

On non coercive variational inequalites via regularisation methode

Soukna NourElhouda

Département des Mathématiques Université Kasdi Merbah Ouargla 30000, Algerie nourhouda86710gmail.com

Résumé

The purpose of this paper is to study variational inequalities with a possibly non-coercive bilinear form. Well-posedness is shown that by study the existence, uniqueness and stability of the solutions of non-coercive variational inequalities by regularization methods keywords :variational inequalities ,non-coercive ,Well-posedness .

Let $u \in K$ solve (1.1). If $a : X \times Y \longrightarrow \mathbb{R}$ is bounded and satisfies a Neacas condition on Y, we have :

$$\|u\|_{X} \le \frac{1}{\beta_{a}} \|f\|_{Y'} + (\frac{\gamma_{a}}{\beta_{a}} + 1)dist_{\|.\|_{X}}(0.K)$$
(2.2)

1. Introduction

Variational inequality theory has been fastly developed since 1967 introduced by Lions and Stampacchia who successfully treated a coercive variational inequality. After the fundamental work of Lions and Stampacchia, the theory of variational inequalities was studied by many researchers and became an important subject in non-coercive variational.

2. Elliptic vaiational inequalite

We call variational inequality any inequality defined by :

$$u \in K \cap X: \ a(u, v - u) \ge f(v - u) \ \forall v \in K$$
(2)

2.1)

2.1 Existence

Let $a: X \times Y \longrightarrow \mathbb{R}$ be bounded, symmetrically bounded, weakly coercive and satisfy a Neacondition on Y for $X \longrightarrow Y$ dense then for given $f \in Y'$, the unique solution u^{ε} of

 $u^{\varepsilon} \in K \cap X : a^{\varepsilon}(u^{\varepsilon}, v - u^{\varepsilon}) \ge f(v - u^{\varepsilon}) \ \forall v \in K \cap X$

converge to $u \in X$ as $\varepsilon \longrightarrow 0$ which solve (2.1)

Neacas condition :

We say that the bilinear form $a(.,.): X \times Y \longrightarrow \mathbb{R}$ satisfies a Neas condition on $U \subseteq Y$ if

3. Space-Time Formulation of Parabolic Variational Inequalities

Let $c: V \times V \longrightarrow \mathbb{R}$ be the bilinear form corresponding to the weak form in space. We start by a parabolic initial value problem (PIVP) that reads for given $f(t) \in V', t \in I$:

$$\langle \dot{u}(t), v(t) \rangle_{V'} + c(u(t), v(t)) = \langle f(t), v(t) \rangle_{V' \times V} \ \forall v(t) \in V$$
(3.1)

$$u(0) = 0 in\mathbf{H}.$$
 (3.2)

Next, we de ne space-time bilinear forms

$$[u,v] = \int_{I} \langle u(t), v(t) \rangle_{V' \times V} dt$$

$$C[u,v] = \int_I c(u(t),v(t)) dt$$

and we nally obtain the variational formulation

$$u \in X : a(u, v) = f(v) \ \forall v \in Y$$
(3.3)

wher $a(u, v) = [\dot{u}, v] + C[u, v]$ as well as f(v) = [f, v]. Concider the parabolic variational inequality which : find $u \in H^1(I, H) \cap C(I, V)$ such that $u(t) \in K(t)$

> $(dotu(t), v(t) - u(t))_H + c(u(t), v(t) - u(t)) \ge (f(t), v(t))_{V' \times V} \,\forall v(t) \in K(t)$ (3.4)

> > $u(0) = 0 in\mathbf{H}.$ (3.5)

when a strong solution exists. The space-time variational formulation now reads :

there exicte $\beta_a > 0$ such thate :

$$\sup_{w \in U} \frac{a(v, w)}{\|w\|_y} \ge \beta_a \|v\|_X \ \forall v \in X \cup U$$

2.2 Uniqueness

Let $u_1, u_2 \in X$ be tow solutions of (1.1), then

 $\alpha_a \|u_1 - u_2\|_X^2 \le a(u_1 - u_2, u_1 - u_2) = a(u_1, u_1 - u_2) + a(u_2, u_2 - u_1) \le f(u_1 - u_2) + f(u_2 - u_1) = 0.$ Which imply

 $||u_1 - u_2||_X = 0$

Hence $u_1 = u_2$.

2.3 Stability

$a(u, v - u) \ge f(v - u) \; \forall v \in K$

If the bilinear form c(.;.) is bounded and satisfies a Garding inequality, then the bilinear form is bounded, sym- metrically bounded and weakly coercive. a(.;.)If this assumptions hold, then space-time vari- ational inequality (3.5) has a solution which is unique.

Références

[1] J.-L. Lions and G. Stampacchia. Variational inequalities. Comm. Pure Appl. Math. 20, 493-519 (1967).

[2] L.C. Evans. Partial dierential equations. Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI (2010).

Mastériales 2016. Mastériales 2016. Mastériales 2016. Mastériales 2016. Mastériales 2016. Mastériales 2016.