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Introduction

The Tits alternative asserts that every finitely generated linear group contains either a
normal soluble subgroup of finite index or a free non-abelian subgroup. This results was
first conjectured by J-P. Serre and H. Basse. Tits established his proof in 1972 in an
extraordinary paper published in Journal of Algebra. The proof of Tits combines in an
ingeneous way results from algebraic geometry, number theory and group theory, and
remains a land mark in the subject.

Tits’ result has motivated Breuillard and Gelander to obtain the topological Tits alter-
native (see [2]) which is much stronger and has more applications. More recently there is
an attempt by Shalev and Larsen (see [19]) for establishing a probabilistic Tits alternative,
by using the notion of to use probabilistic identities; this approach seems quite promicing.

The paper of Breuillard and Gelander [2] is more general, and yields stronger results
than that obtained by Tits. We choosed to follow the former. However, this shall make
our task more difficult since we have to deal with more sophisticated tools. Following all
the details is out of reach for us at this level; we could only discuss the general notions
involved and try to combine them in a rough way.

The paper is organized as follows:

The first chapter contains some basic notions in abstract group theory. Its aim is to
explain the terminology involved in the main theorem.

In the second chapter, we discuss some basic facts in algebraic geometry, and algebraic
group theory. The main aim therein is to reduce the statement of the Tits alternative to
one about algebraic groups.
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In the third chapter, we discuss the core of the proof following the approach of Breuil-
lard and Gelander. After reminding some notions on local fields, we introduce the notion
of proximal elements and ping-pong tuples. This stuff gives a means for constructing free
subgroups. Hence, the next aim is to prove, under appropriate conditions, that ping-pong
tuples exist. This can be achieved by using representation theory of algebraic groups. In
the end of the chpter we mention the topological Tits alternative and some of its conse-
quences.

The last chapter contains three sections. The first is about the notion of probabilistic
identities, and the probabilistisch analogue of the Tits alternative. In the second section
we mention the importance of the Tits alternative in solving two conjectures of Milnor on
the word growth of groups. The last section considers the relevance to the amenability of
groups.
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Chapter 1

Groups and free groups

1.1 Basic facts

Definition 1.1. A group is a non-empty set G together with an internal operation (a, b) 7→
ab such that :

1. a(bc) = (ab)c, for all a, b, c ∈ G (associativity);

2. there is an element 1 ∈ G such that a1 = 1a = a, for all a ∈ G (identity);

3. If a ∈ G, then there is an element a′ ∈ G such that aa′ = a′a = 1 (inverse of a).

Note that the element a′ which satisfies (3) is uniquely determined by a, for each
a ∈ G, and we shall denote it by a−1.

Examples 1.2.

¶ For every set X, the set SX of permutations of X,

SX = {σ : X → X, σ is a bejictive map}

forms a group under the usual composition of maps . Note that the isomorphism
type of SX depends only on the cardinality of X: if Y has the same cardinality as
X, then SX and SY are isomorphic. For |X| = n, the group SX is usually denoted
by Sn, and called the symmetric group of degree n.
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· Let R be a commutative unital ring. Then we can consider the n× n matrices with
coefficients in R, and denote their set as usual by Mn(R). It is straightforward to see
that Mn(R) is a unital ring with the usual addition and multiplication of matrices.

An element A ∈Mn(R) is invertible if and only if detA is invertible in R.

For instance A ∈Mn(Z) is invertible if and only if detA = ±1.
It follows that the invertible elements of Mn(R) form a group which we denote by
GL(n,R) and which we call the general linear group over R of dimension n, so

GL(n,R) =
{
A ∈Mn(R) | detA ∈ R×}

If R is a field, then

GL(n,R) = {A ∈Mn(R) | detA ̸= 0}

Definition 1.3.

z Let G, H be two groups and f : G −→ H be a map. We say that f is homomorphism
of groups if :

f(xy) = f(x)f(y)

for all x, y ∈ G.

If in addition, f is bijective we say that f is an isomorphism, and that G and H
are isomorphic groups (we already used this terminology in the previous example).

z Let G be a group. A subgroup of G is non-empty subset H such that x−1y ∈ H, for
all x, y ∈ G.

z It follows that for every subset X ⊆ G the intersection of subgroups containing X
is a subgroup which is the smallest one that contains X. We denote this subgroup
by ⟨X⟩.

z ⟨X⟩ is called the subgroup generated by X. We can show easily that g ∈ ⟨X⟩ if and
only if there are elements xi ∈ X ∪X−1 such that g = x1...xn.

z If ⟨X⟩ = G, we say that ⟨X⟩ is a generating subset of G.

z We say that G is finitely generated if G = ⟨X⟩ for some finite subset X ⊆ G.

Recall that a subgroup H of G has finite index if the set {xH ⊆ G |x ∈ G} is finite.

Proposition 1.4. Let G be a finitely generated group, and H be a subgroup of G of finite
index. Then H is also finitely generated.

For a proof for the last result see for instance [18, Theorem 1.6.11].
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1.2 Linear groups

Definition 1.5. A group G is said to be linear if there exists an injective homomorphism

G −→ GL(n,K)

for some field K. That is G is linear if it can be embedded in the general linear group
over some field K; we say here also that G linear over K.

Let K be a field. Then every subgroup of Gl(n,K) is linear, and in particular the
following groups are linear:

z SL(n,K) = {A ∈Mn(K) | detA = 1}

z O(n,K) = {A ∈Mn(K) |AtA = In}

z Sp(2n,K) = {A ∈M2n(K) |AtJA = J}, where

J =

(
In 0
0 −In

)
,

and In is the identity matrix of size n.

Proposition 1.6. Let K be an arbitrary field. Then every finite group is linear over K.

Proof. Let G be a finite group. First we shall imbed G in SG. For g ∈ G, define
γg : G −→ G by γg(x) = gx, for all x ∈ G. Obviously, γg is a bijective map, so γg ∈ SG,
now consider

γ : G → SG

g 7→ γg

We claim that γ is a group morphism. Indeed, let g1, g2 ∈ G. Then

γg1g2(x) = (g1g2)x = g1(g2x)

= γg1(g2x) = γg1(γg2(x))

= γg1 ◦ γg2(x)
for all x ∈ G. So γg1g2 = γg1 ◦ γg2 . Moreover, γ is injective since if γg = 1, then
γg(x) = x, ∀x ∈ G; so gx = x and it follows that g = 1.
If |G| = n, then SG and Sn isomorphic, therefore we have only to embed Sn in GL(n,K).
For each σ ∈ Sn consider

φσ : Kn → Kn

(x1, ..., xn) 7→ (xσ(1), ..., xσ(n))

Then φσ is a linear map, φσ ∈ GL(n,K) and φ : Sn −→ GL(n,K) is an injective group
morphism. This completes the proof.
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1.3 Free Groups

Definition 1.7. Let S be a set. A free group on S is a group FS together with a map
i : S −→ FS, such that whenever G is a group and ϕ : S −→ G is a map, there exists a
unique group homomorphism ϕ̃ : FS −→ G which satisfies ϕ̃ ◦ i = ϕ

S
i→ FS

ϕ↘ ↙ ϕ̃
G

Remark 1.8. The above universal propriety guarantees that FS is unique up to isomor-
phism.

Theorem 1.9. There exists a free group on every non-empty set S.

Proof. Let us give a sketch of the proof:

• Consider the manoid M of the words on S∪S−1, where S−1 = {s−1 | s ∈ S} is just a
set which does not encounter S (one can call the elements of S−1 the formal inverses
of the elements of S). Recall that a word on S ∪S−1 of length n is a finite sequence
w = x1x2 . . . xn of elements of S ∪S−1. We denote the unique word of length 0 by 1
and we call it the empty word. The operation on M is defined by concatenation of
words, that is for two words u = x1x2 . . . xn and v = y1y2 . . . ym in M , the product
uv is defined as

uv = x1x2 . . . xny1 . . . ym

Note that 1 is the identity element for this operation, that is u1 = 1u = u, for all
u ∈M .

• Define an equivalence relation on M by setting : w ∼ w′ if w can be obtained from
w′ by adding or deleting subwords of the form ss−1 or s−1s, with s ∈ S.

• We define FS to be the quotient of M by the relation defined above. If we have two
classes [u], [v] of words, then we define their product as usual by [u][v] = [uv]. The
canonical map from S to FS is defined by s 7→ [s].

Remark 1.10.

• It is worth noting that for two subsets S and S ′ we have FS
∼= FS′ if and only if S

and S ′ have the same cardinality .

• In particular every positive integer n defines a unique free group Fn, which we call
the Free group on n generators.

Proposition 1.11. Let G be a finitely generated group then there exists an epimorphism
Fd ↠ G. In particular, G is isomorphic to a quotient of Fd
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Proof. Assume that {g1, ..., gd} is a generating set of G and consider the free group Fd on
a generators x1, ..., xd. The map xi 7→ gi, i = 1, d, extends by the universal property of
Fd to a group homomorphism

ϕ̃ : Fn −→ G.

The morphism ϕ̃ is surjective because g1, ..., gd generate G. It follows that Fn/ ker ϕ̃ ∼=
G.

We can give the statement of the Tits alternative after the following short definition.

Definition 1.12. Let C be a class of groups. A group G is said to be virtually-C, if G
contains a normal subgroup N such that:

z G/N is finite.

z N lies in the class C.

Examples 1.13.

¶ For a group G, the derived series (G(n)) is defined inductuively by G(0) = G and

G(i+1) = [G(i+1), G(i+1)], for i ⩾ 0

The group G is said to be soluble if Gn = 1, for some n ∈ N.

Now, we can define the notion of virtual solubility. A group G is virtually soluble if
it contains a normal subgroup N of finite index such that N is soluble.

· The lower central series (γn(G))n≥1 is the series of subgroups of the group G defined
by

γ1(G) = G

and
γi + 1(G) = [γi(G), G], for i ⩾ 1

The group G is nilpotent if γn(G) = 1 for some n ∈ N∗.

The group G is said to be virtually nilpotent if it contains a normal subgroup N of
finite index such that N is nilpotent.

The main theorem in this thesis is the following.

Theorem 1.14 (The Tits alternative). A finitely generated linear group G is either vir-
tually soluble or contains a free subgroup on two generators.

In the above theorem the group G couldn’t be simultaneously virtual soluble and
contains a free 2-generated subgroup; this means that the Tits alternative is really an
alternative! Indeed, assume that G is virtually soluble, so it contains a normal soluble
subgroup N of finite index. If moreover G contains a free non-abelian subgroup F , then
FN/N is finite, hence F/F ∩N is finite. This means that F ∩N is a non-trivial subgroup
of F . Therefore, F ∩ N is free non-abelian by the Nielsen-Schreier theorem, and on the

7



other hand F ∩N is soluble since it is a subgroup of the soluble group N . Hence, we have
constructed a free non-abelian group which is soluble; if this is true then it follows at least
that every 2-generated group is soluble by Proposition 1.9, in particular the alternating
group A5 is soluble, a contradiction.

If G is linear over a field of characteristic 0, then we can remove the finite generation
condition in the Tits alternative; in other words we have.

Theorem 1.15. A linear group over a field of characteristic 0 is either virtually soluble
or contains a free subgroup on two generators.
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Chapter 2

Linear algebraic groups

This chapter treats some basic notions in algebraic geometry and algebraic groups which
are indisponsible in understanding the proof of the Tits alternative. It is impossible in
such a situation to give full proofs for all the mentioned results; for those we refer the
reader for instance to [11] and [8].

2.1 Affine varieties

Let K be an algebraically closed field, and let An denote the cartesian product Kn.
For a subset S of polynomials ring K [X1, ..., Xn] we define V (S) to be the set of common
zeros of the polynomials in S, that is

V (S) = {(a1, ..., an) ∈ An | f(a1, ..., an) = 0, for all f ∈ S}

if I is the ideal generated by S, then it is readily seen that V (S) = V (I).

Definition 2.1. We call algebraic subset of An every subset of the form V (S), for some
S ⊆ K [X1, ..., Xn].

Examples 2.2.

¶ ∅ and An are algebraic sets since ∅ = V (f), for any constant non zero polynomial
f and An = V (0).

9



· SL(n,K) is an algebraic set An2. Indeed, we may consider the polynomial ring

K [X11, X12, ..., X1n, X21, ..., Xnn]

so the determinant

det =
∑
σ∈Sn

ϵ(σ)X1σ(1)X2σ(2) · · ·Xnσ(n)

is just a polynomial in the later ring. Now consider f = det− 1, so

SL(n,K) = {A ∈Mn(K) | f(A) = 0}

It is understood that we have identified An2 with the set of n× n matrices Mn(K).

¸ GL(n,K) is an algebraic set in An2+1 consider the polynomial ring K [X11, ..., Xnn, Y ]
and the polynomial det(X11, ..., Xnn)Y − 1, then we have the algebraic set

V (f) = {(A, y) ∈Mn(K)×K | det(A)Y = 1}

which can be identified to GL(n,K) via

GL(n,K) −→ V (f)

A 7−→ (A, (detA)−1)

Proposition 2.3.

(i) ∅ and An are algebraic sets.

(ii) If {Si} is a family of subsets of K [X1, ..., Xn], then V (
∑

i Si) = ∩iV (Si); in particular
the intersection of family of algebraic sets is algebraic.

(iii) If S, S ′ ⊆ K [X1, ..., Xn] then V (SS ′) = V (S) ∪ V (S ′); In particular a finite union
of algebraic sets is algebraic.

Proof.

(i) For f = 0, V (f) = An. For a constant polynomial f = c ̸= 0, we have V (f) = ∅.

(ii) For each j, we have Sj ⊆
∑
Si, so if P ∈ V (

∑
Si), then f(P ) = 0 ∀f ∈

∑
Si;

in particular if f ∈ Sj, then f ∈
∑
Si, f(p) = 0. It follows that P ∈ V (Sj),∀j,

so P ∈ ∩jV (Sj). We have shown that V (
∑

i Si) ⊆ ∩iV (Si). Conversely, let P ∈
∩iV (Si). If f ∈

∑
j Si, then f =

∑
fi, where fi ∈ Si. So f(P ) =

∑
fi(P ) = 0.

Thus P ∈ V (
∑
Si).
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(iii) Without loss of generality we may assume that S1 and S2 are ideals. As S1S2 ⊆ S1,
it follows that for every P ∈ V (S1), and f ∈ S1S2, f(P ) = 0; so V (S1) ⊆ V (S1S2).
Similarly, we have V (S2) ⊆ V (S1S2). Thus V (S1) ∪ V (S2) ⊆ V (S1S2). Conversely,
let P ∈ V (S1S2) and assume for a contradiction that P /∈ V (S1) and P /∈ V (S2).
Therefore, ∃f ∈ S1 such that f(P ) ̸= 0; and ∃g ∈ S2 such that g(P ) ̸= 0. Now,
fg(P ) = f(P )g(P ) ̸= 0, but since fg ∈ S1S2 we should have fg(P ) = 0. This
completes the proof.

Corollary 2.4. The algebraic sets in An form the closed of a topology called the Zariski
topology on An.

For instance, the Zariski topology on A1 has as closed subsets the finite parts and A1.
There are several definitions of affine algebraic varieties form which the following is the
most convenient for us.

Definition 2.5. We call affine algebraic variety every closed subset of An endowed with
the induced Zariski topology. If X ⊆ An is a variety, and K ′ is a subfield of K, then we
can consider X(K ′) the set of point of X having coordinates in K ′, and call X(K ′) the
set of K ′-rational points of X.

Examples 2.6. If X = V (X4 − 1) ⊆ C, or in other words X = {1,−1, i,−i}, then the
Q-rational points of X are 1and −1.
Definition 2.7. A topological space X ̸= ∅ is said to be irreducible if it cannot be written
as X = X1 ∪X2 where X1 and X2 are tow proper closed subsets of X. A subset Y of X
is irreducible if it is irreducible as a topological space with the induced topology.

The irreducible subsets containing some part Y of X form an ordered set with respect
to inclusion.

Lemma 2.8.

¶ If (Xi) is totally ordered family of irreducible subsets of X, then ∪iXi is irreducible

· If a subset Y ⊆ X is irreducible, then its closure Ȳ is irreducible.

Proof.

¶ Assume that
∪
Xi is not irreducible, so

∪
Xi = Y1 ∪ Y2, where Y1, Y2 are two

proper closed subsets of
∪
Xi. We have

∪
Xi ⊈ Y1, so there exist i ∈ I and x1 ∈

Xi such that x1 /∈ Y1. Similarly, there exist j ∈ I and x2 ∈ Xj such that x2 /∈ Y2.
Without loss of generality we may assume that Xi ⊆ Xj. Put Z1 = Xj ∩ Y1 and
Z2 = Xj ∩ Y2. We have Z1 and Z2 are closed subsets of Xj such that

Z1 ∪ Z2 = (Xj ∩ Y1) ∪Xj ∩ Y2 = Xj ∩ (Y1 ∪ Y2) = Xj

Moreover, both of them is a proper subset of Xj, since if we assume for instance that
Z1 = Xj, then it follows that Xj ⊆ Y1 which is a contradiction. We have established
that Xj is reducible which contradicts our assumption.
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· If Ȳ is not irreducible, then Ȳ = Y1 ∪Y2, where Y1, Y2 are two closed proper subsets
of Ȳ (so Y1, Y2 are also closed in X). Now, Y = (Y1 ∩ Y ) ∪ (Y2 ∩ Y ), but since Y
is irreducible it follows that Y = Y1 ∩ Y or Y = Y2 ∩ Y . This means that Y ⊆ Y1
or Y ⊆ Y2, from which it follows that Ȳ ⊆ Y1 or Ȳ ⊆ Y1 since Y1 and Y2 are closed.
This contradicts the fact that Y1 and Y2 are proper subsets of Ȳ .

It follows from the above lemma that every topological space is a union of maximal
irreducible subsets, and these maximal irreducible subsets are closed. We call them the
irreducible components of X.

Corollary 2.9. Every affine variety is a union of irreducible varieties.

A topological space X is called noetherian if every ascending chain of open subsets of
X is stationary; that is if X satisfies the ascending chain condition on the open subsets
(equivalently, if every dexending chain of closed subsets is stationary).

For instance, An are always noetherian for the Zariski topology; to see this one reduces
the problem to the ring K [X1, ..., Xn] which is noetherian by the Hilbert Basis Theorem.

Remark 2.10. A noetherian space has only finitely many irreducible components. Hence,
the number of irreducible components of an affine variety is always finite.

Definition 2.11. The dimension of an affine X variety is the maximum of the n’s such
that there exists a chain X0 ⊂ X1 ⊂ ... ⊂ Xn of district irreducible closed subsets of X.

Examples 2.12. The dimension of An is equal to n. To see this one reduce the problem
to investigating the Krull dimension of the ring K [X1, ..., Xn] which is well known to be
n.

Proposition 2.13. Let X and Y be tow irreducible affine varieties .If Y ⊂ X, then
dimY < dimX.

Every time we have a family of mathematical object, it is natural to wonder what are
the morphisms between then.

Definition 2.14. Let X ⊆ Anand Y ⊆ Am be two affine varieties. A morphism φ :
X −→ Y is a map from X to Y such that ∃ψ1, ..., ψm ∈ K [X1, ..., Xn] with

φ(p) = (ψ1(p), ..., ψm(p)),∀p ∈ X

.

Note that every morphism φ : X −→ Y of varieties is continuous (with respect to
the Zariski topologies). Indeed, it suffices to show that φ−1(Z) is closed in X, for every
closed subset of Y . Assume that Z = V (S), for some S = {fα} ⊆ K [X1, ..., Xn] then
p ∈ φ−1(Z) iff fα(ψ1(p), ..., ψm(p)) = 0,∀α. But since for each α,

gα = fα(ψ1(X1, ..., Xn), ..., ψm(X1, ..., Xn))

12



is obviously a polynomial in K [X1, ..., Xn], we have φ−1(Z) = V ({gα}) which is closed in
X. This completes the proof.

The following result is useful for the proof of Proposition 2.21.

Proposition 2.15. Let φ : X −→ Y be a morphism of varieties. If Z is irrducible in X,
then φ(Z) is irreducible in Y .

We finish this section with the following result (see [11]).

Proposition 2.16. Let φ : X −→ Y be a morphism of irreducible varieties with φ(X)
dense in Y . Then there exists U ̸= ∅ open in Y such that U ⊆ φ(X) and

dimX = dimY + dimφ−1(u),∀u ∈ U

2.2 Linear Algebraic groups

Let X ⊆ Anand Y ⊆ Am be two affine varieties. Then X × Y is likewise an affine
variety. Indeed, we can consider X × Y as a subset of An+m, and embed K[X1, ..., Xn]
and K[X1, ..., Xm] ⊆ K[X1, ..., Xn+m] so that if X = V (S) and Y = (S ′), then

X × Y = V (S ∪ S ′)

in other words X × Y is the set of zeros of the polynomials.{
f(X1, ..., Xn), f ∈ S
g(Xn+1, ..., Xn+m), g ∈ S ′

Definition 2.17. An algebraic group G is a variety with a group structure such that

G×G → G
(x, y) 7→ xy

and
G → G
x 7→ x−1

are morphisms of varieties.

We may define a morphism of algebraic groups f : G −→ G′ to be a morphism of
varieties which is also a group homomorphism.

Our basic example is the variety GL(n,K) endowed with the usual group struc-
ture. Since the product and the inverses of matrices are given by polynomial equations,
GL(n,K) is an algebraic group.

13



Definition 2.18. We call a linear algebraic group every closed subgroup of GL(n,K).

It follows that every linear algebraic groups is an algebraic group.

Examples 2.19. For example SL(n,K) = {A ∈ GL(n,K) | detA = 1} is a closed subset
of An2 as we have already seen, and it is also a subgroup of GL(n,K); that is SL(n,K)
is a linear algebraic group.

Proposition 2.20. Let G be a linear algebraic group, and H ≤ G. The Zariski closure
H̄ is also a subgroup of G. Hence, H̄ is a linear algebraic group. Moreover, if H ⊴ G,
then H̄ ⊴G.

Proposition 2.21. Let G be a linear algebraic group. Then :

¶ The irreducible components form a partition of G.

· The identity element 1 ∈ G lies in exactly one irreducible component which we
denote G0.

¸ G0 is closed normal subgroup of finite index in G

¹ Every closed subgroup of finite index contains G0; so G0 is the smallest closed sub-
group of finite index in G.

Proof.

¶ Let X,Y be two distinct irreducible components of G. Assume for a contradiction
that there exists an element g ∈ X ∩ Y . Since multiplication by g−1 is a morphism
of G onto itself, g−1X and g−1Y are irreducible and 1 ∈ g−1X ∩ g−1Y . Therefore,
without loss of generality we may assume that 1 ∈ X ∩ Y . Now, XY is irreducible
as it is the image of the irreducible subset X × Y by the multiplication in G. We
have X = X · 1 ⊆ XY and Y = 1 · Y ⊆ XY , so by the maximality of X,Y we get
X = XY = Y , a contradiction, hence X ∩ Y = ∅.

· It follows at once from the above part, that 1 lies in exactly one component.

¸ We have G0 is an irreducible component, so (G0)−1 its image by the g 7→ g− is an
irreducible component. We have 1 ∈ G0 ∩ (G0)−1. Thus, G0 = (G0)−1. Similarly
G0 · G0 is irreducible and contains G0, hence by the maximality of G0 we have
G0 ·G0 = G0. This proves that G0 is a subgroup of G.

For x ∈ G, we have x−1G0x is again an irreducible component, as an isomorphic
image of G0 and 1 ∈ G0 ∩ g−1G0g. Therefore G0 = g−1G0g, so G0 is normal.

Let X be any irreducible component of G. If g ∈ X, then 1 ∈ g−1X and so
g−1X = G0. It follows that X = gG0; thus the components of G are exactly the
cosets of G0. Since G0 is noetherian, there are only finitely many components of G,
hence G0 has finite index in G.
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¹ Let H ⩽ G be a closed subgroup of finite index. Obviously, H0 ⩽ G0 ⩽ G. Now,
|G : H0| = |G : H||H : H0| is finite by the thrid part. Thus H0 has finite index in
G0, and it follows that G0 is a disjoint union of a finite number of cosets of H0; but
G0 is irreducible, so G0 = H0 ⊆ H.

The subgroup G0 is called the identity component of G.

Definition 2.22. An algebraic group G is said to be connected if G = G0.

Proposition 2.23. If H,K ≤ G are subgroups of a linear algebraic group such that K is
closed and connected, then commutator [H,K] is closed and connected.

It follows for instance that if G is connected, then the terms of the derived series and
the lower central series are closed and connected.

Remark 2.24.

• If φ : G1 −→ G2 is a morphism of linear algebraic groups, then

dim(G1) = dim(Imφ) + dim(Kerφ)

• dimG = dimG0.

• dim(GL(n,K)) = n2 and dim(SL(n,K)) = n2 − 1.

2.3 Semisimple linear algebraic groups

Let G be a linear algebraic group. Then we can consider a soluble normal subgroup of G
of maximal dimensions. As we have seen the closure S̄ of S is likwise normal and soluble,
so we may assume that S̄ = S, and so S is closed. Moreover, if N is any normal subgroup
of G which is soluble, then NS is also soluble, so by maximality of S we have N ⊆ S. It
follows that S contains all the normal soluble subgroups of G. we have established.

Proposition 2.25. Let G be a linear algebraic group. Then there is a unique largest
normal soluble subgroup of G, moreover this subgroup is closed.

Definition 2.26. The radical of an algebraic group G is the identity component of the
largest normal soluble subgroup of G.

Note that by definition, the radical of a linear algebraic group is connected.

Definition 2.27. A linear algebraic group is said to be semi-simple if it is connected and
has trivial radical.
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2.4 Reduction for the Tits alternative.

The aim of this section is to show that the Tits alternative follows from the following
theorem.

Theorem A. Let Γ ≤ GL(n,K) be a connected semi-simple linear algebraic group,
which has a Zariski dense finitely generated subgroup G. Then G on 2-generators free
subgroup.

Assume that Theorem A, is proved, and let G be a finitely generated subgroup of
GL(n,K) which is not virtually soluble. Denote by T the Zariski closure ofG, and let
G0 = G ∩ T 0.
Since T 0 has finite index in T , it follows that

G/G0 = G/G ∩ T 0 ≃ GT 0/T 0 ⊆ T/T 0

is finite. Assume that:

• T 0 is not soluble. Otherwise, G0 = G ∪ T 0 is soluble, and so G is virtually soluble
which contradicts our assumption.

• G0 is finitely generated.
This follows at once from proposition 1.

Let R be the soluble radical of T 0. By 1 we may assume that T 0/R is not trivial.
If we put T = T 0/R, then T is a semi simple connected algebraic group. Moreover,

G0R/R of T , and G0R/R ≃ G0/G0∪R is finitely generated by 2. If follows that T meets
the condition of theorem A, thus G0/G0 ∪R contains a 2-generated free subgroup

F̄ = F (G0 ∪R)/G0 ∪R

Now: F is a subgroup of G0, and F/F ∪ (G0 ∪ R) is a free group; Since extension by a
free group splits, it follows that F = F ∪ (G0 ∪R).F1 where F1 is a subgroup of T and so
F1 ⩽ G0. Moreover F1 ≃ F/F ∪ (G0 ∪R) is free on 2-generators.
This proves that G0and so Gcontains a free non-abelian subgroup. The later argument
shows that theorem A implies the Tits alternative, The next chapter will be devoted to
sketching the proof of theorem A.
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Chapter 3

On the proof of Theorem A

3.1 Projective transformations and Proximal elements

In this section we follow the approach of Breuillard and Gelender [2, 1] to construct
proximal elements. The role of notions presented below in the proof of the Tits Alternative
will be clear later.

3.1.1 Local fields

An absolute value on a field K is a map

|.| : K −→ [0,+∞[

which satisfies

¶ |x| = 0⇔ x = 0.

· |x.y| = |x||y|.

¸ |x+ y| ⩽ |x|+ |y|.

If instead of (3) the strongest inequality |x+ y| ⩽ max{|x|, |y|} holds, we say that the
absolute value is non-archimedian.
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As an example, we have the usual absolute value |.| : Q −→ R defined

|x| =

{
x if x ⩾ 0

−x otherwise .

Let p be a prime number. For every integer 0 ̸= a ∈ Z we define vp(a) to be the
largest power of p which divides a; and we set vp(0) = ∞. For example, we have for
a = 120 = 23×3×5, v2(120) = 3, v3(120) = 1, v5(120) = 1 and vp(120) = 0, if p ̸= 2, 3, 5.
We extend vp to Q by setting

vp(a/b) = vp(a)− vp(b).

The map vp : Q −→ Z ∪ {∞} is called the p-adic valuation on Q and it satisfies:

(i) vp(ab) = vp(a) + vp(b).

(ii) vp(a+ b) ⩾ min{vp(a), vp(b)}.

It follows that the map
|.|p : Q → [0,+∞[
x 7→ p−vp(x)

is a (non-archimedian) absolute value on Q.

An absolute value |.| on field K define a distance on K by setting:

d(x, y) = |x− y|

So K can be viewed as a metric space. If K is complete with respect to this metric we
say that K is a local field.

For example, Q is not complete neither for the usual absolute value |.|, nor for the
p-adic absolute values |.|p, p a prime. However, we can complete Q with respect to each
of these absolute values, and obtain R in the first case, and the field of p-adic numbers
Qp, for each prime p. The fields R and Qp are local fields.

3.1.2 Projective transformations

Let K be a local field.

¶ Assume first that K is archimedian, so K = R or C by a well-known theorem of
Ostrowski. And denote by ∥.∥ the canonical euclidean norm of Kn:

∥x∥ =

√√√√ n∑
i=1

|xi|2 Wherex = (x1, ..., xn)
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One can consider the Cartan decomposition (see [3]) of SL(n,K):

SL(n,K) = BAB

where B = SOn(R) or B = SUn(C), according to the case K = R or C; and

A = {

a11 0
. . .

ann

 | a11 ⩾ ... ⩾ ann > 0 and
n∏

i=1

aii = 1}

Any element g ∈ SL(n,K) can be decomposed as g = bgagb
′
g, where ag ∈ A, bg, b′g ∈

B.

· Assume now that K is non-archimedian and let OK = {x ∈ K | |x| ⩽ 1} be its
valuation ring. We define a norm on Kn by setting
∥x∥ = maxi |xi|, where x = (x1, ..., xn)
Then

SL(n,K) = BAB

where B = SL(n,OK) and

A = {

π
δ1 0

. . .
πδn

 | δi ∈ Z, δi ⩽ δi+1 and
∑

δi = 0}

where π is uniformizing element for K.

In both cases the norm on Kn gives rise to a canonical form on the exterior product
∧2Kn.
Now consider the projective space Pn−1(K) on K.
Recall that the elements of Pn−1(K) are equivalente classes with respect to the relation:

x ∼ y ⇔ ∃λ ∈ K∗ : x = λy

Where x, y ∈ Kn. We denote the class of x ∈ Kn in Pn−1(K) by [x]. We can define a
metric on Pn−1(K) by setting

d([x], [y]) =
∥x ∧ y∥
∥x∥∥y∥

( This metric is easily seen to be well defined).

Remarks

(a) The map d is a distance on Pn−1(K) which induces the topology defined by the local
field K.
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(b) d is ultra-metric ifK non archimedian; that is d([x], [y]) ⩽ max {d([x], [z]), d([y], [z])}
for all x, y, z ∈ Kn.

(c) If f is a linear form on Kn, f : Kn −→ K then for every non zero vector x ∈ Kn,
we have

d([x], [ker f ]) =
∥f(x)∥
∥f∥.∥v∥

(d) The compact group K acts as an isometry group on Pn−1(K); that is

d(g[x], g[y]) = d([x], [y])

For all g ∈ K and x, y ∈ Kn. Here g[x] is defined as usual to be the class of the
vector [g.x].

As usual, denote by PGL(n,K) the quotient of GL(n,K) by its center. Note that the center
of GL(n,K) is formed by all the diagonal matrices λIn, with λ ∈ K satisfies λn = 1.
There is a natural action of the projevtive special linear group PGL(n,K) on the projective
space Pn−1(K): for a projective transformation [g], and an element [v] ∈ Pn−1(K). we
define [g][v] = [gv] ∈ Pn−1(K). obviously, this action is well defined.
For subset S ⊆ Pn−1(K), and a real number ϵ > 0, we define the ϵ-neighborhood of S to
be the set {v ∈ Pn−1(K) | d(v, s) < ϵ}. Note that if S = {w}, then the ϵ-neighborhood of
S is just the open ϵ-ball centered at w.

Definition 3.1. Let ϵ > 0. A projective transformation [g] is said to be ϵ-contracting if
the following hold:

• There exists a projective point vg ∈ Pn−1(K) called an atractting point of [g].

• There exists a hyperplane Hg ⊆ Pn−1(K), called a replusive hyperplane of [g] such
that:
[g] maps the complement of the ϵ-neighborhood of Hg into the ϵ-ball centered at vg.

For an element g ∈ GL(n,K), the diagonal matrix ag which arises in the decomposition
of g as an element of BAB is uniquely determined. We denote by a1(g), ..., an(g) the
diagonal enties of ag, listed in a decraesing order.

Proposition 3.2. Let ϵ < 1/4. If |a2(g)
a1(g)
| ⩽ ϵ2, then [g] is ϵ-contracting then |a2(g)

a1(g)
| ⩽ ϵ2

π
if

K is non-archimedian with uniformizing π; and |a2(g)
a1(g)
| ⩽ 4ϵ2 if K is archimedian.

Proof. See [1, Prop 3.3]

Definition 3.3. A projective transformation [g] is called (r, ϵ)-proximal (r > 2ϵ > 0) if it
is ϵ-contracting some repulsive hyperplane Hg such that

d(vg, Hg) ⩾ r

.
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3.1.3 Ping-Pong tuples and free groups

An m-tuple (a1, ..., an) of element of PGL(n,K) is called a ping-pong m-tuple if :

• For every i, ai and a−1
i are (r, ϵ)-proximal elements for some r > 2ϵ > 0.

• If v+i and H+
i , v

−
i and H−

i are the attracting points and the repulsive hyperplanes
of ai and a−1

i respctively, then d(v±i , H
±
j ) > r, whenever i ̸= j. The main result

here is the following.

Proposition 3.4. Every ping-pong m-tuple (a1, ..., an) in PGL(n,K) generates a free
group of rank m; that is ⟨a1, ..., am⟩ is a free subgroup of PGL(n,K), of rank m

3.1.4 Constructing ping-pong tuples

Let F be a finite subset of PGL(n,K), r a positive real number, and m ∈ N. we may
that F is (m, r)-separating if for every 2m point v1, ..., v2m in Pn−1(K) and 2m hyper-
planes H1, ..., H2m ⊆ Pn−1(K), there exists an element γ ∈ F such that: d(γvi, Hj)) >
r and d(γ−1vi, Hj > r for all i ̸= j).
A proof of the following key result can be found in[2, 1, Section 3] .

Proposition 3.5. Let F be an (m, r)-separating set in PGL(n,K). Then ∃C > 1 such
that for every ϵ with 0 < ϵ < 1/C we have

• For every ϵ-contracting transformation [g] ∈ PGL(n,K), there exists [f ] ∈ F such
that [f g] and its inverse are (C, ϵ)-contracting.

• If a1, ..., an ∈ PGL(n,K), and γ is a projective transformation such that γ and γ−1

are ϵ-contracting, there exist h1, ..., hn, g1, ..., gm ∈ F so that

(g1γa1h1, g2γa2h2, ..., gmγamhm)

is a ping-pong m-tuple.

3.2 Representation theory, and a sketch of the final
step in the proof

The book of G. Malle and D. Testerman [11] contains a good chapter on the representation
theory of linear algebraic groups, which we shall refer to it frequently. We shall also refer
the reader frequently to the paper by Breuillard and Gelander [2] which contains the main
core of the proof.
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3.2.1 Representations of abstract groups

Let G be a group, and V be K-vector space of finite dimension. A linear representation
of G over V is a group morphism ρ : G → GL(V ). The dimension of the representation
ρ is, by definition, the dimension of V .

It is convenient to denote ρ(g)(v) by g.v, for g ∈ G and v ∈ V . A subspace W of V is
invariant if g.w ∈ W , for all g ∈ G and all w ∈ W . If V contains no invariant subspace
other than V and {0}, we say that ρ is an irreducible representation. We say that ρ is
semisimple if V can be expressed as a direct sum V =

⊕
i Vi, where each subspace is

invariant and the restriction
ρVi

: G→ GL(Vi)

is irreductible.

For every ρ : G→ GL(V ). We can associate a map called the character of ρ, defined
by

X : G→ K

g 7→ Tr(ρ(g))

where Tr(ρ(g)) is the trace of the matrix associated to the linear map ρ(g) with respect
to any basis of V .

3.2.2 Representations of algebraic groups

Let G be an algebraic group of over a field K, and V be a finite dimensional vector space
over K.

A representation ρ : G → GL(V ) is said to be rational if ρ is a rational map; that is
to say ρ is a morphism of algebraic groups.

The rational representations of an algebraic group G of degree 1 are called the char-
acters of G; hence, a character χ of G is a morphism of algebraic groups χ : G→ K×.
The characters of G are denoted by X(G), and they form a group under the addition:

(χ1 + χ2)(g) = χ1(g)χ2(g)

.

A torus in the algebraic group G is a subgroup which is isomorphic to K×× · · · ×K×

for some n, where K× is the miltiplicative group of the field on which G is defined. It is
worth mentioning that all the maximal tori in G are conjugate; and the dimension of one
of these maximal tori is know as the rank of G and denoted by rk(G).
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To each maximal torus T one can assign a root system Φ (with basis ∆ ⊆ Φ+) see
[11]).The group NG(T )/T is called the Weyl group of G. For any rational representation
ρ : G→ GL(V ) of G, we have

V =
⊕
χ

Vχ

where χ runs over the characters of the maximal torus T , and V = {v ∈ V | ρ(t)v =
χ(t)v, ∀t ∈ T}

Definition 3.6. Under the above notation, every charcter χ of T such that Vχ ̸= 0 is
called a weight of V with respect to the torus T and V − χ is called a weight espace of V .

3.2.3 Completion of the proof

Throughout, assume that L is a field which is finitely generated over its prime subfield
(Q or Fp according to the characteristic of L). Let G be an algebraic group over L, such
that the connected component G0 is semisimple. Assume also that we have a finitely
generated subring R of L. Fix a rational representation ρ′ : G → GL(d, L); so the set
G(R) of R-rational points of G is mapped into GL(d,R) by ρ′. The main theorem in this
section is the following.

Theorem 3.7. (See [2, Theorem 4.3])
Let Ω0 ⊂ G0(R) be a Zariski-dense subset of G0 with Ω0 = Ω−1

0 . Suppose {g1, · · · gn} is a
finite subset of G(L) whose image in G/G0 covers the whole G/G0, and let

Ω = g1Ω0g
−1
1 ∪ · · · ∪ gmΩ0g

−1
m

Then we can find a number r > 0, a local field K, an embedding L ↪→ K and a (strongly)
irreducible projective representation ρ : G(L) → PGL(d,K) defined over L with the fol-
lowing property. If ϵ ∈ [0, r

2
] and a1, . . . an ∈ G(L) are n arbitrary points, then there exist

n elements x1, . . . xn with
xi ∈ Ω4m+2aiΩ

such that the ρ(xi)±1’s are (r, ϵ)-proximal transformations on P(Ld), and the ρ(xi)’s form
a ping-pong n-tuple.

As an immediate consequence, by Proposition 3.4, the elements ρ(xi), for i = 1, . . . n,
generate a subgroup isomorphic to the free group Fn.

We can now deduce Theorem A. Let G be a finitely generated linear group, and let
Γ be its Zariski closure. By the assumptions of Theorem A, we may assume that Γ is a
connected semisimple algebraic group (so in particular Γ = Γ0).

Let H ⩽ G be a subgroup of finite index, let g1, . . . , gn be arbitrary elements of G,
and Ω0 = π(

∩m
i=1 giHg

−1
i ), where π : G → Γ and K is the base field of G. It follows
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that Ω0 is a dense subset of Γ = Γ0 which satisfies obviously Ω−1
0 = Ω0. By the last theo-

rem, the elements π(g1), . . . , π(gn) form a ping-pong n-tuple, so they generate a free group.

Remark 3.8. The above argument yields in fact a stronger result. Firstly, the assumption
in Theorem A that Γ is connected can be dropped; and secondly, for every H ⩽ G of finite
index, any choice of g1, . . . , gn ∈ G yields an n-tuple (a1, ..., an) that generate a free group
and such that ai = gi mod H for all i.

The appraoch that we followed yields results which are more strong than the Tits
alternative.

Theorem 3.9 (see Theorem 1.3 in [2]). Let K be a local field and Γ a subgroup of
GL(n,K). Then Γ contains either an open solvable subgroup or a dense free subgroup
(with respect to the topology induced by that of the absolute value on K).

The later was called by Breuillard and Gelander the topological Tits alternative.

A version of the Tits alternative that is slightly modified from the one that we have
already mentioned can be stated as follows (this version can be also found in Tits’ paper
[16] ).

Theorem 3.10. Let L be a field and G be a finitely generated subgroup of GL(n, L). Then
G contains either a Zariski open soluble subgroup or a Zariski dense free subgroup of finite
rank.

The last theorem can be deduced from the topological Tits alternative as follows:

Consider G ⩽ GL(n, L) as in the last theorem, and letR be the subring of L generated
by all the entries of the matrice in G. A theorem Noether (the Noether normalization
theorem) implies that R can be embeded in the valuation ring O of some local field K,
hence G can be embeded in the linear group GL(n,O).
The topology induced on G from the Zariski topology of GL(n, L) coincides with that
induced from the Zariski topology of GL(n,K), and the later is weaker than the topology
induced by the local field K (since the polynomail functions on K are continuous with
respect to the later topology). If the image of G in GL(n,K) contains an open solvable
subgroup, then so the closure of G. Hence, G is virtually solvable, and its Zariski con-
nected conponent is solvable and Zariski open. Otherwise the image of G in GL(n,K)
does not contains an open soluble subgroup, hence by the topological Tits alternative,
it contains a dense free subgroup (which can be chosen to be of finite rank). This free
subgroup is Zariski dense.

The topological Tits alternative has applications to Lie groups, to the theory of profi-
nite groups, amenability.... For these, we refer the reader to [2]. (It remains to prove
Theorem 3.7).
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Chapter 4

The probabilistic approach and
some applications of the Tits

alternative

4.1 The work of M. Larsen and A. Shalev

4.1.1 Identities and Probabilistic identities

Let w(x1...xn) be an element of Fn and let G be a group, we can define a map from Gn into
G by sending each (g1, ..., gn) ∈ Gn to the element w(g1...gn) ∈ G obtained by replacing
each indeterminate xi by gi. We call the later map the evaluation of the word w on G,
and w(g1...gn) the value of the word w on (g1...gn).

For example, we have

1. For w1 = x−1
1 x−1

2 x1x2 ∈ F2, the associated evaluation map is given by

G2 → G
(g1, g2) 7→ [g1, g2]

2. Consider, w2 ∈ F3 defined by

w2 = x−1
2 x−1

1 x2x1x
−1
3 x−1

1 x−1
2 x1x2x3.
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More concisely, w2 = [x1, x2, x3]; hence the associated evaluation is

G3 → G
(g1, g2, g3) 7→ [g1, g2, g3]

3. For w3 = x5 ∈ Fn, we have
G → G
g 7→ g5

Definition 4.1. We say that w is an identity for G if the map on G induced by w is
trivial; that is to say w(g1...gn) = 1 ∀g1, ..., gn ∈ G.

Examples 4.2.

1. The word w1 = x−1
1 x−1

2 x1x2 is identity of a group G if and only if [g1, g2] = 1, for
all g1, g2 ∈ G. This holds if and only if G is abelien.

2. The group G satisfies the identity if and only if G is nilpotent of class ≤ 2.

The previous definition can be relaxed to be more useful. For a ward w ∈ Fn, define

PG(w) =
|{(g1, ..., gn) |w(g1...gn) = 1}|

|G|n

Obviously, we have
1

|G|n
≤ PG(w) ≤ 1.

We can interpret PG(w) as the probability for an n-tuple of elements of G to satisfies the
identity w.

We can extend the later definition to the infinite groups which are residually finite.

Let C be a class of groups.

Definition 4.3. A group G is said to be residually-C if∩
{N ◁ G | G/N is a C-group} = {1}

that is to say that the intersection of all normal subgroups N ◁ G such that G/N has the
property C, is trivial.

¶ We obtain the class of residually finite groups by taking C to be the class of finite
groups. Therefore, a group G is residually finite if∩

{N ◁ G | G/N is finite } = {1}
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· If we take C to be the class of finite p-groups then G is said to be residually finite
p-groups.

Proposition 4.4. Let G be a group and C be a class of groups. Then G is residually-C
if, and only if, for every 1 ̸= g ∈ G, there exists a epimorphism ϕ : G −→ H, where H is
a C-group such that ϕ(g) ̸= 1.

Proof. Assume thatG is residually-C, and let g ∈ G with g ̸= 1. As
∩
{N | G/N is a C-group} =

1, there exists N ◁ G such that G/N is a C-group, and g /∈ N . Now, if we consider the
canonical projection ϕ : G→ G/N , then ϕ(g) ̸= 1.

In the reverse direction, assume for a contradiction that∩
{N | G/N is a C-group} ̸= 1

and let g ̸= 1 be an element in the later set. By assumption, there exists an epimorphism
ϕ : G −→ H, where H is a C-group such that ϕ(g) ̸= 1. Now, G/ kerΦ ∼= H, so kerΦ is
an elemnt of the set {N | G/N is a C-group}, so g ∈ kerϕ, a contradiction.

Let w(x1, ..., xn) ∈ Fn, and let G be a residually finite group. For each finite quotient
G/N of N , we can define the probability PG/N(w) that the identity w = 1 holds in the
finite group G/N .

Definition 4.5. With the above notation, we say that w is a probabilistic identity for the
residually finite group G if there exists ϵ > 0, such that PG/N(w) ⩾ ϵ, for all N ◁ G of
finite index.

Note that w is a probabilistic identity for G if and only if inf PG/N(w) is positive,
where the inf is taken over all the subgroups N ◁G of finite index.

The group G is said to satisfy a probabilistic identity if there exists a non-trivial word
w ∈ Fn (for some n) such that w is a probabilistic identity for G.

It seems convenient here to explain the relvance of the above definitions to the notion
of Haar measures:

For a finite group G, the function

µ : P (G)→ [0,+∞[

which sends each X ⊆ G into µ(X) =
|X|
|G|

is a (Haar) measure on G.

This measure extends to the cartesian product Gn; and PG(w) the probability that G
satisfies the identity w = 1 is just

µ{(g1, ..., gn) ∈ Gn |µ(g1, ..., gn) = 1}.

More generally, a Haar measure on a compact topological groupG, is a measure µ on G
defined on the σ-algebra generated by all the closed subsets of G, such that :
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1. µ(G) is finite.

2. µ(G) is finite, and µ is left invariant, that is to say that µ(gX) = µ(X), for every
mesurable subset of X.

By the finiteness of µ, we can always assume that µ is normalized, so that µ(G) = 1. It is a
well known result that such a measure exists on every (locally compact) topological group.

For every group G, we can define a topology by taking the normal subgroups of finite
index of G to be a basis for the neighborhoods of the identity 1. This topology is called
the profinite topology on G, and it makes G into a topological group.

The finite quotients (G/N)N◁fG of G form an inverse system of finite groups, where
the transition homomorphisms are defined whenever N,M ◁f G, and N ⊆ M (so the
indexing set of the system is the set of all the N ◁f G ordered by reverse inclusion) and
they are given by the natural projections

G/N −→ G/M

xN 7−→ xM

If we view each of the quoteints G/N as a discrete topological group, then the inverse
limit lim←−(G/N) is naturally a topological group which is compact (this follows from the
fact that lim←−G/N is a closed subgroup of

∏
N◁fG

(G/N), and
∏

N◁fG
(G/N) is compact

by Tychonov’s theorem. Without details, we call the group lim←−(G/N) the profinite com-
pletion of the group G, and we denote it by Ĝ.

A residually finite group G can be embedded naturally in its profinite completion Ĝ
via the map

i : G −→ Ĝ

x 7−→ (xN)N◁fG

Note that the map i is continuous when considering G as a topological group with respect
to the profinite topology; it is injective exactly because G is residually finite, and its image
is a dense subgroup of Ĝ.

We say that G is a profinite group if the map i is a homeomorphism. Equivalently,
a profinite group is a compact topological group in which the normal subgroups of finite
index form a basis for the neighborhoods of the identity element of G.

Let us examine Haar measures on profinite groups more closely. Since a profinite
group Γ is compact, each open subgroup H of Γ has finite index. Indeed, the set of left
cosets Γ/H = {gH | g ∈ Γ} form a partition of Γ which cannot be refined, so necessarily
Γ/H is finite; this prove the claim.

Secondly, we have

µ(H) =
1

|Γ : H|
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where µ denotes a normalized Haar measure on Γ. Indeed, if g1H, ..., gnH are the left
cosets in Γ modulo H, then

µ(
⨿

(giH)) = µ(Γ) = 1.

On the other hand,
µ(
⨿

giH) =
∑
i=1

µ(giH) = nµ(H)

so µ(H) =
1

n
=

1

|Γ : H|
as claimed.

It is worthnoting that a there is a unique (normalized) Haar measure on Γ, and under
under suitable conditions, one has

µ(X) = inf
|XN/N |
|Γ/N |

where the inf is takend over all the open normal subgroups of Γ; and X denotes a
measurable subset of Γ.

The Haar measure on a profinite group Γ can be extended naturally to the cartesian
product Γn, so for a word w ∈ Fn, we can speak in general about the probability that an
identity w holds in Γ. More precisely, since the product in Γ is continuous map, the map

Γn −→ Γ

(g1, ..., gn) 7−→ w(g1, ..., gn)

is always continuous. It follows that the fibers

Bx = {(g1, ..., gn) ∈ Γn |w(g1, ..., gn) = x}

are closed subsets in Γn, and consequently the Bx’s are measurable. The set

B = {(g1, ..., gn) ∈ Gn |w(g1, ..., gn) = 1}

is the fiber of w on x = 1; so taking the measure µ(B) makes sense.

Definition 4.6. We say that G satisfies the probabilistic identity w = 1, if µ(B) > 0.

For instance, if w is an identity for G then B = Gn; thus µ(B) = 1. This proves that
every identity in the profinite group G is a probabilistic identity in G.

The important thing here is that an identity w holds in a residually finite group G
with a positive probability if and only if it holds with a positive probability with respect
to the Haar measure in the profinite completion Ĝ. To prove the last claim one needs
deeper investigation of the Haar measures on a profinite groups; at this point, we refer
the reader to [5, Chapter 16] .

The first main result that we wish to discuss here is the following.

29



Theorem 4.7 (see[9]). Let G be a finitely generated linear group. Then G satisfies a
probabilistic identity if and only if G is virtually soluble.

Since a virtually soluble group satisfies an identity, it follows that every finitely gen-
erated linear group which satisfies a probabilistic identity, satisfies an identity.
It is natural to ask wether the some result holds for all the residually finite groups.

Open Problem. Is every residually finite group which satisfies a probabilistic iden-
tity, satisfies an identity?

A profinite group Γ is said to be randomly free if for every positive integer n, the set

{(g1, ..., gn) ∈ Γn | ⟨g1, ..., gn⟩ ≃ Fn}

has measure 1.
We have implicitely assumed above that the sets of the form

X = {(g1, ..., gn) ∈ Gn | ⟨g1, ..., gn⟩ ≃ Fn}

are measurable. To justify this assumption, note first that the subgroup ⟨g1, ..., gn⟩ is not
free if and only if there exists 1 ̸= w ∈ Fn such that w(g1, ..., gn) =. Thus if we set

Xw = {(g1, ..., gn) ∈ Gn |w(g1, ..., gn) = 1}

then
X = Gn − ∪w ̸=1Xw

but we have already seen that every set Xw is measurable, and since the group Fn is
countable it follows that ∪Xw |w ∈ Fn, w ̸= 1 is likewise measurable, so X is measurable.

The last definition extends naturally to the class of residually finite groups.

Definition 4.8. A residually finite group G is said to be randomly free if its profinite
completion is randomly free.

The second main result of this section is the following

Theorem 4.9 (see [9]). A finitely generated linear group is either virtually soluble or
randomly free.

Proof. The proof depends heavily on Theorem 4.7. Let G be finitely generated linear
group and assume that G is not virtually soluble. Hence by theorem 4.7, G satisfies no
probabilistic identity. Let Ĝ be the profinite completion of G. For every w ∈ Fn, consider

Xw = {(g1, ..., gn) ∈ Ĝn |w(g1, ..., gn) = 1}.

Since G satisfies no probabilistic identity, it follows that µ(Xw) = 0, whenever w ̸= 1. If
we set

X = {(g1, ..., gn) ∈ Ĝn | ⟨g1, ..., gn⟩ ≃ Fn}
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then , we have X = Ĝn − ∪w ̸=Xw. Since the Haar measure is σ-additive, and the family
(Xw)w∈Fn is countrable, we have

µ(X) = µ(Ĝn)−
∑
w ̸=1

µ(Xw).

Hence µ(X) = µ(Ĝn) = 1.

Similar to the proof of the Tits alternative, the proof of Theorem 4.7 uses algebraic
group theory. The use of the language of "affine schemes" makes an attempt to survey
this proof here superfluous; we refer the reader directly to the paper [9].

We finish this section by mentioning the relvance to coset identities. A word w ∈
Fn, w ̸= 1, is a coset identity of a group G if G contains a subgroup H of finite index, and
there are g1, ..., gn ∈ G such that

w(g1h, ..., g2h) = 1 for all h1, ..., hn ∈ H

Proposition 4.10. A residually finite group G which satisfies a coset identity, satisfies
a probabilistic identity.

The last proposition together with theorem 4.7 implies at once the following.

Theorem 4.11 (03). Every finitely generated linear group which satisfies a coset identity
is virtually soluble.

4.2 The word growth in groups

Let G be a finitely generated group, and X be a finite generating set of G. Then every
element g ∈ G can be written as finite product

g = x1x2 · · · xn where xi ∈ X ∪X−1

The above representation is not unique, so we can consider the set of all such represen-
tations, and define l(g) the length of g to be the length of shortest word in that set. For
each integer n ⩾ 1 we define an(G) to be the number of the elements of the set

{g ∈ G | l(g) ⩽ n}

We can consider G as metric space with respect to the distance d(g, h) = l(gh−1) for
g, h ∈ G. Hence an(G) may be interpreted as the size of the ball centred at 1 that has
radius n in that metric space. It is worth mentioning that all the balls with the same
radius have the same size, so an(G) is in fact the size of any ball of radius n in G.
The function n → an(G) is termed the growth function of G (with respect to the gener-
ating set X).

31



Examples 4.12.

¶ For G = Z, with respect to the generating set {1,−1}; the element of a given
length n are exactly {n,−n}. It follows that

an(G) = 1 + 2 + ...+ 2 = 2n+ 1

¶ For every finite group G; an(G) is constant for n large enough (in fact an(G) = |G|,
for n greater than the maximal length of an element of G).

Proposition 4.13. Let Fd be a free group on d-generators on consider the natural gen-
erating set X = {x±1

1 , ..., x±1
d } of Fd. Then for every integer n ⩾ 1,

bn(Fd) = 2d(2d− 1)n−1

where bn(Fd) denotes the number of elements of Fd of length n.

Proof. Each element of Fd can be uniquely expresed as a reduced word, and the length of
such an element is equal to the length of its correspending reduced word. For n = 1 the
reduced words of length 1 are the elements of X; so b1(Fd) = 2d. Assume that the claim
is proved for the reduced words of length n. Every word w = y1, ..., yn of length n defines
exactly 2d− 1 reduced words of length n+1, since these can be obtained by adding to w
any letter x ∈ X − {y−1

n }. Thus bn+1(Fd) = bn(Fd)(2d− 1) = 2d(2d− 1)n as desired.

Corollary 4.14 (1). The growth function of Fd is given by

an(Fd) = 1 + 2d
n∑

i=1

(2d− 1)i−1

Note that if we have an epimorphism G
φ→ H, and a generating set X of G; then

φ(X) is generating set of H. If h ∈ H has a length ⩽ n with respect to φ(X), then any
element g ∈ G such that φ(g) = h, has length at most n with respect to X. Using this
observation and the fact that every d-generated group G is an epimorphic image of Fd,
one obtains the following.

Corollary 4.15 (2). Let G be a d-generated group, generated say by g1, ..., gd. Then the
growth function of G with respect X = {g±1

1 , ..., g±1
d } satisfies

an(G) ⩽ 1 + 2d
n∑

i=1

(2d− 1)i−1

Naturally, we may ask about how the growth function depends on the choice of the
generating set.

Definition 4.16. Two functions f, g : N → R are said to be equivalent if there exists a
constant c > 0 such that

f(n) ⩽ Ag(An) and g(n) ⩽ Af(An)
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We claim that two growth functions of the same group are equivalent. Indeed, consider
a group G which is generated by two distinct finite subsets X and Y . We can express
each element of X as product of elements of Y , and conversly each element of Y can
be expressed as product of elements of X. If we take A to be the maximal length of all
preceding expressions, then for each g ∈ G, lX(g) ⩽ A · lY (g) and lY (g) ⩽ A · lX(g), where
lX(g), lY (g) denote the length of g with respect to X and Y respectively. This proves the
claim. Hence, we can speak about the growth type of given finitely generated group G:

∗ We say that g has expenential growth if ∃a, b > 1 such that an ⩽ an(G) ⩽ bn.

∗ We say that G has polynomial growth if there exists integer k, c such that

an(G) ⩽ knc

.

∗ We say that G has intermediate growth if its growth is niether polynomail nor
exponential.

Remark 4.17.

1. The above definition makes sense, since a function which is equivalent to a function
of polynomial (resp, exponential) growth has likewise polynomial (resp, exponential)
growth.

2. The growth of a group can be at most exponential. This follows from Corollary 4.15,
and the fact that free groups have exponential growth. To see that Fd has exponential
growth, observe first that an(Fd) ⩾ an(F2) and

an(F2) = 1 + 4
n∑

i=1

3i−1 ⩾ 4n

The interest in growth of groups was first motivated by Riemannian geometry: J. Milnor
observed that some geometric problem can be reduced to the study of the growth function
of the associated fondamental group. In this context Milnor made two famous conjectures:

Conjecture 1. A finitely generated group has polynomial growth if and only if it is
virtually nilpotent.

Conjecture 2. The growth of finitely generated groups is either polynomial or expo-
nential.

The second conjecture turned out to be false in general when Grigorchuk constructed
groups of intermediate growth in 1980. Nevertheless, Conjecture 1 is true for linear groups.

Theorem 4.18. A linear group has either polynomial or exponential growth.
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By the Tits alternative, we may assume that our group G is either virtually soluble,
or contains a non-abelian free group. In the later case G should be of exponential growth
as we have seen in Remark 1.17.(2). Otherwise, a Theorem of wolf (see [12]), we know
that a soluble group has either exponential or polynomial growth.

The first conjecture is a Theorem now after the extraordinary work of Gromov on it.

Theorem 4.19 (Gromov’s theorem). A finitely generated group G has polynomial word
growth if and only if it is virtually nilpotent.

The important thing to mention here is that the reduction of the problem to linear
groups crucial, so the Tits alternative is of great importance for the proof. Details and
more related subjects can be found in [12]. We also refer the reader to the bibliography
therein for the results and the historical facts mentioned in this section freely.

4.3 Amenable groups

Let G be a group. A finitely additive measure on G is a map

µ : φ(G)→ [0,+∞[

which satisfies the following properties:

1. If A,B ⊆ G are disjoint subsets then

µ(A ∪B) = µ(A) + µ(B)

2. We have µ(gA) = µ(A), for all g ∈ G and A ⊆ G.

3. µ(G) > 0.

A finitely additive measure need not be necessarily a measure in the customary sense:
First we require that a finitely additive measure is defined on all the subsets, not only on
the measurable ones; and secondly it need not be necessarily σ-additive.

Definition 4.20. A group G is amenable if we can define a finitely additive measure on
it.

For instance, every finite group G is amenable. Indeed, set for every X ⊆ G,

µ(X) =
|X|
|G|

then µ is finitely additive measure.

Proposition 4.21. The free group F2 is not amenable.
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Proof. Assume that F2 = ⟨a, b⟩, and that µ is a finitely additive measure on F2. Let
A+, A−, B+ and B− be the subsets of reduced words starting by a, a−1, b and b−1 respec-
tively. An element in A which is different from x, couldn’t have x−1 as a second letter, so
it lies either in xA+, xB+ or xB−. This means that A+ − {x} = xA+

⨿
xB+

⨿
xB− (a

disjoint union). Using the fact that µ is invariant under transformation, it follows that
µ(A+) = µ{x}+ µ(A+) + µ(B+) + µ(B−) so µ{x}+ µ(B+) + µ(B−) = 0. But all in the
last equation are non-negative. Thus, in particular µ(B+) = µ(B−) = 0. Now, the same
argument applied on B+ geilds µ(A+) = µ(A−) = 0. Finally, as F2 = A+∪A−∪B+∪B−,
it follows that µ(F2) = 0, a contradiction.

An old conjecture of J. Von Neuman asserts the following.

Conjecture 4.22. A group G is non amenable if and only if it contains a subgroup
isomorphic to F2.

First, note that subgroups and quotionts of an amenable groups are amenable. Indeed,
let G be an amenable group with measure µ, H ⩽ G and N◁G. Let T be left transversal
for H in G (i.e, for each x ∈ G,∃t ∈ T such that xH = tH; and for s, t ∈ T , we have
sH ̸= tH whenever s ̸= t). We define a measure µ on H by setting µH(A) = µ(T ·A), for
all A ⊆ H. We have µH(H) = µ(T.H) = µ(G) > 0; and for A,B ⊆ H, disjoints we have
T (A

⨿
B) = (TA)

⨿
(TB), hence

µH(A
⨿

B) = µ(TA
⨿

TB)

= µ(TA) + µ(TB) = µH(A) + µH(B)

This proves that µH is a finitely additive measure on H.

Now, we shall define a measure µ′ on G/N by taking

µ′(A) = µ(
∪
i

xiN)

where A = {xiN}i ⊆ G/N . We leave the details of checking that µ′ is finitely additive to
the reader.

Therefore, if G is an amenable group, then G couldn’t contains a copy of F2; otherwise
F2 would be amenable which contradicts the last proposition. We have established the
following.

Corollary 4.23. A group which contains a copy of F2 is not amenable.

This corollary proves one direction in Von Neuman’s conjecture. The reverse impli-
cation, viz., a non-amenable group contains a copy of F2 is much more subtle. We know
after the work of Ol’shanski that "Tarski Monsters" are non-amenable, though they are
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torson groups, so they do not contain a copy of F2. This refutes the conjecture of Von
Neuman in general.

Other counter-examples are provided by the free Burnside groups B(d, n), for n large
enough. The last result is due to S.I. Adyan (1982).

More recently, Ol’shanski and Mark Sapir(2003) gave counter-examples to the conjec-
ture which are finitely presented.

By the Tits alternative we can prove that Von Neuman’s conjecture holds for linear
groups. More precisely we have

Theorem 4.24.

¶ If G is finitely generated linear group which is non-amenable, then G contains a
copy of F2.

· If G is a linear group over a field of characteristic zero, and G is non-amenable;
then G contains F2 as subgroup.

Clearly, to prove the last theorem, we have only to show that if our group G is
non-amenable, then it couldn’t be virtually soluble. Equivalently we need to prove the
following.

Theorem 4.25. A linear group is amenable if and only if it is virtually soluble.

Proposition 4.26. Every virtually soluble group is amenable.

Proof. A soluble group can be obtained by successive extensions involving only abelian
groups. Thus to prove the claim, it is enough to prove the following:

(1) Every abelian group is amenable.

(2) An extension of an amenable group by an amenable groups is likwise amenable.

(3) A finite group is amenable.

The last statement is already shown in the begining of the section. We shall prove (2)
and refer the reader to the litterature for (1). See for instance [12].

So let G be a group and N◁G such that G/N and N are amenable. Let ν,η be finitely
additive measures on N and G/N respectively, and letA ⊆ G. For each xN ∈ G/N , define

f(xN) = ν(N ∩ (xA))

We claim that f is a well defined function on G/N . So let y ∈ xN = Nx, hence y = nx,
for some n ∈ N .
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We have
ν(n(N ∩ xA)) = ν(nN ∩ nxA) = ν(N ∩ yA)

So ν(N ∩ xA) = ν(N ∩ yA), as desired. Define µ(A) =
∫
fdη, where∫

fdµ = inf{
k∑

i=1

η(Ai)ai}

and the inf is taken over all the subdivisions {a0, ..., an} of f(G/N), and Ai = {x̄ ∈
G/N | ai−1 ⩽ f(x̄) < ai}.
Now, µ is the desired measure on G.
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Conclusion

The importance of the Tits alternative suggests that an analogue of it for other classes of
groups (other than the linear ones) should be of great interest. The work of Breuillard and
Gelander suggests that the ideas in the proof of the Tits alternative could be taken further
to prove more strong results. Also, the probabilistic approach looks quite promicing in
understanding the behaviour of groups (finite of infinite). The lack of time prevented
us from speaking about the relevance to the Banach-Tarski Paradox, and to Kazhdan’s
property (T ), so the subject is very rich. Those topics might be our main axe of researech
in the following years.

38



Bibliography

[1] E. Breuillard and T. Gelander, A topological Tits Alternative, J. Algebra 261 (2007),
448-467.

[2] E. Breuillard and T. Gelander, On dense free subgroups of Lie groups, J. Algebra

[3] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, I. Données radicielles
valuées, Publ. Math. IHES 41 (1972), 5-251.

[4] J. Dixon, M. du Sautoy, A. Mann, D. Segal, Analytic pro-p Groups, second ed.,
Cambridge Univ. Press, 1999.

[5] M.D. Fried and M. Jarden, Filed arithmetic, Springer-Verlag, (1986).

[6] The GAP Group, GAP Groups, Algorithms, and Programming, www.gap-
system.org.

[7] D. Gorenstein, Finite groups, Chelsea, New York, 1980.

[8] R. Hartshorn, Algebraic Geomtry, GTM , Springer-Verlag, 1976.

[9] M. Larsen and A. Shalev, A probabilistic Tits alternative,

[10] D. Gorenstein, Finite groups, Chelsea, New York, 1980.

[11] G. Malle and D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type,
Cambridge University Press, 2011.

[12] A. Mann, How groups grow, Cambridge University Press, 2015.

[13] B. Huppert, Endliche Gruppen. I. Die Grundlehren der Mathematischen Wis-
senschaften, Band 134. Springer-Verlag, Berlin, 1967.

39



[14] B. Huppert and N. Blackburn, Finite Groups II, Springer-Verlag, Berlin, 1982.

[15] I.M. Isaacs, Finite group theory, AMS, Providence, RI, 2008.

[16] J. Tits , Free subgroups in linear Groups, Journal of algebra 20,250-270, 1972.

[17] V.D. Mazurov and E. I. Khukhro, The Kourovka Notebook. Unsolved Problems in
Group Theory. 18th Edition, Russian Academy of Sciences, Siberian Division, Insti-
tute of Mathematics, Novosibirsk, 2014.

[18] D. J. S. Robinson, A Course in the Theory of Groups, 2nd ed. New York: Springer-
Verlag, 1995.

[19] D. Segal and A. Shalev, Profinite groups with polynomial subgroup growth, J. London
Math. Soc.(2) 55 (1997), 320-334.

[20] J.- P. Serre, Corps locaux, Hermann, Paris, 1968.

40



 

 

 

 

 

 

 

 

    

Abstract 

   In this note, we discuss the Tits alternative which asserts that every finitely 
generated linear group contains either a normal soluble subgroup of finite index or a 
free non-abelian subgroup.  

Key  words: Group , free group, Tits alternative, finitely generated group, linear 
group, Representation of group, identities, probabilistic identities, amenable .  

 

  ملخص

والتي أكد فیھا بأن كل زمرة منتھیة التولید إما أن تحتوي على زمرة    Titsمتباینة ناقشنا في ھذه المذكرة     
  .جزئیة قابلة للحل منتھیة الدلیل أو زمرة جزئیة غیر تبدیلیة 

تمثیل , زمرة خطیة,زمرة منتھیة التولید,  Titsمتباینة , زمرة حرة, زمرة جزئیة , زمرة :  الكلمات المفتاحیة
  .الزمرة القابلة للتغییر, المتطابقاتاحتمالي , المتطابقات, الزمر

 

Résumé 
 
  Dans cette note, nous discutons de l'alternative Tits qui affirme que tout groupe 
linéaire fini généré contient soit un sous-groupe résoluble normal d'indice fini, soit 
un sous-groupe libre non abélien. 
 
Mots clés: Groupe, Groupe libre, Alternative Tits, Groupe fini généré, Groupe 
linéaire, Représentation du groupe, Identités, identités probabilistes, Groupe 
acceptable. 
 
 
 


