UNIVERSITE KASDI MERBAH OUARGLA Faculté des Sciences Appliquées Département Génie Electrique

Mémoire MASTER ACADEMIQUE

Domaine : Sciences et technologie Filière : Electrotechnique Spécialité : Réseaux électriques

Présenté par : Bouaraguia Abdelmoudjib Benhamada Abdelmounaim

<u>Thème</u>

L'écoulement de puissance dans les réseaux De distribution

Soutenu publiquement le : 06/06/2017

Devant le jury :

M : BOUHAFS Ali M : GUEHRAR Youcef Mme : BENBOUZA Naima MA (A) Président MA (A) Encadreur/rapporteur MA (A) Examinateur UKM Ouargla UKM Ouargla UKM Ouargla

Année Universitaire : 2016 /2017

Remercîment

Nous remercions en premier lieu « ALLAH» pour nous avoir donné la force, le courage et la volonté nécessaire pour réaliser ce travail. Et nus tenons à remercier notre encadreur Mr GUEHRAR Youcef pour son soutien et ses conseils. Nos remerciements vont également é tous les personnes qui de loin ou de prés ont contribué à la réalisation de modeste travail. Nous adressons également nos remerciements aux personnels (enseignements et administrateurs) de la Faculté des Sciences appliquées et en particulier ceux du département de Génie Electrique

Dédicaces

C'est tout plein de joie que je dédie ce travail à ceux qui m'ont été une source d'inspiration et de volonté.

A ma mère et mon père pour leurs encouragements et conseils durant la période de mes études. Je le dédie à mes très chers frères et sœurs. A toute ma grande famille (BOUARGUIA) et (CHIHI).

Une dédicace à tous mes amis, ET pour tous ceux qui me connaissent .

Une dédicace spéciale à tous mes amis, sans oublier les habitants de mon village . A la fin je dédie très chaleureusement ce mémoire

À mon binôme.

Dédicaces

C'est tout plein de joie que je dédie ce travail à ceux qui m'ont été une source d'inspiration et de volonté.

A ma mère et mon père pour leurs encouragements et conseils durant la période de mes études . Je le dédie à mes très chers frères et sœurs . A toute ma grande famille (BEN HAMADA) et (ZIDAN).

Une dédicace à tous mes amis, ET pour tous ceux qui me connaissent .

Une dédicace spéciale à tous mes amis, sans oublier les habitants de mon village . A la fin je dédie très chaleureusement ce mémoire

À mon binôme.

Liste des Figures

Chapitre 1

Figure 1.1 : Les différents types de réseau électrique	3
Figure 1.2 : Niveaux de répartition de tension normalisés	. 4
Figure 1.3 : Topologie des réseaux	5
Figure 1.4 : Exemple d'une partie d'un réseau de transport	6
Figure 1.5 : Schéma de description des réseaux électriques	7
Figure 1.6 : Schéma de distribution en Antenne	8
Figure 1.7 : Schéma de distribution en Coupure d'artère	8
Figure 1.8 : Schéma de distribution en double dérivation	9

Chapitre 2

Figure 2.1 : Modèle de ligne	11
Figure 2.2 : Modèle de charge	11
Figure 2.3 : Réseau de distribution à n nœuds	13
Figure 2.4 : Schéma unifilaire d'un réseau de distribution radial	25
Figure 2.5 : Représentation de deux jeux de barres	25
Figure 2.6 : Réseau de distribution simple	28

Chapitre 3

Figure.3.1 :Schéma unifilaire de réseau 10 jeux de barres	32
Figure 3.2 : Profile des tensions de réseau de 10 jeux de barres	33
Figure 3.3 :Les pertes active et réactive des branches pour le réseau de 10 JDB	34

Figure 3.4 : Courants des branches actives et réactives pour le réseau de 10 JDB	.34
Figure.3.5 : Schéma unifilaire de réseau 33 jeux de barres	.35
Figure 3.6 : Profile des tensions de réseau de 33 jeux de barres	37
Figure 3.7 : Les pertes active et réactive de réseau de 33 jeux de barres	39
Figure 3.8 : Le courant active et réactive de réseau de 33 jeux de barres	39
Figure.3.9 :Schéma unifilaire de réseau 69 jeux de barres	.40
Figure 3.10 : Profiles de tensions de réseau de 69 jeux de barres	.43
Figure 3.11 : Les pertes active et réactive de réseau de 69 jeux de barres	46
Figure 3.12 : Le courant active et réactive de réseau de 69 jeux de barres	.46

Liste de Tableaux

Chapitre 2

Tableaux 2.1 : Les types des nœuds	.12	2

Chapitre 3

Tableau.3.1 : Solution de l'écoulement de puissance pour le réseau de 10 jeux de barres32
Tableau.3.2 : Les courants et les pertes de réseau de 10 jeux de barres
Tableau.3.3 : Solution de l'écoulement de puissance de réseau de 33 jeux de barres
Tableau.3.4 : Les courants et les pertes de réseau de 33 jeux de barres
Tableau.3.5 : Solution de l'écoulement de puissance de réseau de 69 jeux de barres41
Tableau.3.6 : Les courants et les pertes de réseau de 69 jeux de barres

Liste des abréviations

B : Courants des branches

BCBV: Branch current bus voltage

BFS: Backward et Forward sweep

BIBC: Bus injection Branch Current

- BTA : Base tension classe A
- BTB : Base tension classe B
- GS : Gauss-Seidel
- HTA : Haute tension classe A
- HTB : Haute tension classe B
- J : Jacobin
- JDB : Jeux de barre
- *k* : Nombre de l'itération
- *N* :Nombre total des nœuds du réseau électrique.
- NR : Newton-Raphson
- *P* : Puissance active
- P_{Dm} : Puissances actives demandées par le nœud « m »
- PGm : Puissances actives générées par le nœud« m »
- P_L : Pertes de puissance réactive
- *Q* : La puissance réactive
- Q_{Dm}: Les puissances réactives demandées par le nœud « m »
- Q_{Gm} : Les puissances réactives générées par le nœud« m »
- Q_L : Les pertes de puissance réactive
- S_i : La puissance apparente au nœud « i »
- TBT : trèsbasse tension
- V_i:La tension au nœud « i »
- V_m:La tension au nœud « m »

 $Y_{ii} \hspace{0.1 in}:\hspace{0.1 in} Elément \hspace{0.1 in} diagonal \hspace{0.1 in} de \hspace{0.1 in} la \hspace{0.1 in} matrice \hspace{0.1 in} admittance \hspace{0.1 in} relatif \hspace{0.1 in} au \hspace{0.1 in} nœud \hspace{0.1 in} « \hspace{0.1 in} i \hspace{0.1 in} ».$

 Y_{im} :Elément non diagonal de la matrice admittance relatif à la liaison « i-m »

 $Z_{im} \hspace{0.1 in}: L'impédance \hspace{0.1 in} de \hspace{0.1 in} ligne \hspace{0.1 in} entre \hspace{0.1 in} le \hspace{0.1 in} nœud \hspace{0.1 in} «\hspace{0.1 in} n \gg$

 δ :Angle de phase de la tension

α:Cœfficient d'accélération de convergence

 θ : Angle d'admittance

 β_{im} : Succeptence

 ρ_{im} : Conductance

Sommaire

Liste des Figures	
Liste des Tableaux	
Liste des abréviations	
Introduction générale	1
Chapitre 1 : Généralités sur les réseaux électriques	
1.1 Introduction	2
1.2 Généralités sur les réseaux électriques	2
1.3 Les niveaux de tensions des réseaux	3
1.4 Topologie des réseaux	4
1.5 Description des réseaux électriques	5
1.5.1 Le réseau de transport HTB	5
1.5.2 Le réseau de répartition HTA	6
1.5.3 Le réseau de distribution BTB	6
1.5.4 Le réseau de livraison BTA	7
1.6 Les principaux schémas de réseau de distribution :	7
1.6.1 Distribution en «Antenne» ou «Simple dérivation»	7
1.6.2 Distribution en «Coupure d'artère» ou en «Boucle»	8
1.6.3 Distribution en « Double dérivation »	9
1.7 Conclusion	9
Chapitre 2 : Les méthodes d'écoulement de puissance	
2.1 Introduction	10
2.2 Modèle des éléments du réseau	10
2.2.1 Modèle de Ligne	10
2.2.2 Modèle de Charge	11
2.2.3 Classification des jeux de barres	11
2.2.3.1 Le jeu de barres de référence (SLACK BUS)	11
2.2.3.2 Les jeux de barres de contrôle (CONTROL BUS)	12
2.2.3.3 Les jeux de barres de charge (LOAD BUS)	12
2.3 Les équation de l'écoulement de puissance :	13
2.3.1 Résolution dès équation de l'écoulement de puissance	15

Résumé	
Références bibliographiques	54
Annexe	49
Conclusion générale	48
3.3 Conclusion	47
3.2.3.1 Discussion réseau de 69 jeux de barres	46
3.2.3 Réseau test 69jdb	40
3.2.2.1 Discussion réseau de 33 jeux de barres	
3.2.2 Keseau test 33jab	
2.2.2.1.1 Discussion rescui de 10 jeux de barres.	······
3 2 1 1 Discussion réseau de 10 jeux de barres	35
3.2.1 Résultats et interprétations pour réseau test 10jdb	
3.2 Résultats et interprétations	32
3.1 Introduction	
Chapitre 3 : Calcul l'écoulement de puissance	
2.4 Conclusion.	
2.3.1.8 Algorithme de (Backward/Forward Sweep)	
2.3.1.7.4 Construction de la Matrice BIBC dans le réseau de distribution	
2.3.1.7.3 Les pertes de nuissances active et réactive	20
2.3.1.7.1 Formulation manifiliarique	23 26
2.3.1./ Methode de (Backward/Forward Sweep)	24
2.3.1.6. Méthode Découplée Rapide	
2.3.1.5 Algorithme de Newton –Raphson	21
2.3.1.4 Méthode De Newton-Raphson	
2.3.1.3 Algorithme de Gauss Seidel	17
2.3.1.2 Méthode de Gauss Seidel avec accélération	16
2.3.1.1. Méthode de Gauss Seidel	15

Introduction générale

Un réseau électrique est l'ensemble des moyens qui sert à transmettre l'énergie électrique d'une région où l'on le produit à une région où l'on le consomme. Le rôle essentiel d'un réseau électrique est d'acheminé les puissances actives et réactives demandées par les équipements variés qui y sont connectés. Les points de production et de consommation sont reliés entre eux par des lignes de transmission.

En effet l'énergie électrique n'étant pas stockable pratiquement, la puissance des générateurs doit à chaque instant être exactement adaptée à la consommation, de sorte que, devant toute variation de la consommation, les générateurs doivent réagirent afin de maintenir cet équilibre.

Nous avons une série de charges à alimenter à partir des générateurs. Tous sont dispersés et reliés entre eux par un réseau de liaison. Les capacités de production des différents générateurs étant connues, comment calculer l'état électrique complet du réseau, c'est-à-direles courants, tensions et puissances ?

Ce problème général est connu sous le nom de calcul de répartition de charges ou l'écoulement de puissance. Ce calcul fait référence à des conditions « normales » de fonctionnement et à un régime établi et il est développé premièrement pour les réseaux de transport.

Les caractéristiques des réseaux de distributions sont différentes de celles des réseaux de transport par exemple les lignes sont courtes de taux R/X élevé, leurs topologies sont radiaux et leurs nombres de jeux de barres sont grandes.

L'objectif de ce mémoire porte en particulier sur l'analyse de l'écoulement de puissance par différents méthodes numériques dans un réseau de distribution d'énergie électrique en utilisant le logiciel « MATLAB ».

Pour atteindre cet objectif, ce mémoire est organisé en trois chapitres. Le premier chapitre, parle sur des généralités des réseaux électriques, les différents types des réseaux et les niveaux de tension...etc. Le deuxième chapitre est consacré à l'étude du problème de l'écoulement de puissance en utilisant les algorithmes de Gauss-Seidel, Newton-Raphson, découple rapide et l'algorithme Backward et Forward sweep. Le troisième chapitre vient pour appliquer ces méthodes sur les réseaux électriques de distribution teste IEEE 10 et 33 et 69 jeux de barres.

Finalement, une conclusion générale récapitulera les principaux résultats de ce travail et apportera quelques perspectives.

1

Chapitre 1

Généralité sur les réseaux électriques

1.1Introduction

L'électricité est une énergie souple et adaptable mais elle est difficilement stockable, alors que la consommation des clients et la coïncidence de la demande sont constamment variables. Le réseau électrique est un « système » très complexe. Il comprend des milliers des composants (générateurs, transformateurs, lignes, contrôleurs, systèmes de protection, entre autres).

Donc dans ce chapitre, des généralités sur les réseaux électrique seront représentés(Production, transport et distribution, les catégories des tensions et les topologies des réseaux).

1.2 Généralités sur les réseaux électriques

La production de l'énergie électrique à proximité des lieux d'utilisation n'est pas toujours possible. Généralement, cette énergie est produite par des groupes de production sous une moyenne tension (15,5 kV ; 12,5 kV ; 11 kV ; 5,5 kV) dans des lieux de plus au moins distants des centres de consommation. Elle est ensuite transformée sous une haute tension (90kV ; 150kV ; 225kV.....) par des transformateurs élévateurs installés à la sortie des générateurs [1].

La totalité de l'énergie produite ou le sur plus disponible est transporté par un ensemble de lignes électriques sous une haute tension sur plusieurs dizaines ou centaines de kilomètres, jusqu'aux centres de consommation ; Elle est de nouveau transformée par des transformatrices abaisseur et distribuée sous une moyenne tension (30kV ; 10 kV....) pour la mettre à la disposition des usagers.Le réseauélectrique est hiérarchisé par niveau de tension, celui-ci est fractionné en trois principales subdivisions à savoir le réseau de transport, de répartition et de distribution (Figure1.1). La notion de frontière peut être définie entre les niveaux de tension du réseau électrique, ces frontières sont assurées par les postes sources et les transformateurs [2].

Figure 1.1 : Les différents types de réseau électrique

1.3 Les niveaux de tensions des réseaux

La nouvelle norme de La Commission électrotechnique internationale CEI (ainsi que les textes législatifs en vigueur en Algérie depuis juin 2002) définissent les niveaux de tension alternative comme suit (Figures 1.2) :

- HTB : pour une tension composée supérieure à 50 kV.
- HTA : pour une tension composée comprise entre 1 kV et 50 kV.
- BTB : pour une tension composée comprise entre 500 V et 1 kV.
- BTA : pour une tension composée comprise entre 50 V et 500 V.
- TBT : pour une tension composée inférieure ou égale à 50 V.

Figure 1.2 : Niveaux de répartition de tension normalisés

1.4 Topologie des réseaux

Les réseaux de transport d'énergie et d'interconnexion sont, par nature, constitués d'ouvrages capables de forts transits et maillés (Figure 1.3). Les liaisons forment des boucles, réalisant ainsi une structure semblable aux mailles d'un filet (Figure 1.3a). Les réseaux de répartition qu'ils alimentent ont fréquemment une structure bouclée (Figure 1.3b) et peuvent alors être exploités soit en boucle fermée, le réseau est dit bouclé, soit en boucle ouverte, le réseau est alors dit débouclé. Certaines alimentations se font aussi en antenne (poste G, Figure 1.3b) ou encore en piquage en prélevant une partie de l'énergie circulant sur une ligne reliant deux postes (poste H, Figure 1.3b) [3].

Ces réseaux de répartition à caractère régional fournissent l'énergie aux réseaux de distribution qui sont des réseaux à moyenne tension assurant l'alimentation d'un grand nombre d'utilisateurs soit directement, soit après transformation en basse tension. Leur configuration et leur mode d'exploitation sont variables. On peut trouver, selon les pays, des réseaux maillés exploités débouclés, des réseaux à structure radiale (Figure 1.3d) ou des réseaux à structure arborescente (Figure 1.3c).

D'une façon générale, ce sont les caractéristiques des sources de production, les besoins des utilisateurs et l'expérience d'exploitation qui, ajoutés à des considérations économiques, conduisent à choisir la structure topologique des réseaux [3].

Figure 1.3 : Topologie des réseaux

1.5 Description des réseaux électriques

1.5.1 Le réseau de transport HTB

C'est généralement le réseau qui permet le transport de l'énergie depuis les centres éloignés de production vers les centres de consommation. C'est sur le réseau HTB que sont en principe branchées les centrales de grandes puissances (> 300 MW).

Les réseaux de transport constituent une vaste grille couvrant le territoire, à laquelle sont raccordées les sources et les utilisations (groupes, transformateurs). Chaque nœud A, B et C (Figure. 1.4) constitue un « poste d'interconnexion ». Ce poste est en général constitué par un collecteur principal appelé « jeu de barres » sur lequel se raccordent les lignes. Les protections de ces réseaux doivent être très performantes. Quant à leur exploitation, elle est assurée au niveau national par un centre de conduite ou dispatching à partir duquel l'énergie électrique est surveillée et gérée en permanence [3].

Figure 1.4 : Exemple d'une partie d'un réseau de transport

1.5.2 Le réseau de répartition HTA

La finalité de ce réseau est avant tout d'acheminer l'électricité du réseau de transport vers les grands centres de consommation qui sont :

• Soit du domaine public avec l'accès au réseau de distribution HTA.

• Soit du domaine privé avec l'accès aux abonnés à grande consommation (supérieure à 10 MVA) livrés directement en HTA. Il s'agit essentiellement d'industriels tels la sidérurgie, la cimenterie, la chimie, le transport ferroviaire,... [4]

La structure de ces réseaux est généralement de type aérien (parfois souterrain à proximité de sites urbains).

1.5.3 Le réseau de distribution BTB

Les utilisateurs peuvent être groupés d'une façon très dense comme dans les villes ou bien séparés les uns des autres par des distances plus ou moins grandes comme dans les campagnes. Ils sont desservis par un réseau de distribution alimenté par un poste de répartition qui reçoit l'énergie, provenant de centrales éloignées, par l'intermédiaire du réseau de transport. Des lignes de distribution à moyenne tension (MT) partent des postes de répartition et alimentent des postes de transformation répartis en différents endroits de la zone à desservir ; ces postes de transformation abaissent la tension à une valeur convenable pour alimenter le réseau de distribution publique auquel les abonnés sont raccordés par des branchements [3].

1.5.4Le réseau de livraison BTA

C'est le réseau qui nous est en principe familier puisqu'il s'agit de la tension 400/230 V (380/220 en Algérie). Nous le rencontrons dans nos maisons via la chaîne : compteur, disjoncteur, fusibles (micro disjoncteurs).La finalité de ce réseau est d'acheminer l'électricité du réseau de distribution MT aux points de faible consommation dans le domaine public avec l'accès aux abonnés BT. Il représente le dernier niveau dans une structure électrique [3].

Figure 1.5 : Schéma de description des réseaux électriques

1.6Les principaux schémas de réseau de distribution :

Les réseaux de distribution ont comme point de départ les postes sources. Ils comportent des transformateurs HTB/HTA à partir desquels la HTB est distribuée en triphasé sans neutre et entre 5 et 33 kV.

Les transformateurs HTB/HTA peuvent être couplés. En aval des transformateurs, la partie HTA est constituée de cellules « arrivée », « couplage » et « départ ».

A partir de ces départs, on réalise des schémas (selon les besoins de continuité de service et de contraintes de coût) :

- 1. en « Antenne » ou « Simple dérivation»,
- 2. en « Boucle » ou « Coupure d'Artère »,
- 3. en « Double dérivation »,

1.6.1 Distribution en «Antenne» ou «Simple dérivation»

Il est principalement utilisé dans les zones rurales, en réseau aérien. En cas de défaut sur un tronçon de câble ou dans un poste, les utilisateurs sont privés d'alimentation le temps de la réparation.

7

Figure 1.6 : Schéma de distribution en Antenne

1.6.2 Distribution en «Coupure d'artère» ou en «Boucle»

Il est utilisé en zone urbaine. En cas de défaut sur un tronçon de câble ou dans un poste, on isole le tronçon en défaut par l'ouverture des 2 appareils de protection ou de sectionnement qui l'encadrent et on réalimente la boucle en refermant le disjoncteur.

Figure 1.7 : Schéma de distribution en Coupure d'artère

1.6.3 Distribution en « Double dérivation »

Il est utilisé pour assurer une continuité de service optimale. En cas de défaut sur l'une des lignes, l'alimentation de l'abonné est permutée sur la seconde.

Les deux arrivées sont différentes mais peuvent être issues du même poste source. On ne peut se connecter sur les deux arrivées en même temps grâce au verrouillage mécanique présent entre A1 & A2.Il est possible que la seconde arrivée (ou la troisième) soit un groupe électrogène(diesel, gaz, autre).

Figure 1.8 : Schéma de distribution en double dérivation

1.7Conclusion

Des généralités sur les réseaux électriques sont discutées dans ce chapitre comme les différents types de réseau électrique (Transport, répartition et distribution), les niveaux de tension(HTA-HTB-BTA-BTA-BTB-TBT), et également la topologie de ces réseaux.

Le deuxième chapitre sera consacré à l'étude des méthodes numériques pour le calcul de l'écoulement de puissance dans les réseaux de distribution.

Chapitre 2 Les méthodes d'écoulement de puissance

2.1 INTRODUCTION :

Le calcul de l'écoulement de puissance est l'outil de base pour déterminer l'état du réseau en régime statique. Le problème est de déterminer l'angle et l'amplitude de la tension dans chaque nœud du réseau pour ensuite déduire l'écoulement de puissance sur les lignes en fonction des différentes puissances consommées par les clients ou injectées par les générateurs. Les équations du calcul de l'écoulement de puissance sont non-linéaires de sorte qu'il est nécessaire d'utiliser des méthodes itératives pour résoudre numériquement ces équations et trouver les différents paramètres comme :

- Le courant dans chaque branche.

- La puissance transitée dans chaque branche.

- Les pertes totales de puissance active et réactive dans le réseau.

- La tension de chaque jeu de barres.

Dans ce chapitre, nous allons présenter les méthodes du calcul de l'écoulement de puissance dans le réseau de distribution comme : la méthode de Gauss Seidel, la méthode Newton-Raphson, la méthode découplé rapide et la méthode Backward-forwardSweep.

2.2Modèle des éléments du réseau:

2.2.1 Modèle des Lignes :

La meilleure façon de présenter une ligne de transport est le schéma en « π » symétrique(quel que soit le sens de parcours de la puissance, l'impédance vue du nœud i est la même que celle vue du nœud m). Qui se compose d'une impédance série (résistance *R* en série avec une réactance inductive *X*), et une admittance shunt qui consiste une suscetance capacitive B(due à l'effet capacitif de la ligne avec la terre)[6].

Les lignes des distributions sont des lignes courtes donc elles sont modélisées par leurs impédances séries seulement.

Figure 2.1 : Modèles de ligne

2.2.2 Modèle de Charge :

Les charges représentent les consommateurs connectés au réseau. Elles correspondent à des injections négatives aux nœuds. Les charges sont modélisées par des puissances constantes indépendantes de la tension nodale :

Figure 2.2 : Modèle de charge

2.2.3Classification des jeux de barres :

Il y a quatre grandeurs fondamentales associées à chaque jeu de barres *i* du réseau, à savoir le module de tension $|V_i|$, la phase de tension δ_i , la puissance active injectée P_i et la puissance réactive injectée Q_i . Pour chaque jeu de barres, deux variables doivent être spécifiées au préalable et les deux autres sont à calculer [8]. Dans l'analyse de l'écoulement de puissance, les jeux de barres du système sont classés en trois catégories.

2.2.3.1 Le jeu de barres de référence (SLACK BUS)

On l'appelle aussi le jeu de barres balancier ou swing bus, c'est un élément fictif crée pour l'étude de la répartition de la puissance, il a pour rôle de fournir la puissance supplémentaire nécessaire pour compenser les pertes de transmission, car celles- ci ne sont pas connues d'avance.

D'une façon générale et par convention ce jeu de barres est identifié par le jeu de barres $N^{\circ} = 1$ connecté à une source de tension d'où le module V et la phase (δ) de la tension sont connues, (généralement |V| = 1pu et $\delta = 0$) °.Les puissances active (P) et réactive (Q) sont donc inconnues et doivent être calculées après avoir résoudre le problème de l'écoulement de puissance.

2.2.3.2 Les jeux de barres de contrôle (CONTROL BUS)

Pour ce type de jeux de barre, on associe les centrales de production. On spécifie la puissance active et le module de la tension. Les variables à déterminer sont la phase de la tension et la puissance réactive. Les réseaux de distribution ne sont pas conçus pour avoir ce type de jeu de barre.

2.2.3.3 Les jeux de barres de charge (LOAD BUS)

Appelés aussi les jeux de barres (PQ), Pour ce type de jeux de barre, on associe généralement les charges. Ces dernières sont caractérisées par la consommation des puissances active et réactive. On peut aussi associer des générateurs avec des puissances active et réactive fixées. Les variables à déterminer sont le module et la phase de la tension. Ces jeux de barres sont utilisés dans les réseaux de distribution.

Pour simplifier les calculs de l'écoulement de puissance, il est commode de représenter les charges par leur puissance active et réactives ; les autres variantes qui permettent de les déterminer sont aussi valables (facteur de puissance, courant etc.)

Types de nœuds	Données	Inconnus
Nœuds producteurs	P et V	Q et δ
Nœuds consommateurs	P et Q	$ V $ et δ
Nœud de bilan	$ V $ et δ	P et Q

Tableaux 2.1 : Les types des nœuds

2.3 Les équations de l'écoulement de puissance :

Le problème de l'écoulement de puissance consiste à calculer les tensions du réseau électrique pour des extrémités spécifiées et des conditions données aux jeux de barres. Il est énoncé par la spécification des charges en MW et en MVar qui doivent être alimentées à certains jeux de barres et par les puissances générées et les modules de tension aux restes des jeux de barres. Une description totale de la topologie du système en utilisant leurs impédances (admittances) est nécessaire. Les tensions calculées sont utilisées pour déterminer toutes les autres grandeurs telles que les courants dans les lignes de transport, les puissances et les pertes de puissances [6].

La formulation mathématique du problème de répartition de charges part des données du diagramme unifilaire du réseau et sa topologie Ainsi, en général Considère le schéma représentatif du réseau suivant :

Figure 2.3 : Réseau de distribution à n nœuds

La puissance apparente au nœud « i » est donnée par la relation suivante[6] :

$$S_i^* = V_i^* I_i \tag{2.1}$$

$$S_I = S_{Gi} - S_{Di} = (P_{Gi} - P_{Di}) + j(Q_{Gi} - Q_{Gi})$$
(2.2)

L'expression de la tension au nœud « i » et au nœud « m » sous sa forme trigonométrique est :

$$V_i = |V_i|e^{j\delta_i} \tag{2.3}$$

Le courant au nœud « i » est la somme du produit de ses admittances mutuelles avec les autres nœuds, et la tension en ces nœuds :

$$I_{i} = \sum_{m=1}^{N} |Y_{im}| |V_{m}| \angle (\delta_{m} + \theta_{im})$$
(2.4)

L'admittance de la branche « i-m » est donnée par l'expression

$$Y_{im} = \rho_{im} + j\beta_{im} \tag{2.5}$$

En remplaçant l'expression du courant, l'équation (2.1) peut d'écrire :

$$S_i^* = P_i - jQ_i = |V_i| \angle -\delta_i \sum_{m=1}^N |Y_{im}| |V_m| \angle (\delta_m + \theta_{im})$$
 (2.6)

En séparant la partie réelle et la partie imaginaire de l'équation (2.6) on aura l'équation (2.7) des puissances actives et l'équation (2.8) des puissances réactives au jeu de barres « i »

$$P_{i} = \sum_{m=1}^{N} |V_{i}||V_{m}||Y_{im}| \cos(\theta_{im} - \delta_{i} + \delta_{m})$$
(2.7)

$$Q_{i} = -\sum_{m=1}^{N} |V_{i}||V_{m}||Y_{im}| \sin(\theta_{im} - \delta_{i} + \delta_{m})$$
(2.8)

Ce sont des équations non linéaires qui ne peuvent être résolues par des méthodes analytiques. La solution est obtenue par des méthodes numériques.

Les équations de circulation de puissances relient tension et puissance au lieu de tension et courant.

Dans les deux équations du système, le déphasage intervient par une différence de phases. Si P_{Gm} et Q_{Gm} désignent respectivement les puissances actives et réactives générées par le nœud« m », et si P_{Dm} et Q_{Dm} désignent respectivement les puissances actives et réactives demandées par le nœud « m », nous définissons « les pertes de puissance active P_L et les pertes de puissance réactive Q_L » comme étant :

$$P_L = \sum_{i \neq m}^{N} [(P_{Gi} + P_{Gm}) - (P_{Di} + P_{Dm})]$$
(2.9)

$$Q_L = \sum_{i \neq m}^{N} [(Q_{Gi} + Q_{Gm}) - (Q_{Di} + Q_{Dm})]$$
(2.10)

Si $P_L = 0$, Q_L est maximal on a affaire alors à une ligne d'impédance purement réactive (inductive ou capacitive).

Quand les pertes de puissance réactive Q_L sont négatives, la ligne fournit de la puissance réactive au réseau.

2.3.1 Résolution dès équation de l'écoulement de puissance :

N 7

2.3.1.1 Méthode de Gauss Seidel :

La méthode de GAUSS-SEIDEL est l'une des plus simples méthodes itératives utilisées pour la résolution du problème de l'écoulement de puissance ou généralement pour la résolution d'un ensemble très large d'équations algébriques non linéaires. Cette méthode consiste à enlever séquentiellement chaque nœud et actualiser sa tension en fonction des valeurs disponibles de toutes les tensions des autres nœuds :

Pour un système à plusieurs variables, la méthode de Gauss-Seidel utilise, à chaque itération, la valeur la plus récente calculée.

 Y_{ii} : est l'élément diagonal de la matrice admittance relatif au nœud« i », et est égal à la somme de toutes les admittances élémentaires et shunt aboutissant à ce nœud.

 Y_{im} : est l'élément non diagonal de la matrice admittance, relatif à la liaison « i-m », et est égal à l'admittance élémentaire de cette liaison précédée du signe (-)

 $y_{im}^{"}$: Susceptance.

$$Y_{ii} = \sum_{i \neq m}^{N} y_{im} + \sum_{m=1}^{N} \frac{y_{im}^{"}}{2}$$
(2.11)

$$Y_{im} = -y_{im} \qquad i \neq m \tag{2.12}$$

Ou encore le processus de Gauss Seidel:

$$V_i^{(k+1)} = \frac{1}{Y_{ii}} \left[\frac{(P_i - jQ_i)}{V_i^{*(k)}} + \sum_{\substack{i=1\\m \neq i}}^{i-1} Y_{im} V_m^{(k)} + \sum_{\substack{m=i+1\\m \neq i}}^{N} Y_{im} V_m^{(k)} \right]$$
(2.13)

Pour les expressions des puissances actives et réactives, elles sont calculées à partir des deux expressions ci-après respectivement.

$$P_i^{(k+1)} = \Re \left[V_i^{*(k)} \left[V_i^{(k)} Y_{ii} - \sum_{\substack{i=1\\m \neq i}}^{i-1} Y_{im} V_m^{(k)} - \sum_{\substack{m=i+1\\m \neq i}}^{N} Y_{im} V_m^{(k)} \right] \right]$$
(2.14)

$$Q_{i}^{(k+1)} = -\Im \left[V_{i}^{*(k)} \left[V_{i}^{(k)} Y_{ii} - \sum_{\substack{i=1\\m \neq i}}^{i-1} Y_{im} V_{m}^{(k)} - \sum_{\substack{m=i+1\\m \neq i}}^{N} Y_{im} V_{m}^{(k)} \right] \right]$$
(2.15)

2.3.1.2 Méthode de Gauss Seidel avec accélération :

La méthode de GAUSS-SEIDEL avec accélération utilise le même processus que celle de GAUSS-SEIDEL sans accélération sauf que la valeur calculée sera accélérée avant d'être introduite dans le calcul de la valeur suivante .La valeur accélérée est calculée à partir de l'expression suivante :

$$V_i^{(k+1)} = V_i^{(k)} + \alpha \times \Delta V_i^{(k+1)}$$
(2.16)

On calcule $\Delta V_i^{(k+1)}$ après chaque itération en utilisant l'expression suivante :

$$\Delta V_i^{(k+1)} = V_i^{(k+1)} - V_i^{(k)}$$
(2.17)

Les calculs s'arrêtent lorsque la condition suivante est vérifiée :

$$\left|\Delta V_i^{(k+1)}\right| \le \varepsilon \tag{2.18}$$

Le coefficient α est dit « cœfficient d'accélération de convergence », et prend généralement la valeur 1,7

2.3.1.3Algorithme de Gauss Seidel[8] :

1^{ere}Etape :

Formation de la matrice admittance [Y]

2^{eme}Etape :

Estimation des valeurs initiales des tensions nodales $V_i^{(0)} = 0$ avec $i = 1, \dots, N$

3^{eme}Etape :

Calcul itératif des tensions pour chaque nœud suivant la relation : (2.13).

On calcul l'écart entre les valeurs d'une même tension trouvé aux itérations suivantes la relation : (2.17)

On introduit le facteur d'accélération α pour réduire le nombre d'itérations la relation : (2.16).

4^{eme}Etape :

Une fois le test de convergence est vérifié $(Max |\Delta V_i^{(k+1)}| \le \varepsilon)$ les valeurs des tensions de la dernière itération sont retenues, on calcule :

Les puissances transitées :

$$S_{im}^* = V_i^* (V_i - V_m) y_{im} + V_i^* V_i \frac{y_{im}}{2}$$
(2.19)

Les pertes dans les lignes :

$$S_{Lim} = S_{im} + S_{mi} \tag{2.20}$$

Les pertes :

$$S_L = \sum_{i=1}^{N} S_{Lim}$$
 (2.21)

Si non aller à l'étape 3.

2.3.1.4 Méthode De Newton-Raphson :

Cette méthode nécessite plus de temps par itération que celle de Gauss-Seidel, alors qu'elle ne demande que quelques itérations même pour les grands réseaux. Cependant, elle requiert des capacités de stockage ainsi que des puissances de calcul importantes. Recopions les équations (2.1), (2.6) et (2.7)Nous savons que :

$$V_i = |V_i|(\cos \delta_i + j \sin \delta_i) \tag{2.22}$$

Après développement de P_i et Q_i en série de Taylor premier ordre(2.23) et (2.24) sont :

$$\begin{cases} P_{i} = P_{i}^{(0)} + \left(\frac{\partial P_{i}}{\partial \delta_{2}}\right)^{(0)} \Delta \delta_{2}^{(0)} + \dots \left(\frac{\partial P_{i}}{\partial \delta_{n}}\right)^{(0)} \Delta \delta_{n}^{(0)} + \left(\frac{\partial P_{i}}{\partial |V_{2}|}\right)^{(0)} \Delta |V_{2}|^{(0)} + \dots \left(\frac{\partial P_{i}}{\partial |V_{n}|}\right)^{(0)} \Delta |V_{2}|^{(0)} \\ Q_{i} = Q_{i}^{(0)} + \left(\frac{\partial Q_{i}}{\partial \delta_{2}}\right)^{(0)} \Delta \delta_{2}^{(0)} + \dots \left(\frac{\partial Q_{i}}{\partial \delta_{n}}\right)^{(0)} \Delta \delta_{n}^{(0)} + \left(\frac{\partial Q_{i}}{\partial |V_{2}|}\right)^{(0)} \Delta |V_{2}|^{(0)} + \dots \left(\frac{\partial Q_{i}}{\partial |V_{n}|}\right)^{(0)} \Delta |V_{2}|^{(0)} \end{cases}$$

A partir de la relation de $\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$:

$$\begin{cases} \Delta P_i^{(0)} = P_i - P_i^{(0)} \\ \Delta Q_i^{(0)} = Q_i - Q_i^{(0)} \end{cases}$$
(2.25)

Avec

C'est un système d'équations non linéaires. La puissance active Pi et la puissance réactive Q_i sontconnues et la tension V_i est inconnue pour tous les jeux de barres excepté le jeu de barre de référence, où la tension est spécifiée et fixée. Ainsi, ce sont2(n-1)équations à résoudre pour trouver la solution de transfert de charges.

La méthode de Newton-Raphson exige que les équations non linéaires soient formées d'expressions liant les puissances et les composantes de la tension.

Ceci se traduit par :

Chapitre 2 : Les méthodes d'écoulement de puissance

$$\begin{bmatrix} \Delta P_{2}^{(0)} \\ \vdots \\ \Delta P_{n} \\ \Delta Q_{2}^{(0)} \\ \vdots \\ \Delta Q_{n}^{(0)} \end{bmatrix} = \begin{bmatrix} \left(\frac{\partial P_{2}}{\partial \delta_{n}} \right)^{(0)} \cdots \left(\frac{\partial P_{2}}{\partial \delta_{n}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial P_{n}}{\partial \delta_{n}} \right)^{(0)} \cdots \left(\frac{\partial P_{n}}{\partial \delta_{n}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{1}}{\partial V_{2}} \right)^{(0)} \cdots \left(\frac{\partial Q_{2}}{\partial \delta_{n}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \cdots \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \cdots \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \cdots \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \cdots \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \cdots \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \cdots \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \cdots \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \\ \vdots \\ \left(\frac{\partial Q_{2}}{\partial V_{2}} \right)^{(0)} \\ \vdots$$

Où le dernier jeu de barre est le jeu de barre de référence. La forme de la matrice est:

$$\begin{bmatrix} \Delta P^{(0)} \\ \Delta Q^{(0)} \end{bmatrix} = \begin{bmatrix} J^{(0)} \end{bmatrix} \begin{bmatrix} \Delta \delta^{(0)} \\ \Delta |V|^{(0)} \end{bmatrix}$$
(2.27)

Ou encore :

$$\begin{bmatrix} \Delta \delta^{(0)} \\ \Delta |V|^{(0)} \end{bmatrix} = \begin{bmatrix} J^{(0)} \end{bmatrix}^{-1} \cdot \begin{bmatrix} \Delta P^{(0)} \\ \Delta P^{(0)} \end{bmatrix}$$
(2.28)

On rappelle que :

$$\Delta \delta^{(k)} = \delta_i^{(k+1)} - \delta_i^{(k)} \tag{2.29}$$

$$\Delta |V_i|^{(k)} = |V_i|^{(k+1)} - |V_i|^{(k)}$$
(2.30)

L'adaptation (2.28) avec (2.30) donne :

$$\begin{bmatrix} \delta_i^{(k+1)} \\ |V_i|^{(k+1)} \end{bmatrix} = \begin{bmatrix} \delta_i^{(k)} \\ |V_i|^{(k)} \end{bmatrix} + \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}$$
(2.31)

$$\begin{bmatrix} \delta_i^{(k+1)} \\ |V_i|^{(k+1)} \end{bmatrix} = \begin{bmatrix} \delta_i^{(k)} \\ |V_i|^{(k)} \end{bmatrix} + \begin{bmatrix} J^{(k)} \end{bmatrix}^{-1} \cdot \begin{bmatrix} \Delta P^{(k)} \\ \Delta P^{(k)} \end{bmatrix}$$
(2.32)

En remplacent l'expression de l'équation (2.28) dans l'équation ci-dessus on aura :

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix}$$
(2.33)

Avec

$$[J] = \begin{bmatrix} J1 & J2\\ J3 & J4 \end{bmatrix}$$
(2.34)

J1, J2, J3 et J4 Les éléments du Jacobéenne.

Détermination Les éléments de Jacobéenne(Ji)

Les éléments de J1 :

L'élément diagonal :

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{i \neq m}^n |V_i| |V_m| |Y_{im}| \sin(\theta_{im} - \delta_i + \delta_m), \qquad (2.35)$$

L'élément non diagonal :

$$\frac{\partial P_i}{\partial \delta_m} = -|V_i||V_m||Y_{im}|\sin(\theta_{im} - \delta_i + \delta_m), i \neq m$$
(2.36)

Les éléments de J2 :

L'élément diagonal :

$$\frac{\partial P_i}{\partial |V_i|} = 2|V_i||Y_{ii}|\cos(\theta_{ii}) + \sum_{i\neq m}^N |V_m||Y_{im}|\cos(\theta_{im} - \delta_i + \delta_m) \quad (2.37)$$

L'élément non diagonal :

$$\frac{\partial P_i}{\partial |V_m|} = |V_i| |Y_{im}| \cos(\theta_{im} - \delta_i + \delta_m), i \neq m$$
(2.38)

Les éléments de J3 :

L'élément diagonal :

$$\frac{\partial Q_i}{\partial \delta_i} = \sum_{i \neq m}^n |V_i| |V_m| |Y_{im}| \cos(\theta_{im} - \delta_i + \delta_m)$$
(2.39)

L'élément non diagonal :

$$\frac{\partial Q_i}{\partial \delta_m} = -|V_i||V_m||Y_{im}|\cos(\theta_{im} - \delta_i + \delta_m), i \neq m$$
(2.40)

Les éléments de J4 :

L'élément diagonal :

$$\frac{\partial P_i}{\partial |V_i|} = -2|V_i||Y_{ii}|\sin(\theta_{ii}) - \sum_{\substack{m=1\\i\neq m}}^N |V_m||Y_{im}|\cos(\theta_{im} - \delta_i + \delta_m) \quad (2.41)$$

L'élément non diagonal :

$$\frac{\partial P_i}{\partial |V_i|} = -|V_m||Y_{im}|\sin(\theta_{im} - \delta_i + \delta_m), i \neq m$$
(2.42)

2.3.1.5 Algorithme de Newton – Raphson [8] :

1ere Etape :

Introduction des données du réseau.

2 D

Détermination de la matrice admittance.

Les puissances actives et réactives des charges du réseau sont données dans le tableau de planification

2^{eme}Etape :

Calcul des puissances actives P_i et réactives Q_i pour i = 1 à (n - 1), à l'exception du nœud de référence.

3^{eme} Etape :

Puisque les valeurs des puissances planifiées sont données par le tableau de planification, on peut calculer les variations de puissance telles que :

$$\begin{cases} \Delta P_i^{(k)} = P_{ip} - P_i^{(k)} \\ \Delta Q_i^{(k)} = Q_{ip} - P_i^{(k)} \end{cases}$$
(2.43)

4^{eme} Etape : On détermine la variation maximale pour les variations des puissances :

$$Max\Delta P_i$$
 et $Max\Delta Q_i$.

5^{eme}Etape :

On procède à un test de convergence pour le max de ΔP_i et ΔQ_i .Si une de ces deux valeurs est supérieure à une certain tolérance (ε) on passe au calcul du jacobéenne (J).

6^{eme}Etape :

On se retrouve avec un système d'équations non linéaires dont la résolution est faite par la matrice inverse. Les corrections sur les composantes des tensions sont déterminées pour chaque nœud.

7^{eme}Etape :

Les corrections sur les tensions sont utilisées pour déterminer les nouvelles estimations des tensions nodales comme suit :

$$\begin{cases} \delta_{i}^{(k+1)} = \delta_{i}^{(k)} + \Delta \delta_{i}^{(k)} \\ \left| V_{i}^{(k+1)} \right| = \left| V_{i}^{(k)} \right| + \Delta \left| V_{i}^{(k)} \right| \end{cases}$$
(2.44)

8^{eme}Etape :

Les nouvelles valeurs de $(\delta_i^{(k+1)} \text{ et } | V_i^{(k+1)} |)$ sont remplacées dans les formules des puissances P_i et Q_i et on revient à l'étape (3) pour refaire le processus itératif. La fin du processus itératif se fait lorsque les variations des puissances à savoir : ΔP_i et ΔQ_i deviennent inférieures à la précision (ε).

2.3.1.6. Méthode Découplée Rapide :

En observant la valeur numérique des éléments du Jacobéenne utilisé dans plusieurs systèmes, on découvre que les éléments de J_1 et J_4 sont invariablement beaucoup plus grands que ceux de J_2 et J_3 . Et, en se basant sur les découplés ($P\delta$) et (QV), on peut supposer que J_2 et J_3 à partir de cela, on peut avoir deux systèmes d'équations linéaires indépendantes pour chaque itération

On calcule les éléments du Jacobéenne J_2 :

$$\frac{\partial P_i}{\partial |V_m|} = |V_i| |Y_{im}| \cos(\theta_{im} - \delta_i + \delta_m)$$

$$\theta_{im} \approx 90^\circ \quad \delta_i \approx \delta_m$$

$$\frac{\partial P_i}{\partial |V_m|} \approx |V_i| |Y_{im}| \cos(90^\circ) = 0$$
(2.45)

On calcule les éléments du Jacobéenne J_3 :

$$\frac{\partial Q_i}{\partial |\delta_m|} = -|V_i||V_m||Y_{im}|\cos(\theta_{im} - \delta_i + \delta_m)$$

$$\theta_{im} \approx 90^\circ \quad \delta_i \approx \delta_m$$

$$\frac{\partial Q_i}{\partial |\delta_m|} = -|V_i||V_m||Y_{im}|\cos(90^\circ) = 0$$
(2.46)

Par conséquent, les sous matrices du Jacobéenne J_2 et J_3 sont nulles.

2-

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} J_1 & 0 \\ 0 & J_4 \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix} \implies \Delta Q = J_4 \Delta |V| = \frac{\partial Q}{\partial |V|} \Delta |V|$$
(2.47)

Il nous reste à calcule les éléments du Jacobéenne J_1 et J_4

On calcule du Jacobéenne J₁:

L'élément diagonal :

$$\frac{\partial P_i}{\partial \delta_i} = \sum_{\substack{m=1\\m\neq i}}^N |V_i| |V_m| |Y_{im}| \sin(\theta_{im} - \delta_i + \delta_m) - |V_i|^2 |Y_{ii}| \sin(\theta_{ii})$$

$$\frac{\partial P_i}{\partial \delta_i} = -|V_i|^2 |Y_{ii}| \sin(\theta_{ii}) - Q_i \operatorname{Avec} Q_i = \sum_{m=1}^N |V_i| |V_m| |Y_{im}| \sin(\theta_{im} - \delta_i + \delta_m)$$
(2.48)

$$|Y_{ii}|\sin(\theta_{ii}) = B_{ii} \quad et \quad B_{ii} \gg Q_i \quad et \quad \frac{\partial P_i}{\partial \delta_i} = -|V_i|^2 B_{ii}$$
$$|V_i|^2 \approx |V_i| \quad \Rightarrow \frac{\partial P_i}{\partial \delta_i} = -|V_i| B_{ii}$$

L'élément non diagonal :

$$\frac{\partial P_i}{\partial \delta_m} = -|V_i| \cdot |V_m| \cdot |Y_{im}| \cdot \sin(\theta_{im} - \delta_i + \delta_m)$$

$$\delta_m - \delta_i \approx 0 \quad |V_m| = 1$$

$$Y_{im} |\sin(\theta_{im}) = B_{im} \quad \Rightarrow \frac{\partial P_i}{\partial \delta_m} = -|V_i| B_{im}$$
(2.49)

On calcule les éléments du Jacobéenne J_4 :

L'élément diagonal :

$$\frac{\partial Q_i}{\partial |V_i|} = -|V_i||Y_{ii}|\sin(\theta_{ii}) + \sum_{m=1}^N |V_i||V_m||Y_{im}|\sin(\theta_{im} - \delta_i + \delta_m)$$
$$\frac{\partial Q_i}{\partial |V_i|} = -|V_i| \cdot |Y_{ii}| \cdot \sin(\theta_{ii}) + Q_i$$
(2.50)

$$|Y_{ii}|\sin(\theta_{ii}) = B_{ii} \gg Q_i \qquad \Rightarrow \frac{\partial Q_i}{\partial |V_i|} = -|V_i| \cdot B_{ii}$$

L'élément non diagonal :

$$\frac{\partial Q_i}{\partial |V_m|} = -|V_i| \cdot |Y_{im}| \cdot \sin(\theta_{im} - \delta_i + \delta_m)$$

$$\delta_m - \delta_i \approx 0$$

$$\frac{\partial Q_i}{\partial |V_m|} = -|V_i||Y_{im}| \sin(\theta_{im})$$

$$|Y_{im}| \sin(\theta_{im}) = B_{im} \quad \Rightarrow \quad \frac{\partial Q_i}{\partial |V_m|} = -|V_i|B_{im}$$

(2.51)

Les équations de changement de puissance individuel dans J_1 et J_4 sont :

$$\Delta P_{i} = \sum_{m=1}^{N} -|V_{i}|B_{im}\Delta\delta_{i} \qquad \Rightarrow \frac{\Delta P_{i}}{|V_{i}|} = \sum_{m=1}^{N} -B_{im}\Delta\delta_{i}$$

$$(2.52)$$

$$\Delta Q_{i} = \sum_{m=1}^{N} -|V_{i}|B_{im}\Delta|V_{i}| \qquad \Rightarrow \frac{\Delta Q_{i}}{|V_{i}|} = \sum_{m=1}^{N} -B_{im}\Delta|V_{i}|$$

$$\left[\begin{array}{c} \frac{\Delta P}{|V_{i}|} = -B'\Delta\delta \qquad \Rightarrow \Delta\delta = -[B']^{-1}\frac{\Delta P}{|V|} \\ \frac{\Delta Q_{i}}{|V_{i}|} = -B''\Delta|V| \qquad \Rightarrow \Delta|V| = -[B'']^{-1}\frac{\Delta Q}{|V|} \end{array}\right]$$

$$(2.53)$$

B' Et B'': leparte imaginer du matrix de l'admittance

2.3.1.7 Méthode de (Backward/Forward Sweep):

Cette méthode comprend deux étapes : le balayage vers l'arrière et le balayage vers l'avant. Dans le balayage vers l'arrière, la tension et les courants sont calculés en utilisant loi de Kirchhoff de tentions et loi de Kirchhoff de courent à partir du nœud le plus éloigné du nœud source. Dans le balayage vers l'avant, la tension aval est calculée à partir du nœud source. Les données d'entrée de cet algorithme sont données par des données orientées par nœud. Les données de base requises sont des puissances actives et réactives, la nomenclature des nœuds d'émission et de réception et un modèle d'impédance de séquence positive pour toutes les branches.

2.3.1.7.1 Formulation mathématique [10] :

Considérons un réseau de distribution avec une configuration radiale constitué d'un ensemble de branches. Chaque branche de ce réseau est modélisée comme une résistance en série avec une inductance pure.

Figure 2.4 : Schéma unifilaire d'un réseau de distribution radial L'impédance d'une branche « i » quelconque de ce réseau s'écrit comme suit :

Figure 2.5 : Représentation de deux jeux de barres

Les puissances active et réactive transitées du jeu de barres « i » au jeu de barres « i+1 » peuvent être calculées comme suit :

$$P_{i} = P_{i+1}' + R_{i} \frac{P_{i+1}'^{2} + Q_{i+1}'^{2}}{V_{i+1}^{2}}$$
(2.54)

$$Q_i = Q'_{i+1} + X_i \frac{P'^2_{i+1} + Q'^2_{i+1}}{V^2_{i+1}}$$
(2.55)

Où :

$$P_{i+1}' = P_{i+1} + P_{Li+1} \tag{2.56}$$

$$Q_{i+1}' = Q_{i+1} + Q_{Li+1} \tag{2.57}$$

 P_{Li+1} Et Q_{Li+1} sont les puissances actives et réactive de la charge au niveau du jeu de barres «i+1»

 $P_i \text{Et}Q_i$ sont les puissances active et réactive sortantes du jeu de barres « i » Le courant traversant la branche « i » s'écrit comme suit :

$$I_i = \frac{(V_i \angle \delta_i - V_{i+1} \angle \delta_{i+1})}{R_i + jX_i}$$
(2.58)

2.3.1.7.2 Amplitude et angle de la tension au niveau de chaque jeu de barres :

D'après la figure 2.5, le courant dans la branche (i, i + 1) s'écrit de deux façons :

$$\begin{cases}
I_i = \frac{P_i - jQ_i}{V_i \angle -\delta_i} \\
I_i = \frac{(V_i \angle \delta_i - V_{i+1} \angle \delta_{i+1})}{R_i + jX_i}
\end{cases}$$
(2.59)

En assimilant les équations (2.59), on obtient :

$$\frac{(V_i \angle \delta_i - V_{i+1} \angle \delta_{i+1})}{R_i + jX_i} = \frac{P_i - jQ_i}{V_i \angle - \delta_i}$$
(2.60)

En assimilant les parties réelles et imaginaires des deux côtés de l'équation (2.60), on aura :

$$V_i^2 - V_i V_{i+1} \angle (\delta_{i+1} - \delta_i) = (P_i - jQ_i)(R_i + jX_i)$$
(2.61)

$$\begin{cases} V_i V_{i+1} \cos(\delta_{i+1} - \delta_i) = V_i^2 - (P_i R_i + Q_i X_i) \\ V_i V_{i+1} \sin(\delta_{i+1} - \delta_i) = Q_i R_i - P_i X_i \end{cases}$$
(2.62)

En élevant les deux côtés des équations (2.62) à la puissance 2, on obtient

$$\begin{cases}
(V_i V_{i+1})^2 \cos(\delta_{i+1} - \delta_i)^2 = [V_i^2 - (P_i R_i + Q_i X_i)]^2 \\
(V_i V_{i+1})^2 \sin(\delta_{i+1} - \delta_i)^2 = (Q_i R_i - P_i X_i)^2
\end{cases}$$
(2.63)

En assemblant les équations (2.63) côté à l'autre, une nouvelle équation est obtenue

$$(V_i V_{i+1})^2 = [V_i^2 - (P_i R_i + Q_i X_i)]^2 + (Q_i R_i - P_i X_i)^2$$
(2.64)

$$V_{i+1}^{2} = V_{i}^{2} - 2(P_{i}R_{i} + Q_{i}X_{i}) + (P_{i}R_{i} + Q_{i}X_{i})^{2} + (Q_{i}R_{i} - P_{i}X_{i})^{2}$$
(2.65)

$$V_{i+1}^{2} = V_{i}^{2} - 2(P_{i}R_{i} + Q_{i}X_{i}) + (P_{i}R_{i})^{2} + (Q_{i}X_{i})^{2} + (Q_{i}R_{i})^{2} + (P_{i}X_{i})^{2}$$
(2.66)

Finalement, l'équation de l'amplitude de la tension au niveau de chaque jeu de barres du réseau de distribution radial est obtenue comme suit :

$$V_{i+1} = \left[V_i^2 - 2(P_i R_i + Q_i X_i) + (P_i R_i)^2 + \left(R_i^2 + X_i^2 \right) \frac{\left(P_i^2 + Q_i^2 \right)}{V_i^2} \right]^{1/2}$$
(2.67)

Toujours à partir des équations (2.62), l'angle de tension peut s'écrire :

$$\tan(\delta_{i+1} - \delta_i) = \frac{Q_i R_i - P_i X_i}{[V_i^2 - 2(P_i R_i + Q_i X_i)]}$$
(2.68)

$$\delta_{i+1} = \delta_i - \tan^{-1} \left(\frac{Q_i R_i - P_i X_i}{[V_i^2 - 2(P_i R_i + Q_i X_i)]} \right)$$
(2.69)

2.3.1.7.3 Les pertes de puissances active et réactive [10] :

Les pertes de puissance active au niveau d'une branche « i » de **la figure 2.5** s'écrivent comme suit :

$$P_{Loss,i} = R_i \frac{\left(P_i^2 + Q_i^2\right)}{|V|_i^2} \tag{2.70}$$

Les pertes totales de puissance active dans le réseau peuvent être déterminées en additionnant les pertes de toutes les branches de l'équation (2.70) :

$$P_{T,Loss} = \sum_{i=1}^{N} P_{Loss,i}$$
(2.71)

Les pertes de puissance réactive au niveau d'une branche« i » s'écrivent comme suit :

$$Q_{Loss,i} = X_i \frac{\left(P_i^2 + Q_i^2\right)}{|V|_i^2}$$
(2.72)

Les pertes totales de puissance réactive dans le réseau peuvent être déterminées en additionnant les pertes de toutes les branches de l'équation (2.72) :

$$Q_{T,Loss} = \sum_{i=1}^{N} Q_{Loss,i}$$
(2.73)

2.3.1.7.4 Construction de la Matrice BIBC dans le réseau de distribution :

La méthode repose sur deux matrices dérivées de la topologie du réseau, la matrice *BIBC* (en Anglais Bus injection BranchCurrent) et la matrice *BCBV* (en Anglais BranchCurrent Bus Voltage). Dans cette section, la procédure de l'algorithme est décrite en détail [11].

Figure 2.6 : Réseau de distribution simple

Le terme équivalent de l'injection de courant par phase à l'itération k est dérivé de la puissance consommée sur le nœud « i » qui est exprimé par :

$$S_i = (P_i + jQ_i), \quad i = 1, ..., N$$
 (2.74)

$$I_i^{\ k} = \left(\frac{P_i + jQ_i}{V_i^{\ k}}\right)^* \tag{2.75}$$

Où S_i est la puissance apparente consommée par la charge de l'une des trois phases (a, b, ou c), composée de P_i et Q_i qui sont respectivement les puissances active et réactive de la charge par phase, N est le nombre de charges V_i^k et I_i^k qui sont respectivement la tension du nœud et l'équivalent d'injection de courant du nœud par phase à l'itération k.

Les courants des branches du réseau peuvent être exprimés en fonction des courants de charges comme suit :

$$B_{1} = I_{2} + I_{3} + I_{4} + I_{5} + I_{6}$$

$$B_{2} = I_{3} + I_{4} + I_{5} + I_{6}$$

$$B_{3} = I_{4} + I_{5}$$

$$B_{4} = I_{5}$$

$$B_{5} = I_{6}$$
(2.76)

Un réseau de distribution est illustré, comme exemple, à *la figure 2.4* Les injections de puissance peuvent être converties en injections de courant équivalent par l'équation (2.77) La relation entre les injections de courant de nœud et les courants de branche sont déterminés par la loi des nœuds ou de courant de Kirchhoff. Les courants de branches peuvent alors être formulés en fonction des différents courants injectés aux nœuds. Par conséquent, cette relation peut être exprimée comme :

$$\begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \end{bmatrix} = \begin{bmatrix} 11111 \\ 01110 \\ 00010 \\ 00001 \end{bmatrix} \begin{bmatrix} I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{bmatrix} \to [B] = [BIBC] [I] \qquad (2.77)$$

Où *BIBC* (en Anglais Bus injection Branch Current) est la matrice qui exprime la relation entre le courant injecté au nœud et le courant de branche, B_i , i = 1, 2, ..., 5 est le vecteur des injections de courants de branche« i » $i, I_i, i = 2, 3, ..., 6$ est le vecteur des courants de nœud. Pour le cas est simplement0,1. La matrice *BIBC* est triangulaire supérieure ne contient que des valeurs de 0 et 1.

La tension de nœud peut être exprimée comme une fonction des courants de branche, des paramètres de ligne, et de la tension de référence au niveau du poste source (HTB/HTA). La relation entre les courants de branche et les tensions de nœud, comme obtenue par l'équation (2.78) et (2.79)

Chapitre 2 : Les méthodes d'écoulement de puissance

$$\begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \end{bmatrix} - \begin{bmatrix} V_2 \\ V_3 \\ V_4 \\ V_5 \\ V_6 \end{bmatrix} = \begin{bmatrix} Z_{12} & 0 & 0 & 0 & 0 \\ Z_{12}Z_{23} & 0 & 0 & 0 \\ Z_{12}Z_{23}Z_{34} & 0 & 0 \\ Z_{12}Z_{23}Z_{34}Z_{45} & 0 \\ Z_{12}Z_{23} & 0 & 0 & Z_{36} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \end{bmatrix}$$
(2.78)

$$[\Delta V] = [BCBV][B] \tag{2.79}$$

Où *BCBV* (en Anglais Branch Current Bus Voltage) est la matrice qui représente la relation entre les courants de branches et les tensions des nœuds, V_i , i = 2,3,...,6 est la tension du nœud« i », et Z_{im} est l'impédance de ligne entre le nœud« i » et le nœud«m».

Les matrices *BIBC* et *BCBV* sont élaborées en fonction de la structure topologique du réseau de distribution. En combinant les équations (2.77) et (2.79), la relation entre ces deux matrices peut être exprimée comme :

$$[\Delta V] = [BCBV][BIBC][I]$$
(2.80)

La solution du calcul de répartition de charges est obtenue par une résolution itérative, de l'équation (2.74). La tension est calculée grâce à l'équation de récurrence (2.75) et suivant le critère d'arrêt de l'équation (2.82).

$$\left[V^{k+1}\right] = \left[V^{0}\right] + \left[\Delta V^{k+1}\right] \tag{2.81}$$

$$Max([V^{k+1}] - [V^k]) < \varepsilon$$
(2.82)

2.3.1.8 Algorithme de (Backward/Forward Sweep):

1^{ere}Etape :

Lire les données de réseau.

2^{eme}Etape

Identifier les types des jeux de barres

3^{eme}Etape

Initialiser la tension des tous les jeux de barres à 1 pu

4^{eme}Etape

Détermination la matrice [BIBC]et [BCBV]

5^{eme}Etape

Calcule des courant injecte [I] en applique l'équation (2.75)

6^{eme}Etape

Calculer les courants traversant les branches en applique l'équation (2.77)

7^{eme}Etape

Calculer les nouvelles tensions module et phase au niveau de tous les jeux de barres en appliquant l'équation (2.79)

8^{eme}Etape

Une fois le test de convergence est vérifié les valeurs des tensions de la dernière itération sont retenues, on calcule :

Les pertes de puissance active et réactive dans chaque branche selon les équations (2.70) et (2.72)

Calculer les pertes totales active et réactive selon les équations (2.71) et (2.73) et afficher les résultats finaux.

Si non retourne à l'étape 5.

.2.4 Conclusion :

Dans le présent chapitre, les équations de l'écoulement de puissance sont présentées. Ensuite, la solution de ces équations par des méthodes itératives (Gauss Seidel, Gauss Seidel avec accélération, Newton-Raphson, Découplée Rapide et Backward/Forward Sweep) sont décrites en détail. Des applications de ces méthodes sur des réseaux de distribution seront le siège de chapitre suivant.

Chapitre 3

Calcul l'écoulement de puissance

3.1 Introduction

Dans ce chapitre les méthodes numériques illustrées dans le chapitre 2 seront testés sur des réseaux de distribution pour calculer l'écoulement de puissance et relever les différentes grandeurs (tension, angle de phase, puissance de jeu de barre de référence et les pertes totale actives et réactive). Une comparaison entre ces méthodes sera faite dans ce chapitre.

3.2Résultats et interprétations

Pour tester les méthodes, trois réseaux de distribution ont été utilisés. Il s'agit d'un réseau de 10 jeux de barres donnée par la figure.3.1, d'un réseau de 33 jeux de barres avec trois ramification montrée par la figure.3.5et en fin un réseau de 69 jeux de barres ayant 7 ramifications donnée par la figure.3.9. Les données de ces lignes sont consignées dans les tableaux A1, A2 et A3 de l'annexe 1. [12]

NB :après simulation de ces méthodes nous remarquons que La méthode découplée rapide ne converge pas pour ces types des réseaux, donc elle n'est pas valable pour ces réseaux de distribution.et les résultats ne sont pas représenté dans la suite

3.2.1 Résultats et interprétations pour réseau test 10 JDB

Les caractéristiques du réseau de distribution 10 JDB de la figure 3.1 sont données comme suit :

Nombre de jeux de barres =10 Nombre de branches =9 Jeu de barres de référence N° =0

Tension de base =23kV

Puissance de base = 4186kVA.

Les données du réseau test sont présentées dans l'annexe 1.

Figure.3.1 : Schéma unifilaire de réseau de 10 jeux de barres

Chapitre 3 : Calcul l'écoulement de puissance

	GS		NR		BFS	
JDB	Tension	Angle	Tension	Angle	Tension	Angle
	(pu)	(rad)	(pu)	(rad)	(pu)	(rad)
0	1.0000	0	1.0000	0	1.0000	0
1	0.9929	-0.0092	0.9929	-0.0092	0.9929	-0.0092
2	0.9823	-0.0203	0.9823	-0.0203	0.9823	-0.0203
3	0.9582	-0.0390	0.9582	-0.0390	0.9582	-0.0390
4	0.9427	-0.0447	0.9427	-0.0447	0.9427	-0.0447
5	0.9116	-0.0636	0.9116	-0.0636	0.9116	-0.0636
6	0.9015	-0.0709	0.9015	-0.0709	0.9015	-0.0709
7	0.8832	-0.0794	0.8832	-0.0794	0.8832	-0.0794
8	0.8527	-0.0933	0.8527	-0.0933	0.8527	-0.0933
9	0.8314	-0.1037	0.8314	-0.1037	0.8314	-0.1037
Les pertes de Puissance totales	861.18 1049.7	21 kW kVAr	861.1376 kW 861.13 1049.7 kVAr 1049.7		72 kW kVAr	
Nombre d'itération	4	7	5	5	9	
Temps de calcul	0.03	34 s	0.15	50 s	0.090 s	

Tableau.3.1 : Solution de l'écoulement de puissance pour le réseau de 10 jeux de barres

1.05

Figure 3.2 :Profile des tensions de réseau de 10 jeux de barres

33

L og Propoh og	Courant active	Courant	Perte active	Perte réactive
Les Dranches	(pu)	réactive (pu)	(kW)	(kVAr)
1	3.1603	-1.2508	47.1810	157.9206
2	2.7187	-1.1360	70.9148	174.0088
3	2.4820	-1.0485	179.4690	289.7764
4	2.0404	-0.9200	115.8951	100.9601
5	1.6567	-0.4361	192.7830	167.9451
6	1.2456	-0.2524	48.4378	42.1938
7	1.0415	-0.2087	76.8117	43.5037
8	0.7327	-0.1678	89.7535	50.8353
9	0.4628	-0.1050	39.8916	22.5939

Tableau.3.2 : Les courants et les pertes de réseau de 10 jeux de barres

Figure 3.3 :Les pertes active et réactive des branches pour le réseau de 10 JDB

Figure 3.4 : Courants des branches actives et réactives pour le réseau de 10 JDB

3.2.1.1 Discussion réseau de 10 jeux de barres

Le tableau 3.1et la figure3.2 montrent les résultats de l'écoulement de puissance de réseau de 10 jeux de barres. On observe que la chute de tension maximale est au JDB terminale (JDB9 V=0.8314 pu). Les pertes de puissance totale active et réactive sont respectivement 861.1376 kW et1049.7 kVAr qui correspond respectivement à 6.5 % et 20.05 % de la puissance totale. Les composantes active et réactive du courant sont maximal dans la première branche à(3.1603pu et -1.2508pu). La distributions des pertes de puissance active et réactive dans les branches sont tel indique par la figure.3.3 où on note que la plus grande perte de puissance active (c'est-à-dire 289.7764kVAr)est celle de la branche 3. Ce dernier résultat justifié par les valeurs des courants actifs et réactifs et les valeurs des résistances et réactances des branches.

Le nombre d'itération nécessaire pour atteindre la solution avec une erreur de 10^{-7} est :pour la méthode GS= 47itération, pour la méthode NR=5 itérations et pour la méthode BFS=9 itérations. Le temps de calcul pour GS : 0.034 s, NR : 0.150 s et BFS : 0.090 s

3.2.2 Réseau test 33JDB

Les caractéristiques du réseau de distribution 33 JDB(Figure.3.5) sont données comme suit Nombre de jeux de barres =33

Nombre de branches =32

Jeu de barres de référence $N^\circ = 0$

Tension de base =12.6kV

Puissance de base = 2300kVA.

Les autres données du réseau test sont présentées dans l'annexe 1.

Figure.3.5 : Schéma unifilaire de réseau de 33 jeux de barres

	G	GS		NR BFS		FS
JDB	Tension	Angle	Tension	Angle	Tension	Angle
	(pu)	(rad)	(pu)	(rad)	(pu)	(rad)
0	1.0000	0	1.0000	0	1.000	0
1	0.9971	0.0002	0.9971	0.0002	0.9971	0.0002
2	0.9832	0.0016	0.9832	0.0016	0.9832	0.0016
3	0.9784	0.0016	0.9784	0.0016	0.9784	0.0016
4	0.9737	0.0014	0.9737	0.0014	0.9737	0.0014
5	0.9628	-0.0017	0.9628	-0.0017	0.9628	-0.0017
6	0.9594	-0.0056	0.9594	-0.0056	0.9594	-0.0056
7	0.9459	-0.0082	0.9459	-0.0082	0.9459	-0.0082
8	0.9397	-0.0095	0.9397	-0.0095	0.9397	-0.0095
9	0.9339	-0.0106	0.9339	-0.0106	0.9339	-0.0106
10	0.9330	-0.0104	0.9330	-0.0105	0.9330	-0.0105
11	0.9315	-0.0103	0.9315	-0.0103	0.9315	-0.0103
12	0.9255	-0.0118	0.9255	-0.0118	0.9255	-0.0118
13	0.9232	-0.0132	0.9232	-0.0132	0.9232	-0.0132
14	0.9218	-0.0138	0.9218	-0.0138	0.9218	-0.0138
15	0.9204	-0.0142	0.9204	-0.0142	0.9204	-0.0142
16	0.9184	-0.0156	0.9184	-0.0156	0.9184	-0.0156
17	0.9178	-0.0157	0.9178	-0.0157	0.9178	-0.0157
18	0.9965	0.0000	0.9965	0.0000	0.9965	0.0000
19	0.9930	-0.0011	0.9930	-0.0011	0.9930	-0.0011
20	0.9923	-0.0015	0.9923	-0.0015	0.9923	-0.0015
21	0.9916	-0.0018	0.9916	-0.0018	0.9916	-0.0018
22	0.9762	0.0022	0.9762	0.0022	0.9762	0.0022
23	0.9695	0.0007	0.9695	0.0007	0.9695	0.0007
24	0.9662	-0.0001	0.9662	-0.0001	0.9662	-0.0001
25	0.9623	-0.0017	0.9623	-0.0017	0.9623	-0.0017
26	0.9618	-0.0017	0.9618	-0.0017	0.9618	-0.0017
27	0.9600	-0.0022	0.9600	-0.0022	0.9600	-0.0022
28	0.9590	-0.0024	0.9590	-0.0024	0.9590	-0.0024
29	0.9728	0.0039	0.9728	0.0039	0.9728	0.0039
30	0.9689	0.0025	0.9689	0.0025	0.9689	0.0025

Tableau.3.3 : Solution de l'écoulement de puissance de réseau de 33 jeux de barres

Chapitre 3 : Calcul l'écoulement de puissance

			-			-
31	0.9680	0.0022	0.9680	0.0022	0.9680	0.0022
32	0.9678	0.0021	0.9678	0.0021	0.9678	0.0021
Les pertes de Puissance totales	143.75 94.676	61 kW 0 kVAr	143.81 94.6779	97 kW 9 kVAr	143.81 94.6778	96 kW 8 kVAr
Nombre d'itération	23	236		4		5
Temps de calcul	0.47	70 s	0.48	84 s	0.08	87 s

Figure 3.6 : Profile des tensions de réseau de 33 jeux de barres

Los Bronchos	Courant active	Courant	Perte active	Perte réactive
Les Dranches	(pu)	réactive (pu)	(kW)	(kVAr)
1	1.6770	-1.0412	11.8647	6.1382
2	1.4766	-0.9448	50.0053	25.4692
3	0.7401	-0.3637	8.2146	4.1836
4	0.6867	-0.3283	7.2867	3.7112
5	0.6599	-0.3149	14.2924	12.4750
6	0.4971	-0.2422	1.8893	6.2451
7	0.4067	-0.1963	11.5222	8.3154
8	0.3152	-0.1496	4.1383	2.9731
9	0.2875	-0.1401	3.5113	2.4984

Tableau.3.4 : Les courants et les pertes de réseau de 33 jeux de barres

Chapitre 3 : Calcul l'écoulement de puissance

10	0.2597	-0.1305	0.5481	0.1812
11	0.2389	-0.1163	0.8722	0.2884
12	0.2110	-0.0997	2.6390	2.0763
13	0.1830	-0.0829	0.7217	0.9500
14	0.1270	-0.0445	0.3533	0.3145
15	0.0988	-0.0394	0.2786	0.2034
16	0.0706	-0.0295	0.2490	0.3325
17	0.0423	-0.0196	0.0526	0.0412
18	0.1575	-0.0702	0.1609	0.1536
19	0.1182	-0.0528	0.8321	0.7498
20	0.0788	-0.0352	0.1008	0.1177
21	0.0394	-0.0176	0.0436	0.0577
22	0.6967	-0.5634	11.9572	8.1702
23	0.3774	-0.1796	5.1774	4.0883
24	0.1890	-0.0900	1.2959	1.0140
25	0.1357	-0.0637	0.1505	0.0767
26	0.1086	-0.0523	0.1363	0.0694
27	0.0815	-0.0410	0.2908	0.2564
28	0.0543	-0.0319	0.1053	0.0917
29	0.2792	-0.3617	3.4969	1.7812
30	0.1888	-0.0939	1.4297	1.4130
31	0.1214	-0.0626	0.1913	0.2229
32	0.0270	-0.0179	0.0118	0.0184

Figure 3.7 :Les pertes active et réactive de réseau de 33 jeux de barres

Figure 3.8 :Le courant active et réactive de réseau de 33 jeux de barres

3.2.2.1Discussion réseau de 33 jeux de barres

Le tableau 3.3 et le figure 3.6 montrent les résultats de l'écoulement de puissance de réseaux 33 jeux de barres. On observe que la chute de tension maximale est au JDB 17 (V=0.9178 pu). Les pertes de puissance totale active et réactive de puissance sont de143.8196 kW et94.6778kVAr qui correspond respectivement à 3.73 % et 3.96 % de la puissance totale. Dans la première branche les composantes active et réactive du courant (1.6777 pu et -1.0412 pu). Les distributions des pertes de puissances dans les branches (Figure.3.7) montrent que les plus grandes pertes de puissance active et réactive (50.0053 kW)se passent dans la branche 2 alors que la plus grande perte de puissance réactive égale 25.4692 kVAr est celle de la

branche 2.

Le nombre d'itération nécessaire pour atteindre la solution avec une erreur de 10^{-7} est : pour la méthode GS= 236 itération, pour la méthode NR=4 itérations et pour la méthode BFS=6 itérations. Le temps de calcul pour GS : 0.470 s, NR : 0.484 s et BFS : 0.087 s

3.2.3 Réseau test 69JDB

Les caractéristiques du réseau de distribution 69JDBde la (Figure.3.9) sont données

comme suit :

Nombre de jeux de barres =69

Nombre de branches =68

Jeu de barres de référence N° =0

Tension de base =12.6kV

Puissance de base = 2300kVA.

Les données du réseau test sont présentées dans l'annexe 1.

Figure.3.9 : Schéma unifilaire de réseau de 69 jeux de barres

	G	S	Ν	R	BI	FS
JDB	Tension	Angle	Tension	Angle	Tension	Angle
	(pu)	(rad)	(pu)	(rad)	(pu)	(rad)
0	1.0000	0	1.0000	0	1.0000	0
1	1.0000	-0.0000	1.0000	-0.0000	1.0000	-0.0000
2	0.9999	-0.0000	0.9999	-0.0000	0.9999	-0.0000
3	0.9998	-0.0001	0.9998	-0.0001	0.9998	-0.0001
4	0.9901	0.0010	0.9901	0.0010	0.9901	0.0010
5	0.9889	0.0012	0.9889	0.0012	0.9889	0.0012
6	0.9700	0.0066	0.9700	0.0066	0.9700	0.0066
7	0.9657	0.0078	0.9657	0.0079	0.9657	0.0079
8	0.9502	0.0125	0.9502	0.0125	0.9502	0.0125
9	0.9437	0.0145	0.9436	0.0145	0.9436	0.0145
10	0.9425	0.0148	0.9425	0.0148	0.9425	0.0148
11	0.9408	0.0153	0.9407	0.0153	0.9407	0.0153
12	0.9398	0.0156	0.9398	0.0156	0.9398	0.0156
13	0.9389	0.0159	0.9388	0.0159	0.9388	0.0159
14	0.9388	0.0159	0.9388	0.0159	0.9388	0.0159
15	0.9384	0.0160	0.9383	0.0160	0.9383	0.0160
16	0.9375	0.0163	0.9375	0.0163	0.9375	0.0163
17	0.9361	0.0167	0.9361	0.0167	0.9361	0.0167
18	0.9357	0.0168	0.9356	0.0169	0.9356	0.0169
19	0.9354	0.0169	0.9354	0.0169	0.9354	0.0169
20	0.9354	0.0169	0.9354	0.0169	0.9354	0.0169
21	0.9353	0.0169	0.9353	0.0169	0.9353	0.0169
22	0.9351	0.0169	0.9351	0.0169	0.9351	0.0169
23	0.9351	0.0169	0.9351	0.0170	0.9351	0.0170
24	0.9350	0.0170	0.9350	0.0170	0.9350	0.0170
25	0.9348	0.0170	0.9348	0.0170	0.9348	0.0170
26	0.9346	0.0171	0.9346	0.0171	0.9346	0.0171
27	0.9999	-0.0001	0.9999	-0.0001	0.9999	-0.0001
28	0.9992	0.0002	0.9992	0.0002	0.9992	0.0002
29	0.9992	0.0002	0.9992	0.0002	0.9992	0.0002
30	0.9991	0.0001	0.9991	0.0001	0.9991	0.0001

Tableau.3.5 : Solution de l'écoulement de puissance de réseau de 69 jeux de barres

Chapitre 3 : Calcul l'écoulement de puissance

31	0.9991	0.0001	0.9991	0.0001	0.9991	0.0001
32	0.9991	0.0001	0.9991	0.0001	0.9991	0.0001
33	0.9991	0.0001	0.9991	0.0001	0.9991	0.0001
34	0.9990	0.0001	0.9990	0.0001	0.9990	0.0001
35	0.9994	0.0000	0.9994	0.0000	0.9994	0.0000
36	0.9988	-0.0001	0.9988	-0.0001	0.9988	-0.0001
37	0.9987	-0.0001	0.9987	-0.0001	0.9987	-0.0001
38	0.9987	-0.0001	0.9987	-0.0001	0.9987	-0.0001
39	0.9986	-0.0002	0.9986	-0.0002	0.9986	-0.0002
40	0.9986	-0.0002	0.9986	-0.0002	0.9986	-0.0002
41	0.9986	-0.0002	0.9986	-0.0002	0.9986	-0.0002
42	0.9985	-0.0003	0.9985	-0.0003	0.9985	-0.0003
43	0.9981	-0.0005	0.9981	-0.0005	0.9981	-0.0005
44	0.9980	-0.0006	0.9980	-0.0006	0.9980	-0.0006
45	0.9979	-0.0006	0.9979	-0.0006	0.9979	-0.0006
46	0.9992	-0.0000	0.9992	-0.0000	0.9992	-0.0000
47	0.9970	0.0007	0.9970	0.0007	0.9970	0.0007
48	0.9958	0.0008	0.9958	0.0008	0.9958	0.0008
49	0.9952	0.0009	0.9952	0.0009	0.9952	0.0009
50	0.9653	0.0080	0.9653	0.0080	0.9653	0.0080
51	0.9653	0.0080	0.9653	0.0080	0.9653	0.0080
52	0.9341	0.0174	0.9340	0.0174	0.9340	0.0174
53	0.9293	0.0181	0.9293	0.0181	0.9293	0.0181
54	0.9055	0.0257	0.9054	0.0257	0.9054	0.0257
55	0.8939	0.0295	0.8938	0.0295	0.8938	0.0295
56	0.8894	0.0310	0.8894	0.0310	0.8894	0.0310
57	0.8838	0.0331	0.8838	0.0331	0.8838	0.0331
58	0.8756	0.0345	0.8755	0.0345	0.8755	0.0345
59	0.8741	0.0348	0.8740	0.0348	0.8740	0.0348
60	0.8719	0.0351	0.8718	0.0352	0.8718	0.0352
61	0.8696	0.0355	0.8696	0.0355	0.8696	0.0355
62	0.8667	0.0360	0.8667	0.0360	0.8667	0.0360
63	0.8662	0.0362	0.8662	0.0362	0.8662	0.0362
64	0.8662	0.0362	0.8662	0.0362	0.8662	0.0362
65	0.9425	0.0148	0.9424	0.0148	0.9424	0.0148

Chapitre 3 : Calcul l'écoulement de puissance

66 67 68	0.9424 0.9407 0.9407	0.0149 0.0154 0.0154	0.9423 0.9406 0.9406	0.0149 0.0154 0.0154	0.9423 0.9406 0.9406	0.0149 0.0154 0.0154
Les pertes de Puissance totales	368.61 135.639	82 kW 9 kVAr	370.12 136.698	75 kW 7 kVAr	370.12 136.698	75 kW 7 kVAr
Nombre d'itération	4647		5		9	
Temps de calcul	23.8	13 s	1.7	10 s	0.12	28 s

Figure 3.10 : Profile des tensions de réseau de 69 jeux de barres

Los Pronohos	Courant active	Courant	Perte active	Perte réactive
Les branches	(pu)	réactive (pu)	(kW)	(kVAr)
1	1.8114	-1.2310	0.0793	0.1904
2	1.8114	-1.2310	0.0793	0.1904
3	1.6934	-1.1464	0.2070	0.4969
4	1.3227	-0.8824	0.0020	0.0023
5	1.3227	-0.8824	0.1171	0.0596
6	1.3216	-0.8814	31.8004	16.1964
7	1.3034	-0.8681	0.6304	0.3213
8	1.2494	-0.8302	4.1138	2.0944
9	0.3593	-0.2393	68.2125	22.5459
10	0.3462	-0.2307	15.1522	5.0103
11	0.2619	-0.1720	52.8397	17.4622
12	0.1679	-0.1069	0.0200	0.0066
13	0.1642	-0.1044	6.4204	2.1217
14	0.1605	-0.1019	38.6066	12.7570
15	0.1605	-0.1019	1.1233	0.3714
16	0.1392	-0.0833	1.2128	0.4010
17	0.1111	-0.0726	0.0001	0.0000
18	0.0829	-0.0568	0.4285	0.1416
19	0.0829	-0.0568	0.0070	0.0023
20	0.0825	-0.0565	0.4268	0.1411
21	0.0288	-0.0197	0.0167	0.0055
22	0.0264	-0.0182	0.1897	0.0627
23	0.0264	-0.0182	0.3105	0.1027
24	0.0132	-0.0091	0.4350	0.1438
25	0.0132	-0.0091	0.1030	0.0340
26	0.0066	-0.0045	0.0577	0.0191
27	0.0398	-0.0284	0.0015	0.0036
28	0.0285	-0.0203	0.0026	0.0063
29	0.0172	-0.0122	0.0134	0.0044
30	0.0172	-0.0122	0.0024	0.0008
31	0.0172	-0.0122	0.0030	0.0010
32	0.0111	-0.0122	0.0071	0.0024

Tableau.3.6 : Les courants et les pertes de réseau de 69 jeux de barres

Chapitre 3 : Calcul l'écoulement de puissance

33	0.0026	-0.0078	0.0036	0.0012
34	0.0808	-0.0017	0.0595	0.0197
35	0.0695	-0.0562	0.0001	0.0002
36	0.0582	-0.0481	0.0009	0.0023
37	0.0582	-0.0401	0.0015	0.0018
38	0.0477	-0.0401	0.0004	0.0005
39	0.0373	-0.0326	0.0000	0.0000
40	0.0368	-0.0252	0.0002	0.0003
41	0.0368	-0.0248	0.0731	0.0855
42	0.0342	-0.0248	0.0068	0.0079
43	0.0342	-0.0229	0.0015	0.0019
44	0.0171	-0.0229	0.0120	0.0152
45	0.3707	-0.0115	0.0001	0.0001
46	0.3707	-0.2641	0.0002	0.0005
47	0.3362	-0.2641	0.0055	0.0135
48	0.1682	-0.2395	0.0162	0.0396
49	0.0200	-0.1198	0.0046	0.0112
50	0.0016	-0.0138	0.0013	0.0007
51	0.8763	-0.0012	2.2692	0.7617
52	0.8743	-0.5811	0.9787	0.4983
53	0.8618	-0.5795	0.2856	0.1455
54	0.8500	-0.5708	0.0000	0.0000
55	0.8500	-0.5629	10.2141	5.2033
56	0.8500	-0.5629	56.0709	18.8208
57	0.8500	-0.5629	26.8840	9.0219
58	0.7992	-0.5629	10.4353	3.4510
59	0.7992	-0.5288	13.2448	4.0204
60	0.1636	-0.5288	17.4093	8.8676
61	0.1472	-0.1081	2.9521	1.5034
62	0.1472	-0.0971	4.3949	2.2368
63	0.1472	-0.0971	0.9013	0.4591
64	0.0304	-0.0200	1.0684	0.5442
65	0.0168	-0.0117	0.2065	0.0627
66	0.0084	-0.0059	0.0002	0.0001
67	0.0262	-0.0181	0.0026	0.0008

Figure 3.11 : Les pertes active et réactive de réseau de 69 jeux de barres

Figure 3.12 :Le courant active et réactive de réseau de 69 jeux de barres

3.2.3.1 Discussion réseau de 69 jeux de barres

Le tableau 3.5 et la figure 3.10 montrent les résultats de l'écoulement de puissance du réseau 69 jeux de barres. Dans ce cas, On observe que la chute de tension maximale est au JDB64 (V=0.8662 pu). Les pertes de puissance totale active et réactive sont respectivement 370.1275 kW et 136.6987kVAr qui correspond respectivement à 8.87 % et 4.83 % de la

puissance totale. Les composantes active et réactive du courant réduit dans la première branche sont égaux respectivement a (1.8141pu et -1.2310 pu). Les distributions des pertes de puissance active et réactive sont telles indiqué par la figure.3.11.où les plus grandes pertes de puissance active et réactive(68.2125 kW 22.5459 kVAr) sont dans la branche 9.

Le nombre d'itération nécessaire pour atteindre la solution avec une erreur de 10⁻⁷est : pour la méthode GS= 4647 itération, pour la méthode NR=5 itérations et pour la méthode BFS=9 itérations. Le temps de calcul pour GS : 23.813 s, NR : 1.710 s et BFS : 0.128 s

3.3 Conclusion

Dans ce chapitre, l'écoulement de puissance des réseaux de distribution (réseaux teste IEEE 10, 33 69 jeux de barres) sont étudiées à l'aide des méthodes itératives (GS, NR et BFS).Les remarques suivantes sont justifiées par le calcul :

- La chute de tension est maximal au JDB terminal le plus loin de JDB de référence.
- Même le courant dans la branche est maximale les pertes maximales se trouvent dans une autre branche. Pour minimisé ces pertes il faut minimiser les courants réactives.
- les trois méthodes donnent les mêmes résultats (tension, angle de phase, les pertes actives et réactives, les courants) pour les trois réseaux testes
- le nombre des itérations est petit (4 à 5 itérations) pour la méthode NR et (6 à 9 itérations) pour la méthode BFS. et pour la méthode de GS le nombre d'itérations est grande si le réseau est grand
- le temps de calcul est petit (0.087 à 0.128 s) pour la méthode BFS et (0.15 à 1.710 s) pour la méthode NR.

A partir de ces remarques, la méthode BFS est la meilleure parce que elle est simple à mettre en œuvre et rapide, converge systématiquement dans le cas des réseaux de distribution de grande taille.

Conclusion générale

Dans ce travail, il a été présenté la solution de problème de l'écoulement de puissance dans les réseaux de distribution équilibrés qui sont caractérisé par leurs taux R/X élevés, la solution se fait par 4 méthodes itératives (Gauss-Seidel, Newton-Raphson, Découplé rapide et Backward et forwardsweep).Ces méthodes sont programmé sur MATLAB, et sont testé sur 3 réseaux testes (10, 33 et 69 jeux de barres).

Toutes les méthodes utilisées dans ce travail convergent et donnent des résultats, sauf la méthode Découplé rapide qui diverge et ne donne aucun résultat pour ces réseaux (l'approximation de calcul de la matrice B n'est pas justifié).Les autres méthodes convergent vers des résultats presque égaux (tensions, pertes actives et réactives et courants des branches....etc.).

La différence entre les méthodes est seulement dans le nombre d'itérations et le temps du calcul. Pour la méthode de Gauss-Seidel, si le réseau est grand le nombre d'itération et le temps de calcul est grand. Le nombre d'itérations de la méthode de Newton –Raphson est constant et leur temps de calcul augmente avec la taille de réseau. La méthode Backward et Forward sweep a un nombre d'itération petite augment un peu avec la taille de réseau et aun temps de calcul petit par rapport aux autres méthodes.

Donc La méthode Backward et Forwardsweep présente les performances les plus élevées en termes de temps de simulation, en particulier pour les systèmes grand et radial, même si le nombre d'itérations requises est plus élevé par rapport à la méthode de Newton-Raphson.

Après tous les résultats et les remarques obtenus, on peut dire que la méthode Backward et Forward sweep est la solution idéale au problème du calcul l'écoulement de puissance dans les réseaux de distribution d'électricité, en raison du faible temps nécessaire dans le calcul, que nous facilitons de prendre les résultats importants de la tension et les pertes actives et réactives dans les plus brefs délais et de l'utilisation dans d'autres études

Ce travail est la base des autres travails future comme écoulement de puissance triphasé déséquilibré dans les réseaux de distribution, la planification de puissance réactive dans les réseaux de distribution, l'emplacement optimal des condensateurs ou source d'énergie renouvelables dans les réseaux de distribution et autres...

Annexes

A1 :

Donnes de réseau de 10 JDB dans le tableau A.1. La tension de base est égale à 23 kV, la puissance de base est égale 4186 kVA.

Numéro de	Nœuds	Nœuds	r (Ω)	x (Ω)	Pl (kW)	Ql (kVA)
la	de	D'arrivée				
branche	départ					
1	1	2	0.1233	0.4127	1840	460
2	2	3	0.2466	0.6051	980	340
3	3	4	0.7463	1.2050	1790	446
4	4	5	0.6984	0.6084	1598	1840
5	5	6	1.9831	1.7276	1610	600
6	6	7	0.9053	0.7886	780	110
7	7	8	2.0552	1.1640	1150	60
8	8	9	4.7953	2.7160	980	130
9	9	10	5.3434	3.0264	1640	200

Tableau. A.1 : Données de réseau de 10 jeux de barres

Donnes de réseau de 33 JDB dans le tableau A.2 : La tension de base à 12.66 kV, la puissance de base est de 2300 KVA.

Numéro de	Nœuds de	Nœuds	$r(\Omega)$	$x(\Omega)$	Pl (kW)	Ql (kVA)
la branche	départ	d'arrivée				
1	0	1	0.092200	0.047000	100.000000	60.000000
2	1	2	0.493000	0.251100	90.000000	40.000000
3	1	18	0.366000	0.186400	120.000000	80.000000
4	2	3	0.381100	0.194100	60.000000	30.000000
5	2	22	0.819000	0.707000	60.000000	20.000000
6	3	4	0.187200	0.618800	200.000000	100.00000
7	4	5	0.711400	0.235100	200.000000	100.00000

Tableau. A.2 : Données de réseau de 33 jeux de barres.

8	5	6	1.030000	0.740000	60.000000	20.000000
9	5	22	1.044000	0.740000	60.000000	20.000000
10	6	7	0.196600	0.065000	45.000000	30.000000
11	7	8	0.374400	0.123800	60.000000	35.000000
12	8	9	1.468000	1.155000	60.000000	35.000000
13	9	10	0.541600	0.712900	120.00000	80.000000
14	10	11	0.591000	0.526000	60.000000	10.000000
15	11	12	0.746300	0.545000	60.000000	20.000000
16	12	13	1.289000	1.721000	60.000000	20.000000
17	13	14	0.732000	0.574000	90.000000	40.000000
18	14	15	0.164000	0.156500	90.000000	40.000000
19	15	16	1.504200	1.355400	90.000000	40.000000
20	16	17	0.409500	0.478400	90.000000	40.000000
21	18	19	0.708900	0.937300	90.000000	40.000000
22	19	20	0.451200	0.308300	90.000000	50.000000
23	20	21	0.898000	0.709100	420.00000	200.00000
24	22	23	0.896000	0.701100	420.000000	200.00000
25	23	24	0.203000	0.103400	60.000000	25.000000
26	25	26	0.284200	0.144700	60.000000	25.000000
27	26	27	1.059000	0.933700	60.000000	20.000000
28	27	28	0.804200	0.700600	120.000000	70.000000
29	28	29	0.507500	0.258500	200.000000	600.000000
30	29	30	0.974400	0.963000	150.000000	70.000000
31	30	31	0.310500	0.361900	210.000000	100.000000
32	31	32	0.341000	0.530200	60.000000	40.000000

Donnes de réseau de 69 JDB dans le tableau A.3, avec une tension de base est égale à 12.66 kV, la puissance de base est égale à 2300 KVA.

Numéro de	Nœuds de	Nœuds	$r(\Omega)$	$\mathbf{X}(\Omega)$	Pl (kW)	Ql (kVAr)
la branche	départ	d'arrivée				
0	0	1	0.000500	0.001200	0.000000	0.000000
2	1	2	0.000500	0.001200	0.000000	0.000000
3	2	3	0.001500	0.003600	0.000000	0.000000
4	2	27	0.025100	0.029400	0.000000	0.000000
5	2	35	0.366000	0.186400	2.600000	2.200000
6	3	4	0.381100	0.194100	40.40000	30.00000
7	3	46	0.092200	0.047000	75.00000	54.00000
8	4	5	0.049300	0.025100	30.00000	22.00000
9	5	6	0.819000	0.270700	28.00000	19.00000
10	6	7	0.187200	0.061900	145.00000	104.000000
11	7	8	0.711400	0.235100	145.000000	104.000000
12	7	50	1.030000	0.340000	8.000000	5.500000
13	8	9	1.044000	0.345000	8.000000	5.500000
14	8	52	1.058000	0.349600	0.000000	0.000000
15	9	10	0.196600	0.065000	45.50000	30.00000
16	10	11	0.374400	0.123800	60.00000	35.00000
17	10	65	0.004700	0.001600	60.00000	35.00000
18	11	12	0.327600	0.108300	0.000000	0.000000
19	11	67	0.210600	0.069600	1.000000	0.600000
20	12	13	0.341600	0.112900	114.000000	81.00000
21	13	14	0.014000	0.004600	5.300000	3.500000
22	14	15	0.159100	0.052600	0.000000	0.00000
23	15	16	0.346300	0.114500	28.000000	20.000000
24	16	17	0.748800	0.247500	0.000000	0.000000
25	17	18	0.308900	0.102100	14.000000	10.000000
26	18	19	0.173200	0.057200	14.000000	10.000000
27	19	20	0.004400	0.010800	26.000000	18.600000
28	20	21	0.064000	0.156500	26.000000	18.600000
29	21	22	0.397800	0.131500	0.000000	0.000000
30	22	23	0.070200	0.0.023200	0.000000	0.000000
31	23	24	0.351000	0.116000	0.000000	0.000000
			+			,

Tableau. A.3 : Données de réseau de 69 jeux de barres.

32	24	25	0.839000	0.281600	14.000000	10.000000
33	25	26	1.708000	0.564600	19.500000	14.000000
34	27	28	1.474000	0.487300	6.000000	4.000000
35	28	29	0.004400	0.010800	26.000000	18.550000
36	29	30	0.064000	0.156500	26.000000	18.550000
37	30	31	0.105300	0.123000	0.000000	0.000000
38	31	32	0.030400	0.035500	24.000000	17.000000
39	32	33	0.001800	0.002100	24.000000	17.000000
40	33	34	0.728300	0.850900	1.2000000	1.000000
41	35	36	0.310000	0.362300	0.000000	0.000000
42	36	37	0.041000	0.047800	6.000000	4.300000
43	37	38	0.009200	0.011600	0.000000	0.000000
44	38	39	0.108900	0.137300	39.220000	26.300000
45	39	40	0.000900	0.001200	39.220000	26.300000
46	40	41	0.003400	0.008400	0.000000	0.000000
47	41	42	0.085100	0.208300	79.000000	56.400000
48	42	43	0.289800	0.709100	384.700000	274.500000
49	43	44	0.082200	0.201100	384.700000	274.500000
50	44	45	0.092800	0.047300	40.500000	28.300000
51	46	47	0.331900	0.111400	3.600000	2.700000
52	47	48	0.174000	0.088600	4.350000	3.500000
53	48	49	0.203000	0.103400	26.400000	19.000000
54	50	51	0.284200	0.144700	24.000000	17.200000
55	52	53	0.281300	0.143300	0.000000	0.000000
56	53	54	1.590000	0.533700	0.000000	0.000000
57	54	55	0.783700	0.263000	0.000000	0.000000
58	55	56	0.304200	0.100600	100.000000	72.000000
59	56	57	0.386100	0.117200	0.000000	0.000000
60	57	58	0.507500	0.258500	1244.000000	888.000000
61	58	59	0.097400	0.049600	32.000000	23.000000
62	59	60	0.145000	0.073800	0.000000	0.000000
62 63	59 60	60 61	0.145000 0.710500	0.073800 0.361900	0.000000 227.000000	0.000000 162.000000
62 63 64	59 60 61	60 61 62	0.145000 0.710500 1.041000	0.073800 0.361900 0.530200	0.000000 227.000000 59.000000	0.000000 162.000000 42.000000

66	63	64	0.004700	0.001400	18.000000	13.000000
67	65	66	0.739400	0.244400	28.000000	20.000000
68	67	68	0.004700	0.001600	28.000000	20.000000

Références bibliographies

[1]M.RICHARDOT Olivier « Réglage Coordonné de Tension dans les Réseaux de Distribution à l'aide de la Production Décentralisée » Thèse de doctorat INPG, 2000.

[2] Schneider Electric, « Architecteur de Réseau de électrique », 2007. B. M Weedy, "Electric Power System", 3rd éd., John Wiley& Sons Ltd., London, 1979.

[3] GUILLAUMERami, « contrôle de tension auto adaptatif pour des productions décentralisées d'énergies connectées au réseau électrique de distribution» Thèse de doctorat INPG, 2006

[4] J.M. DELBARRE, « Postes à HT et THT - Rôle et Structure », Techniques de l'Ingénieur, Traité Génie électrique, D 4570, 2004.

[5] M.JACOBPatrick, « Distribution de l'énergie», ac-aix-marsoille.fr, avril 2014

[6] M. RAHLI, «Contribution à l'étude de la répartition optimale des puissances actives dans un réseau d'énergie électrique». Thèse de Doctorat, 06 Janvier 1996, Université des sciences technologiques USTOran– Algérie- Département d'Electrotechnique.

[7] K. CHIKHI, «Etude des phénomènes transitoires et optimisation dans les réseaux électriques» Bilan de recherches scientifiques. Laboratoire de recherche LEB. Faculté des sciences de l'ingénieur. Département d'électrotechnique. Université de Batna.

[8] M. ALLAOUABoumediene, « Méthodes numériques avec matlab». Rappels de cours, Exemples Corrigés et Applications avec MATLAB. Université de Bechar. Alger

[9] R. MISSOUM, « Etude d'un dispatching économique des puissance active par les algorithmes de fourmis ». Mémoire de Magister, Université de Chlef 2008

[10]M. KETFINadhir, «Contribution à la gestion des réseaux de distribution en présence de génération d'énergie dispersée». Option : Réseaux Electriques. Université de Batna 2014

[11] Wendy Carolina Briceno Vicente. « Modélisation des réseaux de distribution sous incertitudes». Énergie électrique. Université de Grenoble, 2012. Français.

[12] TEBANI Wissame, «Compensation optimale de l'énergie réactive dans les

Réseaux de distribution», Thèse de doctorat, Université Ferhat Abbas - Sétif, 2012

Résumé :

Cette étude a pour objectif du calcul l'écoulement de puissance dans les réseaux de distribution qui sont caractérisés par leurs taux R/X élevé et leurs topologies radiales.

Ce calcul permis d'avoir le courant et La puissance transitée dans chaque branche, les pertes totales de puissance active et réactive et la tension de chaque jeu de barre. Des méthodes itérative sont proposée comme (Méthode de Gauss-Seidel, Newton-Raphson, Découple rapides et Backward-Forward Sweep).Ces méthodes ont été appliquée sur des réseaux de distribution test IEEE (10 JDB, 33 JDB et 69 JDB)utilisant des algorithmes réalisés avec le logiciel MATLAB. Enfin, des comparaisons entre les résultats finaux des méthodes en termes de temps de calcul et le nombre d'itérations sont discutées.

Mots-clés : Réseau de distribution, écoulement de puissance, Méthode de Gauss-Seidel, méthode de Newton-Raphson, méthode Découple rapide, méthode Backward -forwardSweep. *Abstract:*

The purpose of this study is to calculate the power flow in the distribution networks who characterized by its high R/X ratio and its radial configuration.

This calculation permitted to have the current and the power transmitted in each branch, the total losses of active and reactive power and the voltage of each bus. The iterative methods are proposed as (Method of Gauss-Seidel, Newton-Raphson, Fast Decoupled and Backward-forward Sweep). These methods are applied to the IEEE test distribution network (10 buses, 33 buses and IEEE 69 buses) using algorithms made with the MATLAB software. Finally, comparisons between the results in terms of calculation time and number of iterations are discussed.

Keywords: The distribution network, the power flow, Method of Gauss-Seidel, Method of Newton-Raphson, Method of Fast Decoupled, Method of Backward-forward Sweep.

ملخص:

إن الغرض من هذه الدراسة هو حساب تدفق الطاقة في شبكات التوزيع. التي تتميز بنسبة R/X عالية و طوبولوجية شعاعية أو متفرعة الشكل. يسمح هذا الحساب بإيجاد شدة التيار والاستطاعة الفعالة والغير فعالة في كل فرع والضياع الكلي والتوتر فيكل عقدة في شبكة التوزيع باستخدام بعض الطرق التكرارية المقترحة (طريقة غاوس-سيدال، نيوتن-رافسون، دكوبلي السريعة والمسح إلى الخلف ثم إلى الأمام).تم تطبيق هذه الدراسة على شبكة اختبار 10 عقد، 33 عقدة و69 عقدة باستخدام خوارزميات على برنامج ماتلاب.وأخيرا، إجراء مقارنة بين النتائج من حيث وقت الحساب وعدد التكرارات.

الكلمات المفتاحية: شبكة التوزيع، تدفق الطاقة، طريقة غاوس-سيدال، نيوتن-ر افسون، دكوبلي السريعة والمسح إلى الخلف ثم إلى الأمام.