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Introduction

IN order to know descriptions of groups we need necessary passing by automorphisms ,we denote
them :Aut(G), where G is a group .inner automorphisms form a subgroup such that Aut(G)/Inn(G)
is isomorphic to Out(G) (exterior automorphisms).
Why the automorphism Φ ∈ Aut(G)is important ?

Because if a set S ≤ G is invariant under Φ, i.e Φ.S ≤ S ,then Φ is a symmetry. This shows to us
: that symmetries are leading behind the tree of automorphisms.

IN 1911 ,Burnside has conjectured :Does there exist any finite group such that G has a non inner
class presering automorphisms ?
After two years Burnside found the answer as follows he constructed a group G of order p6 ,p is an
odd prime such that Out(G) 6= 1.

The birth of Tate cohomology introduced by john Tate in (1952) ; give a hard tool to research
about non inner automorphisms .
The idea of Tate is combining between homology and cohomology in one Sequence.

A longstanding conjecture asserts that: any finite non-abelian p-group possesses at least one non-
inner automorphism of order p .
The first one who gave an answer to this question is W . Gaschütz using Tate cohomology and he
enjoyed this domain with good ideas: if Ĥn(G,A) = 0 for some integer n, then A is cohomologically
trivial.

K.Gruenberg says in [19] (one of the most ingenious application of cohomology to a purely group
the oretical problem is the recent solution by Gaschütz of the question whether ever finite p-group
has outer automorphism of order p); When G is a regular p- group, P–Schmid prove the theorem as
follows: let G be a regular p- group and N a non-trivial normal subgroup of G. if Q = G/N is not
cyclic Ĥn(Q,Z(N)) 6= 0 for all n; Thus there exist a non-inner p- automorphism .

Many others searchers have studied some kinds of p-groups: Regular p-groups, coclass, powerful
p-groups, semi abelian p-groups, potent p-groups. The semi abelian p-groups are introduce by XU,
and the aim of this work is to giving details and reproduce proofs of theorems belongs to this kind of
p-groups
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• The First chapter is an overview of the structure of p-groups.

• The Scened chapter includes other types of p -groups that are related to the p-groups; which is
the following:

– p-group semi-abelian and strongly semi-abelian.

– Regular p-groups.

– p-central p-groups.

– Powerful p-groups.

and we talked about power structure of p-groups

• In the Third chapter, which is the most important part of our work, which in turn discusses
Schmid’s conjecture by using cohomological technique, and some results about them. where
we initially explained the cohomology of finite p-groups and As we have also mentioned for
Gaschütz and Uchida theorem on the triviality of the cohomology of finite p-groups.

• In the last chapter we devoted the study on the existence of non-inner automorphism of p-
power order in the finite p-groups and we find there is a relation between cohomologically
trivial modules and the existence of non inner automorphism. We also discussed a new type of
finite p-groups identified by potent p-group; we also asked whether these potent p-groups were
verifying schmid’s conjecture

vi



Notations and Terminology

Let G be a group. p is a prime number,
Aut(G) automorphism group of G. Let σ ∈ Aut(G) is said inner if it is the form:

σ(x) = g−1xg = xg for some g ∈ G;

σ is called inner automorphism of G.
Inn(G) the inner automorphism group of G.
Out(G) = Aut(G)/Inn(G) is called the outer automorphism group of G.
for N subgroup of G, AutN(G) denotes the automorphism group σ of G which verify:

x−1σ(x) ∈ N for all x ∈ G;

AutZ(G) means AutZ(G) ( central automorphism group of G).

for x and y ∈ G, we define the commutator [x, y]=x−1y−1xy;

LetX, Y two non-empty parts of G, [X, Y ] is a subgroup generated by all commutators

[x, y] , x ∈ G y ∈ G.

[X,n Y ] is defined by [X,1 Y ] = [X, Y ]
[X,n Y ] = [[X,n−1 Y ], Y ]

CG(X) the part centralizer X ⊆ G that is to say the set of elements that commutes with all elements
of X .

Z(G) =CG(G) is the center of G.

Zi(G) the terms of ascending central sequence of G.

γi(G) the terms of descendant central sequence of G.

λi(G) the terms p-central descendant sequence of G.

Gi the terms of derived sequence of G.

Φ(G) Frattini subgroup G.

Gn the subgroup generated by the elements of the form xn, x ∈ G

Ωi(G) the subgroup generated by the G element of order dividing pi.

Ω{1}(p) the set of all elements of order at most p in a powerful p-groups.

d(G) =minimum generator number of G.

vii



CHAPTER 1

THE p-GROUPS

1.1 p-groups structure
Definition 1.1.1 We say that G group is a p-group if his order is a power of p, if G of order pnm with
m prime to p, we say that a subgroup H of G is p-Sylow of G if H has order pn.

Remark 1.1.1 1. Let S a subgroup of G, S is p-Sylow of G if and only if S is a p-group and
|G : S| is prime with p.

2. Any conjugate of p-Sylow of G is p -Sylow of G.

Definition 1.1.2 A central sequence is a normal subgroup chain

1 = H0 ≤ H1 ≤ ... ≤ Hr = G

such as:

Hi/Hi−1 ≤ Z(G/Hi−1) for all 1 ≤ i ≤ r

we can show that a finite group is nilpotent if and only if it has a central sequence .In fact, it is
traditionally the definition of a nilpotent group (perhaps infinite).

Definition 1.1.3 Let G be a group defined by :
(i) G1 = G

′
, the derived subgroup , and Gr = [G(r−1), G(r−1)].

(ii)Z0(G) = 1, Z1 = Z(G), and Zr(G)/Zr−1(G) = Z(G/Zr−1(G)), the upper central sequence.

(iii) γ1(G) = G, γ2(G) = G
′

, and γr(G) = [γr−1(G), G] the lower central sequence.

Lemma 1.1.1 Suppose that :

1 = H0 ≤ Hi ≤ ... ≤ Hr = G.

is a central sequence for G. then Zi(G) ≥ Hi and γi(G) ≤ Hr−i−1 for all i; This lemma implies that
if c the smallest integrates such that Zc(G) = G. Then γc+1(G) = 1, and γc(G) 6= 1, and any central
sequence has a length of at least c. This integer c is called the nilpotency class of a nilpotent group.

1



Proposition 1.1.1 Let G be a group of order pnthen G is nilpotent, and if c denotes its class, then
0 ≤ c ≤ n− 1, c = 0 if and, only if G is trivial, and c = 1 if and only if G is abelian.

Definition 1.1.4 Let G be a finite group of order pn, if c denotes its class,then the Coclass of G is the
quantity n− c.

Definition 1.1.5 LetG be a finite abelian group, soG is called elementary abelian if any non-identity
element has order p.

Lemma 1.1.2 Let G be a group non-abelian of order p, then Z(G) is of order p, and G/Z(G) is
elementary abelian.

1.2 Commutators
Definition 1.2.1 Let x and y two elements of G, then the subgroup commutator or derived subgroup
is defined by:

G
′
= [G,G] =< [x, y] : x, y ∈ G >; if H and K are two subgroups of G, then

[H,K] =<[h,k] : h ,k ∈ G.>

Lemma 1.2.1 Let G be a p-group, and H every subgroup normal of G.

(i) the quotient G/G
′

is abelian.

(ii) if G/H also abelian then G
′ ≤ H

Proof.
Suppose that x and y are two elements of G, then [x, y] = g; for some g of G′ , but from the

definition of [x, y] we have this x−1y−1xy = g ; when xy=yx g, and so on 1 ∈ G′ ,xy and yx are in
the same subset(coset) of G′ ,so

(xG
′
)(yG

′
) = (xy)G

′
= (yx)G

′
= (yG

′
)(xG

′
) proving the assertion (i).

If G/H is abelian, then for any element x and y of G, we have yx and xy are in the same coset of
H , when x y = y xh;for some h ∈ H , likewise proved (i).

we have x−1y−1xy = h ∈ H , and so since all the generators of G′ and this is in H , we have
G
′ ≤ H .

Lemma 1.2.2 Let G be a group and x, y, z elements of G

(i) [x, y, z]=[x, z]y[y, z]=[x, z][x, z, y][y, z].

(ii) [x, yz] = [x, z][x, y]z=[x, z][x, y][x, y, z]

(iii) [x, y]=[y, x]−1

2



(iv) (Hall-Witt’s identity) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1.

Theorem 1.2.1 (Three subgroups lemma) Let G a group and X, Y, Z three subgroups and let N
normal subgroup, of G , if [X, Y, Z] and [Y, Z,X] are both contained in N , so it contains [Z,X, Y ].

Proof. Let x ∈ X, y ∈ Y and z ∈ Z as [X, Y, Z] and [Y, Z,X] in N , then [x, y−1, z]y and [y, z−1, x]z

are two elements of N (since N is normal), so ([x, y−1, z]y[y, z−1, x]z)−1 = [z, x−1, y]x ∈ N by Hall-
Witt identity since N normal, we conjugate by x−1 to get [z, x−1, y] ∈ N , and let’s x′ = x−1. We
have [z, x

′
, y] ∈ N , for all z ∈ Z,

x
′ ∈ X and y ∈ Y ; therefore [z, x, y]≤ N

Proposition 1.2.1 Let G and γn(G) the descendant central sequence of G, then

[γn(G), γm(G)] ⊆ γn+m(G)

Proof. (by induction ), for n = 1. [γ1(G), γm(G)] = [G, γm(G)] =γm+1(G)∀m ≥ 1 Suppose the
proposition is true for all n− 1, ∀m ≥ 1

[γn−1(G), γm(G)] ⊆ γn+m−1(G) such that γn(G) = [γn−1(G), G] we put N = γn+m

1/ [γn−1(G), G, γm(G)].

2/ [G, γn−1, γm(G)]=[γm+1(G), γn−1(G)] ⊆ γn+1(G) = N .

3/ [γm(G), γn−1(G), G]

= [γn−1(G), γm(G), G] =[γn+m−1(G), G]⊆ γn+1(G) = N

by the lemma of three subgroup we have

(1) = [G, γn−1, γm(G)] ⊆ N = γn+m(G); so[γn(G), γm(G)] ⊆ γn+m(G)

1.3 Frattini subgroup
Definition 1.3.1 Let G be a finite group, the Frattini subgroup is the intersection of all maximal
subgroups of G, it is denoted by Φ(G).

Definition 1.3.2 Let G a group, and x ∈ G, thenx is called non-generator if for any group G gener-
ated by x and the set X , then G =< X >.

Proposition 1.3.1 Let G a group, so Φ(G) is the set of all non-generator of G, so if G = HΦ(G)
for some H then H = G.

3



Proof. Assume that x is non-generator ofG, and let M a maximal subgroup ofG. Then< M,x >≥
M , and like M is a maximal subgroup ofG, < M,x >= M so < M,x >= G if < M,x >= G
then since x is non-generator < M >= G contradiction; < M,x >= M ; i.e ,x ⊆M this is true for
all maximals subgroups and for x ∈ Φ(G)

Conversely, suppose that x is an element of Φ(G) ,let G generated by some set X ,and x, so
G =< X, x >
Denotes by N the group < X >.if N 6= G it is contained in a maximal subgroup, say M , but
x ∈M , since x is an element of Φ(G) ≤M and as < X, x >≤M ≤ G contradiction, this
< X >= G for any set X when < X, x >= G; i.e x is non-generator.

Finally we put G = HΦ(G) =< H,Φ(G) > soG =< H >= H

Theorem 1.3.1 Let G be a finite group, and suppose that N D G. contained Φ(G), if N /Φ(G) is
nilpotent then N is nilpotent.

Proof.
A finite group is nilpotent if and only if its p-Sylows subgroups are normals, we will show that

the p- Sylow ofN are normal, which proves that N is nilpotent ,either P a p-Sylow ofN then
P Φ(G)/Φ(G) is a p-Sylow of G/Φ(G), since if | P | =pd and | Φ(G) |= pea such that p - a
, then | PΦ(G)/Φ(G) | =pd−1, where the powerful of p divides N /Φ(G) .so N/Φ(G) is nilpotent,
it is also PΦ(G)/Φ(G) is a p-Sylow of N /Φ(G) is normal ,if the p-Sylow of G is normal, it is also
characterized; this PΦ(G)/Φ(G) characterized by N /Φ(G) and PΦ(G) characterized N D G;
we observe that PΦ(G) D G.
Now we can use The argument of Frattini :
P is a p-Sylow of N ,so is a p- Sylow of PΦ(G) and therefore G = NG(P )PΦ(G), and as
P 6 NG(P ) idem NG(P )P = NG(P ); from where G = NG(P )Φ(G).
This proposition proves that G=NG(P )idem P D G which implies that PD N

Corollary 1.3.1 The Frattini subgroup of a finite group is nilpotent.

Proof.
We take N=Φ(G) in Theorem 1.3.1

Proposition 1.3.2 LetG be a finite p-group, thenG/Φ(G) is elementary abelian, and ifH is a normal
subgroup of G such as G/H is elementary abelian, then Φ(G) ≤ H

Proof. We notice first that any maximum subgroup of p-group is normal and of index p, this means
M is a maximal subgroup of G, then G/M is cyclic of order p, idem G

′ ≤ M for any maximum
subgroup M , by consequently G′ ≤ Φ(G) and G/Φ(G) is abelian, and as G/M is of order p we
know that (Mx)p = M ∀x ∈ G;i.e , xp ∈ Φ(G) and as Φ(G)x ∈ G/Φ(G) Then Φ(G)x is of order p
so it is elementary abelian.
Now we suppose that G/H is elementary abelian of order pn then G/H is generated by n coset Hxi
of G/H; each coset is of order p, and like G/H ∼=< Hx1 > ×...× < Hxn >.

Proposition 1.3.3 Let Gp denotes the group generated by the set { gp : g ∈ G}; i.e, the smallest
group that continents all the elements of order p. Then Φ(G) = G

′
Gp.

4



Proof. Since Φ(G) contains all xp, we prove in proposition 1.3.2 Gp ≤ Φ(G) thus G′ ≤ Φ(G) since
G/Φ(G) is abelian; G′Gp ≤ Φ(G). to prove the inverse denoted G/G′Gp is elementary abelian and
G
′ ≤ G

′
Gp and also xp ∈ Gp ≤ G

′
Gp for all x ∈ G, idem any element of G/G′Gp is of order 1 or p.

which implies that G/G′Gp is elementary abelian and therefore G′Gp ≤ Φ(G)

Remark 1.3.1 G/Φ(G) can be considered as a vector space on ZP,and the dimension of G/Φ(G)
coincide with the generators minimal number of G,which is noted by d(G).
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CHAPTER 2

OTHERS KINDS OF p-GROUPS

2.1 Powerful structure of p-groups
Let G be a finite p-group, assume that

expG = pe and e ≥ 0 ;∀0 ≤ n ≤ e.

we define Πn : G→ G (the n th power mapping of G)∧
n(G) the kernel of Πn : G→ G∨
n(G) the image of Πn : G→ G

Ωn(G) =<
∧
n(G) > fn(G) =<

∨
n(G) >

We get the following two characteristic subgroup series .

(1) 1= Ω0(G) < Ω1(G) ≤ ... ≤ Ωe(G) = G, the upper power series of G.

(2) G = f0(G) > f1(G) > ... > fe(G) = 1,the lower series of G.

2.1.1 The main properties of the power structure
(i) fn(G) =

∨
n(G) for all n.

(ii) Ωn(G) =
∧
n(G) for all n.

(iii) Πn : gΩn(G)→ gp
n is defined a bijection from G/Ωn(G) onto fn(G).

(iii′) |G/Ωn(G)| = |fn(G)|; for all n.

6



We call G group with regular power structure any p-group that satisfies:

1- the exponent of Ωn(G) is at most pn;

2- Gpn coincide with the element of the form gp
n
, g ∈ G;

3- | G : Gpn |=| Ωn(G) |;

Definition 2.1.1 We say that G has a regular power structure if fn(G) =
∨
n(G) and

Πn : x Ωn(G)→ fn(G)

is a bijection.

2.2 p-group semi-abelian and strongly semi-abelian
The semi-abelian p-group are introduced and studied by Ming You XU (see[36])

Definition 2.2.1 Let G be a group we say that G is strongly semi-abelian
if for all x, y ∈ G, we have

(xy−1)p
n

= 1⇔ xp
n

= yp
n

for any positive integer n.

for n = 1, G is said semi-abelian .

Deduce that if G is strongly p-group, then the element having an order dividing pn form a subgroup
which coincide with Ωn(G), it is a result the application G/Ωn(G)→ Gpn that applies xΩn(G) to
xp

n
is a bijection.This property |G : Gpn| ≤ |Ωn(G)| for any positive integer n.

Lemma 2.2.1 Let G be a strongly semi-abelian p-group. Then

[xp
n
, y] = 1⇔ [x, y]p

n
= 1 for any x, y ∈ G and n ∈ N.

Proof. Suppose that [x, y]p
n

= 1, we have

xp
n

= (xp
n
)y=(x[x, y])p

n as G is strongly semi-abelian then [x, y]p
n=(x−1x[x, y])p

n
= 1.

inversely, suppose that [x, y]p
n so (x−1x[x, y])p

n
= 1 and as

xp
n

= (x[x, y])p
n

= (xy)p
n

= (xp
n
)y. This shows that

[xp, y] = 1

7



2.3 Regular p-groups
The regular p-group theory is due to P.Hall see([22]).

Definition 2.3.1 A p-group G is said regular if for all x, y ∈ G, there exists
c ∈ γ2(< x, y >)p, such that (xy)p = xpypc

Proposition 2.3.1 Every regular p-group is strongly semi-abelian.

Proof. See[[37]]
the reciprocal of the proposition is not necessary true.

Theorem 2.3.1 Let G be a p-group, then G is regular if and only if, any section of G is semi-abelian.

Proposition 2.3.2 Let G a p-group; we have:

- All abelian p-groups are regular.

-All p-group of class strictly less then p or if the exponent of G is equal to p then G is regular.

-If G doesn’t have any normal subgroup of order pn−1, and of exponent p then G is regular.

-If γp−1(G) is cyclic then G is regular.

-If | G : Gp |< pp, then G is regular.

-If | γ2(G) : γ2(G)p |< pp−1, then G is regular.

-All regular 2-group are abelian.

- If G is regular then exp(Ωn(G)) ≤ pn.

-The element of the form xp
n

form a subgroup and | G : Gpn |=| Ωn(G) | ;
for all n ∈ N∗.

-(A.Mann[31]) for p > 2 if any subgroup of G can be generated by (p− 1)/2, then G is regular.

8



2.4 p-central groups
Definition 2.4.1 A group G is say p-central if the center of G contains all the element of order p.
(i.e) Gp ≤ Z(G) ;
G is p-abelian if (xy)p = xpyp ∀x, y ∈ G

Proposition 2.4.1 G is p-abelian⇔ G is regular and (G
′
)p = 1.

Corollary 2.4.1 A p-group p-central ,p ≥ 3 is not necessarily a regular power structure

Proof. Otherwise, all the p-groups Gn has a regular power structure if the elements of the form xp in
a group G form a subgroup, so it holds true for all quotient of G, it follows that for any p-group G,
Gp coincide with the set of element of the form xp, x ∈ G (contradiction)

Proposition 2.4.2 ( Hall-Petrescu Formulla)
Let x and y two elements of a group G,and n a positive integer. Then

(xy)n=xnync(
2
n)

2 c
(3
n)

3 ...c
(n
n)
n where ci ∈ γi(G), for each index i.

Proof. view [[6],Appendix 1]

Definition 2.4.2 A group G is pi-central of height k if all the elements of G which has order dividing
pi are contained in Zk(G).

Lemma 2.4.1 G is a p-group if G is p-central of height p− 1, then

(xy−1)p = 1⇒ xp = yp for all x, y ∈ G.

Theorem 2.4.1 Let G a p-group with p > 2 satisfies Ω1(γp−1(G)) ≤ Z(G) .Then G is strongly
semi-abelian.

Proof. [36]

Theorem 2.4.2 Let G a group. If G is p-central of height p− 2 or p2-central of height p− 1; then G
is strongly semi-abelian.

Proposition 2.4.3 Let G a finite pk -central group of coclass r then there exists a function
f = f(k, p, r) such that the order of G is delimited by pf

9



2.5 powerful p-groups

Definition 2.5.1 Let G be a group is called powerful p-group if f1(G) ⊇ G
′
.

Let N subgroup of G ,N E G; N is said powerfully embedded in G if f1(N) ⊇ [N,G].

Theorem 2.5.1 Let N,M are powerfully embedded in G , then [N,G],f1(N),MN and [M,N ] are
powerfully embedded in G.

Proof.

1/ [N,G] is powerfully embedded in G ; we have

[N,G,G,G] = 1⇒ [N,G] ∈ Z2(G)⇒ f1([N,G]) = [f1(N), G];

so f1([N,G])= [f1(N), G]⊇ [N,G,G].

2/ f1(N) is powerfully embeded inG ; [f1(N), G,G] = 1 and f1(f1(N)) ⊇ f1([N,G])=[f1(N), G].

Remark 2.5.1 If G is powerful p-group we have

Gi, G
(i),fi(G),Φ(G) are powerfully embedded.

10



CHAPTER 3

COHOMOLOGY OF FINITE p-GROUPS

Let G be a group, We can form the group ring Z[G] over G; by definition it is the set of formal
finite sums

∑
aigi, where ai ∈ Z, gi ∈ G, and multiplication is defined in the obvious manner. We

shall call an abelian group A a G-module if it is left Z[G]-module, This means of course that there
exists a homomorphism G→ Aut(A). We can also make A into a right Z[G]-module simply writing
ag := g−1a for all a ∈ A, g ∈ G. This is important for tensor products. An example of G-module is
any abelian group with trivial action by G, for instance we shall in the future denote by Z the integers
with trivial G-action. Finally, if A and B are G-modules, then a G-homomorphism between them is
a map φ : A → B which is a Z[G]-homomorphism, The set of G-homomorphism between A and B
is denoted by HomG(A,B), it is left exact functor of A and B, covariant in B and contravariant in A.
As usual its derived functors are denoted by Exti.
Let A be a G-module, then we define the Cohomology groups as:

H i(G,A) := ExtiZ[G](Z, A).

Then H i(G,−) are covariant functor from the category of G-modules to the category of abelian
groups. Now we have clearly H0(G,A) = Hom(Z, A) by basic properties of Ext over any Ring, also
a Z-homomorphism if and only if its image a ∈ A is fixed by G, i.e ga = a for all g ∈ G.
Denote the set of such a by AG. So we see that Hom(Z, A) = AG; in particular A → AG is a left
functors, then another way of stating our definition is that H i(G,−) are the derived functors of the
functor A→ AG.
Recall that A is a right G-module; if we have an action A × G → A that satisfies the following
conditions:

• a(gg
′
) = (ag)g

′
;

• a1 = a;

• (a+ b)g = ag + bg;

for all g, g′ ∈ G; and all a, b ∈ A.

11



3.1 Cohomology of groups :H0 and H1

Let G a finite group acts on abelian group M .
the action of σ ∈ G on m ∈M will be noted m→ mσ.

Definition 3.1.1 M is also a G-module on the right if the action of G on M satisfies :

m1 = m (m+m
′
)σ = mσ +m

′σ
(mσ)τ = mστ

Definition 3.1.2 If M and N are two G-modules, a G-homomorphism is a homomorphism
Φ : M → N of abelian group which commutes with the action of G that is means

Φ(Mσ) = (Φ(M))σ,∀m ∈M,∀σ ∈ G;

Given a G-module M , we can look at the largest submodule of M for which G operates trivially.

Definition 3.1.3 The 0th cohomological group of the G-module M that a note MG or H0(G,M) is
defined by

MG = H0(G,M) = {m ∈M : mσ = m,∀σ ∈ G};

It is the submodule of M of all these G-invariants.

Proposition 3.1.1 Consider the exact sequence of G-modules

0→ P
φ−→M

ψ−→ N → 0

(i.e Φ and Ψ are G-homomorphisms, with Φ injective, Ψ surjective ImΦ = ker Ψ )
We deduce the exact sequence of G-modules

0→ H0(G,P )
φ̃−→ H0(G,M)

ψ̃−→ H0(G,N)

Proof. Firstly if m ∈ H0(G,P ), the restriction of Φ from H0(G,P ) is well defined

∀σ ∈ G;mσ = m from where:

Φ(m) = Φ(mσ) = (Φ(m))σ → Φ(m) ∈ H0(G,M)

Likewise the restriction of Ψ from H0(G,M) is afraid image in H0(G,N) Φ̃ is obviously injective
because Φ is injective and

m ∈ ker Ψ̃→ m ∈ kerψ → m ∈ Imφ→ m ∈ ImΨ̃

Now , Ψ is not always surjective for the measure of this surjectivity, we define

12



Definition 3.1.4 Let M a G-module

a) The group of 1-cochains of G on M is by definition the set of application of G in M

C1(G,M) ={maps ξ :G→ M }

b) The group of 1-cocycle of G in M is defined by

Z1(G,M) = {ξ ∈ C1(G,M) : ξστ = ξτσ + ξτ ∀σ, τ ∈ G}.

c) The group of 1-cobords from G in M is defined by

B1(G,M) = {ξ ∈ C1(G,M)/∃m ∈M : ξσ = mσ −m ∀σ ∈ G}.

Proposition 3.1.2 B1(G,M) ⊂ Z1(G,M);
The 1st cohomology group of G-module M is the quotient

H1(G,M) = Z1(G,M)
B1(G,M)

Proof.
Let’s show that B1 ⊂ Z1

Let ξ ∈ B1, then ∃m ∈ M ∀σ ξσ = mσ −m; proved that

ξ ∈ Z1 i.e ξστ = ξτσ + ξτ

ξστ = mστ −m = (mσ)τ −mτ +mτ −m = (mσ −m)τ +mτ −m = ξτσ + ξτ so ξ ∈ Z1

H1(G,M) is also defined as the group of 1-cocycles modulo the equivalence relation of the form

ξ1 ∼ ξ2 ⇔ ξ1 − ξ2 ∈ B1(G,M)

that is to say ξ1 − ξ2 of the form σ → mσ −m for a m ∈M

Example: If G operates trivially on M then
H0(G,M) = M because ∀σ ∈ G mσ = m ∀m ∈M

Z1(M) = {ξ : G→M\ξστ = ξτσ + ξτ = ξσ + ξτ} i.e Z1(M)= Hom(G,M)
B1(M) = {ξ\ ∃m ξσ = mσ −m = 0 ∀σ ∈ G}
that is to say B1(M) = 0 and H1(G,M) is equal Hom(G,M)

Proposition 3.1.3 Let Φ : M → N a homomorphism of G-module if ξ ∈ Z1(G,M),
Φ(ξ) ∈ Z1(G,N)

G
ξ−→ M

φ ◦ ξ ↘ ↙ φ
N

Then ξ ∈ Z1(G,M), φ ◦ ξ ∈ Z1(G,N)
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Proof.
Indeed ξ ∈ Z1(G,M), then ∀σ, τ ∈ G ξστ = ξτσ + ξτ from where

∀σ, τ ∈ G (φ ◦ ξ)στ = φ(ξστ ) = φ(ξσ)τ + φ(ξτ ) = (φξ)τσ + (φξ)τ

ξ ∈ B1(G,N) ∃m ξσ = mσ −m ∀σ → ∀σ φ(ξσ) = φ(ξ)σ = φ(m)σ − φ(m)

φ(ξ)σ = φ(ξσ) = φ(mσ −m) = (φ(m))σ − φ(m) ; ∃φ(m)

φ thus induces an application φ : H1(G,M)→ H1(G,N), and we have the proposition.

Proposition 3.1.4 Let 0 → P
φ−→ M

ψ−→ N → 0 an exact sequence of G-modules, then there is long
exact sequence

0→ PG →MG → NG σ−→ H1(G,P )→ H1(G,M)→ H1(G,N)

σ is defined as either.
Let n ∈ NG = H0(G,N) and m ∈M such that ψ(m) = n.
Let’s define the cochaine ξ ∈ C1(G,M) by ξσ = mσ −m.
Actually ξ ∈ Z1(G,P ) and since φ injective and, mσ −m ∈ kerψ
σ(n) is the class of 1-cocycle ξinH1(G,P ). Now let H be a subgroup of G.
Obviously ξ ∈ C1(G,M) and by restriction ξ ∈ C1(G,N) and of obvious manner

ξ ∈ Z1(G,M)→ ξ ∈ Z1(H,M);

ξ ∈ B1(G,M)→ ξ ∈ B1(H,M);

and we get this homomorphism restriction

Res : H1(G,M)→ H1(H,M).

Suppose that H C G the submodule MH of the elements fixed by H has a natural structure of
G/H-module:

G/H ×MH →MH

(σ̄,m) → mσ ;

Firstly mσ ∈MH , Indeed if τ ∈ H (mστ ) = mσ because H CG;

The action is well defined :

σ̄ = τ̄ → στ−1 ∈ H → mστ−1

= m→ mσ = mτ .

Now if ξ : G/H →MH is a cochaine of G/H to MH , then when composing with s : G→ G/H and
i : MH →M . We obtain a G-τ ◦M cochaine : i ◦ ξ ◦ s : G→M again note ξ.
Now if ξ ∈ Z1(G/H,MH), then i ◦ ξ ◦ s ∈ Z1(G,M); and if ξ ∈ B1(G/H,MH) then i ◦ ξ ◦ s ∈
B1(G,M)

G
s−→ G/H

ξ−→MH i−→M ;

We get an inflation homomorphism

Inf : H1(G/M,MH)→ H1(G,M)
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3.2 ∂-Functors and ∂*-Functors

Let C be an abelian category, C ′ an additive category, and a and b be two integers (which can be equal
to ±∞) such that a + 1 < b. A covariant ∂-functor from C to C ′ in degrees a < i < b, is a system
T = (T i) of additive covariant functors from C to C ′ , (a < i < b), in addition to giving, for any i
such that a < i < b− 1 and for any exact sequence

0→ A
′ → A→ A

′′ → 0, a morphism

∂ : T i(A
′′
)→ T i+1(A

′
)

(the "boundary" or "connecting" homomorphism). The following axioms are assumed to be satisfied:

(i) If we have a second exact sequence 0 → B
′ → B → B

′′ → 0 and a homomorphism from the
first exact sequence to the second, the corresponding diagram commutes.

T i(A
′′
)

∂−→ T i+1(A
′
)

↓ ↓

T i(B
′′
)

∂−→ T i+1(B
′
)

(ii) For any exact sequence 0→ A
′ → A→ A

′′ → 0, the associated sequence of morphisms

. . .→ T i(A
′
)→ T i(A)→ T i(A

′′
)→ T i+1(A)→ . . . (∗)

3.3 Universal ∂-functors
is a complex, i.e. the composite of two consecutive morphisms in this sequence is 0.
There is an analogous definition for a covariant ∂∗-functor, the only difference being that the ∂∗ op-
erator decreases the degree by one unit instead of increasing it. There are analogous definitions for
contravariant ∂-functors and ∂∗-functors. The T i are then contravariant additive functors and the
boundary operators go from T i(A

′
) → T i+1(A

′′
) or T i(A′) → T i−1(A

′′
). If we change the sign of

the i in T i, or if we replace C ′ by its dual, the ∂-functors become ∂∗-functors. Thus, one can always
stick to the study of covariant ∂-functors. Note that if a = −∞; b = +∞, a ∂-functor is a connected
sequence of functors.
Given two ∂-functors T and T ′ defined in the same degrees, we call a morphism (or natural trans-
formation) from T → T

′ a system f = (f i) of natural transformations f i : T i → T
′ i subject to the

natural condition of commutativity with ∂:
for any exact sequence 0→ A

′ → A→ A
′′ → 0, the diagram

T i(A
′′
)

∂−→ T i+1(A
′
)

↓ ↓
T i
′
(A
′′
)

∂−→ T i+1
′
(A
′
)
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commutes.
Morphisms of ∂-functors add and compose in the obvious way. Assume that C ′ is also an abelian
category. A ∂-functor is exact if for any exact sequence 0 → A

′ → A → A
′′ → 0 in C, the

corresponding sequence (∗) is exact. We say that a cohomological functor (respectively homological
functor) is an exact ∂-functor (respectively exact ∂∗-functor) defined for all degrees.

Let T = (T i) for 0 ≤ i ≤ a be a covariant ∂-functor from C to C ′ , where a > 0. T is called a
universal ∂-functor if for any ∂-functor T ′ = (T

′ i
) defined in the same degrees, any natural transfor-

mation f 0 : T 0 → T
′0 extends to a unique ∂-functor f : T → T

′ which reduces to f 0 in degree 0.n

We use the same definition for contravariant ∂-functors. In the case of ∂∗-functors we have to consider
morphisms from T

′ → T rather than T → T
′ . By definition, given a covariant functor F from C to

C
′ , and an integer a > 0, there can exist, up to unique isomorphism, at most one universal ∂-functor

defined in degrees 0 ≤ i ≤ a and reducing to F in degree 0.

3.4 Tate’s cohomology
In this section, we assume that G is finite group and A is a G-module. We define the trace map

τ = τG : A→ A

by setting
τ(a) =

∏
x∈G

ax, for all a ∈ A.

Let us denote by AG the submodule of the elements of A fixed by G, that is

AG = {a ∈ A | ag = a for all g ∈ G}.

We denote by [A,G] the submodule formed by the elements of the form a−1ag, where a ∈ A and
g ∈ G.

In the usual setting, we have it is well to known that

H0(G,A) = AG and H0(G,A) = A/[A,G]. We shall modify these groups to obtain the Tate
cohomology groups Ĥn(G,A), n ∈ Z.

Lemma 3.4.1 Under the above assumptions, we have

• Aτ ⊆ AG, where Aτ denotes the image of A by the trace map τ ;

• [A,G] ⊆ ker τ .

Proof. Assume a ∈ Aτ , so there exists b ∈ A such that a = bτ =
∏

x∈G b
x. Let g ∈ G; we have

ag = (
∏
x∈G

bx)g =
∏
x∈G

bxg;
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as the map x→ xg is a permutation of G, we have∏
x∈G

bxg =
∏
x∈G

bx,

so ag = a; this proves the first inclusion.
For the second, let a ∈ [A,G], so there exist b ∈ A and g ∈ G such that a = b−1bg. Now,

aτ = (bτ )−1(bg)τ = (
∏
x∈G

bx)−1(
∏
x∈G

bx)g

= (
∏
x∈G

bx)−1(
∏
x∈G

bxg)

= (
∏
x∈G

bx)−1(
∏
x∈G

bx) = 1

so a ∈ ker τ ;this proves the second inclusion.
The latter result implies that we have a homomorphism ofG-modules: τ ∗ = τ ∗G : A/[A,G]→ AG,

where τ ∗(ā) = τ(a), for all ā ∈ A/[A,G]. Therefore, we have natural homomorphisms

τ ∗G : H0(G,A)→ H0(G,A).

Now, let us define
Ĥ0(G,A) = AG/Aτ ;

Ĥ−1(G,A) = ker τ/[A,G];

Ĥn(G,A) = Hn(G,A), for n ≥ 1;

and
Ĥn(G,A) = H−n−1(G,A), for n ≤ −2.

Therefore, we have a family of groups (Ĥn(G,A))n∈Z; we call these the Tate cohomology groups of
G with coefficients in A.

Let us show that (Ĥn(G,A))n∈Z satisfies the usual cohomological properties.

Proposition 3.4.1 Every exact sequence of G-modules

0→ A→ B → C → 0

induces a long exact sequence of groups

. . .→ Ĥn(G,B)→ Ĥn(G,C)
δ−→ Ĥn+1(G,A)→ Ĥn+1(G,B)→ . . .

Moreover, the above construction is natural in the sense that for any morphism of exact sequences of
G-modules

0 → A → B → C → 0
↓ ↓ ↓

0 → A′ → B′ → C ′ → 0
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induces a commutative diagram

. . . → Ĥn(G,B) → Ĥn(G,C) → Ĥn+1(G,A) → Ĥn+1(G,B) → . . .
↓ ↓ ↓ ↓

. . . → Ĥn(G,B′) → Ĥn(G,C ′) → Ĥn+1(G,A′) → Ĥn+1(G,B′) → . . .

.

Proof. For n ≥ 1 and n ≤ −2; This suite corresponds to the suites exact lengths of usual homology
and cohomology. So just establish if for n = −1 or 0,it’s not hard to see the next diagram is
commutative:

H1(G,C) → H0(G,A) → H0(G,B) → H0(G,C) → 0
↓ ↓ ↓ ↓ ↓
0 → H0(G,A) → H0(G,B) → H0(G,C) → H1(G,A)

Knowing that Ĥ−1(G,A) = ker τ ∗A and Ĥ0(G,A) = coker τ ∗A.
This lemma of snake (see[[23]]) implies that there is a homomorphism (connecting) natural.
Ĥ−1(G,C)

δ−→ H0(G,A), such that the sequence

. . .→ Ĥ−2(G,C)→ Ĥ−1(G,A)→ Ĥ−1(G,B)→ Ĥ−1(G,C)
δ−→ Ĥ0(G,A)→ Ĥ0(G,B)→ Ĥ0(G,C)→ Ĥ1(G,A)→ . . .

is exact

Remark 3.4.1 The above means that Ĥn(G,−) is a cohomological functor in the category of G-
modules; in fact it is a universal cohomological functor.These later it is operas for first time in
A.Grothendieck paper " sur quelque points d’algebre homologique"
We write the definition as it is in [18].

3.5 Cohomology trivial

We say that a G-module A is said to be cohomologically trivial if Ĥk(S,A) = 0 for all S ≤ G and
for all integers k.

The following important result was proved independently by Gaschütz[14] and Uchida [35]. Ac-
cording to Uchida this result was conjectured by Tannaka.

Theorem 3.5.1 Let G be a finite p-group and A be a G-module that is also a finite p-group. If there
exists n ∈ Z such that Ĥn(G,A) = 0, then A is a cohomologically trivial module over G.

For a proof we refer the reader to Gruenberg "Cohomology Topics in Group theory"[19].

3.5.1 Cohomological Property of Regular p-groups
Suppose that G is a group and N is a normal subgroup of G such that G/N is finite. Then Z(N) can
be viewed as a G/N -module by considering the action of G/N on Z(N) by conjugation i.e,

zgN := zg = g−1zg for all g ∈ G and z ∈ Z(N);
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Theorem 3.5.2 Let G be a regular p-group and N a non-trivial normal subgroup of G such that
Q = G/N is not cyclic, then Ĥn(Q,Z(N)) 6= 0 for all n.

Proof. see([33])

Proposition 3.5.1 Let A and G are finite p-groups,A 6= 1 is a cohomologically trivial G-module .
Then for every subgroup K of G, the centralizer CG(AK) = K.

Proof. Assume that K < CG(AK) and let xK an element of order p on the center of p-group
CG(AK/K).
ThenK a maximal subgroup inH =< x,K >, by Gaschütz and Uchida theorem we have Ĥ0(H,A) =
0. Hence Ĥ0(H/k,Ak) = 0;
(by inflation-restriction proposition 3.1.4 ) and as H/K acts trivially over AK , we have

(AK)H/K = Ak and τH/K(x) = xp, ∀x ∈ AK .

So (AK)τH/K < AK thus implies Ĥ0(H/K,AK) 6= 0 a contradiction.

Corollary 3.5.1 Let G be a finite p-group, N a normal subgroup of G.
Assume that Ĥn(G/N,Z(N)) = 0 for some integer n. Then, for all subgroups H of G containing N ,
we have

CG(Z(H)) = H.

Proof. We know that A = Z(N) is cohomologically trivial as G/N -module. In view of proposition
3.5.1 it is suffices te check that Z(H) ≤ A for all subgroups H of G containing N .But Z(H)
centralizes N and

CG(N) ≤ CG(A) = N.

Proposition 3.5.2 Suppose G is a regular p-group and N a maximal subgroup of G. Let Q = G/N
be of order pn. Then the trace map τQ of A = Z(N) is just a→ ap

n
.

Proof. Assume first that N is a maximal subgroup of G.
Let Q =< Nx > and H =< A, x >. Then the commutator group H ′ = [A, x]. Since xp centralizes
A and H is regular, We have

[a, x]p = [a, xp] = 1 for all a ∈ A;

Consequently H ′ is of exponent p, and so (xa)p = xpap for all a ∈ A, by regularity .On the other
hands

(xa)p = xpax...x
p−1

= xpaτ .

Where τ = τQ.Consequently aτ = ap, as desired.

A Conjecture of P.Schmid
Let G be a finite p-groups, A = Z(Φ(G)) and Q = G/CG(Φ(G)).Then the cohomology of A over Q
is not trivial.
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3.5.2 Cohomology non-trivial of p-groups semi-abelian
The conjecture of Schmid holds for all semi-abelian p-groups in fact, more is true.

Lemma 3.5.1 Let G a p-group semi-abelian and N a normal subgroup such as G/N non-cyclic or
non quaternion.
We put A = Z(N) and let S/N be a subgroup of exponent p in G/N , we have then Ap 6 AS/N , and
also CS/N(Ap) = S/N .

Proof. Let be x ∈ S and a ∈ A. We have xp ∈ N , hence

xp = (xp)a = (xa)p = (x[x, a])p;

As G is semi-abelian, we have [x, a]p = 1.It follows that (a−1a[a, x])p = [a, x]p = 1, and again since
G is semi-abelian

ap = (a[a, x])p = (ax)p = (ap)x.

This shows that Ap is centralized by every element of S/N .

Lemma 3.5.2 Let G a p-group semi-abelian and N a normal subgroup such as G/N neither cyclic
nor a generalized quaternion group. Then Ĥn(G/N,Z(N)) 6= 0, for all integers n.

Proof. Assume for a contradiction that Ĥn(G/N,A) = 0 for some integer n, where A denotes Z(N).
As G/N is not cyclic and different from the group Q2m , there is in G/N a subgroup S/N of exponent
p and order at least p.It follows from theorem 3.5.1 that Ĥn(S/N,A) = 0, so A is a cohomologically
trivial S/N -module. Let K/N ≤ S/N be a subgroup of order p 3.5.1implies that Ĥ0(K/N,A) = 0.
We have Ĥ0(K/N,A) = AK/N/A

τ = 0, where Aτ is the image of A under the trace homomorphism
τ : A→ A induced by K/N . As K/N is cyclic of order p, our trace map is given by

aτ = aax...ax
p−1

for a ∈ A and any fixed x ∈ K −N,

from which it follows that
aτ = (ax−1)pxp.

Now a G is semi-abelian, a ∈ ker τ , if and only if ap = 1; that is, ker τ = Ω1(A). This implies that
| Aτ |=| Ap |. As AK/N = Aτ , and Ap ≤ AK/N by proposition 3.5.2 implies that S/N = K/N , a
contradiction.
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CHAPTER 4

NON-INNER AUTOMORPHISM OF p-GROUPS

Let G be a group. An automorphism σ : G→ G is termed inner if there exists g ∈ G such that

σ(x) = g−1xg, for all x ∈ G.

In the above case, we say that σ is the inner automorphism induced by g; we may denote σ by
cg. The inner automorphisms of G form a normal subgroup Inn(G) of Aut(G). Note that the map
c : G→ Inn(G) that maps every g ∈ G to cg is an epimorphism, whose kernel is the center Z(G); it
follows G/Z(G) ∼= Inn(G), and that two elements g, g′ ∈ G induce the same inner automorphism if
and only if gZ(G) = g′Z(G).

4.1 p -groups with non-inner automorphism
A result of W.Gaschütz says that if G is a finite non-abelian p-group, then G has an automorphism of
p-power order which is not inner.
It is an open problem whether every non-abelian p-group G has an automorphism of order p. The
latter question has positive answer whenever G satisfies one the following condition:

1. G is nilpotent of class 2 or 3;

2. G is a regular p-group;

3. G/Z(G) is a powerful p-group;

4. G satisfies: CG(Z(Φ(G))) 6= Φ(G);

5. If the commutator subgroup of G is cyclic;

6. If G of Coclass 2;

In most of the above cited results on the conjecture, it is proved that G has often a noninner automor-
phism of order p leaving the center Z(G) or Frattini subgroup Φ(G) of G elementwise fixed.
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4.2 Cohomologically trivial modules and non-inner p-automorphisms

There is a relation between non-triviality of Tate cohomology Ĥn(G/N,Z(N)) and the existence of
non-inner automorphisms of p-power order in Aut(G).

Proposition 4.2.1 Suppose that N is a normal subgroup of a group G, and we have CG(N) = Z(N)
. Then there is a natural isomorphism

Φ : Z1(G/N,Z(N))→ CAut(G)(N,G/N) given by

gϕ(f) = g(gN)f , for all g ∈ G, f ∈ Z1(G/N,Z(N)).

The image of B1(G/N,Z(N))under Φ is the group of inner automorphism of G induced by Z(N).
Here CAut(G)(N,G/N) denotes all automorphism α of G such that
xα = x for all x ∈ N and g−1gα ∈ N for all g ∈ G.

Theorem 4.2.1 Assume thatN is a normal subgroup ofG since thatCG(N) = Z(N) and Ĥ1(G/N,Z(N)) 6=
0. Then CAut(G)(N,G/N) is not contained in Inn(G).

Proof. view[3]

4.2.1 Semi-abelian p-groups and non-inner automorphism
In this section we need the definition of the Crossed homomorphism; let us again write
A 1-Cocycle is a map δ : G→ A such that δξ = 0, thus Z1(G,A) consists of all δ satisfying

δ(xy) = δ(x)yδ(y) for allx, y ∈ G

Thus function δ called a derivation or a crossed homomorphism.
If δa(x) = a−1ax for some fixed a ∈ A. Then δ is said to be inner or a principal crossed homo-
morphism, writing Der(G,A) for the group of derivations and Ider(G,A) for the subgroup of inner
derivation, and we have

H1(G,A) ∼= Der(G,A)/Ider(G,A)

Each element δ of Der(G,A), determines an endomorphism Φδ of G, given by

Φδ(x) = xδ(x), x ∈ G.

This map Φ defines a bijection between Der(G,A) and EndA(G), where

EndA(G) = {Θ ∈ End(G)/x−1Θ(x) ∈ A, for all x ∈ G}.

If we consider only the set Der(G/CG(A),A) of derivations, that are trivial on CG(A), then the
map Φ induces an isomorphism between Der(G/CG(A),A) and the group C̃(A) of the automor-
phisms of G acting trivially on CG(A) and G = A.
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It is straightforward to see that this isomorphism maps the inner derivations, Ider(G/CG(A),A),
into a group of inner automorphisms lying in C̃(A), though an inner automorphism lying in C̃(A)
need not necessarily be induced by an inner derivation. This case can be avoided by assuming that
CG(CG(A)) = A; indeed, if Φδ(x) = xg for some g ∈ G and all x ∈ G, then g ∈ CG(CG(A)), so g
lies in A and δ is the inner derivation induced by g−1.

Proposition 4.2.2 There is an isomorphism between Der(G/CG(A),A) and C̃(A), which maps Ider(G/CG(A),A)
exactly to the inner automorphisms lying in C̃(A).

Theorem 4.2.2 LetG be a semi-abelian fini p-group . ThenG has a noninner automorphism of order
p.

Proof. Assume for a contradiction that every automorphism of G of order p is inner. Let A =
Z(Φ(G)). By Proposition , we have CG(A) = Φ(G), and so CG(CG(A)) = A. If we prove that
Der(G/CG(A), A) = Der(G/Φ(G),Z(Φ(G)) has exponent p, then our first assumption together
with Proposition 4.2.2 implies that

Ĥ1(G/Φ(G);Z(Φ(G))) = 0;

which contradicts Lemma 3.5.1. So we only need to prove, for any derivation
δ ∈ Der(G,Z(Φ(G)) which is trivial on Φ(G), that δ(x)p = 1; for all x ∈ G. Indeed,

δ(xp) = δ(x)δ(x)x...δ(x)x
p−1

= (δ(x)x−1)pxp;

As δ is trivial on Φ(G), we have δ(xp) = (δ(x)x−1)pxp = 1, and since G is semi-abelian it follows
that δ(x)p = 1.

4.3 Potent p-groups

Let G be a finite p-group. We say that G is potent if γp−1(G) ⊆ Gp (for p = 2, we require γ2(G) ⊆
G4). This class of groups was introduced by A. Jaikin Zapiarain and G. Sanchez in [21]; their aim
was to show that several properties of the powerful p-groups can be extended to the potent p-groups.
Below we list some of the main properties of these groups.
Note that for p = 2 and p = 3 to be potent is the same as powerful. In general, any powerful p-group
is also potent.

Theorem 4.3.1 Let G be a finite potent p-group.

1. if p = 2 then

(a) - the exponent of Ωi(G) is at most 2i+1 and, even more

[Ωi(G), G]2i = Ωi(G
2)2i = 1;

(b) -the nilpotency class of Ωi(G) is at most [(i+ 3)/2];
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(c) - if N / G and N ≤ G2 then N is power abelian;

(d) - if N / G and N ≤ G4 then N is powerful;

2. if p > 2 then

(a) - the exponent of Ωi(G) is at most pi;

(b) -the nilpotency class of Ωi(G) is at most (p− 2)i+ 1;

(c) - if N / G then N is power abelian;

(d) - if N / G and N ≤ Gp then N is powerful;

Theorem 4.3.2 Let G be a potent p-group. then the following proprieties hold:

1. if p = 2, then γk+1(G) ≤ γk(G)4, and if p > 2 then γp−1+k(G) ≤ (γk+1(G))p;

2. γi(G) is potent;

3. < x, [G,G] > is potent, for all x ∈ G;

4. G is p-powered;

5. if N is a normal subgroup of G then G/N is potent;

Theorem 4.3.3 Let G be a finite p-group and N,M normal subgroups of G.

If N ≤M [N,G]Np then N ≤M.

Corollary 4.3.1 Let G be a group and x1, ..., xk elements of G. Then

(x1...xk)
pn ≡ xp

n

1 ...x
pn

k ( mod γ2(L)p
n

γp(L)p
n−1

γp2(L)p
n−2

...γpn(L));

Where L =< x1, ..., xk >. In particular, we have

Ωpn

i ≤ Ωi−kγ2(Ωi)
pnγp(Ωi)

pn−1

γp2(Ωi)
pn−2

...γpn(Ωi);

Where Ωl = Ωl(G) for l ≥ 1 and Ωl = 1 for l ≤ 1.

4.3.1 Potently embedded subgroups

We say that N is potently embedded in G if [N,G] ≤ N4 for p = 2 and [N,p−2G] ≤ Np for p odd.
(Since when p=2 a potent 2-group is powerful).

Theorem 4.3.4 Let N and M be potently embedded subgroups of G. Then

[Np,M ] = [N,M ]p.
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Proof. By P.Hall’s formula [1.2.2] we have

[Np,M ] ≤ [N,M ]p[N,pN ] ≤ [N,M ]p[[Mp, N ], N ].

Now we apply again P.Hall’s formula to [Np,M ] and we get that

[Np,M ] ≤ [N,M ]p[Np,M,M,N ].

Therefore, by theorem [], [Np,M ] ≤ [N,M ]p.
In order to prove the converse, we can assume that

[Np,M ] = [[N,M ]p, G] = 1.

Note that since M is potently embedded in G, [M,pN ] ≤ [Mp, N,N ]
By the previous argument, [Mp, N ] ≤ [M,N ]p so

[M,pN ] ≤ [[M,N ]p, N ] = 1.

Now, let us prove by the revers induction in k, that [N,M, γk(N)]p = 1 for all k ≥ 1.
This is clear when k is big enough. So, suppose that [M,N, γk+1(N)]p = 1. Then, we have

[N,M, γk(N)]p ≤ [[N,M ]p, γk(N)][[N,M ], γk+1(N)]p

[N,M, γk(N),p−2N ] = 1.
Therefore, we have that

[N,M ]p ≤ [Np,M ][N,M,N ]p[M,pN ] = 1.

Theorem 4.3.5 Let G be a potent p-group and N,M potently embedded subgroups of G. Then we
have that

1. NM is potently embedded;

2. [N,G]is potently embedded;

3. Npis potently embedded;

Proof.

1. This is obvious because
[NM,p−2G] ≤ [N,p−2G][M,p−2G].

2. we have that
[[N,G],p−2G] ≤ [Np, G];

and by the previous theorem,
[[N,G],p−2G] ≤ [N,G]p;

3. By the previous theorem
[Np,p−2G] ≤ [N,p−2G]p ≤ (Np)p;

Therefore Np is potently embedded.
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4.3.2 Normal subgroups of potent p-groups are power abelian
Proposition 4.3.1 We call a finite p-group G power abelian if satisfies:

• Gpi = {gpi/g ∈ G};

• Ωi(G) = {g ∈ G/o(g) ≤ pi};

• | Gpi |=| G : Ωi(G) |, for all i;

Theorem 4.3.6 Let G be a potent p-group and N ≤ G2 a normal subgroup of G. Then N is power
abelian.

Proof. We have already prover that
Npi = {npi/n ∈ N}, Ωi(N) = {n ∈ N/npi = 1}, and |Np| = |N : Ω1(N)|. So we just need to see
that for any i ≥ 1|Npi | = |N : Ωi(N)|. We work by induction on i, then

|Npi+1| = |(Np)p
i | = |Np : Ωi(N

p)|.

But Ωi(N
p) = Ωi(N) ∩Np, and we also have that

Np/(Ωi(N) ∩Np) ∼= NpΩi(N)/Ωi(N) = (N/Ωi(N))p;

Hence |Npi+1| = |(N/Ωi(N))p|. By applying the case i = 1 to the potent p-group G/Ωi(N) and its
normal subgroup N/Ωi(N), we get that

|(N/Ωi(N))p| = |N/Ωi(N) : Ω1(N/Ωi(N))| = |N/Ωi(N) : Ωi+1(N)/Ωi(N)| = |N : Ωi+1(N)|;

which concludes the proof.
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Conclusion

The study of existence of Non-inner automorphisms of p-power order is an open
problem that who is verify in some type of p-groups;

In our work we proved this existence by using cohomologically technique according
to Tate cohomology and his property. And we also showed a nice results about

P.schmid’s conjuncture and about the power structure of the p-groups in the
semi-abelian p-groups that introduced early by Ming You Xu .

Our aim is to find an positive answer for the class of potent p-groups. Which it is
open for a longtime.
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Abstract
This work treats a conjecture of Peter Schmid on the Tate cohomology of finite
p-groups. We examine some cases in which the conjecture has an affirmative

answer, as well as the relevance of this conjecture to studying automorphisms of
finite p-groups.

Résumé
Ce travail traite le conjecture de Peter Schmid sur la cohomologie Tate des

p-groupes finis. Nous examinons certains cas dans lesquels la conjecture a une
réponse affirmative, ainsi que la pertinence de cette conjecture pour étudier les

automorphismes des p-groupes finis.
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