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Introduction

Szemerédi’s regularity lemma is a masterpiece in graph theory; it asserts
roughly that the vertices of every finite graph can be partitioned into pieces
Xi, such that for almost all pairs (Xi, Xj) of these pieces, the edges between
Xi and Xj have a definite uniform pattern. While this result has many im-
portant consequences in graph theory, it proved also very useful in other
areas such as number theory, additive combinatorics, etc. Actually, E. Sze-
merédi proved a weak version of his lemma in 1975 when dealing with a
conjecture of Erdös and Turán that states that every set of natural num-
bers of positive upper density, contains arithmetic progressions of arbitrary
large lengths. The lemma in the current form has been established in 1978.
The earlier applications motivated enlargements of the regularity lemma to
other structures as hypergraphs, or giving it other flexible forms. A note-
worthy is that B. Green and T. Tao proved their famous result on arithmetic
progressions of prime numbers via such meditations on the regularity lemma.

This work aims to explain the foregoing lemma and its proof, and to
show that such a seemingly non productive result has highly non trivial
consequences. The thesis is organized as follows:

In the first chapter, after introducing the notion of graphs and some
basic fact on them, and after giving the basic ingredients for formulating the
regularity lemma, we give a full proof of it.

The second chapter treats some applications of the lemma. We begin
by explaining the mentioned conjecture of Erdös and Turán. We prove an
important consequence of the regularity lemma: the triangle removal lemma,
and we apply the latter to prove Roth’s theorem which confirms the conjec-
ture in a particular case. This conjecture became Szemerédi’s theorem, in
1975; while a full proof of the latter will not be given here, we discuss its first
proof, and other proofs as Furstenberg’s proof via ergodic theory, Gowers’
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proof via hypergraphs, and finally the effective bounds for the parameters in
these theorems.
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Chapter 1

Szemerédi’s regularity lemma

1.1 Generalities on graphs
Definition 1 A graph G is a pair (V,E), where V is a set and E is a family
of subsets of V all containing two elements.

Let G = (V,E) be a graph. The elements of V will be called the vertices of
G; we may denote V by V (G) if we want to keep track of G. The elements
of E will be termed the edges of G (we may write also E = E(G)).

If x, y ∈ E(G), then it is more convenient to write xy ∈ E; we say simply
that xy is an edge of G. Note that xy and yx represent the same edge.

Let x, y ∈ V (G); we say that x and y are adjacent if xy in an edge of G.
The set of the vertices of G adjacent to x will be denoted δ(x), and called
the neighborhood of x; hence

δ(x) = {y ∈ V (G) |xy ∈ E(G)}.

The cardinality of δ(x) will be called the degree of x and will be denoted
d(x); so d(x) = |δ(x)|.

The graph G is finite if V (G) is finite. It follows in this case that G has
at most

(|V |
2

)
edges. Hence, if G is finite, then d(x) is finite for every vertex

x of G. More generally, if d(x) is finite for every vertex x of G, we say that
G is a locally finite graph.
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Henceforth, all the graphs that will be considered are supposed to be
finite. Every such a graph can be represented in the plan by associating a
point (or a labeled point) to each vertex of the graph, and two such points
are joined by an arc if the corresponding vertices are adjacent.

Example 1 :

Figure 1.1:

Below are two basic nice results that hold for all graphs.

Proposition 2 For every graph G = (V,E), we have∑
x∈V

d(x) = 2|E|

Proof. Let S = {(x, y) |xy ∈ E}. On the one hand, each edge xy ∈ E
induces exactly two elements (x, y) and (y, x) in S, hence |S| = 2|E|. On the
other hand, S can be partitioned as

S =
∐
x∈V

{x} × δ(x),

so
|S| =

∑
x∈V

|{x} × δ(x)| =
∑
x∈V

d(x);

the result follows.

Proposition 3 For every graph G with |V (G)| ≥ 2, there exist two
distinct vertices with the same degree.
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Proof. We proceed by induction on n the number of vertices in G.
Assume n = 2, and put V (G) = {x, y}. If x and y are adjacent, then
d(x) = 1 = d(y); otherwise, d(x) = 0 = d(y); so, the claim is true in this
case. Now, assume the result holds for every graph with < n vertices. Let
V (G) = {x1, . . . , xn}, and assume for a contradiction that d(x1) < . . . <
d(xn). If d(x1) = 0, then the graph G′ obtained from G by removing x1 has
the same edges as G; it follows by induction that there exist 2 ≤ i < j such
that d(xi) = d(xj), a contradiction. On the other hand, if d(x1) ≥ 1, , then
d(x2) ≥ 2, . . . and so d(xn) ≥ n; but xn could have at most n− 1 neighbors,
a contradiction. This shows as claimed that for some i 6= j, d(xi) = d(xj).

Definition 4 Let G = (V,E) and G′ = (V ′, E ′) be two graphs. We say that
G′ is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. If V = V ′, then G′ is called a
spanning graph of G.

Thus, a subgraph G′ of G is an induced subgraph if G′ = G[V (G′)].

Example 2 :

Figure 1.2:

Definition 5 Let G = (V,E) and G′ = (V ′, E ′) be graphs. A morphism
from G to G′ is a map f : V −→ V ′ that satisfies the following property for
all x, y ∈ V :

xy ∈ E ⇒ f(x)f(y) ∈ E ′.

We can define therefore, in the obvious way, the category of graphs and
their morphisms. Note that morphism f : G −→ G′ in this category is an
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isomorphism if and only if f is bijective. The isomorphisms from a graph G
onto itself form a group (under the composition of maps) which we denote
Aut(G).

Example 3 For the two graphs G1 and G2 below, the function f : G1 → G2

given by f(1) = a, f(2) = c, f(3) = b, and f(4) = d is an isomorphism.

For two graphs H and G, we say that G contains a copy of H if there
exists an injective morphism of graphs H ↪→ G; this means that G contains
a subgraph that is isomorphic to H. We say that G is H-free if it contains
no copy of H. The latter definitions arise in formulating the Graph Removal
Lemma, which is a very important consequence of the regularity lemma (cf.
Remark 18).

Let G be a graph. A walk in G is a sequence of vertices x0, x1, ..., xl such
that xixi+1 ∈ E for all i ∈ {0, 1, ..., l− 1}. The number l is called the length
of that walk.

Note that an edge xixi+1 in a walk could appear several times; so the
same vertex could appear more than once.

A walk in which all the edges are distinct is called a trail ; it is important
to note that a trail may have repeated vertices.

A trail x0, x1, ..., xl such that all the vertices are distinct except for x0, xl
will be called a path in G; such a path is closed if x0 = xl. A closed path will
be termed also a cycle. A cycle is a triangle if it has length 3, a quadrilateral
if it has length 4, etc.
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Example 4 :

Figure 1.3:

1.2 The regularity lemma and its proof

Statement of the result

Let ε > 0 be a real number, and X be a finite set. Conceptually, it is conve-
nient to say that a subset X ′ ⊆ X is ε-large (or merely large) if |X ′| ≥ ε|X|;
we say that X ′ is small otherwise.

Let G = (V,E) be a graph. For every pair (X, Y ) of disjoint subsets of
V , we define E(X, Y ) to be the set of edges between X and Y , so

E(X, Y ) = {e ∈ E | ∃x ∈ X and ∃y ∈ Y with e = xy}.

Clearly, E(X, Y ) = E(Y,X), and E(X, Y ) reaches its maximal possible size
if every vertex in X is adjacent to every vertex in Y ; in this case |E(X, Y )| =
|X||Y |. Also, |E(X, Y )| = 0 if and only if X is isolated from Y .

Definition 6 Let (X, Y ) be a pair of disjoint sets of vertices of G. The
(edge) density of (X, Y ) in G is the number

d(X, Y ) =
|E(X, Y )|
|X||Y |

.

Since the largest possible value of |E(X, Y )| is |X||Y |, it follows that

d(X, Y ) ≤ 1.
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Definition 7 A pair (X, Y ) of disjoint sets of vertices of G is ε-regular if

|d(X
′
, Y

′
)− d(X, Y )| ≤ ε,

for all large subsets X ′ ⊆ X and Y ′ ⊆ Y .

The above means that if X ′ ⊆ X and Y
′ ⊆ Y satisfy |X ′ | ≥ ε|X| and

|Y ′ | ≥ ε|Y |, then
|d(X

′
, Y

′
)− d(X, Y )| ≤ ε;

(the edge density of (X
′
, Y

′
) is very close to that of (X, Y )).

Remark 8 Some authors use the term ε-uniform instead for ε-regular (cf.
for instance [1]).

Let P = {X0, ..., Xk} be a partition of V = V (G); we say that P is ε-regular
with exceptional set X0, if the following conditions hold:

(a) X0 is small in V (that is |X0| < ε|V |);

(b) the parts Xi have the same cardinality for i ∈ {1, ..., k};

(c) the pairs (Xi, Xj) with i < j, are ε-regular for all but at most ε
(
k
2

)
of

them.

If P satisfy (a) and (b), but not necessarily (c), we say that P is an equipar-
tition of V with exceptional set X0.

Remark 9 The number of pairs (Xi, Xj) with 1 ≤ i < j ≤ k is equal to(
k
2

)
=

1

2
k(k − 1). If we denote by U the set of those pairs (Xi, Xj) that are

ε-regular, then the condition (c) amounts to saying that(
k

2

)
− |U | ≤ ε

(
k

2

)
or equivalently,

|U |
(
k

2

)−1
≥ 1− ε.

The above means that an arbitrary pair (Xi, Xj) is ε-regular with proba-
bility at least 1− ε. Usually, ε > 0 is interpreted as a very small quantity, so
1− ε is very close to 1; therefore, the previous statement means, informally,
that almost all the pairs (Xi, Xj) is ε-regular.
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Now, we can state the main result.

Theorem 10 (Szemerédi’s Regularity Lemma.) Let m be a positive in-
teger, and ε > 0. Then, there exists an integer M (depending on m and ε)
such that every graph G with at least M vertices has an ε-regular partition
X0, ..., Xk (with exceptional set X0) with m ≤ k ≤M .

Another equivalent form of the regularity lemma is the following.

Theorem 11 Let m be a positive integer, and ε > 0. Then, there exists
an integer M (depending on m and ε) such that for every graph G with at
least M vertices, there exists a partitions X1, . . . Xk of V (G) that satisfies
|X1| ≤ . . . ≤ |Xk| ≤ |X1| + 1, and all the pairs (Xi, Xj), 1 ≤ i < j ≤ k, are
ε-regular except for at most εk2 of them.

A weaker version of that theorem was introduced in [15] to prove a conjec-
ture of Erdös and Turán on arithmetic progressions in some sets of numbers.
The result in full generality was proved by Szemerédi in [16]. Applications
of this result will be discussed in the last chapter.

The Proof

We follow closely the proof presented in [2, §12.4].

Let G = (V,E) be graph, and let n = |V |. For every pair (X, Y ) of
disjoint subsets of V , we define the index of regularity %(X, Y ) by

%(X, Y ) = |X||Y |d(X, Y )2.

We can extend this definition to every (finite) collection P = {Xi}i∈I of
disjoint subsets of V by setting

%(P) =
∑

X,Y ∈P
X 6=Y

%(X, Y ).

(We shall denote such a sum simply by
∑
%(X, Y ).) Note that we can define

such a number in the particular case where P is a partition of V .
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As we have noticed previously, 0 6 d(X, Y ) 6 1, so d(X, Y )2 6 1 for
every pair (X, Y ) in P . It follows that

%(P) =
∑
|X||Y |d(X, Y )2 6

∑
X,Y ∈P
X 6=Y

|X||Y |. (1.1)

Lemme 1 For any collection P of disjoint subsets of V , we have

%(P) <
n2

2
.

.

Proof. By the inequality (1.1), wa have only to show that∑
X,Y ∈P
X 6=Y

|X||Y | 6 n2

2
.

We have
⋃

X∈P X ⊆ V , so
∑

X∈P |X| ≤ n. Now,

n2 ≥ (
∑
X∈P

|X|)(
∑
Y ∈P

|Y |) =
∑
X∈P

|X|2 + 2
∑
|X||Y |.

But,
∑

X∈P |X|2 > 0 (we are assuming that P 6= ∅), the result follows im-
mediately.

Let P and Q be two collections of disjoint subsets of V . We say that Q
is a refinement of P , and we write Q 4 P , if every part in P is a reunion of
parts in Q.

Every refinement of P can be obtained by replacing each part in P by
an appropriate partition. Hence, the basic step in constructing refinements
of P is to take X ∈ P and replace it by X1, X2, where X = X1 ∪ X2 and
X1 ∪X2 = ∅. This observation is useful in proving the next result.

Proposition 12 Let P and Q be two collections of disjoint subsets of V . If
Q 4 P, then %(Q) ≥ %(P).
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The above means that the regularity index does not decrease when taking
refinements.

Proof. By the observation preceding the proposition, we have only to
prove the claim when Q is obtained from P by replacing a part X ∈ P by
X1, X2, where X = X1 qX1 and X1, X2 are proper subsets of X. We have

%(P) =
∑
Y ∈P,

Y 6=X

%(X1, Y ) +
∑
Y ∈P,

Y 6=X

%(X2, Y ) + %(X1, X2) +
∑

Y,Z∈P\{X},
Y 6=Z

%(Y, Z);

but, ∑
Y,Z∈P\{X},

Y 6=Z

%(Y, Z) +
∑
Y ∈P,

Y 6=X

%(Y,X) = %(P);

therefore,

%(Q)− %(P) = %(X1, X2) +
∑
Y ∈P,

Y 6=X

%(X1, Y ) + %(X1, Y )− %(X, Y ).

By putting A(Y ) = %(X1, Y )+%(X2, Y )+%(X,Y ), we have only to show that
each A(Y ) is ≥ 0.

Write x = |X|, y = |Y |, xi = |Xi|, di = d(Xi, Y ) for i ∈ 1, 2, and
d = d(x, y). Note that x = x1 + x2.

Obviously, we have

|E(X, Y )| = |E(X1, y)|+ |E(X2, y)|,

so
xyd = x1yd1 + x2yd2,

which simplifies to
d =

x1
x
d1 +

x2
x
d2. (1.2)

We may assume that d1 ≥ d2 (otherwise, we replace d1 by d2), so d − d2 =

12



x1

x
(d1 − d2); hence d ≥ d2. On the other hand,

A = x1yd
2
1 + x2yd

2
1 − xyd21

= yx(
x1
x
d21 + (1− x1

x
)d22 − d2)

= yx(
x1
x

(d21 − d22) + (d22 − d2))

= yx(
x1
x

(d1 − d2)(d1 + d2)− (d2 − d22))

= yx(d− d2)(d1 + d2)− (d− d2)(d+ d2)

= yx(d− d2)(d1 + d2)− (d+ d2)

so A ≥ 0.

Assume (X, Y ) is a pair of disjoint sets of vertices of G which are not
ε-regular. Hence, we can pick a large subset X1 of X, and a large subset Y1
of Y such that

|d(X, Y )− d(X1, Y1)| > ε.

If we set X2 = X−X1 and Y2 = Y −Y1, then P = {X1, X2, Y1, Y2} is formed
by pairwise disjoint subsets of V ; so the index ρ(P) is well defined.

The next lemma is the key to prove the main result.

Lemme 2 Under the above assumptions, we have

ρ(P)− ρ(X, Y ) ≥ (
ε4

1− ε2
)|X||Y |.

Proof. Set x = |X|, Y = |Y |, d = d(X, Y ), and xi = |Xi|, yi = |Yi|,
dij = d(Xi, Yj) for i, j ∈ {1, 2}. Our assumptions can be rewritten as x1 ≥ εx,
y1 ≥ εy, and |d1 − d| > ε. Therefore,

x1 ≥ εx, y1 ≥ εy, and (d11 − d)2 > ε2. (1.3)

Also, as
E(X, Y ) =

∐
i,j

E(Xi, Yj),

we have xyd =
∑

i,j=1,2 xiyjdij. Hence,

xyd− x1y1d11 = x1y2d12 + x2y1d21 + x2y2d22 (1.4)
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Now, let a1 =
√
x1y2, a2 =

√
x2y1, a3 =

√
x2y2,

and
b1 =

√
x1y2d12, b2 =

√
x2y1d21, b3 =

√
x2y2d22.

The Cauchy-schwarz inequality yields

(
3∑

i=1

a2i )(
3∑

i=1

b2i ) ≥ (
3∑

i=1

aibi)
2. (1.5)

By (1.4), we have

(
3∑

i=1

aibi)
2 = (xyd− x1y1d11)2;

and by observing that x = x1 + x2 and y = y1 + y2, we have

xy − x1y1 = x1y2 + x2y1 + x2y2 =
3∑

i=1

a2i .

It follows from (1.5) that

x1y2d
2
12 + x2y1d

2
21 + x2y2d

2
22 ≥

(xyd− x1y1d11)2

xy − x1y1
(1.6)

As
ρ(P) =

∑
i,j

xiyid
2
ij + x1x2d(X1, X2) + y1y2d(Y1, Y2),

we have
ρ(P) ≥ x1y1d

2
11 +

(xyd− x1y1d11)2

xy − x1y1
.

By subtracting ρ(X, Y ) = xyd2 from both sides, a straightforward simplifi-
cation yields

ρ(P)− ρ(X, Y ) ≥ xy

xy − x1y1
x1y1(d11 − d)2.

By (1.3), the right hand side above is ≥ ε4

1− ε2
xy; the result follows.

Let us prove the following before embarking on the proof of the regularity
lemma.
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Proposition 13 Let P = {X0, ..., Xk} be an equipartition of V with excep-
tional set X0. If P is not ε-regular and |X0| ≤ (ε − 2−k)n, then there is an
equipartition Q = {Y0, ..., Yl} of V such that

|Y0| ≤ |X0|+
n

2k
,

k ≤ l ≤ 4kk,

and
ρ(Q)− ρ(P) ≥ (

1− ε
1 + ε

)ε5n2.

Proof. By Lemma 2, each pair (Xi, Xj) in P which is not ε-regular can
be refined into four parts Pij = {Xi1, Xi2,Xj1, Xj2} so that

ρ(Pij)− ρ(Xi, Xj) ≥ (
ε4

1− ε2
)|Xi||Xj|. (1.7)

Since P is an equipartition, we have |X1| = ... = |Xk|; so

n− |Xi|k = |X0| < εn;

(because X0 is small). Hence, |Xi| > n
k
(1− ε); by combining this with (1.7),

one obtains

ρ(Pij)− ρ(Xi, Xj) ≥
ε4

1− ε2
(1− ε)2n

2

k2
= (

1− ε
1 + ε

)ε4
n2

k2
.

For i ≥ 1 fixed, and j 6= i such that (Xi, Xj) is not ε−regular, one has
a partition of Xi into two parts induced by Pij. Let us denote by Pi the
coarsest 1 refinement of these partitions of Xi. Note that |Pi| ≤ 2k−1 (every
refinement yields at most two more parts). Let

P ′ = (
⋃
x∈X0

{x}) ∪ (
⋃
i=1,k

Pi);

so P ′ is a partition of V , and P ′ ≤ P . As |Pi| ≤ 2k−1, we have |P ′| ≤
k2k−1 + |X0|, so |P ′| ≤ k2k; moreover, as there are more than εk2 irregular
pairs, we have.

ρ(P ′)− ρ(P) ≥ εk2(
1− ε
1 + ε

)ε4
n2

k2
= (

1− ε
1 + ε

)ε5n2

Now, we shall construct the desired partition Q. Let {Y1, ..., Yl} be a
maximal collection of disjoint subset of V such that

1This means that Pi is a refinement of all the P〉| and if Q ≤ P〉| for all j then Q ≤ P〉.
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(1) |Y1| = ... = |Yl|;

(2) |Yi| ≤
( n

k
4k

)
;

(3) each Yi is contained in some part in P ′.

Let Y0 = V \(
⋃

i=1,l Yi) andQ = {Y0, ..., Y l}. Therefore, Q is an equipartition
of V with exceptional set Y0; moreover

|Y0 ∩ C| ≤
n

k4k
, for all C ∈ P ′. Why?

If follows that

|Y0| < |X0|+ k2k(
n

k4k
) = |X0|+

n

2k
≤ εn;

so |Y0| is small in V . Moreover, since Q is a refinement of P , k ≤ l; and since
every |Yi| is contained in at most one part in P ′, l ≤ k4k, so k ≤ l ≤ k4k.
Finally, ρ(Q) ≥ ρ(P ′) since the refinement of Q obtained by partitioning Y0
into singletons is a refinement of P ′. Thus,

ρ(Q)− ρ(P) = ρ(Q)− ρ(P ′) + ρ(P ′)− ρ(P) ≥ (
1− ε
1 + ε

)ε5n2;

the result follows.
Finally, let us start with an equipartition P0 = {X0, ..., Xk} of V with

exceptional set X0. If P0 is not ε-regular, then by the previous proposition,
we can find an equipartition P1 ≤ P0 such that

ρ(P1)− ρ(P0) ≥ (
1− ε
1 + ε

)ε5n2

By induction, if each Pr ≤ P0 is not ε-regular then

ρ(Pr+1)− ρ(Pr) ≥ (
1− ε
1 + ε

)ε5n2.

So
ρ(Pr+1) ≥ r(

1− ε
1 + ε

)ε5n2 + ρ(P0).

But, for r large enough, the right hand side would be greater than any given
number; this contradicts Lemma 1. This proves that for some r, Pr is an
ε-regular partition of V ; the result follows.
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Chapter 2

Applications and recent
developments

The regularity lemma has many interesting applications in graph theory;
although, we will not focus on this aspect here, and we refer the reader to
the survey [13]. Rather, we shall focus on number theoretic applications of
the lemma, which, historically, were the main reason for introducing it.

2.1 A conjecture of Erdös and Turàn
Let k be a positive integer, and R be a ring. We call an arithmetic progres-
sion of length k in R every finite sequence a0, . . . , ak−1 of distinct elements of
R such that the difference ai+1 − ai remains constant; in other words, there
exists b ∈ R (b 6= 0) such that ai = a0 + ib for i ∈ {0, . . . , k − 1}. For R = Z
we recover the usual notion of arithmetic progressions of integers. Usually, if
a result on arithmetic progressions of integers is proved, one encounters nat-
urally the problem of extending that result to Zn. Note that an arithmetic
progression (of length k) in Zn has the form (a1 + ib1, . . . , an + ibn), where
i ∈ {0, . . . , k−1}, and aj, bj ∈ Z. In the sequel, by an arithmetic progression
we mean always an arithmetic progression of integers.

In 1921, P. Baudet1 formulated the following conjecture: for any finite
partition P1, . . . , Pr of the set N, at least one of the parts Pi contains arith-

1Actually, Baudet formulated the conjecture for partitions having two parts, and Emil
Artin extended it to the this form.
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metic progressions of arbitrary large lengths (hence, an arithmetic progression
of length k, for any given k).

For example, the partition of N induced by a subgroup bZ, b ≥ 0, is
formed by the b parts C0, . . . , Cb−1, where Ci = {i+ bj | j ∈ N}. Clearly, the
elements of each Ci form an arithmetic progression, and Baudet’s conjecture
holds trivially in this case; moreover, this conjecture claims that the distri-
bution of the cosets a+ bZ, for various a, b, controls in some sense the finite
partitions of N.

van der Waerden (1927) confirmed Baudet’s conjecture by proving the
following (the formulation of the conjecture in the form below is due to O.
Schreier).

Theorem 14 Let k and r be positive integers. Then there exists a positive
integer M depending on k and r such that : for every partition of the set
{1, 2, . . . ,M} into r parts, at least one of these parts contains an arithmetic
progression of length k.

Let us show how Baudet’s conjecture follows from the latter theorem. Assume
P1, . . . , Pr is a partition of N, k a positive integer, and let M = M(r, k) be
as in the above theorem. If we set A = {1, 2, . . . ,M}, then {A∩ P1, . . . , A∩
Pr} is a partition of A; by the theorem, there is ik ∈ {1, . . . , r} such that
A ∩ Pik contains an arithmetic progression of length k. By choosing one
ik ∈ {1, . . . , r} for each value of k, one obtains a map k 7→ ik from N∗ to
{1, . . . , r}. Therefore, for some i ∈ {1, . . . , r}, the set {k | ik = i} is infinite;
this means that Pi contains arithmetic progressions of arbitrary large length.

Remark 15 The least integer M = M(r, k) in Theorem 14, is usually de-
noted by W (r, k); these are called the van der Waerden numbers; the values
of W (r, k) are known for very few values of r and k, and determining them
is a very open problem

In 1936, P. Erdös and P. Turán (cf. [3]) have considered the following related
problem:

Let N and k be positive integers, and assume A ⊆ {1, . . . , N} with the
property that A contains no arithmetic progression of length k. What is the
largest possible size of A? We may define rk(N) to be the size of such an A;
hence, the question is about determining rk(N).
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A noteworthy is that a subset A ⊆ Z contains a k-arithmetic progression
if, and only if, x + A = {x + A | a ∈ A} does, for all x ∈ Z. In other words,
the property of containing (or not containing) a k-arithmetic progression is
invariant under translations. This allows us, for instance, to suppose always
that 1 ∈ A in the above setting. Moreover, it follows at once that

rk(n+m) ≤ rk(n) + rk(m), for all n,m ∈ N∗. (2.1)

In fact, Erdös and Turán considered only the case k = 3. The problem
could be better approached by a concrete example; consider for instance
N = 8, and let us try to find A ⊆ {1, . . . , 8} of maximal possible size subject
to having no arithmetic progression of length 3. As we have mentioned, we
may suppose 1 ∈ A. If 2 ∈ A, then 3 /∈ A (otherwise, 1, 2, 3 is an arithmetic
progression of length 3). Hence, the next minimal possible choice is 4 ∈ A,
so we may suppose that 1, 2, 4 ∈ A. We couldn’t have 6 ∈ A, as this yields
the progression 2, 4, 6; and similarly, 7 /∈ A (because of 1, 4, 7); the remaining
possibilities are 5 ∈ A or 8 ∈ A. The case 5 ∈ A makes no problem, and if so
then 8 /∈ A because this yields 2, 5, 8. Thus, A = {1, 2, 4, 5} has a maximal
possible size. Another possible choice is A = {1, 3, 4, 6}. Anyway, we have
r3(8) = 4.

Similarly, one sees that r3(9) = r3(10) = 5 (consider for instance A =
{1, 3, 4, 6, 9}); r3(11) = r3(12) = 6; A = {1, 3, 4, 6, 10, 11, 13, 14} contains no
3-arith. prog., so r3(13) = 7 and r3(14) = 8. It follows from (2.1) that

r3(16) ≤ r3(8) + r3(8) = 8;

r3(18) ≤ r3(8) + r3(10) = 9;

r3(20) ≤ r3(10) + r3(10) = 10;

r3(22) ≤ r3(10) + r3(12) = 11.

The above values suggest that (except for N = 7):

r3(2N) ≤ N, for all N ≥ 4.

The latter is the first main result of Erdös and Turán in [3]. To see it, we
may assume that N ≥ 8. If the result holds for an integer some N , then by
(2.1) we should have

r3(2(N + 4)) ≤ r3(2N) + r3(8) ≤ N + 4.
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As the result holds for N = 8, 9, 10, 11, then it holds for N = 12, 13, 14, 15;
and more generally for N = 8 + 4q, 9 + 4q, 10 + 4q, 11 + 4q, with q ≥ 0. Since
every integer N ≥ 8 has one of the previous forms, the result follows.

Following similar lines, it was observed also in the same paper that for
every ε > 0, there exists n0 = n0(ε) such that

r3(N) < (
3

8
+ ε)N, for all N ≥ n0.

Just after, Erdös and Turán said:

"At present this is the best result for r3(N). It is probable that
r3(N) = o(N)2."

The latter became the Erdös-Turán conjecture for arithmetic progressions,
which was formulated thereafter to include all the functions rk(N), k ≥ 3.

Let ε > 0. The fact rk(N) < εN means that the maximal possible size of
a subset A ⊆ {1, 2, . . . , N} containing no k-arithmetic progression is < εN ;
in other words, if A ⊆ {1, 2, . . . , N} satisfies |A| ≥ εN , then A contains an
arithmetic progression of length k.

If the Erdös-Turán conjecture holds true, then we should have rk(N) <
εN for all N large enough; so for any fixed such a N , if A ⊆ {1, 2, . . . , N}
satisfies |A| ≥ εN , then A contains an arithmetic progression of length k.
Conversely, assume the latter holds for some N . Then as we observed above,
we should have rk(N) < εN . By (2.1), we have for every q ≥ 0,

rk(qN) < qεN = εqN.

This means that lim
q

rk(qN)
qN

= 0; but since (rk(n))n is sub-additive, lim
n

rk(n)
n

exists, so certainly lim
n

rk(n)
n

= 0. This proves that the Erdös-Turán conjec-
ture is equivalent to the following.

Conjecture. (Erdös-Turán) Let k be a positive integer and let δ > 0.
There exists a positive integer N depending on k and δ such that every subset
of {1, 2, . . . , N} of size at least δN contains an arithmetic progression of
length k.

2Recall that this means r3(N)/N → 0 as N → +∞
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Remark 16 For a subset A ⊆ N∗, the upper density of A, denoted d̄(A), is
defined by the formula

d̄(A) = lim sup
|A ∩ {1, 2, . . . , n}|

n
.

Many authors cite the Erdös-Turán conjecture under the form: Every subset
A ⊆ N∗ with positive upper density (that is d̄(A) > 0), contains arithmetic
progressions of arbitrary large lengths.

We recall that for any sequence (an) of real numbers, we could define a
subsequence (ān)n by setting

ān = sup{am |m ≥ n}, for every n.

Clearly, the sequence (ān)n is decreasing, so it has a limit that coincides with
inf ān (we may have inf ān = +∞). By definition,

lim sup an = lim ān.

This conjecture was first confirmed for k = 3 by K. Roth in 1953. Later,
Szemerédi proved it for k = 4 in 1969, and he proved it for all k ≥ 4 in
1975 (cf. [15]). Roth’s original proof uses analytic methods; later I. Ruzsa
and Szemerédi proved a very interesting graph theoretic consequence of the
regularity lemma, namely the triangle removal lemma, and observed that
Roth’s theorem follows from it in a straightforward manner. The next lines
are devoted to this combinatorial proof of Roth’s theorem.

Theorem 17 (Triangle removal lemma) For every 0 < α < 1, there ex-
ists β (depending on α) such that the following property holds. If G is a graph
with n vertices and at most βn3 triangles, then G can be made triangle-free
by removing at most αn2 edges.

Let us prove a lemma before proceeding with the proof of this theorem.
Recall that a graph G = (V,E) is said to be tripartite if V can be partitioned
into three subsets A,B,C such that no edge of G has extremities in the same
component.

For a vertex x ∈ V and Y ⊆ V , we set δY (x) = δ(x) ∩ Y ; hence

δY (x) = {y ∈ V |xy ∈ E}.
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Lemme 3 Let ε > 0, and let G = (V,E) be a tripartite graph, with V =
A∪B∪C. Assume that all the pairs (A,B), (A,C), (B,C) are ε-regular, and
that

c = d(A,B) ≥ 2ε, b = d(A,C) ≥ 2ε, b = d(A,C) ≥ 2ε.

Then the number of triangles in G is at least

(1− 2ε)(a− ε)(c− ε)(d− ε)|A||B||C|.

In particular, there are at least (1− 2ε)ε3|A||B||C| triangles in G.

Proof. Let
S = {x ∈ A | |δB(x)| < (c− ε)|B|},

and
T = {x ∈ A | |δC(x)| < (b− ε)|C|}.

We claim that S and T are ε-small in A (that is |S| < ε|A|, and |T | < ε|A|).
We have only to prove the claim for S as the case of T follows similarly. If
we assume that S is large, then since (A,B) is ε-regular, we should have

c− ε ≤ d(S,B) ≤ c+ ε;

on the other hand, we have by assumption

d(S,B) =
|E(S,B)|
|S||B|

<
|S|(c− ε)|B|
|S||B|

= c− ε;

a contradiction. This proves the claim.
Now, let A′ = A \ (S ∪ T ); the above fact implies |A′| > (1 − 2ε)|A|.

Fix a vertex x ∈ A′, and put B′ = δB(x) and C ′ = δC(x). The definition
of A′ implies at once that |B′| ≥ (c − ε)|B|, and |C ′| ≥ (b − ε)|C|. By our
assumptions on b and c, it follows that B′ is large in B, and C ′ is large in C;
so the assumption that (B,C) is ε-regular yields

a− ε ≤ d(B′, C ′) ≤ a+ ε;

hence,

|E(B′, C ′)| ≥ (a− ε)|B′||C ′| ≥ (a− ε)(b− ε)(c− ε)|B||C|.
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Observe now that every vertex bc in E(B′, C ′) yields a triangle bxc; thus the
number of (A′, B′, C ′) triangles is at least

(1− 2ε)(a− ε)(c− ε)(d− ε)|A||B||C|,

which implies the result immediately.

Proof of the triangle removal lemma. Let G be a graph on n
vertices, 0 < α < 1 a real number; put ε = α/4 and m = 8/α. By the
regularity lemma, there is an ε-regular partition X0, X1, . . . , Xk of V (G),
with 8/α ≤ k ≤M(ε).

We shall construct a new graph G′ by removing some edges from G ac-
cording to the following rules:

• For each i ≥ 1, remove the edges inside Xi; that is every edge whose

extremities lie in Xi. As each Xi has
1

k
(n − |X0|) ≤ n/k vertices, we

could remove at most
(
n/k
2

)
< n2/2k2 edges in each Xi; therefore, we

remove in total k
n2

2k2
edges, and so at most

α

4
n2 edges.

• For each irregular pair (Xi, Xj), 1 ≤ i < j ≤ n, remove all the edges
between Xi and Xj. The number of irregular pairs is at most εk2, and

|E(Xi, Xj)| ≤ |Xi|2 ≤ n2/k2;

the number of edges that could be removed here is at most εn2 =
α

4
n2.

• Remove the edges between all the pairs (Xi, Xj), 1 ≤ i < j ≤ n, having
density < 2ε. For such a pair,

|E(Xi, Xj)| < 2ε|Xi|2 ≤ 2εn2/k2.

As the number of such pairs does not exceed
(
k
2

)
≤ k2/2, the number

of edges that could be removed is at most εn2 =
α

4
n2.

• Finally, remove all the edges with an extremity in X0. As |X0| < εn
and every vertex in X0 could be joined to less than n vertices, the
number of such edges is < εn2 =

α

4
n2
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In total, G′ is obtained from G by removing at most αn2 edges. By construc-
tion, if G′ contains a triangle, then it arises from some triplet (Xi, Xj, Xl),
1 ≤ i < j < l, in which every pair is ε-regular of density ≥ ε/2; the foregoing
lemma implies that there are at least (1−2ε)ε3|Xi|3 triangles in G′. Observe
that |Xi| >

α

8
n, and let

β =
1

(32)3
(1− α

2
)α6.

Either G′ contains no triangles or contains more than βn3 of them. Now, if
G contains at most βn3 triangles, then certainly G′ contains no triangles; in
other words, G became triangle free after removing at most αn2 edges; the
result follows.

Remark 18 There is a more general analogue of the triangle removal lemma:
the graph removal lemma. The latter can be stated as follows. For any graph
H, and every 0 < α < 1, there exists β (depending on α) such that the
following property holds. If G is a graph with n vertices and at most βnh

copies of H, where h denotes the number of vertices of H, then G can be
made H-free by removing at most αn2 edges.

The graph removal lemma could be proved using the regularity lemma; a
new proof that avoids the regularity lemma and gives better bounds on β has
been given recently by J. Fox (cf. [5]).

Before establishing Roth’s theorem, let us prove a very nice consequence of
the triangle removal lemma. For convenience, we denote {1, . . . , n} simply
by [n]. Fora positive integer r, we denote by [n]r the cartesian product of
r copies of [n]. We call a corner in [n]2 every triple of points of [n]2 of the
form (x, y), (x + d, y), (x, y + d), with d > 0; alternatively, a corner in [n]2

is an isosceles triangle in the real plane, whose vertices have coordinates in
{1, . . . , n}.

Theorem 19 (Corners theorem) For every α > 0, there exists a positive
integer N such that every subset A ⊆ [N ]2 of size at least αN2 contains a
corner.

Proof. Let A be a subset of [n]2 of density at least α (that is |A| ≥ αn2).
Define a tripartite graph G by taking V (G) = X ∪ Y ∪Z, with X = Y = [n]
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and Z = [2n]; for x ∈ X, y ∈ Y and z ∈ Z, we join x to y if (x, y) ∈ A, and
x to z if (x, z − x) ∈ A, and we join y to z ∈ Z if (z − y, y) ∈ A.

If we have a triangle xyz in the graphG, then (x, y), (x, y+d) and (x+d, y)
lie in A, where d = z−x−y. This yields a corner if and only if z−x−y 6= 0.
If we denote by T the set of all triangles xyz in G such that z = x + y
(degenerate triangles), then clearly |T | = |A| ≥ αn2; moreover, any two
distinct triangles in T have no common edges, so we couldn’t remove T by
removing less than αn2. It follows that G contains more than βn3 triangles,
where β is the constant determined by α in the triangle removal lemma.
For n is sufficiently large, βn3 > n2 ≥ |T |, so G contains at least one non-
degenerate triangle in G, and hence A has a corner.

Theorem 20 (K. Roth 1953) For all δ > 0, there exists a positive integer
N such that every subset A of the set {1, 2, . . . , N} satisfying |A| ≥ δN ,
contains an arithmetic progression of length 3.

Proof. Consider the map f : [n]2 → [3n] defined by f(x, y) = x + 2y.
For every corner (x, y), (x+ d, y), (x, y + d) in [n]2, the images f(x, y), f(x+
d, y), f(x, y + d) form an arithmetic progression of length three. Our claim
follows now from the corners theorem.

We finish this section by mentioning Szemerédi’s theorem; we shall not
give a proof, although, several relevant remarks on it will be discussed in the
next section.

Theorem 21 Let k be a positive integer and let δ > 0. There exists a
positive integer N depending on k and δ such that every subset of the set
{1, 2, . . . , N} of size at least δN contains an arithmetic progression of length
k.

2.2 Generalizations and other approach to the
regularity lemma

The reason for not including a proof of Szemerédi’s theorem is that it does
not follows easily from the regularity lemma. In fact, Szemerédi’s original
proof is quite intricate; below is the scheme of the proof drawn by Szemerédi
in [15].
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Figure 2.1:

As another illustration of the situation, we quote from Terence Tao, a
leading specialist in the area (see https://terrytao.wordpress.com/):

A few days ago, Endre Szemerédi was awarded the 2012 Abel
prize “for his fundamental contributions to discrete mathemat-
ics and theoretical computer science, and in recognition of the
profound and lasting impact of these contributions on additive
number theory and ergodic theory.” ...

As I was on the Abel prize committee this year, I won’t com-
ment further on the prize, but will instead focus on what is ar-
guably Endre’s most well known result, namely Szemerédi’s the-
orem on arithmetic progressions...

Szemerédi’s original proof of this theorem is a remarkably in-
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tricate piece of combinatorial reasoning. Most proofs of theorems
in mathematics – even long and difficult ones – generally come
with a reasonably compact “high-level” overview, in which the
proof is (conceptually, at least) broken down into simpler pieces.
There may well be technical difficulties in formulating and then
proving each of the component pieces, and then in fitting the
pieces together, but usually the “big picture” is reasonably clear.
To give just one example, the overall strategy of Perelman’s proof
of the Poincaré conjecture can be briefly summarised as follows:
to show that a simply connected three-dimensional manifold is
homeomorphic to a sphere, place a Riemannian metric on it and
perform Ricci flow, excising any singularities that arise by surgery,
until the entire manifold becomes extinct. By reversing the flow
and analysing the surgeries performed, obtain enough control on
the topology of the original manifold to establish that it is a
topological sphere.

In contrast, the pieces of Szemerédi’s proof are highly inter-
locking, particularly with regard to all the epsilon-type parame-
ters involved; it takes quite a bit of notational setup and foun-
dational lemmas before the key steps of the proof can even be
stated, let alone proved. Szemerédi’s original paper contains a
logical diagram of the proof (reproduced in Gowers’ recent talk)
which already gives a fair indication of this interlocking structure.
(Many years ago I tried to present the proof, but I was unable
to find much of a simplification, and my exposition is probably
not that much clearer than the original text.) Even the use of
nonstandard analysis, which is often helpful in cleaning up armies
of epsilons, turns out to be a bit tricky to apply here.

The above situation suggests that other approach to Szemerédi’s theorem
are highly desirable. This philosophy opened the door to several fruitful ideas;
some of these are mentioned briefly below.

1. The ergodic approach: The work of Hillel Furstenberg.

Let (X,B, µ) be a measurable space; this means that X is a set, B is
a family of subsets of X which is stable under taking complements,
countable unions, and ∅ ∈ B, and µ is a map on B with values in
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[0,+∞] which satisfies

µ(∅) = 0, and µ(
⋃
n

An) =
∑
n

µ(An),

for any countable family (An) of pairwise disjoint subsets from B.
The elements of B are usually termed the measurable subsets of X. A
map T : X → X is measurable if T−1A is a measurable subset whenever
A is.

Let T : X → X be a bijection such that T and T−1 are both measur-
able, and µ(TA) = µ(A) for every measurable subset A (such a T is
also called a measure-preserving map).

The following result is known as Furstenberg multiple recurrence the-
orem (cf. [6]).

Theorem 22 Under the above notation; for any positive integer k, and
for any E ∈ B such that µ(E) > 0, there exists an integer n > 0 such
that

µ(E ∩ T nE ∩ · · · ∩ T n(k−1)E) > 0.

This theorem is equivalent to Szemeredi’s theorem. Just to highlight
this relevance; define Z to be the set of all maps from Z to {0, 1}. We
can endow Z = {0, 1}Z with the product topology, and by Tychonoff’s
theorem Z is a compact topological space. Note that we can identify the
set of all parts of Z to Z by identifying each A ⊆ Z to its chracteristic
function. Define a map T : Z → Z by setting (Tf)(n) = f(n + 1), for
all f ∈ Z. In other words, T maps each A ⊆ Z to TA = A + 1 where
A+ 1 = {x+ 1 |x ∈ A}.
When having a subset A ⊆ Z of positive upper density, we define a
topological space X to be the topological closure of the set {T nA |n ∈
Z} (so X is compact). Then, we define a measure on X that preserves
T (and so a σ-algebra B) by an appropriate limit process:

First, for each N > 0, we define a measure µN on X by setting

µN =
1

2N + 1

N∑
n=−N

δTnA,
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where δb is the usual Dirac measure: for every M ⊆ X, δb(M) = 1 if
b ∈M , and δb(M) = 0 otherwise.

For E = {B ∈ X | 0 ∈ B}, we have δTnA(E) = 1 if and only if 0 ∈ A+n,
or equivalently −n ∈ A; it follows that

µN(E) =
|A| ∩ [−N,N ]

2N + 1
,

, so µN(E) is the density of A in [−N,N ] = {−N, . . . 0, . . . , N}. Since
A has positive upper density, we could find a sequence Nn of positive
integers Nn tends to a positive integer as n → ∞. Informally, we
define µ as the limit of µNn as n → ∞. It follows that µ(E) is the
upper density of A, so µ(E) > 0. Moreover,

TµN − µN =
1

2N + 1
(δTN+1A + δT−NA),

and the latter has total mass (the measure of X)
2

2N + 1
, which tends

to 0 with n, hence Tµ = µ, and T is a measure preserving map. Now,
the foregoing theorem implies that

µ(E ∩ T nE ∩ · · · ∩ T n(k−1)E) > 0,

for every positive integer k. This is interpreted as A contains k-
arithmetic progression, for all k.

The ideas of Furstenberg led to a multidimensional version of Sze-
merédi’s theorem. For a subset A ⊆ Zr, we can consider the finite
sets A∩ [−n, n]r for every positive integer n; if an denotes the cardinal-
ity of the latter set, we define the density of A in the box [−n, n]r to
be an/(2n+1)r. The quantity lim sup an/(2n+1)r is the upper density
of A.

Theorem 23 Every subset A ⊆ Zr of positive upper density contains
arithmetic progressions (in the ring Zr) of arbitrary large length.

The above theorem could be proved via the following generalization of
Theorem 22 (cf. [7]).
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Theorem 24 Let (X,B, µ) be a measurable space such that µ(X) = 1
(so X is a probabilistic space), and let T1, . . . , Tk : X → X be measure
preserving isomorphisms such that TiTj = TjTi for all i, j. Then f for
any E ∈ B with µ(E) > 0, there exists an integer n > 0 such that

µ(T n
1 E ∩ T n

2 E ∩ · · · ∩ T n
k E) > 0.

Let us finally mention another application of this ergodic approach due
to Bergelson and Leibman (1996); this result might be thought as a
polynomial version of Szemerédi’s theorem.

Theorem 25 Let P1, . . . , Pk : Z → Zr be polynomial maps such that
Pi(0) = 0 for all of them. Then every subset A ⊆ Zr of positive upper
density contains a sequence of the form w + P1(n), . . . , w + Pk(n), for
some w ∈ Zr, and some n > 0.

2. The regularity lemma for hypergraphs.

A hypergraph H = (V,E) is a set V together with a family E of subsets
of V . Such a hypergraph is said to be n-uniform if all the elements of
E have cardinality n. So, for instance, the 2-uniform hypergraphs are
exactly the usual graphs.

T. Gowers claimed that there is a regularity lemma for uniform hyper-
graphs; such a generalization was important in relevance to Szemerédi’s
theorem. The idea is that we may proceed as for Roth’s theorem: a
higher regularity lemma would implies an appropriate removal lemma,
appropriate enough to imply Szemerédi’s theorem in a clear way. Gow-
ers succeeded in obtaining such a generalization in [9]; moreover, his
proof yields better effective bounds. The statement of the hypergraph
regularity lemma is somewhat sophisticated; we refer the interested
reader to Gowers, loc. cit.

Time does not allowed us to discuss the probabilistic approach by T.
Tao [17]; the latter gives much clarification of the work of Gowers men-
tioned above. Another interesting problem is related to finding effective
bounds on the function ε 7→M(m, ε) in the regularity lemma (cf. [4]).
The same problem arises in relevance to the removal lemma (cf. [5]),
and Szemerédi’s theorem.
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Abstract:  Szemerédi´s Regularity Lemma is a result in graph theory. 

The lemma states that for every large enough graph, the set of nodes can 

be dvided into subsets of about the same size so that the edges between 

different subsets behave almost randomly. In 1975, Szemerédi introduced 

a weak version of this lemma, restricted to socalled bipartite graphs, in 

order to prove his famous theorem about arithmetic progressions. In 1978 

he proved the full lemma. A graph consists of nodes and edges. The 

edges are connections between the nodes, and between two nodes there 

might or might not be an edge. 

Résumé:  Régularité de Szemerédi Le lemme est un résultat de la théorie 

des graphes. Le lemme indique que pour chaque graphe suffisamment 

grand, l'ensemble des noeuds peut être divisé en sous-ensembles 

d'environ la même taille, de sorte que les arêtes entre les différents sous-

ensembles se comportent presque de manière aléatoire. En 1975, 

Szemerédi a introduit une version faible de ce lemme, limitée aux graphes 

bipartites, afin de prouver son fameux théorème sur les progressions 

arithmétiques. En 1978, il a prouvé le lemme complet. Un graphique est 

constitué de nœuds et d'arêtes. Les arêtes sont des connexions entre les 

noeuds et entre deux noeuds, il peut y avoir ou non une arête. 

يُص .  ْٕ َخيجت في َظزيت انزسى انبياَي Szemerédi´s Regularity Lemma :الملخص 

 عهى أَّ بانُسبت نكم رسى بياَي كبيز ، يًكٍ ححٕيم يجًٕعت انعقد إنى lemmaيصطهح 

يجًٕعاث فزعيت بُفس انحجى حقزيباً بحيث حخصزف انحٕاف بيٍ يجًٕعاث فزعيت يخخهفت 

 َسخت ضعيفت يٍ ْذِ انهفظت ، Szemerédi ، قدو 1975في عاو . بشكم عشٕائي حقزيباً

يقخصزة عهى انزسٕو انبياَيت ثُائيت انطبقت الاجخًاعيت ، يٍ أجم إثباث َظزيخّ انشٓيزة حٕل 

يخكٌٕ انزسى انبياَي يٍ انعقد .  انكايمlemma أثبج أَّ 1978في عاو . انخقدو انحسابي

 .انحٕاف عبارة عٍ ٔصلاث بيٍ انعقد ، ٔقد يكٌٕ أٔ لا يكٌٕ ُْاك حافت بيٍ عقدحيٍ. ٔانحٕاف
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