REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

UNIVERSITE KASDI MERBAH OUARGLA

Faculté des Hydrocarbures, des Energies Renouvelable, des Sciences de la Terre et de l'Univers Département de Production des Hydrocarbures

Mémoire de fin d'étude

En vue de l'obtention du diplôme Master Spécialité : Production professionnelle

Présenté par :

Dokkar Adel

Litim Safia

Interprétation des DST de Quartzite Hamra de la région de Rhourde Nouss

Le jury est composé de :

Président Examinateur Encadreur DADEN.ABDELGHAFOUR KHABBAZ.MED GHALI ZERROUKI ALI.AHMED Université Ouargla Université Ouargla Université Ouargla

Année universitaire 2017/2018

REMERCIEMENTS

Nous tenons, tout d'abord, à remercier Dieu le tout puissant, qui nous a donné la force et la patience D'accomplir ce modeste travail.

En second lieu, nous tenons à remercier notre encadreur :

Mr ALI Zerrouki Ahmed pour ses précieux conseils et son aide durant toute la période du travail.

Nous souhaitant adresser nos remerciements les plus sincères aux personnes qui nous ont apporté leur aide et qui ont contribué à l'élaboration de ce mémoire 'LITIM RASHID, Senoussi Salah, Nahoui Fatima Zohra, Amirouch Nadji, Brouk Messaoud, Ammar, HAMZA, Zaatout' ainsi pour l'inspiration, l'aide et le temps qu'ils ont bien voulu nous consacrer et sans qui ce mémoire n'aurait jamais vu le jour.

Nous avoue que nous sommes très sensibles à l'honneur que vous nos faites d'avoir accepté d'examiner ce modeste travail.

Nos vifs remerciements vont également à tous nos enseignants de la département de production des Hydrocarbures

On n'oublie pas nos parents pour leur contribution, leur soutien et leur patience.

Enfin, nous adressons nos plus sincères remerciements à tous nos proches et amis, qui nous ont toujours encouragées au cours de la réalisation de ce mémoire.

Merci à tous et à toutes.

Dédicace

Toutes les lettres ne sauraient trouver les mots qu'il faut... Tous les mots ne sauraient exprimer la gratitude, L'amour, le respect, la reconnaissance... Aussi, c'est tout simplement que Je dédie ce travail...

À MES CHERS PARENTS

Aucune dédicace ne saurait exprimer mon respect, mon amour éternel et ma considération pour les sacrifices que vous avez consenti pour mon instruction et mon bien être.

Je vous remercie pour tout le soutien et l'amour que vous me portez depuis mon enfance et j'espère que votre bénédiction m'accompagne toujours. Que ce modeste travail soit l'exaucement de vos vœux tant formulés, le fruit de vos innombrables sacrifices, bien que je ne vous en acquitterai jamais assez.

Puisse Dieu, le Très Haut, vous accorder santé, bonheur et longue vie et faire en sorte que jamais je ne vous déçoive.

MES CHERS ET ADORABLE FRER<mark>ES</mark> ET MA PETITE SOEUR IBTISSEM, YOUSEF, HICHEM, IDRIS.

En témoignage de mon affection fraternelle, de ma profonde tendresse et reconnaissance, je vous souhaite une vie pleine de bonheur et de succès et que Dieu, le tout puissant, vous protège et vous garde.

MES CHERS ONCLES, TANTES, LEURS EPOUX ET EPOUSES A MES CHERS COUSINS COUSINES

Veuillez trouver dans ce travail l'expression de mon respect le plus profond et mon affection la plus sincère.

À MES AMIS DE TOUJOURS : MOHIEDDINE, ALI, LAMIA, WAFAA SAADIA, ADEl, FATIMA, MOUNIA, AMEL, SOUMIA, BILLAL ...

En so<mark>uvenir de notre sincère et profonde amitié et des moments agréables que nous avo</mark>ns passés ensemble.

Veuillez tr<mark>ouver</mark> dans ce travail l'expression de mon respect le plus profond et mon affection la plus sincère.

UNE SPECIALE DEDICACE A CETTE PERSONNE À TOUTES LES PERSONNES QUI ONT PARTICIPÉ A L'ÉLABORATION DE CE TRAVAIL À TOUS CEUX QUE J'AI OMIS DE CITER

LITIM SAFIA

Dédicace

Je dédie ce travail modeste à mes parents qui m'ont soutenu à travers tout, le bien et le mal, et sans eux je ne serais pas capable d'être ici aujourd'hui

A mes charmantes sœurs Nesrine et Rihanna et mon frère Madjed À tous mes amis qui se tenaient avec moi ces dernières années à l'université

A tous les professeurs de notre département qui m'ont énormément aidé à terminer ce modeste travail et à tous les ingénieurs qui m'ont aidé durant mon stage

Finalement, je dédie cela à chaque personne proche de moi

Adel Dokkar

Résumé

La rentabilité de l'investissement que constitue un réservoir est liée à la longévité de ses puits et à l'importance de la production qu'on retirera par leur biais et qui est en fonctions directes avec les caractéristiques du réservoir ainsi que le type de complétion choisi.

L'interprétation des essais DST des puits de Quartzite Hamra est un outil indispensable pour connaître l'état des puits et le réservoir très peu connu par la détermination des caractéristiques dynamique qui leur sont propres

Un essai de DST fournit une méthode de compléter temporairement un puits pour déterminer les caractéristiques de production d'une zone spécifique. Comme initialement conçu, un essai de DST fournit principalement une indication du contenu de la formation.

L'analyse des données de pression (build-up) dans un DST correctement planifié et exécuté par logiciel «SAPHIR de KAPPA» peut fournir de bonnes données pour aider à évaluer les problèmes de production dans certains puits, une estimation des paramètres de réservoir, la productivité de la zone, la complétion de puits, le degré d'endommagement (skin) de la formation et peut-être le besoin d'une stimulation.

Mots Clés : DST, build up, «SAPHIR de KAPPA», les paramètres de réservoir, la productivité de la zone, le skin, Quartzite Hamra

Abstract

The profitability of a reservoir's investment is related to the longevity of its wells and the importance of the production that will be withdrawn through them and which is in direct function with the characteristics of the reservoir as well as the type of the selected completion.

The interpretation of Quartzite Hamra well DST tests is an indispensable tool to know the state of the wells and the very little known reservoir by the determination of the dynamic characteristics of their own.

A DST test provides a method of temporarily supplementing a well to determine the production characteristics of a specific area. As originally conceived, a DST trial primarily provides an indication of the content of the training.

The analysis of the build-up data in a well-planned and softwareexecuted DST "SAPHIR of KAPPA" can provide good data to help evaluate the production problems in some wells, an estimation of the parameters of the reservoir, the productivity of the area, the completion of wells, the degree of damage (skin) of the formation and perhaps the need for stimulation.

Key words: DST, build up, "SAPHIR of KAPPA", reservoir's parameters, productivity's zone, skin, Quartzite Hamra.

ملخصر

ترتبط مردودية استثمار المكمن بطول عمر آبار ها وأهمية الإنتاج الذي سيتم سحبه من خلالها كما لها صلة مباشرة مع خصائص المكمن وكذلك نوع تهيئة هذه الآبار.

إن تفسير "اختبار الجذعية للحفر" لكوار تزيت الحمراء هو أداة لا غنى عنها للتعرف على حالة الأبار والمكمن غير المعروف عن طريق تحديد الخصائص الديناميكية الخاصة به من خلال هذا الاختبار. يوفر اختبار "اختبار الجذعية للحفر" طريقة لتهيئة البئر بشكل مؤقتً لتحديد خصائص الإنتاج لمنطقة معينة. كما يوفر بشكل أساسى معلومات عن محتوى هذه المنطقة.

يمدنا تحليل بيانات "DST " في "SAPHIR of KAPPA" ببيانات جيدة للمساعدة في تقييم مشكلات الإنتاج في بعض الأبار، وتقدير خصائص المكمن، وإنتاجية المنطقة،وتهيئة الأبار، ودرجة الضرر في منطقة تواجد المكمن وحاجتها إلى التحفيز ومعالجة هذا الضرر.

الكلمات الرئيسية: buildup ، DST، "SAPHIR of KAPPA"، نحصائص المكمن، إنتاجية المنطقة، الضرر، كوارتزيت الحمراء.

Table des Matières

Table des Matières

I.	Remerciements.	
II.	Dédicace	
III.	Résumé	
IV.	Liste des symboles et des abréviations	
V.	Liste des tableaux	
VI.	Liste des figures	
VII.	Annexes	
	Introduction générale	01
	CHAPITRE I : Généralités sur la région de Rhourde Nouss	
I.1	La situation de la région de Rhourde Nouss	03
I.1.1	Situation et limites géographique	03
I.1.2	Contexte géologique	03
I.2	Historique de l'exploration dans la région de Rhourde Nouss	04

1.2	Thistorique de l'exploration dans la region de Knourde Houss	04
I.3	Stratigraphie	04
I.3.1	Le socle	04
I.3.2	Le paléozoïque	05
I.3.3	Le mésozoïque	07
I.3.4	Le cénozoïque	07
I.4	Les réservoirs	07
I.4.1	Les principaux réservoirs de Rhourde Nouss	07
I.4.2	Quartzite de Hamra	07
I.5	Le cadre structural du champ de Rhourde Nouss	08
I.6	Aspect pétrolier	09

CHAPITRE II : Etude PVT

II.1	Différents types de fluides	11
II.1.1	Le gaz sec	12
II.1.2	Le gaz humide	12
II.1.3	Gaz a condensat	12

II.1.4	Huile volatile	12
II.1.5	Black oil	13
II.2	Introduction aux réservoirs de gaz à condensat	13
II.3	Condensation rétrograde	13
II.4	Comportement a l'écoulement de gaz à condensat	15
II.4.1	Comportement en Draw Down (puits en production)	15
II.4.2	Comportement en Build Up (puits fermé)	16
	CHAPITRE III : Théorie de Well-Test et méthodes d'interprétation	
III.1	Introduction	17
III.2	Principe du Well test	17
III.3	Objectifs de well test	17
III.4	Types de Well test	18
III.4.1	Test Draw Down (essai en ouverture)	18
III.4.2	Test Build Up (essai en fermeture)	19
III.5	Notions importantes	19
III.5.1	Notion de la zone compressible	19
III.5.2	Rayon d'investigation	20
III.5.3	Effet de capacité de puits (well bore storage)	20
III.5.4	Notion de Skin	20
III.6	Equation Fondamentales	21
III.6.1	Types des fluides	21
III.6.2	Régimes d'écoulement	21
III.6.3	La géométrie de l'écoulement dans le réservoir	22
III.6.3.1	Ecoulement linéaire et bilinéaire	22
III.6.3.2	Écoulement radial circulaire	23
III.6.3.3	Écoulement sphérique	24
III.6.4	Nombre de fluides débordants dans le réservoir	24
III.6.5	L'équation de diffusivité	24
III.6.5.1	La loi de Darcy	24
III.6.5.2	L'équation d'état	25
III.6.5.3	Loi de conservation de masse	25
III.6.5.4	L'équation de diffusivité	25
III.6.5.5	Résolutions de l'équation de diffusivité	25

III.6.5.6	Résolutions de l'équation de diffusivité sous la forme adimensionnelle	25
III.6.5.7	Spécificité pour les puits à Gaz	26
III.7	Procédures des tests de puits à gaz	27
III.7.1	Le black pressure test	27
III.7.2	Le test isochrone	28
III.7.3	Le test isochrone modifié	28
III.8	Présentation des méthodes d'interprétation	29
III.8.1	Les méthodes conventionnelles	29
III.8.2	Les méthodes modernes	29
III.8.2.1	Planches de courbes types	29
III.8.2.2	La méthode dérivative	29
III.9	Les modèles puits, réservoir et limites	30
III.9.1	Le model double porosité (réservoir fissure, non homogène)	31
III.9.1.1	Double porosité PSS (Model pseudo-permanent)	32
III.9.1.2	Double porosité (modèle transitoire)	33

CHAPITRE IV: Drill Stem Test

IV.1	Introduction	34
IV.2	Définition	34
IV.3	Principe de DST	34
IV.4	Description de matériels utilisés pour le DST	35
IV.4.1	Équipements de fond	35
IV.4.1.1	Composition d'un train de DST	36
IV.4.2	Les équipements de surface	39
IV.4.2.1	Tète de puits	40
IV.4.2.2	Choke manifold	40
IV.4.2.3	Le séparateur	41
IV.4.2.4	system de fermeture d'urgence ESD	41
IV.4.2.5	Bac de stockage d'huile	41
IV.4.2.6	Pompe de transfert (Gear pump)	41
IV.5	Les séquences de déroulement de DST	41
IV.5.2	La principale phase de l'opération	41
IV.5.3	Les déroulements des opérations pendant le test	42

CHAPITRE V : Interprétations des essais de puits

V.1	Introduction	45
V.2	Procédure de l'interprétation	45
V.3	Données nécessaire pour l'analyse des essais de puits	46
V.4	Description du logiciel de «saphir de kappa	47
V.5	Les étapes suivies pour accéder au logiciel saphir	47
V.6	Sélections des puits candidats	47
V.7	Analyse et interprétation des puits candidats	48
V.7.1	Cas du puits RN 117	48
V.7.1.1	Les données nécessaires pour l'interprétation	48
V.7.1.2	Interprétation et analyse	48
V.7.1.2.1	Identification	49
V.7.1.2.2	Résultats final de l'interprétation	51
V.7.1.2.3	Conclusions	51
V.7.2	Cas du puits RNZ-107	51
V.7.2.1	Les données nécessaires pour l'interprétation	51
V.7.2.2	Interprétation et analyse	52
V.7.2.2.1	Identification	53
V.7.2.2.2	Résultats final de l'interprétation	54
V.7.2.2.3	Conclusions	55
V.7.3	Cas du puits RNSE106	55
V.7.3.1	Les données nécessaires pour l'interprétation	55
V.7.3.2	Interprétation et analyse	55
V.7.3.2.1	Identification	56
V.7.3.2.2	Résultats final de l'interprétation	58
V.7.3.2.3	Conclusions	58
Conclusion	générale	59
Recomman	idations	60
Références bibliographiques		

Listes des symboles et des abréviations

	Α	
	 D	
B	B Facteur volumétrique du fond	STR/bbl
D	r acteur volumetrique du folid	510/001
C	Compressibilité	Psi-1
ce.	Compressibilité équivalente	Psi-1
cg	Compressibilité du gaz	Psi-1
Ct	Compressibilité totale	Psi-1
C	Canacité du nuits	
CD	Capacité de puits sans dimension	
CD	D	
D	Facteur de turbulence	
D	H	
н	Énaisseur de la couche	М
H.	Épaisseur utile de la couche	M
I IU	I I	111
IP	Indice de productivité	
11	K	
k	N Perméahilité	md
k k	la transmissibilité	md m
ks	Perméghilité de la zone altérée (endommagée)	Md
km	Perméabilité de la matrice	Md
KIII Vf	Perméabilité de la formation	Md
KI		IVIU
I No flow	L Distance entre la faille et le puits	
L-INO HOW	M	
$m(\mathbf{n})$	Fonction de preudo pression du gaz ou real gas potential	ka/am^2
m(p)		Kg/CIII
D	Pression	ka/am^2
Г D	Pression du puits	kg/cm^2
	Pression du gisement	kg/cm^2
re, rg	Pression sans dimension	kg/cm^2
r D D;	Pression initiale	kg/cm^2
F I Druf	Pression au fond d'un puits an débit	kg/cm^2
PWI		kg/cm
0	Q Débit maguré aux conditions de surface	bb1/day
Q	Débit total	bbl/day.
ųι Ωα	Débit de sez	$\frac{001}{\text{uay}}$.
Qg	Debit de gaz	m
	K Device du quite	La
rw	Rayon du puils	IN T
1 _i	Rayon du ducinação	IN Ta
re	Rayon de le zone colrectée	In T
rs	kayon de la zone colmatee	In
C	Slein 8	
2		
S'	Skin globale	

	Т	
t	Temps	S
tD	temps sans dimension	S
tps	Le pseudo-temps	S
Ť	Température.	°C
	V	
V	Volume.	m ³
\vec{V}	vitesse apparente.	
-	Z	
Ζ	Facteur de compressibilité du gaz.	
ΔP	Différence de pression.	psi
ΔPs	Pertes de charge dues au skin.	psi
Δt	Intervalle de temps de fermeture.	S
λ	Paramètre d'échange entre matrice et fissures	
μ	Viscosité.	Ср
ω	Rapport de capacité de la fracture sur la capacité totale du	
	système	
ρ	Masse volumique de fluide	kg/cm ²
Ø	Porosité	%
Div	Divergence	
Log	Logarithme décimal	
Ln	Logarithme népérien	
API	American Petroleum Institute	
TAGS	Trias Argilo Gréseux Supérieur	
TAGI	Trias Argilo Gréseux Inferieur	
GOR	Gas oil ratio	Stm ³ /m ³
CGR	condensat oil ratio	Stm ³ /m ³
AOFP	Absolute Open Flow Potential	
PVT	Pressure volume temperature	
DST	Drill stem test	
IAPR	Infinite acting radial flow	
IRDV	Intelligent Remote Dual Valves	
BHA	Bottom hole assembly	
POTV	Pressure Operated Tester Valve	
GPL	Gaz de pétrole liquéfié	

Tableau I.1	Historique de découvertes des champs en exploitation	04
Tableau I.2	Les principaux réservoirs de gisement de Rhourde Nouss	07
Tableau I.3	Distribution des différents effluents de la région Rhourde Nouss	
	(PED-RNS Juin 2016)	10
Tableau III.1	Les expressions des variables sans dimension	26
Tableau III.1	Pseudo-pression	27
Tableau III.1	Tableau représentatif des trois périodes de temps d'écoulement	30
Tableau V.1	Tableau V.1. Tableau représentatif des données Pétro-physique de	
	puits RN117	48
Tableau V.2	Les données de test de RN117	48
Tableau V.3	Les résultats finals de test de RN117	51
Tableau V.4	Les données petro-physique PVT de RAZ107	52
Tableau V.5	Les données de test de RAZ107	52
Tableau V.6	Les données de test de RNZ107	54
Tableau V.7	Les données petro-physique PVT de RNSE106	55
Tableau V.8	. Les données de test de RNSE106	55
Tableau V.9	résultats finals de test de RNSE106	58

Liste des figures

Carte de situation géographique de la région Rhourde Nouss	03
Colonne stratigraphique type de la région Rhourde Nouss	06
Les différents trends structuraux de la région de Rhourde Nous	
(SONATRACH, 1991)	09
Enveloppes de phase des différents fluides de réservoir d'hydrocarbure	11
Diagramme de phase d'un gaz à condensat	12
Diagramme hypothétique d'un gaz à condensat montrant la région rétrograde	14
Différentes régions d'écoulement des gaz à condensat (D'après Fevang et	
Whitson 1996)	16
Evolution de la composition du fluide dans la maille la plus proche du	
puits pour un gaz à condensat (Novosad, 1996)	16
Principe de Well-Test	17
Essai en débit (Draw Down)	19
Essais en fermeture (Build Up)	19
Régimes d'écoulement dans le réservoir	22
Types d'écoulement linéaire avec les lignes d'écoulement parallèles	
(Ehlig-Economides et al. 1994).	23
Géométries d'écoulement radial circulaire (Ehlig-Economides et	
al. 1994)	23
Géométries d'écoulement Sphérique (Ehlig-Economides et al. 1994)	24
Variation de μ Z et μ Ct en fonction de pression	26
l'évolution de la pression et du débit en fonction du temps durant le Back	
Pressure Test	27
l'évolution de la pression et du débit en fonction du temps durant le test	
isochrone	28
L'évolution de la pression et de débit en fonction du temps durant le test	
isochrone modifie	28
Graphe représentatif des configurations réservoir-puits-limites	31
Le modèle de réservoir double porosité	31
Effet de λ et ω sur la réponse dans la dérivé de pression	32
Réponse de modèle double porosité, pseudo steady state	33
Réponse de modèle double porosité, transitoire	33
	Carte de situation géographique de la région Rhourde Nouss. Colonne stratigraphique type de la région Rhourde Nouss. Les différents trends structuraux de la région de Rhourde Nous (SONATRACH, 1991). Enveloppes de phase des différents fluides de réservoir d'hydrocarbure Diagramme de phase d'un gaz à condensat. Diagramme hypothétique d'un gaz à condensat montrant la région rétrograde. Différentes régions d'écoulement des gaz à condensat (D'après Fevang et Whitson 1996). Evolution de la composition du fluide dans la maille la plus proche du puits pour un gaz à condensat (Novosad, 1996). Principe de Well-Test Essais en débit (Draw Down). Essais en fermeture (Build Up). Régimes d'écoulement dans le réservoir. Types d'écoulement tinéaire avec les lignes d'écoulement parallèles (Ehlig-Economides et al. 1994). Géométries d'écoulement Sphérique (Ehlig-Economides et al. 1994). Géométries d'écoulement Sphérique (Ehlig-Economides et al. 1994). Variation de μZ et μCt en fonction de pression. Pressure Test. Pressure Test. Pressure Test. L'évolution de la pression et du débit en fonction du temps durant le test isochrone. L'évolution de la pression et du débit en fonction du temps durant le test isochrone. L'évolution de la pression et du débit en fonction du temps durant le test isochrone. L'évolution de la pression et du débit en fonction du temps durant le test isochrone. L'évolution de la pression et du débit en fonction du temps durant le test isochrone. L'évolution de la pression et du débit en fonction du temps durant le test isochrone. L'évolution de la pression et du débit en fonction du temps durant le test isochrone. L'évolution de la pression et du débit en fonction du temps durant le test isochrone. Képonse de modèle double porosité. Effet de λ et o sur la réponse dans la dérivé de pression. Réponse de modèle double porosité, transitoire

Figure IV.1	Disposition des équipements d'un Test DST	35
Figure IV.2	Train de Test	36
Figure IV.3	Les types de Packer	37
Figure IV.4	Joint de Sécurité	37
Figure IV.5	Gauge Carrier	38
Figure IV.6	La vanne de fond (Tester Valve)	38
Figure IV.7	la vanne de Circulation	39
Figure IV.8	Choke manifold de Well Testing	41
Figure IV.9	L'enregistrement de pression de fond pendant un DST	43
Figure V.1	Processus d'interprétation des essais de puits	46
Figure V.2	Courbe de séquence de test (History plot) RN117	49
Figure V.3	L'enregistrement de Pwf et variation Q pendant le DST de RN117	49
Figure V.4	Semi-log plot RN117	50
Figure V.5	Courbe de dérivative de pression RN117	50
Figure V.6	Courbe de séquence de test (History plot) RNZ107	52
Figure V.7	L'enregistrement de Pwf et variation Q pendant le DST de RNZ107	53
Figure V.8	Semi-log plot RNZ107	53
Figure V.9	Courbe de dérivative de pression RNZ107	53
Figure V.10	Courbe de séquence de test (History plot) RNSE106	56
Figure V.11	L'enregistrement de Pwf et variation Q pendant le DST de RNSE106	56
Figure V.12	Semi-log plot RNSE106	57
Figure V.13	Courbe de dérivative de pression RNSE106	57

Introduction

générale

Introduction générale

En comparant avec les réservoirs de gaz classiques, les réservoirs de gaz non conventionnels s'étendent sur des espaces beaucoup plus vastes ; sur des centaines, voire des milliers de kilomètres carrés. Néanmoins, au sein de ces vastes espaces, il est souvent difficile de localiser l'endroit idéal où on produit commercialement ce type de gaz. Malgré cela, il existe des ressources en gaz non conventionnels partout dans le monde.

Ce n'est que récemment dans ces dernières années que l'Algérie a réalisé l'importance de ce lancer dans le non conventionnel, vu le grand potentiel qu'il représente, dans le but de maintenir la production et améliorer les réserves Algériennes pour faire face à la déplétion des ressources pétrolières conventionnelles et la concurrence internationale surtout après le lancement des États-Unis. C'est pour cette raison que le projet de « Quartzites Hamra » qui représente une grande valeur a été lancé dans la région Rhourde Nouss.

La caractérisation des réservoirs gréseux non conventionnels, dit « Tight Reservoir » est l'un des verrous technologiques de ces prochaines années pour pouvoir développer de nombreux champs à gaz dans le monde. La valorisation de cette ressource au potentiel très prometteur passe par la compréhension des relations entre le mode de fracturation et le comportement hydraulique des réservoirs. Cette approche a été appliquée à la formation de "Quartzites de Hamra", qui est l'un des plus importants réservoirs pétroliers dans les bassins paléozoïques Algériens. Cette formation à faciès homogènes et grande extension régionale est connue par un système de fractures naturelles qui pallient les faibles caractéristiques matricielles mais sur lesquelles les connaissances restent encore très partielles.

Notre étude s'est focalisée sur l'un des plus puissants outils et le plus commun sert à caractériser et bien connaitre notre nouveau gisement exploité, pour mieux le gérer dans le futur, cet outil est l'analyse des essais de puits dit « Well Test Analysis » qui représente une partie essentielle du processus du réservoir management qui a comme objectif de :

✓ Caractériser le réservoir.

✓ Déterminer la performance des puits.

Introduction générale

L'interprétation des essais de puits comportent deux branches : conventionnelles et modernes. Ce sont des méthodes standard de l'ingénierie de réservoir ; permettant de suivre l'évolution du débit et de la pression pour la caractérisation et l'obtention des informations sur le système pétrolier. Néanmoins, les informations disponibles par les essais conventionnels sont insuffisantes pour donner des résultats exacts à cause de leur utilisation sur une échelle manuelle ; qui n'exploite pas toutes les mesures.

Sachant que le "Quartzites de Hamra" est un nouveau « Tight Reservoir », et un milieu complexe mal connu, en plus que c'est un réservoir de gaz à condensat, tout ça fait que ce réservoir représente une difficulté supplémentaire pendant l'interprétation des données.

L'emploi de l'outil informatique «**SAPHIR** de **KAPPA** » basé sur les méthodes modernes des essais de puits a donc été introduit pour remédier à cette difficulté.

Dans ce contexte, ce mémoire s'adresse d'abord à l'interprétation des données de l'Opération «Well Test DST (Drill Stem Test) » de quelques puits de Quartzites Hamra dans le champ de Rhoude Nouss afin d'établir un modèle qui nous sert pour le futur développement de ce réservoir de gaz à condensat nouvellement découvert par SONATRACH.

Chapitre I:

Généralités sur la

région de Rhourde Nouss

I.1. La situation de la région de Rhourde Nouss :

I.1.1. Situation et limites géographique :

Le champ de Rhourde Nouss se situe à quelque 855 Km au Sud Est d'Alger, l'une des principales zones productives d'hydrocarbures du Sahara Algérien, il se trouve à 280 km environ au Sud-Est de Hassi Messaoud et à 350 km au Nord-Ouest d'Ain - Amenas. Il s'étend sur une superficie de l'ordre de 10000 Km², figure (I.1).

La région de Rhourde Nouss est située dans la wilaya d'Illizi et se positionne entre : • 29°16' et 30° parallèles.

• 06°24' et 07° méridien.

Elle est limitée au Nord par la région de Gassi-Touil, et au Sud par la direction de Hamra et la région de Tin-Fouyé Tabenkourt[1].

I.1.2. Contexte géologique :

La région de Rhourde Nouss se trouve sur l'extrême sud de la province du Sahara Nord Orientale. Elle est limitée par de grands éléments structuraux :

• à l'Ouest par le môle d'Amguid-El Biod, ce môle présente une vaste unité structurale

subméridienne, s'étendant sur 600 km allant d'Amguid au Sud et à Rhourde El Baguel au Nord.

• au Nord-Est par le bassin de Berkine vers lequel s'enfoncent les axes SO-NE des structures de Rhourde Hamra et de Rhourde Chouff.

• au Sud-Est par la partie Occidentale du môle d'Ahara, le fonds de Tin-Fouyé Tabenkourt au SE, et le haut de Maouar à l'Est [1].

I.2. Historique de l'exploration dans la région de Rhourde Nouss :

Les travaux de recherche sur cette région ont débutés en 1956 par la compagnie ElPaso (France – Afrique) avec l'implantation de HA1 qui a été foré sur la structure de Hamra.

La poursuite des travaux sur cette même structure a permis en 1958 de forer HA2. Ce dernier a donné du gaz dans les réservoirs Trias Gréseux et Ordovicien. Dès lors, les travaux ont été poursuivis vers l'Ouest avec la mise en évidence en 1959 de la structure de Ramade Nord qui a fourni des résultats négatifs.

Par la suite, les recherches ont été orientées vers le Nord-Est, où la structure de Rhourde Nouss a été mise en évidence. En 1962, le sondage RN1 de 2100m de profondeurs a révélé du gaz dans le Trias [2].

Champ	Découvert	Date de mise en service	Richesse (g/m3)	Nombre despuits producteurs	Nombre des puits injecteurs
RNC	1962-1936	1988	160	27	13
RNSE	1972	1988	176	8	8
RNSW	1973-1974	1988	170	4	3
RA	1964	1989	400	9	6
RHA	1971	1992	240	4	0

Tableau I.1. Historique de découvertes des champs en exploitation. [2].

I.3. Stratigraphie :

•

La série stratigraphique de la région de Rhourde Nouss est composée des ensembles suivants

* Le Paléozoïque qui est incomplet, reposant sur un socle de nature granitique et /ou métamorphique.

- * Le Mésozoïque.
- * Le Cénozoïque.

I.3.1. Le socle :

Il est représenté par un complexe granitique et /ou métamorphique plissé et faillé. Il est trèspeu connu, en raison du nombre limité de puits qui l'ont atteint.

I.3.2. Le Paléozoïque :

Les premiers dépôts paléozoïques sous la discordance hercynienne sont datés Silurien, ils sont constitués d'un ensemble Argilo-gréseux. Le Dévonien et le Carbonifère sont eux érodés. En revanche, on marque la présence de toutes les séries de l'Ordovicien et du Silurien, où l'épaisseur maximale est estimée 4000 mètres, notamment dans le sillon de Marfag qui se situe dans la partie ouest de la région.

I.3.2.1. Le Cambrien :

Il est représenté par les grés de Hassi Leïla, constitué dans sa partie basale par des grés quartzitiques fins à grossiers mal classés et dans sa partie sommitale par des quartzites fins. L'épaisseur moyenne est estimée à 104 m.

I.3.2.2. L'Ordovicien :

C'est un terme très complexe, constitué par des alternances de grés quartzitiques et d'argiles. Son épaisseur moyenne varie de 750 à 1250 m et se compose de plusieurs unités se succédant de bas en haut :

- Grés de Méribel : Son épaisseur est de 180 m.
- ♦ Argiles d'El Gassi : Une épaisseur de 268 m.
- ♦ Grés d'El Atchane : Epais de 56 m.
- Quartzites de Hamra : Epais en moyenne de 80 à 232 m.
- ◆ Grés d'Ouargla : Son épaisseur varie de 91 à 100 m.
- ◆ Argiles d'Azzel : Son épaisseur est estimée entre 64 et 117 m.
- Grés d'Oued Saret : une épaisseur moyenne variant de 103 à 137 m.
- ◆ Les Argiles Micro-Conglomératiques : une épaisseur variant de 66 à 119 m.
- Dalle M'Kratta : une épaisseur variant de 6 à 10 m.

I.3.2.3. Le Silurien :

Constitué par deux séries : une épaisse série argileuse à la base, surmontée par une autre qui comprend un ensemble argilo-gréseux.

• Silurien Argileux : Une épaisseur variant de 232 à 341 m. Il est constitué d'une série d'argiles noires micacées très riches en faunes (Brachiopodes, Gastéropodes et Graptolites).

• Silurien Argilo-gréseux : Il représente le réservoir F6, qui comporte six unités.

I.3.2.4. Le Dévonien :

Le Dévonien quant à lui est totalement érodé.

I.3.2.5. Le Carbonifère :

A l'instar du Dévonien, l'érosion a affectée entièrement le Carbonifère.

I.3.2.6. Le permien :

Il est eu de même pour le Permien, l'érosion semble avoir touchée l'intégralité du Paléozoïque supérieur.

Figure I.2. Colonne stratigraphique type de la région Rhourde Nouss [2].

I.3.3. Le Mésozoïque :

Il est représenté par le trias, le jurassique et le crétacé avec une épaisseur totale de 2621m.

I.3.4. Le Cénozoïque :

Il est représenté par le Moi-Pliocène, qui a une épaisseur de 150 à 370m. Les autres termes du Paléocène, de l'Eocène et de l'Oligocène ont été érodés ou non déposés suite à la phase Atlasique.

I.4. Les réservoirs :

I.4.1.Les principaux réservoirs de gisement de Rhourde Nouss :

Dans la région de Rhourde Nouss on distingue, trois réservoirs importants à savoir :

Tableau I.2. Les principaux réservoirs de gisement de Rhourde Nouss [2].

Réservoir	Composition	Caractéristiques pétro-physiques	Epaisseur	Nature d'effluent	Remarque
TAGS	Grès propre moyens à grossiers à stratifications obliques.	La porosité moyenne entre 15% et 20%, une bonne perméabilité.	Varie de 100 à 200 m.	Gaz avec un anneau d'huile.	Bonne Caractéristiques pétro-physiques et une bonne continuité latérale de ce dépôt.
TAGI	Grès fins à très fins à ciment argileux et d'argiles silteuses.	La porosité moyenne entre 8.4% et 13.7%, la perméabilité est rarement supérieure à 10 md.	La hauteur utile varie entre 10 à 35 m.	Gaz riche en condensât.	Caractéristiques pétro-physiques moyennes à bonnes, une grande continuité latérale de ce dépôt.

I.4.2. Quartzites de Hamra :

Ce réservoir fait l'objet de notre étude :

➢ Ce réservoir contient du gaz à condensât parfois d'huile. Il est constitué de quartzites et de grès quartzitiques moyens à grossiers intercalés de quelques petits niveaux d'argile finement gréseuse vers la base. Il est assez épais (200 à 250m) et compact avec des caractéristiques pétrophysiques médiocres, seule la présence des fissures ouvertes fera de cette formation un bon réservoir ; sa porosité moyenne varie de 2.7% à 4.1% et sa perméabilité est en général inférieure à 0.1 md. Leur intérêt est lié à leur épaisseur importante ainsi qu'à leur Fracturation Naturelle.

Une géophysique très poussée et à grand maillage est un moyen de détermination des zones intéressantes (fissurées) pouvant renfermer des hydrocarbures. Une étude sismique 3D a été réalisée dans le cadre du projet intégré Gassi Touil Rhourde Nouss, cette étude à permet de mieux cerner l'aspect structural des Quartzites de Hamra de toute la région.

Cette formation a été rencontrée lors des forages d'exploration dans les structures de Rhourde Nouss, RNSW, RNSE, Radra, RASud, RACentre, Hamra, RHamra, RHSE, Meksem, El KTAIA, EL MOUILAH, DRAA ALLAL d'une superficie estimée à 10 000 km², et un étendue régionale assez important, voir jusqu'aux confins de la région de Gassi Touil (Nezla, Brides ..), s'avère être un réservoir du futur, vu le potentiel en hydrocarbures au niveau de la région et sur plusieurs périmètres.

Une trentaine de puits réalisés au niveau de la région de Rhourde Nouss et sur d'autres structures dont certains ont été positifs et qui ont confirmé l'importance de ce réservoir.

Les fortes réserves de condensât calculées pour ce réservoir résultent d'un important volume de roche dans lequel la fracturation est loin d'être homogène.

L'exploitation d'un tel gisement est caractérisée par deux phénomènes :

• Le dépôt du liquide qui suit le déclin isotherme de la pression c'est le phénomène rétrograde.

• La production du liquide en surface par suite de la détente avec abaissement de la température entre le réservoir et les installations de production [3].

I.5. Cadre structural du champ de Rhourde Nouss :

Un aperçu sur la structure de Rhourde Nouss est important, car il va permettre de mieux comprendre le rôle de la tectonique dans la formation des pièges et l'accumulation des hydrocarbures.

La zone d'étude est située entre deux éléments structuraux majeurs de la plateforme saharienne.

La région de Rhourde Nouss se présente alors comme une zone très structurée par des plis anticlinaux très accusés et des synclinaux très profonds. La structuration actuelle est le résultat des effets des nombreuses contraintes tectoniques qui se sont succédé au cours des temps géologiques. La structure de Rhourde Nouss de dimension 40 x 30 km² est composée de quatre structures différentes à savoir Figure (I.3) :

- Rhourde Nouss central (RN).
- Rhourde Nouss sud-est (RNSE).
- Rhourde Nouss sud-ouest (RNSW).
- Rhourde El Adra (RA).

Figure I.3. Les différents trends structuraux de la région de Rhourde Nouss (SONATRACH, 1991) [3].

I.6. Aspect pétrolier :

Le système pétrolier principal est admis comme étant lié à l'association des roches mères du Silurien basal, des pièges de forte amplitude générés par les mouvements dits autrichiens, des réservoirs du Trias et du Silurien Argilo-Gréseux et de l'excellente couverture de l'ensemble, constituée par les évaporites du Lias. Les pièges sont supposés avoir été mis en charge par des migrations latérales à longue distance provenant de l'Ouest et du Nord et possiblement, verticalement à travers les failles. Un système pétrolier secondaire est associé au réservoir profond des Quartzites de Hamra.

- Les hydrocarbures reconnus sont :
- De l'huile et du gaz a condensât dans le TAGS et l'infra-TAGS de Rhourde Nouss Centre.
- Du gaz à condensât dans le TAGS et l'infra-TAGS de Rhourde Adra.

• De l'huile et du gaz à condensât dans le TAGS de Rhourde Nouss Sud-Est et Rhourde Nouss Sud-Ouest.

• De l'huile dans l'infra-TAGS de Rhourde Nouss Sud Est (Trias et Silurien A).

- Du gaz à condensât et un peu d'huile dans les Quartzites de Hamra de Rhourde Nouss Centre, Rhourde Nouss Sud Est et Sud-Ouest, de Rhourde Adraet de Meksem[2].
- Les réserves initiales prouvées de la région Rhourde Nouss sont mentionnées dans le tableau suivant :

Tableau I.3. Distribution des différents effluents de la région Rhourde Nouss(PED-RNS Juin 2016) [3].

Effluents	TAGS	Infra-TAGS	Q.HAMRA	TOTAL
			(Ordovicien)	
GAZ (en Milliard M ³)	432.27	46.87	210.86	690
Condensat (en millions de Tonnes)	87.35	8.57	53.08	149
GPL(en millions de Tonnes)	34.52	3.53	15.52	53.57
Huile (en Millions M ³)	88.65	93.43	19.43	201.51

Chapitre II: Etude PVT

II.1. Différents types de fluides :

Les fluides contenus dans les réservoirs d'hydrocarbures contiennent du méthane et une grande variété de molécules à chaine longue ou intermédiaire. L'état physique du fluide de réservoir d'hydrocarbure dépend de sa composition, et des conditions de pression et de température régnant dans le réservoir. Si le fluide contient des molécules légères, sa température critique peut être inférieure à la température de réservoir et le fluide serait dans un état gazeux. Inversement, lorsque le fluide contient des molécules lourdes, sa température critique peut être plus élevée que celle du réservoir et le fluide serait à l'état liquide.

La classification la plus courante des fluides pétroliers et gaziers est basée sur le degré de volatilité. Selon cette classification, les fluides sont arrangés en gaz, gaz à condensat, huile volatile et Black Oil. Pour le gaz, on distingue le gaz sec et le gaz humide en fonction de la présence ou non de phase liquide en surface.

Les enveloppes de phase des fluides de réservoir sont représentées dans la (Figure II.1) où « C » indique le point critique [4].

Figure II.1. Enveloppes de phase des différents fluides de réservoir d'hydrocarbure [4].

II.1.1. Le gaz sec :

Le gaz sec est composé principalement de méthane et des éléments non hydrocarbures tels que N₂ et de CO₂. L'absence des éléments lourds fait que l'enveloppe se trouve essentiellement à gauche de la température de fluide en surface. Le fluide restera gazeux (monophasique) du réservoir jusqu'en la surface [5].

II.1.2. Le gaz humide :

Le gaz humide est composé principalement de méthane et d'autres hydrocarbures légers. Le gaz humide existe à l'état gazeux dans le réservoir. Toutefois, les conditions de séparation se situant dans l'enveloppe entrainent la formation de liquide en surface[5].

II.1.3. Gaz à condensat :

Le condensat de gaz contient une petite fraction de composants lourds. La présence de composants lourds dilate l'enveloppe vers la droite (Figure II.2) par rapport à celle du gaz humide, ainsi la température de réservoir se situe entre la température critique et la cricondentherme[5].

Figure II.2. Diagramme de phase d'un gaz à condensat [5].

II.1.4. Huile volatile :

L'huile volatile contient plus de composants lourds (heptanes plus) que le gaz à condensat de sorte que le fluide se trouve à l'état liquide dans les conditions du réservoir. La température du réservoir est inférieure mais proche de la température critique [5].

II.1.5. Black Oil :

Black Oil ou Low Shrinkage Oil contient une fraction importante de composants lourds.La température critique est beaucoup plus élevée que la température du réservoir. La pression de bulle de cette huile est faible. Une réduction importante de la pression au- dessous de la pression de bulle (à la température du réservoir) ne ferait apparaître qu'une faible quantité de gaz [5].

II.2. Introduction aux réservoirs de gaz à condensat :

Les réservoirs de gaz à condensat se trouvent généralement à 3000-6000 psi et à 200-400°F et sont pour la plupart initialement à l'état gazeux (absence de phase liquide).Les réservoirs de gaz à condensat peuvent approximativement être définis comme ceux produisant du liquide avec une densité supérieure à 40 °API et un GOR compris entre 3200 et 15000 scf/bbl.

Un réservoir de gaz à condensat contient :

- Majoritairement du méthane.
- Des composants intermédiaires : éthane, propane, butane, pentane et hexane.
- Une faible fraction de composants lourds : heptane et plus.

Avec la production la pression diminue, le fluide reste à l'état gazeux jusqu'à ce que la pression de rosée soit atteinte. Avec le déclin de pression au- dessous de la pression de rosée, du liquide se condense à partir du gaz dans le réservoir.

En surface, la condensation rétrograde est indiquée par une production de gaz plus léger et moins riche en condensables avec une augmentation notable du GOR.

Ce phénomène de condensation est théoriquement anormal. En effet, une diminution isotherme de la pression produira, en principe une vaporisation et non pas une condensation. C'est la raison pour laquelle ce phénomène est appelé condensation rétrograde.

II.3. Condensation rétrograde :

Kurata et Katz ont donné l'explication la plus concise et la plus pertinente du phénomène de condensation rétrograde. En 1892, Kuenen utilise le terme de «condensation rétrograde» pour décrire le comportement anormal d'un mélange d'hydrocarbure qui forme un liquide avec une diminution isotherme de la pression ou avec une augmentation isobare de la température. Inversement, le terme de «vaporisation rétrograde» peut être utilisé pour décrire la formation de vapeur avec une augmentation isotherme de la pression ou une diminution isobare de la température.
La (Figure II.3) représente le diagramme pression-température pour un mélange donné d'hydrocarbures, la composition chimique globale est supposée constante. Le diagramme montre des courbes d'égale composition en phase liquide en pourcentage. La courbe représentant 0% de liquide est dite courbe de rosée et celle représentant 100% de liquide est dite courbe de bulle. Ces courbes se rencontrent au point critique.

La figure montre aussi que pour que la condensation rétrograde se produise, il faut que la température du gisement soit comprise entre les températures critique et critique de condensation. La zone correspondant aux phénomènes rétrogrades est limitée par une courbe constituée par le lieu des maximums de condensation pour chaque température.

Après que le maximum de condensation soit atteint, une vaporisation du condensat commence avec une chute isotherme de la pression. Cette vaporisation (théoriquement normale) continuera jusqu'à une transformation complète du condensat en gaz. La vaporisation du condensat permet de récupérer le condensat, elle est mise en évidence en surface par une diminution du GOR [4].

Figure II.3.Diagramme hypothétique d'un gaz à condensat montrant la région rétrograde [4].

Malheureusement, le processus de production empêche la vaporisation totale et par conséquent la récupération totale du condensat, car :

Avec la condensation rétrograde la composition chimique du fluide dans réservoir change ;
 Le diagramme de phase sera décalé vers un pourcentage plus élevé en composants lourds.

2) La structure de la roche réservoir nécessite que la saturation en liquide atteigne un pourcentage critique (15 à 20%) du volume des pores avant que le liquide commence à s'écouler;

- Ce pourcentage de condensat sera piégé et restera immobile dans le réservoir.
- Dans certains cas, un volume suffisamment grand de liquide sera condensé procurant une mobilité à la phase liquide.
- La composition du fluide en surface dépend des mobilités relatives (k/µ) du gaz et du liquide dans le réservoir.

II.4. Comportement à l'écoulement de gaz à condensat :

II.4.1. Comportement en Draw Down (puits en production) :

La performance du réservoir pendant la production d'un puits de gaz à condensat peut être décrite comme suit :

***** Étape 1 : le gaz dans le réservoir est monophasique.

Pour **Pwf> Pd**, le fluide de réservoir existe en tant que gaz monophasique.

***** Étape 2 : le gaz est mobile alors que le liquide est immobile.

Lorsque la pression de fond **Pwf** baisse au-dessous de la pression de rosée **Pd**, du condensat se forme aux abords du puits avec une saturation au- dessous de la saturation critique et reste immobile.

***** Étape 3 : le gaz et le condensat sont mobiles.

Alors que la production continue, le condensat s'accumule jusqu'à ce que la saturation en condensat dépasse la saturation critique dans la zone proche du puits. Liquide condensat coulera dans le réservoir. Comme le profil de saturation liquide continue d'augmenter en ampleur et en distance radiale, un régime permanent (steady state) sera éventuellement atteint et dans lequel le volume de liquide condensé est égal au volume de liquide produit.

***** Étape 4 : la pression du réservoir et Pwf sont au-dessous de la pression de rosée.

La condensation du liquide se produit dans tout le réservoir.

En se basant sur des études antérieures, Fevang et Whitson (1996) ont proposé un modèle simple mais précis pour l'écoulement du gaz à condensat vers un puits producteur dans un réservoir subissant une déplétion, une fois le régime permanent est atteint.

Sur la base de ce modèle, l'écoulement des fluides peut être divisé en trois grandes régions d'écoulement (Figure II-4) [6].

Figure II.4.Différentes régions d'écoulement des gaz à condensat (D'après Fevang et Whitson 1996) [6].

II.4.2. Comportement en Build Up (puits fermé) :

Pendant la production, comme nous l'avons mentionné précédemment, la composition globale du gaz à condensat change, si bien qu'il devient plus riche en composants lourds. Si le puits est fermé, le condensat accumulé autour du puits en production peut ne pas se vaporiser.

La thermodynamique et le comportement des gaz à condensat pendant la période de fermeture dépendent de la composition globale, la saturation et la pression du condensat au moment de la fermeture des puits. Ainsi, la fermeture des puits après avoir accumulation du condensat n'est pas une bonne stratégie pour atténuer l'effet de blocage du condensat car la saturation en huile volatile augmentera avec l'augmentation de la pression [6].

Figure II.5. Evolution de la composition du fluide dans la maille la plus prochedu puits pour un gaz à condensat (Novosad, 1996) [6].

Chapitre III: Théorie de Well-Test et méthodes d'interprétation

III.1. Introduction :

Depuis ses modestes débuts comme un test rudimentaire de productivité, les tests de puits devenir l'un des outils les plus puissants pour déterminer les caractéristiques complexes de réservoir. La nécessité d'avoir à la fois, un fond de puits contrôlé et jauges de haute performance ont fait le Well-Testing un outil puissant pour la description de réservoir.

L'analyse des essais de puits permet d'obtenir des renseignements sur le réservoir et sur le puits, permettant la construction du modèle de réservoir en association avec les études géologiques et géophysiques. Ce modèle sera utilisé pour prédire le comportement du champ, estimer la rentabilité et la récupération, et l'amélioration de la productivité des puits.

III.2. Principe de Well-Test:

Le principe de base de l'essai de puits est de créer une perturbation (fermeture et ouverture de puits, changement du débit) dans le système « réservoir + fluide » et enregistrer la réponse transitoire de pression. En général, les débits sont mesurés en surface alors que la pression est enregistrée au fond du puits [7].

Figure III.1. Principe de Well-Test [7].

III.3. Objectifs de Well test :

Les essais initiaux servent à confirmer les hypothèses d'exploration, et à établir une première prédiction de la production.

Sur les puits producteurs, les essais périodiques sont faits afin de confirmer la description du réservoir, et pour évaluer un éventuel besoin de traitement, tel que nouvelle complétion, perforation...etc.

D'une façon générale le but des essais de puits est :

- Évaluer l'indice de productivité (IP) pour un puits à effluent liquide, tandis que pour un puits à gaz, c'est de définir la courbe de débit potentiel (AOFP).
- Évaluer les caractéristiques pétrophysiques de réservoir comme la perméabilité lointaine, la transmissibilité (kh), l'hétérogénéité, les limites de réservoir, et la porosité.

- Mesurer la pression et la température initiale de réservoir
- Déterminer l'endommagement de puits « skin ».
- Déterminer le rayon de drainage de chaque puits pour évaluer le nombre adéquat de puits à forer dans ce réservoir.
- Déterminer la nature et les caractéristiques des fluides produits suite à une opération d'échantillonnage PVT.
- Estimer les réserves à partir des renseignements fournis par les essais de puits pour évaluer le réservoir [7].

III.4. Types de Well test:

On peut classer les essais de puits par plusieurs critères :

- Selon la chronologie de test :
 - Les tests initiaux DST (Drill Stem Test) ; test au cours de forage.
 - Tests potentiels.
 - Tests de jaugeages.
- Selon le nombre de puits rentrant dans le test :
 - Test à un seul puits (build up, draw down, falloff).
 - Tests à plusieurs puits (test d'interférence, pulse test).
- Selon le type de puits :
 - Test des puits producteurs (build up, draw down).
 - Tests des puits injecteurs (test d'injectivité ; falloff).
- Selon le mode de test :
 - En fermant le puits (build up, falloff).
 - En ouvrant le puits (draw down, test d'injectivité)[4].
 - En plusieurs fermetures et ouvertures successives (dst, test d'interférence, pulse test).

III.4.1. Test Draw Down (essai en ouverture) :

L'essai en débit est une série de mesures de pression de fond pendant la période de production à débit constant. Généralement, le puits est fermé avant l'essai pendant un temps suffisant pour atteindre la pression de gisement. Un exemple de débit et d'historique de pression est schématisé sur la figure (III.2).

III.4.2. Test Build Up (essai en fermeture):

L'essai Build Up décrit la remonté de la pression de fond en fonction du temps après la fermeture du puits. Le temps de fermeture est symbolisé par Δt . La figure (III.3) représente le débit avant la fermeture et le comportement idéal de la pression durant la période de Build Up.

Figure III.3.Essais en fermeture (Build Up) [7].

III.5. Notions importantes :

III.5.1. Notion de la zone compressible :

Le principe de Well test est de créer une perturbation dans le puits, cette perturbation va se propager dans le réservoir jusqu'elle atteigne les limites de réservoir, on peut appeler la zone atteinte par la perturbation (pendant la propagation de perturbation) comme la zone compressible [8].

III.5.2. Rayon d'investigation :

On peut définir le rayon d'investigation comme la position de la zone de compression dans le réservoir ou bien la position atteinte par la perturbation. Plusieurs définitions ont été donnés à la notion du rayon d'investigation mais la définition de J. Lee et Muskat c'est l'équation la plus applicable pour situer le rayon d'investigation d'un essai de puits. Le rayon d'investigation est l'endroit du réservoir où l'évolution de la pression est la plus grand [7][8] :

$$r_i = 0.0324 \sqrt{\frac{k t}{\emptyset \, \mu \, C_t}}$$
(III.1).

III.5.3. Effet de capacité de puits (well bore storage) :

Un essai de puits commence par une variation brutale du débit de puits (soit de zéro à une valeur constante, ou l'inverse), cette variation est contrôlée en surface mais malheureusement n'est pas contrôlé au fond. Si le puits est fermé 'Build up' le débit au fond n'arrête pas et suit une évolution progressive grâce à la compressibilité de la colonne de fluide de la formation. Par contre, s'il est ouvert 'draw down', au début, la production en surface est due à l'expansion de fluide comprimé dans le puits [7].

L'effet de capacité de puits est exprimée par la constante « C » avec :

III.5.4. Notion de skin :

Le Skin par définition est un facteur de perte de charge aux abords du puits par rapport à la perte de charge total, historiquement on ne connait que le skin mécanique qui est dû principalement à l'infiltration des fluides de forage, complétion et stimulation à la formation ce qui réduit fortement la perméabilité voisine.

On peut facilement définir un facteur d'endommagement adimensionnel, Skin « S », en fonction des propriétés de la zone altérée équivalente :

Remarque :

- Si le puits est endommagé donc (ks< k), le skin sera positif (S > 0).
- Si le puits est stimulé donc (ks> k), le skin sera négatifs (S < 0).
- Si le puits ni endommager ni stimuler (ks=k, S=0).

Actuellement, on définit le Skin comme étant la somme des pseudos skin dont le skin mécanique ou d'endommagement fait partie, tel que :

 $S = S_m + S_{PP} + S_P + S_f + S_{dw}$ (III.4).

- S : skin total.
- S_m : skin d'endommagement (skin mécanique).
- S_{PP}: skin dû à la pénétration partielle.
- S_P : skin dû au perfores.
- S_f : skin de fracturation hydraulique (skin de fractures).
- S_{dw} : skin dû à la déviation du puits (inclinaison de puits) [7][4][8].

III.6. Equations fondamentales :

L'objectif principal de cette partie est de présenter les relations mathématiques qui sont conçues pour décrire le comportement d'écoulement des fluides du réservoir. Les formulations mathématiques de ces relations varient selon les caractéristiques du réservoir [4].

Les caractéristiques primaires de réservoir qui doivent être considérées incluses :

- Types de fluides dans le réservoir.
- Régimes d'écoulement.
- La géométrie de réservoir.
- Nombre de fluides débordants dans le réservoir.

III.6.1. Types des fluides :

Généralement les fluides du réservoir sont classifiés en trois groupes :

- Les fluides incompressibles. -Les fluides peu compressibles. -Les fluides compressibles.

✓ Fluides incompressible

Un fluide incompressible est défini comme étant le liquide dont le volume (ou densité) ne change pas avec la pression.

✓ Fluides peu compressibles :

Le petit changement du volume, ou la densité, avec des changements de pression.

✓ Fluides compressibles :

Un grand changement de volume en fonction de la pression. Tous les gaz sont considérés comme des fluides compressibles [5].

III.6.2. Régimes d'écoulement :

Il existe essentiellement trois types de régimes d'écoulement à identifier pour décrire le comportement de l'écoulement du fluide et la distribution de la pression du réservoir en fonction du temps :

✓ Ecoulement permanent (Steady state) :

Quand la zone compressible est soumise à l'effet d'un ensemble de limites à pression constante, le régime d'écoulement devient permanent. C'est le régime d'écoulement existant en production dans un réservoir soumis à l'influence d'un gaz cap ou d'un aquifère actif.

✓ Ecoulement transitoire (Unsteady state) :

Tant que la zone compressible n'a pas atteint la limite du réservoir ou, n'a pas perçu l'influence d'un autre puits, le réservoir se comporte au moment du test comme s'il était infini.

✓ Ecoulement semi permanent (Pseudo Steady state) :

Quand la zone compressible atteint un ensemble de limites à flux nul, le régime d'écoulement devient pseudo-permanent, c'est le régime d'écoulement existant dans un réservoir fermé non alimenté, en production [4][5][7][8].

III.6.3.La géométrie d'écoulement dans le réservoir :

La forme d'un réservoir exerce un impact significatif sur son comportement d'écoulement. La géométrie de l'écoulement réel peut être représentée par l'un des écoulements suivants :

III.6.3.1. Écoulement linéaire et bilinéaire :

L'écoulement linéaire intervient lorsque les lignes d'écoulement sont parallèles et l'écoulement suit une seule direction. Cela se produit seulement lorsque l'aire de l'écoulement est constante, on trouve ce type d'écoulement dans les puits à fractures naturelles communicantes ou fracture artificiel.

Figure III.5. Types d'écoulement linéaire avec les lignes d'écoulement parallèles (Ehlig-Economides et al. 1994) [7].

III.6.3.2. Écoulement radial circulaire:

Dans l'absence des hétérogénéités de réservoir l'écoulement vers le puits suit un chemin radial aux alentours de puits et le gradient de pression augmente aux abords de puits, l'écoulement devient radial, c'est pour cette raison que la géométrie de l'écoulement radial est applicable dans l'analyse des données de la pression transitoire.

III.6.3.3. Écoulement Sphérique :

Selon le type de configuration de complétion du puits, il est possible d'avoir un écoulement sphérique ou hémisphérique près du puits. Bien qu'avec une perforation dans un l'intervalle limité a pu avoir comme conséquence un écoulement sphérique à proximité des perforations comme illustré sur la figure (III.7) (a).

Un puits qui pénètre partiellement la zone productrice, suivant les indications de la figure (III.7) (b), a pu avoir comme conséquence l'écoulement hémisphérique. La condition a pu surgir là où le coning d'eau est important [5][7].

(a) : Ecoulement sphérique

(b) : Ecoulement hémisphérique

Figure III.7. Géométries d'écoulement Sphérique (Ehlig-Economides et al. 1994) [7].

III.6.4. Nombre de fluides débordants dans le réservoir :

Il y a généralement trois cas de système d'écoulement :

- Écoulement monophasé (huile, eau, gaz).
- Écoulement bi-phasique (huile-eau, gaz-huile, gaz-eau).
- Écoulement triphasé (huile-eau-gaz).

III.6.5. L'équation de diffusivité :

L'équation de diffusivité régit l'évolution de la pression dans le réservoir et dans le temps. Elle est établie à partir de deux lois et une équation d'état [4].

III.6.5.1. La loi de Darcy :

La loi de Darcy ou la loi de filtration linéaire est utilisée pour décrire les écoulements des fluides dans les milieux poreux.

III.6.5.2. L'équation d'état :

La densité du fluide varie avec la pression. Cette variation est traduite par la compressibilité équivalente des fluides mobiles.

III.6.5.3. Loi de conservation de masse :

Cette équation explique le principe de Lavoisier (Equation de continuité) ; la variation de la masse du fluide contenu dans l'élément de volume est égale à la différence entre la quantité de fluide entré et sortie pendant un intervalle de temps, et peut être formulé mathématiquement avec :

$$div \rho \vec{V} + \frac{\partial (\rho \phi \operatorname{So})}{\partial t} = 0....(\operatorname{III.7}).$$

Avec So ; est la saturation en huile, et ϕ ; est la porosité de la roche.

III.6.5.4. L'équation de diffusivité :

Par la combinaison de la loi de Darcy (III.5), l'utilisation de l'équation d'état (III.6) et la loi de conservation de masse (continuité) (III.7) et par la mise en place des hypothèses suivante [7] :

* Un fluide peu compressible. *Viscosité constante et gradient de pression faible.

* Porosité et compressibilité totale de la roche sont constantes.
* Écoulement monophasique.
On obtient l'équation de diffusivité sous la forme suivante :

III.6.5.5. Résolution de l'équation de diffusivité :

La résolution de l'équation de diffusivité est obtenue avec les conditions aux limites suivantes :

·La pression à l'instant initial t=0 est égale à la pression du gisement P (0)= P_i

- · Débit constant dans le puits considéré comme ayant un rayon infinitésimal.
- Réservoir infini c'est-à-dire à la limite de la zone de drainage du puits P (re)= P_i

On obtient l'équation de diffusivité :

Pi - Pwf(t) =
$$\frac{162.6 \text{ qB} \mu}{\text{kh}} [\log(t) + \log(\frac{k}{\phi \mu C_t r_w^2}) - 3.23 + 0.87S] \dots (III.9).$$

III.6.5.6. L'équation de diffusivité sous la forme adimensionnelle :

Pour simplifier l'équation de diffusivité, en utilisons les variables sans dimension suivants [7] :

Pression	longueur	Temps	Effet de capacité de puits
$p_{\rm D} = \frac{\kappa h}{142,2q\beta\mu} \Delta P$	$r_{\rm D} = \frac{r}{r_{\rm w}}$	$t_{\rm D} = \frac{0,000264K}{\varphi\mu C_{\rm t}r_{\rm w}^2}\Delta t$	$C_{\rm D} = \frac{0.8937 \text{ C}}{\phi h C_{\rm t} r_{\rm w}^2}$

Tableau III.1.Les expressions des variables sans dimension.

En fin l'équation de diffusivité en introduisant le skin et en fonction des variables adimensionnels devient :

$$P_{\rm D}(t_{\rm D}) = \frac{1}{2} \left[\ln(\frac{t_{\rm D}}{r_{\rm D}^2}) + 0.809 \right] + S \dots \dots \dots (\text{III. 10}).$$

III.6.5.7. Spécificités pour les puits à Gaz :

Dans un puits à gaz la viscosité et la compressibilité varient avec la pression.

L'équation d'état pour un gaz s'écrit :

$$PV = ZnRT.....(III.12).$$

Par la combinaison de l'équation d'état d'un gaz et la loi de Darcy avec la loi de conservation de masse, on obtient l'équation de diffusivité pour un gaz :

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{P}{\mu Z}\frac{\partial y}{\partial x}\right) = \frac{\emptyset\mu C_t}{k}\frac{P}{\mu Z}\left(\frac{\partial P}{\partial t}\right).....(\text{III.13}).$$

✤ La pseudo-pression :

La pseudo-pressionm(P), aussi appelée « real gas potentiel» est définie par

$$m(P) = 2 \int_{P_{ref}}^{P} \frac{P}{\mu Z} dP$$
....(III.14).

La pseudo pression a été calculée pour chaque point de pression, leur évolution est déterminée à partir d'un graphe $\mu Z = f(P)$ [3][2].

Figure III.8.Variation de μ Z et μ C_t en fonction de pression [7].

Tableau III.2. Pseudo-pression [7].

P< 2000 psia	2000 < P < 3000	P > 2000 psia	
$\mu Z = constant$	$m(P) = 2 \int_{-\pi}^{P} \frac{P}{dP} dP$	μZ varie linéairement avec la pression.	
La pseuso-pression est exprimée :	$J_{P_{ref}}\mu Z$	Le comportement du gaz est similaire	
2^{P} $p^{2} - p^{2}$		celui d'huile.	
$m(P) = \frac{2}{\mu Z} \int_{P_{ref}} PdP = \frac{1 - 1_{ref}}{\mu Z}$		$m(P) = \frac{2P}{\mu Z} \int_{P_{ref}}^{P} dP = \left(P - P_{ref}\right) \frac{P}{\mu Z}$	

***** Le pseudo-temps :

Le pseudo-temps tps peut être utilisé en complément de m(p).

$$t_{ps} \int_0^t \frac{1}{\mu(p)c_t(P)} dt$$
.....(III.15).

✤ Le skin dans un puits à gaz :

Le skin total dans un puits à gaz est une contribution de :

- ✓ Skin mécanique associé avec le skin d'endommagement S.
- ✓ Skin d'écoulement non Darcy dû aux grandes vitesses d'écoulement des gaz.

Donc le skin globale s'exprimé comme suit :

S' = S + qD(III.16).

"D" est coefficient d'écart à la loi de Darcy ou dit Facteur de turbulence, pour connaître S et D il faut mesurer ce skin global à plusieurs débits q.

III.7. Procédures des tests de puits à gaz :

On utilise généralement l'une des procédures de test pour puits à gaz :

III.7.1. Le Back Pressure Test:

Dans cet essai, la durée des phases de débit est uniforme comprend quatre débits différents, mais la pression statique initiale de chacune de ces phases n'est pas la même [4][8].

Figure III.9.L'évolution de la pression et du débit en fonction du temps durant le Back Pressure Test [7].

III.7.2. Le test isochrone :

Un test isochrone consiste à produire le puits avec quatre débits différents de même durée, entre chaque deux période de production le puits est fermé jusqu' à ce que les conditions statiques satisfaisantes de ce dernier soient atteintes Figure (III.10) [4] [8] :

Figure III.10.L'évolution de la pression et du débit en fonction du temps durant le test isochrone [7].

III.7.3.Le test isochrone modifié :

Le véritable test isochrone est identique au test isochrone, sauf que les temps de fermetures intermédiaires sont égaux aux temps de débits. Le test isochrone modifié est plus rapide parce qu'il n'est pas nécessaire d'attendre la stabilisation comme le précédent, cependant la dernière période débordante est prolongée jusqu'à ce que la stabilisation soit atteinte [4] [8].

Figure III.11.L'évolution de la pression et de débit en fonction du temps durant le test isochrone modifie [7].

III.8. Présentation des méthodes d'interprétation :

Les méthodes d'interprétation des essais de puits peuvent être classées en deux grandes familles :

Les méthodes conventionnelles.

Les méthodes modernes.

III.8.1.Les méthodes conventionnelles :

Elles ont été mises au point à partir de 1930. Elles étaient les seules disponibles jusqu'à les années 70. Elles consistent à repérer sur l'évolution de pression les différentes périodes d'écoulement caractéristiques qui se succèdent.

Au cours d'un écoulement caractéristique (radial circulaire, linéaire...etc.) l'évolution de la pression est représentée par une fonction du temps f(t). La représentation de la pression en fonction du temps se traduit par une droite qui permet de déterminer selon l'écoulement certaines caractéristiques du puits et du réservoir.

Les méthodes conventionnelles sont basées sur le choix d'une droite, couramment appelée droite semi-log par simplification de langage mais qui est obtenue, en faisant, soit par un graphique semi-log (HORNER, MDH), soit par un graphique cartésien (fonction de superposition). A partir de là, le choix de cette droite, souvent très délicat, s'appuie sur des critères imprécis qui ne permettent pas toujours d'éviter des erreurs éventuellement énormes. Par ailleurs, les méthodes conventionnelles n'exploitent pas toutes les mesures enregistrées au cours d'un test puisqu'elles éliminent systématiquement tous les points antérieurs au droit semi-log [8].

III.8.2.Les méthodes modernes :

III.8.2.1. Planches de Courbes Types :

Une courbe représente l'évolution des pressions qui auraient été enregistrées au cours d'un test en débit, à l'échelle logarithmique, effectuée dans les conditions définies à la fois par le choix de la famille de courbes et la valeur du libellée de la courbe. A chaque type de réservoir correspond un modèle analytique. Ces courbes types sont toujours représentées en grandeur adimensionnelle (P_D,t_D, r_Det C_D) sur un papier log-log ayant sur les axes, des groupements de variables sans dimension [4] [8].

III.8.2.2. La méthode Dérivative :

Les courbes types, quelque soient représentées sur planches ou générées à l'aide d'un modèle puits souffrent toujours de l'effet d'écrasement lié à la présentation logarithmique (difficulté d'observer des faibles variations relatives de la pression). Les méthodes utilisant la dérivée de la pression remédient à cet inconvénient tout en exploitant les avantages de la représentation par les courbes types.

La dérivée est représentée sur graphique log-log comme une courbe type. L'intérêt principal de la dérivée réside dans l'aide importante apportée à l'étape de calage [8].

III.9. Les modèles puits, réservoir et limites :

Pour faciliter l'analyse et l'interprétation des résultats des tests, il est judicieux de présenter quelques configurations réservoir-puits pour mettre en exergue l'utilité de la courbe de la dérivée de pression. Pour cela on distingue :

- **4** Les modèles du puits.
- Les modèles du réservoir.
- ↓ Les modèles des limites.

La réponse de la dérivée change selon l'influence des comportements de ces modèles sur trois régions ou périodes de temps ; early time, middle time et late time ; comme indique le tableau suivant :

Well and well bore effects	Reservoir behaviour	Boundary effects	
Early time	Middle time	Late time	
 Avec well bore storage et Skin. Avec des fractures verticales conductivité infinie. Avec des fractures verticales conductivité finie. En pénétration partielle (A entrée limitée). Puits horizontaux. 	 Homogène. Double porosité. Double perméabilité (réservoir bicouche). Composite radial. Composite linéaire. 	 Une seule faille. Wedge (intersection de deux failles). Canal (deux failles parallèles) Réservoir fermé (Limites Circulaires, Rectangulaires). 	Etanche Pression constante Etanche Pression constante Sans limites

Tableau III.3. Tableau représentatif des trois périodes de temps d'écoulement [7].

III.9.1. Le modèle double porosité (réservoir fissuré, non homogène) :

Le modèle de double porosité (2Ø) concerne le réservoir fissuré qui est composé d'une matrice des blocs des roches ; connecté au puits par des fissures naturelles qui ont une faible capacité et une grande perméabilité. Le fluide de la matrice ne peut pas s'écouler au puits directement, donc bien que la plus part des hydrocarbures sont stockés dans la matrice, il doit passer par les fissures pour être produit [7].

Figure III.13. Le modèle de réservoir double porosité [7].

Le modèle de double porosité est décrit par deux paramètres additionnels quand on le compare avec le modèle homogène :

• Contraste de capacité (ω) (storability ratio) : c'est la fraction d'huile ou gaz stocké dans les fissures par rapport au système (fissures + matrice) c'est la porosité 1, typiquement ω varie entre 0.01 et 0.1.

• L'échange matrice-fissure (λ) (interporosity flow coefficient) : caractérise

l'aptitude de l'écoulement de la matrice vers les fissures, il est dominé par le contraste de perméabilité (Km /K_f), typiquement λ varie entre 10⁻⁴ et 10⁻⁸.

Pour décrire l'écoulement matrice fissures, deux approches sont proposées : la première suppose que l'écoulement matrice fissure est immédiatement pseudo-permanent, la deuxième suppose que l'écoulement matrice fissure est transitoire. Pour cela on distingue deux modèles :

- Double porosité PSS (modèle pseudo permanent).
- Double porosité T (modèle transitoire).

III.9.1.1. Double porosité PSS (modèle pseudo-permanent) :

On suppose que la distribution de la pression est uniforme dans tous les blocs, c'est à dire il n'y a pas de chute de pression dans ces blocs.

Figure III.15. Réponse de modèle double porosité, pseudo steady state [7].

III.9.1.2. Double porosité (modèle transitoire) :

Le modèle suppose qu'il existe un gradient (chute) de pression dans les blocs de la matrice. Dans ce cas, l'écoulement radial des fissures reste une durée courte, et dans la pratique n'est pas vue [7].

Chapitre IV: Drill Stem Test

IV.1.Introduction :

Lorsqu'on rencontre une zone imprégnée des hydrocarbures, le forage est interrompu pour faire place à un essai de formation aux tiges (DST).

DST est le premier test qui permet de mettre en évidence le potentiel du réservoir et de caractériser ce dernier.

IV.2. Définition :

Les tests en cours de forage (Drill Stem test) sont des mises en production provisoires sans modifier l'équipement du puits en d'autre terme c'est une éruption contrôlée par une complétion temporaire du puits permettant de recueillir des échantillons des fluides contenus dans les roches, et de compléter la connaissance du gisement en déterminant [9]:

✓ Nature et caractéristique des fluides.

- ✓ Pression et température du gisement.
- ✓ Caractéristiques de la roche réservoir.
- ✓ Le skin et les problèmes futurs de production.

 \checkmark Le potentiel de puits.

Tous ces renseignements nous permettrons de décider le choix de la complétion à installer qui, assure l'acheminement des hydrocarbures dès le réservoir jusqu'à la surface avec un minimum des problèmes.

IV.3. Principe du DST :

Le principe d'essais de puits dont le DST consiste à enregistrer la pression dans le puits, au niveau du réservoir, après une variation du débit qui provoque une perturbation du régime des pressions existant dans le réservoir, soit au début (fin de forage) ou durant l'exploitation (après un Work Over). Grâce à cette opération, on peut déterminer les paramètres du gisement (Perméabilité, skin, Pietc.).

Les fluides contenus dans les formations étant maintenus normalement pendant le forage par la pression exercée sur les couches par la colonne de la boue de forage, la réalisation d'un DST impose :

- ✓ La diminution de la pression exercée par la colonne de boue sur la couche à tester jusqu'à celle des fluides contenus dans la couche permettant ainsi un écoulement vers la surface.
- ✓ La canalisation de ces fluides jusqu'en surface sans risque de pollution ou d'éruption.
- ✓ La possibilité d'arrêter momentanément le débit des fluides sans utiliser la pression hydrostatique de la boue grâce à une vanne de fond manipulé à la surface.

 ✓ Enregistrement en fond de puits la pression, la température et leurs variations tous le long du test [9].

IV.4. Description du matériel utilisé pour le DST :

Figure IV.1. Disposition des équipements d'un Test DST [9].

IV.4.1.Équipement de fond :

Tous les trains de test possèdent une vanne de fond ; qui s'ouvre et se ferme pour effectuer les différentes étapes de l'opération (avoir des ouvertures « Débit » et des fermetures «Build up ». La différence entre ces trains de test est dû à leurs principes de fonctionnement et leurs fabriquant. Selon le principe de fonctionnement pour ouvrir/fermer la vanne de fond, on distingue [9] :

- Il y'a un train de test qui travail par rotation (Conventionnel).
- Il y'a un train de test qui travail par translation.
- Il y'a un autre qui travail par pression annulaire (IRDV, POTV....).

IV.4.1.1. Composition d'un train de test DST :

IV.4.1.2. Le packer :

Le packer est conçu pour isoler l'intervalle perforé, de la colonne de boue.

Il existe quatre types de packer :

• Packer PosiTest : avec un seul chien, utilisé pour des tests normaux.

• Packer Positrieve : avec double chiens, utilisé dans des tests dont on est obligé d'acidifier,

de stimuler et exercer un minifrac.

• Packer FlexPac : pour les conditions sévères (HT HP).

• Packer FlexPac Hold-Down : Il empêche le train de se déplacer en haut à la suite de forces hydrauliques agissant sous le packer pendant la stimulation [9].

Figure IV.3. Les types de Packer [9].

IV.4.1.3. Le joint de Sécurité (Safety Joint) :

Le joint de sécurité permet le déblocage rapide de train de test si le packer Ou quoique ce soit en dessous de Packer devient coincé [9].

Figure IV.4. Joint de Sécurité [9].

IV.4.1.4. La coulisse hydraulique (Hydraulic Jar) :

Pour faire un petit battage en cas de coincement tout en évitant d'endommager des enregistreurs de fond.

IV.4.1.5. Le porte-jauge (Gauge Carrier) :

Les informations les plus attendues au cours d'un DST sont les enregistrements des pressions et des températures de fond. Ils sont indispensables pour interpréter les résultats du test. Le Porte enregistreurs c'est un Foureau qui porte les enregistreurs (Amérada) [9].

Figure IV.5. Gauge Carrier [9].

IV.4.1.6. La vanne de test (Tester Valve or Down hole Valve):

La vanne de fond situer au-dessus de packer, isolé entre la pression de tubing et la pression hydrostatique lors la descente de train de test pour diminuer l'effet de capacité de puits (well bore storage). Elle permet de faire des cycles d'ouverture et de fermeture de la garniture au fond du puits de manière à entraîner des périodes de débit et de Build-up de l'effluent contenu dans la couche [9].

Figure IV.6. La vanne de fond (Tester Valve) [9].

IV.4.1.7. Vanne de Circulation :

Une vanne de circulation permet de retirer le fluide produit avant de remonter le train de test en circulant la boue et dégagé l'intérieur des tiges qui est sous pression sur torche et le remplacer le par la boue.

Les vannes de circulation sont utilisées aussi pour les traitements en acide et le dessalage par l'injection de l'eau [9].

Figure IV.7.la vanne de Circulation [9].

IV.4.1.8. Le joint glissant (Slip Joint) :

Le slip joint est un outil de compensation ; d'expansion / contraction. Il récompense tous changement dans la longueur de train causée par la température et la pression pendant le test [9].

IV.4.2. Les équipements de surface :

En surface, les fluides produits lors d'un essai de puits sont normalement manipulés en utilisant des équipements temporaires et un package de test de surface, ces équipements doit être assemblé et assurer une opération fiable et sécurisé, les équipements de surface doit permettre de :

- Supporter les pressions en tête.
- Fournir un moyen de contrôler rapidement la pression, et de fermeture de puits.
- Prévoir des échantillons représentatifs des fluides produits.

• Créer des contre pressions pour modifier la pression de fond en cours de débit, par utilisation des duses.

- Récupérer des échantillons.
- Séparer l'effluent s'il arrive en surface pour compter séparément l'huile, le gaz et l'eau.
- Stocker ou brûler l'effluent.

IV.4.2.1. Tète de puits (Flow Head) :

Consiste en un ensemble de quatre vannes :

• Master valve : Pour la fermeture totale de L'intérieur des tiges.

• Kill line valve : C'est une vanne manuelle, durant toute l'opération de test reste fermée. Elle s'ouvre que pendant les tests des équipements de surface et pour la circulation directe à travers l'intérieur des tiges.

• Swabe valve : C'est une vanne de curage. Elle s'ouvre pour laisser le passage d'un outil spécial comme Slick line.

• Flow line valve : Vanne d'écoulement de fluide (vanne automatique liée à ESD) [10].

Fonctions principales :

- Contrôler la pression.
- Supporter le poids de train de test.
- Permettre le mouvement de rotation du train de test.
- Contrôler l'écoulement hors du puits à travers une vanne d'écoulement.
- Permettre de pomper du fluide dans le puits à travers une vanne de Kill-line.
- Permettre aux outils d'être introduit dans le puits par une vanne-tige ou d'une Slick line.

IV.4.2.2. Choke manifold :

Un choke manifold est utilisé pour un bon nombre de raisons ; il contrôle principalement le débit. Il consiste en un lot de vannes et de connections disposées de telle sorte que l'écoulement peut être dirigé dans une ou deux directions à travers un oudeux portes-duses. Chaque porte duse peut recevoir divers types des duses (fixes, ajustables) [10].

Figure IV.8.Choke manifold de Well-Testing [10].

IV.4.2.3. Le séparateur :

Le séparateur sert à séparer les différents fluides constituant l'effluent remonté du réservoir, afin de mesurer leurs débits et volumes séparément et nous permettre de prendre des échantillons [11].

IV.4.2.4. Système de fermeture d'urgence ESD :

Le système ESD contrôle les vérins de commande de la vanne de la tête de puits[10].

IV.4.2.5. Bac de stockage d'huile :

Permettre le stockage et le comptage de l'huile sortira du séparateur[12].

IV.4.2.6. Pompe de transfert (Gear pump) :

Pompe hydraulique fonctionne avec la pression de l'aire fournis par le compresseur de l'appareil de forage, sert à transférer le liquide depuis le bac de stockage ver la torche ou la citerne du camion de transport.

IV.5. Le séquence de déroulement de test DST :

IV.5.1. Le tampon :

Le tampon c'est un bouchon ralentisseur de démarrage du puits. Il est choisi en fonction de pression du gisement.

L'utilisation dans les tiges d'un tampon d'eau ou d'azote sous pression s'est généralisée pour les raisons suivantes :

- D'amortir la pression de fond.
- D'amortir les coups de bélier (Qui peut provoquer un dégât en surface).
- Pour éviter l'écrasement de la garniture.
- Pour réduire la pression différentielle entre les deux faces du packer.

Observation :

- Pour les puits secs ou très faible pression ; tampon=remplissage du BHA.
- Pour les puits pression moyenne ; Tampon=1/4 pression du gisement.
- Pour les puits pression fort ; Tampon= 2/3 pression du gisement.

IV.5.3.Les principales phases de l'opération :

- ✓ Préparation du trou (faire une bonne circulation de la boue par les tiges de forage).
- ✓ Préparation du matériel et test BOP.
- ✓ Installation de matériels de surface en respectant les distances de sécurité.
- ✓ Remplissage et préparation des équipements par feu et barrière de sécurité.
- ✓ Faire Pressure Test de tous les équipements et les installations.
- ✓ Descente des équipements de fond.
- ✓ Encrage de Packer.
- \checkmark Opération de test proprement dite avec ouverture et fermeture de la vanne de fond en respectons le programme de test.
- ✓ Opération de test proprement dite avec ouverture et fermeture de la vanne de fond en respectons le programme de test.
- \checkmark Fin de test.
- \checkmark Circulation inverse.
- ✓ Démontage des équipements de surface.
- ✓ Désencrage de packer.
- ✓ Remontée des outils de fond.

IV.5.3.Le déroulement des opérations pendant le test :

Après remontée du train de test, les enregistrements sont récupérés et interprétés. Le graphe qui représente l'évolution de la pression en fonction du temps nous donne des informations précises sur le déroulement de l'opération de DST.

Figure IV.9. L'enregistrement de pression de fond pendant un DST [9].

- A B :Descente du train de DST dans le puits. La pression enregistrée est celle de la colonne hydrostatique de la boue, qui augmente en fonction de la profondeur.
- B C : Train de DST au fond, (ne attente plus ou moins longue ; montage équipement de surface). « C » la pression hydrostatique initial.
- C D : Ancrage du packer, ce qui provoque une légère augmentation de la pression hydrostatique due à la compression de la boue sous le packer.
- ❖ D E F : Ouverture de la vanne de fond pour débiter le puits (pré débit).La pression indiquée est celle du tampon de liquide dans les tiges, qui est faible. Le pré débit « EF »ne dure que 10 à 15 min, en notant ce qui se passe en surface au niveau du manifold. (Souffle fort ou faible) ou (Sortie de boue) ou (il ne se passe rien aucun signal).
- F G : Fermeture de la vanne de fond pendant une heure pour la première remontée de pression. En G, on enregistre la pression vierge du réservoir, qui est inférieure à la pression hydrostatique de la colonne de boue.
- G H I: Ouverture de la vanne de fond pour débiter le puits (débit ; Draw Down). La pression indiquée « HI » est celle du tampon de liquide dans les tiges, qui est faible. La durée est plus longue que celle du pré débit. À la surface l'ouverture de puits sur torche en passant toujours par le manifold de test pour dégorgements sur différentes dusses ajustables. Si le puits est éruptif, il va dégager de la boue et éventuellement de l'eau, ensuite du condensat contaminé par la boue, puis du condensat gazé. En prendre chaque demi-heure des échantillons et en mesure le BSW (basic sidemen water), Une fois la pression de tète est

stabilisée et BSW soit inférieur au 1 %, faire passer le fluide sur séparateur avec la dusse fixe (programme de DST).

A partir de ce moment, le superviseur de l'opération note les divers paramètres enregistrés en surface (Ø dusse - Pression en tête – Débits– Température – Les temps et tous les évènements « Jobs log »).

- I J : Fermeture de la vanne de fond pour la deuxième remontée en pression (Build up), A la tombée de la nuit (avant le crépuscule), Fermer le puits durant toute la nuit pour enregistrement de la remontée de pression par les enregistreurs de fond. Suivant le programme de DST peut durer 24 48 ou 72 heures.
- ✤ J K : Egalisation de la pression au dessus et en dessous du packer par la circulation inverse de la boue, pour neutralisée le puits et le rendre dans son état initial avant le début de test, en suit on désancrons le packer.
- K L : Observation du puits, démontage équipement de surface, « L » la pression hydrostatique finale.
- ✤ L M : Remontée du train de test [9].

Chapitre V: Interprétation des essais des puits

V.1. Introduction :

L'interprétation des essais de puits est un outil indispensable pour connaître l'état du puits et le réservoir par la détermination des caractéristiques dynamique qui leurs sont propres comme la perméabilité, Skin, la pression initiale du réservoir, la conductivité kh, model du réservoir, les limites du réservoir...etc. La connaissance de ces paramètres permet de faire des prévisions de la production et de prendre des bonnes décisions pour le développement d'un gisement (nécessitant ou non des opérations de stimulations, récupérations assistées...etc).

De nombreux moyens d'interprétation des essais de puits ont marqué le cours de l'histoire, ces dernières années ces techniques ont eu une évolution rapide commençant par les méthodes conventionnelles, avec l'utilisation de courbe types puis par l'avènement de la dérivée de la pression et l'introduction des outils informatiques parmi lesquels le logiciel «**SAPHIR** de **KAPPA**» qui permet de faire des analyses des essais de puits.

L'objet de notre étude, porte sur l'interprétation des données des essais DST d'un puits candidat de la formation « Quartzite Hamra » à l'aide du software «**SAPHIR** de **KAPPA**».

V.2. Procédure de l'interprétation :

4 Diagnostic :

(Comparaison des différents périodes de l'essai, discussion de la réponse en pression) : il sert à déterminer la succession des écoulements visibles au cours de l'essai surtout à l'aide de la dérivée de pression. Le repérage de ces écoulements détermine la configuration réservoir-puits qui sera utilisée dans l'interprétation.

L'interprétation :

(Choix du modèle d'interprétation et justification) : c'est la quantification des paramètres de la configuration réservoir-puits. Elle est réalisée avec les courbes types, la dérivée de la pression et les méthodes conventionnelles.

Validation :

(Discussion des résultats, étude de sensibilité aux hypothèses...etc) : l'interprétation est validée en générant une courbe type simulant aux mieux les données à l'aide d'un modèle analytique adapté à la configuration réservoir-puits et à l'historique des débits. Les paramètres initiaux du modèle sont déterminés lors de la phase d'interprétation.

Un dernier ajustement des paramètres est la plupart du temps nécessaire pour simuler au mieux les données, surtout au niveau des transitions entre les différents écoulements.

Figure V.1. Processus d'interprétation des essais de puits.

V.3. Données nécessaires pour l'analyse des essais de puits :

- Données de l'essai : débit, (séquence des événements complètes avec tous les éventuels problèmes opérationnels) et la pression de fond en fonction du temps.
- Données de puits : rayon du puits, géométrie (incliné ou horizontal), profondeur (formation et capteurs de pression).
- Paramètres réservoir et fluide: épaisseur de la formation (h utile), porosité, compressibilité de fluide, de l'eau et de la formation, saturation en eau, viscosité de fluide et le facteur volumétrique de fluide.

Des données additionnelles peuvent être parfois nécessaires (diagraphie de production, mesure de gradients, pression de bulle ou de roséeetc). Des informations géologiques et pétro physique sont nécessaires pour valider les résultats d'interprétation.
V.4. Description du logiciel «SAPHIR de KAPPA» :

Saphir est un outil d'interprétation de Well Test basé principalement sur la méthode de dérivée de la pression et le match des données mesurées au modèle en tenant compte de l'historique de production. Saphir a une gamme complète de différentes fonctionnalités.

D'autres dispositifs d'édition permettent des corrections de tendance et l'analyse de la pression, un module du contrôle de qualité (QA/QC) permet de contrôler les mesures des différentes jauges utilisées lors des tests de puits. Après la génération du modèle, la régression non-linéaire nous permet d'identifier les modèles de réservoir et de tirer les différents résultats de l'analyse, notamment les paramètres de fonctionnement des puits.

L'objet de notre étude, porte sur la vérification de résultats de l'interprétation de puits QHA par software Saphir.

V.5.Les étapes suivies pour accéder au logiciel saphir :

On suive les étapes suivant pour l'utilisation de logiciel saphir (voir l'annexe A) :

Premièrement, on lance le logiciel Saphir, il apparait l'interface représenté dans l'annexe N°1.

Puis, on clique sur « new file »pour créer un nouveau dossier à un nouveau puits. On obtient la fenêtre de dialogue suivant, annexe N°2.

Après, on introduire les données nécessaires pour un nouveau puits (les données reliées à la formation (réservoir)), comme illustré dans l'annexe N°3.

Ensuite, il est recommandé de définir la nature de l'effluent en jeu (gaz, huile, gaz à condensât...) ainsi qu'indiquer leur caractéristiques PVT en cliquant sur la fiole colorée dans l'annexe N°4et l'annexe N°5.

Pour obtenir la courbe des débits et de pressions, des enregistrements de débit et de pression, les données doivent être ramenées sous forme de fichier Excel ou autres comme montré dans l'annexe N°6.

Les résultats finaux obtenus de la part du logiciel et les différents outils utilises pour construire, modifier et caler le modèle sont expliqués dans l'annexe N°7.

V.6. Sélections des puits candidats :

Notre étude consiste à interpréter les essais des puits DST de gaz à condensat du Quartzite Hamra dans la région de Rhourde Nouss, mais on s'intéresse à prendre trois puits qui appartiennent à trois structure Rhourde Nouss Centre, Rhourde Adhra et Rhourde Nouss Sud-Est .Les 3 puits candidats choisis pour travailler sur lesquels sont : RN117, RNZ107 et RNSE106.

✓ La sélection est basée principalement sur la disponibilité des données.

V.7. Analyse et interprétation des puits candidats :

La méthodologie d'analyse et l'interprétation est faite comme suit :

- 1. Identification des régimes et de la géométrie d'écoulement dans le réservoir.
- 2. Calcule des paramètres du modèle sélectionnée et vérification.
- 3. Résultats finals de l'interprétation.
- 5. Conclusions

V.7.1.Cas du puits RN 117 :

Le puits RN117 est un puits de développement du réservoir Quartzite-Hamra situé dans le champ de Rhourde Nouss Central, il a été foré du 11/03/2011 au 22/08/2011 dans le cadre du projet Gassi Touil. L'objectif principal est la production du gaz à condensat des réservoirs Ordovicien principalement Quartzite Hamra & Grés d'Ouargla (voir l'annexe B).

V.7.1.1. Les données nécessaires pour l'interprétation :

Les données du puits :

Tableau V.1. Tableau représentatif des données Pétro-physique de puits RN117.

Η	ф	dg	dh	P Rosée	Préservoir	G.O.R	T Réservoir
(m)	(%)		(cp)	(Psi)	(Psi)	(m3/m3)	(°C)
94.35	5	0.740	0.777	5685	5680	4333	110

Données de test sur séparateur :

Tableau V.2. Les données de test de RN117.

Duse	Pt (psi)	Qg (m3/j)	Qh (m3/j)	Qeau (l/h)
24/64	3832	274389	2.579	37
32/64	3203	428664	3.940	100
40/64	2629	32109	4.901	110
48/64	2077	583545	5.461	126

-Pression de séparation : 632 psia.

-Température de séparation : 65.55 °C.

V.7.1.2. Interprétation et analyse :

La pression mesurée par l'enregistreur de fond pendant toute la période de DST est illustrée sur la courbe suivante :

Figure V.2.Courbe de séquence de test (History plot) RN117.

La courbe ci-dessous représente la pression de fond et le débit de gaz en fonction de temps « history plot », on s'intéresse par l'interprétation du dernier build-up (le plus long).

Figure V.3.L'enregistrement de Pwf et variation Q pendant le DST de RN117.

V.7.1.2.1. Identification :

***** Le courbe semi-log :

La courbe représentative de pression en fonction de log (temps superposé) du dernier build-up(Build-up le plus stable) illustré ci-dessous :

✤ La courbe log-log de la pression et la dérivative :

La courbe log-log de la pression et sa dérivée en fonction de temps, en plaçant les pentes caractéristique pour l'identification des écoulements possible est illustré dans le graphe ci-dessous :

Figure V.5.Courbe de dérivative de pression RN117.

- La réponse de la pression en fonction du temps et sa courbe dérivative présentée ci-dessus nous indique :
- ✓ La pente 1 en rouge : indique d'un constant «well bore starage » l'effet de capacité de puits.
- \checkmark En suite : un effet de « skin ».
- ✓ La pente en bleu : la stabilisation de pression indique un écoulement radial

« IARF » dans le réservoir.

- \checkmark Les limite : le cercle dans late time indicatrice d'une constant pressure boundary
- Le modèle le plus proche d'après l'allure de la dérivative de pression est le constant well bore storage, Skin effect, homogeneous, constant pressure boundary.

V.7.1.2.2. Résultats final de l'interprétation :

Tableau V.3. Les résultats finals de test de RN117.

Nom	Valeur	Unité
С	0.00394	bbl/psi
Skin Total	9.92	
K.h total	448	md.m
K, moyen	4.75	Md
p_i	5133.77	Psia
Indexe de productivité(IP)	742.92	(m ³ /D)/psia
Delta P (Total Skin)	415.409	Psi

V.7.1.2.3. Conclusions :

L'interprétation de test DST concerne le puits RN117 donne un modèle de réservoir Homogène limité par une barrière en forme d'un cercle qui maintient la pression (pression constant).

- ✓ Le puits RN117 présente une faible perméabilité (4.75md) qui signifie d'un réservoir compact « Tight Reservoir ».
- ✓ La différence de pression entre le réservoir et le fond du puits est de 535 psi dont 415 psi est due à l'effet de skin △Pskin.
- ✓ Un skin d'une valeur de 9.92 qui déduit que le puits est endommagé.

V.7.2. Cas du puits RNZ-107 :

RAZ-107 est un puits de développement incliné dans les réservoirs Ordoviciens de la structure de Rhourde Adra, il aura les Grès d'Ouargla et les Quartzites de Hamra comme objectif principal. Sa trajectoire inclinée à 60° permettra l'optimisation de la production de gaz à condensât dans le cadre du développement du Projet Gassi Touil(voir l'annexe B).

V.7.2.1. Les données nécessaires pour l'interprétation :

Les données du puits

Les données PVT sont tirées à partir du rapport PVT de l'effluent du puits RA104.

Н	φ	Bg	μg	P Rosée	dg	Préservoir	G.O.R	Т
(m)	(%)	(CF/SCF)	(cp)	(Psi)		(Psi)	(m3/m3)	Réservoir (°C)
38.9	5	0.0115	0.0335	5755	0.733	5750	4333	115

Tableau V.4. Les données petro-physique PVT de RAZ107.

N.B : Voire l'annexe pour les donnes PVT des autres puits.

Les données de test sur séparateur :

Le puits a subi une opération de DST du 06/02 au 19/02/2012.

Tableau V.5. Les données de test de RAZ107.

Duse	Pt (psi)	Qg (m3/j)	Qh (m3/j)	Qeau (l/h)
24/64	3832	274389	2.579	37
32/64	3203	428664	3.940	100
40/64	2629	32109	4.901	110
48/64	2077	583545	5.461	126

-Pression de séparation : 598 psig.

-Température de séparation : 51°C.

V.7.2.2. Interprétation et analyse :

La pression mesurée par l'enregistreur de fond pendant toute la période de DST est illustrée sur la courbe suivante :

Figure V.6.Courbe de séquence de test (History plot) RNZ107.

La courbe ci-dessous représente la pression de fond et le débit de gaz en fonction de temps « history plot », on s'intéresse par l'interprétation du dernier build-up (le plus long).

Figure V.7.L'enregistrement de Pwf et variation Q pendant le DST de RNZ107. V.7.1.2.1. Identification :

***** Le courbe semi-log :

La courbe représentative de pression en fonction de log (temps superposé) du dernier build-up (build-up le plus stable) illustré ci-dessous :

Figure V.8. Semi-log plot RNZ107.

✤ La courbe log-log de la pression et la dérivative :

La courbe log-log de la pression et sa dérivée en fonction de temps, en plaçant les pentes caractéristique pour l'identification des écoulements possible est illustré dans le graphe ci-dessous :

Figure V.9. Courbe de dérivative de pression RNZ107.

- La réponse de la pression en fonction du temps et sa courbe dérivative présentée ci-dessus nous indique :
- ✓ La pente 1 en rouge : indique d'un constant «well bores torage ».
- ✓ En suite : un effet de « skin »due à la précipitation de gaz à condensat.
- ✓ La pente en jaune : la stabilisation de pression indique un écoulement radial « IARF » dans le réservoir
- ✓ Une perturbation de la ∆P ainsi que de sa dérivée, ceci peut être dû à des difficultés techniques du maintien de la stabilité du build-up.
- ✓ La pente en bleu : indique que la valeur de la transsmibilité kh est le double de sa valeur dans le réservoir se qui signifie l'existence d'une faille.
- Le modèle le plus proche d'après l'allure de la dérivative de pression est le constant well bore storage, Skin effect, homogeneous, one fault in boundary.

V.7.1.2.2. Résultats final de l'interprétation :

Tableau V.6. Les données de test de RNZ107.

Nom	Valeur	Unité
С	0.00517	bbl/psi
Skin Total	31.1	
K.h total	296	md.m
K, moyen	1.01	Md
pi	401.047	Psia
Indexe de productivité(IP)	156.665	(m ³ /D)/psia
Delta P (Total Skin)	125.035	Psi
L-No flow	250	М

V.7.1.2.3. Conclusions :

Après les résultats précédents on observe les remarques suivantes :

- ✓ Le puits RNZ107 présente une faible perméabilité (1.01md).
- ✓ Un skin d'une valeur de 31.1 qui déduit que le puits est endommagé.
- ✓ L'existence d'une faille à distance de 250 m.
- ✓ Si le puits en train de stimuler en conseille de faire une acidification parce que la fracturation est danger dans se cas à cause de l'existence du faille.

V.7.3.Cas du puits RNSE106 :

RNSE-106 est un puits de développement incliné dans les réservoirs Ordoviciens de la région de Rhourde Nouss, localement sur le champ de Rhourde Nouss sud-est où les Grès d'Ouargla et les Quartzites de Hamra sont l'objectif principal de ce forage. Il permettra l'optimisation de la production de gaz à condensât.

V.7.3.1. Les données nécessaires pour l'interprétation :

Les données du puits :

Tableau.7. Les données petro-physique PVT de RNSE106.

Н	ф	Bg	μg	Р	dg	Р	G.O.R	Т	PVT
(m)	%	(CF/SCF)	(cp)	Rosée		r éservoir	(m3/m3)	Réservoir	Utilisé
				(Psi)		(Psi)		(°C)	
64.8	5	0.00369	0.03916	5755	0.79	5300	2642	108	RA104

Les données de test sur séparateur :

Le puits a subi une opération dedu 01-Fev-16 au 09-Fev-16.

Tableau V.8. Les données de test de RNSE106.

Duse	Pt (psi)	Qg (m3/j)	Qh (m3/j)	Qeau(l/h)
28/64	2400	224210	84.9	32
32/64	2050	260230	75.3	100

-Pression de séparation : 598 psig.

-Température de séparation : 51°C

V.7.3.2. Interprétation et analyse :

La pression mesurée par l'enregistreur de fond pendant toute la période de DST est illustrée sur la courbe suivante :

Figure V.10.Courbe de séquence de test (History plot) RNSE106.

La courbe ci-dessous représente la pression de fond et le débit de gaz en fonction de temps « history plot », on s'intéresse par l'interprétation du dernier build-up (le plus long).

Figure V.11.L'enregistrement de Pwf et variation Q pendant le DST de RNSE106. V.7.1.2.1. Identification :

✤ Le courbe semi-log :

La courbe représentative de pression en fonction de log (temps superposé) du dernier build-up (build-up le plus stable) illustré ci-dessous :

Figure V.12. Semi-log plot RNSE106.

✤ La courbe log-log de la pression et la dérivative :

La courbe log-log de la pression et sa dérivée en fonction de temps, en plaçant les pentes caractéristique pour l'identification des écoulements possible est illustré dans le graphe ci-dessous :

Figure V.13.Courbe de dérivative de pression RNSE106.

- La réponse de la pression en fonction du temps et sa courbe dérivative présentée ci-dessus nous indique :
- ✓ La pente 1 en rouge : Indique d'un constant «well bore storage » l'effet de capacité de puits.
- ✓ En suite : un effet de « skin ».
- ✓ La pente de en bleu : Premier écoulement radial « IARF » identifié avec la pente de 0.
- ✓ La pente de en jaune :Deuxième écoulement radial « IARF » identifié avec la pente de 0.

- ✓ Présence d'une barrière significative d'un réservoir fermé sous forme de cercle avec maintien de pression.
- Le modèle le plus proche d'après l'allure de la dérivative de pression est le constant well bore storage, Skin effect, radial composite, constant pressure boundary.

V.7.1.2.2. Résultats final de l'interprétation :

Tableau V.9. Les résultats finals de test de RNSE106.

Nom	Valeur	Unité
С	0.000256	bbl/psi
Skin Total	32	
K.h total	5.83	md.m
K, moyen	0.0083	Md
pi	5416.88	Psia
Indexe de productivité(IP)	742.92	(m ³ /D)/psia
Delta P (Total Skin)	151.755	Kg/cm ²

V.7.1.2.3. Conclusions :

L'interprétation de test DST concerne le puits RNSE-106 donne un modèle de réservoir composite radial limité par une barrière en forme d'un cercle qui maintient la pression (pression constant).

- ✓ Le puits RNSE106 présente très faible perméabilité (0.0083 md) qui signifie d'un réservoir compact « Tight Reservoir ».
- ✓ Un skin d'une valeur de 32qui déduit que le puits est endommagé.

Conclusion

Conclusion générale

A la lumière de cette étude, on a conclu que :

- Les logiciels d'interprétation commercialisés posent le problème de choix de la solution, qui n'est jamais unique et ne possède pas un moyen de vérification de sa validité.
- Les trois puits de Quartzites Hamra interprétés ont une faible perméabilité de l'ordre de 1 md, synonyme d'un réservoir compact « Tight Reservoir ».
- Les trois puits étudiés de QHA montrent que la perméabilité se diffère d'une zone à un autre ceci confirme l'hétérogénéité de ce champ ; et la présence des failles dans ce champ.
- Les trois puits RN-117, RNZ-107et RNSE-106 possèdent un skin positif sont des puits endommagés.
- L'observation des différents régimes d'écoulement dépend de la durée du test.
- ✤ Les limites du réservoir ne se sont pas manifestées vu la durée insuffisante du build-up.
- Les résultats d'interprétation de DST peuvent être utilisés pour déceler les futurs problèmes de production.
- La chute de la production des puits de quartzite Hamra est due essentiellement à la chute de la pression du réservoir en dessous de la pression de rosée et qui a causé le phénomène de la condensation rétrograde dans le réservoir.

Recommandations

Recommandations

D'après l'étude faite et les problèmes rencontrés, on recommande :

- La pression hydrostatique appliquée par la boue de forage est nettement supérieure à la pression de réservoir, ce qui a entrainé une invasion énorme aux abords des puits et dans le réservoir, désormais :
 - Le choix de la densité de la boue doit être porté à une importance capitale.
 - Il est nécessaire d'utiliser la technique de forage en UNDER BALANCED DRILLING « UBD », dans ce type de réservoirs « Tight » pour éviter l'invasion de la boue de forage.
- Faire une opération de nettoyage de fond avant chaque test de build-up.
- La réalisation d'un essai build-up engendre un arrêt de production total, c'est pour cette raison, on fait appel à des enregistrements de pression du fond (par l'installation des *gauges permanent au* fond du puits) de longue durée (quelques mois), ce qui permet d'illustrer de bons résultats surtout sur les zones lointaines du réservoir.
- Dégorgement maximal et de longue durée juste après l'opération de complétion des puits afin d'augmenter la surface de contact liaison couche - trou et pour atteindre les limites.
- Afin de réduire l'effet de capacité de puits « well bore storage » et améliorer les résultats de tests nous recommandons l'utilisation des vannes de fermeture de fond près du réservoir.
- Envisager un échantillonnage de fluide réservoir pour des essais au laboratoire «. Test de séparateur ».
- Une opération de stimulation de type acidification avec un essai au niveau de laboratoire pour les puits : RAZ107.
- Avant faire l'opération de stimulation pour les puits qui produits l'eau RAZ107, il préférable de faire une isolation de la zone qui produise de l'eau.
- Les puits candidats au l'opération de stimulation doivent procéder par un test de jaugeage et build-up avant et après l'opération pour une meilleure évaluation des traitements.

Le gisement de Quartzite Hamra de Rhourde Nouss est le seul gisement producteur de gaz à condensat en Afrique, pour cette raison l'exploitation de ce gisement doit être porte à une importance considérable.

[1]-Nacnaughton .D: Report on a reservoir Engineering Study of Certain Fields in Rhourde Nouss Region-ALGERIA, 1999.

[2]-Historique et présentation de la région de Rhourde Nouss document SONATRACH.

[3]-Géologie de la région de Rhourde Nouss document SONATRACH.

[4] Ecole nationale supérieure du pétrole et des moteurs. Techniques d'exploitation pétrolière. Le gisement _ R.cossé.

[5] Reservoir Engineering Handbook. Second Edition. Tarek Ahmed.

[6] Hai X V. horner N.: COMPOSITION VARIATION DURING FLOW OF GAS CONDENSATE WELLS, Project Number 07122-29.FINAL, Stanford University, 2011, pages 18-20.

[7]Essais De Puits, ENSPM Formation Industrie. (Interprétation des essais du puit.D.Bourdet).

[4]Ecole nationale supérieure du pétrole et des moteurs. Techniques d'exploitation pétroliere.le gisement_R.cossé.

[8] Essais de puits : Methodes d'interpretation.G.BOURDAROT.

[5] Reservoir Engineering Handbook. Second Edition. Tarek Ahmed.

[9] Drill stem testing lecture notes EXPORO.

[10] 04 Equipement 1-DTV [Mode de compatibilité. EXPORO : Well test course part1.

[11] 05 Equipement 1-DTV [Mode de compatibilité. EXPORO : Well test course part2

[12] 05 Equipement 1-DTV [Mode de compatibilité. EXPORO : Tanks.

Annexes

Application . ۲ Interfa **₽**~~ Plot Asne ♣ PVT Inte * Loading Da Default Un press F1 Ran =33MB - VM=10MB FR 🔺 🎼 🐗 🗎 🔰 👖 æ 0 ٢ 5

Annexe A : Les étapes suivies pour accéder au logiciel saphir :

L'annexe Nº1.L'interface du logiciel kappa Saphir (4.10.02).

🔅 Ecrin v4.10.02 -	Saphir NL	ACCORDANCE AND A	1040000000	
File Action Vie	w WEB Help			
0 🖻 🖬 🖉	`````````````````````````````````````	9,69,67 51 = 0 9,9,14		
Settings				
	12 12	1-1-1-1	1-1 1-1	12 12 12
**		New document - page 1/2 - Main options		In In Ir
Application	New file	Main options Information Units Comments		
4		T	B : 0	E E
	13	rest type.	Pofemnes abase:	19 19
Interface		Standard	hereferice priase.	and the second se
4	12 12	C Interference		12 12 1
Plot Aspect	12 12	Well Padius: 0.09144		An An A
			Available rates:	
* 📥 📋	K	Pay Zone: 9.144 m _		K K
PVT	1 de la companya de l	Porosity: 0.1	□ Water	
•				and the second se
	12 12	Reference time (t=0)	Start with analysis:	12 12 1
Interpretation	12 12		Standard	1/2 /2 //
ŵ		19/05/2018 🗸 00:00:00 📩	C NonLinear	
··· D	K		C Multi-Layer	K K
Loading Data			C Formation Test	
.				and the second se
hr v	12 12			12 12 1
Default Units	12 12	Aide <	Annuler	4.9 4.9 4
∢ ►				
QAQC Data	18			
Interpretation				
More tools				
Output	For Help, press F1			Ram=34MB - VM=10MB
📀 🧭	🛛 💽 🌍 🏮	5 🖳 🖊 🛸 条	\$	FR 🔺 💦 🔐 间 🔰 14:09 19/05/2018

L'annexe Nº2.L'introduction des données nécessaires pour un nouveau puits.

	R		New document - page 1/3 - Main options		
Apprication	The the the		Man options Information Units Comments Test type: © Standard C Interference Well Radius: [254 m Pay Zone:]35 Porosty: [0.05 Reference time \$=0) [19/05/2018] [00.00.00]	Fluid type: Reference phase: Gas Gas Available rates: Image: Control of the state Image: Control on the state Start with analysis: Image: Control on the state Image: Control on the state	Les données de puits et réservoir
Default Units	R		Aide << Back	Next >>Annule	
QAQC Data Rates Interpretation More tools	15		R R K		R R R
Output	For Help, press F1	9	S 🖪 🔼 통 🤗		Ram=33MB - VM=10MB NUM FR ▲ 💽 🥠 🛱 ◀ 15:56

L'annexe N°3.L'introduction des caractéristiques du réservoir.

🔅 Ecrin v4.10.02 -	Saphir NL	ACCORDANCE AND ADDRESS OF ADDRESS OF ADDRESS ADDRE	THE R OWNER WATER OF THE R		
File Action Vie	w WEB Help				
] 🗅 📽 🖬 🖉) & E (1) ? / 4 4	Q\$\$\$\$\$\$ £\$ ™\$ Q\$\$ \$			
Settings					
Î	K K	New document - page 2/3 - PVT parameters		×	K K
• S Application	4		a 🔝		
4	R	Temperature option	Reservoir parameters		
		C Only 1 Temperature, tables input allowed	Reservoir Temperature	1	
Interface		C Any Temperature, tables input not allowed	212 °F 💌		
• • <mark>•</mark> •	12 12		Reservoir Pressure	12	Choix de la
Plot Aspect	19 19	- Fluid type	5000 psia 💌	1 3	naturo do
ء د	1-1	Hvdrocarbons:			nature de
<u> </u>	R	C. Dead Oil			fluides
PVT	V C				
4	12 12	C Saturated 02 (bubble point 8 id)	Pressure range	1	10 1
Interpretation	A A	G Condense of tooble point haid	Minimum 14.6959 psia _	100	
A -			Maximum 10014.7		
*	10	C From PVT report	Increment (* # pts C Value		
Loading Data	10	Water	201		
٩		(*) with condensate recombination			
Defecult Unite	12 12			12	12 12
	NA NA	Help Kack	Next >>Lancel		13 1
<		1-1	1-	1	
Rates	R	R R I	R R I		R
Interpretation					
More tools Output	Facilitate anno 11				
			6 <u>6</u>		Ram=551VIB - VM=10MB NUM
🥣 🌽					19/05/2018

L'annexe Nº4. Choix de la nature de l'effluent.

Ecrin v4.10.02 - Saphir NL File Action View WEB Help D 28 B 4 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	$\ \mathcal{A}$ \mathcal{B} \mathcal{A} \mathbb{R} $\ \mathcal{B}$ \mathcal{A} $\ \mathcal{B}$ $\ \mathcal{A}$ \mathcal{A} $\ \mathcal{B}$	
Application Appli	New document - page 2/3 - PVT parameters Image of the set of the se	La fiole colorée Les données PVT.
Default Units	Hep << Back Next >> Carcel	K K K
AQC Data Rates Interpretation More tools One tools	R. R. R. R. R	R R
	- S 📳 🏴 🛸 🛠 🛟	R ▲ 🔀 🐙 🛈 🔍 16:40 FR ▲ 🔀 🐙 🛈 🔍 19/05/2018

L'annexe N°5.la définition des données PVT.

Ecrin v4.10.02 - S	aphir NL - [Untrided]	
D 📽 🖬 🗇	L [0] ? = ℓ @ @ Q & Q # E A = ⊕ Q Q #	
Settings QAQC Data	Group: 🔽 🕃 Gauge: 🔄 🛈 👔 Analysis: 🛈 🕼 📼 🖂 🛤 🚼	
Rates Interpretation	CAUCE De Lot Usis Te Lot Cours step 1 Deme bala bonce	
F -1	r File Ascii file 🔽 💽 🥌 🧲 C Dipboard	Choix de
Load Q	C Database	fichier Excel
Load P	Introduction des différents	ou ACSII file
	débits de test	qui contient
Extract dP	debits de test	les données
Deconvolution	Introduction de différentes	
Model	pressions enregistrées.	
Improve	· · ·	RR
	Append to existing data	
Sensitivity	AA AA AA AA AA AA	9 19 1
More tools		12 12
Output	or Help, press F1	Ram=35MB - VM=12MB NUM
🚱 <i>(</i> ê	D 📋 🧿 🥹 🍏 📖 🚟 🖼 🖊 🕢 💑	FR 🔺 🎼 🐗 🗊 🖣 10:16 20/05/2018

L'annexe Nº6.Introduction des enregistrements de débit et de pression.

L'annexe N°7 . Les courbes log-log et semi-log du modèle et son calage.

Annexe B : Cartes de positionnement des puits RN117(RNC), RAZ107(RA) et RNSE106 (RNSE).

• Le puits RN117(RNC) :

• Le puits RAZ107(RA) :

• Le puits RNSE106 (RNSE) :

Annexe C : Les fiches techniques des puits étudiés.

• Le puits RN117 :

Collecteur:		Puits Pro	oduct Gaz	Telephone:		MS	ervice:				
and the second second	X(UTM)	: 281789	Y(UTM): 3286068,99		Z sol: 257,26		Z tal	ble: 267	DNI117		
	Debut Forag	e: 11-03-2011	Fin Forage: 22-08-2011		Appareil: ENF17		Fond	MD: 3772	- RN117		
SONATRACH	Début WO:	08-11-2013	Fin WO: 2	4-04-2014	Apparei	I: ENF17	Nur	m Wo 1			
DIVISION PRODUCTION DIRECTION REGIONALE RHOURDE NOUSS	Type Com	plétion : Simple	Tbg 4"1/2 Nva	m C85 13,5# -	Début: 16-04-20	014 Fin: 24-04-	2014 - Appa	areil ENF17	Deviated Well		
Tete d'erruption	: Composant	t Type Diam S	Serie Nbr Obs								
CASING HEAD		ITAG	20*3/4 x 18*5/8	3000	1				1-1		
CASING SPOOL		ITAG	20"3/4 x 13"5/8	3000 x 5000	1						
CASING SPOOL		ITAG	13*5/8 x 11*	5000 x 10000	1		1111				
TUBING HEAD		FMC	11" x 7"1/16	10000	1		1111				
ADAPTEUR		FMC	7"1/16 x 4"1/16	10000	1		1111		11		
VANNE MAITRESSE	i i	FMC	4"1/16	10000	2		4111		18"5/8		
CROIX		FMC	4"1/16	10000	1				10 0.0		
VANNE AUTOMATIC	QUE	FMC	4*1/16	10000	1						
VANNE LATERALE		FMC	4"1/16	10000	1						
VANNE DE CURAGE	E	FMC	4"1/16	10000	1				10		
TOPCUP		FMC	4"1/16	10000	1	Fileté en Acmé					
Equipements de	e Fond Design	ation Top Ty	pe - Diam - Lon	g - Drift - Poids	- Grade - Nbr -	Obs	111				
B.P.V 41ype H									4211 270		
10-COLONNE TUBIN	NG	0.46	4,5 2739,36	3,92 13,5 C8	5				13 3/6		
9-SIEGE		2739,82	X 4,5 ,44 3,	313 1							
8-JOINT TUBING		2740,26	4,5 9,59 3,	92 13,5 C85	1						
7-RATCH LATCH		2749,85	,33	[1]			- 11				
6-PACKER		2750,18	MHR 5,875 1,	38 1 Pa c	ker MHR 7*23-32.0	D 5"875 ID 3*875	- 11				
5-MILLOUT EXTENS	SION	2751,56	5 1,6 18	1							
4-REDUCTION		2753,16	5 ,23	1							
3-JOINT TUBING		2753,39	4,5 9,59 3,	92 13,5 C85	1		11		0" 5%		
2-SIEGE		2762,98	XN 4,5 ,43 :	3,313 1 1	NO GO 3*135		- 1		9 5/8		
1-SABOT		2763,41	4,5 .22	1							
Tubages : Tubag	ges: de Top	a Bottom Phas	e Sabot ID (DD Poids Gra	ade Ecl Filet	Obs					
CASING-18" 5/8		0 a 486	26 486 17,755	18,625 87,5	K55 BTC						
CASING-13" 3/8		0 a 1680	16 1680 12,41	5 13,375 68	N80 BTC						
CASING-9" 5/8		0 a 1938	12,25 1938 8,	681 9,625 47	P110 NVAM	1					
CASING-7*		0 a 707,8	8,5 707,8 6,09	4 7 32 P110	BTC						
CASING PATCH-7"		707,8 a 709,8	8,5 709,8 7	32	9						
CASING-7*		709,8 a 3195	8,5 3195 6,09	4 7 32 P110	NVAM Bou	chon de					
LINER CREPINE-4"	1/2	2800 a 3772	6 3771 3,92	4,5 13,5 J55	NVAM Tête	Liner@2800m dont			o		
			60 Joints Crépinés	+59 Joints Pleins - E	ECP@3166m.	-		100 million (100 million)	7		
Perforations : D	ate Top a B	ottom Canor	Type Reserv	/oir Densite	Phasing Obs						
14-03-2014		3177 a 3769,5	CREPINE QU	OUA-HAMRA	La crépine couvre l RES-OLIARGEA)	trois intervalles	1				
31-07-2007		3205 a 3449	ISOLATE QU	A-HAMRA	Isolé par Boucon de	•	19				
			ciment+Whipstock@2896m(Top crépine @3205 &Bot @3449m)						5		
20-01-2012		3355 a 3361	POWER SPIRAL ciment+\//hinstock/	ISOLATE QUA- @2896m	HAMRA Isc	lé par Boucon de			4		
Plug et Restricti	ions : Date I T	op I Bottom I T	vpe I Obs	groom.					3		
26-11-2013 2896	2900 Whipsto	ck en vue de ren	prendre le puits en si	de track					2		
20-11-2013 2900	B.Ciment	en vue de reprendre	e le puits en side tra	=k					1		
20-11-2013 2980	BCiment	en vue de reprendre	e le puits en side tra	=n: =k:							
20-11-2013 3213	B.Ciment	en vue de reprendre	e le puits en side tra	ak .			L L		Tête Liner 4" 1/2		
13-06-2011 3540	3590 B.Cimer	nt Bouchon de Ci	ment				-		@2800m		
13-06-2011 3590	3761 B.Sable	Bouchon de Sat	sle					ודו			
		,						1 1			
								۱ I			
						Whine		1 1			
						@289		1 1			
						6100	Þ	7			
						B.Cir	nent .		15		
						@29	0m				
						nete Liner 4 @2910m	¹ /2 →				
						@2510II	. П	E T			
						@2980r					
						@10001			12 12		
								1 11	1		
						B.Cim	ent 🖣	00000000	1		
						@ 321	3m		·		
I								*****	Sabot 4" 1/2		
1								: 11	@3771m		
1						B.Cir	nent				
@ 3520m											
1						Bouchon	le sable				
1						@ 352	om []				
1							1				
1							F	03761m			
1								Sondeur)			

• Le puits RNZ107 :

:Collecteur سوغاطراك		Puits Product Gaz		Telephone:		M Service:			
X(UTI	M): 294109,002	Y(UTM): 3270936,008		Z sol: 264,96		Z table: 275			
Début Fe	orage: 03-10-2011	Fin Forage	: 30-04-2012	Apparei	I: ENF28	Fond MD: 403	8	RAZ107	
International									
STROMES SOUTH	Type Completion :	Deviated Well	- Début 03-02-1	2 Fin 30-0	4-12 -Appare	eil ENF28 SIMPLE			
Tete d'erruption : Compo	eant Type Diam	Serie Nbr Obs					n n		
CASING HEAD	TAG	20° 34 x 18° 5/8	3000	1		┊║║┃┝━━━	▃╢╢		
CASING SPOOL	100	20° 34 x 13° 5/0	5000 x 5000	1					
TESTING FLANGE	PMC	11"	10000	1					
TUBING HEAD	FMC	11" x 7" 1/10	10000	1				187.58	
ADAPTEUR	FMC	7" 1/16 x 4" 1/16	10000	1					
VANNE MAITRESSE	FMC	4" 1/10	10000	2					
CROK	FMC	4" 1/10	10000	1					
VANNE LATERALE	FMC	4" 1/10	10000	1					
VANNE AUTOMATIQUE	PMC	4" 1/10	10000	1					
TOPCUP	FMC	4" 1/10	10000	1					
Equipements de Fond De	signation (Top T)	ype - Diam - Lor	ng - Drift - Poid	s - Grade - Nbr	- Obs			10	
HOUVE	0,00	Olive7*1/18004*1	2NVAMbes/bes/JPA	040364					
10-COLONNE TUBING	0,45	4,5 2909,05	3,82 085	290					
POIEGE	2910,10	X 4,5 ,45 3	213 1			▏▕▌▋▐▋			
B-JOINT TUBING	2910,55	4,5 9,6 3,9	2 13,5 085 1	1		{			
7-RATCH LATCH	2920,15	4,5 ,57	40 0.475 1 1						
SMILLOUT EXTENSION	20070.04	15116114		1		╡║║║║		Į –	
AREDUCTION	2923.94	151.34						13" 3/8	
JOINT TUBING	2924.10	45 959 3	82 13.5 085	11					
D-GIEGE	2933,77	XN 4,5 ,40	3,135 1			1			
1-SABOT GUIDE	2804,25	1 21 1	111						
Tubages : Tubages: de	Top a Bottom/Phar	se Sabot ID	OD Poids Gr	ade Ecl Filet	Obs	. ⊿∥		A	
CASING-10" SIS	0 # 349	20 349 17,75	5 18,825 87,5	.25 STC		▏▁▁▋▓▅▅▅		9" 5/8	
CAGING-13" 3/8	0 # 2577	10 2577 12,4	15 13,375 60	N00 BTC					
CASHO-7	0 a 2700	12,25 2700 6	001 8,025 47	1 1 NOVEM 1 NOV	0.00000				
LINER CREPINE-IP 1/2	2907 a 4030	6 4037 3,82	45 135 Pt	10 NVAM 1	shoe+01Blank Joint			•	
		+X00 +37 jts skd	ted +300+ Landing		7				
		tool+Pup joint +67	blank joints + Liner	Hanger Asembly				6	
Perforations : Date Top	a Bottom Cano	n Type Reser	voir Densite	Phasing Obs	1		<u> </u>	5	
30-01-2012	3037 a 3010	CREPINE G	RES-OUARGLA	Cripine Top	3636 Botg 4026			4	
30-01-2012 Disc of Destrictions : Dat	3016 a 4026	CREPINE Q		Crépine Top@060	6 Dotg:+026				
30-01-2012	2 2025 ECP	Type Obs							
								2	
								1	
						1			
							1		
						1	1		
							<u>۱</u>		
								The Line of the	
								1000 Liner 4" 1/2 (02967m	
								a -	
						\		R	
							10		
							17	ECP @3625m	
							- / /		
							L V	Sabot 7"	
							×	A the asses	
								12 40	
								14 11	
								12 21	
								12 21	
								12 3	
								Sabot 4" 1/2	
								@4037 @4038m	

• Le puits RNSE106 :

سوناطراک	FICHE TECHNIQUE DE PRODUCTION										RNSEZ106					
	c	oordonnées U	TM		Puit	ts Forage Complétion				omplétion	Workover					
sonatrach	XUT	0: 283 056 071				Apparet	il: TP203		N•:1		N*: 1					
EXPLOR & PROD PRODUCTION DIREC. RNS Div. EP Serv Tech, Puits	Y(UTM Z sol: 2 Z table Ztable	(0: 3 275 824,2 260,386 (forage): 270 (WO 1): 267,9	86 86	Puits : (RN Sud GO / QF	GAZ -Est IA C	Structure : Réservoirs : ollecteur :	Début : Fin : 22 Fond M Fond M	21-12-201 -03-2013 D (For) :4 D (WO 1):	2 144 4134	Type S en 13% Apparei Début : Fin :19	Simple 4"1/2 Cr il : ENF17 15-02-2016 :02-2016	But : Side Track Appareil : ENF17 Début : 31-08-2015 Fin : 20-02-2016				
TETE DE PUI													ET.	Ħ	-11- Olive 0,00)m
Composant		Туре	Di	iam		Série		Nbr	0)bs			Ш			
CASING HEAD			20"3/4 x	18"5/8	3000			1				TT.	Ш			
CASING SPOOL			20" 3/4 >	x 13"5/8	3000 x	5000		1							0 C Tubing 0	45m
CASING SPOOL			13"5/8 x	11"	5000 x	10000		1				110	Π	TT'	o- c. rubing o,	4500
TESTING FLANGE		FMC	11"		10000			1					Ш			
TUBING HEAD		FMC	11" x 7"	1/16	10000			1					Ш	1.	18"5/8 @ 48/	4m
ADAPTEUR	_	FMC	7"1/16 x	4"1/16	10000			1					Ш		10 30 @ 10	
VANNE MAITRESS	E	FMC	4"1/16		10000			2								
CROIX		FMC	4"1/16		10000			1					Ш			
		FMC	4"1/16		10000			1	<u> </u>				Ш	13	"3/8 @ 2220m	
		FMC	2"1/16		10000			1					Ш			
TOD CUD	it.	FMC	4"1/16		10000			1		I I			Ш			
		FOI		MENT	S DF	FOND		1								
Designation		Top	Long	ID	OD	Grade	Filet	Poids	Nbr	Obs			11	9"5/	8 @ 2398m	
11-OLIVE		0	0,45				NVAM						•	3 36	0@2000	
10-COLONNE TUB	ING	0,45	2784,8	3,92	4,5		NVAM	13,5		13% Cr						
9-SIEGE 'X'		2785,29	0,45	3,313	4.98		NVAM	13,5				—	⊢	9- Sié	ge X 2785,29n	n
8-JOINT TUBING		2785,74	10,22	3,92	4,5		NVAM	13,5		13% Cr						
7-ANCHOR SEAL		2795,96	0,34	3,881	5,29		NVAM	13,5				L F	-	8- Jt tr	ubing 2785,74	m
6-PACKER		2796,3	1,82	3,875	5,875		NVAM	23-32								
5-MILLOUT EXTEN	SION	2798,12	1,6	4,276	5,05		NVAM	18			-		1-7	7- Anc	hor Seal 2795,	96m
4-REDUCTION		2799,72	0,25	3,9	5,61		NVAM	18-13,5				-	L	6 Deel	kor 2706 2m	
3-JOINT TUBING		2799,97	10,07	3,92	4,5		NVAM	13,5		13% Cr	ą	-	Γ')- Paci	ker 2/90,5m	
2-SIEGE ' XN '		2810,04	0,47	3,135	4,98		NVAM	13,5				_	- 5	- Millo	ut.Ext 2798,12	2m
1-SABOT		2810,51	0,22	3,984	4,98		NVAM	13,5					4	- Rédu	iction 2799,72	m
				ГUВА	GES									J- J.Tu	bing 2/99,9/m	า
Tubages		Top - Bottom	Phase	Sabot	ID	OD	Grade	Filet	Poids	Obs				2-Siég	je XN 2810,04	m
CASING-18"5/8		0 à 485	26"	484	17.755	18,625	K55	BTC	87,5	38 jts				1- Sab	ot 2810,51m	
CASING-13"3/8		0 à 2222	16"	2220	12,42	13,375	N80	BTC	68	194 jts						
CASING-9"5/8		0 à 2400	12"1/4	2398	8,681	9,625	P110	NVAM	47/53,5	180 jts	-					
CASING-7"	Blook	0 a 3446	7" 	3445	6,094	/	P110	NVAM	32	291 jts			Tet	te Line @ 28	er 4" 1/2 29m	
LINER MIXTE-4"1/2	Slotted	2829 a 3426	6" C"	4074	3,92	4,5	P110	NVAM	AM 13,5 64 Jts ATOP 11.6 61 ite		0					
	Siotteu	3426 a 4074	0.000	4074	3,92	4,5 N.C	NOU VAMITOPITI,6 61			161 Jts						
Data		Ten Detterr	PER	FUKA	110	IN 5										
Date 22/01/2016		2426 à 4074	Canon	Crór	pe		oir Densite		nsite Phasing							
22/01/2010		3420 a 40/4				QZT. HANNIN	А					\	1/			
		P L	UG E	TRES	TRI	CTION		1				1		\backslash	@3200m	
Date		Top - Bottom		Туре				Obs			Whipstock			\mathbf{V}		
17/09/2015		2943 à	Whipsto	ck		Ouverture d	une fêne	tre de 2943	3,5 à 295	0,3	KOP1			1/		
17/03/2013		2967 à	B.Cimer	nt					-		@2950m		X.			
13/03/2013		3120 à	B.Cimer	nt									M		\\ ∈	CP
											B.Ciment		1/1		@34	26m
											@296/m		$ \rangle$		∇	
	DE	VIATION	S			DONN	EES	DEPR	ESSI	ONS	7"@ 6					
Designation	2820	2820	Phase	INCL	AZ	Date	2	ENS	mpagnie D/EYD		3445m	15			1 1	<hr/>
TOL 4 1/2	3200	3200	0 1/2 8"1/2	2.41	271 4	04/02/2	2010	22/64	40/64	Péropy		7 ₈	Cim	ent	````	\backslash
FCP	3426	3409	6"	33.08	271,4	Duses DES (Dei)	20/04	32/64	40/64	Reserv	71	710	03120	0m	11	\blacktriangleright
тр он	4134	3658	6"	77.25	285.4	PFD (Psi)	3289	2921			11	11			\setminus	$\langle \rangle$
			ÿ	,20	200,1	PT (Psi)	2400	2050		QHA	1:	:/			Sabot)
						T tête(deac)	74	74		1		:/		@	4074m	
												ļ			@4	TD 134m en MD