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introduction

The Burnside Problem (1902) asks if whether every finitely generated group of a given

exponent n is finite. This problem turned out to be one of the most difficult problems

in Group Theory, and its influence on it is much like the influence of Fermat’s Last

Theorem on the development of Number Theory, specifically its algebraic aspect. While

that problem has a positive solution for n = 2, 3, 4, 6, it was shown by Adjan and Novikov

(1967) in an extraordinary paper that it has a negative solution for n odd and greater

than 4381. More recently (2014) Adyan improved this bound to n ≥ 100 with n odd ; it

is also known that the problem has a negative solution for large enough even n, and it is

still open in the remaining cases. Note here that the cases n = 5, and 7 ≤ n ≤ 72 are of

special interest since the Adyan-Novikov approach could not adopted to deal with them.

The Restricted Burnside Problem (RBP for short) first raised by Magnus (1940’) can

be seen as weakened version of the Burnside Problem and it can be stated as :

Is every finitely generated residually finite group of a given exponent n finite ?

It turned out that this problem is very related to the theory of Lie algebras ; it can be

reduced to a Kurosh’s like problem on Lie algebras. There were a well developed theory of

associative algebras related to the Kurosh problem, namely the theory of PI identity al-

gebras developed manely by Kaplanski, Jacobson, Levitzky and others. This development

suggested that similar results could be obtained for Lie algebras. Finally, E. Zelmanov
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obtained the desired results for Lie algebras in the two papers [30],[31]. The remaining

part of this thesis is devoted to discussing the work of Zelmanov on the subject and some

later developments. Perhaps, it is worth mentioning that Zelmanov earned the Fields Me-

dal for his solution of the RBP.

This work is organized as follows :

The first chapter begins with some basic facts on groups. The second section contains

a definition of the free Burnside groups and their relevance to the Burnside Problem.

Some commutator calculus that is needed in the sequel is discussed in the third section.

The last section contains a survey on the Burnside Problem.

The second chapter is about the reduction of the RBP to Lie algebras ; the main

notions discussed therein are filtrations of groups and their associated Lie algebras, the

dimension subgroups, and identities in groups and in Lie algebras.

The last chapter discusses Zelmanov’s main results on the subject, and some of their

applications beside the Restricted Burnside Problem.
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Notations

Let G be a group.

◦ Aut(G) the automorphism group of the group G.

◦ Inn(G) the group of inner automorphims of G.

◦ Out(G) = Aut(G)/Inn(G) the group of outer automorphisms (the outer automor-

phisms are not automorphisms but classes of automorphisms).

◦ For N ≤ G, AutN(G) is the group of the automorphisms σ of G which satisfies

x−1σ(x) ∈ N , for all x ∈ G.

◦ For x, y ∈ G, [x, y] is equal to x−1y−1xy.

◦ For x1, x2, . . . xn ∈ G, n ∈ N∗, the left normed commutator [x1, x2, . . . , xn] is defined

by induction : [x1] = x1 and [x1, x2, . . . , xn] = [[x1, x2, . . . , xn−1], xn].

◦ [x,n y] = [x, y, . . . , y], where y appears n times.

◦ 〈S〉 subgroup generated by S.

◦ G′ derived subgoup 〈[x, y]|x, y ∈ G〉.

◦ γi(G) the terms of the lower central series of G.

◦ Fd the free group of rank d.

◦ B(d, n) the free Burnside group ; by definition it coincides with the quotient Fd/N ,

where N = 〈gn|g ∈ Fd〉.
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◦ R(d, n) the restricted Burnside group, which is by definition equals to the quotient

B(d, n)/R, where R is the intersection of all normal subgroups of finite index in

B(d, n).

◦ IG the augementation ideal.

◦ Dn(G) the nth dimension subgroup.

◦ En the linearized Engel identities.

◦ N C◦ G means that N is an open subgroup of the topological group G.
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Chapitre 1

Preliminaries

1.1 Basic facts on groups

Definition 1.1 A group is a set G equipped with an operation G×G→ G which satisfies

the following properties :

1) Associativity : a(bc) = (ab)c, for all a, b, c in G.

2) Identity element : there exists an element e ∈ G such that ge = eg = e, for all

g ∈ G.

3) Inverses : ∀g ∈ G, there exists g′ ∈ G such that gg′ = g′g = e.

Throughout, assume that we have a group G.

One checks easily that the identity element and the inverse of each element of G are

uniquely determined. As usual, we denote the identity element of G by 1, and the inverse

of g ∈ G by g−1. If G is abelian, i.e., ab = ba for all a, b ∈ G, then the operation in G will

be denoted by+, the identity and the inverse of g ∈ G will be denoted instead by 0 and−g.
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1.1. BASIC FACTS ON GROUPS CHAPITRE 1. PRELIMINARIES

Examples.

1. The usual sets of numbers Z,Q,R and C form (abelian) groups under the usual

additions.

2. For any set X, the set SX of the bijective maps from X to it self, forms a group

under the compositions of maps. The group SX is known as the group of permuta-

tions of X. For X = {1, 2, . . . , n}, the permutation group on X is denoted by Sn

and called the symmetric group of degree n.

3. For a field K, the set GL(n,K) of the n × n invertible matrices with coefficients

in K is a group under the multiplication of matrices. The groups GL(n,K) are

known as the general linear groups over K.

Definition 1.2 A subgroup of G is a non empty subset H of G which satisfies xy−1 ∈ H,

for all x, y ∈ H.

We write H ≤ G if H is a subgroup of G. In this case, the restriction of the operation in

G on the subset H defines a group structure on H. We have for instance :

1. For any integer n ∈ Z, the subset nZ = {nx |x ∈ Z} is a subgroup of (Z,+).

Conversely, one can show easily that every subgroup of (Z,+) has the form nZ,

for some n ∈ N.

2. If we consider the additive group Z4 = {0, 1, 2, 3} of integers modulo 4, then

H = {0, 2} is a subgroup of Z4.

3. The set of n× n matrices with coefficients in a field K and with determinant 1 is

a subgroup of the general linear group GL(n,K), denoted by SL(n,K) and called

the special linear group of dimension n over K.

The intersection of any family of subgroups of G is again a subgroup of G. Hence, if we

have S ⊆ G, then the intersection of the subgroups of G containing S is the smallest

subgroup which contains S ; this subgroup is denoted by 〈S〉 and called the subgroup

generated by S.

3



1.1. BASIC FACTS ON GROUPS CHAPITRE 1. PRELIMINARIES

Proposition 1.3 Let G be a group and S ⊆ G. Then 〈S〉 is formed by all the finite

products s1s2 . . . sn, where si ∈ S ∪ S−1 (S−1 is the set of the inverses of the elements of

S).

The group G is said to be finitely generated if G = 〈S〉, for some finite subset S of G.

More precisely, we say that G is d-generated if it can be generated by a subset having d

elements. A well-known result in group theory asserts that if G is a d-generated group

and H ≤ G has finite index m, then H is finitely generated ; more precisely H can be

generated by m(d − 1) + 1 elements. We recall that H ≤ G has finite index if the set

{xH ⊆ G |x ∈ G} is finite.

The cardinality of G, denoted by |G|, is usually called the order of G. We say that G

is finite if |G| is finite. An element g ∈ G has finite order if the subgroup 〈g〉 is finite. If

every element of G has finite order, we say that G is periodic, or G is a torsion group.

A subgroup H ≤ G is said to be normal if we have

gHg−1 ⊆ H, for all g ∈ G.

We write in this case HEG, and HCG when we want to emphasize that H is proper in G.

The intersection of any family of normal subgroups of G is again a normal subgroup

of G. Hence, if we have S ⊆ G, then the intersection of the normal subgroups of G

containing S is the smallest normal subgroup which contains S ; this subgroup is denoted

by 〈〈S〉〉 and called the normal subgroup generated by S. It is readily seen that 〈〈S〉〉 is

the subgroup generated by all the elements of the form sg = g−1sg, where s ∈ S and g ∈ G.

Having a normal subgroup H EG, the set G/H of the left cosets xH of G modulo H

can be endowed with a group structure by setting :

(xH)(yH) = (xy)H for x, y ∈ G.
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1.2. THE FREE BURNSIDE GROUPS CHAPITRE 1. PRELIMINARIES

The resulting group G/H is called the quotient of G by H.

A map f : G→ G′ between the two groups G and G′ is called a group homomorphism

if it satisfies :

f(xy) = f(x)f(y) for all x, y ∈ G.

For example, the canonical map π : x 7→ xH defines a group homomorphism from G to

the quotient group G/H, whenever H EG.

The kernel of a homomorphism f : G→ G′ is defined by

ker f = {x ∈ G | f(x) = 1}.

It follows immediately that ker f is a normal subgroup of G. By the just above example,

the normal subgroups of G can be characterized by the property of being the kernels of

homomorphisms starting from G.

1.2 The free Burnside groups

Definition 1.4 Let S be a set. A free group on S is a group FS together with a map

i : S −→ FS, such that whenever G is a group and φ : S −→ G is a map, there exists a

unique group homomorphism φ̃ : FS −→ G which satisfies φ̃ ◦ i = φ

S
i→ FS

φ↘ ↙ φ̃
G

The above universal propriety gurantees that FS is unique up to isomorphism.

Theorem 1.5 There exists a free group on every non-empty set S.

Proof. Let us give a sketch of the proof :
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1.2. THE FREE BURNSIDE GROUPS CHAPITRE 1. PRELIMINARIES

— Consider the manoid M of the words on S ∪ S−1, where S−1 = {s−1 | s ∈ S} is

just a set which does not encounter S (one can call the elements of S−1 the formal

inverses of the elements of S). Recall that a word on S ∪S−1 of length n is a finite

sequence w = x1x2 . . . xn of elements of S ∪ S−1. We denote the unique word of

length 0 by 1 and we call it the empty word. The operation on M is defined by

concatenation of words, that is for two words u = x1x2 . . . xn and v = y1y2 . . . ym

in M , the product uv is defined as

uv = x1x2 . . . xny1 . . . ym.

Note that 1 is the identity element for this operation, that is u1 = 1u = u, for all

u ∈M .

— Define an equivalence relation on M by setting : w ∼ w′ if w can be obtained from

w′ by adding or deleting subwords of the form ss−1 or s−1s, with s ∈ S.

— We define FS to be the quotient of M by the relation defined above. If we have

two classes [u], [v] of words, then we define their product as usual by [u][v] = [uv].

Th canonical map from S to FS is defined by s 7→ [s].

One can show that if F is a group which is free on a subset X, and free on a subset Y

then |X| = |Y |. So we can speak about the rank of a free group, by which we mean the

cardinality of a set on which this group is free.

We shall focus on the free groups of finite rank (free on a finite generating set) ; we denote

by Fd the free group on d generators, say, {x1, · · · , xd}.

Proposition 1.6 Let G be a finitely generated group then there exists an epimorphism

G� Fd. In particular, G is isomorphic to a quotient of Fd

Proof. Assume that {g1, ..., gd} is a generating set of G and consider the free group Fd

on gunerators x1, ..., xn. The map xi 7→ gi, i = 1, d, extends by the universal property of

Fd to a group homomorphism

φ̃ : Fn −→ G.
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1.3. COMMUTATORS CHAPITRE 1. PRELIMINARIES

The morphism φ̃ is surjective because g1, ..., gd generate G. It follows that Fn/ ker φ̃ ∼= G.

Definition 1.7 The free Burnside group B(d, n) is the quotient of Fd by the subgroup

generated by the set {xn |x ∈ Fd}

Proposition 1.8 (The universal property of the free Burnside groups) Let n and d be

two positive integers. If G is a group which can be generated by d elements and satisfies

gn = 1, for all g ∈ G, then G is a quotient of B(d, n).

The above proposition can be stated as : for every d-generated group G which satisfies

the identity xn = 1, there exists an epimorphism B(d, n)� G.

Proof of proposition 1.8. Assume that {g1, · · · , gd} is a generating set of G ; and let

Fd be the free group on X = {x1, · · · , xn}. Then we have a map f : X −→ G,f(xi) = gi

with i = 1, d. So f extends to an epimorphism Fd → G. An element of Fd of the from xn

satisfies f̂(xn) = f̂(x)n = 1, hence xn ∈ ker f , for all x ∈ G, that is {xn|x ∈ Fd} Lies in

ker f̂ and so F n
d = 〈xn|x ∈ Fd〉 also lies in ker f̂ . Therefore

B(d, n) =F/F n
d → G

x 7→ f̂(x)

is a well defined epimorphism.

1.3 Commutators

Preliminaries

Let G be a group. For every x, y ∈ G, the commutator [x, y] is defined by

[x, y] = x−1y−1xy.

It is straightforward to see that for all x, y, z ∈ G, the following identities hold :

[xy, z] = [x, z]y[y, z] (1.1)
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1.3. COMMUTATORS CHAPITRE 1. PRELIMINARIES

[x, yz] = [x, z][x, y]z (1.2)

[x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1. (1.3)

The last identity is known as the Hall-Witt identity. Note the similarity between this

identity and the Jacoby identity for Lie algebras (the first two identities are similiar to

bilinearity !).

If X, Y are two subsets of G, we define [X, Y ] to be the subgroup generated by all the

commutators [x, y], with x ∈ X and y ∈ Y . More generally, If X1, . . . , Xn are subsets of

G, then the subgroup [X1, . . . , Xn] can be defined by induction :

[X1] = 〈X1〉 and [X1, . . . , Xn] = [[X1, . . . , Xn−1], Xn].

The following result is known as the Three Subgroups Lemma, and it is a direct conse-

quence of the Hall-Witt identity.

Proposition 1.9 Let X, Y, Z be three subgroups of a group G, and N be a normal sub-

group of G. If N contains two of the subgroups [X, Y, Z], [Y, Z,X] and [Z,X, Y ], then it

contains the third.

We shall discuss now the notion of formal commutators. Let S be an arbitrary set we

define a commutator of weight 1 on S to be just an element of S, and by induction if c1 is

a commutator on S of weight n1 and c2 is a commutator of weight n2, then the expression

[c1, c2] is a formal commutator on S of weight n1 + n2.

Now, assume that S is a group (the same definition makes sense for Lie algebras !) if

x1, · · · , xn ∈ S and c is a formal commutator or on S of weight n, then we can compute

c(x1, · · · , xn) the value of c on (x1, · · · , xn) as follows :

1) If n = 1, then c(x1) = x1 ∈ S.

2) By induction, if every formal commutator of weight < n, has been given a value,

then for c = [c1, c2], where c1, c2 are from can on sat weight 1 and n respectively ,

we set Then if c = [c1, c2], we let c(x1, · · · , xn) = [c1(x1, · · · , xi), c2(xi+1, · · · , xn)]

where c1, c2 are formal commutator, on S of weight i and n− i respectively.

8



1.4. A SURVEY ON THE BURNSIDE PROBLEM CHAPITRE 1. PRELIMINARIES

1.4 A survey on the Burnside Problem

In 1902 W. Burnside formulated his general problem :

Is every finitely generated torsion group finite ?

Let G be a finitely generated abelian group. Assume that G can be generated by ele-

ments g1, ..., gd of finite order, and denote their orders by n1, ..., nd respectively. Therefore,

every elements g ∈ G can be written as a product :

g = gi11 g
i2
2 . . . g

id
d ,

where each ik lies between 0 and nk. Therefore G contains at most n elements, where n

is the product of the ni’s. We have established.

Proposition 1.10 Every abelian finitely generated torsion group is finite. Effectively, if

G is an abelian group which can be generated by elements g1, ..., gd of finite orders n1, ..., nd

respectively, then G is finite of order not exceeding
d∏

k=1

nk.

Hence, the General Burnside Problem has a positive answer in the class of abelian

groups. The later result can be extended easily to the class of soluble groups. Recall that

a group G is soluble if it has a finite series of subgroups

1 = Gn CGn C . . . G0 = G

such that each factor Gi/Gi+1 is abelian. By assuming that G is finitely generated and

periodic, it follows at once from the last proposition that G/G1 is finite ; and as we

mentioned, it that G1 is also finitely generated. By the same argument we see that G1/G2

is finite, and G2 is finitely generated. By repeating this argument for the remaining factors

one sees that each factor Gi/Gi+1 is finite, from which it follows that G is finite. In

conclusion we have.

Corollary 1.11 Every soluble finitely generated torsion group is finite.
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1.4. A SURVEY ON THE BURNSIDE PROBLEM CHAPITRE 1. PRELIMINARIES

Another interesting class in which the General Burnside Problem has a positive solution

is the class of linear groups. Recall that a group G is linear if it can be embedded in

GL(n,K) for some field K.

Theorem 1.12 Every linear finitely generated torsion group is finite.

This theorem was established in 1911 by I. Schur. It is worth noting that the Tits alterna-

tive, which forms the subject of the dissertation of my colleague A. Belmazouzi, implies

[Theorem (1.12)] in a straightforward manner. The Tits alternative asserts that every

finitely generated linear group G contains a free subgroup on two generators or a normal

soluble subgroup of finite index (we say in the later case G is virtually solvable). Hence,

if G is periodic, then we are certainly in the second case as the free groups are torsion

free. It follows at once from that last corollary that G is finite.

The General Burnside Problem remained open in full generality for about 60 years.

While the mentioned results support the fact that the problem has a positive solution, E.

Golod constructed a counter example in 1964 (see [15]). Golod’s ideas were inspired by his

results with Shafarevich (see [14]) which settled another longstanding problem in number

theory (the class field tower problem). Other counter examples to the General Burnside

Problem were constructed later by N. Gupta jointly with S. Sidki, and by R.I. Grigorchuk

(the groups constructed by Grigorchuk are of great interest in geometric group theory.)

A weaker form of the General Burnside problem asks the following

Is every group which satifies the identity xn = 1 finite ?

This problem is known as the (ordinary) Burnside problem.

Proposition 1.13 Let d and n be two positive integers. Then the (ordinary) Burnside

problem has a positive answer for d and n, if and only if B(d, n) is finite.

10



1.4. A SURVEY ON THE BURNSIDE PROBLEM CHAPITRE 1. PRELIMINARIES

Proof. Assume that every d-generated group which satisfies the identity xn = 1 is finite ;

since B(d, n) is d-generated and has exponent n, it follows at once that B(d, n) is finite.

Conversely, assume that B(d, n) is finite, By Proposition 1.8, if G is a d-generated group

of exponent dividing, then G is a quotient of B(d, n), so G is finite.

For every n, the groups B(1, n) is cyclic, and so abelian. Thus B(1, n) is finite.

A group which satisfies the identity x2 = 1 is abelian. Thus B(d, 2) is abelian, and

so finite as we have seen. The order of B(d, 2) is at most 2d, and since a vector space of

dimension d over the field with two elements has cardinality 2d, it follows that |B(d, 2)| =

2d.

Proposition 1.14 (Burnside 1903) The group B(d, 3) is finite, for all d.

The proof of the last result proceeds as follows : one shows that every element of B(d, 3)

commute with all its conjugates, and then deduce that B(d, 3) satisfies the Engel identity

[x, y, y] = 1. It follows that B(d, 3) is soluble and hence finite as we have mentioned.

Theorem 1.15 (Sanov 1940) The group B(d, 4) is finite, for all d.

For a proof we refer the reader to [25].

The last known positive result on the groups B(d, n) is due to Marshal Hall.

Theorem 1.16 (M. Hall 1957) The group B(d, 6) is finite, for all d.

Hence the Burnside Problem has positive solution for exponents n = 2, 3, 4, 6, and

naturally the case n = 5 is of particular interest. According to M. Sapir, a leading specialist

in the area, a solution to the later problem certainly deserves a Fields Medal !

Three years after Golod’s construction, S.I.Adian and P.S. Novikov proved the follo-

wing.

Theorem 1.17 The groups B(d, n) are infinite for n odd and n ≥ 4381.
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1.4. A SURVEY ON THE BURNSIDE PROBLEM CHAPITRE 1. PRELIMINARIES

In 1975, Adian reduced the above bound to 665, and to 100 in 2014. The result of Adian

and Novikov was published in a series of three long papers [21, 22, 23]. Quoting from Ma-

gnus and Chandler in their book "The history of combinatorial group theory" (page. 147) :

"this paper is possibly the most difficult paper to read that has ever been written on

mathematics."

Adian-Novikov theory was simplified later in Adian’s [1] ; but still the machinery is

very complicated and the ideas therein weren’t followed up extensively.

The unsuccessful attempts to solve the Burnside Problem led in the 40th to conside-

ring the following problem, which we call those days the Restricted Burnside problem :

Is there a bound on the sizes of the finite quotients of B(d, n) ?

Obviously, the above problem is equivalent to the following : Is there an integer f(d, n)

such that for every d-generated finite group G satisfying the identity xn = 1, we have

|G| ≤ f(d, n) ?

Let R be the intersection of all the normal subgroups of finite index in B(d, n), and

let R(d, n) = B(d, n)/R.

Proposition 1.18 The Restricted Burnside Problem has a positive answer for the positive

integers d and n if, and only if, R(d, n) is finite.

Proof. Assume that R(d, n) is finite, and let f(d, n) be its order. Let G be a finite

d-generated group which satisfies the identity xn = 1. By Proposition 1.8, there is an

epimorphism, φ : B(d, n)→ G and B(d, n)/ kerφ ' G is finite.

The residual of B(d, n), is R = ∩{ N / G | G/N} ⊆ kerφ. Hence

B(d, n)/ kerφ ' (B(d, n)/R)/(kerφ/R).

12



1.4. A SURVEY ON THE BURNSIDE PROBLEM CHAPITRE 1. PRELIMINARIES

thus G = R(d, n)/(kerφ/R). That is G is a quotient of R(d, n), so

|G| ≤ |R(d, n)| = f(d, n)

Conversely, assume that there is a bound f(d, n) on the orders of the finite d-generated

group satisfying the identity xn = 1, and let G be a group of maximal order among these

groups. As we have seen G ' R(d, n)/N , we claim that every N / R(d, n) of finite index

contains N . In deed if N * M then N ∩M has finite index in B(d, n) and N ∩M < N ,

so

|B(d, n)/(N ∩M)| > |R(d, n)/N | = f(d, n)

So N ⊆M contradiction N ⊆ ∩{M 6 G | G/M} and N ⊆ R requires |R(d, n)| 6 f(d, n).

Contrary, to the Burnside Problem, there were some evidences to think that the answer

is likely positive. One may start with the work of Hall and Higman [7] in which they

obtained the following reduction.

Theorem 1.19 If the following assertions hold :

(i) the restricted Burnside groups R(d, pn) are finite, for all positive integrs n, and all

primes p,

(ii) for every positive intgerm, there are only finitely many simple groups which satisfy

the identity xm,

(iii) the Schreier conjecture holds ; in other word, for every finite simple groups S, the

group Out(S) is soluble,

then the Restricted Burnside Problem has a positive solution.

So, the attention is directed to p-groups. One can reduce the problem in that case to a

problem about the nilpotency of some Lie algebras with PI (see the next chapter). In

1959, Kostriking proved the claim for the groups R(d, p) (G. Higman proved this before

for p = 5), and his work suggests that a similar approach would solve the problems for

all prime powers. On the other hand, a problem similar to the Burnside Problem was

13



1.4. A SURVEY ON THE BURNSIDE PROBLEM CHAPITRE 1. PRELIMINARIES

formulated by Kurosh (1941).

The General Kurosh Problem. Is every finitely generated algebra in which every

element is nilpotent, nilpotent ?

A weaker version of the Kurosh Problem similar to the (ordinary) Burnside Problem

can be stated as follows : Is every finitely generated nilpotent algebra which satisfies the

identity xn = 0, nilpotent ?

The paper [15] in which Golod established a counter-example to the GBP, contains

also a counter-example to the General Kurosh Problem. Though, it turned out before that

the Kurosh Problem has a positive answer in a very interesting class of nil algebras (nil

algebra stands for an algebra in which every element is nilpotent).

Theorem 1.20 A finitely generated nil algebra which satisfies a polynomial identity is

nilpotent.

An immediate corollary of Theorem 1.20 is that the (ordinary) Kurosh Problem has a

positive solution.

The later results were established by I. Kaplanski in 1948. The theory of associa-

tive algebras with polynomial identities (PI for short) is now an essential part of Non-

Commutative Algebra, and it owes much of its development to the Kurosh Problem as

well as the Burnside Problem.

This development in the theory of associative algebras, suggested that similar results

could be obtained for Lie algebras. Finally, E. Zelmanov obtained the desired result for

Lie algebras in the two papers [30, 31]. The remaining part of this thesis is devoted to

disscussing the work of Zelmanov on the subject and some later developments. Perhaps, it

is worth mentioning that Zelmanov earned the Fields Medal for his solution of Restricted

Burnside Problem.

14



Chapitre 2

Reduction to Lie algebras

2.1 Lie algebras

Let K be a commutative unital ring. Recall that we call (left) K-module every abelian

group A together with a law (k, a) 7→ ka defined from K × A into A which satisfies the

following axioms :

1. (k + k′)a = ka+ k′a

2. k(a+ a′) = ka+ ka′

3. (kk′)a = k(k′a)

4. 1a = a

for all a, a′ ∈ A and all k, k′ ∈ K.

A map f : A → B between two K-modules A and B is said to be K-linear if it is a

morphism of abelian groups and f(ka) = kf(a), for all k ∈ K and a ∈ A.

Let A, B and C be three K-modules. A map f : A×B → C is K-bilinear (or simply

15



2.1. LIE ALGEBRAS CHAPITRE 2.

bilinear) if the maps y 7→ f(a, y) and x 7→ f(x, b) are K-linear, whenever we fix a ∈ A or

b ∈ B.

Definition 2.1 1. We call a K-algebra every K-module A together with a bilinear

map (a, b) 7→ ab from A× A into A.

2. A map f : A → B between the two K-algebras A and B is said to be a morphism

of K-algebras if it is K-linear and f(a1a2) = f(a1)f(a2), for all a, a′ ∈ A.

There are two main classes of algebras which were extensively studied in the littera-

ture :

(1) Associative algebras. A K-algebras A is associative if the product in A is

associative, that is to say (xy)z = x(yz), for all x, y, z ∈ A.

(2) Lie algebras. A K-algebras A is said to be a Lie algebra if the following two

axioms hold :

i) x.x = 0, for all x ∈ A.

ii) (xy)z + (yz)x+ (zx)y = 0, for all x, y, z ∈ A.

Usually, the product in a Lie algebra is denoted by bracket [x, y] ; so the above defini-

tion reads as follows.

Definition 2.2 A Lie algebra over K is a K-module L with a bilinear product (x, y) 7→

[x, y] such that :

i) [x, x] = 0, for all x ∈ L.

ii) [[x, y]z] + [[y, z]x] + [[z, x]y] = 0, for all x, y, z ∈ L.

It follows from the first axiom that [x, y] = −[y, x], for all x, y ∈ L ; that is to say that the

product in a Lie algebra is anti-commutative. The second axiom is known as the Jacobi

identity.

Typical examples of associative K-algebras are provided by the K-endomorphisms

Endk(M) of a K-module M . The K-module structure in Endk(M) is defined by

(f + g)(x) = f(x) + g(x)

16



2.1. LIE ALGEBRAS CHAPITRE 2.

(kf)(x) = kf(x)

where x ∈ M , k ∈ K, and f, g ∈ Endk(M). The product in Endk(M) is defined by the

usual composition of maps.

To each associative algebra A, we can associate a Lie algebra by taking the same

underlying K-module and defining the bracket by [x, y] = xy − yx, for x, y ∈ A. It is

worth noting that, conversely, every Lie algebra L (over a field) can be embedded in

the Lie algebra associated to some associative algebra, which is known as the universal

enveloping algebra of L ; this can be done by means of the Poincaré-Birkhoff-Witt theorem.

For two subsets X, Y of a K-algebra A, we define X ·Y to be the submodule generated

by all the products x.y, with x ∈ X and y ∈ Y . In a Lie algebra the product X · Y may

be denoted by [X, Y ].

Definition 2.3 Let X be a submodule of a K-algebra A.

(1) We say that X is a subalgebra of A if X ·X ⊆ X.

(2) We say that X is an ideal of A if X · A ⊆ X and A ·X ⊆ X.

For instance, in a Lie algebra L, a subalgebra is a submoduleX which satisfies [X,X] ⊆ X.

The submodule X is an ideal of L if and only if [X,L] ⊆ X (the second condition

[L,X] ⊆ X follows from the first by anti-commutativity).

A noteworthy is that every ideal of a K-algebra A is also a subalgebra. For a morphism

of K-algebras f : A 7→ B, one sees easily that ker f is an ideal of A, and that the image

of f is a subalgebra of B.

Having a subset X of an algebra A, we can consider 〈〈X〉〉 the intersection of all

the subalgebras of A containing X. Obviously, 〈〈X〉〉 is the smallest (with respect to the

order defined by inclusion) subalgebra containing X ; we say that 〈〈X〉〉 is the subalgebra

generated by X.

Definition 2.4 A K-algebra A is finitely generated if A = 〈〈X〉〉 for some finite subset X

17
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of A. If X can be chosen to have d-elements, we say more precisely that A is a d-generated

algebra.

The last definition applies in particular for associative algebras as well as for Lie algebras.

For instance, the associative K-algebra K[X] of polynomials over K is one generated,

though it is not finitely generated as a K-module.

Let A be a K-algebra and S be a commutative monoid. We say that A is S-greded if

there exists a family of submodules (As)s∈S (index by the monoid S ) such that :

A =
⊕
s∈S

As

and

As · At ⊆ As+t, for alls, t ∈ A.

For S = (N,+), an N-graded algebra will be called for short a graded algebra.

For instance, a graded Lie algebra is a Lie algebra L which can be written as

L =
⊕
n≥0

Ln

for some family of submodules (Ln)n≥0 such that [Ln, Lm] ⊆ Ln+m, for all n,m ∈ N.

An ideal I of a graded Lie algebra L = ⊕n≥0Ln is said to be a graded ideal if I = ⊕nIn,

where In = I ∩ Ln.

2.1.1 Free Lie algebras

Let X be a set. A free Lie algebra on X is a Lie algebra LX together with a map

i : X 7→ LX , which satisfies the following universal property :

For every mapping f : X → L, where L is a Lie algebra, there exists a unique morphism

of Lie algebras f̂ : LX → L such that f̂ oi = f , that is to say that the following diagram is
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commutative
X

i→ LX
f ↘ ↙ f̃

L

The above universal property guarantees that a free Lie algebra on X if it exists, is unique

up to isomorphism.

Theorem 2.5 There exists a free Lie algebra on every non-empty set X.

For a proof, we refer the reader to Serre’s excellent book [27, Chapter IV].

For X = {x1, · · · , xd}, the free Lie algebra Ld on X will be called the free Lie algebra

on the generators x1, · · · , xd. An elements of that algabra will be called a Lie polynomial

in the indeterminates x1, · · · , xd.

It follows immediately from the universal property of Ld that every d-generated Lie

algebra is a quotient of Ld. More explicitely if L = 〈〈a1, · · · , ad〉〉 is a Lie algebra on the

generators a1, · · · , ad, then the map xi 7→ ai, extends to a unique Lie algebra morphism

φ : Ld → L which is surjective. If φ is a Lie polynomial in x1, · · · , xd and f = f(x1, · · · , xd),

then we shall denote φ(f) by f(a1, · · · , ad) and call it the value of the polynomial f on

(a1, · · · , ad). It is worth noting that the subalgebra generated by a subset A in a Lie

algebra L coincides with the set of the elements f(a1, · · · , ad), where ai ∈ A and f runs

over all the polynomials in LA.

2.2 Filtrations and their associated Lie algebras

Filtrations

Definition 2.6 Let G be a group we call a filtration (or integral filtration) of G every

descending sequence (Gn)n≥1 of subgroups of G, which satisfies G1 = G and [Gn, Gm] ⊆

Gn+m for all n,m ≥ 1.

Recall that the lower central series of G is defined recursively by :
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γ1(G) = G and γn+1(G) = [γn(G), G] for n ≥ 1. It follous that γn(G) / G and γn+1(G) ⊆

γn(G) for all n ≥ 1.

Proposition 2.7 The lower central series (γn(G))n≥1 is filtration of G.

Proof. We have to show that [γn(G), γm(G)] ⊆ γn+m(G) for all n,m ≥ 1. Let us prove

the claim by induction m.

If m = 1 then [γn(G), γ1(G)] = [γn(G), G] which equals to γn+1(G) by definition for all

n ≥ 1. Assume that we have proved the claim for m−1 so [γn(G), γm−1(G)] ⊆ γn+m−1(G)

for all n ≥ 1 we have

[γn(G), γm−1(G), G] ⊆ [γn+m−1(G), G] = γn+m(G)

and

[G, γn(G), γm−1(G)] = [γn+1(G), γm−1(G)] ⊆ γn+m(G).

Hence by the Three subgroups Lemma, we have [γm−1(G), G, γn(G)] ⊆ γn+m(G), that is

to say [γn(G), γm(G)] ⊆ γn+m(G). This completes the proof.

The lower central series (γn(G))n≥1 is canonical in the sense that for any filtration

(Gn)n≥1 of G we have

γn(G) ⊆ Gn,∀n ≥ 1. (2.1)

Indeed, for n = 1 the result is trivial. So assume that it is true for some n ≥ 1 ; let

x ∈ γn(G) and y ∈ G, then we have [x, y] ∈ [γn(G), G1] ⊆ Gn+1. This shows that Gn−1

contains all the set :

X = {[x, y]|x ∈ γn(G), y ∈ G}

Thus 〈X〉 ⊆ Gn+1, but 〈X〉 is nothing but γn+1(G). This proves the property (2.1).

We shall see other examples of filtrations in the following sections.

The Lie algebra associated to a filtration

Assume that (Gn)n≥1 is a filtration of a given group G.
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Note in particular that [Gn, G] = [Gn, G1] ⊆ Gn+1 ⊆ Gn, so every Gn is normal in G,

and in particular the groups Gn/Gn+1 are well defined for all n ≥ 1.

Define now, the abelian group L(G) by

L(G) =
⊕
n≥1

Gn/Gn+1

It is convenient to set Ln = Gn/Gn+1 so L(G) = ⊕n≥1Ln. For xn ∈ Ln and xm ∈ Lm, we

associate an element of Ln+m that we denote by [xn, xm] as follows

[xn, xm] = [xn, xm] mod Gn+m+1

where [xn, xm] is the group commutator of xn, xm ∈ G. The last assignment is independent

from the choice of the representatives of the classes xn and xm, this follows at once from

the commutator identity in section 1.3. Now, for arbitrary elements x, y ∈ L(G) we can

write x =
∑

i xi and y =
∑

j yj , with xi, yj ∈ Li ; we define the bracket [x, y] by bilinearty

as

[x, y] =
∑
i,j

[xi, yj].

Proposition 2.8 With the above assumptions, the bracket [x, y] defines on L(G) a struc-

ture of a graded Lie algebra over K = Z.

Proof. The bilinearity of the product is immediate ; also since [xn, xm]
−1 = [xm, xn] it

follows that [xn, xm] = −[xn, xm] for xn ∈ Ln and xm ∈ Lm. This extends obviously by

bilinearty to all the elements of L(G), so [x, y] = −[y, x], for all x, y ∈ L(G).

It remains just to prove the Jacobi identity ; by bilinearity it suffices to prove it for the

homogeneous elements, let xn ∈ Ln, xm ∈ Lm and xl ∈ Lp ; we claim that

[xn, xm, xl] + [xm, xl, xn] + [xl, xn, xm] = 0

or equivalently

[xn, xm, xl].[xm, xl, xn].[xl, xn, xm] = 1 mod Gn+m+l+1. (2.2)
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We know from the Hall-Witt identity that

[xn, x
−1
m , xl]

xm .[xm, x
−1
l , xn]

xl .[xl, x
−1
n , xm]

xn = 1

By reducing that modulo Gn+m+l+1 one obtains

([xn, xm, xl].[xm, xl, xn].[xl, xn, xm])
−1 = 1 mod Gn+m+l+1

from which (2.2) follows immediately.

The following result gives the connection between the evaluation of formal commuta-

tors (see Section 1.3) on a group and on its associated Lie algebra.

Proposition 2.9 Let L(G) be the associated Lie algebra of a group G with respect to

a filtration (Gn)n≥1. For every formal commutator c of weight n, and any x1, · · · , xn ∈

G1/G2, we have

c(x1, · · · , xn) = c(x1, · · · , xn)

where c(x1, · · · , xn) is the commutator computed by the means of the Lie bracket in L(G)

and c(x1, · · · , xn) is the value of c in G.

The last result follows immediately from the definition of the bracket in L(G). Let us

mention some consequences of the last proposition for L(G) the Lie algebra associated to

the lower series of G. First, since γn(G) is generated by all the commutators of weight

n, it follows that every element of γn/γn+1 is a linear combination of elements of the

form c(x1, · · · , xn), where x1 ∈ γ2(G) and c is a commutator of weight n, this proves the

following.

Fact 01. The Lie algebra

L(G) =
⊕
n>1

γn/γn+1

is generated as an algebra by the elements of G/γ2(G).

The lower series of Lie algebra L is defined inductively by :

γ1(L) = L and γn+1(L) = [γn(L), L], for n > 1
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.

The second immediate consequence of the proposition is :

Fact 02. For the Lie algebra L(G) = ⊕n>1γn(G)/γn+1 we have

γk(L(G)) =
⊕
n>k

γn(G)/γn+1.

Recall also that the group G is said to be nilpotent of class c if γc+1(G) = 1 and c

is the smallest non-negative integer with this property. The same definition applies when

we replace G by a Lie algebra.

Corollary 2.10 A group G is nilpotent of class n if and only if the Lie algebra L(G) =⊕
n>1 γn(G)/γn+1 is nilpotent of the same class.

2.3 Dimension subgroups

Definitions

Throughout this section K denotes a commutative unital ring and G is a group.

Definition 2.11 The algebra K[G] of G over K is the set of all finite (formal) sums∑
g∈G xgg, with xg ∈ K, for all g ∈ G (so xg = 0, for almost all the g’s). That set is

endowed with an addition and a multiplication as follows : for two elements x =
∑

g∈G xgg

and y =
∑

g∈G ygg of K[G]

x+ y =
∑
g∈G

(xg + yg)g

and

xy =
∑
g,h∈G

(xgyh)gh.
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It follows that K[G] has a structure of an associative K-algebra, where the action of K

on K[G] is defined by

λ

(∑
g∈G

xgg

)
=
∑
g∈G

(λxg)g.

For example consider G = {e, a, a2} ' Z3, and K = Z. Then an element of Z[G] has

the form n · e+m · a+ l · a2 for some n,m, l ∈ Z. If we take x = 2e+ a , y = 3a− a2 then

x+ y = (2e+ a) + (3a− a2) = 2e+ 4a+ a2

xy = (2e+ a)(3a− a2) = −e+ 6a+ a2

For another example, consider the Klein group G = {e, a, b, ab} ' Z2 o Z2 ; so the table

of multiplication of G can be written as

e a b ab
e e a b ab
a a e ab b
b b ab e a
ab ab b a e

An element of Z[G] has the shape n · e+m · a+ l · b+ t · ab for some n,m, l, t ∈ Z ; if we

take x = a− 100b, y = a+ ab, z = e+ b ∈ Z[G] then

x+ y = (a− 100b) + (a+ ab) = 2a− 100b+ ab

x+ z = (a− 100b) + (e+ b) = e+ a− 99b

y + z = (a+ ab) + (e+ b) = e+ a+ ab

xy = (a− 100b)(a+ ab) = e− 100a+ b− 100ab

xz = (a− 100b)(e+ b) = −100e+ a− 200b

yz = (a+ ab)(e+ b) = 2a+ 2ab

If G contains a torsion elements, that is an element different from 1 of finite order,

then Z[G] contains zero divisors, Indeed if g 6= 1 ∈ G satifies gn − 1 for some n ∈ N then

(g − 1)(1 + g + · · ·+ gn−1) = gn − 1 = 0.

A noteworthy is that a longstanding conjecture claims that the group algebra Z[G] has

no zero divisors if G is torsion free (see for instance [20]).
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Definition 2.12 The augmentation map ε : K[G] −→ K is defined by

ε

(∑
g∈G

xgg

)
=
∑
g∈G

xg.

Note that ε : K[G] −→ K is K-algebra homomorphism that is

ε(x+ y) = ε(x) + ε(y)

ε(xy) = ε(x)ε(y)

ε(λx) = λε(x)

It follows that ker ε is an ideal of K[G] that is usually denoted by IG and called the

augmentation ideal of G (with respect to K). We have

IG =

{∑
g∈G

xgg ∈ K[G] |
∑
g∈G

xg = 0

}

Proposition 2.13 The augmentation ideal IG is a free k-submodule on the set {g − 1 | g ∈ G∗},

where G∗ = G− {1} .

Proof. Let x =
∑

g∈G xgg ∈ IG, so
∑

g∈G xg = 0 ; if follows that

x = x−
∑
g∈G

xg.1 =
∑
g∈G

xg(g − 1).

So {g − 1 | g ∈ G} is a generating set for IG

Now, let (xg) be a family in K such that
∑

g 6=1 xg(g − 1) = 0. Therefore

∑
g 6=1

xg(g − 1) =

(∑
g 6=1

xg

)
.1 +

∑
g∈G

xgg.

Thus xg = 0, for all g 6= 1. So {g − 1 | g 6= 1} is linearly independent.

Let A be a ring, and I, J two ideals of A ; the product IJ is by definition the ideal

generated by the all products xy, where x ∈ I and y ∈ J . Thus IJ is the set of all finite

linear combinations
∑
akbk, with ak ∈ I and bk ∈ J .

Note that the ideal IJ is contained in the ideal I ∩ J . Indeed, if x ∈ IJ , then x can

be written as x =
∑n

i=1
akbk with ak ∈ I and bk ∈ J . For each k, we have akbk ∈ I ∩ J ,

therefore x ∈ I ∩ J , hence IJ ⊂ I ∩ J as desired.
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For example, for A = Z and all integers a, b ≥ 2, if we set I = aZ, and J = bZ ; then

aZ ∩ bZ = mZ where m is the ppcm of a and b, aZ · bZ = abZ ⊂ mZ.

Now, for each n ∈ N∗, and for each ideal I in some ring A, one can form the ideal

In = IG · IG · · · IG︸ ︷︷ ︸
n times

. Note that (InG) is a decreasing sequence of ideals of A.

Definition 2.14 For each natural number n > 1, the nth dimension subgroup Dn(G) is

defined to be

Dn(G) = G ∩ (1 + InG)

Since the definition of the augmentation ideal IG depends on the base ring K, we have

actually a dimension subgroup series for each choice of K. Any property that we prove

for the subgroups Dn(G) without specifying the base ring K, is in principle true for all

the choices of K.

Proposition 2.15 For every group G, the dimension subgroup series (Dn(G))n forms a

filtration of G.

Proof. First, note that the Dn(G)’s form a decreasing sequence of subsets of G since

the powers (InG)n form a decreasing sequence of ideals. Let’s show that each Dn(G) is a

subgroup of G. Obviously, 1 = 1+0 ∈ 1+IG, so Dn(G) is not empty. Now, if x, y ∈ Dn(G),

then by the identity

xy−1 − 1 = ((x− 1)− (y − 1))y−1

the member on the left lies in InG, hence xy−1 ∈ Dn(G).

Now, let x ∈ Dn(G) and y ∈ Dm(G). Then by the identity

[x, y]− 1 = x−1y−1((x− 1)(y − 1)− (y − 1)(x− 1))

Obviuously, (x− 1)(y− 1) and (y− 1)(x− 1) lies In+mG from which it follows that [x, y] ∈

Dn+m(G), so [Dn(G), Dm(G)] ⊆ Dn+m(G). This completes the proof.
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Integral dimension subgroups

The integral dimension subgroups are the dimension subgroups taken with respect to

the base ring Z. As we have seen, the integral dimension subgroups Dn(G) of a group G

form a filtration for G, so in particular γn(G) = Dn(G), for all n ≥ 1.

Proposition 2.16 Let Z[G] be the integral group ring of a group G then D1(G) =

G′ and G/G′ ' IG/I
2
G.

Proof.

ε :G→ IG/I
2
G

1 7→ 1− x.

A proved that ε is a isomorphism, i,e homomorphism bijection ε(xy) = 1− xy, we have

1− xy = 1− x+ x− xy = (1− x) + x(1− y)

= (1− x) + x(1− y)− (1− y) + (1− y)

= (1− x) + (1− y)− (1− y)(1− x).

So ε(xy) = 1− xy = (1− x) + (1− y)− (1− y)(1− x)

Notations that G/ ker ε ' Imε ⊆ IG/I
2
G abLien, so G′ ⊆ ker ε then

ε :G/G′ → IG/I
2
G

x 7→ 1− x.

Let 1− [x, y] = 1− x−1y−1xy = (1− x−1y−1)+(1− xy), we defined a nother map denoted

τ such that

τ :IG → G/G′

a 7→
∏
x∈G

x−ax

If we take a =
∑

x∈G nxx and b =
∑

x∈Gmxx ∈ IG impliqe that a+b =
∑

x∈G(nx+mx)x,so

τ(a+ b) =
∏
x∈G

x−(nx+mx)x =
∏
x∈G

x−nxxx−mxx

=
∏
x∈G

x−nxx.
∏
x∈G

x−mxx

= τ(a)τ(b)
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Note that IG (resp, I2G) is generated by the elements of the form (1−x) (resp, (1−x)(1−y))

for all x, y ∈ G in all that ablian group (resp,additive group), we have

τ((1− x)(1− y)) = τ(1− x− y + xy) = 1xy(xy)−1 = xyy−1x−1 = 1

So ker τ contains the generators of I2G from where I2G ⊆ ker τ , we have

τ :IG/I
2
G → G/G′

a 7→ ε(x).

Note that

τ ◦ ε :G/G′ → G�G′

for x ∈ G/G′ :

τ ◦ ε = τ(1− x) = τ(1− x) = 1−1.x = x = 1G/G′(x)

On the other hand

ε ◦ τ : IG/I
2
G → IG/I

2
G

for a ∈ IG/I2G :

ε ◦ τ(a) = ε(τ(a)) = ε(
∏
x∈G

x−nxx) = ε(
∏
x∈G

x−nxx)

=
∑
x∈G

ε(x−nxx) =
∑
x∈G

−nxε(x)

=
∑
x∈G

−nx(x− 1) =
∑
x∈G

−nxx−
∑
x∈G

−nx.1

=
∑
x∈G

−nxx = a

= 1IG/I2G(a)

Hence, ε is an isomorphism

Corollary 2.17 For every group G, we have γ2(G) = D2(G).

It is known moreover that γ3(G) = D3(G). The problem of whether γn(G) = Dn(G)

is know as the dimension subgroup problem. Though this problem has a positive solution
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for many classes of groups (Free groups, Groups with torsion free lower central factors,

ect), E.Rips (1972), exhibited a finite 2-group for which γ4(G) 6= D4(G) ; the Rips group

has the following presentation :

Consider the group G =< a0, a1, a2, a3, b1, b2, b3, c|a0, a1, a2, a3, b1, b2, b3, c ∈ G > and defi-

ning relations.

b641 = b162 = b43 = c256 = 1

[b2, b1] = [b3, b1] = [b3, b2] = [c, b1] = [c, b2] = [c, b3] = 1

a640 = b321 , a
64
1 = b−42 b−23 , a621 = b41b

−1
3 , a43 = b21b2,

[a1, a0] = b1c
2, [a2, a0] = b2c

8, [a3, a0] = b3c
32

[a2, a1] = c, [a3, a1] = c2, [a3, a2] = c4,

[b1, a1] = c4, [b2, a2] = c16, [b3, a3] = c64,

[bi, aj] = 1 if i 6= j, [c, ai] = 1 for i = 0, 1, 2, 3.

Then γ4(G) = 1 while the element

[a1, a2]
128[a1, a3]

64[a2, a3]
32 = c128

is a non-identity element in D4(G).

G. Higman reduced the Dimension subgroup problem to the class of finite p-groups,

and by a result of Passi we know that γ4(G) = D4(G), for G a finite p-group with p odd.

So it was natural to check the problem γ4(G) = D4(G), when G is a 2-group, According to

the litterature there were at least three published papers all claiming to prove the DSP ,

so Rips counter-example is really a landmark in the subject.

Modular dimension subgroups

For a group G, the p-modular dimension subgroups Dn(G), are the dimension sub-

groups, taken with respect to the finite filed Fp, In the sequel Lp(G) will denote the Lie

algebra defined by the p-modular dimension subgroup, so

Lp(G) =
⊕
n>1

Dn/Dn+1.
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The subgroups Dn(G) are also known as the Jenning-Zassenhauss-Lazard subgroups of

G.

Theorem 2.18 For every group G, and each positive integer n, we have

Dn(G) =
∏
i.pj≥n

γi(G)
pj .

The last formula was discovered by M. Lazard. The proof, though elementary, uses exten-

sive commutator calculus. The reader is refered to [5, Chapter 10] for a detailed proof.

Another interesting formula for the Dn(G) is the following :

Dn = Dp
dn
p
e.
∏
i+j=n

[Di, Dj]

From Lazard’s formula, one deduces that Dn(G) is generated by the commutators

[x1, · · · , xk], k ≥ n and all the powers [x1, · · · , xi]p
j with i, pj ≥ n. As a consequance, we

have Dn(G)/Dn+1(G) is an elementary abelian p-group, so Lp(G) can be viewed as a Lie

algebra over the field Fp.

2.4 Identities and infinitesimal identities

Identities in group theory

Let w(x1, · · · , xn) be an element of Fn and let G be a group, we can define a map from

Gn into G by sending each (g1, · · · , gn) ∈ Gn to the element w(g1, · · · , gn) ∈ G obtained

by replacing each indeterminate xi by gi. We call the later map the evaluation of the word

w on G, and w(g1, · · · , gn) the value of the word w on (g1, · · · , gn).

For example, we have

1. For w1 = x−11 x−12 x1x2 ∈ F2, the associated evaluation map is given by

G2 → G
(g1, g2) 7→ [g1, g2]
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2. Consider, w2 ∈ F3 defined by

w2 = x−12 x−11 x2x1x
−1
3 x−11 x−12 x1x2x3.

More concisely, w2 = [x1, x2, x3] ; hence the associated evaluation is

G3 → G
(g1, g2, g3) 7→ [g1, g2, g3]

3. For w3 = xn ∈ F1, we have
G → G
g 7→ gn

Definition 2.19 We say that w is an identity for G if the map on G induced by w is

trivial ; that is to say w(g1, · · · , gn) = 1 ∀g1, · · · , gn ∈ G.

Examlpe

Define inductively a family of words in F the free group on X = {x1, x2, · · · , xn} by

c1(x1) = x1, and cn+1(x1, · · · , xn+1) = [cn(x1 · · · , xn), xn+1]. For instance, c2(x1, x2) =

[x1, x2], c3(x1, x2, x3) = [[x1, x2], x3], ...

One can prove that a group G satisfies the identity cn(x1, · · · , xn) = 1 if and only if G is

nilpotent of class at most n.

P.I Lie algebras

Let f = f(x1, · · · , xn) be a Lie polynomial, that is f is an element of the free Lie

algebra LX on X = {x1, · · · , xn}.

For a Lie algebra L, and an n-tuple (a1, · · · , an) of elements of L, the map xi 7→ ai for

i = 1, n extends to a Lie algebra homomorphism

φ : Lx → L

hence f(x1, · · · , xn) has an image in L by φ which we denote by f(a1, · · · , an) and which

we the value of the polynomial f on (a1, · · · , an). In that manner, we define actually a map

f : Ln → L which assigns to each n-tuple (a1, · · · , an) ∈ Ln, the element f(a1, · · · , an).
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Definition 2.20 Let L be a Lie algebra, we say that L satisfies a polynomial identity

(or L is a P.I Lie algebra) if there exists a Lie polynomial f(x1, · · · , xn) such that

f(a1, · · · , an) = 0, for all a1, · · · , an ∈ L.

Example

1) An abelian Lie algebra is a P.I Lie algebra since it satisfies the identity [x, y] = 0.

2) Define a family of Lie polynomials on x1, x2, xn by f1(x1) = x1 and

fn+1(x1, x2, xn+1) = [fn(x1, · · · , xn), xn+1]

A Lie algebra L satisfies the identity fn(x1, · · · , xn) = 0 if and only if it is nilpotent

of class at most n.

3) The Engel polynomials (en)n are defined inductively by e1(x, y) = [x, y], and

en+1(x, y) = [en(x, y), y]

A Lie algebra which satisfies the identity en is said to be a (left) n-Engel Lie

algebras.

4) The linearized Engel polynomials En are defined by

En(x, x1, · · · , xn) =
∑
δ

f(x, xδ(1), · · · , xδ(n))

where δ runs over all the permatations on n elements, and fn(x1, · · · , xn) is the po-

lynomial defined in example 2 above. For instance the linearized Engel’s polynomial

E2 is given by

E2(x, x1, x2) = f(x, x1, x2) + f(x, x2, x1)

= [[x, x1], x2] + [[x, x2], x1].

For a Lie algebra L, and an element x ∈ L, define the map adx : L→ L by adx(y) = [x, y],

for y ∈ L.

Note that

adnx(y) = [x, y, · · · , y︸ ︷︷ ︸
n times

].
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Note that L satisfies the Engel identity En, or equivalently L is an n-Engel Lie algabra if

and only if adnx = 0, for all x ∈ L.

By a result of G.Higman, the associated Lie algebra Lp(G) of a group G of orders pk

satisfies the linearized Engel identity Epk−1 (e.g[11]).

Definition 2.21 A Lie algebra L is said to be ad-nilpotent if adx is a nilpotent map, for

all x ∈ L that is for every x ∈ L, ∃n ∈ N such that adnx = 0.

For instance, Every n-Engel Lie algebra is ad-nilpotent. Similarly, every nilpotent Lie

algebra is ad-nilpotent. whether the converce holds is known as the Kurosh Problem for

Lie algabras.

It is well known that every finite dimensional Lie algebra over a field which is ad-nilpotent

is nilpotent. More generally, if our Lie algebra is defined over a field of of characteristic 0,

then the ad-nilpotency implies the nilpotency of the Lie algebra ; this is one of the deep

results of Zelmanove on the subset. The last two results can be summarized by saying

that the Kurosh Problem has positive solution for Lie algebras of finite dimension over

some field, and for Lie algebras defined over fileds of characteristic 0.

Remark 2.22 The ad-nilpotent Lie algebras are also known under the name of Engel Lie

algebras.

The result of Zelmanov on Lie algebras related to the RBP may be viewed as a solution

of the Kurosh problem in the class of P.I Lie algebra. This result will be discussed in the

next section.

Passing from identitis to infinitesimal identities

Recall that for every group G and for every prime p, we can associated the Lie algebra

Lp(G) defined by the dimension subgroup series with respect to the field Fp.

Definition 2.23 Let G be a group. we say that G satisfies an infinitesimal identity or

for short G is infinitesimally P.I if the Lie algebra Lp(G) satisfies a polynomial identity

(for some prime p).
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For example, every group G of exponent pk, then G is infinitesimally P.I, since Lp(G)

satisfies the linearized Engel identity Epk−1(G.Higman).

Before stating the main result of this section let us introduce the notion of coset identities.

Let G be a group, and H be a subgroup of finite index in G. we say that satisfies a

coset identity (with respect to H) if there exists a word w(x1, · · · , xn) and elemnets

g1, · · · , gn ∈ G such that w(g1h1, g2h2, · · · , gnhn) = 1, for all h1, · · · , hn ∈ G.

Theorem 2.24 (Wilson-Zelmanove) .

A group which satisfies a coset identity is infinitesimally P.I (for every prime p).

The proof is quite technical, and we refer the reader to ([33]) for details.
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Chapitre 3

Zelmanov’s theorem on Lie
algebras

3.1 The main result

The first result of Zelmanov which led to the solution of Restricted Burnside Problem

can be stated as follows.

Theorem 3.1 Let L be a Lie algebra over a field of characteristic p > 0 generanted by

elements a1, . . . , ak and assume that there exist two positive integers n and m such that :

(1) L statisfies the linearized Engel’s identity En.

(2) For every commutator ρ on the generators x1, x2, . . . , xn We have ad(ρ)m = 0.

Then L is nilpotent.

This result was established in 1989 in the two papers [30, 31]. Later in 1993 Zelmanov

established the following more general version (see [32])

Theorem 3.2 Let L be a Lie algebra over a filed of characteristic p > 0 that is generated

by a1, . . . , ak and assume that :
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3.1. THE MAIN RESULT CHAPITRE 3.

(1) L statisfies a polynomial identity.

(2) Every commutator in a1, . . . , ak ad-nilpotent.

Then L is nilpotent.

3.1.1 On the proof of theorem 3.2

1) A Lie algebera L is said to be locally nilpotent if the Lie subalgebra generated by

every finite subset X ⊆ L, is nilpotent. Condition (1) guarantees that there is a

maximal locally nilpotent ideal Loc(L) such that the quotient L/Loc(L) contains

no non-trivial locally nilpotent ideal. If the Lie algebra L is locally nilpotent, then

the one considered in [Theorem 3.2] is nilpotent since it is finitely generated. Hence,

we may assume that L is not locally nilpotent, and by replacing L by L/Loc(L)

we may assume that L contain no locally nilpotent ideal 6= 0.

2) Sandwich elements and Sandwich Lie algebras

The notion of Sandwich element in Lie algebra was introduced by KostriKin (1959) :

Definition 3.3 An element a of a Lie algebra L is a sandwich element if [L, a, a] =

0, and [L, a, L, a] = 0. That is to say [x, a, a] = 0, and [x, a, y, a] = 0, for all x, a ∈ L

The following theorem is due to Kostrikin and Zelmanov (1989).

Theorem 3.4 (Sandwich Lie algebra).

If L is a Lie algebra that is generated by sandwich elements a1, · · · , ak then L is

nilpotent.

3) We can replace the base field by its algebraic closure F , and so by replacing L

by L ⊗ F , we may assume that the base field is infinite. We manage to find a

polynomial f(x1, . . . , xn) which is not an identity for L, such that f(a1, . . . , an) is

a Sandwich element of L for all a1, . . . , ak ∈ L. If so then we have to show that the

subspace generated by all the f(a1, . . . , an)′s is an ideal. By the theorem on Sand-

wich algebra, the later ideal is locally nilpotent, which contradicts our assumption

that L contains no locally nilpotent ideal 6= 0 which gives a contradiction. Hence

all is reduced to coustructing such a sandwich valued polynomial f .
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4) It may happen that our Lie algebra L containes no sandwich valued polynomial

(even if its is a PI algebra). To follows the idea in (3) one has to change the Lie

algebra L and even the notion of polynomials. This can be done as fallous :

We consider the associative F-algebra E on the generators e1, · · · , en, · · · subset to

the relations e2i = 0 and eiej = ejei for all i, j ≥ 1.

It follows easily that the set of elements eI = ei1ei2 . . . ein ,I = i1, i2, · · · , i1 and

i1 < i2 < · · · < i1, from a basis for E. ( Exactly like the alternating algebras).

Now, we replace L by

L̂ = L⊗F E

and the prodect in L̂ is defined as usual by

(l ⊗ a).(l′ ⊗ a′) = [l, l′]⊗ aa′.

Note that every element of L̂ can be uniquely written as a finite sum∑
I

lI ⊗ eI =
∑
I

aI .

5) Now, we let VL be the ideal of L̂ consisting of all the elements a =
∑

I aI , with

aI = 0 if i /∈ I. It follows that V 2
i = 0 and L̂ =

⊕
i≥1 Vi.

Consider a finite subset A of L̂ such that :

i) |A ∩ Vi| ≤ 1 for all i.

ii) [a, b] = 0, for all a, b ∈ A

Define a linear maps on L̂, for each k ≥ 1 by setting

Uk(A) =
∑
k

ada1 .ada2 . . . . adak

. Where the sum runs over all the subsets of A having k elements . we have for

instance U1(A) =
∑

a∈A ada For K = 0 we set U0(A) = Id

6) Now, we define for the Lie algebra L, a set of words in the alphabets, xi, Uj, (, ), [, ]

and adi, i ≥ 1 and j ≥ 1. These words will be called the U-words (relative to L).

If only the letters x1, . . . , xn occur in such a word w, we write w = w(x1, . . . , xn).
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And if the variables xi are replaced by elements ai of L̂ then the value w(a1, . . . , an)

is a linear map on L̂. The U-words on L are defind by the fallowing axioms :

i) If ρ is a commutator in x1, . . . , xn then the word w = ad(ρ) is a U-word. The

value of this word on a1, . . . , an is the map ad(ρ(a1, . . . , an)).

ii) If w(x1, . . . , xr) is a U-word then ad(xiw) is a U-word. The value of that word

on a1, . . . , ar, ai is the linear map ad(aiw(a1, . . . , an)).

iii) If v and w are U-words, then vw is also a U-woord, and its associated value is

the product of the linear maps associated to v and w.

iv) If w = w(x1, . . . , xr) is a U-word such that for all a, b, a1, . . . ar ∈ L̂ we have

[aw(a1, · · · , ar), bw(a1, . . . , ar)] = 0

and x does not occun in w ; then w′ = Uk(xw) is a U-word. If we replace

x1, . . . , xr and x respectively by a1, . . . , ar and a =
∑

I aI ; then the set :

A = aIw(a1, . . . , ar)

satisfies the condition of paragraph (5).

The value of w′ on a1, . . . , ar and a is just the map Uk(A).

7) Finally, we define the notion of U-polynomials by the following process : Consider

homogeneous Lie polynomials f(ti, yj, zk) whose variables are devided into three

disjoint subsets {ti}, {yj} and {zk} and two U-words w = w(x1, . . . , xr), w′ =

w′(x1, . . . , xr).

If the variables ti, yi, zj are given value ai, bj, ck ∈ L̂, respectively ; and x1, . . . , xr
are given the values d1, . . . , dr. The value of the U-polynomial (f(ti; yj; zk);w;w′)

is :

f(aiw(d1, . . . , dr), bjw
′(d1, . . . , dr), Ck).

Proposition 3.5 Let L be a Lie algebra over a field of characteristic p>0 ; and

suppose that L satisfies a PI. Then there exists a U-polynomial f = f(tiw, yj, w
′, zk)

which is not identically 0 on L̂ but all the values of f on L̂ are sandwiches.
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By the above proposition we construct a polynomial f̂ on L̂ all of its values are

linear combination of a bounded number of Sandwiches.

At this point, the idea of using Sandwich algebras can be applied to obtain the main

result.

3.2 consequences for Restricted Burnside Problem

We have seen in Section 1.3 that a positive solution of the RBP will follow if we could

prove the finiteness of the restricted Burnside groups R(d, pn), where p is prime

Theorem 3.6 For all positive integers d, n and every prime p the group R(d, pn) is finite

Before completing the proof of Theorem 3.6, we need the following result of M.lazard.

Proposition 3.7 let G be a groups and x ∈ G such that xpn = 1 for some prime power pn.

Assume that x ∈ Dk(G)−Dk+1 and let x be the corresponding element in Dk(G)/Dk+1 ⊆

Lp(G), Then x is ad-nilpotent of degree at most pn, that is adp
n

x = 0.

For a proof we refer the reader to lazard’s thes’s " sur les groupes nilpotents et les anneaux

de Lie"

Proof of Theorem 3.6.

Let G = R(d, pn) and assume that a1, a2, · · · , ad are generators for G, also let L be the

subalgebra of Lp(G) generated by a1, · · · , ad, where ai denotes aiD2(G).

Any commutator c (a1, · · · , an) ∈ L correspods to the group commutator c(a1, · · · , ak)

mod Dk+1. Since c(a1, · · · , ad)p
n
= 1, it follows from lazard’s result that ca1, · · · , ad =

c(a1, · · · , ad) is ad-nilpotent of degre ≤ pn.

We know on the other hand that Lp(G) satisfies the linearized Engel identity Epn−1, so

in particular L satisfies a P.I (alternatively we can use Theorem (2.24) to establish the

leter). It follows that L satisfies the conditions in Zelmanov’s theorem thus L is nilpotent

so ∃c > 0 such that γc(L) = 0.

Now, recall that Dk(G) is generated by all the elements [x1, · · · , xi]p
j where ipj ≥ kj,

in other words. Dk(G) is generated by all the elements ρpi where ρ is a left normed
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commutator of weight at least i such that ipj ≥ k.

Hence from γc(L) = 0 one deduces that every commutator in a1, . . . , ad lies in Dc(G), and

so can be written as a product of powers ρp
si

i , where each %i is a left normed commutator

of weight l(%i) satisfying l(%i)psi ≥ c.

Let m ≥ 1, g ∈ G, and ρ1, . . . , ρr be all the left normed commutators in a1, . . . , ad of

weight < c then we can write

g = %k11 %
k2
2 . . . %krr g

′

for some g′ ∈ Dc and some positive integers k1, . . . , kr. Since G is periodic, let ps be the

largest among the orders of the %i’s ; thus each %kiL in the expression of G can have at most

ps values, so

|G/Dn(G)| ≤ rps.

As
⋂
nDn(G) = 1, it follows that |G| ≤ psr . So G is finite.

3.3 Other fectures of zelmanov’s theorem

Periodic compact groups

An old Burnside-like problem asks whether every compact periodic group is finite. By

a result of Platonov, every periodic compact group is a profinite group.

Definition 3.8 A profinite group G is a topological group that is compact such that the

normal subgroups of finite index form a basis for the neighborhoods of the identity.

A profinite group can be defined alternatively to be an inverse limite of a system of finite

groups (each endowed with the disrete topology). Indeed, for a profinite group one can

from the system (G/N)NC◦G where NC◦G means that N is an open subgroup of G, (each

N C◦ G has finite index in G since G is compact), and define the transition morphisms

G/N → G/M

xN → xM
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whenever N ⊆M and N,M /◦ G. For this system we have a natural morphism

G→ lim←−G/N

x→ (xM)N/◦G

which is a homemorphism. Conversely, if (Gi, φij)i>j is an inverse system of finite groups.

Then
∏

i∈I Gi is a compact group by Tychonov theorem, since

lim←−Gi = {(xi) ∈
∏
i∈I

Gi|φij(xi) = xj, for i > j}

is a closed subgroup of
∏

i∈I G, then lim←−Gi is compact. Moreover, the subgroups
∏

i∈I Xi,

where Xi = Gi except for a finite number of indices form a basis for the neighbors of 1,

so their traces on lim←−Gi form also a basis for the neighbors of 1. This shows that lim←−Gi

is a profinite group.

By the classification of finite simple groups (CFSG), Wilson reduced the problem on

one about pro-p-groups.

Definition 3.9 A pro-p-group is a compact topological group in which the normal sub-

groups of p-power index from a basis for the neighbors of 1.

Obviously, Every pro-p-group is profinite.

Theorem 3.10 (Zelmanov 1993)

Every finitely generated periodic pro-p-group is finite.

Note here that a topological group G is said to be finitely generated if it contains a finite

subset X such that G = 〈X〉, That is the subgroup 〈X〉 is dense in G.

The proof of this Theorem 3.10 follows the lines of that of the theorem in the previous

section :

1) First using Lazard’s result, one shows that every commutator in the generators of

Lp(G) is ad-nilpotent.

2) To show that Lp(G) is a PI algebra we can use Theorem (2.24) of Section (2.4) to

this end, we need a formalution of the Baire categoty theorem.
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Proposition 3.11 Let G be a profinite group, and (Cn)n be a family of closed

subsets in G such that tnCn contains a non-empty open subset, then some Cn

contains a non-empty open subset.

For a periodic pro-p-group G, we set for each n ≥ 1, Cn = {x ∈ G|xpn = 1}. Since

the mapppings x 7→ xp
n are continuous, each subset Cn is closed, and obviously

G = tn≥1Cn. Thus by the Baire category theorem ∃n ≥ 1 such that Cn contains

a non-empty open subset of G. Since G is profinite, that means that Cn contains

some coset gH, where H is an open subgroup of G, so gH ⊆ Cn, and it follows

that (gh)pn = 1 for all h ∈ H. Thus G satisfies a coset identity with respect to H

and w = xp
n the word in Lp(G) satisfies PI by Theorem 2.24 G is infinitisimally

P.I, or equivalenty Lp(G) satisfies a P.I [Theorem (2.24)].

3) At this stage, we can dednce that Lp(G) is nilpotent, as we did in the last theorem,

we many dednce that |G/Dn(G)| is bouded by a cn termes of p and the nilpotency

class of G, Since the later holds for all n, it follows that G has a bouded order.

Remark 3.12 1) The Restricted Burnside Problem can be formulated in the class of

pro-p-groups by saying that for every finitely generated pro-p-group G, the subgroup

Gpk is open for all k ≥ 1, or equivalently that every finitely generated pro-p-group

G such that xpk = 1,∀x ∈ G is finite. Every such a group is periodic and so finite.

(2) Similar ideas lead to the fact that every profinite Engel group, which is finitely

generated is nilpotent (see [33]).
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Conclusion

Though the RBP has a positive solution, it is of great importance to estimate the order

of magnitude of the groups R(d, pk). Computational methods led to some very particular

results in this direction, concerning for instance d = 2 and pk = 5. Adian and Repin

Showed that the nilpotency class of R(d, p) must grow at least exponentially with p. An

interresting conjucture in this direction claims that :

There is a constant C such that every d-generated finite group of exponent p is nil-

potent of class at most dCp.

If this conjecture is true, then R(d, p) should have order at most pdcp .

Recent work shows that still Zelmanov’s ideas can be used to attack other related

problems. We wish to follow these ideas to establish significant results in this direction in

our Ph.d project.
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Abstract :

This work is a survey of the restricted Burnside problem. We have provided an overview

of the most important solution to this problem, which Zelmanov reached in 1989, as well

as related findinge and topics.

keywords : Lie algebra, dimension subgroup, filtration.

Résumé :

Ce travail est une étude de détermination de la portée du problème Burnside restreint.

Nous avons fourni un aperçu de la solution la plus importante à ce problème et a atteint

Zelmanov en 1989, en plus des résultats et des sujets liés à eux.

Mot clés : algèbre de Lie, sous-groupe de dimension, filtration.
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