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Forecasting Fire Insurance Loss Ratio in Misr Insurance Company
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Abstract: Loss ratio is one of the most important indicator that has many strategic decisions
applications, such as pricing, underwriting, investment, reinsurance and reserving decisions. It
serves as an early warning of financial solvency of insurance companies and it can be judged on the
strength of the financial position of these companies. The aim of this study is to identify the
reliable time series-forecasting model to forecast loss ratio estimates of fire segment in Misr
insurance company. Box-Jenkins Analysis is applied on actual reported loss ratios data for Misr
insurance company for the period 1980/1981—- 2013/2014. The study concludes that the best
forecasting model is ARMA(1,1).
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I- Introduction :

Loss Ratio (LR) is the annual aggregate of losses plus loss-adjusted expenses
divided by aggregate net premium earned (Cutler& Ellis, 2005). It is one of the most
important indicators that has many important and strategic decisions applications ; such as
pricing, underwriting, investment, reinsurance and reserving decisions. The accuracy of
future loss costs estimates plays an important role in determining the underwriting profits
of property-liability insurers. Loss ratio is the standard measure of loss costs used by
regulators, auditors, policyholders, and security analysts (Tennant et al., 1992).

Loss ratio estimation insures the protection of policyholders ; it has important
implications for insurers pricing and competitive responses. If estimates of loss ratio were
too low, premiums would be inadequate to support the financial projections of future
periods ; rates would be insufficient to pay claims and the company would be insolvent ;
and if the loss ratio estimates were too high, insurance rates may be raised above
competitive levels. Furthermore, general insurers need to be able to estimate loss ratio to
make sure that they have sufficient assets to cover their liabilities. Insolvent insurance
companies are not allowed to continue to sell insurance policies because it does not have
the financial strength to keep its contractual obligations to its policyholders (Cheung, 1997).

Studies that utilize time series technique to forecast loss ratio in Egyptian and
Arabian general insurance market are scarce. Harbey (1996) used exponential smoothing
technique to predict the loss ratio in Kuwaiti insurance companies based on a period from
1980 to 1992, which represents a time series of 12 years, this period, is insufficient to
predict an accurate model. Similarly, Soliman (2003), used of Box-Jenkins analysis to
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forecast loss ratio in Egyptian P/L insurance companies. Using a sample of loss ratio for the
period 1972-2001 for P/L public sector companies, Soliman has found that there is no one
reliable Box-Jenkins forecasting model can be applied for marine cargo, inland transport
and accident segments.

Hemada (2003) showed the importance of loss ratio as an important factor in both
rating, underwriting, reinsurance, reserving and performance standards of insurance
companies, Box-Jenkins approach was applied to analyze a time series of 22 years, from
1980 to 1992 for the Egyptian P/L public sector companies, and 20 years for the P/L private
sector companies, and concluded that there is no one general model can be applied in the
Egyptian insurance market. On the other hand, Cutler & Ellis (2005) found that economic
variables do not play an important role in the explanation or prediction of the loss ratio in
the American domestic stock property and liability insurance industry based on regression
model.

The review of the above literatures shows the existence of research gaps that are
advanced in this study. Several studies such as Harbey (1996), Soliman (2003) and Hemada
(2003) have used one of the time series estimation techniques to predict loss ratio in
insurance companies. However, all of these studies ignored diagnostic checking or residual
analysis stage, which is needed to test the accuracy of the models and some of them,
ignored the time series models requirements such as stationarity and normality.

Thus, loss ratio estimates are very important for future planning and decision-
making; it is of great importance to use statistical techniques such as time series forecasting
to estimate loss ratio. Hence, the study aims to forecast loss ratio estimates of fire insurance
in Misr insurance company via the best forecasting model. The suggested model is applied
on actual reported loss ratio data for the period 1980/1981 —2013/2014.

Thus, the present study aim is to improve loss ratio estimates of Misr insurance
company by testing the accuracy of several models in order to identify the best estimation
model ; in an attempt to identify the best Box-Jenkins time series-forecasting model to
estimate reported loss ratio for fire insurance loss ratio in Misr insurance company.

Misr Insurance Company controls the biggest share of insurance industry in Egypt. It
plays an important role in Egyptian general insurance industry by having 68% of general
insurance market total asset share for the year 2013/2014. Misr Insurance company controls
55% from total premium of property and liability insurance market in the same period ; and
the company contributes 56.3.8% from the total property insurance market paid claims in
2007/2008 (Egyptian Insurance Supervisory Authority, Annual report 2013/2014).

The fire insurance segment was chosen based on the available and sufficiency of
data, and because fire insurance accidents within this segment are higher as compared to
other segments.

II- Methods :

Box-Jenkins time series method is used to estimate loss ratio in fire insurance
segment in Misr insurance company. The ARIMA (Autoregressive Integrated Moving
Average) model is used. The basis of the Box-Jenkins (ARIMA) modeling approach
consists of three main stages, namely :

1- Model identification

2- Model estimation and validation

3- Model application.

1. Model identification:

This step includes computing, analyzing and plotting various statistics based on
historical data. The auto-correlation function (ACF), and the partial auto-correlation
function (PACF) are used to identify the model. Hence, the common practice now is to
identify several highly likely model formulations and subsequently choose the best model
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that meets all statistical requirements. The process of identifying the models is summarized
as follows :

a) To compute and analyze the various statistics based on the historical data, in
particular the ACF and the PACF.

b) Based on information obtained from (a) above, the most suitable subclass of the
general class of model is then identified.

2. Model estimation and validation:

The specific parameter values are estimated subject to the condition that the selected
error measure is minimized. More specifically, the process is to search for the estimated
parameter values that minimize the differences between the actual and the forecast values.

3. Model application

If all test criteria are met and that the model’s fitness has been confirmed, it is then
ready to be used to generate the forecasts values. At this stage three possibilities may occur;

a) New or latest data are collected and incorporated into the existing series

b) New model is formulated and re-estimated

c¢) Develop a system to monitor the forecast values produced.

Box-Jenkins methodology that the data series is stationary. Where such assumption
is not met, then the necessary procedures are performed in order to achieve stationary in the
series. A simple procedure used to stationary in time series is differencing, and / or log
transformation to stabilize the variance.

Box Jenkins model includes four basic models:
The autoregressive (AR) model,
1. The moving average (MA) model
i1. Mixed autoregressive and moving average model.
111. Mixed autoregressive, Integrated and moving average model.
i) The autoregressive (AR) model:

In the AR model, the current value of the variable is defined as a function of its
previous (P) values plus an error term (Lazim, 2005), given as :

V=0 0y, Py, oyt +¢pyt_p+g,

P
V=0, +zi:]¢,~y;_,‘ +&;
Where ¢, and ¢ are constant terms or parameters to be estimated, y, : is the dependent or

current value, andy,_, the p™ order of the lagged dependent or current value, and g 118

the error with mean=0 and variance o? (Armstrong & Collopy, 1992).

ii) The moving average model (MA) model:

The moving average is a function of the error terms ; the moving average model
links the current values of the time series to random errors that have occurred in the
previous periods rather than the values of the actual series themselves, it called MA (q).
The moving average model can be written as (Lazim, 2005) ;

V=Pt E+PE,_+DE, 5+ +9,6,,
Where ¢,is the mean about which the series fluctuate,
¢@. are the moving average parameters to be estimated, and §_g's are the error terms
(q=1,2,3,........ ) assumed to be independently distributed over the time.
iii) Mixed autoregressive and moving average model (ARMA):

Autoregressive Moving Average (ARMA) models combine both p Autoregressive
and q moving average terms, also called ARMA (p,q). Under the assumption of stationary,
the mixed autoregressive and moving average model of Box-Jenkins methodology is
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known ARMA model. In other words, the series is assumed stationary (no need for
differencing) and the model is written as (Brown, 1996).
Vi=QY, DY, ot +0,Y, T+ +PE | FTDE 5+, +9,¢,,
Since the AR and the MA models are of order ‘p’ and ‘q’ respectively, the model is
referred to as ARMA (p, q).
iv) Mixed autoregressive, integrated and moving average (ARIMA) model:
When the data is not stationary then the Box-Jenkins (ARIMA) methodology is

represented as ARIMA (p, d, q), where d denotes the degree of differencing involved to
achieve stationarity in the series.

I11-Results and Discussion :

Data used for the study are loss ratio in the fire insurance segment in Misr insurance
company from the years 1981/1982 till 2013/2014. A total of 33 annual data is used. Figure
1, a plot of the yearly observations for loss ratio in fire insurance sector in Misr insurance
company from the year 1981/1982 to the year 2013/2014. This plot exhibits rises and falls
in this time series within the period.

A causal examination of the graph suggests that the series is stationary (no apparent
trend, and no change in volatility). The observations seem to fluctuate around a fixed mean,
and the variance seems to be constant over time.

Table 1. Gives the descriptive measures of the data set used for the study. It shows
that the mean loss ratio(LR) is 52.05 and the value of standard deviation is 42.22, which
reflects the differences between LR values.

Models estimation

Modeling Box-Jenkins model requires stationarity. A stationarity process has a mean
and variance that do not change over time and the process does not have trends. To inspect
stationarity, the autocorrelation function is used. Figure 2, shows that all autocorrelation
coefficients are located within the confidence interval and are not significantly difference
from zero (all prob. Values are greater than 5%). Thus, it is concluded that the series is
stationary, and no differencing is needed.

To test for the fitness of the model, Ljung-Box Test is used. The test is a diagnostic
tool used to test the significance for the autocorrelation coefficients (lack of fit). The null
and the alternative hypotheses are stated as follows :

H, : The model does not exhibit lack of fit.

H; : The model exhibits lack of fit.

Given a time series Y of length n the test statistic is defined as :

(K -3)
4

Where ﬁk is the estimated autocorrelation of the series at lag k, and T is the number
of lags being tested. Thecritical Region is defined by y2 statistic, with degrees of freedom
=k and significance level a. The null hypothesis is not rejected when Q-Stat<y2(o= 0.05,

K=15), it is found that Q=11,460%<24.99, and thus, the null hypothesis is not rejected.

To test for stationarity, the unit root test is carried out where the null and alternative
hypotheses are given as:

H,: Series contains a unit root (series is not stationary).

Hj;: Series is stationary.

Thus, rejection of the null hypothesis (coefficient of lag is significantly different
from zero) means that the series is stationary. The Augmented Dickey-Fuller Test is used.
Results are shown in Figure 3.

Figure 3 shows results of unit root test applied on loss ratio (LR) series data. The
gives results for ADF test and unit root tests based on a standard regression with constant,

Jarque-Bera = %(S 2+
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and with constant and time trend. The results showed that: Prob. (Trend) = 0.8102, and
thus, there is no trend in the LR series at the .05 level of significance and the constant is
significant; thus, the series evolve around the constant (mean). The Augmented Dickey
Fuller test statistic is highly significant (p = 0.0000) and the LR (-1) |T-Statistic|] =
(6.507749) > (IADF]| tabulated value (4.15). Thus, the null hypothesis of no stationarity is
rejected.

Jarque-Berastatistic is used for testing whether the series is normally distributed.
The test statistic measures the difference of the skewness and kurtosis of the series with
those from the normal distribution. The statistic is computed as :

(K -3)°
4
WheresS is the skewness and K is the kurtosis. The Jarque-Bera statistic is distributed

Jarque-Bera = %(S 2+

2
as X with 2 degrees of freedom. Figure 4, gives the descriptive measures for the LR series,
along with results of Jarque-Bera normality test. Under the null hypothesis of a normal
2

distribution, X a small probability value leads to the rejection of the null hypothesis of a
normal distribution. As shown in Figure 4, the null hypothesis of normality of LR series is
rejected at the 5% level.

To reach normality, a square root transformation of the LR series is not suitable.
Since LR series contains negative ratios. A common technique for handling negative values
is to add a constant value to the data prior to applying the log transform. The transformation
is therefore log (LR+a) where a is the constant.

A criticism of the previous method is that some practicing statisticians don't like to
add an arbitrary constant to the data. They argue that a better way to handle negative values
is to use zeros values for the logarithm of nonpositive numbers( Wicklin, 2011).

After converting the variable into Sqrt (LR) Residual histogram of the model &
Descriptive Statistics areare showed in Figure 5. Jarque Bera statistic resulted from the
transformed LR values revealed that the null hypothesis is not being rejected at the 5 %
level of significance, and thus the LR series is normally distributed.

Modelling Loss Ratios Data:

For comparison purposes, many models were estimated to determine which of the
models fits the best. Best-Fitting model is the model which gives highest r-square value,
significance of the coefficients and low AIC, SC and HQ. Several ARIMA (p,q) models
have been compared. Table 2 gives the different models, the R* values, AIC, SC, HQ
criteria and the DW values. Comparing the values, it is concluded that ARMA (1, 1) model
is relatively the best model since it has the largest R—squared value, and the minimum AIC,
SC, and HQ criterion values.

Model Estimation:

Based on E-views results showed in Table 3 ARMA (1,1) model estimated
parameters are summarised as in Figure 6.

The previous figure summarizes the ARMA(1,1) model parameters and some
important statistics , Mathematical model can be formulated as follows:

Vi =P+ @Y, +HE &

sqrt (LR) =6.198023+0.591121LLR, | —1.436842¢, , +¢,

As shown in the following figures (figure 7 to figure 9). Residual Autocorrelation
Function Test shows that the Box-Ljung test of residual stationary (Q-Stat) is not rejected at
the 5% level of significance, and thus, LLR series residuals are stationary, and that error
terms are independent.
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Model Validation:

After fitting the model, we should check whether the model is appropriate based on
comparison between actual and estimated values as shown in the figures (figure 7 to figure 8).

From the previous figures, it can be noted that the similarity between the original
series and the estimated curve, that shows how predictive ability of the ARMA(1,1) model
to the data examined in this study.

Based on the previous figures (figure 7 to figure 8), the forecasting model is

evaluated based on RMSE = 2.851485, MAE=1.982560 which are very small values. This
evaluation identifies that ARMA (1,1) model is a good prediction for examined data.

IV- Conclusion:

This study aim is to apply Box-Jenkins analysis to forecast the loss ratio in fire
insurance segment in Misr insurance company. The forecasted loss ratio is one of most
important indicators that have many important and strategic decisions applications. For all
the adopted models, the estimations are done by using the loss ratios data for the period
1980/1981 — 2013/2014. The study concludes that the best fitting model for the log loss
ratios is an ARIMA (1,1) model and its equation is :

sqrt(LR)=6.198023+0.591121LLR,  —1.436842¢, | +¢,

Using Misr Insurance Company as the case study for studying loss ratio forecasting
techniques has limitation in terms of the generalizability of the findings to other insurance
companies in Egypt since most of them are much smaller and younger comparing with Misr
Insurance Company.

-Appendices :

Table 1 : Descriptive Statistics

Mean | Median | Max. | Min. | Std. Dev. | Skewness | Kurtosis | Observations
LR 52.05 46.3 220.3 | -20.5 42.22 1.828 8.86 33
Source: Calculated by the author using Eviews7

Table 2 : ARIMA Models Summary

Varla:lll)(l:(sise;n the R-Square Adjusted R-Square All:zluclj(e Scl;v&arz Hann;l{raqumn Durbl{l)-‘;,Vatson
ARMA (1,0) 0.009711 -0.023298 5.047 5.139 5.0776 2.018
ARMA (0,1) 0.010120 -0.021812 5.058 5.149 5.089 1.938
ARMA (1,1) 0.536610 0.50465 4.350 4.488 4.396 2.076
ARMA (1, 2) 0.009727 -0.05856 5.110 5.247 5.155 2.018
ARMA (2, 1) 0.011789 -0.058797 5.144 5.383 5.190 1.995
ARMA (0, 2) 0.000156 -0.032097 5.068 5.159 5.099 2.145
ARMA (2,0) 0.000150 -0.034328 5.092 5.184 5.122 2.211
ARMA (2,2) 0.001987 -0.069300 5.155 5.293 5.200 2.219

Source: Calculated by the author using Eviews7
Table 3 : Model Estimation

Dependent wariable: LLR

Sample (adjusted): 1982 2013

Included observations: 32 after adjustments
Conwvergencs achisved after 66 iterations

Me Backcast OFF (Roots of MA process too large)

wariable Coefficient Stadl. Error t-Statistic Froo.

= s.192022 0. AT7SE21 1z.032115 00000
AR o.591121 0091243 5. ATS543 00000
RACT) 1 azs6az 0. 2044652 —F.ozs01= 0.0000

R-squared D.536610 Mean dependent var 5.5S662286
Adiusted R-sguared 0. 504652 S.D. dependent var Z. 594549
S.E. of regression 2037422 Akaike info criterion 4. 350307
Sum squared resid 1Z0. 38515 Schwars criterion a4 AT 720
Log likelihood -566. 60491 Hannan—Quinn criter. 4. 395356
F-statistic 16, 79116 Durbin-wWatson stat Z OFTE=211
Prob(F-statistich 0. 000014

Inverted AR Roots 59
Inverted A Roots A
Estimated MA process is noninvertible

Source: Calculated by the author using Eviews7
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Fig. (1) : Loss Ratio in Fire Insurance Segment in
Misr Insurance Company

Figure 1 : Loss Ratio in Fire Insurance Segment in Misr Insurance
Company

—R%

Loss Ratio

Notes: The vertical axis measures the variable loss ratio in Misr insurance Company
(dependent). The horizontal axis corresponds the time periods (independent).

Source: Calculated by the author using Eviews7

Fig. (3) : Augmented Dickey- Fuller
for unit root test.
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Fig. (2) : Autocorrelation function (ACF)&Partial
autocorrelation function (PACF) inspection
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Fig. (4) : Test for normality

MUl Hypothesis: LR has a unit root
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on AIC, maxlag=8)
t-Statistic Prob.® 14
Augmented Dickey-Fuller test -6.507749 0.0000 Series: LR
Test critical values: 186 level — Samp\e 1081 2013
5% level -3.557759 124 [
10% level -3.212361 Observations 33
*MackKinnon (1996} one-sided p-values 10
Mean 52.05152
gugme:leril\l/)il:keb\rlflgl(irrl'}esl Equation Median 46.30000
ependent variable:
Method: Least Squares 84 Maximum 220.3000
Date: 12/25/15 Time: 21:29 i
Sample (adjustedy. 1982 2013 Minimum -20.50000
Included observations: 32 after adjustments 54 Std. Dev. 42 22189
wariable Coefficient Std. Error t-Statistic Prob Skewness 1.828432
LR 11673732 0179382  -6.507749 0.0000 4 Kurtosis §.656837
c 52.50131 18.70489 3341443 0.0023
@TREND(1981) -0.198790 0.819975 -0.242434 o0.8102
~-squared 0594158 Mean dspendentvar “17s1250 o] Jarque-Bera 6555338
Adjusted R-squared 0.566169 S.D. dependentwvar 54 77576 Pmbab\l\ty 0.000000
S.E. of regression 4266500 Akaike info criterion 1043370
Sum squared resia 52788.99 Schwarz criterion 10.57111
Log likelihood -163.9392 Hannan-Quinn criter. 10.47925 0
F-statistic 21.22822 Durbin-Watson stat 2.002415 1 1 1 1 I T T T T
Prob(F-statistic) 0.000002 -25 0 25 50 75 100 125 150 175 200 225

Source: Calculated by the author using Eviews7
Fig. (5): Residual histogram of the transformed Fig. (6): Residual Autocorrelation

Function Test model & Descriptive Statistics
CQ-statistic probabilities adjusted for 2 ARMAtermis)

12 S Autocorrelation Partial Correlation AC PAC Q-Stat Prob
eries: LLR
ol - Sampie 1961 2013 o o 1 -0.056 -0.056 0.1089
Observations 33 i i i i 2 0.003 0000 0.1092
g g o 3 -0.071 -0.071 0.2975 0.585
8- Mean 6.674102 [ g o 4 -0.074 -0.083 05112 0.774
Median 6.804410 = | 5 -0.322 -0.336 46921 0196
Maximum ~ 14.84251 = Cop 6 0112 0085 52153 0.266
61 Minimum 0.000000 | | I I 7 -0.008 -0.018 52189 0.390
Std. Dev. 2915797 = ] 8 -0.322 -0.432 00322 0.128
ol Skewness  -0.088852 I I = . 9 -0.001 -0135 099323 0192
Kurtosis 4.318204 [ = I I 10 0123 0.014 10683 0.220
I I [ 11 -0.008 -0.065 10.687 0.298
24 Jerque-Bera 2432708 [ = [ 12 0191 0.084 12663 0.243
Probabiity 0296309 [ [ = 13 0075 -0197 12983 0294
g o g o 14 -0.075 -0.079 13.324 0.346
0T i IR [ = I [ = 15 -0.175 -0.149 15275 0.290
01 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Source: Calculated by the author using Eviews7

Fig. (7): Actual, Fitted, Residual Graph
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Source: Calculated by the author using Eviews7
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Fig. (8): Actual, Fitted, Residual Table

obhs SActual Fitte d Residual Residual Plot
1922 5.99285 5.232383 0. 75902 1 1
1953 . 50441 5.535323 0.25903 1 1
1954 8. 58487 6. 55352 2 03135 1 !
1985 10 0399 6538207 3. 65785 1 [}
1986 T 61577 5. 24195 1.273282 1 1
1987 T 28011 6. 47539 0. 80472 ' '
1988 4. 01248 5. 50771 -2 49523 1 1
1989 401248 5. 82238 -2 80990 1
1990 2.59944 5.82228 207706 1 :>9 1
1991 5.18370 5.35178 -0 1563202 1 1
1992 5.37966 561281 -0.232316 1 £ 1
1993 5.22596 5.59443 -0. 35545 1 1
1994 271597 5. 60594 2 10703 ' >®
1995 5. 20454 6. 27315 -0 056831 1 3 1
1996 2. 05605 5. 61126 1. 44479 ' > '
1997 6. 55744 5. 43299 012445 ' '
1998 1.94936 6. 57731 -4 62795 1
1999 357771 F.Ooz2105 -2 44334 1 1
2000 4.21900 5.86425 —2.54524 1
2001 S.01996 5.850249 -1.7F8253 1 1
2002 F.32120 5. 725326 0.59554 1 1
2003 2.97993 5.5037G6 2.4ATS22 1 >®
2004 T 42294 6. 24772 1. A7521 ' 1
2005 0. 00000 5. 49396 -5. 49396 —_— | '
2006 14 8425 F. 20877 T 63374 '

2007 5. 34035 5. 77948 o 56087 '

2008 8. 54985 5. .59821 1.95164 1 1
2009 F.O2562 5. 38544 oO.65018 1 1
2010 F.31427F 5.53126 o.F8311 ! 1
2011 000000 5.50442 -5.50442 1 1
2012 5.22596 T.208TT 0. 97930 1
2013 5. FAS3IT 5.50594 0. 13543 ! = !

Source: Calculated by the author using Eviews7
Fig. (9): Actual, Fitted, Residual Table

Forecast: LLRF

T Actual: LLR
Forecast sample: 1981 2013

104 Adjusted sample: 1982 2013
Included observations: 32

5 Root Mean Squared Error 2851458
Mean Absolute Error 1.982560

IMean Abs. Percent Error 27 .86280
Theil Inequality Coefficient  0.207773
Bias Proportion 0.000000
Wariance Proportion 0.956914
Covariance Proportion  0.043086

—— LLRF —— =2 5.E.

Source: Calculated by the author using Eviews7
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