# On non coercive variational inequalites via regularisation methode 

Soukna NourElhouda

Département des Mathématiques<br>Université Kasdi Merbah Ouargla 30000, Algerie

nourhouda8671@gmail.com

## Résumé

The purpose of this paper is to study variational inequalities with a possibly non-coercive bilinear form. Well-posedness is shown that by study the existence, uniqueness andstability of the solutions of non-coercive variational inequalities by regularization methods keywords :variational inequalities, non-coercive, Well-posedness .

## 1. Introduction

Variational inequality theory has been fastly developed since 1967 introduced by Lions and Stampacchia who successfully treated a coercive variational inequality. After the fundamental work of Lions and Stampacchia, the theory of variational inequalities was studied by many researchers and became an important subject in non-coercive variational.

## 2. Elliptic vaiational inequalite

We call variational inequality any inequality defined by :

$$
\begin{equation*}
u \in K \cap X: a(u, v-u) \geq f(v-u) \forall v \in K \tag{2.1}
\end{equation*}
$$

### 2.1 Existence

Let $a: X \times Y \longrightarrow \mathbb{R}$ be bounded,symmetrically bounded, weakly coercive and satisfy a Neacondition on $Y$ for $X \longrightarrow Y$ dense.then for given $f \in Y^{\prime}$,
the unique solution $u^{\varepsilon}$ of

$$
u^{\varepsilon} \in K \cap X: a^{\varepsilon}\left(u^{\varepsilon}, v-u^{\varepsilon}\right) \geq f\left(v-u^{\varepsilon}\right) \forall v \in K \cap X
$$

converge to $u \in X$ as $\varepsilon \longrightarrow 0$ which solve (2.1)

## Neacas condition :

We say that the bilinear form $a(.,):. X \times Y \longrightarrow \mathbb{R}$ satisfies a Neas condition on $U \subset Y$ if there exicte $\beta_{a}>0$ suche thate :

$$
\sup _{w \in U} \frac{a(v, w)}{\|w\|_{y}} \geq \beta_{a}\|v\|_{X} \forall v \in X \cup U
$$

### 2.2 Uniqueness

Let $u_{1}, u_{2} \in X$ be tow solutions of (1.1) ,then
$\alpha_{a}\left\|u_{1}-u_{2}\right\|_{X}^{2} \leq a\left(u_{1}-u_{2}, u_{1}-u_{2}\right)=a\left(u_{1}, u_{1}-u_{2}\right)+a\left(u_{2}, u_{2}-u_{1}\right) \leq f\left(u_{1}-u_{2}\right)+f\left(u_{2}-u_{1}\right)=0$. Which imply

$$
\left\|u_{1}-u_{2}\right\|_{X}=0
$$

Hence $u_{1}=u_{2}$.
2.3 Stability

Let $u \in K$ solve (1.1).If a : $X \times Y \longrightarrow \mathbb{R}$ is bounded and satisfies a Neacas condition on $Y$ we have :

$$
\|u\|_{X} \leq \frac{1}{\beta_{a}}\|f\|_{Y^{\prime}}+\left(\frac{\gamma_{a}}{\beta_{a}}+1\right) d i s t_{\|\cdot\|_{X}}(0 . K)
$$

## 3. Space-Time Formulation of Parabolic Variational Inequalities

Let $c: V \times V \longrightarrow \mathbb{R}$ be the bilinear form corresponding to the weak form in space. We start by a parabolic initial value problem (PIVP) that reads for given $f(t) \in V^{\prime}, t \in I$ :

$$
\langle\dot{u}(t), v(t)\rangle_{V^{\prime}}+c(u(t), v(t))=\langle f(t), v(t)\rangle_{V^{\prime} \times V} \forall v(t) \in V
$$

$$
\begin{equation*}
u(0)=0 i n \mathbf{H} . \tag{3.2}
\end{equation*}
$$

Next, we de
ne space-time bilinear forms

$$
\begin{gathered}
{[u, v]=\int_{I}\langle u(t), v(t)\rangle_{V^{\prime} \times V} d t} \\
C[u, v]=\int_{I} c(u(t), v(t)) d t
\end{gathered}
$$

and we
nally obtain the variational formulation

$$
\begin{equation*}
u \in X: a(u, v)=f(v) \forall v \in Y \tag{3.3}
\end{equation*}
$$

wher $a(u, v)=[\dot{u}, v]+C[u, v]$ as well as $f(v)=[f, v]$.
Concider the parabolic variational inequality which:
find $u \in H^{1}(I, H) \cap C(I, V)$ such that $u(t) \in K(t)$

$$
(\operatorname{dot} u(t), v(t)-u(t))_{H}+c(u(t), v(t)-u(t)) \geq(f(t), v(t))_{V^{\prime} \times V} \forall v(t) \in K(t)
$$

$$
u(0)=0 \mathrm{in} \mathbf{H}
$$

when a strong solution exists. The space-time variational formulation now reads :

$$
a(u, v-u) \geq f(v-u) \forall v \in K
$$

If the bilinear form $c(. ;$.$) is bounded and satisfies a Garding inequality, then the bilinear form$ $a(. ;$.) is bounded, sym-metrically bounded and weakly coercive.
If this assumptions hold,then space-time vari- ational inequality (3.5) has a solution which is unique.

## Références

[1] J.-L. Lions and G. Stampacchia. Variational inequalities. Comm. Pure Appl. Math. 20, 493-519 (1967).
[2] L.C. Evans. Partial dierential equations. Graduate Studies in Mathematics, vol. 19, Ame rican Mathematical Society, Providence, RI (2010).

