits silteux et de grés fins à très fortes bioturbations (des tigillites en particulier).
 - **D2**: grés grossiers mais bien classés à stratifications obliques tabulaires dominantes formant des méga-rides, avec présence de quelques intercalations de niveaux de silts à fins bioturbations. Pour cette partie inférieure du Ra qui comporte les meilleurs niveaux réservoirs, il faut surtout remarquer l'extension progressive des zones d'érosions vers la zone centrale du champ.
 - **ID** : Niveau plus minces argileux siliceux, avec présence locale de tigillites. Il marque un passage très progressif entre le D1 et le D2.
 - **D1 :** Grés grossiers à stratifications, de type oblique arqués, dominantes bien marquées et souvent à base micro- conglomérations, avec absence de tigillites.
- R2: (19% des réserves) Son épaisseur moyenne est de 100 m, Il se compose de grès moyen à grossier, micacés, mal classé, à ciment argileux, assez abondant et admettant des intercalations de silts. Les stratifications sont souvent obliques.

R3: Son épaisseur moyenne est de 370 m, elle se compose de grés très grossiers, micacés, conglomératiques à la base, à ciment argileux et siliceux reposant sur le socle granitique, sans aucun intérêt pétrolier.

I.6) Genèse et accumulation des hydrocarbures :

Il existe deux hypothèses possibles de roche mère :

* Les argiles de l'Ordovicien (argile d'El Gassi).

* Les argiles du Silurien.

L'histoire de l'accumulation des hydrocarbures est développée comme suit :

-Dépôts de roches magasins du Cambro-Ordovicien, pendant une période d'instabilité du socle précambrien, avec quelques arrêts de sédimentation, des cycles d'érosion et la formation d'une discordance intra-formationnelle (Ra / Ri).

-Ces roches magasins se présentent comme sédiments fluviatiles gréseux, mal classés correspondant à une accumulation dans une plaine d'inondation très étendue.

Suite aux dépôts mésozoïques, la migration des hydrocarbures a débuté tôt au Jurassique inférieur et s'est poursuivie durant le Crétacé inférieur. Une légère activité tectonique, au cours de cette période a transformé la structure déjà existante en piège.

-Les roches couvertures, argileux-gréseuses et salifères du Trias, assurent une bonne couverture du réservoir Cambrien. Leur dépôt a eu lieu dans une phase de repos du socle cambrien.

I.7) Caractéristique de fluide et de la roche :

-Huile légère de densité moyenne en surface : do = 0.8 (API = 45.4).

-La pression de gisement variable : $Pg = 120 a 500 \text{ Kg/cm}^2$.

-Température de gisement est de : $T = 118^{\circ}C$.

-Le GOR de dissolution est variable : $Rs = 100 \text{ à } 5000 \text{ m}^3/\text{m}^3$.

-La porosité moyenne est faible, elle est de l'ordre de : $\Phi = 5$ à 10%.

-La perméabilité est très variable : K = 0,1 à 1000 md.

-La viscosité : uo = 0.2 CP et Sh=80% à 90%

-Le facteur volumétrique de fond moyen : Bo= 1.7 m3/m3.

-Contact huile /eau = -3380 m.

-Point de bulle : 140 à 200 kg $/cm^2$.

-Cote de référence = -3200 m.

-L'épaisseur de la zone productive peut atteindre 120 m au maximum mais peut également être nulle.

II.1)théorie du puits horizontaux

II.1.1) Historique :

Le forage horizontal avait inspiré à l'industrie pétrolière diverses tentatives depuis presque un demi-siècle. Plusieurs essais dont le but était d'augmenter la productivité, ont été réalisés dans les années cinquante en URSS, en Chine et en Amérique du Nord.

En Algérie l'utilité des puits horizontaux a été mise en évidence pour la première fois à Hassi R'mel en 1993, avant de s'étendre dans d'autres régions parmi lesquelles celle du champ de Hassi-Messaoud découvert en 1956, constitue de nos jours une véritable assise de ce type de puits.

On enregistre actuellement un nombre de puits horizontaux d'environ 200 forés dans ce champ, contribuant ainsi de manière incontestable en connaissance du réservoir.

II.1.2) Application des puits horizontaux :

- Les réservoirs fracturés
- Coning de l'eau et de gaz
- Réservoirs à basse perméabilité

II.1.3) Classification des puits horizontaux :

A. Classification d'après le rayon de courbure

On distingue 03 types de puits d'après leur rayon de courbure distinctif :

- Long-radius - Medium-radius - Short radius

Fig. II.01 Classification d'après le rayon de courbure.

B. Classification d'après le positionnement de réservoir

-Puits multilatéraux - Puits inclines (slanted well)

II.1.4) Technique de complétion des puits horizontaux :

Il est possible de compléter les puits horizontaux en open hole, en slotted liners, en liners avec ECPs et cemented perforated liners. Le choix d'une complétion influe beaucoup sur la performance du puits.

II.1.5) Régimes d'écoulement dans les puits horizontaux

Les puits horizontaux présentent par ordre d'apparition quatre principaux types de régimes d'écoulements dépendant de la géométrie du puits et du réservoir (position du drain par rapport à l'épaisseur de la formation Zw/h, la longueur effective du drain relativement à la hauteur de la formation Lw/h), de l'anisotropie (Kv/Kh), etc.

Les quatre régimes théoriquement observés au cours d'une réponse du buildup et du drawdown dans ce type des puits sont :

•Early time radial flow (premier écoulement radial dans le plan vertical).

Ce premier régime d'écoulement peut s'observer à moins qu'il ne soit dissimulé par l'effet de la wellbore Storage. La réponse de la pression pendant cette période d'écoulement est régie par l'équation :

$$P_{i} - P_{wf} = \frac{162.6q \ \mu B_{o}}{L\sqrt{K_{y}K_{z}}} \left[Log\left(\frac{\sqrt{K_{y}K_{z}}}{\phi\mu \ c_{t}r_{w}^{2}}t\right) - 3.23 + 0.868S_{m} \right] \dots \dots \dots \dots \dots (1)$$

La pente est:

$$m_{1} = \frac{162.6q\mu B}{L\sqrt{K_{y}K_{z}}} \cdots (2)$$

$$S_{m} = 1.151 \left[\frac{p_{i} - p_{wf(1hr)}}{m_{1}} - \log \left(\frac{\sqrt{k_{y}k_{z}}}{\phi \mu c_{i}r_{w}^{2}} t \right) + 3.227 \right] \cdots (3)$$

•Early time linear flow (intermediate time linear flow).

Un régime d'écoulement linéaire une fois la perturbation de pression a atteinte à la fois les limites inferieur et supérieur du réservoir.

La réponse de la pression durant cette période est donnée par :

$$P_{i} - P_{wf} = \frac{8.128qB\ \mu}{Lh} \sqrt{\frac{t}{\phi\mu c_{t}K_{y}}} + \frac{141.2q\mu B}{L\sqrt{K_{y}K_{z}}} (S_{z} + S_{m}).....(4)$$

D'où Sz est le pseudo skin dû à la pénétration partiale dans le plan vertical.

$$S_{z} = \ln\left(\frac{h}{r_{w}}\right) + 0.25\ln\left(\frac{k_{y}}{k_{v}}\right) - \ln\left(\sin\frac{180^{\circ}z_{w}}{h}\right) - 1.838\dots$$
(5)

Et le skin mécanique

La pente est :

$$\mathbf{m}_{2} = \frac{8.128qB}{\mathrm{Lh}} \sqrt{\frac{\mu}{\phi c_{\mathrm{t}} \mathbf{k}_{\mathrm{y}}}} \dots \tag{7}$$

•Late time pseudo-radial flow dans le plan horizontal.

Après un temps suffisamment long l'écoulement devient radial horizontal.

Pour que cette période d'écoulement ait lieu il faut que le L/b soit inférieur à 0.45, sachant que b est la largeur de l'air de drainage et L la longueur du drain.

$$P_{i} - P_{wf} = \frac{162.6q\mu B}{h\sqrt{K_{y}K_{x}}} \left[\log\left(\frac{K_{x}t}{\phi\mu c_{t}L^{2}}\right) - 2.023 \right] + \frac{141.2q\mu B}{L\sqrt{K_{y}K_{z}}} \left(S_{z} + S_{m}\right) \dots (8)$$

La pente est donnée par :

$$m_{3} = \frac{162.6q\mu B}{h\sqrt{K_{y}K_{x}}} \qquad (9)$$

Et le skin mécanique:

$$S_{m} = \frac{1.151L}{h} \sqrt{\frac{K_{z}}{K_{x}}} \left[\frac{P_{i} - P_{wf(1hr)}}{m_{3}} - \log\left(\frac{K_{x}}{\phi\mu c_{t}L^{2}}\right) + 2.023 \right] - S_{z} \dots \dots \dots (10)$$

-Late time linear flow (pseudo steady state)

La réponse de la pression durant cette période est donnée par :

Il peut exister une deuxième période d'écoulement linéaire pour des réservoirs de largeur finie. Cet écoulement à lieu après que la perturbation de la pression ait atteint les limites latérales du réservoir et l'écoulement dans cette direction est pseudo permanent.

$$P_{i} - P_{wf} = \frac{8.128qB}{h_{x}h} \sqrt{\frac{\mu t}{K_{y}\phi ct}} + \frac{141.2qB\mu}{L\sqrt{K_{y}K_{z}}} (Sx + S_{z} + S_{m}) \dots$$

Remarque : Notons que tous ces régimes ne s'observent pas toujours à la fois sur les courbes de dérivées.... [1]

II.2) Les essais des puits

II.2.1) principe des essais des puits :

Le principe de base de l'essai de puits est de créer une variation instantanée du débit de puits. Cette dernière provoque une perturbation du régime de pressions existantes dans le réservoir. La mesure de l'évolution de la pression en fonction du temps et son interprétation fournissent des renseignements sur le réservoir et le puits

II.2.2) les différents types des essais des puits :

On peut classer les essais de puits selon les critères suivants :

- Selon la chronologie de test :
 - On a les tests initiaux (drill stem test), tests potentiels, et tests périodiques.
- Selon le nombre de puits rentrant dans le test : On a les tests à un seul puits (build up, drawdown, falloff) ; et les tests à plusieurs puits (test d'interférence ; pulse test)
- Selon le type de puits : test des puits producteurs (build up ; drawdown) et des tests des puits injecteurs (injectivité test ; falloff).
- \succ Selon le mode de test :

En fermant le puits (build up ; falloff)

En ouvrant le puits (drawdown ; injectivité test)

En plusieurs fermetures et ouvertures successives (DST ; interférence test ; pulse test)

II.2.3) Leséquations fondamentales : ... [2]

L'écoulement dans des médias poreux est un phénomène très complexe et ne peuvent pas être décrits aussi explicitement que traversent des pipes ou des conduites. Il est plutôt facile de mesurer la longueur et le diamètre d'une pipe et de calculer sa capacité d'écoulement en fonction de pression ; cependant, dans des médias poreux il n'y a aucun chemin défini d'écoulement qui se prête à la mesure.

On présente les rapports mathématiques qui sont conçus pour décrire l'écoulement des fluides dans le réservoir. Les formes mathématiques de ces rapports varieront selon les caractéristiques du réservoir.

- Régimes d'écoulement
- Types de fluides dans le réservoir
- La géométrie de réservoir de
- Nombre de fluides débordants dans le réservoir.

A-Équation du mouvement (loi de Darcy)

B-Conservation de la masse :

Type de transformation thermodynamique :

T=Ti=cte

C-Équation d'état :

Fluide incompressible : ρ =cte

Fluide peu compressible :

$$c = -\frac{1}{V} \frac{\partial V}{\partial p}$$

$$1 \partial \varrho$$
(15)

$$c = -\frac{1}{\varrho} \frac{\partial p}{\partial p}$$
(16)

Fluide compressible

$$div(\varrho \overrightarrow{v}) + \frac{\partial(\varrho \phi S_o)}{\partial t} = 0$$
(17)

$$c_g = \frac{1}{p} - \frac{1}{Z} \left(\frac{\partial Z}{\partial p}\right)_T$$
(18)

II.2.4) Equation de diffusivité : [2]

Fluide peu compressible

$k\Delta p =$	$\phi c_t \mu \frac{\partial p}{\partial t}$	 (19)
$\Delta p =$	$\frac{1}{K} \frac{\partial p}{\partial t}$	20)

$$K = \frac{k}{\phi c_{\rm L} \mu}$$
 Diffusivité hydraulique de milieu (21)

Diffusivité hydraulique de milieu.....(21)

II.2.5) la méthode d'interprétation :

II.2.5.a) Procédure d'interprétation

Diagnostic-L 'interprétation -Validation

II.2.5.b) Les méthodes conventionnelles

Les méthodes conventionnelles sont basées sur le choix d'une droite, couramment appelée droite semi-log par simplification de langage mais qui est obtenue, en fait, soit par un graphique semi-log (HORNER, MDH), soit par un graphique cartésien (fonction de superposition). A partir de là, deux critiques doivent être faites. Le choix de cette droite, souvent très délicat, s'appuie sur des critères imprécis qui ne permettent pas toujours d'éviter des erreurs éventuellement énormes. Par ailleurs, les méthodes conventionnelles n'exploitent pas toutes les mesures enregistrées au cours d'un test ; puisqu'elles éliminent systématiquement tous les points antérieurs à la droite semi-log.

II.2.5.c) Les méthodes modernes

Les méthodes modernes englobent les planches des courbes types qui se basent sur la dérivée de la pression.

II.2.5.c.1) Planches des courbes types

A chaque type de réservoir correspond un modèle analytique. Les résultats de la simulation peuvent être traduits par une famille de courbes. Dans cette famille, chaque courbe est associée, par son libellé, aux valeurs de certains paramètres. Une courbe représente l'évolution des pressions qui auraient été enregistrées au cours d'un test en débit, à l'échelle logarithmique, effectuée dans les conditions définies à la fois par le choix de la famille de courbes et la valeur du libellée de la courbe.

Fig.III.1 les planche des courbes types

II.2.5.c.2). La méthode de la dérivée

La dérivée de la pression est calculée par rapport à la fonction temps de l'écoulement radial circulaire en régime transitoire : $dP_D / d (ln (t_D / C_D))$ en débit.

L'interprétation s'effectue en deux étapes :

- Les points de la dérivée des mesures correspondant à l'écoulement radial circulaire se traduisent par une droite horizontale et se calent sur la droite horizontale d'ordonnée 0,5 en grandeur sans dimension de la planche.
- Les points de la dérivée des mesures correspondant à l'effet de capacité de puits sont sur une droite de pente 1. Ces points se calent sur la droite de pente 1 passant par l'origine des coordonnées de la planche.

Il ne reste plus qu'à lire le libellé de la courbe type exprimée par une valeur de $C_D e^{2S}$.

La méthode d'interprétation est analogue à celle développée sans la dérivée.

La perméabilité du réservoir, la capacité du puits et le skin peuvent être déterminés directement à l'aide de la courbe type et de sa dérivée pourvu que la stabilisation de la dérivée soit atteinte... [3]

CHAPITRE II L'interprétation des essais aux puits horizontaux

II.6)l'incertitude des résultats de l'interprétation des essais des puits :

Le plus complet aperçu des sources d'incertitude a été donnée par Horner. Les sources d'incertitude sont :

1-erreur physique dans les données de pression

2-les erreurs dans les informations de débits

3-l'incertitudes dans les propriétés de fluide et de la roche

4-l'incertitude d'estimation de model

L'influence des trois premières incertitudes peut être (au moins théoriquement) dimunés par l'introduction des techniques de mesure plus précises et par l'amélioration dela qualité d'exécution des essais des puits, la dernière incertitude est adhérents au processus d'interprétation des tests ou on ne peut pas les évitée aussi l'influence de ces incertitudes sur l'identification des paramètres de réservoir peut être importante...... [4]

Les raisons des erreursdans les informations de débitssont les difficultés de la régulation de ce dernier ou le garder constant généralement pour les tests draw down et build up...... [5].

II.6.1) Observation générale sur les incertitudes dewell testes en HMD

A. Well bore Storage :

WBS est minimisée en utilisant une vanne pour faire une fermeture au fond Cependant, En raison de grand volume horizontale au-dessous de la vanne de fond, En conséquence, les caractéristiques importantes dans la réponse précoce à temps à partir du réservoir sont cachés ou déformé. Depuis la fermeture de la vanne ne peut pas être plus profond cette situation ne peut être amélioré.

L'utilisation des mesures dans des bonnes conditions permettre à une analyse de convolution pour révéler la réponse cachée de réservoir

B. Flux radial

Dans le champ HMD c'est rarement d'atteindre le 2eme écoulement radial cela signifie qu'il n'est généralement pas possible d'obtenir une estimation fiable de Kh

En conséquence de l'effet de masquage de WBS et mauvaise définition de Kh nombreux tests du BU sont ouvert à plusieurs interprétation en terme de modèle et des paramétre de réservoir Le manque de définition de forme dans la dérivée de pression signifie que plusieurs types de model peuvent être attribué.

Non unicité de Kr, Kz, Lw et de S le réglage de l'un peut être compensé par l'ajustement d'un ou plusieurs d'autre et un match encore atteint

CHAPITRE II L'interprétation des essais aux puits horizontaux

L'ajout de limites, failles, les limites de drainage pour expliquer le comportement de la dérivée de la pression.

C.Un comportement erratique

Un grand nombre des well testes présentent des oscillations acoustiques et des changements brusque ou progressives de la pression BU ceux apparaissent toujeur sur les deux gauges de pression et peuvent donc être considérées comme des phénomènes réels non évaluer les débordements, il se présentent par conséquent à partir de trou ou de réservoir elles apparaissent généralement sur des tests BU

Introduction :

Des essais de puits est un outil indispensable pour connaître l'état du puits et le réservoir par la détermination des paramètres qui leurs sont propres comme la perméabilité, le skin, la pression moyenne de la couche, le kh, la longueur effective, les limites du réservoir...etc. La connaissance de ces paramètres permet de faire des prévisions de la production et de prendre des bonnes décisions pour le développement d'un gisement (nécessitant ou non des opérations de stimulations, récupérations assistées...etc).

de nombreux moyens d'interprétation des essais de puits ont marqué le cours de l'histoire.

ces dernières années, ces techniques ont eu une évolution rapide. A commencer par les méthodes conventionnelles, par l'utilisation de courbe types, puis par l'avènement de la dérivée de la pression et l'introduction des outils informatiques parmi lesquels, l'environnement Ecrin qui est la version développée par KAPPA Engineering. Notamment le logiciel SAPHIR, qui permet de faire des analyses des essais de puits.

L'objet de notre étude, porte sur l'analyse de l'impact des résultats de PLT (FSI, polaris) sur les résultats des interprétations aux puits horizontaux.

III.1) Description et utilisation du logiciel Saphir :

Saphir est un outil d'interprétation du WELLTEST basé principalement sur la méthode de dérivée de la pression et le match des données mesurées au modèle en tenant compte de l'historique de production. Saphir a une gamme complète de différentes fonctionnalités. d'autres dispositifs d'édition permettent des corrections de tendance et l'analyse de la pression. Un module du contrôle de qualité (QA/QC) permet de contrôler les mesures des différentes jauges utilisées lors des tests de puits.

Après la génération du modèle, la régression non-linéaire nous permet d'identifier les modèles de réservoir et de tirer les différentsrésultats de l'analyse, notamment les paramètres de fonctionnement des puits.

Des courbes supplémentaires spécialisées sont aussi générées par le modèle pour identifier les différents régimes d'écoulement. Nous citerons entre autre les courbes MDH, Horner.

III.2) Analyse des résultats des tests

III.2.1) Analyse du puits OMPZ812

• Introduction :

Le puits OMPZ812a été foré en avril1998, mis en production juin 1998 avec un débit de 15 m3/hr ; et complété avec TBG 4"1/2 new vam ancré à 3074m CS ; réservoir : crépine 4"1/2 et de longueur totale=1011,85m. Il a traversé toute la série cambrienne jusqu'au drain R2, à une profondeur de 4445m. Un build up a été réalisé sur ce puits le 1711/2007 qui a

donné un débit de 4.72 m³/hr. Son débit actuel (9/10/2015) est de 7,34 m³/hravec un cumul de production total de 1333918.73 m3 produit au 29/02/2016.

Analyse du test Build up (SBU 17/11/ 2007)[7]

Tableau.III.01 : Données nécessaires à l'interprétation

r _w	hu	μo	Bo	Ct	Ø
m	m	Ср	B/STB	cm²/kg	
0.0762	24	1	1	3.6 ^E	0.1
no.	tn	t B∐	Pt	GOR	Duse
m ³ /h	h	h	kg/cm ²	JOK	Mm
4.72	168843	44	120	2107	13.8

L'analyse du test BU avec logiciel Saphir nous donne les résultatssuivants :

Fig.III.01 : Graphe de la pression et de sa dérivée.

Mod	lel Option	Standard Model		
	Well	Horizontal		
R	eservoir	Hom	ogeneous	
Bo	oundary]	nfinit	
Т	Match	44	.8 [h]-1	
Р	Match	0.309	$[kg/cm^2]-1$	
Model	Well & Wellbore	С	0.0617 m3cm2/kg	
Parameters	parameters	Skin	0.939	
		Geometricale skin	-4.74	
		Anisotropy skin	-0.295	
		Well length	606.62 m	
		Zw	9.72442m	
		Н	63m	
		Pi	210.128kg/cm ²	
	Reservoir	Kh	253m.md	
	et boundary		$[m3/hr]/[kg/cm^2]$	
	parameters	K	4.01md	
		Kz /kr	0.0398	
		RINV	139m	
Derived et secondary		Test vo	2.40365MMP	
parameters		Delta P (total skin)	-12.2939kg/cm2	
		Dlta P(skin)	3.041kg/cm2	
		Delta P ratio	-0.894869 fraction	

Tableau.III.02 : Résultats d'interprétation de la dérivée

Les résultats d'HORNER

Fig.III.02 : Graphe d'HORNER.

Name	Value	Unit
	Line #1(slsr2115inferieur buildup # 1)	
Slope	-3.72186	kg/ cm2
Intercept	211.065	kg/ cm2
P@1hr	191.609	kg/ cm2
k. h	253	md. m
K	4.02	Md
Skin	-3.73	-

Tablea.III.3 : Résultats d'HORNER

• Commentaires

D'après le graphe de la pression et de sa dérivée donnée par le test BU, le modèle réservoir de ce puits est de type homogène avec des limites infinies.

Le skin positif signifie que le puits est endommagé, avec une perméabilité faible.

III.2.2) Analyse du puits MDZ509

• Introduction :

Le puits MDZ509 a été foré en mars 2000, mis en production avec un débit initial de 8.96 m3/hr ; et complété en open hole à partir de 3397m, traversant les drains D2, ID, D1 et une partie du haut du R2 Avec une longueur totale=1048,39m. Il a traversé toute la série cambrienne jusqu'au drain R2, à une profondeur de3391m. Un build up a été réalisé sur ce puits le 23 /10/2007 qui a donné un débit de 6.24 m3/hr. Son débit actuel (13/01/2016) est de 0,83 m3/hr avec un cumul de production total de 786951.88 m3produit au 29/02/2016 [7]

r _w	hu	μ_{o}	Bo	Ct	Ø
m	m	ср	B/STB	cm ² /kg	
0.076	24	1	1	3.6E-4	0.1
q_{o}	tp	$t_{\rm BU}$	Pt	GOR	Duse
m ³ /h	h	h	kg/cm ²		Mm
6.24	100730	327.171	82.4	81	14

Tableau.III.04 : Données nécessaires à l'interprétation

L'analyse du test BU avec logiciel Saphir nous donne les résultats suivants :

Fig.III.03 : Graphe de la pression et de sa dérivée.

Tableau. III.05 : L'interprétation des résultats de la drivée

Mod	lel Option	Standard Model			
	Well	Horizontal			
Re	eservoir	Homo	Homogeneous		
Bo	oundary	One	fault		
Т	Match	55.7	[h]-1		
Р	Match	0.173 [k	$(cm^2]-1$		
Model	Well & Wellbore	С	0.035 m3cm2/kg		
Parameters	parameters	Skin	-0.11		
		Geometricale skin	-1.44		
		Anisotropy skin	-0.572		
		Well length	880.01 m		
		Zw	10.7028m		
Reservoir et		Н	88m		
	boundary	Pi	203.028kg/cm ²		
	parameters	Kh 185m.md			
			$[m3/hr]/[kg/cm^2]$		
		K 2.1md			
		Kz /kr 000915			
Derived et secondary		Delta P (total skin)	-8.96892kg/cm ²		
parameters		Delta P ratio	-0.258814 kg/cm ²		
		(totale skin)			

Les résultats d'HORNER

Fig. III.04 : Graphe d'HORNER.

Name	Value		Unit
	Line 1 (noire)	Line 2 (rouge)	
Slope	-6.64593	-10.394	kg/ cm2
Intercept	185.778	196.847	kg/ cm2
P@1hr	152.527	144.844	kg/ cm2
k. h	185	118	md. m
K	2.11	1.35	Md
Skin	-2.35	-3.99	-

Tableau.III.06 : Résultats d'HORNER

CS avec une longueur totale =1160m. Il a traversé toute la série cambrien en traversant les drains D2, D3, D5 et ID à une profondeur de 4330.9m. Un build up a été réalisé sur ce puits le 6/04/2013 qui a donné un débit de 0.79 m3/hr. Son débit actuel (1/1/2016) est de 2.08 Commentaires :

A travers l'analyse de la pression et de sa dérivée, le modèle réservoir adéquat pour le puits MDZ509 est homogène avec un effet d'une faille aux limites.

Le skin est négatif, veut dire que ce puits est stimulé, ce qui explique une augmentation de débits à 6.29 m3/h en un mois de production,

III.2.3) Analyse du puits MDZ534

• Introduction :

Le puits MDZ534 situé dans la zone HZS a été foré en 11 juillet 2001, complété avec 4"1/2 ancré à 3077,20Mm CS liner 4"1/2 pré perforé (70 tubes ppr + 55 tubes lisses raccord des pose liner 4"1/2 à 3082,80M m3/hr avec un cumul de production total de 220693.82 m³ produit au 31/01/2016. [7]

rw	hu	μο	Bo	Ct	Ø
m	m	ср	B/STB	cm2/kg	
0.0762	24	1	1	3.6E	0.1
qo	tp	tBU	Pt	GOR	Duse
m3/h	h	h	kg/cm2	m3/m3	Mm
0.79	47800	200	28	3304	15

Tableau.III.07 : Données nécessaires à l'interprétation

L'analyse du test BU avec logiciel Saphir nous donne les résultats suivants :

Fig.III.05 : Graphe de la pression et de sa dérivée.

Tableau.	III.08 :	L'inter	prétation	des	résultats	de la	dérivée
			P				

Model Option		Standard Model			
Well		Horizontal, changing storage			
Reservoir		Tow porosité			
Boundary		Infinite			
T Match		25.4 [h]-1			
P Match		$0.1 [kg/cm^2]-1$			
Model	Well & Wellbore	С	0.00564 m3cm2/kg		
Parameters	parameters	Skin	12		
		Geometricale skin	-5.9		
		Anisotropy skin	-0.383		
		Well length	1077.81 m		
		Zw	6.1556m		
		Н	60m		
		Pi	204.687kg/cm ²		
	Reservoir et	Kh	13.5m.md [m3/hr]/[kg/cm ²]		
	boundary	K	0.225md		
	parameters	Kz /kr	0.0241		
Derived et secondary parameters		Delta P (total skin)	60.5954kg/cm2		
		Delta P ratio	0.433285 kg/cm2		
		(totale skin)			

Les résultats d'HORNER

Fig. III. 06 : Graphe d'HORNER.

Name	Va	Unit	
	Line 1 (noire)	Line 2 (rouge)	
Slope	-11.4876	-3.62441	kg/ cm2
Intercept	232.811	196.848	kg/ cm2
P@1hr	170.966	177.336	kg/ cm2
k. h	13.5	42.8	md. m
K	0.225	0.714	Md
Skin	8.23	36.7	-

Tableau.III.09. Résultats d'HORNER

• Commentaires :

A l'issue de l'interprétation de la pression et de sa dérivée donnée par le test BU, le modèle réservoir est de type double porosité avec des limites infinies.

Les abords de puits sont les sièges d'un WBS qui duré sur un long temps et de skin positif qui montre que le puits est bouché. Avec une perméabilité très faible.

III.2.4) Analyse du puits MDZ627

• Introduction :

Le puits MDZ627est implanté dans la zone 1B du gisement hmd, a été foré en 28/03/2010 à une profondeur de 4006m, ce puits est complété en open hole avec un tubing 4"1/2 new vam ancre Packer vers 2970m Ce puits a fait l'objet d'un BU en 27/02/2011, avec un débit de 3.15 m3/hr. La dernière mesure de débit 23/12/2015 est de 2.77 m3/hr avec un cumul de production total de 141074.4 m³ produit au 31/01/2016.... [7]
rw	hu	μο	Bo	Ct	Ø
m	m	ср	B/STB	cm2/kg	
0.0762	24	1	1	1	0.1
qo	tp	tBU	Pt	GOR	Duse
m3/h	h	h	kg/cm2	m3/m3	Mm
3.15	1440	23	200	5529	12

Tableau.III.10 : Données nécessaires à l'interprétation

L'analyse du test BU avec logiciel Saphir nous donne les résultats suivants :

Fig.III.7 : Graphe de la pression et de sa dérivée.

Tableau. III.11 : L'interprétation des résultats de la dérivée

Мо	Model Option Standard Model		
	Well	Но	rizontal
R	leservoir	Hom	ogeneous
В	oundary	Or	ne fault
]	ſ Match	49	3 [h]-1
I	P Match	0.399	$[kg/cm^2]-1$
Model	Well & Wellbore	С	0.00383 m3cm2/kg
Parameters	parameters	Skin	-0.318
		Geometricale skin	5.13
		Anisotropy skin	-0.879
		Well length	248.498 m
		Zw	16.1767m
	Reservoir et	Н	32m
	boundary	Pi	345.824kg/cm ²
	parameters	Kh	246m.md [m3/hr]/[kg/cm ²]
		K	7.68md
		Kz /Kr	0.00224
		Delta P (total skin)	12.065kg/cm2
Derived et secondary parameters		Delta P ratio	0.306285 kg/cm2
		(totale skin)	
		Delta p	12.8624
		(geometrical skin)	

Les résultats d'HORNER

Fig.III.08 : GRAPHE D'HORNER

Tableau.III.12. Résultats d'HORNER

Name	Value	Unit
	Line 1 (noire)	
Slope	-105333	kg/ cm2
Intercept	344.096	kg/ cm2
P@1hr	298.785	kg/ cm2
k. h	67.3	md. m
k	2.1	Md
Skin	-3.74	-

• Commentaires :

Le modèle réservoir de puits MDZ627 s'apparente à un type homogène avec effet d'un fault aux limites, Le skin est négatif, ce qui montre que le puits n'est pas endommagé. Avec une perméabilité moyenne.

III.3) La réinterprétation en utilisant les résultats PLT (FSI ou POLARIS)

III.3.1) Diagraphies de production dans les puits horizontaux :

Dans un puits vertical ou avec une déviation inférieure à 20°, le fluide sera une mixture d'eau, d'huile et de gaz, avec un profil de vitesse régulier et un hold-up qui variant graduellement à travers le puits, ce qui fait que les mesures moyennes obtenues par les diagraphies de production classiques sont adéquates pour déterminer la vitesse et le hold-up. Lorsque la déviation est comprise entre 20 et 85°, les outils de diagraphie classique sont inadéquats pour les mesures car le fluide n'est plus une mixture et les phases commencent petit à se former dans le puits, avec la phase lourde qui commence à ségréguer dans la partie inférieure, mais le flux total du fluide reste très complexe. Avec une déviation comprise entre

85 et 90°, les fluides seront stratifiés suivant leur différence de densité avec l'eau en bas, l'huile au milieu et le gaz, le plus léger, pour débit de production constant, les profils du holdup varient en puits.

III.3.2) L'outil Flow Scanner Imager (FSI).

Cet outil est doté d'un bras rétractable sur lequel sont montés 4 minispinner (spinner de petit diamètre) pour mesurer la vitesse du fluide d'un côté, et 5 paires de probes, une électrique et une optique, pour mesurer les holdups de l'autre côté du bras. Le 5^{eme} minispinner ainsi paire de probes sont montés dans le corps de l'outil.

Fig.III.09 : Flow Scanner imager

En ce qui concerne les probes, numérotées de 0 à 5 en commençant de la paire montée dans le corps, sont les même que celle utilisées en diagraphie classique, par contre les minispinners utilisés, numérotés de 0 à 4 en commençant par celui dans le corps, sont de spinner avec un diamètre de 1 pouce (2,54cm) qui le rend très sensible au mouvement des fluides, ce qui fait que le seuil de ses minispinners est nul.

Le bras rétractable qui porte ces probes et minispinners s'ouvre dans le puits jusqu'à atteindre le diamètre vertical de ce dernier, il est utilisé comme un caliper.

Cet outil nous permet d'obtenir des profils de débit clair dans les puits non verticaux, surtout dans le cas de stratification, où il donne la vitesse ainsi que le holdup de chaque phase avec une grande précision.

III.3.3) Réponses du Flow Scanner Imager

Les réponses de l'outil FSI suivant les différents angles sont représentés sur la figure Pendantl'acquisition, les réponses des mini-spinner sont représentées avec 5 rectangles de longueur proportionnelle à la vitesse de rotation de chaque mini-spinner correspondant.

Chaque rectangle est divisé en sections de couleurs codées (bleu pour l'eau, vert pour l'huile et rouge pour le gaz) avec une largeur proportionnelle au hold-up détecté par lesProbes.

L'opération avait pour but alors d'établir le profil de production d'un puits horizontale en détectant les points d'entrées dans le puits provient d'une seule ou de plusieurs zones de production... [8]

Fig.III.10 : Réponses du FSI

III.3.4) L'interprétation des résultats FSI

III.3.4.a) Le puits OMPZ812

Tableau.III.13 : les zones de contribution

Zones	Qores	Qgres	Qtres	production		
m.	M ³ /h	M ³ /h	M ³ /h	%		
3411.5-3447.3	0.66	33.45	34.11	23.44	G+O	
3699.7- 3715.5	0.62	10.00	10.62	7.30	G	
3810.2-3889	0.00	41.67	41.67	28.63	G+O	
4113-4147.7	4.58	0.00	4.58	3.15	G+O	
4194.6-4218.2	0.00	16.67	16.67	11.45	G+O	
4255-4285.2	4.79	33.11	37.90	26.04	0	
4353.4-4368.4	0.00	0.50	0.50	3.00	0	
Effectif well length= 181.6 m						

• Discussion :

- Il y a petite quantité de production de l'huile est entrée dans le slotted liner à travers la section (4354.4m-4368.3m) cette quantité est produisé de la formation dans l'intervalle (4392m-4406m)
- ✓ Huile produisé à 4279m à côté de slotted liner
- ✓ Production de gaz à 4269m et à 4208m

- ✓ Toute la production au-dessous 4145mest à côté de slotted liner
- ✓ Partie d'huile et de gaz entre dans le liner à 3888m
- ✓ Une quantité de gaz et de l'huile produisé de 3858 m
- ✓ 58% de gaz produisé s'écoule dans l'annulaire est entré dans le liner 7" à 3425m

III.3.4.b) Le puits MDZ509

Tableau.III.14: L	es zones de	contribution	à la	production
-------------------	-------------	--------------	------	------------

Zones	Qores	Qgres	Qtres	production	
.m.	M ³ /h	M ³ /h	M ³ /h	%	
3412.1-3602.2	0.66	33.45	34.11	23.44	G+H
3672.7-3698.1	0.62	10.00	10.62	7.30	G+H
3822.4-3836.8	0.00	41.67	41.67	28.63	G
3844.5-3881.0	4.58	0.00	4.58	3.15	Н
3900.3-3913.4	0.00	16.67	16.67	11.45	G
3929.6-3963.9	4.79	33.11	37.90	26.04	G+H
Effectif well len	gth= 314 m				

• Discussion :

- \checkmark On a deux gaz breakthrough vue à 3828m et à 3908.
- ✓ Le puits est complétement plein de gaz
- ✓ Une production d'huile remarqué à l'intervalle (3844.5m-3881m).
- ✓ Venue de gaz et d'huile de l'intervalle (3926.6m-2963.9m).
- ✓ On a une production d'huile et de gaz au-dessous de la profondeur 3970m.
- ✓ Une production d'huile de l'intervalle (3412.1m-3602.2m) et (3672.7m-3698.1m).

III.3.4.c) Le puits MDZ534

Tableau.IV.15 : Les zones de contribution à la production

Zones	Qores	Qgres	Qtres	production			
.m.	M ³ /h	M ³ /h	M ³ /h	%			
3623-3776.5	0.66	33.45	34.11	23.44	G+O		
3786.4 3854.1	0.62	10.00	10.62	7.30	0		
3929.1-3977.8	0.00	41.67	41.67	28.63	G		
4069-4134.9	4.58	0.00	4.58	3.15	G+O		
4188.2-4255	0.00	16.67	16.67	11.45	G+O		
4277.6-4298.4	4.79	33.11	37.90	26.04	G+O		
Below 4306	0.00	0.50	0.50	3.00	G		
Effectif well len	Effectif well length= 400 m						

• Discussion :

- ✓ Identification des entrés de gaz et de l'huile le long de la section horizontale
- ✓ Il n'Ya pas de l'eau produisée de la formation

- ✓ Venue de petite quantité de gaz au-dessous de 4304m
- ✓ Entré de gaz identifié à 4286.2
- ✓ Grand quantité de gaz associée avec une petite quantité de l'huile vue à4254m
- ✓ 3^{eme}entré de gaz identifié à 4132 m
- ✓ Entré de gaz à 3977.6 m ne dépend pas de déflexion de température ce qui indique que ce gaz n'est pas produisé de la formation
- ✓ Grand quantité de gaz et de l'huile identifié à 3778.8m jusqu'à 7" casing shoe
- ✓ Une importante fraction d'écoulement. Surtout un écoulement de gaz à coté de liner

III.3.4.d) Le puits MDZ627

Tableau.IV.16 : Les zones de contribution

Zones	Qores	Qgres	Qtres	production	
.m.	M ³ /h	M ³ /h	M ³ /h	%	
3439-3449	12	89	101	13	G+O
3509-3557	0	756	756	45	G
3563-3604	77	700	777	96	G+O
3608-43686	53	118	171	44	G+O
Effectif well length= 177 m					

Discussion :

- ✓ On a stagnant water au-dessous de 3648
- Production d'huile et de gaz dans les intervalles (3439 m -3449 m) et (3563 m -3604 m) constitue 58% de la production totale de puits
- ✓ 42% de la contribution représente seulement le gaz dans l'intervalle (3509 m-3557 m)
- ✓ On remarque qu'il y a des fractures ouvertes, peut être la cause de grand gaz breakthrough

Observation : d'après les résultats FSI ces puits sont en percée de gaz.

Le tableau. III.17 : la différence entre le Lw FSI et le Lw interprétation :

Puits	Well length Vs (m)	Well length Fsi (m)	Well length interprétation(m)
MDZ509	1048.39	314	880.01
MDZ534	1160	328.842	1077.81
MDZ627	785	177	248.498
OMPZ812	1189.36	181.6	606.62

• Discussion des résultats :

 On remarque une grande différence entre le well length estimer de l'interprétation par saphir et le well length résulte de l'interprétation de FSI. Parce que ces puits n'ont pas

des modèles horizontaux. Veut dire qu'on ne peut pasdétecter les trois écoulements ; premier radial, linéaire et deuxième radial (les régimes d'écoulement dans un puits horizontal)en plus ces derniers sont enpercée de gaz. Aussi on ne peut pas négliger l'effet de wellbore Storage ; la percée de gaz cause l'augmentation de WBS qui va masquer la réponse de réservoir.

- ✓ La fermeture dès la surface lors d'un teste DST conduit à l'augmentation de WBS et sera plus grand donc on ne peut pas voir le premier écoulement radial.
- La percée de gaz fait une perturbation empêche de faire les tests avec une manière réalisable.
- ✓ La partie qui produise dans ces puits non seulement la section horizontale, peut-être d'autre partie tel que la partie déviée ou la partie verticale.

III.4.) LA réinterprétation après fixation de well length FSI : III.4.1) Le puits OMPZ812 :

Fig. III .17 : la dérivée de pression

Model Option		Standard Model			
	Well		Horizontal		
R	leservoir	Hor	nogeneous		
В	oundary		Infinit		
]	Г Match	8	33 [h]-1		
H	P Match	0.309	$P [kg/cm^2]-1$		
Model	Well & Wellbore	С	0.0333 m3cm2/kg		
Parameters	parameters	Skin	-1.77		
		Geometricale skin	-1.03		
		Anisotropy skin	-0.124		
		Well length	181.6 m		
		Zw	53.6409m		
		Н	63m		
		Pi	214.128kg/cm ²		
	Reservoir et	Kh	253m.md [m3/hr]/[kg/cm ²]		
	boundary parameters	K	4.01md		
		Kz /kr	0.131		
		RINV	139m		
Derived et secondary parameters		Test vo	2.40365MMP		
		Delta P (total skin)	-9.06812kg/cm2		
		Delta P ratio	-0.894869 fraction		

Tableau. III .18 :LA réinterprétation de la pression et sa dérivée :

Tableau. III .19 : -Comparaison entre les résultats de l'interprétation et de la réinterprétation :

Les paramètres	С	SKIN	Pi	ZW	Kz/Kr	K	Kh
Les unités	M ³ cm ² /kg		Kg/cm ²	m		md	md.m
L'interprétation	0.0617	0.939	210.128	9.72442	0.0398	4.01	253
La réinterprétation	0.0333	-1.77	214.128	53.6409	0.131	4.01	253

Les résultats d'HORNER :

Fig.III.18 : Graphe d'HORNER

Tableau. III.20 : les résultats d'HORNER

Name	Value	Unit
	Line #1(slsr2115inferieur buildup # 1)	
Slope	-3.72186	kg/ cm2
Intercepte	211.065	kg/ cm2
P@1hr	191.609	kg/ cm2
k. h	253	md. m
K	4.02	Md
Skin	-3.73	-

III.4.2) Le puits MDZ509

Fig.III.11 : la dérivée de pression

Mo	del Option	Stand	dard Model		
	Well	Horizontal			
R	eservoir	Hon	nogeneous		
В	oundary	0	ne fault		
ſ	Match	42	2.4 [h]-1		
F	[•] Match	0.173	$[kg/cm^2]-1$		
Model	Well & Wellbore	C	0.046 m3cm2/kg		
Parameters	parameters	Skin	-1.36		
		Geometricale skin	-0.484		
		Anisotropy skin	-0.213		
		Well length	313.8 m		
		Zw	13.0873m		
		Н	88m		
		Pi	203.027kg/cm ²		
	Reservoir et	Kh	185m.md [m3/hr]/[kg/cm ²]		
	boundary	K	2.1md		
	parameters	Kz /kr	0.067		
I		Delta P (total skin)	-10.6594kg/cm2		
Derived et se	condary parameters	Delta P ratio	-0.289669 kg/cm2		
		(totale skin)			

Le tableau.III.21 :LA réinterprétation de la pression et sa dérivée :

Le tableau.III.22 : Comparaison entre les résultats de l'interprétation et de la réinterprétation :

Les paramètres	С	SKIN	Pi	L	ZW	K	Kh	Kz/Kr
Les unités	M ³ cm ² /kg		Kg/cm ²		m	Md	md.m	
L'interprétation	0.035	-0.11	203.028	185	10.7028	2.1	185	0.00915
La réinterprétation	0.046	-1.36	203.027	170	13.0873	2.1	185	0.067

Les résultats d'HORNER

FIg.III.12 : Graph d'HORNER

Le tableau. III .23 : les résultats d'HORNER

Name	V	Unit	
	Line 1 (noire)	Line 1 (noire) Line 2 (rouge)	
Slope	-6.64593	-10.394	kg/ cm2
Intercept	185.778	196.847	kg/ cm2
P@1hr	152.527	144.844	kg/ cm2
k. h	185	118	md. m
K	2.11	1.35	Md
Skin	-2.35	-3.99	-

III.4.3) Le puits MDZ534

Fig.III.13 : la dérivée de pression

Model Option		Standard Model	
Well		Horizontal, changing S	torage
Réservoir		Tow porosité	
Boundary		Infinite	
T Match		28.4 [h]-1	
P Match		$0.1 [kg/cm^{2}]-1$	
Model	Well & Wellbore	С	0.00503 m3cm2/kg
Parameters	parameters	Skin	11.2
		Geometrical skin	-3.91
		Anisotropy skin	-0.0621
		Well length	328.842 m
		Zw	0.63751m
		Н	60m
	Reservoir et	Pi	213.086kg/cm ²
	boundary	Kh	13.5m.md [m3/hr]/[kg/cm ²]
	parameters	K	0.225md
		Kz /kr	0. 241
		Omega	0.369
		lambda	1.04E-6
		Delta P (total skin)	60.5954 kg/cm2
Derived et seco	ondary parameters	Delta P ratio	0.433285 kg/cm2
		(totale skin)	

Tableau.III.24 : les résultats d'interprétation

Le tableau.III.25 : Comparaison entre les résultats de l'interprétation et de la réinterprétation

Les paramètres	С	SK	Pi	Omeg	Lambd	ZW	Kz/Kr	K	Kh
		IN		a	a				
Les unités	M ³ cm ²		Kg/cm ²			m		md	md.m
	/kg	_							
L'interprétation	0.0056	12	204.68	0.611	1.04E-5	6.1556	0.0241	0.225	13.5
	4		7						
La	0.0050	11.	213.08	0.369	1.04E-6	0.63751	0.241	0.225	13.5
réinterprétation	3	2	6						

Les résultats d'HORNER

Fig .III.14:Graphe d'horner

Le tableau.III.26:les résultats d'horner

Name	V	Unit	
	Line 1 (noire)	Line 2 (rouge)	
Slope	-11.4876	-3.62441	kg/ cm2
Intercepte	232.811	196.848	kg/ cm2
P@1hr	170.966	177.336	kg/ cm2
k. h	13.5	42.8	md. m
K	0.225	0.714	Md
Skin	8.23	36.7	-

IV.4.4) LE PUITS MDZ627 :

Fig.IV.15 : la dérivée de pression

Mo	del Option	Stan	dard Model
	Well	H	orizontal
R	eservoir	Hor	nogeneous
B	oundary	C	ne fault
Т	Match	4	31 [h]-1
P	Match	0.399	[kg/cm ²]-1
Model	Well & Wellbore	С	0.00438 m3cm2/kg
Parameters	parameters	Skin	-0.956
		Geometricale skin	5.75
		Anisotropy skin	-0.727
		Well length	177m
		Zw	7.60217m
		Н	32m
		Pi	344.723kg/cm ²
	Reservoir et	Kh	246m.md [m3/hr]/[kg/cm ²]
	boundary	K	7.68md
	parameters	Kz /Kr	0.00442
		L	372m
·		Delta P (total skin)	12.0187kg/cm2
Derived et secondary parameters		Delta P ratio	0.305472 kg/cm2
		(total skin)	
		Delta p	14.4158
		(geometrical skin)	

Le tableau.III.27:LA réinterprétation de la pression et sa dérivée :

Tableau. III.28 : Comparaison entre les résultats de l'interprétation et de la réinterprétation

	С	SKIN	Pi	L	ZW	Kz/Kr	Kh	Kh
Les paramètres								
Les unités	M ³ cm ² /kg		Kg/cm ²		М		md	md.m
L'interprétation	0.00383	-0.318	345.824	288	16.1767	0.00224	7.68	246
La	0.00438	-0.956	344.723	372	7.60217	0.00442	7.68	246
réinterprétation								

Les résultats d'HORNER :

Fig.III.16 : Graphe d'HORNER

Name	Value	Unit
	Line 1 (noire)	
Slope	-105333	kg/ cm2
Intercepte	344.096	kg/ cm2
P@1hr	298.785	kg/ cm2
k. h	67.3	md. m
k	2.1	Md
Skin	-3.74	-

Tableau. III .29 : les résultats d'HORNER

• Discussion :

-après la réinterprétation des résultats, on constate que le well length de FSI imposé sur le modèle influe sur tous les paramètres tel que ; le skin, Kz/Kr, Zw...etc sauf le K et le Kh.

- On remarque une différence entre ces paramètres surtout au niveau de Kz/Kr,

l'augmentation de ce terme s'agit d'augmentation de Kz qui veut dire que la partie produisé est la partie verticale, la valeur de l'anisotropie indique que l'option puits horizontal est favorable puisque Kz> kr l'orientation du puits est défavorable, C'est pour ça ces puits n'ont pas un model horizontale.

 On remarque que K et Kh reste constants parce qu'ils ne dépendent pas de HW Tel que kh=162.6QBU/m

-pour le puits OMPZ812 On remarque que le skin devient négatif, la formation est stimulée grâce au nettoyage au fond fait avant le FSI.

-aucune influence sur les résultats d'HORNER.

III.5.)L'interprétation des puits ont modèle horizontale :

III.5.1) Le puits MDZ557

• Introduction :

Le puits MDZ557 situé dans la zone HZS, a été foré en 30/03/2004, et complété en open hole avec un liner 4 "1/2 à une profondeur de 4174 m. Il a traversé toute la série cambrien en D1, D2, D3, D4, D5 et ID jusqu'au drain Ri et Ra. Un build up long a été réalisé sur ce puits le 23/04/2006 qui a donné un débit de $16.74 \text{ m}^3/\text{hr}$. Son débit actuel (25/01/2016) est de $8.62 \text{ m}^3/\text{hr}$ avec un cumul de production total de 1177750.4 m3 produit au 29/02/2016.....[7]

Analyse du test Build up (LBU 23/04/ 2006).

rw	hu	μο	Bo	Ct	Ø
m	m	ср	B/STB	cm²/kg	
0.0762	129	0.229	1.743	3.97	0.074
				10-4	
qo	tp	t BU	Pt	GOR	Duse
m ³ /h	h	h	kg/cm ²		Mm
16.74	15	326.925	125.1	844	12.7
	705.6				

Tableau.III.30 : Données nécessaires à l'interprétation

L'analyse du test BU avec logiciel Saphir nous donne les résultats suivants :

Fig.III.19 : Graphe de la pression et de sa dérivée.

Moo	del Option	Stan	dard Model				
	Well	He	orizontal				
R	éservoir	Two porosity slab					
B	oundary	C	one fault				
Т	Match	1	11 [h]-1				
P	Match	0.255	6 [kg/cm ²]-1				
Model	Well & Wellbore	C 0.0671 m3cm2/kg					
Parameters	parameters	Skin	2.61				
		Geometrical skin	-5.63				
		Anisotropy skin	-7.17E-5				
		Well length	452.935m				
		Zw	903267m				
		Н	129m				
		Pi	270.166kg/cm ²				
	Reservoir et	Kh	778m.md [m3/hr]/[kg/cm ²]				
	boundary	K	6.03md				
	parameters	Kz /Kr	0.953				
		Omega	0.335				
		Lambda	7.8E-7				
		L	18.3				
		Delta P (total skin)	-11.8429 kg/cm2				
		Delta P(skin)	10.2286 kg/cm2				
Derived et se	condary parameters	Delta P ratio	-0.405564 fraction				
		1					

Tableau.III .31:Résultats d'interprétation de la dérivée

Les résultats d'HORNER

Fig.III.20 : Graphe d'HORNER.

Name		Unit		
	Line 1	Line 2	Line 3	
Slope	-4.78933	-4.51118	-1.97269	kg/ cm2
Intercepte	259.283	260.351	251.78	kg/ cm2
P@1hr	239.187	241.421	243.503	kg/ cm2
k. h	733	779	1780	md. m
Κ	5.69	6.04	13.8	Md
Skin	-2.65	-1.91	3.95	-

Tableau.III.32 : Résultats d'HORNER

• Commentaires :

A l'issue de l'interprétation de la pression et de sa dérivée donnée par le test LBU, le modèle réservoir est de type double porosité avec l'effet d'une faille au limite.

Le skin positif qui montre que le puits est bouché. Avec une perméabilité moyenne.

III.5.2) Le puits OMLZ761

• Introduction :

Le puits OMLZ761 situé dans la zone 9, a été foré en 15/05/2005 à une profondeur de 3412m, et complété en liner 4 "1/2 à 3198m. Il a traversé toute la série cambrienne en D2et ID, Un DST a été réalisé sur ce puits le 3/05/2005 qui a donné un débit de 10.16 m³/hr. Son débit actuel (23/02/2016) est de 1.46 m³/hr.... [7]

Analyse du test DST (03/05/ 2005).

Taleau.III.33 : Données nécessaires à l'interprétation

rw	hu	μο	Bo	Ct	Ø
m	m	ср	B/STB	cm ² /kg	
0.0762	30	0.264	1.637	3.51	0.08
				10-4	
qo	tp	t _{BU}	Pt	GOR	Duse
m³/h	h	h	kg/cm ²		Mm
10.16	11.7100	37.1889	104.1	448	12.7

L'analyse du test DST avec logiciel Saphir nous donne les résultats suivants :

Fig.III.21: Graphe de la pression et de sa dérivée

Tableau.III.34 : L'interprétation des résultats de la dérivée

Model Option		Standard Model	
Well		Horizontal	
Réservoir		Tow porosity slab	
Boundary		One fault	
T Match		29.6 [h]-1	
P Match		0.0511 [kg/cm ²]-1	
Model	Well & Wellbore	С	0.0287 m3cm2/kg
Parameters	parameters	Skin	-0.141
		Geometrical skin	-4.46
		Anisotropy skin	-0.581
		Well length	927.01m
		Zw	0.96595m
		Н	42m
		Pi	266.259kg/cm ²
	Reservoir et	Kh	103m.md [m3/hr]/[kg/cm ²]
	boundary	К	2.45md
	parameters	Kz /Kr	0.00875
		Omega	0.099
		lambda	0.00357
		L	29.2
Derived et secor	ndary parameters	Delta P (total skin)	-90.0144kg/cm2
		Delta P ratio	-1.93918 fraction

Les résultats d'HORNER

Fig.III.22 : Graphe d'HORNER.

Name	Value	Unit
	Line 1	
Slope	-58.5523	kg/ cm2
Intercept	269.471	kg/ cm2
P@1hr	204.821	kg/ cm2
k. h	39.6	md. m
Κ	0.943	Md
Skin	-5.04	-

Tableau.III.35 : Résultats d'HORNER

• Commentaires :

A travers l'analyse de la pression et de sa dérivée, le modèle réservoir adéquat pour le puits OMLZ761 est double porosité avec un effet d'une faille aux limites.

Le skin est négatif, veut dire que ce puits est stimulé, avec une faible perméabilité.

III.5.3) Le puits MDZ555

• Introduction :

Le puits horizontal MDZ555 de la zone 20A a été foré en 31/04/2004 à une profondeur de 3412m, et complété en 4"1/2 ancré, réservoiren open hole, a été réalisé dans le réservoir Ra (D2+ID), avec un déplacement total de 966m, azimut N291°, inclinaison 87° Un LBU a été réalisé sur ce puits le 05/07/2005 qui a donné un débit de 2.77 m³/hr.... [7]

Analyse du test LBU (05/07/ 2005).

rw	hu	μo	Bo	Ct	Ø
m	m	ср	B/STB	cm²/kg	
0.0762	55	0.225	1.76	4.768E-	0.1
				4	
qo	tp	t _{BU}	Pt	GOR	Duse
m ³ /h	h	h	kg/cm ²		Mm
2.77	17551	207.883	24	110	12.7

L'analyse du test LBU avec logiciel Saphir nous donne les résultats suivants

Fig.III.23: Graphe de la pression et de sa dérivée

Tableau.III.37 : L'interprétation des résultats de la dérivée

Mod	el Option	Standard Model		
	Well	Horizontal		
Re	eservoir	Two porosity slab		
Bo	undary		Infinite	
Т	Match	1.77	7E+10 [h]-1	
Р	Match	0.113	$3 [kg/cm^{2}]-1$	
Model	Well & Wellbore	С	3.13E-11 m3cm2/kg	
Parameters	parameters	Skin	-0.97	
		Geometricale skin	-3.87	
		Anisotropy skin	-0.388	
		Well length	612.281m	
		Zw	4.06623m	
		Н	55m	
		Pi	161.326kg/cm ²	
	Reservoir et	Kh	56.9m.md [m3/hr]/[kg/cm ²]	
	boundary	K	1.03md	
	parameters	Kz /Kr	0.0234	
		Omega	0.383	
		Lambda	7.01E-5	
		Delta P (total skin)	-42.6608kg/cm2	
Derived et secon	dary parameters	Delta P ratio	-1.83655 fraction	

Les résultats d'HORNER

Fig.III.24 : Graphe d'HORNER.

Name Value Unit Line 1 Slope -10.1308 kg/ cm2 Intercepte 164.75 kg/ cm2 P@1hr 121.752 kg/ cm2 57 k. h md. m Κ 1.04 Md

-4.74

Tableau.III.38 : Résultats d'HORNER

• Commentaires

Skin

D'après le graphe de la pression et de sa dérivée donnée par le test BU, le modèle réservoir de ce puits est de type double porosité avec des limites infinies. Le skin négatif signifie que le puits est stimulé, avec une perméabilité faible.

-

III.6) L'interprétation des résultats polaris et FSI :

III.6.1) le puits MDZ557 :

Intervalle Production			Description		
de	à	water	Oïl	gaz	
m	M	M ³ /d	M ³ /d	M ³ /d	
3320	3380	0	292	3370	écoulement d'huile et de gaz
3380	3431	0	292	3235	écoulement d'huile et production de gaz
3431	3448	0	291	1297	écoulement d'huile et de gaz
3448	3458	0	289	1297	écoulement d'huile et production de gaz
3458	3470	0	280	382	Production d'huile et petite production de gaz
3470	3735	0	145	73	écoulement d'huile et petit écoulement de gaz
3735	3745	0	138	33	Petite production d'huile et petit écoulement de gaz
3745	3783	0	114	33	Petit écoulement d'huile et de gaz
3783	3796	0	114	33	Petite production d'huile et petit écoulement de gaz
3796	3829	0	79	18	Petit écoulement d'huile et de gaz zone d'eau
3829	3842	0	79	18	Petite production d'huile
3842	3852	0	45	0	Ecoulement d'huile et d'eau
3852	3858	0	45	0	Petite production d'huile
3858	3970	0	0	0	Zone d'eau
la longueur effective=538m					

Tableau.III.39 : les zones de contribution (résultats polaris)

• Discussion :

- ✓ Il apparait que la majorité de production de gaz est vient de l'intervalle 3380-3431m, aussi on peut voire une contribution significative de la zone 3380-3458m
- ✓ La production de l'huile est plus petite vient de l'intervalle 3458-3470m.et une contribution vue des zones 3852-3858 m, 3829-3842 m et 3735-3745 m.
- ✓ Il n'y a pas de l'eau produisé en surface en cette choke size.

III.6.2) le puits OMLZ761

Zone m	Qo m ³ /d	$Qg m^3/d$	Description			
3202-3208	0.00	867.36	GAZ			
3430-3445	0.00	-557.36	GAZ			
3690-3713	0.00	161.19	GAZ			
3730-3766	0.00	498.63	GAZ			
3797-3890	0.00	237.97	GAZ			
3924-3949	184.61	234.18	GAZ+OIL			
3972-3985	7.81	90.20	GAZ+OIL			
4310-4330	3.76	41.46	GAZ+OIL			
la longueur effective=226m						

Tableau.III.40 : Les zones de contribution (résultats FSI)

• Discussion :

- ✓ Échappement d'un fluide produisé vers l'espace annulaire.
- ✓ La plus grande quantité de production c'est de gaz.
- ✓ La production d'huile est très petite.

III.6.3) le puits MDZ555

Tableau.III.41 : les zones de contribution (résultats polaris)

Inter	valle	Pi	roductio	n		
From	То	water	oïl	gaz	Description	
m	Μ	M^3/d	M^3/d	M^3/d		
3320	3366	0	85	470	écoulement d'huile et production de gaz	
3366	3392	0	135	290	écoulement de gaz et production d'huile	
3392	3420	0	95	305	Production de gaz et d'huile, cross flow d'eau	
3420	3450	0	105	160	écoulement d'huile e de gaz ,petite quantité d'eau	
3450	3507	0	145	165	Petite production d'huile et petit écoulement de gaz, zone d'eau	
3507	3532	0	132	175	Production de gaz, écoulement d'huile, cross flow d'eau	
3532	3580	0	140	95	Petite production d'huile écoulement de gaz, petite quantité	
					d'eau	
3580	3602	0	134	74	Petite production d'huile, et de gaz, petit écoulement d'eau	
3602	3635	0	105	46	Petite production d'huile et petit écoulement de gaz, cross flow	
					d'eau	
3635	3642	0	98	52	Petit écoulement d'huile et petite production de gaz,	
					écoulement d'eau	
3642	3656	0	122	32	Petit écoulement d'huile et de gaz, petit cross flow d'eau	
3656	3667	0	115	30	Petite production de gaz, petit écoulement d'huile et d'eau	
3667	3717	0	148	17	Petit écoulement d'huile, petite quantité d'eau	
la long	gueur e	effective	= 397 m			

Discussion :

- Il apparait que la plus grande quantité de production de gaz est vient de l'intervalle
 3392-3420m, peut aussi voire une contribution significative de la zone 3320-3366m
- ✓ Petite quantité de la production d'huile en surface vient de la zone 3366-3392 m une contribution vues des zones 3532-3580 m, 3602-3635 m et au-dessous de bottom de l'intervalle logé.
- ✓ À cause de diminution de pression, l'eau présente et les petits débits montre qu'il devient un écoulement intermittent dans le bottom de la partie logé (3717-3640m).
- Un écoulement turbulent au-dessus de 3640m avec des zones qui montre l'eau audessous ou un écoulement d'huile dans le Botton hole à cause de gravité
- ✓ Il n'y a pas de production de l'eau en surface en cette choke size.

Tableau.III.42 : la différence entre le LwFsi et le Lw interprétation :

Puits	Well length Vs (m)	Well length Fsi	Well length
		(m)	interprétation(m)
MDZ557	918	538	452.935
MDZ555	966.11	397	612.281
OMLZ761	1100	226	927.01

Discussion :

- On remarque que le hW résulte de PLT est plus proche de hW estimé par l'interprétation des essais pour le puits MDZ557.
- ✓ Pour les deux puits MDZ555 et OMLZ761on observe une grande différence ça expliqué par l'existence d'une percée de gaz pour le puits OMLZ GOR=5705 et des fractures au niveau de puits MDZ555, donc on peut dire que le FSI n'est pas effectué dans des conditions favorables.

III.7.) -LA réinterprétation après fixation de well length PLT :

III.7.1) Le puits MDZ557

Mo	del Option	Standard Model		
	Well	Horizontal		
R	eservoir	Two porosity slab		
В	oundary	С	one fault	
ſ	Match	1	03 [h]-1	
F	[•] Match	0.255	$5 [kg/cm^2]-1$	
Model	Well & Wellbore	С	0.0721 m3cm2/kg	
Parameters	parameters	Skin	3.29	
		Geometricale skin	-6.43	
		Anisotropy skin	-0.00455	
		Well length	538m	
		Zw	93.5262m	
	Reservoir et	Н	129m	
	boundary	Pi	269.18kg/cm ²	
	parameters	Kh	778m.md [m3/hr]/[kg/cm ²]	
		К	6.03md	
		Kz /Kr	1.47	
		Omega	0.999	
		Lambda	8.92E-7	
		L	2.66	
		Delta P (total skin)	-12.3349kg/cm2	
		Dlta P(skin)	12. 8963kg/cm2	
Derived et secondary parameters		Delta P ratio	-0.433032 fraction	

Tableau.III.43 : -LA réinterprétation de la pression et sa dérivée :

Tableau.IV.44 : Comparaison entre les résultats de l'interprétation et de la réinterprétation :

Les paramètres	С	SKIN	Pi	Omeg a	Lambda	ZW	Kz/Kr	K	Kh	L
Les unités	M ³ cm ² /k		Kg/cm ²			m		md	md. m	m
L'interprétation	0.0671	2.61	270.166	0.335	7.8E-7	90.3267	0.953	6.03	778	18.3
La réinterprétation	0.0721	3.29	269.18	0.999	8.92E-7	93.5262	1.47	6.03	778	2.66

Les résultats d'HORNER :

Fig.III.26 : Graphe d'HORNER.

Tableau.III.45 : les résultats d'HORNER

Name		Unit		
	Line 1	Line 2	Line 3	
Slope	-4.78933	-4.51118	-1.97269	kg/ cm2
Intercepte	259.283	260.351	251.78	kg/ cm2
P@1hr	239.187	241.421	243.503	kg/ cm2
k. h	733	779	1780	md. m
Κ	5.69	6.04	13.8	Md
Skin	-2.65	-1.91	3.95	-

IV.7.2) Le puits OMLZ761

Fig.III.27 :la dérivée de pression

	0.4	C.	1 1 1 1			
Model	Option	Standard Wodel				
Well		Horizontal				
Reservoir		Homogeneous				
Bour	ndary	Infinite				
T M	latch	55.9 [h]-1				
P M	latch	0.0206	$5 [kg/cm^2]-1$			
Model	Well & Wellbore	С	0.00612 m3cm2/kg			
Parameters	parameters					
		Skin	-0.403			
		Geometricale skin	-4.82			
		Anisotropy skin	-0.223			
		Well length	73.0023m			
		Zw	4.54466m			
Reservoir et		Н	42m			
	boundary	Pi	269.203kg/cm ²			
	parameters	Kh	41.4m.md			
			$[m3/hr]/[kg/cm^2]$			
		K	0.986md			
		Kz /Kr	16			
Derived et secondary parameters		RINV	73.7			
		Delta P (total skin)	-254.176kg/cm2			
		Delta P ratio	-5.28281 fraction			

Tableau.III.46 :LA réinterprétation de la pression et sa dérivée :

Tableau.III.47 : Comparaison entre les résultats de l'interprétation et de la réinterprétation :

Les paramètres	С	SKIN	Pi	ZW	Kz/Kr	K	Kh
Les unités	M ³ cm ² /kg		Kg/cm ²	М		md	md.m
L'interprétation	0.0287	-0.141	266.259	0.96595	0.00875	0.986	41.4
La réinterprétation	0.00612	-0.403	269.203	4.54466	16	0.986	41.4

Les résultats d'HORNER

Fig.III.28 : Graphe d'HORNER.

Name	Value	Unit
	Line 1	
Slope	-58.5523	kg/ cm2
Intercept	269.471	kg/ cm2
P@1hr	204.821	kg/ cm2
k. h	39.6	md. m
Κ	0.943	Md
Skin	-5.04	-

Tableau.III.48 : Résultats d'HORNER

III.7.3) Le puits MDZ555

FIG.III.29 : la dérivée de pression

Mod	lel Option	Standard Model				
	Well	He	orizontal			
Re	eservoir	Homogenous				
Bo	oundary	Infinite				
Т	Match	3.	32 [h]-1			
Р	Match	0.049	$9 [kg/cm^2]-1$			
Model	Well & Wellbore	С	0.0733 m3cm2/kg			
Parameters	parameters	Skin	-0.801			
		Geometricale skin	-3.87			
		Anisotropy skin	-0.0186			
		Well length	301.225 m			
		Zw	11.7967m			
Reservoir et		Н	55m			
boundary		Pi	180.812kg/cm ²			
parameters		Kh	25m.md [m3/hr]/[kg/cm ²]			
		K	0.455md			
		Kz /Kr	0.462			
Derived et secondary parameters		RINV	98.3			
		Delta P (total skin)	-125.873kg/cm2			
		Delta P ratio	-5.3478 fraction			

Tableau.III.49 :LA réinterprétation de la pression et sa dérivée :

Tableau.III.50 : Comparaison entre les résultats de l'interprétation et de la réinterprétation :

Les paramètres	С	SKIN	Pi	ZW	Kz/Kr	K	Kh
Les unités	M ³ cm ² /kg		Kg/cm ²	m		md	md.m
L'interprétation	3.13E-11	-0.97	161.326	4.06623	0.0234	0.455	25
La réinterprétation	0.0733	-0.801	180.812	11.7967	0.462	0.455	25

Les résultats d'HORNER

Fig.III.30 : Graphe d'HORNER.

Name	Value	Unit
	Line 1	
Slope	-10.1308	kg/ cm2
Intercepte	164.75	kg/ cm2
P@1hr	121.752	kg/ cm2
k. h	57	md. m
K	1.04	Md
Skin	-4.74	-

Tableau.III.51 : Résultats d'HORNER

• Discussion des résultats :

- ✓ Pour le puits MDZ557les résultats sont plus proches les uns des autres.
- ✓ Pour les puits OMLZ761 et MDZ555 on remarque un changement de tous les paramètres même au niveaux de modèle de réservoir et limites.
- ✓ L'interprétation de puitsOMLZ761a montré un modèle réservoir double porosité, une faille au limite. Cependant, la réinterprétation de ce puits manifeste un modele réservoir homogène et des limites infinies. Tell que le rapport d'imagerie ne montre aucune fracture dans ce puits.
- ✓ L'interprétation de puits MDZ555 montre un modèle double porosité avec des limites infinies par contre la réinterprétation donnée un modele réservoir homogène et des limites infinies avec une augmentation de well bore Storage qui a masquél'empreinte de double porosité.

Conclusion

L'effet des erreurs sur les résultats d'interprétation exige la présentation des solutions pour les prouver. Parmi ces solutions c'est leFSI.

Cette recherche portéesur, l'impact des résultats FSI sur les résultats d'interprétation des essais au puits horizontaux. Donc On a fait la réinterprétation des essais en utilisant le well length obtenue de FSI.

Mon projet de mémoire que j'ai effectué sur les essais au puits horizontaux dans le champ de HMD enbasant sur l'effetdes résultats FSI sur les résultats d'interprétation des essais au puits horizontauxm'a permis de mieux comprendre cette technique et d'arrivée aux conclusion suivantes :

- L'interprétation des essais au puits horizontaux est beaucoup plus compliquée que celle en puits verticaux du fait de la multiplicité et l'interférence des différents régimes d'écoulements, les conditions aux limites, et l'effet de l'hétérogénéité du milieu.
- L'incertitude des résultats de l'interprétation besoin de retourner aux autres méthodes, tel que le FSIpour les valider et atteindre aux résultats pragmatiques.
- Une percée de gaz peut masquer la réponse de réservoir donc on ne peut pas détecter les trois types d'écoulement pour un puits horizontal.
- L'empreinte de double porosité de réservoir peut être masquée par l'effet de capacité de puits et le phénomène de séparation des fluides.

Recommandation

La synthèse de ce travail m'a permis de mieux voir et de proposer les recommandations suivantes :

- Observation des différents régimes d'écoulement peuvent être influencés par la durée de l'essai.
- > Un nettoyage au fond est nécessaire avant chaque FSI.
- L'association d'une vanne de fond pendant les essais pour réduire l'effet de capacité (wellbore Storage) qui peut masquer le 1^{ier} écoulement radial.

Pour que les résultats FSI soient évidents, il faut qu'il se faire dans des conditions favorables

Bibliographies

[1] Dr. John P. Spivey, phoenix reservoir engineering, horizontal wells.

[2] G.Bourdarot. IFP. Edition Technip 1996, ISBN2-7108-0697-5 Paris, Essais de puits : méthodes interprétation.

[3] D. Taib, May 2008 well testing interprétation by the Taib's direct synthesis technique.

[4] Mars Khazanov, Rinat Khabibulin, Vitaly Krasnov, Yukos, copyright 2004, SPE88557 society of petroleum engineers Inc. interactive visualization of uncertainty in well test interpretation.

[5] Fikrij.Kuchuk, janvier 1995, SPE Schlumbergie Technical Service Inc. well test and interpretation for horizontal wells, page 36.

[6] Sonatrach DEP, Landmark. Final Report, Hassi Messouad well test interpretation.

[7] Documentation Sonatrach DEP.

[8] DocumentationSchlumbergie.

Fig.IV.08 : Historique de pression du puits MDZ534

Fig.IV.24 : Graphe Historique de pression du puits MDZ557

Fig.IV.30 : Historique plot de pression du puitsMDZ555

Résumé :

Notre travail a pour objectif, d'étudier, l'impact des résultats FSI (flow scanner imager) sur les résultats d'interprétation des essais au puits horizontaux. Donc On a fait la réinterprétation des essais en fixant le well length obtenue de FSI. Concernant, l'analyse et l'interprétation des réponses transitoires en pression, nous avons utilisé les méthodes Horner et la dérivée de la pression, en exploitant le logiciel Saphir (outil informatique). Cette approche est basée sur un aperçu général des puits horizontaux surtout les régimes d'écoulements, par l'analyse des essais de DST (drill stem test) et des essais de BU (build up). Les résultats donnés de la réinterprétation ont été convergentes. Pour les puits qui ont un modèle horizontale (qui montrent les trois types d'écoulement). Cependant, les puits qui n'ont pas un modèle horizontal en raison de l'existence d'une percée de gaz, well pore Storage plus grand...etc, les résultats ont été différents.

On peut constater que les données diagraphie de production (FSI)Sont nécessaires pour valider les Résultatsd'interprétation.

Mots-clés : l'interprétation, essais des puits, FSI, logiciel saphir, polaris.

Abstract

The aim of our work is to study the impact of FSI results on interpretation test results in horizontal wells. Sowell tests were done reinterpreting by setting the well length obtained from FSI. Regarding, the analysis and interpretation of pressure transient responses, we used the Horner methods and thepressure derivative, exploiting the Sapphire software (computer skills). This approach is based on an overview of horizontal wells mainly flow regimes, by analysis of DST tests and BU tests. The given reinterpretationresultswerecloser. For wells with a horizontal model (showing the three types of flow). However, the wells that do not have a horizontal pattern because of the existence of a breakthrough gas well pore Storage largest ... etc., the results were different.

We can see that the data logging Production (FSI). Are needed to validate the interpretation results.

Keys words : interprétation , well test , FSI, saphir softwar, polaris.

ملخص الهدف الاساسي لعملنا هو دراسة تأثير نتائج FSI على نتائج تفسير اختبارات التي تجرى على الآبار الأفقية. لذلك أجرينا إعادة تفسير نتائج اختبارات الآبار عن طريق تثبيت الطول المتحصل عليه من نتائج FSI في الآبار الأفقية.اما فيما يخص تحليل وتفسير ردود الضغط فقد استخدمنا أساليب هورنر ومشتق الضغط و برنامج السفير. ويستند هذا النهج على إلقاء لهة عامة عن الآبار الأفقية و بشكل رئيسي لمحة على أنظمة التدفق، وذلك من خلال تحليل نتائج تجارب ارتفاع الضغط وتجارب وقت الحفر ،فكانت النتائج المتحصل عليها من إعادة تفسير نتائج اختبارات الآبار متقاربة بالنسبة للآبار ذات نموذج الأفقي (تظهر ثلاثة أنواع من التدفق). اما الآبار التي لم يكن لديها نمط أفقي كانت النتائج محتلفة بسبب وجود اختراق للغاز، تخزين أكبر ... الخ. وفي الاخير يمكن ان نستخلص اننا بحاجة لنتائج ISI

الكلمات المفتاحية: تفسير النتائج, اختبارات الآبار برنامج السفير