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Abstract—A direct adaptive fuzzy control scheme is developed the fuzzy logic system,and therefore it is necessary toragsu
for a class of nonlinear discrete-time systems. In this schee, the that the approximation error bounds are known in advance.
fuzzy logic system is used to design controller directly, amnthe — Atnough the approximation error is bounded, unfortungitel
parameters are adjusted by time-varying dead-zone, whicht$ . - .
size is adjusted adaptively with the estimated bounds on thap- _m"’_my practical systems SL_'Ch bounds might not be a\_/a'lm_e’a
proximation error. The proposed design scheme guaranteehat it is usually used the trial and error method,which might
all the signals in the resulting closed-loop system are bowed, result in a conservative dead-zone size. Within this paper,
and the tracking error converges to a small neighborhood of direct adaptive fuzzy control method is developed for aslas
the origin. Simulation results indicate the effectivenesf this of nonlinear discrete-time systems with poorly understood
scheme. . . . .

dynamics. In this study, the fuzzy logic system is used to

Index Terms—Nonlinear Discrete-Time Systems, Adaptive design controller directly, and the unknown parameters are

Fuzzy Control,Stability Analysis, Dead Zone. adjusted by time-varying deadzone, which its size is adilist
adaptively with the estimated bounds on the approximation
|. INTRODUCTION error of fuzzy logic system. The proposed design scheme

N recent years, various adaptive fuzzy control techniquggsarantees that all the signals in the resulting closeg-loo

have been developed to deal with nonlinear systems wikistem are bounded, and the tracking error converges to a
poorly understood dynamics. However, most results are mnall neighborhood of the origin . Moreover, an example
stricted to continuous-time systems[1-5], which cannot hkustrates the ideas presented here.
directly extended to discrete-time systems. In practipalia
cations, almost all fuzzy control systems are implemented o I
a digital computers,since control signals can only be agpli
at fixed time steps, some advantages of the continuous timéonsider the discrete-time single-input single-outpl$(3
controllers are lost by means of discretization. It is neags nonlinear system in the following form:
to take into account the fact that the controller is reallyiss d .
crete systems and not a continuous one. Recently, a discrete y(k+d) = f(z(k)) + g(z(k))u(k) (@)
time fuzzy logic controller for a class of unknown feedbacwhereu(k) € R andy(k) € R are the input and the output of
linearizable nonlinear dynamical systems was preserH@[[6 the system, respectivelyis the time delay of the system, and
In [8], a direct adaptive control scheme was presented wherg:) = [y(k), ..., y(k —n),u(k— 1), ..., u(k—m)]T , f(z(k))
Takas-Segno Fuzzy Systems (TASS) were used as a functiaii@ g(=(k)) are unknown smooth functions, and the following
approximation, a continuous dead zone was used to guarar{esumption is made:
convergence of the tracking error to amneighborhood of
origin. In [9], the authors presented an indirect adaptomiol )
scheme using TASS, similar stability results were achieved Assumption 1:

Based on [8] and [9], the adaptation gain and direction of It exists a constang; such thatd < g(z(k)) < g1 < oc.
descent were updated in ways that seek to optimize certdine control objective of this paper is to design a direct
cost functions[10].In[11],a direct adaptive control forckass adaptive fuzzy controller such that the system outp(i)

of strict feedback discrete time nonlinear was proposefB4n follows the reference signat(k), while all the signals in
11], the adaptation law was designed by a continuous deatbsed-loop system remain bounded.fifx(k)) and g(x(k))
zone, which its size was based on the approximation errorare known exactly, it is well known that for the plant (1),

. DIRECT ADAPTIVE FUZZY CONTROL
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there exists an ideal controller: its value is not needed for the implementation. Define
®(k) = 6* — (k) as the parameter estimation error, and
—f(z(k)) +r(k+4d) @
g(z(k)) w(k) = u*(k) —u(z(k)|0")
that drives the output of the system to perfectly follow awno
reference trajectory(k),i.e.

u* (k) =

as the minimum approximation error. In this paper,we assume
that the used fuzzy system do not violate the universal appro
elk+d) =r(k+d) —ylk+d) =0 imation property[1] on the compact set, Which is as_sumed
. _ large enough so that the state variables remain withimder
this means that aftet steps,we have(k) = 0. Sincef(z(k)) closed-loop control. So it is reasonable to assume that the

and g(x(k)) are unknown, the ideal controller"(k) of (2) minimum approximation error is bounded for alle U, and
can't be implemented,we assume that the functigm(k)) we have:

and g(x(k)) can be approximated by fuzzy logic systems.
The used fuzzy system is a collection of fuzzy IF-THEN
rules of the form [1]: B. Assumption 2:

O \F 2 is Fl and 4o is FL THEN v is ¢! It exists an unknown constapt such thajw(k)| < p*, and
R IF 2y s Fy and... and,, 1S I, y1s we definep(k) as the estimation of*.

where z = (z1,...,z,)7 and y are the input and outputWith the above definitions, the error equation (6) can be

of the fuzzy logic system,respectively! and G! are rewritten as:
fuzzy sets, forl = 1,..,m. By using the strategy of T B
singleton fuzzification,product inference and centerage ek +d) = g(z(k)) 2" (k)E((K)) + g(a(k))w(k)  (7)

defuzzification, the final output of the fuzzy system is given1 order to meet the control objective,in [8-11],a contingo

as follows: dead-zone is used to design the adaptation law,but the ap-
m n proximation error bound is needed.In this paper,we use the
Z yj( [ joi (xi)) time-varying dead-zone to design the adaptation law. The-ti
j=1 =1 varying dead-zone siz¥t) is adjusted adaptively by following
o) ="—% = (3) adaptation law :
; Lt 5(k) = g1p(k — d) (®)

wherey/ is the point at which the membership function@f The time-varying dead-zone is defined as [3]:

achieves its maximum value. By introducing the concept of . .

fuzzy basis functions vectdj(z),the output given by (3) can ea(k) = { e(k) - ygn(a(k))é(k()) :I }ZEZ%} z 38 (9)
be rewritten in the following compact form: -

3 Here
= f(z]0) = 67 4 :
y(x) = f(al0) = 07 ¢(a) (4) o1 whenz >0
whered = (y!,...,y™)7T, &(z) = (€4 (2), ..., ™ (x))T, 9T =1 -1 whenz <0
6 (2) [T, fops (T3) Using the following adaptation law to adjust the parameter
T) = =m o .
2=t iz 1y (24) e (k) = p(k — d) + Blea (k)| (10)
p(k) = p(k —d) + Sle
Now, let the ideal controllen*(k) be approximated,over a °
compact sel, by fuzzy system as follows: where8 > 0 The unknown parameter vecté(k) is updated

by the following adaptive law:
u(k) = u(z(k)[0) (5)

wherez (k) = (2T (k),r(k + d))T
Using (1), (2) and (5), the error equation can be written aswherea > 0
The following theorem shows the properties of this direct
e(k +d) = g(x(k))(u* (k) — u(z(k)|0) (6) adaptive fuzzy controller.

0(k) =0(k — d) + a&(x(k — d))ea(k) (11)

Let us define the optimal parameter of fuzzy systems:
) Theorem 1:

o* = arggleig <sup |u* (k) —u(z(k)|0))]

S Given the plant defined by (1) satisfying assumptions 1 and

2, whena+ 8 < % , the control law (5) with adaptation law
where(? is the compact set of allowable controller parameterg),(10)and (11) will ensure that all the signals in the ebbs
Notice that optimal parameterg* is artificial constant loop system are bounded, and the tracking error converge to
guantities introduced only for analytical purpose, and small neighborhood of origin.
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Proof:

Define the parameter errp(k) = p* — p(k), from (10) and

(11), ®(k) and p(k) can be expressed as:

p(k) = plk — d) — Blea (k)] (12)
(k) = @k — d) — o€ (@(k — d)ealk)  (13)

Consider the function:
V(k) = ~aT(R)B(k) + ~pT(h)p(k)  (14)

« Bp
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k
SVO) + V) 4+ V(d) =D nerali)  (24)
j=d

We know that for arbitraryc > 0, V (k) is bounded, thus

!
. 2
lgnoo E ea(k) < o0 (25)
k=d
This implies that :
lim €3 (k) < oo (26)
l—o00

Let AV(k) = V(k) — V(k — d), consider the case whereFrom (9), we conclude thae(k)| < 6(k), therefore , the

lea(k)] < d(¢), in this caseea(k) = 0, thus AV (k) = 0,

tracking errore(k) converges to a small neighborhood of the

therefore only the regiofea (k)| > é(k) is considered in the origin.

subsequent proof.
If lea(k)| > 4(t), then

AV (k) = =287 (k — d)¢(2(k — d))ea(k)
+alé(@(k — d)[Ped (k) — 2p(k — d)lea (k)|

+ Bei (k) (15)
Based on (7),it can be shown that
. _ ek
T (k — d)é(z(k — d)) = FECETE w(k —d) (16)
Using (16),(15)can be expressed as:
AV (k) = —2cBeatht) o~ death)
g(@(k — d))
+alé(@(k — d))|*eA (k) — 2p(k — d)|ea (k)]
+ Bei (k) 17)
From (9),we know that
e(k) = ea(k) + sign(e(k))s (k) (18)
sign(e(k))ea (k) = [ea (k)| (19)
Using (18),(19) and assumption 1,we get
g1 a1
+2p*|ea (k)| + alé(@(k — d))[*eA (k)
= 2p(k — d)lea (k)| + BeA (k) (20)

Using (8) and (10),(20) becomes
AV(E) < (= 2 +alelalk— )P +8)A®R) (1)
g9

Sincea + 3 < %, we get:

AV (k) <0 (22)

This ensures that (k) is bounded,which implies boundedness

of 6(k) and p(k).

Let X —a — =1, from (21), we obtain:
V(k) < V(k—d) - nea(k) (23)

Summing (23) frond to k gives:

V) + V(=1 4+ V(k—d+1)

Remark 1:

As long as the initial condition fop(k) is p(0) > 0,from
(10),we getp(k) > 0,therefores(k) > 0.
Sincep(k) is bounded,so thai(k) is bounded.

IIl. SIMULATION

Consider the surge tank model that can be represented by
the following differentiation equation [10]:

dh(t) _ —c/29h(1) L
dt A (@) An(h(t)

wherew(t)is the input flow (control inputh(¢) is the liquid
level (output of the system)A,(h(t))is the cross sectional
area of the tank,= 25" is the gravitational acceleratiod,

is the known cross-sectional area of the output pipe. We use
the parameters of [104 = 1, A, (h(t)) = \/ah(t) + b,a =

1,b = 3. Using Euler approximation to discretize the system,
we have:

h(k+1)=h(k)+T[_m A:Eg()t”} 0

whereT = 0.1 is sampling time. Note that the system (27)
has the same form as (1) with :

19.61(k) T

BN OrT e Jh(k) + 3

We will simulate the system foh(k) > 0 so that the
simulation is realistic. Sincg(xz(k)) = L_ therefor

VR(k)+3
0 < g(z(k)) < 0.577T, we obtaing; = 0.577T.

The controlleru™(z(k)) to be approximated by the fuzzy logic
systems of (4), which the input (k) andr(k + 1).

To ensure thah(k) andr(k 4+ 1) is in a fixed region,we use
the following one-to-one mapping [12]:

)
MR = TR

It is clear thath(k) € [—1,1] for arbitrary h(k). This can
also be used to(k + 1). The reference signal is assumed to
be r(k) = 2 + sin(ZE). Let the initial conditionsy(0) =
0.5,p(0) = 0.1, and each component a&f(0) is chosen
randomly in the interval[-0.5,0.5],a = 15,8 = 0.02.

The input variables of fuzzy system arg = h(k) and

f(x(k)) = h(k)

~—
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x2 = r(k + 1),the membership functions far; andz, are

Selected as fO”OWS},LF_l (mt) — eXp[— ( J,(q)—;l )2]7 L (mt) — s ‘Error e(k) and dea‘tdfzone size 16(k)‘

expl— (%)%, ppp (24) = exp[— (%))

Fig.1 shows the plant’s output and the desired reference t
jectory,Fig.2 represents the control signék)and Fig.3 repre- 1t ]
sents the error signalk) and the dead-zone sizg)(k),which
indicates thate(k) converges to the region bounded b
+4(k).This means that the tracking error converges to a sm osf 1

neighborhood of the origin.

05 i i i
0 500 1000 1500 2000
k(sec)

Fig.3. Errore(k)(—) and dead-zone siz€d(k)(——).

IV. CONCLUSIONS

A direct adaptive fuzzy control scheme is developed for
a class of nonlinear discrete-time systems with poorly un-
derstood dynamics.This method does not need the bound of
approximation error because the unknown bound is estimated
using the adaptation law and the size of time-varying dead-
zone is adjusted adaptively with the estimated bound. It is
proved that the scheme can make the tracking error converges
to a small neighborhood of the origin.

Output y(k) and reference signal r(k)

3.5 T
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