N° Série : 19 /2018

Université Kasdi Merbah - Ouargla -

Faculté des hydrocarbures energies renouvelables et science de la terre et de l'univers

Département de production des hydrocarbures

MEMOIRE

Pour obtenir le Diplôme de Master

Option: Production

Présenté Par :

Djerrou Sabar, Djilali Fayçal

-THEME-

Etudes de performance de différents réservoirs du champs Rhourde Chegga (RDC)

Soutenue le : 25 / 06 / 2018 devant la commission d'examen

Jury :

Président : Ghali Ahmed

Encadré par : Mahsoul Ammar

Eaxaminateur : Robaii Sarra

Univ. Ouargla Univ. Ouargla Univ. Ouargla

Année universitaire :2017/2018

Remerciement

Nous remercions dieu tout puissant qui nous a donné le courage et la volonté et de nous avoir bénie jusqu'à la réalisation de ce travail.

On remercie vivement les membres de jury Mr. Ghali Ahmed, Mme. Robaii Sarra qui nous honore en jugeant notre thèse d'ingéniorat.

Nous tenons aussi à remercier chaleureusement notre encadreur Dr Mahsoul Ammar, mine de savoir et d'expérience, pour son grand soutien au travail.

Nous n'oublierons pas de remercier du département réservoir a la base irrara et surtout Mr Ahmed Mahmoud qui nous a énormément aidé et soutenu par sa gentillesse et sa générosité exemplaire durant notre cursus afin de nous amener jusqu'au bout de la formation.

Et à tous les gens qui nous ont aidés au cours de notre stage pratique à Hassi Messoud.

Enfin, grands mercí à nos famílles respectives et nos amis qui nous ont aidés.

Nous profitant de l'occasion pour remercier tous ceux qui

ont collaboré de près ou de loin à la réalisation

de ce mémoire.

Sabar § Fayçal

DÉDICACE

Je dédie ce modeste travail. A ma chère mère et mon cher père. A mes frères et mes soeurs. A mes oncles et mes tantes. A TOUTE La famille djilali et marhoum. A tous mes amies. A mes collègues de l'université de Ouargla surtout oussama et sabar.

Djilali Fayçal

DEDICACES

Je tiens premièrement à remercier DIEU d'avoir éclairé mon chemin. Arrivé au terme de l'induction, j'ai le grand plaisir de dédier ce modeste travail A ma très chère mère, sans la quelle je ne serais rien, qui me donne toujours l'espoir de vivre et qui n'a jamais cessé de se sacrifier pour moi afin que je puisse réussir dans ma vie.

A mon très cher père, pour ses encouragements, son soutien, son sérieux et surtout pour sa simple présence pour que rien ne puisse entraver mes études. A mon grand frère farouk et touetes memebres de ma meilleur familles.

Sans oublier mon binôme ambitieux D.Fayçal et toutes personnes qui a contribué de prés ou de loin pour l'acomplissement de ce travail .Mercie

Djerrou Sabar

Résumé:

L'étude d'un champ pétrolier, à partir de la découverte d'un réservoir productif, a pour but d'établir un projet de développement afin d'optimiser la récupération des hydrocarbures en place.

Les études réservoir ne s'arrêtent pas, et continuent durant toute la durée de vie du champ afin d'obtenir les informations nécessaires pour son exploitation optimale.

ceci nécessite de passer par deux étapes classiques :

- 1) Etape analytique (collecte et analyse de données petro-physiques et PVT).
- 2) Etape synthétique (estimation des réserves et mécanismes de drainage).

Dans notre travail on va étudier l'étape analytique et synthétique pour le réservoir Triasique (T1), Quartzite (QH), et pour le réservoir de Grés de RDC (GRDC).

Mots Clés :

Champ RDC, Réservoir T1, Réservoir GRDC, Réservoir QH, Estimation des Réserves, Bilan matière, Maintien de pression.

Summary :

The study of an oil field, from the discovery of a production reservoir, aims to establish a development project to improve the recovery of hydrocarbons in its place.

Reservoir studies do not stop and continue throughout the life of the field in order to obtain the information necessary for optimal utilization.

This requires going through two classics:

1 :Analytical step (collection and analysis of physical oil data PVT)

2 :Synthetic stage (estimation of reserves and exchange mechanisms).

In our work we will study the analytical and synthetic step for the Triassic reservoir (T_1) ,Quartzite(QH) and for the reservoir sandstone of RDC.

Keywords :

Field RDC ,Rservoir T_1 , Rservoir GRDC, Reservoir QH ,estimate of reserves,Material Balance,Pressure retention .

ملخص:

تهدف در اسة حقل نفط ، من اكتشاف خز ان إنتاجي ، إلى إنشاء مشروع تنموي لتحسين استرداد الهيدروكربونات في مكانه. در اسات المكامن لا تتوقف ، وتستمر طوال حياة الحقل من أجل الحصول على المعلومات اللازمة لاستغلالها الأمثل.

هذا يتطلب الذهاب من خلال خطوتين كلاسيكيتين:

1) خطوة تحليلية (جمع وتحليل البيانات البترولية المادية و PVT).

2) المرحلة الاصطناعية (تقدير الاحتياطيات وأليات الصرف).

في عملنا سوف ندرس الخطوة التحليلية والاصطناعية للخزان الترياسي (T1) ، والكوارتز الحمرة (QH) ، ولخزان Grés من (RDC), (GRDC) .

الكلمات الدالة :

حقل RDC، خزان T1 ، خزان GRDC ، خزان QH ، تقدير الخزان ، توازن المواد ، صيانة الضغط.

Table des Matières

Liste des abréviations	•••••
Liste des tableaux	•••••
Liste des figures	•••••
Liste des annexes	•••••
Introduction générale	•••••
Chapitre 1 : Présentation du champ de Rhourde Chegga	1
 1.1 Périmètre du permis d'exploitation 1.2 Travaux de recherche 1.2.1 Puits de découverte 1.2.2 Puits de délinéation 1.3 Analyse géologique 1.3.1 Position des puits 1.3.2 Evolution structurale 1.3.3 Migration et piégeage des Hydrocarbures 1.3.4 Zonation et corrélation réservoir 1.3.5 Propriétés et qualité du Réservoir 	
1.3.6 Sedimentologie et continuite du Reservoir 1.3.7 Incertitudes géologiques	12
Chapitre 2 : Analyse des paramètres petro-physiques et PVT du champ RDC	15
 2.1 Evaluation Petrophysique	16 16 18 23 25 28 29 31 32 33
Chapitre 3 : Rappelle sur les mécanismes de drainage et l'estimation des réserves	39
 3.1 Mécanismes de récupération primaire	40 40 40 40 41 41 41

3.2.1 L'injection de gaz	
3.2.2 L'injection d'eau	
3.3 Méthodes d'estimation des réserves en place	
3.3.1 Introduction	
3.3.2 Méthode volumétrique	
3.3.3La méthode dynamique (bilan matière)	
3.3.3.1 Hypothèses posées pour cette méthode	
3.3.4 Indices de drainage	45
Chapitre 4 : Estimation des réserves et mécanismes de drainage des rése	ervoirs (T1,
GRDC, et QH)	46
4.1 Analyse de la production et de la pression	
4.1.1 Analyse de pression	
4.1.2 Analyse de production	
4.1.2.1Contribution de chaque réservoir dans la production totale	
4.2 Estimation des réserves	
4.2.1 Méthode statique	
4.2.2 Méthode Bilan matière	
Conclusion générale	
Conclusion generale	
Recommandations	
Bibliographie	•••••
Annexe A : Tableaux	
Annexe B : Graphes	

Liste des abréviations

Во	Facteur volumétrique d'huile (m3/Sm3)
Rs	Quantité de gaz dissous exprimée à la condition
	standard (m3/m3)
Ko, Kw	Perméabilité effective d'huile et d'eau (fraction)
М	Rapport de gaz libre
N	Réserve en place (Mm3)
Np	Quantité d'huile produite (m3)
Pb	Pression de bulle (Kg/cm2)
So, Sw et Sg	Saturation en huile, en eau et en gaz (%)
Swi	Saturation irréductible d'eau (%)
Φ	porosité (%)
Kh, Kv	perméabilité horizontale et vertical (mD)
NTG	Net to gross ratio (fraction)
Gross	Hauteur total du réservoir (m)
Net	Hauteur des grés dans le réservoir (m)
Net pay	Hauteur utile de la zone d'intérêt d'huile (m)
μ _w	Viscosité de l'eau (cp)
μο	Viscosité de l'huile (cp)
RF	Taux de récupération d'huile (%)
Р	La pression du réservoir (Kg/cm2)
OOIP	Original oil in place (SMm3)
OGIP	Original gas in place (SMm3)

Liste des tableaux

Table 1-1: Périmètre d'exploitation de Rhourde Chegga " RDC "	3
Table 1-2: Principaux résultats du forage RDC1	5
Table 1-3: Résultats des forages de délinéation du gisement de Rhourde Chegga	a 6
Table 1-4: Coordonnées des puits	7
Table 2-1: Les Cut off des réservoirs du champ RDC	16
Table 2-2: La porosité dans les trois réservoirs	20
Table 2-3: La saturation dans les trois réservoirs	23
Table 2-4: Classification des perméabilités	26
Table 2-5: Les perméabilités dans le réservoir T1	27
Table 2-6: Les perméabilités dans le réservoir GRDC	27
Table 2-7: les perméabilités dans le réservoir QH	28
Table 2-8: Les paramètres petrophysiques des réservoirs	28
Table 2-9: Propriétés PVT du réservoir T1	35
Table 2-10: Propriétés PVT du réservoir GRDC	36
Table 2-11: Propriétés PVT du réservoir QH	37
Table 2-12: Classification des fluides de réservoir par GOR	38
Table 3-1: Les indices de drainage	45
Table 4-1: Les inputs pour réservoir T1	55
Table 4-2: Les inputs pour réservoir GRDC	56
Table 4-3: Les inputs pour réservoir QH	56
Table 4-4: Résultat d'estimation des réserves	57
Table 4-5: Les inputs pour software MBAL	58
Table 4-6: Conclusion sur les réservoirs du champ RDC	65

Liste des figures

Figure 1-1: Situation du gisement de Rhourde Chegga	2
Figure 1-2: Périmètre du permis d'exploitation du gisement de Rhourde Chegga	ι 3
Figure 1-3: Stratigraphie des puits du gisement de Rhourde Chegga	11
Figure 1-4: Corrélations des unités réservoir de Rhourde Chegga	14
Figure 2-1: Les hauteurs totales des réservoirs du champ RDC	16
Figure 2-2: Carte isobathe au toit du réservoir (T1)	17
Figure 2-3: Carte isobathe au toit du réservoir (GRDC)	17
Figure 2-4: Carte isobathe au toit du réservoir (QH)	18
Figure 2-5: Classification de porosité	19
Figure 2-6: Histogramme de distribution des porosités	20
Figure 2-7: Carte de distribution de porosité dans le réservoir T1	21
Figure 2-8: Carte de distribution de porosité dans le réservoir GRDC	21
Figure 2-9: Carte de distribution de porosité dans le réservoir QH	22
Figure 2-10: Carte de distribution de saturation en eau dans le réservoir T1	24
Figure 2-11: Carte de distribution de saturation eau dans le réservoir GRDC	24
Figure 2-12: Carte de distribution de saturation en eau dans le réservoir QH	25
Figure 2-13: cas des sols stratifiés	26
Figure 2-14: Comparaison des paramètres petrophysiques des réservoirs	29
Figure 2-15: La relation porosité-perméabilité dans le réservoir T1	30
Figure 2-16: La relation porosité-perméabilité dans le réservoir GRDC	30
Figure 2-17: La relation porosité-perméabilité dans le réservoir QH	31
Figure 2-18: La perméabilité relative du réservoir GRDC	33
Figure 2-19: Evolution du Bo et Rs avec la pression du réservoir T1	35
Figure 2-20: Evolution du Bo et Rs avec la pression du réservoir GRDC	36
Figure 2-21: Evolution du Bo et Rs avec la pression du réservoir QH	37
Figure 4-1: Evolution de pression du réservoir T1	47
Figure 4-2: Evolution de pression du réservoir GRDC	48
Figure 4-3: Evolution de pression du réservoir QH	49
Figure 4-4: Production du champ RDC	50
Figure 4-5: Le cumul de production des réservoirs du champ RDC	51
Figure 4-6: Contribution des réservoirs dans le cumul de production	52
Figure 4-7: Contribution des réservoirs dans la production journalière	52
Figure 4-8: Production du réservoir GRDC	53
Figure 4-9: Production du réservoir T1	54
Figure 4-10: Production du réservoir QH	54
Figure 4-11: L'interface du software MBAL/IPM	58
Figure 4-12 : Calage de l'historique de pression du réservoir T1	59
Figure 4-13: Mécanismes de drainage dans le réservoir T1	60
Figure 4-14: Facteur de récupération dans le réservoir T1	60
Figure 4-15: Calage de l'historique de pression du réservoir GRDC	61
Figure 4-16: Mécanismes de drainage dans le réservoir GRDC	62
Figure 4-17: Facteur de récupération dans le réservoir GRDC	63
Figure 4-18: Calage de l'historique de pression du réservoir QH	63
Figure 4-19: Mécanismes de drainage dans le réservoir QH	64
Figure 4-20: Facteur de récupération dans le réservoir	65

Liste des annexes

Annexe A	: Tableau	K	••••••	 		 	 	
Annexe B	: Graphes			 	•••••	 	 	

Introduction générale

Le champ de Rhourde Chegga (RDC) est situé dans la région de Beressof sur le bloc 433, a une trentaine de kilomètre au Nord-Est de la zone 9 de Hassi Messaoud. Il se compose de trois réservoirs productifs, deux de l'âge triasique (l'unité 1 du Trias **« T1»** et les Grés de la série inferieur du Trias **« GRDC»**), et le troisième de l'âge ordovicien (Quartzite el Hamra **« QH»**).

Les réservoirs (QH et T1) sont nouvellement exploités en 2009 et 2012 respectivement, ce qui nécessite une collecte et analyse des données et une étude bien détaillée pour un redéveloppement afin d'optimiser la production et maximiser le taux de récupération d'huile.

Le réservoir GRDC est en déclin continue en terme de production causé par le chute de pression qui passe de 540 en (1989) à 194 Kg/cm2 en (2015), pour cela une étude réservoir est nécessaire pour un meilleur suivi des performances des puits.

L'objectif principal de ce travail est basé sur deux points essentiels :

- Etudier les trois réservoirs du champ de Rhourde Cheggaa (RDC) de point de vue petrophysique, PVT, estimation des réserves, et mécanismes de drainage.
- II. Effectuer une série de scénarios de production/injection sur le réservoir Grés de RDC, par l'utilisation de la méthode bilan matière.

Chapitre 01 :

Présentation du champ de Rhourde Chegga

Introduction

Le champ de Rhourde Chegga est situé dans la région de Beressof sur le bloc 433, sis à Touggourt dans la wilaya d'Ouargla, à 600 Km au sud d'Alger. Il a été découvert 1985 et mis en production en 1989 Par le puits RDC1.

Le champ contient trois réservoirs productifs qui sont :

- 1- l'unité 1 d'âge Triasique (T1)
- 2- les grés de la série inférieure d'âge Triasique (GRDC)
- 3- Les Quartzites de Hamra d'âge Ordovicien (QH)

La pression du gisement initiale dans les trois réservoirs est de l'ordre de 540 Kg/cm², avec une température de 115°C pour les réservoirs (T1 et QH), et 118°C pour le réservoir GRDC.

Le contact initial huile-eau a été rencontré dans les cotes suivantes :

- Grés de RDC : à 3631m (ODT).
- T1 : à 3547m.
- QH : situé entre l'ODT (RDC4) à 3651 m et le WUT (RDC2) à 3846 m.

Source: RDC-QH permis Alnaft

Figure 1-1: Situation du gisement de Rhourde Chegga

1.1 Périmètre du permis d'exploitation

La structure de Rhourde Chegga a été cartée avant 1979 et répertoriée dans l'inventaire des pièges du 'Bloc 433' dans le prospect 16. Elle est supposée favorable pour l'accumulation des hydrocarbures dans les réservoirs du Trias et du Cambro-Ordovicien.

Le gisement de Rhourde Chegga (RDC) a été découvert en 1984 par l'association entre SONATRACH et la compagnie yougoslave NAFTA-GAS, suite aux travaux de recherche sur le 'Bloc 433', situé à une trentaine de kilomètres au Nord Est de la zone 9 de Hassi Messaoud.

Le périmètre du Permis d'Exploitation du champ de Rhourde Chegga proposé et dénommé ("Périmètre de Rhourde Chegga ") est défini par les limites du gisement, le tableau 1.1 indique les coordonnées des points définissant ce périmètre.

La superficie couverte par le Permis d'Exploitation est de 171.75Km².

La zone du permis d'exploitation de Rhourde Chegga est délimitée par des méridiens géographiques en degrés, minutes et secondes sexagésimales par rapport au méridien international d'origine, et par des parallèles géographiques en degrés, minutes et secondes sexagésimales par rapport à l'équateur.

Chapitre 1 : Présentation du champ de Rhourde Chegga (RDC)

Source : RDC-QH permis Alnaft

Figure 1-2: Périmètre du permis d'exploitation du gisement de Rhourde Chegga

Table 1-1: Périmètre d'exp	loitation de Rhourde	Chegga " RDC "
----------------------------	----------------------	----------------

D • 4	(UTM_Fuseau-31 - Meters)		(UTM_Fuseau	-32 - Meters)	Geographic Coordinates		
Point	X coor (m)	Y coor (m)	X coor(m)	Y coor (m)	Longitude	Latitude	
1	826650.875	3573152.750	261323.027	3570692.418	6° 28' 0.0000" E	32° 15' 0.0000" N	
2	829793.437	3573254.750	264464.381	3570618.661	6° 30' 0.0000" E	32° 15' 0.0000" N	
3	829853.750	3571406.000	264421.333	3568770.534	6° 30' 0.0000" E	32° 14′ 0.0000″ N	
4	831425.312	3571457.250	265992.286	3568734.073	6° 31' 0.0000" E	32° 14' 0.0000" N	
5	831728,000	3562213.000	265778.781	3559493.564	6° 31' 0.0000" E	32° 09' 0.0000" N	
6	833301.062	3562264.500	267351.161	3559457.398	6° 32' 0.0000" E	32° 09' 0.0000" N	
7	833483.187	3556718.000	267224.314	3553913.202	6° 32' 0.0000" E	32° 06' 0.0000" N	
8	831909.250	3556666.500	265651.132	3553949.355	6° 31' 0.0000" E	32° 06' 0.0000" N	
9	831969.625	3554817.500	265608.546	3552101.120	6° 31' 0.0000" E	32° 05' 0.0000" N	
10	820950.625	3554464.000	254593.550	3552361.035	6° 24' 0.0000" E	32° 05' 0.0000" N	
11	820833.937	3558161.500	254682.759	3556057.352	6° 24' 0.0000" E	32° 07' 0.0000" N	
12	819260.375	3558111.750	253109.610	3556095.287	6° 23' 0.0000" E	32° 07' 0.0000" N	
13	819202.250	3559960.500	253154.437	3557943.478	6° 23' 0.0000" E	32° 08' 0.0000" N	
14	820775.500	3560010.250	254727.271	3557905.519	6° 24' 0.0000" E	32° 08' 0.0000" N	
15	820658.625	3563707.750	254816.633	3561601.837	6° 24' 0.0000" E	32° 10′ 0.0000″ N	
16	822231.250	3563757.500	256388.785	3561563.835	6° 25' 0.0000" E	32° 10′ 0.0000″ N	
17	822172.500	3565606.250	256433.289	3563411.964	6° 25' 0.0000" E	32° 11' 0.0000" N	
18	823744.875	3565656.500	258005.056	3563374.445	6° 26' 0.0000" E	32° 11' 0.0000" N	
19	823685.812	3567505.250	258049.246	3565222.554	6° 26' 0.0000" E	32° 12' 0.0000" N	

[Etude de performance de différents réservoirs du champs (RDC).]

20	825257.937	3567555.500	259620.760	3565185.007	6° 27' 0.0000'' E	32° 12' 0.0000" N
21	825198.500	3569404.500	259664.586	3567033.349	6° 27' 0.0000" E	32° 13' 0.0000" N
22	826770.312	3569455.000	261235.798	3566996.026	6° 28' 0.0000" E	32° 13' 0.0000" N

Source: RDC-QH permis Alnaft

1.2 Travaux de recherche

Le champ de Rhourde Chegga est situé à environ 25 km au NE de Hassi Messaoud le long d'un trend structural N30°, reconnu notamment par les forages de ONJ-76, OBS-1, HML-1. Cet axe structural positif se prolonge vers le nord par la structure de RDC et est bordé sur son flanc oriental par une faille de même orientation et d'apparence continue.

La structure de RDC, mal définie par les anciennes données sismiques 2D a été reconnu par six (06) forages, est situé entre RDC-1 et la faille principale. Les puits RDC-1 à 4 ont mis en évidence plusieurs réservoirs à hydrocarbures :

- Le Trias T1 et T2, avec des grés développés sur RDC-1, 2 et 4 et dégradés à RDC-3, ils ont été testés positivement à RDC-1 (faibles débits d'huile et de gaz); il s'agit d'un réservoir secondaire.
- Les grés de la série inférieure du Trias, encore appelé Grés de Rhourde Chegga et séparés des précédents par un épais intervalle andésitique (60 m à RDC-1), ils sont productifs à RDC-1 ou ils présentent de bonnes caractéristiques et sont très dégradés à RDC-2, RDC-4 et RDC-6; ils sont absents à RDC-3.
- Les Quartzites de Hamra, productrices d'huile à RDC-4 et RDC-9 ou sont directement sous la Discordance Hercynienne, en contact avec le Trias ; structuralement beaucoup plus basses, elles sont aquifères dans les autres puits.

La distribution des fluides rencontrés suggère la possibilité d'une accumulation unique de part et d'autre de la Discordance e Hercynienne, dans les grés de la série inférieure, très discontinus dans ce secteur du bassin et dans le biseau des Quartzites de Hamra, tronquées sous la Discordance Hercynienne.

1.2.1 Puits de découverte

Le puits de découverte RDC1 a été implanté en 1983 à l'intersection des profils sismiques '83TGT 10' et '83TGT 11'. L'objectif de ce forage d'exploration du secteur Nord Est de Hassi Messaoud est de reconnaître la structure et les fluides des réservoirs :

- > Du TAG : unités T2, T1 ainsi que l'unité 'Grès de RDC' à la base de la Série Inférieure,
- Du Cambro-Ordovicien : unités Ri et Ra, l'Ordovicien était considéré comme objectif secondaire compte tenu de l'incertitude liée à l'importance de l'érosion de la phase Hercynienne.

Le puits RDC1 foré entre août 1984 et juillet 1985 a été réalisé selon le programme de complétion suivant :

- Phase 17 "1/2 avec pose du tubage 13" 3/8 a 470 m
- Phase 12" 1/4 avec pose du tubage 9" 5/8 à 2402 m
- Phase 8"1/2 avec pose du tubage 7" à 3470 m
- Phase 6" avec pose du Liner 4" ¹/₂ à 3825 m
- Arrêt à 3895 m.

La phase 8"1/2 a connu des problèmes mécaniques, ce qui a conduit au forage de RDC1 en 2 étapes :

- La première étape exécutée par Nafta-Gas a duré 330 jours. La descente du tubage 7" avec pose du sabot prévue à 3523 m a rencontré des difficultés causées par les pertes de boue au niveau du Lias 'Horizon B' et par l'instabilité des argiles fluentes. Le tubage a finalement été posé à 3480 m après augmentation progressive de la densité de la boue et pose de 4 bouchons de ciment. Le forage jugé improductif a été abandonné.
- La deuxième étape qui a duré 90 jours a été exécutée par Sonatrach qui a procédé au reforage des bouchons de ciment puis à l'enregistrement des diagraphies et des tests de puits.

Les principaux résultats de RDC1 sont résumés dans le tableau 1.2

Réservoir		Profondeur Pression de Gisement		Débit d'huile	GOR
		(m)	(Kg / cm ²)	(m3/h)	(m3/m3)
Trias Argilo- Gréseux	Grès du T1	3648	548	4	-
	Grès Série inferieur	3753	540	27	242
Ordovicien	Quartzites de Hamra	3885	551	Aquifère	-

Table 1-2:	Principaux	résultats	du forage RDC1
------------	------------	-----------	----------------

Source : RDC-QH permis Alnaft

1.2.2 Puits de délinéation

Après le puits de découverte RDC1, un programme de 3 forages de délinéation a été établi, avec les objectifs suivants :

- la définition de la géométrie des réservoirs du Trias T1 et Série Inférieure,
- la présence d'hydrocarbures,
- l'évaluation des réserves en place.

Les puits de délinéation dont les résultats sont résumés dans le tableau 1.3 ont été implantés à la même période, en 1985 et 1986. Ces puits étaient prévus pour être mis en production en même temps.

La découverte d'huile au niveau de l'Ordovicien Quartzites de Hamra a été mise en évidence qu'à partir du forage du puits RDC-4.

		Réservoirs					
		Trias Argilo-Gréseux	Trias Argilo-Gréseux				
Puits	Date de forage	T1	Série Inférieure	Quartzites de Hamra			
RDC2	De 09/1985 à 04/1986	3 m ³ de gaz et d'huile en circulation inverse	Réservoir absent	Aquifère			
RDC3	De 11/1985 à 11/1986	Réservoir dégradé	Réservoir absent	Aquifère			
*RDC4	De 06/1986 à 11/1986	3.7 m^3 de gaz, d'huile et de boue	Faible énaisseur	9.7 m ³ /h oïl et 1793 m ³ /h de gaz			
IDD G () A	14.44						

Table 1-3: Résultats des forages de délinéation du gisement de Rhourde Chegga

*RDC4: forage dévié suite à des problèmes mécaniques.

Source: RDC-QH permis Alnaft

1.3 Analyse géologique

1.3.1 Position des puits

Les coordonnées des puits en UTM 32 sont présentées dans le tableau 1.4

Well	XCCOR (UTM32)	YCOOR (UTM32)				
RDC1	262903	3560254				
RDC1B	263091,918	3560348,364				
RDC2	262262,91	3565730,96				
RDC3	261959,83	3554945,64				
RDC4	260574,01	3560131,55				
RDC6	263800	3560332,46				
RDC8	263244,99	3561539				
RDC9	259450,06	3561299,99				
RDC10	261635,509	3564808,438				
RDC11	260495,92	3560539,1				
RDC12	259935,012	3561634,979				
RDC13	264983,508	3559567,135				
RDC14	262449,28	3562358,78				
RDC15	261505,9	3562791,7				
RDC16	261974,289	3559259,778				
RDC17	259977,43	3563105,88				
RDC18	261216,282	3561739,847				
RDC19	258450,553	3563475,578				
RDC20	258571,014	3560320,99				
RDC21	257693,009	3562515,982				
RDC22	259304,758	3562333,989				
WRDC1	253921,825	3564022,937				

Table 1-4: Coordonnées des puits

Source: Data Bank/DP/HMD

1.3.2 Evolution structurale

L'image structurale actuelle du gisement de Rhourde Chegga est le résultat de phases tectoniques majeures dont la plus importante est la phase Hercynienne.

La structure anticlinale du gisement de Rhourde Chegga est traversée par des réseaux de failles dont les directions principales sont Nord-Sud et Nord Est – Sud-Ouest.

Le gisement présente une structure complexe associée à une faille majeure qui limite le gisement à l'Est, réactivée au cours de l'Aptien.

Au Trias, elle apparaît composée de plusieurs culminations avec un pli principal Nord-Sud reconnu par RDC1 et RDC6 sur périclinal nord, 3 dans un ensellement sud, 2 sur un anticlinal secondaire associé à la faille Nord Est – Sud-ouest. RDC4 à l'ouest étant en dehors de cette structure.

A l'Ordovicien, le haut structural partiellement érodé sous la Discordance Hercynienne s'étend vers le Nord-Ouest de RDC4. Les Quartzites de Hamra limitées par des failles NE-SO et ONO-ESE culminent à des profondeurs comprises entre - 3580 m et - 3700 m.

Les phases de distension du Trias sont à l'origine du volcanisme 'syn. Rift'.

1.3.3 Migration et piégeage des Hydrocarbures

Les différentes études géochimiques et géodynamiques dans les bassins de la plate-forme saharienne ont conduit à des explications sur la genèse, l'expulsion et la migration des hydrocarbures de la roche mère constituée par les argiles noires du Silurien vers les différentes accumulations et réservoirs d'hydrocarbures.

La richesse des argiles siluriennes en matière organique et la géodynamique qu'a connu le bassin de l'Oued Mya à savoir la forte subsidence qu'a connu ce dernier durant la phase hercynienne, ont constitué en grande partie des conditions favorables et majeures à la maturation de la matière organique, à la genèse des hydrocarbures ainsi qu'à leur expulsion du bassin de Oued Mya vers les différentes accumulations d'huile situées sur l'axe Amguid-El Biod-Hassi Messaoud où se trouvent alignées sur un trend Nord-Sud toutes les structures (Rhourde Chagga-d'EL-Agreb-EL-Gassi). Ceci renforce l'hypothèse d'une migration d'huile sur une longue distance suivant cette orientation.

Plusieurs arguments militent en faveur de cette hypothèse à commencer par la position structurale favorable de cet axe méridionale Nord – Sud qui est associé à une importante densité d'accidents et de réseaux de failles le long de cette direction. Ces accidents sont bien les voies de migration des hydrocarbures de la roche mère silurienne vers les différents réservoirs.

Les cartes en isobathes au toit de la Discordance Hercynienne permettent de distinguer un ensemble de structures alignées en trend qui présentent l'ensemble des pièges et des réservoirs contenant l'ensemble des accumulations du bassin Amguid – Hassi Messaoud.

L'acheminement des hydrocarbures de la zone Nord où la formation du silurien argileux à graptolites est bien préservée, présente la caractéristique de roche mère principale. Cette préservation est confirmée par la reconnaissance des argiles siluriennes dans les forages de BAT-1(91m) et RDC-2(32m).

Ces argiles ont assuré la genèse de ces hydrocarbures et par conséquent, le remplissage des grés du Trias présents au Nord de Hassi- Messaoud dans les puits de RDC-1 et de BAT –1. Ces grés Triasiques ont servi de voies préférentielles pour le drainage des huiles de la roche mère silurienne jusqu'aux réservoirs Cambro- Ordoviciens.

Un déversement du trop-plein de Hassi Messaoud par le Spill-point (point de décharge) s'observe en direction des structures méridionales. Les différents accidents, les grés du Cambrien et la zone des alternances (grés de MD-28) de par leurs bonnes perméabilités, constituaient les principales voies de migration en direction des structures d'El-Gassi, de Zotti et celle d'El-Agreb. En ce qui concerne l'alimentation des structures situées dans la partie Sud-Ouest du champ de Hassi Messaoud tel que le champ d'El Gassi et ses structures satellites ou champs périphériques, les voies de migration et d'alimentation se sont faites suivant une direction Est-Ouest toujours à travers les grés Cambriens et à travers les accidents et les failles majeures qui ont pu jouer en faveur du drainage des hydrocarbures.

1.3.4 Zonation et corrélation réservoir

Le Trias de Rhourde Chegga dont l'épaisseur varie de 320 m à l'Ouest jusqu'à plus de 400 vers l'Est, est situé à des profondeurs comprises entre 3330 et 3460 m MD. Le gisement est limité à l'Est par une faille majeure.

La série est composée de haut en bas, par les formations de :

- a) Trias : qui est constitué par les unités suivantes :
 - Le S4, également dénommé G20, au sommet de la série, composé d'une centaine de mètres de sel.
 - Le Trias Argileux, épais d'une trentaine de mètres.
 - Le Trias Argilo-Gréseux (TAG), constitue l'unité principale du Trias qui renferme les réservoirs gréseux. Le TAG dont l'épaisseur totale est de l'ordre de 200 m est composé par les 3 formations suivantes :
 - ✓ Le 'T2', unité supérieure du TAG, est composé par un niveau argilo-dolomitique continu de 10 m d'épaisseur qui constitue un repère stratigraphique régional, reposant sur 60 m à 80 m d'argiles renfermant quelques niveaux gréseux.

- ✓ Le 'T1', unité intermédiaire du TAG de 25 m à 30 m d'épaisseur, présente des variations de faciès verticales et latérales. Le 'T1' est généralement composé de 10 m à 15 m de grès propres fins à moyens à la base, pouvant passer verticalement et latéralement à des grès plus argileux ou des argiles.
- ✓ La 'Série Inférieure', unité de base du Trias, reposant en discordance sur le Paléozoïque est composée par :
 - Un intervalle sommital représenté par quelques mètres d'argiles à intercalation de bancs dolomitiques
 - Un complexe volcano-sédimentaire de 50 à 80 m d'épaisseur
 - Un niveau de base dénommé 'Grès de RDC', réservoir principal du Trias, d'épaisseur et de faciès extrêmement variables : les forages ont traversé un maximum de 20 m de grès propres productifs à RDC1 et RDC1B, et respectivement 10 m, 3m et 2 m de grès fins argileux à RDC6, RDC8 et RDC2 ; les 'Grès de RDC' sont absents à RDC3.

b) Paléozoïque

L'Ordovicien a été affecté par l'érosion qui a atteint les Quartzites de Hamra surmontées par les grés d'Ouargla. Le Silurien est préservé au Nord et au Sud du gisement.

AGES Litholo		Lithologie	Ep	DESCRIPTION LITHOLOGIQUE	TUBAGES	BOUE	REMARQUE	
MIO - PLIOCENE				239	sable silico-carbonaté	S 199	Boue	Zone
EOCENE				120	calcaire dolomitique	18	Bentonitique	d'éboulement
		Z Carbonaté		180	Calcaire dolomitique, passées anhydrites	26")	D: 1,1 - 1,2 V: 45 - 50	
		Anhydritique		220	Dolomie, anhydrite et calcaire blanc		Filtrat naturel	
		Salifère		140	Sel massif avec passées argiles dolomitiques	C SG 18"5/8 ± 450m		
	9	TURONIEN		115	Calcaire avec passées d'argiles à la base			
		CENOMANIEN	<u>panan</u>	145	Anhydrite,dolomie parfois argileuse	3/8		
		ALBIEN		360	Grès argileux à silico-argileux	213 × 13	Boue KEN X	Aquifêre eau 2 douce pour
		APTIEN		24	Dolomie calcaire avec passées de marne	S C	D: 1,26 - 1,32	
		BARREMIEN	2		Grès, argile silto-sableuse et dolomie	V: 50 - 70	l'injection et besoins générau	
		NEOCOMIEN		180	Argile carbonatée avec passées de de grès	ase	F : 2,4	
		MALM		225	Argile silteuse, grès argileux et anhydrite	£		
3		Argileux		100	Argile dolomitique, grès argileux et anhydrite			
5	щ	2 Lagunaire		110	Anhydrite, passées d'argile et dolomie	C 5G 13"3/8		
1	ğ	LS1		350	Anhydrite passées d'argile dolomitique	± 2300 m		
5	ASS	LS2		64	Sel massif,anhydrite,passées d'argile			
	ß	Morizon B		37	Calcaire argileux, argile et anhydrite			
2 5	_	S1- S2		268	Sel massif blanc, Argiles et anhydrite		Boue Salé	Nov
		S3		210	Sel massif, Argile brune et grise	9"5/	Saturée	Zones de perte
		G10		100	Argile brun rouge et verdâtre, sel	S.	D: 2,2 V: 45 - 50	Ae boue
	-	G20 (S4)		110	Sel massif, passées d'argile brune	×	F: 5 - 10	
				35	Argile silteuse, Anhydrite, dolomite	J["2"]		
	AS	T2		80	Dolomie au sommet, argiles et grés			
	R	Grés T1		20-30	Grés fins,argile indurée,passées de dolomie	Phas		
		Volcano-Sedimentair		50-90	Roches éruptives à passées d'argile			N
		Série inf "Grés de RDC"		20	Grés blancs fins avec passées d'argiles			Zones de perte de boue
		Argiles Microconglomerat		50	Argiles avec grés microconglomératique	~		
		Grés d'El Golea Grés de Ouargla		0 -20	Grès silico-argileux			
	IAN			25 Grés quartzitique silico-argileux et arg		C SG 9"5/8 ± 3200 m	Boueà base d'huile	
	NO	Quartzites Hamra	uartzites Hamra 0.75 Grès silico-argileux à quartzitique		Grès silico-argileux à quartzitique		D: 1,5	Zones de perte de boue
SRD(ORD	Grés d'El Atchane 25 Argiles d'El Gassi		25	Grès glauconieux, passées d'argile	/8 X	V: 45 - 50 F: 2 - 3	
3				107	Argile à passées de grès	8"3,		
9 9		Zone Des Alternances			Alternance d'argile et grès			
	z	Ri		46	Grès Isométriques avec pyrite et lignite			
1	RIA	Ra		125	Grès anisometrique avec ioints d'argile	± 3300 m	Boueà base	
	MB	R2		100	Grès microconglomératique	1.000	d'huile	
	CA	R3	BRANNAN	370	Grès grossier conglomératique	8	N. 50 70	

Source : Permis D'exploitation Du Champ De Rhourde Chegga/AMT/PED Figure 1-3: Stratigraphie des puits du gisement de Rhourde Chegga

1.3.5 Propriétés et qualité du Réservoir

La matrice des grès du Trias T1et T2 est développée sur RDC1, RDC2 et RDC4 et dégradée à RDC-3. Les grès de la Série Inférieure productifs à RDC-1 et RDC1bis où ils présentent de bonnes caractéristiques, sont très dégradés à RDC2 et RDC4 et RDC-6 ; et sont absents à RDC-3. Les Quartzites de Hamra productrices d'huile à RDC4 et RDC9 où elles sont directement sous la Discordance Hercynienne, en contact avec le Trias, sont structuralement beaucoup plus basses et aquifères sur les autres puits.

1.3.6 Sédimentologie et continuité du Réservoir

La séquence sédimentaire du Trias est constituée par des dépôts volcano-détritiques et fluvio-lacustres à la base qui passent au sommet à des formations évaporitiques s'étalant jusqu'au Dogger.

La série triasique de Rhourde Chegga s'inscrit dans un cycle majeur et présente trois grands termes. Un premier d'âge Carnien sl, rétrogradant, bien préservé. Un second, Carnien supérieur, rétrogradant correspond au Trias carbonaté. Enfin, un troisième, progradant, regroupant les formations argiloévaporitiques.

Les unités T1 et T2 latéralement continues sont caractérisées par d'importantes variations latérales de faciès. Les intervalles gréseux de ces unités présentent un caractère discontinu lié à l'architecture de l'environnement fluvio-lacustre de dépôt sédimentaire ; les grès sont présents dans des chenaux étroits alors que les argiles et les carbonates occupent les plaines d'inondations et les deltas lacustres.

Les grès de base de la Série Inférieure (Grès de RDC) sont contenus dans un chenal de moins de 2 km de largeur orienté N-S à NNW-SSE.

Les Quartzites de Hamra sont présents à l'échelle du gisement, à des profondeurs extrêmement variables. La partie la plus haute des Quartzites de Hamra occupe l'Ouest du gisement où les formations supérieures de l'Ordovicien et du Silurien présentes au Nord et traversées par le puits RDC2, ont été érodées au cours de la phase Hercynienne.

Les grés de l'Ordovicien inférieur correspondent à l'intervalle des Quartzites de Hamra, surmontées par les Grés de Ouargla. Les descriptions de carottes montrent les faciès suivants :

- RDC-1 (Carotte 1, de 3886 à 3891,5m, Quartzites de Hamra) : Il s'agit de grès fins, bien classés, à porosité moyenne, avec rares copeaux argilo-silteux et à rares Tigillites. Les carottes sont fortement affectées par du disking.
- RDC-2 (Carotte 21, de 3951 à 3969m, Carotte 22, de 3979,5 à 3982m, Grès de Ouargla) : Les, sédiments sont dominés par des grès très fins alternant avec des argiles micacées sombres.

Les grès sont fortement silicifiés et ne présentent pas de porosité.

Carotte 22, de 3982 à 3985,5m ; Carottes 23, 24 et 25, de 3988 à 4015m, Quartzites de Hamra :

Les grès sont fins, bien triés, homogènes, avec une forte bioturbation sous la forme de Tigillites. La porosité est faible à moyenne.

* RDC-4 (Carottes 9 à 12, de 3795,4 à 3854,5m, Quartzites de Hamra) :

Les grès sont fins, homogènes, à stratifications obliques arquées au sommet, et présentent de rares passées à Tigillites. Les porosités sont faibles à moyennes. Le contact avec le Trias a été observé dans la première carotte, à 3795,4 m.

1.3.7 Incertitudes géologiques

Le toit des Quartzites de Hamra de la partie Ouest du gisement constitue une incertitude majeure sur la structure. L'érosion partielle du Paléozoïque, avec le Trias qui repose sur une surface d'érosion (Discordance Hercynienne) sur des séries lithologiques différentes présentant des réponses sismiques variables.

Le réservoir Ordovicien des Quartzites de Hamra est tronqué d'est en ouest sous la Discordance Hercynienne, et est prospectif sur une surface limitée. Il s'agit d'un réservoir compact et fracturé. L'accumulation ne peut pas être définie de manière complète vers l'ouest ou la sismique 3D ne couvre pas l'extension occidentale du biseau.

Source : RDC-QH permis Alnaft

Figure 1-4: Corrélations des unités réservoir de Rhourde Chegga

Conclusion

Le champ Rhourde Chegga il se compose de trois réservoirs principale qui sont le réservoir Triasique (T1), les Grés de la série inferieur du Trias (GRDC), et les Quartzite de Hamra (QH), exploite successivement dans les années 2011, 1989, 2009 ; ces réservoirs à des structures différentes,

- ✓ Les unités T1 et T2 latéralement continues sont caractérisées par d'importantes variations latérales de faciès. Les intervalles gréseux de ces unités présentent un caractère discontinu lié à l'architecture de l'environnement fluvio-lacustre de dépôt sédimentaire ; les grès sont présents dans des chenaux étroits alors que les argiles et les carbonates occupent les plaines d'inondations et les deltas lacustres.
- ✓ Les grès de base de la Série Inférieure (Grès de RDC) sont contenus dans un chenal de moins de 2 km de largeur orienté N-S à NNW-SSE.
- ✓ Les Quartzites de Hamra (QH) sont présents à l'échelle du gisement, à des profondeurs extrêmement variables. La partie la plus haute des Quartzites de Hamra occupe l'Ouest du gisement où les formations supérieures de l'Ordovicien et du Silurien présentes au Nord et traversées par le puits RDC2, ont été érodées au cours de la phase Hercynienne.

Chapitre 02 :

Analyse des paramètres petro-physiques Et PVT du champ RDC

Introduction

La pétro-physique est l'étude des propriétés des roches et leurs interactions avec les fluides (gaz, hydrocarbures liquides et solutions aqueuses). Le matériau géologique forme un réservoir par l'accumulation des hydrocarbures dans la sous-surface doit contenir un réseau tridimensionnel des pores interconnectés afin de stocker les fluides et permettre leurs mouvements dans le réservoir. Ainsi, la porosité des roches réservoirs, la saturation et la perméabilité sont les propriétés physiques les plus fondamentales en ce qui concerne le stockage et le transport des fluides.

La connaissance précise de ces propriétés pour tout réservoir des hydrocarbures avec les propriétés des fluides est nécessaire pour le développement efficace, la gestion et la prédiction de la future performance du champ pétrolifère.

Dans ce chapitre, on va estimer la porosité, la saturation, la perméabilité vertical et horizontal, la perméabilité relative et aussi les épaisseurs Gross, net, et Netpay pour les trois réservoirs du champ RDC.

L'évaluation fiable des paramètres PVT est très nécessaire pour l'estimation des réserves, la prédiction du facteur de récupération du réservoir, une meilleure optimisation de la production et pour établir le meilleur plan du développement de champ.

Dans ce chapitre on va calibrer les paramètres PVT des trois réservoirs du champ RDC, tel que le Bo, le Rs, et les autres propriétés du fluide.

2.1 Evaluation Petro-physique

Nous avons adopté les méthodes statistiques pondérées pour évaluer les paramètres petrophysiques (porosité moyenne, la saturation moyenne, les épaisseurs Gross, Net, et Netpay) des trois réservoirs. Ces méthodes utilisent comme inputs les données des Log (diagraphies). Les Cut-off utilisé sont dans le tableau suivant:

	PHI	Sw	Vsh
T1	6%	35%	40%
GRDC	5%	45%	40%
QH	3%	35%	40%

Table 2-1: Les Cut off des réservoirs du champ RDC

2.1.1 Hauteur

On utilisant les Cut off des paramètres petrophysiques, le toit et le mur du réservoir, les hauteurs total, nette, et utile .sont présenter dans les trois tableaux A1,A2,A3 (voir Annex A).

La comparaison entre les hauteurs totales des réservoirs nous montre que la hauteur du réservoir T1 est plus moins régulier dans tout le champ, contrairement aux hauteurs des réservoirs GRDC et QH qui ont des distributions irréguliers des épaisseurs à cause de la discordance hercynienne et les chenaux du fleuve des grès de la série inferieur du Trias.

Les résultats sont représenté par l'histogramme suivant :

Figure 2-1: les hauteurs totales des réservoirs du champ RDC

[Etude de performance de différents réservoirs du champs (RDC).]

La structure de chaque réservoir est représentée par les cartes en isobathe au toit de chaque réservoir :

Figure 2-2: Carte isobathe au toit du réservoir (T1)

Figure 2-3: Carte isobathe au toit du réservoir (GRDC)

[Etude de performance de différents réservoirs du champs (RDC).]

Figure 2-4: Carte isobathe au toit du réservoir (QH)

D'après les cartes en isobathes on remarque que le réservoir T1 présent à peu près un anticlinal au centre, où la majorité des puits travers la partie sommitale de celui-ci, les puits RDC2, RDC3, RDC10, RDC21 travers la partie basal.

Concernant les carte des réservoirs GRDC et QH, on observe que ses réservoirs sont profond dans l'Est du champ, notamment les QH qui sont très profond dans ce sens et parfois inondée dans l'aquifère ; contrairement dans la partie Ouest du champ les réservoirs présent une structure haut, subi a la discordance hercynienne.

2.1.2 Porosité

Grains de sable et particules ne s'emboîtent généralement jamais parfaitement en raison de haut degré d'irrégularité de forme. L'espace vide créé à travers les lits entre les grains, appelé espace poreux ou interstice, est occupé par des fluides (liquides et / ou des gaz). La porosité d'une roche

réservoir est définie comme la fraction de le volume en vrac du réservoir qui n'est pas occupé par le cadre solide du réservoir.

Cela peut être exprimé sous forme mathématique comme:

$$\phi = \frac{V_b - V_{gr}}{V_b} = \frac{V_p}{V_b}$$

 ϕ : fraction de la porosité

V_b: volume de la roche réservoir

V_{gr}:volume des grains

```
V<sub>p</sub>: volume des pores
```

Classification de la porosité :

Les porosités des réservoirs pétroliers varient de 5 à 30%, mais la plupart fréquemment entre 10% et 20% (tableau ci-après). Toute porosité inférieure à 5% est très rarement commerciale, et toute porosité de plus de 35% est extrêmement inhabituelle. Le tableau suivant définit ce qui constitue généralement une porosité médiocre, bonne et très bonne.

Figure 2-5: Classification de porosité

Le résultat des porosités dans les trois réservoirs et dans le tableau suivant :

Puits	RDC1	RDC1B	RDC2	RDC3	RDC4	RDC6	RDC8	RDC9	RDC10	RDC21
T1		0,13		0,07	0,08	0,08	0,09	0,11	0,07	0,10
GRDC		0,12					0,13	0,09	0,11	0,14
QH					0,06			0,09	0,08	
Puits	RDC11	RDC12	RDC13	RDC14	RDC15	RDC16	RDC17	RDC18	RDC19	RDC20
T1	0,09			0,12	0,12	0,10				
GRDC	0,10			0,08	0,09	0,07		0,09		0,12
QH	0,07	0,08	0,08		0,09			0,07	0,09	0,09

Table 2-2: La porosité dans les trois réservoirs

Figure 2-6: Histogramme de distribution des porosités

On remarque que le réservoir GRDC à des valeurs de porosité plus grande que dans les réservoirs T1 et QH, cela est logique, car ce réservoir se trouve dans un milieu fluviatile où les grains composant la matrice rocheuse ne sont pas compact, et de faible degré de cimentation ; le réservoir QH présent la faible porosité à cause de la compaction et la bonne cimentation (réservoir plus profond).

Les cartes de distribution en iso porosité ci-après représentent da la distribution de la porosité dans chaque réservoir (ces cartes sont générées par le software Surfer).

Figure 2-7: Carte de distribution de porosité dans le réservoir T1

Figure 2-8: Carte de distribution de porosité dans le réservoir GRDC

[Etude de performance de différents réservoirs du champs (RDC).]

Figure 2-9: Carte de distribution de porosité dans le réservoir QH

Les cartes de la distribution de la porosité, on remarque que les bonnes valeurs de porosité dans le T1 se localisent dans la partie centrale, qui le sommet, et les extrémités nord et sud du réservoir (partie basale) présent des faible valeur de porosité notamment dans les puits RDC10, RDC6, aussi la porosité a tendance d'augmenter vers l'Ouest du réservoir, ce qui nous faire optimiste de favorise le développement dans ce sens ; pour le réservoir GRDC les bonnes valeurs de porosité tende a se localisent vers l'Ouest, contrairement au sens Nord et Sud où les valeurs sont médiocre, la même chose pour le réservoir QH, la porosité tend à augmenter vers l'Ouest, notamment dans le puits RDC19.

2.1.3 Saturation

Dans le volume de pores Vp se trouvent un volume d'eau Vw, un volume d'huile Vo' et un volume de gaz Vg, tel que : Vw+Vo+Vg=Vp $V_p = V_w + V_o + V_g$

$$1 = \frac{V_{w} + V_{o} + V_{g}}{V_{p}} = S_{w} + S_{o} + S_{g}$$

Différents méthodes sont utilisées par les pétrophysiciens pour la détermination des saturations de fluide du réservoir, on distingue :

- ➢ Mesure directe
 - Analyse des carottes
- ➢ Mesure indirecte
 - Mesure de la pression capillaire
 - Well Log Analysis (c'est notre cas)

D'après les enregistrements diagraphiques, les résultats obtenus sont dans le tableau suivant :

Puits	RDC1	RDC1B	RDC2	RDC3	RDC4	RDC6	RDC8	RDC9	RDC10	RDC11
T1		0,313			0,303	0,15	0,26	0,19	0,47	0,32
GRDC		0,173					0,34	0,15	0,42	0,31
QH					0,228			0,15	0,46	0,18
Puits	RDC12	RDC13	RDC14	RDC15	RDC16	RDC17	RDC18	RDC19	RDC20	RDC21
T1			0,425	0,319	0,219					0,304
GRDC			0,431	0,22	0,374		0,282		0,52775	0,29
QH	0,419	0,425753		0,181			0,358	0,147	0,21	

Table 2-3: la saturation dans les trois réservoirs

On utilisant les résultats du tableau précédant et on générant les cartes de saturation en eau des trois réservoirs présenté par les figures ci-après.

Figure 2-10: Carte de distribution de saturation en eau dans le réservoir T1

Figure 2-11: Carte de distribution de saturation en eau dans le réservoir GRDC

Figure 2-12: Carte de distribution de saturation en eau dans le réservoir QH

Dans le réservoir T1, les zones d'intérêt se localise dans la partie sud et sud-ouest, et la saturation en eau augment vers le nord t nord est, dans le cas du réservoir GRDC, on voie bien que les zone d'intérêt d'huile se trouvent à peu près dans tout le réservoir excepte la partie sud-ouest où on a une fort saturation en eau (jusqu'au 54%) notamment dans le puits RDC20.

Dans le réservoir QH, il est claire que la partie Est est inondé dans l'eau (partie basale très profond).

2.1.4 permeabilité

En plus d'être poreuse, une roche réservoir doit avoir la capacité de permettre de faire laisser circuler les fluides pétroliers à travers ses pores interconnectés. La capacité de la roche à conduire des fluides est appelée perméabilité. Cela indique que les roches non poreuses n'ont pas de perméabilité. La perméabilité d'une roche dépend de son porosité effective, par conséquent, il est affecté par la taille des grains de roche, la forme du grain, le grain la répartition par taille, l'emballage des grains et le degré de consolidation et cimentation. Le type d'argile ou de cimentation entre les grains de sable affecte la perméabilité, en particulier lorsque de l'eau douce est présente. Certaines argiles, en particulier les smectites (bentonites) et les montmorillonites, gonflent en eau douce et ont tendance à bloquer partiellement ou complètement espaces interstitiels.

En 1856, l'ingénieur français Henry Darcy a développé une équation d'écoulement des fluides depuis, il est devenu l'un des outils mathématiques standard de l'ingénieur pétrolier [12]. Cette équation, qui est utilisée pour mesurer la perméabilité d'un échantillon de carotte tel qu'illustré à la figure 3.8, est exprimé sous forme différentielle suit:

$$v = \frac{q}{A_c} = -\frac{k}{\mu} \frac{d_p}{d_l}$$

v: vitesse du fluid cm/s

q: dêbit cm³/s

K : perméabilité de la roche poreuse, Darcy (0.986923 μm^2)

 A_c : la surface décchantillon, cm²

Classification de la perméabilité : le tableau ci-après présent la classification des perméabilités

<1 mD	Trés faible
1 to 10 mD	faible
10 to 50 mD	mediocre
50 to 200	moyenne
200 to 500	bonne
>500 mD	excellent

Table 2-4: Classification des perméabilités

Source : R.Cossé:"Le gisement"

D'après l'utilisation des résultats de carottage sur les trois réservoirs (voir l'annexe des tableaux), on a calculé la perméabilité horizontale et verticale par les formules suivant :

Figure 2-13 : cas des sols stratifiés

Les résultats obtenus sont comme suit :

	T1				
	Horizor	ntal	Verti	cal	
Well	K Moy (md)	h(m)	K Moy (md)	h(m)	
RDC10	2,152846003	20,26	0,030179699	19,95	
RDC11	1,821554477	25,18	0,057585589	25,52	
RDC12	2,319456032	31,22	0,053319483	35,01	
RDC13	1,86703909	15,87	0,025846154	1	
RDC1B	1,321447164	26,84			
	KHz moy (md)	1,9016032	Kv moy (md)	0,0452791	

Table 2-5: Les	perméabilités	dans le	réservoir	T1
	per measines		reser , ou	

Dans ce réservoir la perméabilité est entre $1 \le Kh=1,9 \le 10$ qui représente une perméabilité acceptable (plus proche de pauvre), parce que la majorité des valeurs sont autour de 1 ; ce qui nous indique que ce réservoir à les propriétés presque d'une tight réservoir.

	RDC SST					
	Horizontal		Vertical			
Well	K moy (md)	h(m)	K moy (md)	h(m)		
RDC10	45,24229545	11,27				
RDC11	11,71045171	7,12	0,058806124	8,06		
RDC12	44,43843231	9,27	0,12519272	-8,97		
RDC13	47,28670153	2,59	0,348	1		
RDC14	812,7897714	9	5,227212852	6,99		
RDC1B	290,6475	19,14				
	Kh moy (md)	239,8660216	Kv moy (md)	0,1016923		

Table 2-6: Les per	rméabilités dans	le réservoir	GRDC
--------------------	------------------	--------------	------

La perméabilité moyenne de GRDC est de l'ordre de 240 mD; $50 \le \text{Kh}=240 \le 250$ qui est une perméabilité bonne (proche de très bonne); ce qui logique, perce que le réservoir à l'origine d'un dépôt fluviatile.

	QH				
	Horiz	ontal	Vertie	cal	
Well	K moy (md)	h(m)	K moy (md)	h(m)	
RDC1	1,725	4,5			
RDC11	1,360933717	19,83	0,089546825	19,04	
RDC12	0,451261109	11	0,08992102	10,21	
RDC14	1,589821368	3,41	0,075607592	2,59	
	Kh moy (md)	1,165074307	Kv moy (md)	0,0883399	

Table 2-7: les perméabilités dans le réservoir QH

Une perméabilité moyenne autour de 1 nous permet de dire que ce réservoir est tight ; et nécessite une stimulation (fracturation hydraulique) ; ou des puits horizontaux pour le faire produire convenablement.

2.1.5 Moyennage et comparaison des paramètres pétrophysiques

Nous avons adopté les méthodes statistiques pondérées pour évaluer les paramètres petrophysiques (porosité moyenne, saturation moyenne, épaisseurs Gross, Net, et Netpay) des trois réservoirs.

$$S_{W} = \frac{\sum_{i=1}^{n} \emptyset_{i} h_{i} S_{Wi}}{\sum_{i=1}^{n} \emptyset_{i} h_{i}}$$

$$\phi = \frac{\sum_{i=1}^{n} \phi_i h_i}{\sum_{i=1}^{n} h_i}$$

Les résultats obtenus sont présenté dans le tableau suivant :

T1	Min	Max	Моу
PHI(Ø)	7%	13%	10%
Sw	15%	47%	29%
Epaisseur Gross (m)	20	43	28,64
Epaisseur Net (m)	14,94	28,39	21,51
Epaisseur Net pay(m)	0,3	20,42	8,97
GRDC	Min	Max	Моу
PHI(Ø)	6%	14%	10%
Sw	15%	53%	32%
Epaisseur Gross (m)	2,5	21	10,5
Epaisseur Net (m)	2,14	17	9,64

Chapitre 2 : Analy	se des paramètres	petro-physiques e	t PVT du champ l	RDC
--------------------	-------------------	-------------------	------------------	-----

Epaisseur Net pay (m)	0,3	15,62	5,37
QH	Min	Max	Moy
PHI (Ø)	6%	9%	8%
Sw	15%	46%	28%
Epaisseur Gross (m)	7	87	37,89
Epaisseur Net (m)	6	80	34,28
Epaisseur Net pay (m)	4,11	21,19	10,24

Il est claire que le réservoir QH à d'épaisseur utile plus grande que celle du réservoir T1 et GRDC ; La saturation en eau est plus élevé dans le réservoir GRDC ; et la porosité totale présent presque les mêmes valeurs dans les trois réservoirs.

2.1.6 La relation porosité-perméabilité

Les figure 2.13 ; 2.14 ; 2.15 montre un graphique des données de perméabilité et de porosité obtenues par un grand nombre d'échantillons des réservoirs T1, GRDC, et QH. Même si cette formation est généralement considérée comme non uniforme et non homogène, une ligne de tendance spécifiquement définie entre les valeurs de perméabilité et de porosité. Dans ce cas, la relation entre la perméabilité et la porosité est qualitative et n'est en aucun cas directement ou indirectement quantitatif. Il est possible d'avoir porosité très élevée sans aucune perméabilité, comme dans le cas de la pierre ponce (où la porosité effective est proche de zéro), les argiles et les schistes.

L'inverse de haute perméabilité avec une faible porosité pourrait également être vrai, comme dans les carbonates micro-fracturés. Malgré ce manque fondamental de correspondance entre ces deux propriétés, on peut souvent trouver une corrélation très utile entre eux dans une formation.

Figure 2-15: la relation porosité-perméabilité dans le réservoir T1

La ligne de tendance des points est au-dessous de la droite Ln(k)=PHI ; Les pores non connectés sont dominants ; Un taux faible de récupérations des réserves déterminés par la méthode volumétrique est plus probable.

Figure 2-16: la relation porosité-perméabilité dans le réservoir GRDC

La ligne de tendance des points est au-dessus de la droite Ln(k)=PHI. Ce qui signifie que les pores non connectés sont moins nombreux. Une bonne partie des quantités déterminées par la méthode volumétrique peut être récupérée. (Allure de la production du champ, notamment le RDC1B).

Figure 2-17: la relation porosité-perméabilité dans le réservoir QH

La ligne de tendance des points est en dessous de la droite Ln(k)=PHI. Ce qui signifie que l'existence des pores non connectés est dominante. Les réserves récupérables seront donc beaucoup plus faibles que les quantités déterminées par la méthode volumétrique (la faible connectivité est causée par la compaction et la bonne cimentation).

2.1.7 Perméabilité relative

De nombreuses études de laboratoire ont conclu que la perméabilité effective de tout fluide de réservoir dépend de la saturation du fluide du réservoir. et les caractéristiques de mouillage de la formation. Cela devient nécessaire, par conséquent, pour spécifier la saturation du fluide lors de la détermination de la perméabilité effective d'un fluide particulier dans un milieu poreux donné. Tout comme k est le symbole universel accepté pour la perméabilité absolue, ko, kg et kw sont les symboles acceptés pour la perméabilité effective au pétrole, au gaz et l'eau, respectivement. Les saturations, c'est-à-dire So, Sg et Sw, doivent être spécifiées définir complètement les conditions d'existence d'une perméabilité effective donnée.

Les perméabilités efficaces sont normalement mesurées directement en laboratoire sur de petites bougies. Toutefois, en raison de nombreuses combinaisons possibles de saturation pour un seul milieu, les données de laboratoire sont généralement résumées et rapportées en tant que perméabilité relative. La perméabilité absolue est une propriété du milieu poreux et est un mesure de la capacité du fluide à transmettre les fluides. Quand deux ou plus de fluides circulent en même temps, la perméabilité relative de chaque phase à une saturation spécifique est le rapport de la perméabilité effective de la phase à la perméabilité absolue, ou:

$$k_{rw} = \frac{k_w}{k}$$
; $k_{ro} = \frac{k_o}{k}$; $k_{rg} = \frac{k_g}{k}$

k_{ro:perméabilité} relative d'huile k_{rg:perméabilité} relative de gas k_{rwi}perméabilité relative d'eau k :perméabilité absolue k_{o:}perméabilité effective d'huile pour une saturation donnée k_{g:perméabilité} effective de gas pour une satutration donnée

$k_{\scriptscriptstyle \rm W\! i}$ perméabilité effective d'eau à une saturation d'eaudonnée

2.1.8 Normalisation et moyennement de la perméabilité relative

Les résultats des tests de perméabilité relative effectués sur plusieurs carottes d'un réservoir rocheux varient souvent. Par conséquent, il est nécessaire de moyenne les données de perméabilité relative obtenues sur des échantillons de roche individuels. Avant à l'utilisation pour la prédiction de la récupération du pétrole, les courbes de perméabilité relative devrait d'abord être normalisé pour éliminer l'effet de l'eau initiale différente et les saturations critiques d'huile. La perméabilité relative peut ensuite être dénormalisée et affectée à différentes régions du réservoir en fonction de la saturation critique des fluides existante pour chaque région de réservoir.

La méthode la plus généralement utilisée ajuste toutes les données pour refléter fin des valeurs, détermine une courbe ajustée moyenne, et construit finalement une courbe moyenne reflétant les conditions du réservoir. Ces procédures sont communément décrit comme normalisant et

dénormalisant les données de perméabilité relative. On a fait la normalisation d'un 9 échantillon provenant du réservoir GRDC.

Les résultats obtenus sont comme suite :

Figure 2-18: la perméabilité relative du réservoir GRDC

Pour l'écoulement eau-huile (Figure 2-18), La décroissante de la perméabilité relative a partir d,un seuil indique que l'eau est immobile (residuel), l'eau est mobile à partir d'un seuil de saturation appelé saturation irréductible , La perméabilité relative à l'eau est une fonction croissante de la saturation, jusqu'à une saturation maximale en eau . En deçà de cet intervalle, les deux fluides ne peuvent pas s'écouler simultanément.

La saturation en gaz résiduelle pour le couple eau-gaz (huile résiduelle pour le couple huile-gaz). Les courbes de perméabilité relatives dépendent de la structure du réseau poreux et des propriétés des fluides mis en jeu.

2.2 Calibration des paramètres PVT

Des études de laboratoire précises de PVT et le comportement d'équilibre de phase des fluides de réservoir sont nécessaires pour caractériser ces fluides et évaluer leurs performances volumétriques à différents niveaux de pression. Il y a de nombreuses analyses de laboratoire qui peuvent être faites sur

un échantillon de fluide du réservoir. La quantité de données désirée détermine le nombre de tests effectués le laboratoire. En général, il existe trois types de tests de laboratoire utilisés pour mesurer des échantillons de réservoir d'hydrocarbures:

a) Essais primaires

Ce sont des tests de terrain simples (sur site) impliquant les mesures de la densité et le rapport gazhuile du fluide.

b) Tests de laboratoire courants

Ce sont plusieurs tests de laboratoire qui sont effectués régulièrement pour caractériser le fluide d'hydrocarbure du réservoir. Ils comprennent:

- Analyse compositionnelle du système
- Expansion de composition constante
- Libération différentielle
- Tests de séparateur
- Appauvrissement à volume constant

c) Essais spéciaux de laboratoire PVT

Ces types de tests sont effectués pour des applications très spécifiques. Si un réservoir doit être épuisé sous l'injection de gaz miscible ou un cycle de gaz schéma, les tests suivants peuvent être effectués:

- Test de tube mince
- Test de gonflement

Après l'utilisation du rapport PVT des puits RDC06 (T1), RDC09 (QH), RDC1B (GRDC).

Les résultats de la calibration des tests sont présentés dans les tableaux suivant :

PVT Réservoir T1									
			Oil properti	es			Gas prope	rties	
	Pressure kg/cm2 562,60 492,30 421,90 351,50 316,10 281,10 253,10 225,00 218,10	Bo Corrected m3/m3 1,69 1,71 1,74 1,77 1,79 1,81 1,82 1,84 1,84 1,85	Rs Corrected m3/m3 226,90 226,90 226,90 226,90 226,90 226,90 226,90 226,90 226,90 226,90 226,90	Co 10-6/psi 11,62 13,92 16,63 19,82 21,62 23,54 25,18 26,28 26,92 27,36 27,36	Oil viscosity Cp 0,37 0,33 0,30 0,27 0,25 0,24 0,22 0,22 0,22 0,21 0,21	Bg m3/m3	Gas viscosit Cp	y Gas gravity sp.gravity	Z
Psat	210,80 203,90 201,30	1,85 1,86 1.86	226,90 226,90 226,90	28,29 28,47	0,21 0,21 0,20				
	161,70 126,50 91,40 56,20 24,60	1,69 1,56 1,46 1,36 1,24	170,14 129,88 96,59 66,16 30,99		0,25 0,30 0,35 0,42 0,57 0,96	0,01 0,01 0,02 0,05 1,33	0,02 0,02 0,02 0,01 0,01 0,01	0,85 0,84 0,82 0,87 1,09 2,13	0,83 0,84 0,85 0,88 0,90

Table 2-9: Propriétés PVT du réservoir T1

Figure 2-19: Evolution du Bo et Rs avec la pression du réservoir T1

	PVT Réservoir GRDC								
		C)il properties				Gas pr	operties	
	Pressure	Bo Corrected	Rs Corrected	Со	Oil viscosity	Bg	Gas viscosity	Gas gravity	z
	kg/cm2	m3/m3	m3/m3	10-6/psi	Ср	m3/m3	Ср	sp.gravity	
	421,84	1,59	187,00	11,65	0,30				
	351,53	1,62	187,00	15,31	0,28				
	316,38	1,63	187,00	17,08	0,27				
	281,23	1,64	187,00	18,83	0,26				
	246,07	1,66	187,00	20,49	0,25				
	224,98	1,67	187,00	21,47	0,24				
P sat	213,73	1,68	187,00	21,99	0,24				
	175,77	1,55	132,76		0,28	0,68	0,02		0,86
	140,61	1,42	100,05		0,33	0,85	0,02		0,86
	105,46	1,31	74,38		0,39	1,15	0,02		0,87
	70,31	1,22	52,27		0,47	1,76	0,02		0,89
	35,15	1,10	29,64		0,55	3,63	0,01		0,92
	1,00	0,96	-1.84					0,77	1,00

	PVT Réservoir QH								
			Oil properties				Gas prop	erties	
	Pressure	Bo Corrected	Rs Corrected	Со	Oil viscosity	Bg	Gas viscosity	Gas gravity	z
	kg/cm2	m3/m3	m3/m3	10-•/psi	Ср	m3/m3	Ср	sp.gravity	
	562,4	1,78002	249,7	11,496	0,3545				
	492,1	1,80378	249,7	14,332	0,3321				
	421,8	1,8315	249,7	17,811	0,3092				
	351,3	1,86912	249,7	22,064	0,2856				
	316,4	1,8909	249,7	24,487	0,2737				
	280,7	1,91664	249,7	27,209	0,2614				
	269,2	1,92456	249,7	28,14	0,2575				
	246,1	1,94238	249,7	30,092	0,2494				
	231,8	1,95426	249,7	31,356	0,2444				
	217,7	1,96812	249,7	32,651	0,2394				
	210,3	1,97406	249,7	33,345	0,2368				
Psat	204,5	1,98	249,7	33,9	0,2347				
	161,7	1,791101474	189,8535126		0,2642	0,007	0,0206	0,894	0,789
	126,5	1,663165655	146,1492628		0,3006	0,009	0,0179	0,853	0,8
	91,4	1,54725065	109,3140503		0,3505	0,013	0,016	0,855	0,82
	56,2	1,444215091	75,91335646		0,4153	0,021	0,0144	0,912	0,849
	21,1	1,328300087	43,45715525		0,617	0,06	0,0125	1,135	0,897
	1	0,977979185	-24,03113617		0,9444	1,328	0,009	2,253	0,981

Table 2-11: Propriétés PVT du réservoir QH

Figure 2-21: Evolution du Bo et Rs avec la pression du réservoir QH

Le Rs et le Bo des fluides de réservoirs sont comme suit :

Rs(QH) > Rs(T1) > Rs(GRDC)

Bo (QH)> Bo (T1)> Bo(GRDC)

Ce qui signifie que les réservoirs T1 et QH ont plus de gaz dissout dedans que le réservoir GRDC ; ce qui peut être expliqué par la bonne compaction de ces deux premiers réservoirs.

Le GOR maximal dans le début d'exploitation été :

GOR (T1)	= 226 (m3/m3)	= 1268 SCF/STB
GOR (GRDC)	= 187 (m3/m3)	= 1049 SCF/STB
GOR (QH)	= 249.7 (m3/m3)) = 1401 SCF/STB

D'après la classification universelle des types de fluide des réservoirs

Table 2-12:	Classification	des fluides	de réservoir	par GO	R
--------------------	----------------	-------------	--------------	--------	---

Type du fluid	GOR
Huiles noirs	< 1800 scf/stb
Huiles volatile	1800 to 3300 scf/stb
Gas Condensats	3300 to 50 000 scf/stb
Gas humides	50 000 to 100 000 scf/stb
Gases secs	> 100 000 scf/stb

On peut classer nos fluides des réservoirs de type « Black oïl » sauf que le fluide du réservoir GRDC tend d'être plus lourd que les deux autres fluides. Le fluide du réservoir QH semble d'être plus volatile, c'est logique puisque il appartient structuralement à une couche plus basse, là où le craquage thermique de la matière organique est intense.

Conclusion

Le meilleur réservoir du point de vue qualités pétrophysiques et caractéristiques de la roche est le réservoir GRDC (bonne porosité, perméabilité et connectivité des pores). En ce qui concerne l'état du fluide, le fluide du réservoir QH est le meilleur puisque il est proche de la volatilité. Le réservoir T1 présente par rapport aux autres couches géologiques des épaisseurs uniformes, ce qui lui donne la propriété d'être le réservoir plus régulier dans tout le champ.

Chapitre 03 :

Rappelle sur les mécanismes de Drainage et l'estimation des réserves

Introduction

Toute récupération d'huile par drainage naturel se réfère à une production normale sans utilisation d'aucun processus supplémentaire pour compléter l'énergie naturelle du réservoir. La récupération par drainage naturel dans les réservoirs des hydrocarbures dépasse assez rarement les 30% et elle est souvent inferieur à cette valeur dans les gisements d'huile. C'est pourquoi et très vite est apparue la nécessité d'apporter dans ces gisements une énergie supplémentaire, souvent par l'injection de l'eau et du gaz afin d'avoir une meilleure récupération.

On peut constater que chaque régime de drainage possède ses typiques performances en terme de :

- Taux de recuperation
- Decline de pression
- ➢ GOR
- Production d'eau

L'objectif dans ce chapitre est de présenter les différents mécanismes de drainage primaires et secondaires de récupération et leurs effets sur la performance du réservoir.

3.1 Mécanismes de récupération primaire:

Les performances des réservoirs d'huile sont déterminées par la nature du mécanisme de drainage disponible pour pousser l'huile aux abords du puits. On distingue :

- Expansion de la roche et de l'eau interstitielle.
- Expansion monophasique d'huile et de gaz dissout.
- ✤ Gas cap drive.
- ✤ Water drive.
- ✤ Drainage par gravitation.

3.1.1 Expansion de la roche et l'eau interstitielle

Une fois la pression diminue, les fluides et la roche s'étendent par effet de leurs compressibilités, l'expansion des grains de la roche et l'effet de compaction permettent de réduire l'espace poreux d'où la réduction de la porosité, par conséquent, les fluides sont passés hors des pores vers les abords des puits. Ce mécanisme est caractérisé par un GOR constant et possède le plus faible taux de récupération (5% -10%).

3.1.2 Expansion monophasique d'huile et de gaz dissout (solution gaz drive)

Elle se manifeste dans les gisements de gaz ou d'huile sous-saturée ($P > P_{bulle}$), très considérables pour les gaz, mais faible pour les huiles (récupération faible), ceci s'explique par la grande différence entre les compressibilités du gaz et de l'huile

Il est caractérisé par :

- ✤ Une chute rapide et continue de la pression ;
- Une augmentation rapide de GOR ;
- ✤ Un faible taux de récupération, généralement varie entre (5% 30%).

3.1.3 Expansion du gaz libre (Gas cap drive)

Ce type de drainage se manifeste généralement dans les gisements d'huile saturée ($P=P_b$) liés initialement à un gaz cap, avec la chute de pression dans la zone à huile due au soutirage, le gaz cap se détend et provoque un déplacement immiscible d'huile c'est ce qu'on appelle gaz cap drive.

3.1.4 Water drive

Dans un réservoir ou l'huile est en contact avec un aquifère actif, qui a une dimension importante, l'énergie qui permet l'expulsion de l'huile, est assurée par la poussé de l'eau, ce qui fait qu'avec le soutirage le (WOC) remonte.

3.1.5 Drainage par gravité

Il est dû à la différence des densités des fluides coexistant dans le gisement sous l'effet des forces gravitationnelles. Ces dernières maintiennent les fluides en équilibre de phase, ce qui permet de définir les contacts WOC, GOC.

La ségrégation gravitationnelle des fluides en place contribue considérablement à la récupération de l'huile du réservoir.

3.1.6 Combinaison de plusieurs mécanismes de drainage

Combinaison de deux mécanismes de drainage ou plus est souvent rencontrée. Les circonstances de cette combinaison peuvent être reconnues par :

- Le degré de déclin de pression.
- ➢ L'évolution du GOR.
- > L'évolution du water Cut.

3.2 Mécanismes de récupération secondaire :

Les procédés conventionnels de la récupération secondaire (l'injection d'eau, de gaz) sont d'autant plus efficaces qu'ils permettent un accroissement de récupération plus important par rapport au simple drainage naturel et à un rythme d'exploitation économiquement acceptable.

L'objectif d'injection d'eau ou de gaz principal est de :

- Maintain la pression.
- Assurer le balayage de l'huile.

3.2.1 L'injection de gaz

L'injection de gaz demeure un atout important dans la récupération secondaire, elle est très utilisée pour les réservoirs à huile légère et pour les formations à forte perméabilité.

L'analyse de déplacement du gaz miscible repose sur les concepts fondamentaux des écoulements diphasiques (gaz, huile) en terme de perméabilité relative, saturation d'huile ; de gaz et de GOR.

3.2.2 L'injection d'eau

L'injection d'eau, qui est mise en œuvre depuis 60 ans, reste la plus employée. Elle permet d'augmenter la récupération d'huile par une amélioration du coefficient de balayage ou de déplacement. Mais, en dehors de cet objectif de récupération secondaire, l'injection d'eau peut être employée pour :

- Maintenir la pression du gisement si l'expansion de l'aquifère (ou de gaz-cap) ne fournit pas suffisamment d'énergie. Il ne s'agit pas de récupération secondaire proprement parlé mais de maintien de pression.
- Eliminer éventuellement l'eau salée contenue dans la production si sa décharge en surface pose des problèmes particuliers.

3.3 Méthodes d'estimation des réserves en place

3.3.1 Introduction

Le calcul des OOIP (Original Oïl In Place) des gisements découverts est particulièrement important car il sert de guide aux programmes économiques et de développement.

L'évaluation des réserves initiales est faite par la méthode volumétrique qui peut être comparée et raffinée par les calculs du bilan matière basés sur l'historique de la production.

3.3.2 Méthode volumétrique :

L'estimation des réserves par la méthode volumétrique est basée sur l'interprétation des données géologique et petro physiques. Elle permet de donner les réserves en place statique (n'est pas touchée par la différence de pression), elle utilise dans la plupart des cas dans la phase de développement de gisement.

Le volume de l'huile en place dans les conditions standards est donné par la formule suivante :

$$N = H_u A \phi_{moy} S_{omoy} \frac{1}{B_{oi}}$$

La porosité moyenne est calculée en prenant la moyenne pondérée à la hauteur utile :

$$\boldsymbol{\emptyset}_{\text{may}} = \frac{\sum_{i=1}^{n} \boldsymbol{\emptyset}_{i} \mathbf{h}_{ui}}{\sum_{i=1}^{n} \mathbf{h}_{ui}}$$

La saturation moyenne d'huile est calculée comme suit :

$$\mathbf{S}_{omoy} = \frac{\sum_{i=1}^{n} S_{oi} \emptyset_{i} h_{ui}}{\sum_{i=1}^{n} \emptyset_{i} h_{ui}}$$

3.3.3 La méthode dynamique (bilan matière)

Cette méthode n'est applicable que lorsque le gisement a déjà produit depuis un certain temps (1 à 2 ans minimum) et elles servent à contrôler les valeurs obtenues par les méthodes volumétriques. Elle est appelée méthode dynamique par ce qu'elle s'intéresse uniquement aux déplacements des fluides donc où il y a présence d'une différence de pression, elle permet de donner les quantités dynamiques.

3.3.3.1 Hypothèses posées pour cette méthode

Les suppositions misent en évidence sont :

- On considère que le réservoir est un système fermé permettant ainsi d'estimer une pression moyenne sur toute la superficie du gisement.
- La température de gisement est constante ou varie légèrement d'une façon à être négligeable.
- Le réservoir a un volume constant exceptant l'effet des compressibilités qui sont prises en compte dans l'équation.
- Les propriétés pétro physiques doivent être exprimées avec une certaine précision en utilisant le modèle *black-oïl*.

Principe de cette technique est basé sur le principe de la chute de pression, en supposant que l'espace poreux reste constant et pas de migration des hydrocarbures dans des zones autres que le réservoir en considération.

L'équation de bilan matière est basée sur le principe suivant :

Quantité produite + quantité restante = quantité originale en place

Après la mise en production du gisement, la pression va diminuer créant un changement de volume de chaque phase :

Les volumes poreux occupés initialement à P_i

- Le volume d'huile initiale :

Volume d'huile initiale	$= NB_{oi}$	(01)
Volume de gaz initial	$= GB_{gi} = mNB_{oi}$	(02)

Les volumes poreux occupés à la pression P :

Volume d'huile restant à une pression $P = (N - N_p)B_o$ (03)

Diminution de volume d'huile $=NB_{oi} - (N - N_p)B_o$

Volume poreux occupé par le gaz du gaz cap à P :

$$\begin{bmatrix} \frac{mNB_{oi}}{B_{gi}} \end{bmatrix} B_g \tag{04}$$

Volume poreux occupé par le gaz libéré dans le réservoir :

$$\left[NR_{si} - N_{p}R_{p} - (N - N_{p})R_{s}\right]B_{g}$$
(05)

Volume poreux occupée par les entrées d'eau nettes :

$$\mathbf{W}_{\mathbf{p}} - \mathbf{W}_{\mathbf{p}} \mathbf{B}_{\mathbf{w}} \tag{06}$$

• Changement en volume due à l'expansion de la roche et de l'eau interstitielle :

$$NB_{\sigma i} (1+m) \left(\frac{S_{wi} C_w + C_f}{1 - S_{wi}}\right) \Delta P$$
(07)

Volume poreux occupé par le gaz et l'eau injectés :

$$\mathbf{G}_{inj}\mathbf{B}_{gi} + \mathbf{W}_{inj}\mathbf{B}_{w} \tag{08}$$

Le MBE peut être écrit sous une forme généralisée comme suit :

$$(01) + (02) = (03) + (04) + (05) + (06) + (07) + (08)$$

$$N \left[B_{oi} - B_o + B_g (R_s - R_{si}) + m B_{oi} \left(1 - \left(\frac{B_g}{B_{gi}} \right) \right) - (1 + m) \left(\frac{C_w S_{wi} + C_f}{1 - S} \right) B_{oi} \Delta P \right]$$

+ $N_p \left[B_o + B_g (R_p - R_s) \right] = W_g - W_p B_w + W_{inj} B_w + G_{inj} B_j$

3.3.4 Indices de drainage

En se basant sur l'équation de bilan matière, le calcul de ces indices permet de se prononcer sur le régime de drainage prédominant dans le gisement en train d'exploitation, et puis sur la suite qu'on donne au processus de production.

L'indice de drainage représente le type de combinaison de drainage dans un champ quelconque, il marque l'efficacité du mécanisme de déplacement des fluides et ses proportionnalités vis-à-vis des autres régimes présents.

Indices de drainage	Equation
Solution-gas-drive index (SDI)	$SDI = \frac{N[(R_{si} - R_s)B_g - (B_{oi} - B_o)]}{N_pB_o + N_p(R_p - R_s)B_g}$
Gas-cap-drive-index (GDI)	$GDI = \frac{G(B_g - B_{gi}) - G_{pc}B_g + G_{inj}B_g}{N_pB_o + N_p(R_p - R_s)B_g}$
Water-drive index (WDI)	$WDI = \frac{W_e - W_p B_w + W_{inj} B_w}{N_p B_o + N_p (R_p - R_s) B_g}$
Total (SDI, GDI et WDI)	SDI + GDI + WDI = 1

Table 3-1	: Les indices	de drainage
-----------	---------------	-------------

Chapitre 04 :

Estimation des réserves et Mécanismes de drainage réservoirs (T1, GRDC, et QH)

Introduction

Après la collecte des données pétro-physiques et PVT des trois réservoirs dans le chapitre 2, et ayant donné une théorie relative à l'estimation des réserves et aux mécanismes de drainage dans le chapitre 3, nous présentons dans ce chapitre les résultats pratiques de l'estimation des réserves par l'équation volumétrique et par l'équation bilan matière effectuée sur les trois réservoirs du champ RDC (T1, GRDC, et HQ).

L'objectif de l'estimation des réserves et la définition des mécanismes de drainages est de connaître les différentes quantités d'hydrocarbures en place (réserves prouvées, possibles, probables) pour chaque réservoir et vérifier les réserves volumétriques par les résultats du bilan matière ainsi que la détermination des différents mécanismes de drainage contribuant dans l'énergie du réservoir.

L'estimation des réserves et la détermination des mécanismes de drainage sont nécessaires pour prédire le futur comportement du réservoir et pour choisir le meilleur plan du développement.

4.1 Analyse de la production et de la pression

4.1.1 Analyse de pression:

a) Réservoir T1 :

Le profil de pression du réservoir T1, indique que le réservoir est compartimenté en deux parties (Drain sommitale et Drain basale).

Une pression de 540-354 kg/cm2 est représentée par les puits (RDC6-RDC8-RDC9-RDC12), et une pression d'environ 540 kg/cm2 pour les puits (RDC17-RDC18-RDC1-RDC20-RDC21).

Figure 4-1: Evolution de pression du réservoir T1

b) Réservoir GRDC :

Le profil de pression dans le réservoir est devisé en trois périodes différentes, la première période c'est un déclin en continue dès l'exploitation du réservoir en 1989 (540 kg/cm2) jusqu'à 2006 (212 kg/cm2), le déclin dans cette période est due au soutirage important du puits RDC1B, la deuxième période de 2006 jusqu'à 2014 caractérisée par une stabilisation de la pression (environ 212 kg/cm2) favorisé par la libération de gaz (point de bulle), la troisième période est à partir du 2014 où la pression a chuté de (212-194 kg/cm2) due peut être à la diminution du gaz dissout dans le réservoir, ce qui nous montre qu'il est nécessaire d'entamer un maintien de pression le plus vite possible.

Figure 4-2: Evolution de pression du réservoir GRDC

c) Réservoir QH :

Le profil de pression du réservoir QH est en déclin depuis sa mise en service, de 500 kg/cm2 en 2009 jusqu'à 377 kg/cm2 en 2016, cette variation de pression nous indique qu'il n'y a pas des compartiments isolés dans ce réservoir.

Figure 4-3: Evolution de pression du réservoir QH

4.1.2 Analyse de production:

La production du champ RDC à partir de l'année 1989 jusqu'à 2009 provient uniquement du réservoir GRDC le puits RDC1 (fermé en1990) et le RDC1B (exploité en 1991), les réservoirs QH et T1 ont étés exploités en 2009 et 2011 respectivement, un gain de production pour le champ de 300 m3/j, un seul puits producteur RDC1B qui a été en déclin continu.

Le Cumul du champ RDC est de 4 613 304 m3 d'huile. (12/01/2017)

Figure 4-4: Production du champ RDC

4.1.2.1 Contribution de chaque réservoir dans la production totale:

L'exploitation du champ RDC a commencée par la contribution d'un seul réservoir (Grés de RDC), l'apport des réservoirs QH et T1 a débuté en 2009 et 2011 respectivement, comme montre la figure ci-après.

Chapitre 4 : Estimation des réserves et mécanismes de drainage des réservoirs (T1, GRDC, et QH)

Figure 4-5: Le cumul de production des réservoirs du champ RDC

Le taux de contribution des trois réservoirs est de 73% pour GRDC une contribution majore, 18%, pour QH et est 9% T1.

- Cumul du réservoir T1=393 209 m3
- Cumul du réservoir GRDC=3 369 590 m3
- Cumul du réservoir QH=850 505 m3

Figure 4-6: Contribution des réservoirs dans le cumul de production du champ RDC

La production journalière de chaque réservoir est repartie comme suit :

- Débit journalier moyen du Réservoir T1= 240 m3/j (produit par 5 puits)
- Débit journalier moyen du Réservoir GRDC= 231m3/j (produit par 3 puits)
- Débit journalier moyen du Réservoir QH= 285 m3/j (produit par 6 puits)

Figure 4-7: Contribution des réservoirs dans la production journalière du champ RDC

a) Production du réservoir GRDC:

Le réservoir GRDC il a été exploité initialement par le puits RDC1 (1989-1991), ce dernier fut abandonné à cause d'un problème mécanique, converti en RDC1B, le puits a été mis en production en 1991, le RDC1B a subi un déclin de production son potentiel a chuté de 30 m3/h (1991) à 8 m3/h (2018), la production du réservoir GRDC a été booster par la mise en production des puits RDC14 en 2016 avec un débit de 2.8 m3/h et le puits RDC20 en 2017 avec un débit de 12 m3/h.

Figure 4-8: Production du réservoir GRDC

b) Production du réservoir T1:

L'exploitation du réservoir T1 été en juillet 2011 par le puits RDC6 avec un débit moyen de 5 m3/h, RDC8 (juillet 2012), RDC16 (mars 2016), RDC17 (mai 2016), WRDC1 (juillet 2017) ; actuellement le réservoir produit un débit moyen de 240 m3/j.

Figure 4-9: Production du réservoir T1

L'exploitation du réservoir QH a débuté en 2009 par le puits RDC9 qui a produit avec un débit moyen de 11 m3/h, les autres puits ont été mises en production comme suite : RDC11 (octobre 2013), RDC12(novembre 2013), RDC15(février 2016), RDC18(octobre 2016), RDC19(décembre 2016), la production journalière moyenne du réservoir QH est de 285 m3/j qui représente actuellement la plus grande production par apport aux autre réservoirs.

Figure 4-10: Production du réservoir QH

4.2 Estimation des réserves :

Après collecte et analyse des données petrophysique, historique de pression et de production et étude PVT, nous allons procéder à l'estimation des réserves en place à travers l'utilisation de deux méthodes :

- 1) Méthode statique (volumétrique)
- 2) Méthode dynamique (bilan matière)

4.2.1 Méthode statique:

Pour calculer les réserves statiques, nous adoptons la simulation **Monte-Carlo** (software utilisé MBAL/IPM), qui est réputée pour sa fiabilité ; Les programmes informatiques permettent d'exécuter rapidement des milliers d'échantillons aléatoires.

Les résultats de cette méthode peuvent nous donner un cas « très probable », ainsi qu'une distribution statistique pour comprendre le risque ou l'incertitude impliqués.

Dans notre cas nous utilisons une distribution Log-normal pour (**PHI**, **NTG**, **So**) et des valeurs fixes pour (**Bull Volume, Rs, Oil gravity,** et **Gas gravity**).

Les inputs nécessaires pour cette méthode sont présentés dans les tableaux suivants :

T1	Distribution methode	Fixed value	Average	Standard déviation	Units
Bulk volume	Fixed value	2297784364			m3
PHI	log normal		0,10	0,02	%
NTG	log normal		0,79	0,12	fr
So	log normal		0,70	0,10	%
Rs	Fixed value	226,90			m3/m3
Oil Gravity	Fixed value	42,30			API

 Table 4-1: Les inputs pour réservoir T1

Gas Gravity	Fixed value	0,98		Sp.gravity

• •							
RDC SST	Distribution methode	Fixed value	Average	Standard deviation	Units		
Bulk volume	Fixed value	540504722			m3		
PHI	log_normal		0,10	0,02	%		
NTG	log_normal		0,82	0,18	fr		
So	log_normal		0,68	0,11	%		
Rs	Fixed value	187			m3/m3		
Oil Gravity	Fixed value	42,23			API		
Gas Gravity	Fixed value	0,77			Sp.gravity		

 Table 4-2: Les inputs pour réservoir GRDC

Table 4-3: Les inputs pour réservoir QH

QH	Distribution methode	Fixed value	Average	Standard deviation	Units
Bulk volume	Fixed value	1453370718			m3
PHI	log normal		0,082	0,01	%
NTG	log_normal		0,83	0,13	fr
So	log_normal		0,71	0,13	%
Rs	Fixed value	249,7			m3/m3
Oil Gravity	Fixed value	42,9			API
Gas Gravity	Fixed value	1,014			Sp.gravity

Résultat :

Les résultats d'estimation des réserves pour les trois réservoirs sont comme suit (**méthode probabiliste**) :

Réserves	T1	GRDC	QH
Prouvés (Mm3)	54	14	28
Probables (Mm3)	78	21	40
Possibles (Mm3)	114	33	58

Table 4-4: Résultat d'estimation des réserves

D'après les résultats trouvés par la méthode volumétrique les plus grandes réserves dans les champs RDC se trouvent dans le réservoir T1, le réservoir QH représente une quantité moyenne et moindre pour le réservoir GRDC.

4.2.2 Méthode Bilan matière

Une étude de bilan matières en utilisant le logiciel MBal [™] (Petroleum Experts) a été réalisée sur les réservoirs du champ RDC, (beaucoup de données sont enregistrées pour le réservoir GRDC en terme de cumulatives de production et de pression due à son ancienne exploitation, Tandis que pour les réservoirs T1 et QH pas assez de données de pression, vue que leur exploitation est récente (présence de compaction des réservoirs, pas de déclin de pression).

Les objectifs de l'étude du bilan matière sont :

- > Estimer l'hydrocarbure initialement en place.
- Déterminer le mécanisme de drainage.
- Déterminer le taux de récupération.
- Prédire le futur comportement du réservoir.

Figure 4-11: L'interface du software MBAL/IPM

Les inputs de l'initialisation :

Table 4	-5: Les	inputs	pour	software	MBAL
I GOIC I	C • D • D	mputo	Pour	Solution	

	Formation GOR	Oil gravity	Gas gravity	Water salinity	Température	Initial pressure
	m3/m3	API	sp, garvity	ppm	deg C	Kg/cm2
T1	249,7	42,9	1,014	200000	118	548
GRDC	187	42,33	0,772	200000	115	481
QH	226,9	42,3	0,983	200000	118	500

Les données de l'historique de production et les table (1,2,3,4) de la perméabilité relative se trouvent dans l'annexe A.

Résultat :

Après le calage de l'historique de pression, et des paramètres PVT ; les résultats de chaque réservoir sont comme suit :

a) Réservoir T1 :

a.1) Calage de l'historique:

Figure 4-12 : Calage de l'historique de pression du réservoir T1

Le résultat est obtenu à partir des données suivant :

- ✓ OOIP (Mm3) = 30
- ✓ OGIP (Msm3) = 0
- ✓ Water influx(Mm3) = 0

Remarque :

- Les points de pression enregistrés dans les années 80 et 90 sont pas calés (Réservoir non encore exploité /pas production)
- 2- Le non calage des points de pressions de certains puits enregistrés entre 2013-2015, nous indique que le réservoir T1 est compartimenté.
a-2) Mécanisme de drainage

La figure ci-dessous nous montre que les mécanismes de drainage au niveau du réservoir T1 est la compressibilité des pores, et l'expansion des fluides en place.

	Drive Mechani	sm - Trias T1	
1			Fluid Expansion PV Compressibility
0,75			
0,5			
0,25			
01/07/2011 14/1	.1/2012 01/04/2014 Time (date d/m/y)	17/08/2015 01	/01/2017
Tank Temperature Tank Dressure Tank Dorosity Connate Water Saturation Water Compressibility Formation Compressibility Initial Gas Cap Oil in Place Production Start	a 118 (deg C) 548,423 (Kg/cm2 a) 7 0,1 (fraction) 0,25 (fraction) 7 Use Corr (1/psi) 7 4,79986-6 (1/psi) 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Aquifer Model Aquifer System	None Radial Aquifer

Figure 4-13: Mécanismes de drainage dans le réservoir T1

a-3) Facteur de récupération

Le taux de récupération du réservoir T1 ne dépasse pas 1% vue qu'il est nouvellement exploité.

Figure 4-14:Facteur de récupération dans le réservoir T1

b) Réservoir GRDC :

b-1) Calage de l'historique :

Figure 4-15: Calage de l'historique de pression du réservoir GRDC

Le résultat est obtenu à partir des données suivant :

- ✓ OOIP (Mm3) = 34,6958
- ✓ OGIP (Msm3) = 0
- ✓ Water influx(Mm3) = 0

Remarque :

- 1- Les points de pression enregistrés dans les années 81 et 90 sont pas calés (Réservoir non encore exploité /pas production)
- 2- On remarque que le calage de pression est parfait pour tous les points, ce qui nous permet de faire des prévisions à partir de ce model avec moins d'incertitudes, le bon calage est dû aux bonnes caractéristiques Pétrophysiques, notamment la perméabilité qui engendre une meilleure transmissibilité.

b-2) Mécanisme de drainage

Les mécanismes de drainage pour le réservoir GRDC est la compressibilité de la roche et de l'eau l'interstitiel et l'expansion du gaz dissout qui devient plus en plus important avec le temps. En effet l'exploitation d'un gisement sous l'expansion du gaz dissout sans aucune assistance par récupération secondaire n'est pas favorable puisqu'il entraine l'épuisement du réservoir et l'huile sera dégazé ce qui rend l'huile morte et immobile (haut viscosité).

Figure 4-16: Mécanismes de drainage dans le réservoir GRDC

b-3) Facteur de récupération

Le taux de récupération dans le réservoir est de 9% des quantités en place, ce qui nous oblige d'assisté le drainage naturel par un mécanisme artificiel pour récupère plus d'hydrocarbures.

Figure 4-17: Facteur de récupération dans le réservoir GRDC

c) Réservoir QH :

c-1) Calage de l'historique :

Figure 4-18: Calage de l'historique de pression du réservoir QH

Le résultat est obtenu à partir des données suivant :

- ✓ OOIP (Mm3) = 30
- ✓ OGIP (Msm3) = 0

✓ Water influx(Mm3) = 0

Remarque :

- 1- Un calage acceptable dans la majorité des points pour le réservoir QH.
- 2- Les points de pression non calés, due à la présence de barrière de perméabilité entre les puits.

c-2) Mécanisme de drainage :

Le réservoir produit par mécanisme principale qui est la compressibilité de la roche et de l'eau interstitielle, et un mécanisme secondaire qui est l'expansion des fluides en place ; l'effet de la compressibilité est fort dû à la profondeur de la zone.

Figure 4-19: Mécanismes de drainage dans le réservoir QH

c-3) Facteur de récupération :

Comme le réservoir est nouvellement exploité le taux de récupération est de 2%, un bon plan de développement doit être tracé pour récupérer le maximum d'huile qui se trouve dans ce gisement.

Figure 4-20: Facteur de récupération dans le réservoir

Conclusion :

Le tableau ci-dessous résume les différents résultats pour chaque réservoir.

	OOIOP	OGIP	Water	Facteur de	Mécanismes de drainage
			influx	récupération	
	Mm3	Mm3	Mm3	%	/
T1	30	0	0	0,8	compressibilité et expansion
GRDC	35	0	0	9	compressibilité et expansion
QH	30	0	0	2,2	compressibilité et expansion

Table 4-6: Conc	lusion sur les	réservoirs d	u champ	RDC
-----------------	----------------	--------------	---------	-----

Conclusion générale

- ✓ La Majorité de la Production du champ RDC provient des Puits situés dans la partie ouest.
- ✓ Les paramètres petrophysiques sont meilleurs dans le Réservoir GRDC (présence des chenaux), et faibles dans les Réservoirs T1 et QH.
- ✓ la connectivité est plus importante dans le Réservoir Grés de RDC contrairement aux réservoirs T1 et QH..
- Les Réserves calculées par la méthode volumétrique sont très élevées dans le T1 et QH comparées a la méthode Bilan Matière, Cet écart expliqué par la faible connectivité du réservoir.
- ✓ Les Réserves calculées par la méthode bilan matière pour le réservoir Grés de RDC a donné des valeurs plus élevées par rapport à la méthode Volumétriques ce qui explique la bonne connectivité du réservoir (absence de barrières).
- ✓ Les réserves calculées par la méthode Bilan matière sont de 30 Mm3 pour les réservoirs T1 et QH, et de 35 Mm3 pour le réservoir GRDC.
- ✓ Le redressement du déclin de la pression du réservoir GRDC depuis l'année 2006 à 2014 est dû à la libération du gaz dessous (PG=Pb=213kg/cm2).
- ✓ La compressibilité de la roche et l'expansion des fluides sont les mécanismes de drainage dans les trois réservoirs (Absence de Gas Cap et Water Drive).
- ✓ Les facteurs de Récupération sont respectivement de 9%, 2.2% et 0.8%, pour les réservoirs GRDC, QH, T1.
- L'injection dans le réservoir GRDC est nécessaire pour le maintien de pression, suite aux résultats favorables de prévision.
- ✓ le débit d'injection d'eau requis pour assurer le maintien de pression (assurer la balance entre la production et l'injection) est d'environ 345 m3/j, Ce qui permettra d'avoir un taux de récupération de l'ordre de 15% jusqu'à 2040.

Recommandations

Pour améliorer la production et éviter le déclin rapide et dans le but d'atteindre l'objectif de développement du champ RDC on propose les recommandations suivantes :

- Favoriser le développement dans la partie ouest du champ RDC par le forage de nouveaux puits.
- Entamer l'injection d'eau le plus vite possible au niveau du réservoir GRDC pour le maintien de la pression.
- Afin d'améliorer la productivité des puits (plus de récupération) prévoir la fracturation hydraulique et le développement par des forages horizontaux.
- Une étude de simulation numérique est indispensable pour optimiser les schémas d'injection.
- Optimiser l'emplacement des puits injecteurs afin d'avoir plus de récupération et moins de percées d'eau.
- Faire une étude économique pour vérifier la rentabilité pour les différents cas prévisionnels proposés, en comparant le gain ultime en récupération avec les investissements nécessaires pour la mise en injection.
- Faire des échantillonnages avec des études PVT pour identifier la nature des dépôts et caractériser les fluides de gisement dans le but d'élaborer un modèle PVT afin d'améliorer l'efficacité des traitements effectués sur les puits.
- Réaliser des mesures de Pressions des puits pour un meilleur monitoring des différents réservoirs.
- Réaliser des mesures SCAL pour pouvoir améliorer le modèle des perméabilités relatives et pression capillaire (Kr-Pc) pour le bon calage du modèle.

Bibliographie

[1] Sonatrach, Annexe f, "*plan de développement et d'exploitation du gisement*". Contrat entre Alnaft et Sonatrach S.P.A pour l'exploitation des hydrocarbures sur le périmètre d'exploitation de Rhourde Chegga (Réservoir Quartzites de Hamra), Sonatrach AMT/PED, 2011.

[2] Sonatrach, "*Demande de permis d'exploitation du champ de Rhourde Chegga*". Sonatrach AMT/PED, mai 2005.

[3] R. Cossé : "*Le gisement*", Ecole Nationale Supérieur du Pétrole et des Moteurs-Formation Industrie, IFP, Edition Technip-Paris 1988.

[4] Sonatrach, "data Bank", AMT/DP/HMD, 2016-2017.

[5] Djebbar Tiab, Erle Donaldson, "*Petrophysics*", Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, (3rd Edition), Gulf Professional Publishing is an imprint of Elsevier 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK, 2012.

[6] Dr. El-Banbi Ahmed, "PVT Properties of Reservoir Fluids", Algiers, Algeria, February 2014.

[7] Oilphase- DBR a Schlumberger Copmany, "*PVT Report of Bottom Hole Sample, Well: RDC06*". DP/HMD, 17 May 2009.

[8] Oilphase-DBR a Schlumberger Copmany, "PVT Analysis Report on casedhole sample, Well: RDC09", DP/HMD, 4May 2009.

[9] Centre de recherche et développement, Direction Gisement, "Etude PVT et de deplacement par injection de gaz de l'effluent de puits RDC-1 Bis", Boumerdès, Algeria.

[10] Petroleum Experts Limited, "*MBAL/IPM User manual*", Petex House, 10 Logie Mill Edinburgh, Scotlan EH7 4HG, March 2009.

[11] Golden software, "Surfer User manual", 809 14th Street, Golden, CO 804001-1866, United Stated.2013.

[12] Tarek Ahmed, "*Reservoir Engineering Handbook* "Fourth edition, Gulf Professional Publishing is an imprint of Elsevier, 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA, The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK, 2010.

[13] Schlumberger Data & Consulting Services, "*Rhourde Chegga Field Development Plan Study*" Services Petroliers Schlumberger Route de Ouled-Fayet,, Zone d'Activite d'Amara lot N°8, Cheraga, Algeria, December, 2009.

Annexe A : Tableaux

Well	XCCOR (UTM32)	YCOOR (UTM32)	Top (m)	Bottom (m)	Gross (m)	Net (m)	Net pay (m)
RDC1	262903	3560254	3633	3663	30		
RDC1B	263091,918	3560348,364	3633	3661	28	24	10
RDC2	262262,91	3565730,96	3675	3706	31		
RDC3	261959,83	3554945,64	3652	3688	36		
RDC4	260574,01	3560131,55	3628	3671	43		
RDC6	263800	3560332,46	3612	3642	30	19,2	7,62
RDC8	263244,99	3561539	3643	3671	28	19,35	6,86
RDC9	259450,06	3561299,99	3628	3655	27	26,78	20,42
RDC11	260 495,92	3 560 539,10	3643	3669	26	21,34	10,97
RDC12	259935,012	3561634,979	3628	3666	38		
RDC13	264983,508	3559567,135	3648,5	3673	24,5		
RDC14	262449,28	3562358,78	3646	3671	25	21,445	13,106
RDC15	261505,9	3562791,7	3632	3660,5	28,5	20,66	1,829
RDC16	261974,289	3559259,778	3661,5	3684	22,5	19	14,551
RDC17	259977,43	3563105,88	3629	3658	29		
RDC18	261216,282	3561739,847	3619	3646	27		
RDC19	258450,553	3563475,578	3649	3679	30		
RDC20	258571,014	3560320,99	3661	3685	24		
RDC21	257693,009	3562515,982	3656	3685	29	28,391	4,115

 Table A.2 : Caractéristiques du réservoir GRDC

Well	XCCOR (UTM32)	YCOOR (UTM32)	Top (m)	Bottom (m)	Gross (m)	Net (m)	Net pay (m)
RDC1	262903	3560254	3753	3772	19		
RDC1b	263091,918	3560348,364	3752	3773	21	15,62	15,62
RDC2	262262,91	3565730,96	3798	3803	5		
RDC3	261959,83	3554945,64	NI	NI			
RDC4	260574,01	3560131,55	3752	3758	6		
RDC6	263800	3560332,46	NI	NI			
RDC8	263244,99	3561539	3772	3774,5	2,5	2,14	0,3
RDC9	259450,06	3561299,99	3736	3744	8	8	7
RDC10	261635,509	3564808,438	3788	3805	17	12,5	1,37
RDC11	260 495,92	3 560 539,10	3752	3758	6	6	1
RDC12	259935,012	3561634,979	3748,5	3756	7,5		

RDC13	264983,508	3559567,135	3784,5	3787,5	3		
RDC14	262449,28	3562358,78	3768	3778,5	10,5	8,534	4,572
RDC15	261505,9	3562791,7	NI	NI		17	13,41
RDC16	261974,289	3559259,778	3772	3785	13	7,315	2,075
RDC17	259977,43	3563105,88	NI/NA	NI/NA			
RDC18	261216,282	3561739,847	3736	3756	20	10,058	8,687
RDC19	258450,553	3563475,578	NI	NI			
RDC20	258571,014	3560320,99	3768,5	3775,5	7	7	4
RDC21	257693,009	3562515,982	3714	3726	12	11,924	1,143

Table A.3: Caractéristiques du réservoir QH

Well	XCCOR (UTM32)	YCOOR (UTM32)	Top (m)	Bottom (m)	Gross (m)	Net (m)	Net pay (m)
RDC1	262903	3560254	3885	3905	20		
RDC1B	263091,918	3560348,364	NA	NA			
RDC2	262262,91	3565730,96	3984	4015	31		
RDC3	261959,83	3554945,64	NA	NA			
RDC4	260574,01	3560131,55	3758	3808	50		
RDC6	263800	3560332,46	NA	NA			
RDC8	263244,99	3561539	NA	NA			
RDC9	259450,06	3561299,99	3744	3751	7	6	6
RDC10	261635,509	3564808,438	3911	3998	87	80	4,72
RDC11	260 495,92	3 560 539,10	3758	3804	46	40,62	4,11
RDC12	259935,012	3561634,979	3756	3766,5	10,5	9	8
RDC13	264983,508	3559567,135	3977	4014	37	29,885	21,198
RDC14	262449,28	3562358,78	3826	3846	20		
RDC15	261505,9	3562791,7	3750	3804	54	26,96	13,259
RDC16	261974,289	3559259,778	NA	NA			
RDC17	259977,43	3563105,88	3756	3798	42		
RDC18	261216,282	3561739,847	3756	3798	42	38,749	13,868
RDC19	258450,553	3563475,578	3763	3784	21	17,374	15,088
RDC20	258571,014	3560320,99	3775	3838	63	60	6
RDC21	257693,009	3562515,982	NI	NI			

Tableau 1: les perméabilités relatives du réservoir GRDC

Average Kr for RDC field							
Sw	Kro	Krw	Sg (%)	Kro	Krg		
0,1528	1	0	0,55268	0,334872848	0,00631		
0,2029	0,65329	0,00467	5,26224	0,225923015	0,01354		
0,253	0,40954	0,01582	9,26608	0,16680179	0,02211		

0,30320,243930,0333414,10110,1092374650,035420,35330,1360,057518,39990,0733161640,052010,40340,06940,0886823,32070,0452890880,078290,45350,031180,1273727,1640,0304736330,105430,50360,01150,1738530,5930,0210717250,13530,55380,002980,2286633,69340,014901510,167310,60390,000330,2921237,70419,34E-030,21610,65400,3645539,77490,0072814740,24456///41,867680,0056264950,275519/////45,663890,0034715670,336856/////47,516910,0027230160,368925/////49,5169100,415661	_					
0,35330,1360,057518,39990,0733161640,052010,40340,06940,0886823,32070,0452890880,078290,45350,031180,1273727,1640,0304736330,105430,50360,01150,1738530,5930,0210717250,13530,55380,002980,2286633,69340,014901510,167310,60390,000330,2921237,70419,34E-030,21610,65400,3645539,77490,0072814740,24456///41,867680,0056264950,275519///43,706080,0034715670,336856///45,663890,0027230160,368925///49,5169100,415661	0,3032	0,24393	0,03334	14,1011	0,109237465	0,03542
0,40340,06940,0886823,32070,0452890880,078290,45350,031180,1273727,1640,0304736330,105430,50360,01150,1738530,5930,0210717250,13530,55380,002980,2286633,69340,014901510,167310,60390,000330,2921237,70419,34E-030,21610,65400,3645539,77490,0072814740,24456///41,867680,0056264950,275519///43,706080,0034715670,336856///47,516910,0027230160,368925////49,5169100,415661	0,3533	0,136	0,0575	18,3999	0,073316164	0,05201
0,45350,031180,1273727,1640,0304736330,105430,50360,01150,1738530,5930,0210717250,13530,55380,002980,2286633,69340,014901510,167310,60390,000330,2921237,70419,34E-030,21610,65400,3645539,77490,0072814740,24456///41,867680,0056264950,275519///43,706080,0034715670,336856///47,516910,0027230160,368925///49,5169100,415661	0,4034	0,0694	0,08868	23,3207	0,045289088	0,07829
0,50360,01150,1738530,5930,0210717250,13530,55380,002980,2286633,69340,014901510,167310,60390,000330,2921237,70419,34E-030,21610,65400,3645539,77490,0072814740,24456///41,867680,0056264950,275519///43,706080,0044642160,304433///45,663890,0034715670,336856///47,516910,0027230160,368925///49,5169100,415661	0,4535	0,03118	0,12737	27,164	0,030473633	0,10543
0,5538 0,00298 0,22866 33,6934 0,01490151 0,16731 0,6039 0,00033 0,29212 37,7041 9,34E-03 0,2161 0,654 0 0,36455 39,7749 0,007281474 0,24456 / / / 41,86768 0,005626495 0,275519 / / / 43,70608 0,003471567 0,336856 / / / 47,51691 0,002723016 0,368925 / / / 49,51691 0 0,415661	0,5036	0,0115	0,17385	30,593	0,021071725	0,1353
0,6039 0,00033 0,29212 37,7041 9,34E-03 0,2161 0,654 0 0,36455 39,7749 0,007281474 0,24456 / / / 41,86768 0,005626495 0,275519 / / / 43,70608 0,004464216 0,304433 / / / 45,66389 0,003471567 0,336856 / / / 47,51691 0,002723016 0,368925 / / / 49,51691 0 0,415661	0,5538	0,00298	0,22866	33,6934	0,01490151	0,16731
0,654 0 0,36455 39,7749 0,007281474 0,24456 / / / 41,86768 0,005626495 0,275519 / / / 43,70608 0,004464216 0,304433 / / / 45,66389 0,003471567 0,336856 / / / 47,51691 0,002723016 0,368925 / / / 49,51691 0 0,415661	0,6039	0,00033	0,29212	37,7041	9,34E-03	0,2161
/ / /1 41,86768 0,005626495 0,275519 / / / 43,70608 0,004464216 0,304433 / / / 45,66389 0,003471567 0,336856 / / / 47,51691 0,002723016 0,368925 / / / 49,51691 0 0,415661	0,654	0	0,36455	39,7749	0,007281474	0,24456
/ / 43,70608 0,004464216 0,304433 / / / 45,66389 0,003471567 0,336856 / / / 47,51691 0,002723016 0,368925 / / / 49,51691 0 0,415661	/	/	/	41,86768	0,005626495	0,275519
/ / 45,66389 0,003471567 0,336856 / / 47,51691 0,002723016 0,368925 / / / 49,51691 0 0,415661	/	/	/	43,70608	0,004464216	0,304433
/ / / 47,51691 0,002723016 0,368925 / / / 49,51691 0 0,415661	/	/	/	45,66389	0,003471567	0,336856
/ / 49,51691 0 0,415661	/	/	/	47,51691	0,002723016	0,368925
	/	/	/	49,51691	0	0,415661

Tableau 2: les pressions dans le réservoir T1

Date	Pression kg/cm2	Type de test	Puits
05/02/1986	565	DST ; RDC2	RDC2
15/05/1986	545	DST, RDC2	RDC2
26/12/1987	546,38	DST, RDC4	RDC4
02/01/1988	547,39	DST, RDC4	RDC4
08/01/1988	546,4	DST, RDC4	RDC4
23/03/1988	543	BU, RDC4	RDC4
11/11/1989	538	BU, RDC4	RDC4
31/05/2008	539,2	DST, RDC6	RDC6
05/06/2008	541,8	DST, RDC8	RDC8
17/10/2008	543,53	DST, RDC9	RDC9
13/11/2008	541,4	PFS, RDC8	RDC8
11/12/2008	543,1	BU, RDC6	RDC6
13/12/2008	540,7	PFS, RDC8	RDC8
23/01/2009	536,6	PFS, RDC6	RDC6
21/02/2009	540	PFS, RDC8	RDC8
26/03/2013	542,8	DST, RDC12	RDC12
31/01/2014	448,8	BU, RDC6	RDC6
02/03/2014	434,4	BU, RDC8	RDC8
18/08/2015	527,6	DST RDC17	RDC17
29/06/2016	463,3	BU RDC16	RDC16
07/07/2016	543,37	DST, RDC18	RDC18
28/08/2016	354,7	BU, RDC8	RDC8

28/09/2016	540,93	DST, RDC19	RDC19
25/09/2016	534,86	DST, RDC20	RDC20
26/02/2017	542,82	DST, RDC21	RDC21

Date	Pression kg/cm2	Type de test
14/05/1985	539,5	DST, RDC1
19/05/1985	550,3	DST, RDC1
29/11/1985	542,7	BU, RDC1
10/12/1989	485,3	BU, RDC1
09/09/1991	480,1	BU, RDC1B
02/02/1992	454,6	BU, RDC1B
08/04/1993	398,9	BU, RDC1B
28/05/1996	318,8	BU, RDC1B
04/11/2001	246,8	BU, RDC1B
15/08/2006	212,9	BU, RDC1B
10/02/2007	212,6	BU, RDC1B
29/02/2008	213,8	BU, RDC1B
14/05/2008	212,99	DST, RDC8
15/02/2010	212	PFS, RDC1B
08/02/2014	203,6	BU, RDC1B
02/05/2014	208,3	DST, RDC14
22/12/2015	194,47	PFS, RDC15
25/10/2016	402	DST RDC 20

Tableau 3: les pressions dans le réservoir GRDC

Tableau 4: les pressions dans le réservoir QH

Date	Pression kg/cm2	Type de test
27/09/2008	499,9	DST, RDC9
20/05/2009	499,7	BU, RDC9
07/06/2010	476,5	BU, RDC9
04/10/2012	481	BU, RDC9
14/12/2012	482	DST, RDC11
29/05/2013	450,9	DTS, RDC12
31/07/2015	432,4	BU, RDC15
23/05/2016	377,5	BU, RDC15
05/08/2016	402	DST, RDC18
25/10/2016	473,7	DST, RDC19

Annexe B : Graphes

Figure B.1 : Paramètres de production du puits RDC1B

Figure B.2 : Paramètres de production du puits RDC6

Figure B.3 : Paramètres de production du puits RDC8

Figure B.4 : Paramètres de production du puits RDC9

Figure B.5 : Paramètres de production du puits RDC11

Figure B.6 : Paramètres de production du puits RDC12

Figure B.7 : Paramètres de production du puits RDC14

Figure B.8 : Paramètres de production du puits RDC15

Figure B.9 : Paramètres de production du puits RDC16

Figure B.10 : Paramètres de production du puits RDC17

Figure B.11 : Paramètres de production du puits RDC18

Figure B.12 : Paramètres de production du puits RDC19

Figure B.13 : Profile de production des puits RDC

Figure B.14 : Profile de production des puits du champ RDC