
Extracting Behavioral Models from Executions Data
in Web Services Environments

Abstract—We investigate the problem of extracting web ser-
vices’ protocols basing on execution log events, i.e., how to recon-
struct protocols’ specifications expressing the observed behaviors
from service’s execution traces ?

We propose a comprehensive logic-based approach to extract
business protocol models expressing the external behavior of
deployed web services. Recorded execution traces are transcribed
to a facts base and a set of structure inference patterns is trans-
lated to a corresponding production rules base. The conceived
knowledge base is explored by a reasoning engine to infer the
various elements describing the finite state machine representing
the target service protocol and thus, the behavior model contained
in the execution traces log files is extracted.

Index Terms—Web services, Service protocols, Protocol min-
ing, Execution traces, Inference patterns, Logic programming.

I. INTRODUCTION

Over the last few years web services are becoming the dom-
inant technology for integrating distributed and heterogeneous
information systems.

In the web service ecosystem, two elements are fundamen-
tal for providing a high interactivity level between service
providers and service requesters. The first element is the
service interface described via the WSDL standard which
expresses the service localization and the allowed operations
with their signature. The second one is the service protocol
(business protocol) which reflects the provider’s business
process logic. A Service protocol is an abstract tool which
is used to describe the service external behavior by handling
conditions that govern the operations invocation, such as order
and temporal constraints [?], [?].

Web services research literature has largely highlighted the
usefulness of specifying service protocols and various models
are proposed for their representation [?], [?]. Generally, service
protocols are used to check the compatibility of customer’s
protocols with the published ones and to verify their con-
formance with other standardized processes. Also, service
protocols are inevitable during the services’ composition pro-
cess. Thus, they constitute a cornerstone for the web services
technology during the entire life-cycle: i.e., design, enactment,
management and analysis.

Despite the importance of service protocols, various reasons
can lead to their unavailability, such as: rapid service deploy-
ment, migrating legacy systems, automatic generation of the
WSDL file. . . On the other hand, due to frequent changes in
enterprises’ environments, the current version of a service pro-
tocol can be obsolete and, consequently, it partially reflects the

business logic supported by the considered business process.
In such contexts, the service protocol must be reconstructed
by exploring behavioral data contained in the executions logs.
After that, the discovered model is improved and advertised
in the web services’ adequate registries.

The problem of reconstructing business protocols basing on
execution traces is well known and it raises several difficulties
of different natures. Most of the related issues have been
extensively investigated in the research literature and several
works have addressed different facets of the problem [?], [?],
[?], [?], [?], [?], [?].

In this paper, a fundamental paradigm shift is suggested to
extract service protocols from execution traces. The salient
feature of the proposed work lies in a framework based
on a declarative approach to support service providers in
performing a fine-grained protocols reconstruction process, by
customizing a set of high-level abstractions. In the proposed
approach, execution traces are transcribed to a facts base which
is formalized in the first-order logic predicates and a set of
structures’ inference patterns is suggested to specify the
rules base that allows inferring the various elements of the
target business protocol to be constructed.

Paper organization: We start by discussing related works
in section 2. Section 3 presents the different facets of the
proposed logic-based approach. In section 4, the system
architecture is illustrated and the implementation and the
experimentation of a prototype based on the use of Prolog is
exposed. Finally, conclusion and potential directions for future
works are drawn at section 5.

II. RELATED WORKS

Recent literature is very rich in approaches that have ad-
dressed the various challenges related to the issue of business
protocol discovery. Hereafter, we discuss different works that
have coped with the problem from different perspectives.

- In [?], [?], [?], an approach based on establishing a
causality relation in the set of execution traces is suggested
in order to discover the corresponding process or workflow
models. The proposed α-algorithm [?], [?] uses a rules set to
specify relations between activities and a Petri net, with special
properties (workflow nets), is extracted from event logs. As
the α-algorithm can’t deal with short loops of length one and
two, it was enhanced to α+, α++ [?]. But, these last ones have
residual problems with complex control-flows.

- The work presented in [?] proposes a formal framework to
discover implicit timed transitions of conversation protocols.
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The concept of implicit transitions was formalized to express
activities that can be triggered under time constraints. In
this approach, the working hypotheses are very restrictive
and many conditions are imposed to model the associated
constraints (complete traces, no timed transitions leading to
final states, no noise in logs, . . . ).

- In [?], the authors introduce an heuristics driven process
mining algorithm to discover the main behavior registered in
an event log. The frequency of activities is used as a base
to construct a dependency graph basing on a metric which
indicates the degree of dependence between two events. This
approach is applicable only to specific data having no too
many different events.

- In [?], [?], the authors propose efficient algorithms to
deal with the problem of event correlation in service-based
processes and they characterize the set of events in service
logs belonging to the same instance of a process. Such an
approach is complementary to our work and it could be
deployed during preliminary steps when the execution traces
are not characterized by an unique identifier.

- Other significant algorithms for business processes dis-
covery have been proposed recently (fuzzy [?], genetic [?]).
In [?], a technique is suggested to evaluate these algorithms
efficiently, and thus, to allow business managers selecting the
appropriate algorithm that is most suitable for a given data-set.

III. APPROACH FOR EXTRACTING SERVICE PROTOCOLS
FROM EXECUTION TRACES

We present below the different facets of our logic-based
approach and we expose the underlying models. (i) First,
we introduce the explicit choices on formal models used for
representing service protocols and execution traces. (ii) The
components of the used knowledge base are addressed at a
conceptual level by formalizing execution traces and inference
patterns. (iii) A reasoning engine is deployed to infer the target
service protocol from the conceived knowledge base. In what
follows, these steps are deeply discussed and illustrated.

A. Modeling service protocols and execution traces

We introduce below the formal models manipulated
throughout the approach for specifying service protocols and
execution traces.

1) The service protocol model: A service business protocol,
(shortly the service protocol) describes the external visible
behaviors of a given web service, by specifying the constraints
(e.g., ordering of messages, . . . ) that customers must comply
with in order to correctly interact with the service [?], [?].

While various models of different levels of expressiveness
have been proposed in the literature to capture different kinds
of abstractions of service protocols, in our work a basic
version of the model basing on automaton is used. It describes
the ordering constraints that govern the activities’ execution
[?], [?]. The choice of finite state machines is motivated
by the important role of this formalism to represent the
behavior of dynamic systems and to support formal analysis of
business processes [?]. In the other hand, other existing models
such UML diagrams, PetriNets and BPMN diagrams can be

translated to such models by using adequate transformation
techniques [?], [?].

Definition 1: A (web service) business protocol is a tuple
P = (S, s0,F ,M,R); where:

- S is a finite set of states;
- s0 ∈ S is the initial state of the protocol;
- F ⊆ S is the set of final states;
- M is a finite set of abstract activities;
- R ⊆ S ×M× S is a transition relation. Each element
(s,m, s′) ∈ R represents a transition from a source state
s to a target one s′ upon the execution of the abstract
activity m.

According to this definition, states represent the different
phases that a service may go through while transitions rep-
resent activities that a service can perform to move from one
step to another [?].

Example 1: A real-world example of a retirement protocol
is depicted in Fig. 1. The protocol could be deployed as a web
service by a nationwide network of social security centers for
managing citizen’s applications for pension benefits.
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Fig. 1. The retirement service protocol (Ret)

In such a protocol, state names (e.g. Rejected) are mean-
ingless symbols that do not affect the operational usage of the
service. The transitions’ labels are meaningful and correspond
to the executed activities. In the sequel, the names of the
activities are abbreviated as indicated in the figure (e.g., the
activity ApplicationSubmitted is abbreviated as AS).

It should be noted that the presented service protocol is
in fact an over simplified version of a real life retirement
business processes but which is however, sufficient to illustrate
our approach.

2) Formalizing execution traces: Each invocation of the
web service by a particular customer corresponds to an ex-
ecution of a separated instance of the service. This execution
generates a related execution trace. We introduce bellow the
concept of execution path which is necessary for representing
execution traces of service instances.
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Definition 2: An execution path of a protocol
P = (S, s0,F ,M,R) is an alternating sequence
c = sk.mk.sk+1.mk+1 . . . sn.mn.sn+1 of states and
activities of P , that (i) starts at a state sk of P , (ii) ends at
a state sn+1 of P , and (iii) is consistent with the transition
relationship of P , i.e., (si,mi, si+1, ) ∈ R,∀i ∈ [0, n].
An execution path c is called complete if it starts from the
initial state of P (i.e, sk = s0) and it ends at one of the
possible final states of P (if sn+1 ∈ F).

According to the previous definition, an execution trace Ti
of an instance I represents the sequence of historical activities
performed by I , from the beginning of the service invocation
to its current state. More formally;

Definition 3: An execution trace Ti of an instance I
is a finite sequence of activities m0.m1 . . .mn obtained by
removing the state names from the associated execution path
c = s0.m0.s1 . . . sn.mn.sn+1 ∈ P followed by the instance
I . The execution trace is called complete if it is originated
from a complete execution path.
We denote by T (P), the set of all execution traces T of a
service protocol P and |T (P)| designates the cardinality of
this set. Each element in T (P) is expressed with Ti(P), for
i = 1 . . . |T (P)| and the length of Ti(P) is noted |Ti(P)|, i.e.,
the number of activities contained in the trace Ti(P).

Example 2: Hereafter, we show four execution traces of
different instances belonging to the retirement (Ret) protocol
of Fig. 1.
•T22(Ret)=AS. IV. NR.
•T23(Ret)= AS. IV. CC.EV.
•T24(Ret)=AS. IV. CC. AC. EV. SID.
•T25(Ret)=AS. IV. CC. AC. AC. EV. NR.
Among the previous traces, T22(Ret) and T25(Ret) are com-
plete, while T23(Ret) and T24(Ret) are incomplete ones. The
length |T25(Ret)| of the trace T25 is 7.

Before ending this section, we assume that traces are
classified in a manner that it’s possible to dissociate them
from one service to another by using a service Id or a service
name. From another point of view, traces may be characterized
by other attributes, such as time-stamps and activities’ cost.
However, in the service protocol reconstruction context we
focus only on the activities names which are sufficient to
illustrate our approach.

B. Knowledge base specification
The knowledge base underlying our approach is articulated

around, (i) a facts base containing execution traces, and (ii)
a set of production rules expressing inference patterns. These
two elements are addressed below.

1) Translating execution traces to a facts base: We for-
malize each activity of a given execution trace as a first-order
logic predicate, expressed as follows.

A (Type,Order, Id, Sstate, Aname, Tstate) . (1)

Where A is a first-order predicate symbol of valence 6 and
the semantics of the associated attributes are as follows.

- Type: characterizes the activity’s type. The manipulated
values are 1: for the first activity in the trace, 2: for the
last activity and 0 corresponds to intermediate activities.

- Order: specifies the rank of the activity in the trace.
- Id: After splitting a trace to a set of separate facts, the

trace’s Id is integrated as an attribute for all the facts
belonging to the same trace.

- Aname: designates the name of the activity in the trace.
- Sstate: is the source state s ∈ P from which the activity

Aname starts.
- Tstate: is the target state s′ ∈ P to which the activity
Aname ends.

It’s forth noting that the predicate A(Attribute) applied to a
term of the predicate A returns the value taken by the input
parameter Attribute.

According to this specification, an execution trace Ti(P)
having a length l = |Ti(P)| generates a set of l separate
facts. The total facts number obtained after transforming all
the existing execution traces T (P) of the protocol P leads to
a facts base, noted FB(P) having a size |FB(P)|.

Example 3: According to equation (1), the traces T22(Ret),
T23(Ret) and T25(Ret) of example (2) are converted to the
following facts base. For each fact Ai,j , i is the trace identifier
and j corresponds to the attribute Order, while Si,j and Ti,j
are, respectively, source and target states of the activity.
•A22,1(1,1,22,S22,1, AS, T22,1);
•A22,2(0,2,22,S22,2, IV, T22,2);
•A22,3(2,3,22,S22,3, NR, T22,3);
•A23,1(1,1,23,S23,1, AS, T23,1);
•A23,2(0,2,23,S23,2, IV, T23,2);
•A23,3(0,3,23,S23,3, CC, T23,3);
•A23,4(2,4,23,S23,4, EV, T23,4);
•A25,1(1,1,25,S25,1, AS, T25,1);
•A25,2(0,2,25,S25,2, IV, T25,2);
•A25,3(0,3,25,S25,3, CC, T25,3);
•A25,4(0,4,25,S25,4, AC, T25,4);
•A25,5(0,5,25,S25,5, AC, T25,5);
•A25,6(0,6,25,S25,6,EV, T25,6);
•A25,7(2,7,25,S25,7,NR, T25,7);
In the previous facts base, the predicate A23,3(Aname) ap-
plied to the parameter Aname returns the value CC.

2) Inference patterns specification and semantics: We pro-
pose a set of generic Inference Patterns (IP) to capture
descriptive elements of the target protocol by exploring execu-
tion traces. The proposed patterns define recurrent situations
occurring during protocol invocation and they are intended to
combine in a single specification, both the syntactic elements
associated to execution traces (activities) with the structural
concepts manipulated at a high abstract level and expressing
protocol schema (transitions, nodes, split, join . . . ). Inference
patterns are described with a pattern name, a formal specifi-
cation and a textual description.

a) Pattern specification: Let T be a collection of traces
represented as a set of facts and let P be the target service pro-
tocol to be extracted. A general specification of an inference
pattern is as follows.

TargetElement |= IP (Scope, Param), where : (2)

- TargetElement constitutes the logic conclusion inferred
from premises expressed through the predicate IP. This
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goal specifies a particular element of the protocol (states,
sequences, loops,. . .) that to be discovered.

- IP is a predicate in the first-order logic which captures
the semantics of the pattern type.

- Scope is a constraint over the execution traces set T , i.e.,
execution traces explored using this pattern.

- Param is a set of optional parameters expressing values
related to the protocol identifier, the activities’ name or
other traces attributes.
b) Pattern semantics: The inference pattern specification

stipulates that a subset of execution traces satisfying the
pattern’s Scope is used in input to evaluate the predicate
IP (Scope, Param), while considering the set of parameters
Param. If this predicate is evaluated to True then the goal is
satisfied and a corresponding TargetElement is identified as a
structure of the target protocol.

3) Inference patterns identification and formalization:
In the following eight inference patterns are identified and
formalized. The first three ones are intended to extract static
components (states) while the five last ones concern dynamic
structures (transitions). For each identified pattern, we give its
formal specification, we explain its semantics and we illustrate
its usage through an example.

a) Initial state pattern (IP1): In order to identify the ini-
tial state of a protocol P , the set of first activities contained in
the associated facts base T (P) is filtered out. The constraints
governing the initial state specification are expressed by the
following inference pattern.

s0 |= InitialState(T ,P). (3)

The semantics of the pattern stipulates that the scope of the
pattern is given by the subset of traces T of P; i.e., T (P ).
After transforming the filtered traces to a facts base FB(P),
the initial state s0 of the protocol is discovered if the predicate
InitialState(T ,P) is evaluated to True. This predicate is
evaluated to True if the following condition holds.

∃ i, j, such that: Ai,j ∈ FB(P), and Ai,j(Type) = 1.

As an illustration, the previous pattern is satisfied for the
following three facts of the facts base of example (3).
•A22,1(1, 1, 22, S22,1, AS, T22,1);
•A23,1(1, 1, 23, S23,1, AS, T23,1);
•A25,1(1,1,25,S25,1, AS, T25,1).
Furthermore, as the three activities’ names are identical; (i.e,
AS), an unique execution path starting from the state s0 is
created in the target automaton.

b) Final states pattern (IP2): The inference pattern spec-
ifying the final states Fl ⊆ S of a target protocol is formalized
as follows.

Fl |= FinalStates(T ,P), with l ≥ 1 . (4)

The final states of P are recognized by focusing on target
states of last activities. Thus, a fact Ai,j expressing a transition
(s,m, s′) ∈ R is ending at a final state, only if the predicate
FinalStates(T ,P) is evaluated to True. This predicate is
satisfied if the following condition holds.

∃ i, j, such that: Ai,j ∈ FB(P), and Ai,j(Type) = 2.

Whenever a final state Fl is discovered, it is added to the
already discovered final states set; i.e., F = F ∪ Fl.

As an illustration, the deployment of the pattern IP2 of
equation (4) to the facts base of example (3) produces the
following subset of facts.
•A22,3(2, 3, 22, S22,3, NR, T22,3);
•A23,4(2, 4, 23, S23,4, EV, T23,4);
•A25,7(2, 7, 25, S25,7, NR, T25,7).
Thus, three final states F1, F2 and F3 are discovered and added
to the final states set F of the protocol P; i.e;, F = F ∪
{ F1, F2, F3}.

c) Intermediate states pattern (IP3): From a structural
point of view, an intermediate state is a target state for an
ingoing activity and a source state for an outgoing one. The
corresponding inference pattern is formalized as follows.

Sk |= IntermdediateState(T ,P), with k ≥ 1. (5)

The Pattern semantic indicates that a new intermediate
state Sk is discovered in the protocol P , if the predicate
IntermediateState(T ,P) applied to the facts base FB(P)
is evaluated to True. This predicate is True for two facts Ai,j

and Ai,j′ ∈ FB(P) if their related activities are consecutive
ones. More formally.

Ai,j′(Order) = Ai,j(Order) + 1; for i ∈ [1, |T (P)|] and
j, j′ ∈ [1, |Ti(P)|].

During the intermediate states reconstruction process, the
target state Ti,j of the first activity and the source state Si,j+1

of the consecutive one are renamed with the same state name
Sk.

As an example, when applying the previous pattern to
the facts base of example (3) with the particular value of
i = 22, two intermediate states are discovered. After the states
extraction, the variables T22,1 and S22,2 in example (3) are
renamed to S1. In a similar fashion the states T22,2 and S22,3

are renamed to S2. The discovered two states S1 and S2 are
added to the set of states: S = S ∪ {S1,S2}.
By taking into account the already discovered initial and final
states, the improved facts associated to the trace T22(Ret)
become as follows.
•A22,1(1, 1, 22, S0, AS, S1);
•A22,2(0, 2, 22, S1, IV, S2);
•A22,3(2, 3, 22, S2, NR, F1).

d) Self-loop pattern (IP4): The existence of self-loop
structures is manifested by execution traces that exhibit activi-
ties sequences of the form m.m.m . . .. The following inference
pattern allows detecting states Sj that exhibit such a behavior.

Sj |= Loops(T , (P, A)), with j ≥ 0. (6)

The self-loop inference pattern is customized with two pa-
rameters; the protocol P and the activity A concerned by the
loop test. In the protocol specification, a state Sj holds a loop
structure upon the execution of an activity A, if the predicate
Loops(T , (P, A)) is evaluated to True. This predicate is True
if:

∃ i, j (j ∈ [2, |Ti(P)| − 1]), such that: Ai,j , Ai,j+1 ∈ FB(P)
and Ai,j(Aname) = Ai,j+1(Aname) = A
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In the previous condition, the constraint j ∈ [2 . . . |Ti(P)|−1]
ensures that loops can’t be built on the initial state (j 6= 1)
and final ones (j ∈ |Ti(P)| − 1).

The exploration of the facts base of example (3) basing on
the self-loop pattern of equation (6) leads to the two following
facts that satisfy the predicate Loops(T , (Ret,AC)) upon the
execution of the activity AC.
•A25,4(0, 4, 25, S25,4, AC, T25,4);
•A25,5(0, 5, 25, S25,5, AC, T25,5).
After renaming states as follows:
S4 = S25,4 = T25,4 = S25,5 = T25,5, the two previous facts
become:
•A25,4(0, 4, 25, S4, AC, S4),
•A25,5(0, 5, 25, S4, AC, S4).

e) Activities sequence pattern (IP5): A sequence struc-
ture links chronologically, at least, two activities Ai,j and Ai,j′

by a common state Sk. Such structures are expressed by two
transitions (s,m,Sk) and (Sk,m′, s′) ∈ R. The following
inference pattern allows extracting sequences constructs from
the activities facts base.

(Ai,j , Ai,j′) |= Sequence(T , (P, Sk)). (7)

The semantics of the pattern is interpreted as follows. First,
only traces of the input protocol P are handled. When ex-
ploring the corresponding facts base FB(P), for each state
Sk introduced as an input parameter of the pattern, the pairs
of consecutive activities (Ai,j , Ai,j′) are searched by locating
incoming activities Ai,j and the outgoing ones Ai,j′ , while
evaluating the predicate Sequence(T , (P, Sk)). For a given
state Sk this predicate is evaluated to True, for all the facts
Ai,j and Ai,j′ ∈ FB(P) satisfying the condition.

∀ i, j, j′, such that: Ai,j , Ai,j′ ∈ FB(P);
Ai,j(Tstate) = Ai,j′(Sstate) = Sk (Sk /∈ F)

By applying the pattern IP5 to the facts sub-base presented at
the end of the pattern IP3 (see section III-B3c) with S2 as a
parameter, the predicate Sequence(T , (Ret, S2)) is evaluated
to True for the two activities IV and NR (j=2 and j’=3),
because A22,2(Tstate) = A22,3(Sstate) = S2. Thus, it’s
inferred that the state S2 links the two activities IV and NR.
Consequently, a sequence structure is discovered.

f) Join structure pattern (IP6): Join structures express
the convergence of several activities to an unique state of the
automaton. The following pattern is used to detect activities
involving a join structure over a state Sk of P .

Ai1,j1 , Ai2,j2 , . . . , Ain,jm |= Join(T , (P, Sk)). (8)

The pattern semantics indicates that a state Sk introduced as
an input parameter of the pattern represents a join node for
a sub-set of activities performed in execution traces T of a
protocol P , if the predicate Join(T , (P, Sk)) is evaluated to
True. This predicate is True if the following condition holds.

∃ i1, i2, . . . , in, j1, j2, . . . , jm , such that:
Ai1,j1 , Ai2,j2 , . . . , Ain,jm ∈ FB(P) and Ai1,j1(Tstate) =

Ai2,j2(Tstate), . . . ,= Ain,jm(Tstate) = Sk

For instance, assume that four facts A20,2, A30,3, A40,5 and
A50,8 of a purchase protocol are described according to the

facts predicate of equation (1).
•A20,2(0, 2, 20, S2, Select, T2);
•A30,3(0, 3, 30, S3, Validate, T3);
•A40,5(0, 5, 40, S5, Purchase, T4);
•A50,8(0, 8, 50, S8, Payment, T4).
According to equation (8), the predicate Join(T , (Ret, T4))
is evaluated to True for the two last facts:
{A40,5, A50,8}, (i1 = 40, i2 = 50 and j1 = 5, j2 = 8) and the
state T4 constitutes a join node for the activities Purchase
and Payment.

g) Split structure pattern (IP7): A split structure repre-
sents a subset of distinguished transitions which are outgoing
from a same source state Sk. The specification of the inference
pattern for discovering split nodes in the facts base T (P) is
formalized as follows.

Ai1,j1 , Ai2,j2 , . . . , Ain,jm |= Split(T , (P, Sk)). (9)

The semantic carried by this pattern is interpreted as follows. A
state Sk introduced as a parameter of the pattern constitutes a
split node for the outgoing activities Ai1,j1 , Ai2,j2 , . . . , Ain,jm ,
if the predicate Split(T , (P, Sk)) is evaluated to True. This
predicate is satisfied if the following constraint holds.

∃ i1, i2, . . . , in, j1, j2, . . . , jm , such that:
Ai1,j1 , Ai2,j2 , . . . , Ain,jm ∈ FB(P) and Ai1,j1(Sstate) =

Ai2,j2(Sstate), . . . ,= Ain,jm(Sstate) = Sk

As an illustration, let us consider the two following facts of
example (3).
•A22,3(2, 3, 22, S22,3, NR, T22,3);
•A23,3(0, 3, 23, S23,3, CC, T23,3).
According to the intermediate state pattern IP3, the states S22,3

and S23,3 are renamed to S3, leading to the facts:
•A22,3(2, 3, 22, S3, NR, T22,3);
•A23,3(0, 3, 23, S3, CC, T23,3).
The predicate Split(T , (P, Sk)) is evaluated to True for the
state S3 which constitutes a split node for the two activities
NR and CC.

h) Cycles on sub-structures (IP8): Instead of looping on
simple states, service instances may iterate a whole activities
sequence during their executions. More formally, consider that
I is an instance of a web service with its trace Ti and let
[Ai,1.Ai,2. . . . .Ai,l] be an activities sequence of length l (with
l > 1) which is performed by I during its interaction with the
service. If the previous activities sequence [Ai,1.Ai,2. . . . .Ai,l]
occurs more than once in the same trace, it is deduced that
a cycle on a sub-structure exists in the protocol specification.
The following pattern is deployed to extract potential existing
cycles on sub-structures of the protocol.

[Ai,j .Ai,j+1. . . . .Ai,j+l] |= Cycle(T ,P). (10)

The semantics of the pattern is interpreted as follows. A cycle
is detected for an activities sequence [Ai,j .Ai,j+1. . . . .Ai,j+l],
if the predicate Cycle(T ,P) is evaluated to True. This pred-
icate is satisfied for the previous sequence if:

∃ i, j , such that: Ai,j , Ai,j+1, . . . , Ai,j+l ∈ FB(P) and
Occurrence([Ai,j , Ai,j+1, . . . , Ai,j+l]) > 1.
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For identifying potential cycles in the target protocol, possible
duplicated occurrences of the activities sequence in a trace
Ti are examined depending on different values of the length
1 < l ≤ |Ti|.

As an illustration, consider an instance I = 100 with its exe-
cution trace T100(P) = a.b.c.d.b.c.e, having the two redundant
activities b and c. According to the facts representation, (see
subsection (III-B1)), the trace T100(P) is transformed to the
following subset of facts.
•A100,1(0, 1, 100, S100,1, a, T100,1);
•A100,2(0, 2, 100, S100,2, b, T100,2);
•A100,3(0, 3, 100, S100,3, c, T100,3);
•A100,4(0, 4, 100, S100,4, d, T100,4);
•A100,5(0, 5, 100, S100,5, b, T100,5);
•A100,6(0, 6, 100, S100,6, c, T100,6).
•A100,7(0, 7, 100, S100,7, e, T100,7).
For the same trace T100, the activities b and c appear more
then once in the facts base. Further, for the value l = 2,
the sequence b.c is redundant in the facts base and thus, it
is deduced that a sub-structure performing a cycle on the
activities sequence b.c exists in the service protocol schema.

C. Exploration of the knowledge base

A multi-stages process is conducted to explore the con-
ceived knowledge base in order to extract the structural
elements of the target protocol. These steps are:

1) Once the traces database is imported from providers’
information systems, a pre-processing phase is initiated.
It consists in removing noises and unnecessary attributes,
such as information about service quality (QoS) and
time-stamp. Further, in order to optimize the overall effi-
ciency of the proposed approach redundant and included
traces are removed. Thus, if the traces T1, T2, . . . , Tn are
contained in a trace Tm, then only Tm is retained to be
exported to the cleaned traces database.

2) Cleaned execution traces are exported to an adequate
database that is ready to be exploited as input of the
knowledge base reasoning system.

3) Each execution trace Ti of length l is transcribed to
l separate facts which are stored in the facts base. In
the other hand, the formalized inference patterns are
implemented as production rules. Facts and rules are
expressed in a low level language such as Prolog.

4) An inference engine using backward chaining (Prolog)
is deployed to produce the descriptive elements of the
target protocol by assessing the production rules. The
attributes of inferred structures are stored as XML ele-
ments expressing state names and their types, transition
names and their attributes,. . . . Additionally, confor-
mance checking actions are performed to avoid errors
and inconsistency that can occur in the built protocol,
such as unreachable states, absence of initial and final
states.

5) For ergonomic viewing reasons, a graphical representa-
tion of the built protocol is provided to end users to allow
them refining and enhancing the produced protocol in a
visual manner.

IV. IMPLEMENTATION AND EXPERIMENTS

This section briefly describes a prototype, named Logical
Business Protocol Reconstructor (LBPR) which implements
the proposed approach. First, the system architecture is pre-
sented then preliminary experimental results are discussed.

A. System Architecture and functionalities

Java environment integrating useful Eclipse plug-ins, such
as MySQL-connector and JPL (Java Programming Logic) [?]
have been used to implement the prototype LBPR. The JPL
library allows incorporating Prolog in Java and it’s used by
Java for interacting with SWI-Prolog [?]. As illustrated in
Fig. 2, the prototype LBPR is organized around three main
components interacting with the conceived knowledge base.
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Fig. 2. System Arhitecture and functionalities

The first component of LBPR is the Execution Traces
Management module which allows users connecting to the
log files database in order to select and to import execu-
tion traces of the concerned web service. After that, a pre-
processing step is initiated. It consists in removing redundant
and included traces (module: cleaning traces). At this stage
the relevance and the representativeness of imported traces are
evaluated by calculating the rate ρ of the complete traces with
regard to the total number of the imported traces: ρ = C/P ;
with C= Complete traces and P = Imported traces. This
verification is ensured by the module Checking traces size
and Consistency.

The second component of LBPR enables constructing the
facts base in accordance to the facts predicate model of equa-
tion (1). Once the facts base is generated, the system performs
automatically the extraction of the protocol as a sequence
of chronological actions. In each step, a particular structure
inference pattern is activated. The protocol extraction process
is controlled through parameters settings which determine the
inference pattern that should be performed, some adjustable
thresholds and the levels of details for writing the reasoning
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engine logs. The user gets a detailed log of all mining steps
expressed by native prolog traces.

The last component of LBPR allows different representation
of the built protocol. In fact, upon patterns execution the
induced goals constitute the descriptive elements of the target
protocol. The discovered structures are managed in XML-
format and are stored in adequate files describing the target
automaton. Each XML element in the output file represents
either a protocol state or a transition between states. The
attributes associated to XML elements express values of prop-
erties characterizing states names, transitions names and states
types, as well as the screen positions manipulated during the
graphical visualization of the protocol. For ergonomic reasons,
the prototype LBPR was consolidated by a graphical editor
that allows viewing and browsing the extracted protocols.

Fig. 3. Graphical viewing and browsing of the target protocol

As depicted in Fig. 3, a partial extracted retirement pro-
tocol is produced by LBPR from execution traces data-set.
Furthermore, in order to improve the protocol specification and
visualization, a graphical tool box provides useful functions,
like moving states/activities from one position to another,
adding or renaming states/activities and finally removing ele-
ments. Another useful feature of LBPR is the conformance-
checking tool which ensures the verification of a set of
correctness criteria (initial, final and unreachable states . . . ).

B. Experiments

To evaluate the scalability and the performance of the
proposed approach, we conducted experiments with the proto-
type LBPR over synthetic data-sets originating from various
fields (pension, e-commerce, booking flights) and containing
respectively: DS1=1.000, DS2=10.000, DS3=100.000 and
DS4=200.000 traces.

In a first experiment, we focused on the pre-processing step
by evaluating the rates of redundant and included traces, while
recording the elapsed time during data cleaning. To this end,
the data-set DS3 containing 100.000 traces was chosen and
treated. It was observed that the rate of redundant execution

traces represents 46 % of the total size of the introduced
data-set. Once duplicated traces were removed, only filtered
ones are submitted to an inclusion checker module which tests
traces inclusion and discards the included traces for the next
experimental steps. Empirical observations show that average
38 % of the total traces are included in other ones, because
we are dealing with real business processes characterized by a
bounded number of execution paths. After the pre-processing
step, execution traces are reduced approximately to 34 % of
their original size. These proportions are largely suitable for
the remainder of the experiment process. In the other hand,
the observation of the manipulated data shows that the average
of activities is generally around 10 activities per trace. Conse-
quently, after the pre-processing step, the size of corresponding
facts in each data-set approximates, respectively, BF1=3.400,
BF2=29.700, BF3=272.000 and BF4=594.000.

To examine the efficiency and the relevance of the proposed
patterns, in a second experiment the time spent during the
reasoning step is evaluated. Hence, when chronologically
activating the various inference patterns, the time consumed by
the reasoning engine to resolve Prolog clauses was calculated.

Fig. 4. Variation of the protocol extraction time

As shown in Fig. 4, this time grows linearly according to the
size of the facts base introduced in input. As the protocol ex-
traction process operates on cleaned data, the obtained results
are very satisfactory and turn around 25 minutes (1532 sec-
onds) for the largest data-set DS4 (BF ' 594.000 facts). These
results encourage the system deployment for handling large-
public applications (e-government, e-learning, e-commerce,
. . . ) which are characterized by a high size of execution data.
Nevertheless, when viewing the resulting protocol as a finite
state machine different display problems arise, due the aleatory
attributes associated to the automaton states in the XML files.
In fact, we associate to each discovered state two random
coordinates (x,y) to display it on the screen. To overcome this
limitation, while enhancing protocol’s viewing, user’s manual
intervention is required. In this trend, system users can drug
and drop states and transitions from one position to another.
The new values of the graphical positions are captured and
stored as attributes of the automaton description.
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V. CONCLUSION AND FUTURE WORK

In this work an approach based on first-order logic predi-
cates is proposed to extract web services business protocols.
Activities expressing log events are transcribed to first-order
predicates and are implemented as Prolog clauses. Further-
more, inference patterns have been identified and formalized as
a key concept for business protocol extraction. The discovered
protocols are complete; i.e., all recorded traces are covered by
the extracted protocol, and minimal; i.e., future interactions
can’t be predicted and handled by the system.

Beyond the benefits from logic programming paradigm
(extensibility, traceability, easy implementation and best per-
formances. . . ), the main contributions of this work are: (i) a
logic formal framework for extracting web services protocols
is suggested. (ii) a technique based on redundant and included
traces is adopted to reduce the search space. (iii) the proposed
approach is declarative, configurable and customizable. (iv)
the proposed approach is implemented and experimented using
real-life data.

In future works, we plan to improve the output protocol
viewing. As a potential direction, we project to deploy and
experiment the approach on big data originating from social
networks.
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