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Abstract—A direct adaptive fuzzy control scheme is developed
for a class of nonlinear discrete-time systems. In this scheme, the
fuzzy logic system is used to design controller directly, and the
parameters are adjusted by time-varying dead-zone, which its
size is adjusted adaptively with the estimated bounds on theap-
proximation error. The proposed design scheme guarantees that
all the signals in the resulting closed-loop system are bounded,
and the tracking error converges to a small neighborhood of
the origin. Simulation results indicate the effectivenessof this
scheme.
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Fuzzy Control,Stability Analysis, Dead Zone.

I. I NTRODUCTION

I N recent years, various adaptive fuzzy control techniques
have been developed to deal with nonlinear systems with

poorly understood dynamics. However, most results are re-
stricted to continuous-time systems[1-5], which cannot be
directly extended to discrete-time systems. In practical appli-
cations, almost all fuzzy control systems are implemented on
a digital computers,since control signals can only be applied
at fixed time steps, some advantages of the continuous time
controllers are lost by means of discretization. It is necessary
to take into account the fact that the controller is really a dis-
crete systems and not a continuous one. Recently, a discrete-
time fuzzy logic controller for a class of unknown feedback
linearizable nonlinear dynamical systems was presented[6-9].
In [8], a direct adaptive control scheme was presented where
Takas-Segno Fuzzy Systems (TASS) were used as a functional
approximation, a continuous dead zone was used to guarantee
convergence of the tracking error to anε-neighborhood of
origin. In [9], the authors presented an indirect adaptive control
scheme using TASS, similar stability results were achieved.
Based on [8] and [9], the adaptation gain and direction of
descent were updated in ways that seek to optimize certain
cost functions[10].In[11],a direct adaptive control for aclass
of strict feedback discrete time nonlinear was proposed. In[8-
11], the adaptation law was designed by a continuous dead-
zone, which its size was based on the approximation error of

the fuzzy logic system,and therefore it is necessary to assume
that the approximation error bounds are known in advance.
Although the approximation error is bounded, unfortunately,in
many practical systems such bounds might not be available,and
it is usually used the trial and error method,which might
result in a conservative dead-zone size. Within this paper,a
direct adaptive fuzzy control method is developed for a class
of nonlinear discrete-time systems with poorly understood
dynamics. In this study, the fuzzy logic system is used to
design controller directly, and the unknown parameters are
adjusted by time-varying deadzone, which its size is adjusted
adaptively with the estimated bounds on the approximation
error of fuzzy logic system. The proposed design scheme
guarantees that all the signals in the resulting closed-loop
system are bounded, and the tracking error converges to a
small neighborhood of the origin . Moreover, an example
illustrates the ideas presented here.

II. D IRECT ADAPTIVE FUZZY CONTROL

Consider the discrete-time single-input single-output (SISO)
nonlinear system in the following form:

y(k + d) = f(x(k)) + g(x(k))u(k) (1)

Whereu(k) ∈ R andy(k) ∈ R are the input and the output of
the system, respectively,d is the time delay of the system, and
x(k) = [y(k), ..., y(k−n), u(k− 1), ..., u(k−m)]T , f(x(k))
andg(x(k)) are unknown smooth functions, and the following
assumption is made:

A. Assumption 1:

It exists a constantg1 such that0 < g(x(k)) < g1 < ∞.

The control objective of this paper is to design a direct
adaptive fuzzy controller such that the system outputy(k)
follows the reference signalr(k), while all the signals in
closed-loop system remain bounded. Iff(x(k)) and g(x(k))
are known exactly, it is well known that for the plant (1),
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there exists an ideal controller:

u∗(k) =
−f(x(k)) + r(k + d)

g(x(k))
(2)

that drives the output of the system to perfectly follow a known
reference trajectoryr(k),i.e.

e(k + d) = r(k + d)− y(k + d) = 0

this means that afterd steps,we havee(k) = 0. Sincef(x(k))
and g(x(k)) are unknown, the ideal controlleru∗(k) of (2)
can’t be implemented,we assume that the functionf(x(k))
and g(x(k)) can be approximated by fuzzy logic systems.
The used fuzzy system is a collection of fuzzy IF-THEN
rules of the form [1]:

R(l) : IF x1 is F l
1 and ... andxn is F l

n THEN y is Gl

where x = (x1, ..., xn)
T and y are the input and output

of the fuzzy logic system,respectively,F l
i and Gl are

fuzzy sets, for l = 1, ...,m. By using the strategy of
singleton fuzzification,product inference and center-average
defuzzification, the final output of the fuzzy system is given
as follows:

y(x) =

m
∑

j=1

yj
(

n
∏

i=1

µ
F

j

i

(xi)
)

m
∑

j=1

n
∏

i=1

µ
F

j

i

(xi)

(3)

whereyj is the point at which the membership function ofGl

achieves its maximum value. By introducing the concept of
fuzzy basis functions vectorξ(x),the output given by (3) can
be rewritten in the following compact form:

y(x) = f̂(x|θ) = θT ξ(x) (4)

whereθ = (y1, ..., ym)T , ξ(x) = (ξ1(x), ..., ξm(x))T ,

ξj(x) =

∏n

i=1 µF
j

i

(xi)
∑m

j=1

∏n

i=1 µF
j

i

(xi)

Now, let the ideal controlleru∗(k) be approximated,over a
compact setU , by fuzzy system as follows:

u(k) = u(x̄(k)|θ) (5)

wherex̄(k) = (xT (k), r(k + d))T

Using (1), (2) and (5), the error equation can be written as:

e(k + d) = g(x(k))(u∗(k)− u(x̄(k)|θ) (6)

Let us define the optimal parameter of fuzzy systems:

θ∗ = argmin
θ∈Ω

(

sup
x̄∈U

|u∗(k)− u(x̄(k)|θ))|
)

whereΩ is the compact set of allowable controller parameters.
Notice that optimal parametersθ∗ is artificial constant
quantities introduced only for analytical purpose, and

its value is not needed for the implementation. Define
Φ(k) = θ∗ − θ(k) as the parameter estimation error, and

ω(k) = u∗(k)− u(x̄(k)|θ∗)

as the minimum approximation error. In this paper,we assume
that the used fuzzy system do not violate the universal approx-
imation property[1] on the compact setU , which is assumed
large enough so that the state variables remain withinU under
closed-loop control. So it is reasonable to assume that the
minimum approximation error is bounded for allx̄ ∈ U , and
we have:

B. Assumption 2:

It exists an unknown constantρ∗ such that|ω(k)| ≤ ρ∗, and
we defineρ(k) as the estimation ofρ∗.
With the above definitions, the error equation (6) can be
rewritten as:

e(k + d) = g(x(k))ΦT (k)ξ(x̄(k)) + g(x(k))ω(k) (7)

In order to meet the control objective,in [8-11],a continuous
dead-zone is used to design the adaptation law,but the ap-
proximation error bound is needed.In this paper,we use the
time-varying dead-zone to design the adaptation law.The time-
varying dead-zone sizeδ(t) is adjusted adaptively by following
adaptation law :

δ(k) = g1ρ(k − d) (8)

The time-varying dead-zone is defined as [3]:

e∆(k) =

{

e(k)− sign(e(k))δ(k) if |e(k)| > δ(t)
0 if |e(k)| ≤ δ(t)

(9)

Here,

sign(x) =

{

1 whenx ≥ 0
−1 whenx < 0

Using the following adaptation law to adjust the parameter
ρ(k) :

ρ(k) = ρ(k − d) + β|e∆(k)| (10)

whereβ > 0 The unknown parameter vectorθ(k) is updated
by the following adaptive law:

θ(k) = θ(k − d) + αξ(x(k − d))e∆(k) (11)

whereα > 0
The following theorem shows the properties of this direct
adaptive fuzzy controller.

Theorem 1:

Given the plant defined by (1) satisfying assumptions 1 and
2, whenα+ β ≤ 2

g1
, the control law (5) with adaptation law

(8),(10)and (11) will ensure that all the signals in the closed-
loop system are bounded, and the tracking error converge to
a small neighborhood of origin.
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Proof:

Define the parameter error̄ρ(k) = ρ∗−ρ(k), from (10) and
(11),Φ(k) and ρ̄(k) can be expressed as:

ρ̄(k) = ρ̄(k − d)− β|e∆(k)| (12)

Φ(k) = Φ(k − d)− αξ(x̄(k − d))e∆(k) (13)

Consider the function:

V (k) =
1

α
ΦT (k)Φ(k) +

1

β
ρ̄T (k)ρ̄(k) (14)

Let ∆V (k) = V (k) − V (k − d), consider the case where
|e∆(k)| ≤ δ(t), in this case,e∆(k) = 0, thus∆V (k) = 0,
therefore only the region|e∆(k)| > δ(k) is considered in the
subsequent proof.
If |e∆(k)| > δ(t), then

∆V (k) = −2ΦT (k − d)ξ(x̄(k − d))e∆(k)

+ α|ξ(x̄(k − d))|2e2∆(k)− 2ρ̄(k − d)|e∆(k)|
+ βe2∆(k) (15)

Based on (7),it can be shown that

ΦT (k − d)ξ(x̄(k − d)) =
e(k)

g(x(k − d))
− ω(k − d) (16)

Using (16),(15)can be expressed as:

∆V (k) = −2
e(k)e∆(k)

g(x(k − d))
+ 2ω(k − d)e∆(k)

+ α|ξ(x̄(k − d))|2e2∆(k)− 2ρ̄(k − d)|e∆(k)|
+ βe2∆(k) (17)

From (9),we know that

e(k) = e∆(k) + sign(e(k))δ(k) (18)

sign(e(k))e∆(k) = |e∆(k)| (19)

Using (18),(19) and assumption 1,we get

∆V (k) ≤ −2
e2∆(k)

g1
− 2

|e∆(k)|
g1

δ(k)

+ 2ρ∗|e∆(k)|+ α|ξ(x̄(k − d))|2e2∆(k)
− 2ρ̄(k − d)|e∆(k)|+ βe2∆(k) (20)

Using (8) and (10),(20) becomes

∆V (k) ≤
(

− 2

g1
+ α|ξ(x(k − d))|2 + β

)

e2∆(k) (21)

Sinceα+ β ≤ 2
g1

, we get:

∆V (k) ≤ 0 (22)

This ensures thatV (k) is bounded,which implies boundedness
of θ(k) andρ(k).
Let 2

g1
− α− β = η, from (21), we obtain:

V (k) ≤ V (k − d)− ηe2∆(k) (23)

Summing (23) fromd to k gives:

V (k) + V (k − 1) + · · ·+ V (k − d+ 1)

≤ V (0) + V (1) + · · ·+ V (d)−
k
∑

j=d

ηe2∆(j) (24)

We know that for arbitraryk > 0, V (k) is bounded, thus

lim
l−→∞

l
∑

k=d

e2∆(k) < ∞ (25)

This implies that :

lim
l−→∞

e2∆(k) < ∞ (26)

From (9), we conclude that|e(k)| ≤ δ(k), therefore , the
tracking errore(k) converges to a small neighborhood of the
origin.

Remark 1:

As long as the initial condition forρ(k) is ρ(0) > 0,from
(10),we getρ(k) > 0,thereforeδ(k) > 0.
Sinceρ(k) is bounded,so thatδ(k) is bounded.

III. S IMULATION

Consider the surge tank model that can be represented by
the following differentiation equation [10]:

dh(t)

dt
=

−c
√

2gh(t)

Ar(h(t))
+

1

Ar(h(t))
u(t)

whereu(t)is the input flow (control input),h(t) is the liquid
level (output of the system),Ar(h(t))is the cross sectional
area of the tank,g = 9.8m

s2
is the gravitational acceleration,d

is the known cross-sectional area of the output pipe. We use
the parameters of [10],d = 1, Ar(h(t)) =

√

ah(t) + b, a =
1, b = 3. Using Euler approximation to discretize the system,
we have:

h(k + 1) = h(k) + T
[−
√

19.6h(t)

Ar(h(t))
+

u(t)

Ar(h(t))

]

(27)

whereT = 0.1 is sampling time. Note that the system (27)
has the same form as (1) with :

f(x(k)) = h(k)− T

√

19.6h(k)
√

h(k) + 3
, g(x(k)) =

T
√

h(k) + 3

We will simulate the system forh(k) > 0 so that the
simulation is realistic. Sinceg(x(k)) = T√

h(k)+3
, therefor

0 < g(x(k)) < 0.577T , we obtaing1 = 0.577T .
The controlleru∗(x(k)) to be approximated by the fuzzy logic
systems of (4), which the input ish(k) andr(k + 1).
To ensure thath(k) andr(k + 1) is in a fixed region,we use
the following one-to-one mapping [12]:

h̄(k) =
h(k)

1 + |h(k)|
It is clear thath(k) ∈ [−1, 1] for arbitrary h(k). This can
also be used tor(k + 1). The reference signal is assumed to
be r(k) = 2 + sin( πk

150 ). Let the initial conditionsy(0) =
0.5, ρ(0) = 0.1, and each component ofθ(0) is chosen
randomly in the interval[−0.5, 0.5], α = 15, β = 0.02.
The input variables of fuzzy system arex1 = h(k) and
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x2 = r(k + 1),the membership functions forx1 and x2 are
selected as follows:µF 1

i
(xi) = exp[−(xi+1

0.7 )2], µF 1

i
(xi) =

exp[−( xi

0.7 )
2], µF 1

i
(xi) = exp[−(xi−1

0.7 )2].
Fig.1 shows the plant’s output and the desired reference tra-
jectory,Fig.2 represents the control signalu(k)and Fig.3 repre-
sents the error signale(k) and the dead-zone size±δ(k),which
indicates thate(k) converges to the region bounded by
±δ(k).This means that the tracking error converges to a small
neighborhood of the origin.
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Fig.1. Outputy(k)(−) and reference signalr(k)(−−).
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Fig.2. Control signalu(k).
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Fig.3. Errore(k)(−) and dead-zone size±δ(k)(−−).

IV. CONCLUSIONS

A direct adaptive fuzzy control scheme is developed for
a class of nonlinear discrete-time systems with poorly un-
derstood dynamics.This method does not need the bound of
approximation error because the unknown bound is estimated
using the adaptation law and the size of time-varying dead-
zone is adjusted adaptively with the estimated bound. It is
proved that the scheme can make the tracking error converges
to a small neighborhood of the origin.
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