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Introduction

We wish to discuss the relationship between the notions of growth and amenability of
finitely generated groups.For this aim,we will follow several steps .So this thesis is divided into
three chapters.

The reader is not assumed to be familiar with basic group theory and, so the first chapter
contains basic and essential definitions, properties and results on group theory. For more [1]
and[2] are well-known to this purpose.

In Chapter 2, we shall develop the theory of growth of finitely generated groups. By defining
a metric on the group. The growth function then counts the (finite) number of elements in the
ball of radius n. After defining a certain equivalence relation between such growth functions,
we can consider the equivalence classes under this relation, the growth type of a finit ely gen-
erated group, which turns out to be independent of the generating subset. We give examples
of classes of groups having polynomial and exponential growth, respectively, and we shall refer
to this by saying that the group has regular growth. Note that this term is not standard . If
a group has neither polynomial nor exponential growth, we say that it has intermediate growth.

In Chapter 3, we first discuss the notion of amenability which was originally introduced in
order to explain the Banach-Tarski paradox. We shall use the definition given by John von
Neumann in 1929. A discrete group is amenable if there exists an invariant finitely additive
probability measure on the power set of the group. The class of amenable groups, denoted by
AG, has nice permanence properties and it coincides with the non-paradoxical groups, and the
Følner conditions.

After that we will pass to our principal aim, by relating the two notions of amenability (and
its subclass, elementary amenable groups denoted EA) and growth (and its types).
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1 CHAPTER ONE : GROUPS AND FREE GROUPS

1 CHAPTER ONE : Groups and free groups

1.1 1.Basic facts

Definition 1.1.1 : (The group)

A group is a non-empty set G on which there is a binary operation (a, b) 7→ ab such that

• if a and b belong to G then ab is also in G( closure),

• a(bc) = (ab)c for all a, b, c in G(associativity)

• there is an element 1 ∈ G such that a1 = 1a = a for all a ∈ G (identity),

• if a ∈ G, then there is an element a−1 ∈ G such that aa−1 = a−1a = 1 (inverse)

One can easily check that this implies the unicity of the identity and of the inverse.
A group G is called abelian if the binary operation is commutative, i.e., ab = ba for all

a, b ∈ G Remark. There are two standard notations for the binary group operation: either
the additive notation, that is (a, b) 7→ a + b in which case the identity is denoted by 0, or the
multiplicative notation, that is (a, b) 7→ ab for which the identity is denoted by 1.

Examples 1.1.1 :

1) Z with the addition and 0 as identity is an abelian group.

2) Z with the multiplication is not a group since there are elements which are not invertible
in Z

3) The set of n×n invertible matrices with real coefficients is a group for the matrix product
and identity the matrix In. It is denoted by GLn(R) and called the general linear group.
It is not abelian for n ≥ 2

Definition 1.1.2:(The order of a group)

The order of a group G, denoted by |G|, is the cardinality of G, that is the number of elements
in G.

We have only seen infinite groups so far. Let us look at some examples of finite groups.

Examples 1.1.2:

1• The trivial group G = {0} may not be the most exciting group to look at, but still it is
the only group of order 1.

2• The group G = {0, 1, 2, . . . , n − 1} of integers modulo n is a group of order n. It is
sometimes denoted by Zn

Definition 1.1.3:(the subgroup)

A subgroup H of a group G is a non-empty subset of G that forms a group under the binary
operation of G.

6



1.1 1.Basic facts 1 CHAPTER ONE : GROUPS AND FREE GROUPS

Examples 1.1.3:

1• If we consider the group G = Z4 = {0, 1, 2, 3} of integers modulo 4, H = {0, 2} is a
subgroup of G.

2• The set of n × n matrices with real coefficients and determinant of 1 is a subgroup of
GLn(R), denoted by SLn(R) and called the special linear group.

Proposition 1.1.1

Let G be a group. Let H be a non-empty subset of G. The following are equivalent:

1• H is a subgroup of G

2• (a)x, y ∈ H implies xy ∈ H for all x, y (b) x ∈ H implies x−1 ∈ H

3• x, y ∈ H implies xy−1 ∈ H for all x, y

Definition 1.1.4 : (the group homomorphism)

Given two groups G and H, a group homomorphism is a map f : G→ H such that

f(xy) = f(x)f(y) for all x, y ∈ G

Note that this definition immediately implies that the identity 1G of G is mapped to the identity
1H of H. The same is true for the inverse, that is f (x−1) = f(x)−1

Example 1.1.4 :

The map exp: (R,+)→ (R∗, ·) , x 7→ exp(x) is a group homomorphism.

Definition 1.1.5: (the isomorphic group )

Two groups G and H are isomorphic if there is a group homomorphism f : G → H which is
also a bijection.

Roughly speaking, isomorphic groups are "essentially the same".

Example 1.1.5 :

If we consider again the group G = Z4 = {0, 1, 2, 3} of integers modulo 4 with subgroup
H = {0, 2}, we have that H is isomorphic to Z2, the group of integers modulo 2.

A crucial definition is the definition of the order of a group element.

Definition 1.1.6: (The order of an element)

The order of an element a ∈ G is the least positive integer n such that an = 1. If no such integer
exists, the order of a is infinite. We denote it by |a|

7



1.1 1.Basic facts 1 CHAPTER ONE : GROUPS AND FREE GROUPS

Definition 1.1.7: (the cyclic group)

A group G is cyclic if it is generated by a single element, which we denote by G = 〈a〉. We may
denote by Cn a cyclic group of n elements.

Example 1.1.6:

A finite cyclic group generated by a is necessarily abelian, and can be written (multiplicatively){
1, a, a2, . . . , an−1

}
with an = 1

or (additively)
{0, a, 2a, . . . , (n− 1)a} with na = 0

A finite cyclic group with n elements is isomorphic to the additive group Zn of integers
modulo n

Example 1.1.7

An n th root of unity is a complex number z which satisfies the equation zn = 1 for some posi-
tive integer n. Let ζn = e2iπ/n be an n th root of unity. All the n th roots of unity form a group
under multiplication. It is a cyclic group, generated by ζn, which is called a primitive root of
unity. The term "primitive" exactly refers to being a generator of the cyclic group, namely, an
n th root of unity is primitive when there is no positive integer k smaller than n such that ζkn = 1

Example 1.1.8:

Consider the group Z6 = {0, 1, 2, 3, 4, 5}, the group Z∗6 of invertible elements in Z6 is Z∗6 = {1, 5}

Definition 1.1.8: (the right and the left coset)

Let H be a subgroup of a group G. If g ∈ G, the right coset of H generated by g is

Hg = {hg, h ∈ H}

and similarly the left coset of H generated by g is

gH = {gh, h ∈ H}

In additive notation, we get H + g (which usually implies that we deal with a commutative
group where we do not need to distinguish left and right cosets).

Example 1.1.9:

If we consider the group Z4 = {0, 1, 2, 3} and its subgroup H = {0, 2} which is isomorphic to
Z2, the cosets of H in G are

0 +H = H, 1 +H = {1, 3}, 2 +H = H, 3 +H = {1, 3}

Clearly 0 +H = 2 +H and 1 +H = 3 +H

Definition 1.1.9: (The index of a subgroup)

8



1.1 1.Basic facts 1 CHAPTER ONE : GROUPS AND FREE GROUPS

The index of a subgroup H in G is the number of right (left) cosets. It is a positive number or
∞ and is denoted by [G : H]

If we think of a group G as being partitioned by cosets of a subgroup H then the index of
H tells how many times we have to translate H to cover the whole group.

Example 1.1.10:

The index [R : Z] is infinite, since there are infinitely many cosets of Z in R.

Theorem 1.1.1:(Lagrange’s Theorem)

If H is a subgroup of G, then |G| = |H|[G : H]. In particular, if G is finite then |H| divides |G|
and [G : H] = |G|/|H|

Example 1.1.11:

Consider G = Z, H = 3Z, then [G : H] = 3

Given a group G and a subgroup H, we have seen how to define the cosets of H and thanks
to Lagrange’s Theorem, we already know that the number of cosets [G : H] is related to the
order of H and G by |G| = |H|[G : H]. A priori, the set of cosets of H has no structure. We
are now interested in a criterion on H to give the set of its cosets a structure of group. In what
follows, we may write H ≤ G for H is a subgroup of G.

Definition 1.1.10: (normal subgroup)

Let G be a group and H ≤ G. We say that H is a normal subgroup of G, or that H is normal
in G, if we have

cHc−1 = H, forall c ∈ G

We denote it H ≤ G, or H ↔ G when we want to emphasize that H is a proper subgroup
of G.

The condition for a subgroup to be normal can be stated in many slightly different ways.

Lemma 1.1.1

Let H ≤ G. The following are equivalent:

1• cHc−1 ⊆ H for all c ∈ G

2• cHc−1 = H for all c ∈ G, that is cH = Hc for all c ∈ G

3• Every left coset of H in G is also a right coset (and vice-versa, every right coset of H in
G is also a left coset).

9



1.1 1.Basic facts 1 CHAPTER ONE : GROUPS AND FREE GROUPS

Example 1.1.12:

Let GLn(R) be the group of n × n real invertible matrices, and let SLn(R) be the subgroup
formed by matrices whose determinant is 1. Let us see that SLn(R) < GLn(R) For that, we
have to check that ABA−1 ∈ SLn(R) for all B ∈ SLn(R) and A ∈ GLn(R). This is clearly true
since

det
(
ABA−1

)
= det(B) = 1

Proposition 1.1.2:

If H is normal in G, then the cosets of H form a group.

Definition 1.1.11: (the quotient group)

The group of cosets of a normal subgroup N of G is called the quotient group of G by N. It is
denoted by G/N

Recall that if f : G→ H is a group homomorphism, the kernel of f is defined by

Ker(f) = {a ∈ G, f(a) = 1}

It is eary to see that Ker(f) is a normal subgroup of G, since

f
(
aba−1

)
= f(a)f(b)f(a)−1 = f(a)f(a)−1 = 1

for all b ∈ Ker(f) and all a ∈ G The converse is more intercsting.

Proposition 1.1.2:

Let G be a group. Every normal subgroup of G is the kernel of a homomorphism. Proof.
Suppose that N ≤ G and consider the map

π : G→ G/N, a 7→ aN

To prove the result. we have to show that π is a group homomorphism whose kernel is N . First
note that π is indeed a map from group to group since G/N is a group by assuming that N is
normal. Then we have that

π(ab) = abN = (aN)(bN) = π(a)π(b)

where the second equality comes from the group structure of G/N . Finally

Ker(π) = {a ∈ G|π(a) = N} = {a ∈ G|aN = N} = N

Definition 1.1.12: (the natural or canonical map or projection)

Let N ≤ G. The group homomorphism

π : G→ G/N, a 7→ aN

is called the natural or canonical map or projection.
Recall for further usage that for f a group homomorphism, we have the following character-

ization of injectivity: a homomorphism f is injective if and only if its kernel is trivial (that is,
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1.1 1.Basic facts 1 CHAPTER ONE : GROUPS AND FREE GROUPS

contains only the identity element). Indeed, if f is injective, then Ker(f) = {a, f(a) = 1} = {1}
since f(1) = 1. Conversely, if Ker(f) = {1} and we assume that f(a) = f(b), then

f
(
ab−1

)
= f(a)f(b)−1 = f(a)f(a)−1 = 1

and ab−1 = 1 implying that a = b and thus f is injective.

We have:
monomorphism : injective homomorphism
epimorphism : surjective homomorphism
isomorphism : bijective homomorphism
endomorphism : homomorphism of a group to itself
automorphism: isomorphism of a group with itself
assume that we have a group G which contains a normal subgroan N another group H, and

f : G → H a group homomorphism. Let π be the canonical projection (see Definition 1.12 )
from G to the quoticnt group G/N

We would like to find a homomorphism f̄ : G/N → H that makes the diagram commute,
namely

f(a) = f̄(π(a))

for all a ∈ G

Theorem 1.1.2(Factorisation Theorem)

Any homomorphism f whose kernel K contains N can be factored through G/N . In other
worda, there is a unique homomorphism f̄ : G/N → H such that f̄ ◦ π = f . Furthermore

1. f̄ is an epimorphism if and only if f is.

2. f̄ is a monomorphism if and only if K = N

3. f̄ is an isomorphism if and only if f is an epimorphism and K = N

Let us start with two groups H and K, and let G = H ×K be the cartesian product of H
and K, that is

G = {(h, k), h ∈ H, k ∈ K}

We define a binary operation on this set by doing componentwise multiplication (or addition if
the binary operations of H and K are denoted additively) on G :

(h1, k1) (h2, k2) = (h1h2, k1k2) ∈ H ×K

Clearly G is closed under multiplication, its operation is associative (since both operations on
H and K are), it has an identity element given by 1G = (1M , 1K) and the inverse of (h, k) is
(h−1, k−1). In summary, G is a group.

Definition 1.1.13 (the external direct product)

11



1.1 1.Basic facts 1 CHAPTER ONE : GROUPS AND FREE GROUPS

Let H,K be two groups. The group G = H ×K with binary operation defined componentwise
as described above is callad the external direct product of H and K

Examples 1.1.13

1• Let Z2 be the group of integers modulo 2 . We can build a direct product of Z2 with
itself, namely Z2×Z2 with additive law componentwise. This is actually the Klein group,
also written C2 × C2 This group is not isomorphic to Z4!

2• Let Z2 be the group of integers modulo 2, and Z3 be the group of integers modulo 3. We
can build a direct product of Z2 and Z3, namely Z2×Z3 with additive law componentwise.
This group is actually isomorphic to Z6!

3• The group (R,+)× (R,+) with componentwise addition is a direct product.

Definition 1.1.14: (the internal direct product)

If a group G coutains normnl subgroups H and K such that G = HK and H ∩K = {1G} , we
say that G is the internal direct product of H and K

Examples 1.1.14:

1• Consider the Klein group Z2 × Z2, it contains the two subgroups H = {(h, 0), h ∈ Z2}
and
K = {(0, k), k ∈ Z2} . We have that both H and K are normal, because the Klein group
is commutative. We also have that H ∩ K = {(0, 0)}, so the Klein group is indeed an
internal direct product. On the other hand, Z4 only contains as subgroup H = {0, 2}, so
it is not an internal direct product!

2• Consider the group Z2 × Z3, it contains the two subgroups H = {(h, 0), h ∈ Z2} and
K = {(0, k), k ∈ Z3} . We have that both H and K are normal, because the group is
commutative. We also have thatH∩K = {(0, 0)} so this group is indeed an internal direct
product. Also Z6 contains the two subgroups H = {0, 3} ' Z2 and K = {0, 2, 4} ' Z3.
We have that both H and K are normal, because the group is commutative. We also
have that H ∩ K = {0}, so this group is indeed an internal direct product, namely the
internal product of Z2 and Z3. This is in fact showing that Z6 ' Z2 × Z3

Theorem 1.1.3 :(1st Isomorphism Theorem)

If f : G→ H is a homomorphism with kernel K, then the image of f is isomorphic to G/K

Im(f) ' G/Ker(f)

Theorem 1.1.4 (2nd Isomorphism Theorem)

If H and N are subgroups of G, with N normal in G, then

H/(H ∩N) ' HN/N

Theorem 1.1.5(3rd Isomorphism Theorem)

If N and H are normal subgroups of G, with N contained in H, then

G/H ' (G/N)/(H/N)

12



1.1 1.Basic facts 1 CHAPTER ONE : GROUPS AND FREE GROUPS

Definition 1.1.15: (The group action)

The group G action on the set X if for all g ∈ G, there is a map

G×X → X, (g, x) 7→ g · x

such that

1. h · (g · x) = (hg) · x for all g, h ∈ G, for all x ∈ X

2. 1 · x = x for all x ∈ X

The first condition says that we have two laws, the group law between elements of the group,
and the action of the group on the set, which are compatible.

Examples 1.1.15

Let us consider two examples where a group G acts on itself.

1• Every group acts on itself by left multiplication. This is called the regular action.

2• Every group acts on itself by conjugation. Let us write this action as

g · x = gxg−1

Let us check the action is actually well defined. First, we have that

h · (g · x) = h ·
(
gxg−1

)
= hgxg−1h−1 = (hg)xg−1h−1 = (hg) · x

As for the identity, we get
x = 1x1−1 = x

Definition 1.1.16:(The kernel of an action)

The kernel of an action G×X → X, (g, x) 7→ g · x is given by

Ker = {g ∈ G, g · x = x for all x}

This is the set of elements of G that fix everything in X. When the group G acts on itself, that
is X = G and the action is the conjugation, we have

Ker =
{
g ∈ G, gxg−1 = x for all x

}
= {g ∈ G, gx = xg for all x}

This is called the center of G, denoted by Z(G)

Definition 1.1.17: (The orbit)

Suppose that a group G acts on a set X. The orbit B(x) of x under the action of G is defined
by

B(x) = {g · x, g ∈ G}
This means that we fix an element x ∈ X, and then we let g act on x when g runs through all
the elements of G. By the definition of an action, g · x belongs to X, so the orbit gives a subset
of X It is important to notice that orbits partition X

13
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Definition 1.1.18: (Transitive action )

Suppose that a group G acts on a set X. We say that the action is transitive, or that G acts
transitively on X if there is only one orbit, namely, for all x, y ∈ X, there exists g ∈ G such
that g · x = y

Definition 1.1.19:(The stabilizer of an element)

The stabilizer of an element x ∈ X under the action of G is defined by

Stab(x) = {g ∈ G, g · x = x}

Given x, the stabilizer Stab(x) is the set of elements of G that leave x fixed. One may check
that this is a subgroup of G. We have to check that if g, h ∈ Stab(x), then gh−1 ∈ Stab(x).
Now (

gh−1
)
· x = g ·

(
h−1 · x

)
by definition of action. since h ∈ Stab(x), we have h · x = x or equivalently x = h−1 · x, so that

g ·
(
h−1 · x

)
= g · x = x

which shows that Stab(x) is a subgroup of G

Examples 1.1.16:

1• The regular action (see the previous example) is transitive, and

for all x ∈ X = G , we have Stab(x) = {1}, since x is invertible and we can multiply
g · x = x by x−1.

2• Let us consider the action by conjugation, which is again an action of G on itself (X =
G) : g · x = gxg−1. The action has no reason to be transitive in general, and for all
x ∈ X = G, the orbit of x is given by

B(x) =
{
gxg−1, g ∈ G

}
This is called the conjugacy class of x. Let us now consider the stabilizer of an element
x ∈ X :

Stab(x) =
{
g ∈ G, gxg−1 = x

}
= {g ∈ G, gx = xg}

which is the centralizer of x, that we denote by CG(x)

Definition 1.1.20: (The commutator)

Let G be a group and x, y ∈ G. The commutator of x and y is the element

[x, y] = x−1y−1xy

14
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Definition 1.1.21: (The derived subgroup)

Let G be a group. The derived subgroup (or commutator subgroup ) G′ of G is the subgroup
generated by all commutators of elements from G :

G′ = 〈[x, y]|x, y ∈ G〉

Example 1.1.17:

In an abelian group G [x, y] = x−1y−1xy = 1 for all x and y , so G′ = 1. (The condition
G′ = 1 is equivalent to G being abelian.)

Definition 1.1.22:(the chain of subgroups)

The derived series
(
G(i)

)
(for i > 0 ) is the chain of subgroups of the group G defined by

G(0) = G

and
G(i+1) =

(
G(i)

)′
for i > 0

So G(1) = G′, G(2) = (G′)′ = G′′, etc. We then have a chain of subgroups

G = G(0) > G(1) > G(2) > · · ·

Definition 1.1.23: (Solvable group )

A group G is soluble (solvable in the U.S.) if G(d) = 1 for some d. The least such d is the derived
length of G

G = G(0) > G(1) > G(2) > · · · > G(d) = 1

Example1.1.18:

Any abelian group is soluble with derived length 1.

Definition 1.1.24: (The commutator subgroup)

Let A and B be subgroups of a group G. Define the commutator subgroup [A,B] by

[A,B] = 〈[a, b]|a ∈ A, b ∈ B〉

the subgroup generated by all commutators [a, b] with a ∈ A and b ∈ B
In this notation, the derived series is given recursively by G(i+1) =

[
G(i), G(i)

]
for all i

Definition 1.1.25: (the chain of subgroups)

The lower central series (γi(G)) (for i > 1 ) is the chain of subgroups of the group G defined by

γ1(G) = G

and
γi+1(G) = [γi(G), G] for i > 1

15
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Definition 1.1.26: (the nilpotency class)

A group G is nilpotent if γc+1(G) = 1 for some c. The least such c is the nilpotency class of G
It is easy to see that G(i) 6 γi+1(G) for all i (by induction on i ). Thus if G is nilpotent,

then G is soluble. Note also that γ2(G) = G′

Definition 1.1.27: (Exact sequence )

Let F,G,H, I, . . . be groups, and let f, g, h, . . . be group homomorphisms. Consider the
following sequence:

..... F
f−→ G

g−→ H
h−→ I .....

. We say that this sequence is exact in one point (say G ) if Im(f) = Ker(g). A sequence is
exact if it is exact in all points. A short exact sequence of groups is of the form

1
i−→ F

f−→ G
g−→ H

j−→ 1

where i is the inclusion and j is the constant map 1

Proposition 1.1.3:

Let
1

i−→ F
f−→ G

g−→ H
j−→ 1

be a short exact sequence of groups. Then Im(f) is normal in G and we have a group isomor-
phism

G/ Im(f) ' H

or equivalently
G/Ker(g) ' H

Proof. since the sequence is exact, we have that Im(f) = Ker(g) thus Im(f) is a normal
subgroup of G. By the first Isomorphism Theorem, we have that

G/Ker(g) ' Im(g) = H

since Im(g) = Ker(j) = H

Definition 1.1.28: ( Generating set )

- Let G be a group and let S ⊂ G be a subset. The subgroup generated by S in G is
the smallest subgroup (with respect to inclusion) of G that contains S; the subgroup
generated by S in G is denoted by 〈S〉G The set S generates G if 〈S〉G = G

- A group is finitely generated if it contains a finite subset that generates the group in
question.

Remark 1.1.1:(Explicit description of generated subgroups)

Let G be a group and let S ⊂ G. Then the subgroup generated by S in G always exists and
can be described as follows:

〈S〉G =
⋂
{H|H ⊂ G is a subgroup with S ⊂ H}

= {sε11 · · · · ·sεnn |n ∈ N, s1, . . . , sn ∈ S, ε1, . . . , εn ∈ {−1,+1}}
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Example 1.1.19: ( Generating sets ).

• If G is a group, then G is a generating set of G

• The trivial group is generated by the empty set.

• The set {1} generates the additive group Z; moreover, also, e.g., {2,3} is a generating set
for Z

• Let X be a set. Then the symmetric group SX is finitely generated if and only if X is
finite.

1.2 Free groups

Definition 1.2.1: (Free groups, universal property).

Let S be a set. A group F is freely generated by S if F has the following universal property:
For any group G and any map ϕ : S → G there is a unique group homomorphism ϕ̄ : F → G
extending ϕ

A group is free if it contains a free generating set.

Example 1.2.1: (Free groups)

• The additive group Z is freely generated by {1}. The additive group Z is not freely
generated by {2,3}; in particular, not every generating set of a group contains a free
generating set.

• The trivial group is freely generated by the empty set.

• Not every group is free; for example, the additive groups Z/2Z and Z2 are not free

The term "universal property" obliges us to prove that objects having this universal property
are unique in an appropriate sense; moreover, we will see below ( the text Theorem ) that for
every set there indeed exists a group freely generated by the given set.

Proposition 1.2.1:(Free groups, uniqueness).

Let S be a set. Then, up to canonical isomorphism, there is at most one group freely generated
by S.

Proof Proposition 1.2.1 :

Let F and F ′ be two groups freely generated by S. We denote the inclusion of S into F and
F ′ by ϕ and ϕ′ respectively.

17
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1. Because F is freely generated by S, the existence part of the universal property of free
generation guarantees the existence of a group homomorphism ϕ̄′ : F → F ′ such that ϕ̄′◦ϕ = ϕ′.
Analogously, there is a group homomorphism ϕ̄ : F ′ → F satisfying ϕ̄ ◦ ϕ′ = ϕ

2. We now show that ϕ̄ ◦ ϕ̄′ = id F and ϕ̄′ ◦ ϕ̄ = id F ′ and hence that ϕ and ϕ′ are
isomorphisms: The composition ϕ̄ ◦ ϕ̄′ : F → F is a group homomorphism making the diagram

commutative. Moreover, also id F is a group homomorphism fitting into this diagram.
Because F is freely generated by S, the uniqueness part of the universal property thus tells us
that these two homomorphisms have to coincide.

These isomorphisms are canonical in the following sense: They induce the identity map
on S, and they are (by the uniqueness part of the universal property ) the only isomorphisms
between F and F ′ extending the identity on S

Theorem 1.2.1 : (Free groups, construction).

Let S be a set. Then there exists a group freely generated by S. (By the previous proposition,
this group is unique up to isomorphism.

Proof Theorem 1.2.1 :

The idea is to construct a group consisting of "words" made up of elements of S and their
"inverses" using only the obvious cancellation rules for elements of S and their "inverses."
More precisely, we consider the alphabet

A := S ∪ S̄

where S̄ := {s̄|s ∈ S}; i.e., S̄ contains an element for every element in S, and s̄ will play the
rôle of the inverse of s in the group that we will construct.

- As first step, we define A∗ to be the set of all (finite) sequences (” words" ) over the
alphabet A; this includes in particular the empty word ε. On A∗ we define a composition
A∗ × A∗ → A∗ by concate nation of words. This composition is associative and ε is the
neutral element.

- As second step we define
F (S) := A∗/ ∼

where ∼ is the equivalence relation generated by

∀x,y∈A∗ ∀s∈S xss̄y ∼ xy
∀x,y∈A∗ ∀s∈S xs̄sy ∼ xy

18
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i.e., ∼ is the smallest equivalence relation in A∗ ×A∗ (with respect to inclusion ) satisfying
the above conditions. We denote the equivalence classes with respect to the equivalence relation
∼ by [·]

It is not difficult to check that concatenation induces a well-defined
composition · : F (S)× F (S)→ F (S) via

[x] · [y] = [xy]

for all x, y ∈ A∗ The set F (S) together with the composition "." given by concatenation is a
group: Clearly, [ε] is a neutral element for this composition, and associativity of the composition
is inherited from the associativity of the composition in A∗. For the existence of inverses we
proceed as follows: Inductively (over the length of sequences), we define a map I : A∗ → A∗ by
I(ε) := ε and

I(sx) := I(x)s̄
I(s̄x) := I(x)s

for all x ∈ A∗ and all s ∈ S. An induction shows that I(I(x)) = x and

[I(x)] · [x] = [I(x)x] = [ε]

for all x ∈ A∗ (in the last step we use the definition of ∼ ). This shows that inverses exist in
F (S)

The group F (S) is freely generated by S : Let i : S → F (S) be the map given by sending
a letter in S ⊂ A∗ to its equivalence class in F (S); by construction, F (S) is generated by the
subset i(S) ⊂ F (S). As we do not know yet that i is injective, we take a little detour and
first show that F (S) has the following property, similar to the universal property of groups
freely generated by S : For every group G and every map ϕ : S → G there is a unique group
homomorphism ϕ̄ : F (S)→ G such that ϕ̄ ◦ i = ϕ Given ϕ, we construct a map

ϕ∗ : A∗ → G

inductively by
ε 7−→ e

sx 7−→ ϕ(s) · ϕ∗(x)
s̄x 7−→ (ϕ(s))−1 · ϕ∗(x)

for all s ∈ S and all x ∈ A∗. It is easy to see that this definition of ϕ∗ is
compatible with the equivalence relation ∼ on A∗ (because it is compatible
with the given generating set of ∼ ) and that ϕ∗(xy) = ϕ∗(x) · ϕ∗(y)
for all x, y ∈ A∗; thus, ϕ∗ induces a well-defined map

ϕ̄ : F (S) −→ G

[x] 7−→ [ϕ∗(x)]

which is a group homomorphism. By construction ϕ̄ ◦ i = ϕ. Moreover, because i(S) generates
F (S) there cannot be another such group homomorphism.

In order to show that F (S) is freely generated by S, it remains to prove that i is injective (and then we identify S with its image under i in F (S))
Let s1, s2 ∈ S. We consider the map ϕ : S → Z given by ϕ (s1) := 1 and ϕ (s2) := −1. Then
the corresponding homomorphism ϕ̄ : F (S)→ G satisfies

ϕ̄ (i (s1)) = ϕ (s1) = 1 6= −1 = ϕ (s2) = ϕ̄ (i (s2))

in particular, i (s1) 6= i (s2) . Hence, i is injective.
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Definition 1.2.2 : ( Free group Fn).

Let n ∈ N and let S = {x1, . . . , xn} where x1, . . . , xn are n distinct elements. Then we write
Fn for "the" group freely generated by S, and call Fn the free group of rankn

Proposition 1.2.2 :

If F1 is free on X1 and F2 is free on X2 and if |X1| = |X2| , then

F1 ' F2

Proof Proposition 1.2.2 :

See [1] .

Corollary 1.2.1 :

Every group is a quotient of a free group.

Proof Corollary 1.2.1 ;

See [1] or [2] .

Theorem 1.2.2 : (NIELSEN-SCHREIER)

Subgroups of free groups are free.

Proof Theorem 1.2.2 :

see [2] .
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2 CHAPTER TOW :Group growth

2.1 The word metric

A group G is finitely generated if there exists a finite subset S ⊆ G such that any group element
can be written as a product of elements in S. The generating subset S is said to symmetric if
S = S−1. If G is finitely generated by a subset S ⊆ G, then S ∪ S−1 is a symmetric and finite
generating subset of G.

Definition 2.1.1 : (S-word-length).

Let G be a finitely generated group and let S ⊆ G be a finite symmetric generating subset.
For each fixed g ∈ G, we define the S-word-length as

`GS (g) = min {n > 0 | g = s1 · · · sn, s1, . . . , sn ∈ S} (2.1)

When there is no fear of ambiguity we shall omit the superscript.

Note that `GS (g) = 0 if and only if g = eG. In the following, let S ⊆ G be a finite symmetric
generating subset of a group G.

Proposition 2.1.1 :

For all g, h ∈ G , we have
`S(g) = `S

(
g−1
)

(2.2)

`S(gh) 6 `S(g) + `S(h) (2.3)

Proof Proposition 2.1.1 :

Take g, h ∈ G. If any of these is the ident ity element the statement is trivial, so sup-
pose g, h 6= eG. There exist natural numbers n and m such that g = s1 · · · sn and h =
t1 · · · tm, where s1, . . . , sn and t1, . . . , tm are elements in S. since g−1 = s−1

n · · · s−1
1 , we have

`S (g−1) 6 n = `S(g). The converse follows analogously. Also, gh = s1 · · · snt1 · · · tm, hence
`S(gh) 6 n+m = `S(g) + `S(h)

This construction induces a metric on the group G.

proposition 2.1.2 :

(the word metric ) . the map G×G→ N0 given by

dS(g, h) = `S
(
g−1h

)
, g, h ∈ G (2.4)

defines a metric on the group G.

Proof proposition 2.1.2 :
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Let g, h, k ∈ G. Note that dS(g, h) = `S (g−1h) = 0 if and only if g−1h = eG, i.e., g = h
Symmetry follows from (2); namely,

dS(g, h) = `S
(
g−1h

)
= `S

(
h−1g

)
= dS(h, g) (2.5)

By (3) we also have the triangle inequality:

dS(g, h) = `S
(
g−1h

)
= `S

(
g−1kk−1h

)
6 `S

(
g−1k

)
+ `S

(
k−1h

)
= dS(g, k) + dS(k, h) (2.6)

This proves the claim.
The ball of radius n > 0 in G centered at g0 ∈ G is denoted by BS (g0, n) = {g ∈ G |

ds (g, g0) 6 n} . If g0 = eG we simply write BG
S (n) = {g ∈ G | `S(g) 6 n} . We shall omit the

superscript when there is no ambiguity. Next, we show that the word metric is invariant under
left multiplication.

Proposition 2.1.3 :

The action of G on itseif is isometric with respect to the word metric, i.e.,

dS (g′g, g′h) = dS(g, h) (2.7)

for all g′, g, h ∈ G

Proof Proposition 2.1.3 :

The following simple calculation,

dS (g′g, g′h) = `S

(
g−1 (g′)

−1
g′h
)

= `S
(
g−1h

)
= dS(g, h) (2.8)

gives the result.
It is possible to define another metric on the finitely generated group where the distance

between elements is interpreted in terms of lengths of paths. In order to do this we need the
not ion of a Caule u ora ph.
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2.2 Growth functions

In this section we shall consider the notion of a growth function. We shall first consider the
notion of growth functions in general.

A growth function is a non-decreasing map γ : N0 → [0,∞). If γ and γ′ are two growth
functions we say that γ′ dominates γ if there exists a positive integer c such that

γ(n) 6 cγ′(cn), n > 1 (2.9)

in which case we write γ � γ′. Note that the statement is trivially true for n = 0. If, in
addition, γ′ � γ, then we write γ ∼ γ′ and say that the two growth functions are equivalent.

Proposition 2.2.1 :

The relation ∼ is an equivalence relation.

Proof Proposition 2.2.1:

Reflexivity and symmetry are obvious properties of ∼ from the definition. In order to show
transitivity let γ1, γ2, γ3 : N0 → [0,∞) be three growth functions such that γ1 ∼ γ2 and
γ2 ∼ γ3. In particular, there exist positive integers c1 and c2 such that γ1(n) 6 c1γ2 (c1n) and
γ2(n) 6 c2γ3 (c2n) . Put c = c1c2 and observe that

γ1(n) 6 c1γ2 (c1n) 6 c1c2γ3 (c1c2n) = cγ3(cn), n > 1 (2.10)

i.e., γ1 � γ3 and the relation � is transitive. The converse follows analogously.
We shall denote the equivalence class under ∼ of a growth function γ by [γ]. Given two

growth functions γ1 and γ2 we write [γ1] � [γ2] if γ2 dominates γ1. To see that this is welldefined
let γ1, γ2, γ

′
1, γ
′
2 be growth functions such that γ1 ∼ γ′1, γ2 ∼ γ′2 and γ1 � γ2. In particular, we

have γ′1 � γ1, γ1 � γ2 and γ2 � γ′2. By virtue of the transitivity of � we obtain γ′1 � γ′2. Note
that � now defines a partial order relation on the set of equivalence classes of growth functions.
Reflexivity and anti-symmetry are obvious from the definition while transitivity was proved
above.

We can define a product on the set of equivalence classes of growth functions as follows.
Given two growth functions γ1 and γ2 set [γ1] · [γ2] = [γ1γ2] . Let us first clarify why this is
well-defined: Let γ1, γ2, γ

′
1, γ
′
2 : N0 → [0,∞) be growth functions such that γ1 ∼ γ′1 and γ2 ∼ γ′2

Pick positive integers c1 and c2 such that γ1(n) 6 c1γ
′
1 (c1n) and γ2 6 c2γ

′
2 (c2n) , for all n > 1

and set c = c1c2. The product of growth functions is itself a growth function and

(γ1γ2) (n) = γ1(n)γ2(n) 6 c1c2γ
′
1 (c1c2n) γ′2 (c1c2n) = c (γ′1γ

′
2) (cn) (2.11)

for all n > 1. The converse follows analogously, so the above product is well-defined. Thus
γ1γ2 ∼ γ′1γ

′
2

Example 2.2.1 :

(i) Let a, b ∈ [0,∞). For all n > 1, we have na 6 nb
(
resp. , na = bb

)
if and only if a 6 b

(resp., a = b ). Thus na � nb (resp., na ∼ nb ) if and only if a 6 b (resp.,a = b)

(ii) Let the growth function γ : N0 → [0,∞) be a polynomial of degree d > 0. Then γ ∼ nd
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(iii) Let a, b ∈ (1,∞) such that a 6 b. Obviously, an 6 bn for all n > 1, so an � bn. On the
other hand, put c = bloga bc+ 1 where b·c denotes the integer part. Note that c > 1. For
all n > 1

bn = a(loga b)n 6 a(bloga b]+1)n 6 cacn (2.12)

which shows that bn � an, hence an ∼ bn. In particular, we have an ∼ exp(n), for
alla ∈ (1,∞)

(iv) Let d > 0 be an integer. Then nd � exp(n) but nd � exp(n). Note limn→∞
nd

exp(n)
= 0 so

the sequence
(

nd

cos(n)

)
n∈N

is bounded. This ensures the existence of a positive integer c
such that

nd

exp(n)
6 c (2.13)

from which it follows that nd 6 c exp(cn); i.e., nd � exp(n). In order to reach a contradiction,
assume that exp(n) � nd. Then there exists a positive integer c such that exp(n) 6 cd+1nd, i.e.,

exp(n)

nd
6 cd+1 (2.14)

for all n > 1. This is in contradiction with the fact that the sequence is not bounded.
Thus nd � exp(n) We are now in position to turn our attention toward the growth function of
finit ely generated groups.

Definition 2.2.1 : (The growth function)

Let G be a group and let S ⊆ G be a finite symmetric generating subset. The growth function
of G relative to S is the map γGS : N0 → N given by

γGS (n) :=
∣∣BG

S (n)
∣∣ = |{g ∈ G | `S(g) 6 n}| , n > 0 (2.15)

When there is no fear of ambiguity twe shall omit the superscript. Observe that γs(0) =
|{eG}| = 1 and γS(n) 6 γS(n+1), for all n > 0; thus, γGS is indeed a growth function. It follows
from the construction that the map ϕ : (S ∪ {eG})n → Bs(n) given by ϕ (s1, . . . , sn) = s1 · · · sn
with si ∈ S ∪ {eG} is surjective (however, not injective). Hence γS sat isfies

γs(n) 6 |S ∪ {eG}|n , n > 0 (2.16)

In particular, γGS takes only finite values.

Lemma 2.2.1 :

Let G be a finitely generated group . Let S and S ′ be two finite symmetric generating subsets
of G and put c = max {`S′(s) | s ∈ S} . Then

(i) `S′(g) 6 c`S(g), g ∈ G

(ii) dS′(g, h) 6 cdS(g, h), g, h ∈ G

(iii) BS(n) ⊆ BS′(cn), n > 0

Proof Lemma 2.2.1 :
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(i) Fix g ∈ G and suppose `S(g) = n. Then there exist s1, . . . , sn ∈ S such thatg = s1 · · · sn
and

`S′(g) = `S′ (s1 · · · sn) 6
n∑
i=1

`S′ (si) 6 cn (2.17)

wherein the first inequality follows from (3).

(ii) Fix g, h ∈ G. By (i), we have

dS′(g, h) = `S′
(
g−1h

)
6 c`S

(
g−1h

)
= cdS(g, h) (2.18)

(iii) To show the indusion, let g ∈ BS(n) for some n > 0; i.e., `S(g) 6 n. By (i) this implies
that `S′(g) 6 cn, which is equivalent to g ∈ BS′(cn).

We say that a finitely generated group G has exponential (resp., subexponential) growth
if γ(G) ∼ exp(n) (resp., γ(G) � exp(n)); it has polynomial growth if there is an integer
d > 0 such that γ(G) � nd. If the growth type is neither exponential nor polynomial we
say that G has intermediate growth. Also, we say that a group has regular growth if it
has polynomial or exponent ial growth. We state the result of the previous Example (iv)
and formula (16) as a proposition.

Proposition 2.2.2 :

Let G be a finitely generated group and let S and S ′ be two finite symmetric generating subsets
of G. Then

(i) The two word metrics dS and dS′ induce the same topology,

(ii) The growth functions γS and γS′ are equivalent,

Proof Proposition 2.2.2 :

(i) Put c := max {`S′(s) | s ∈ S} and c′ := max {`S (s′) | s′ ∈ S ′} and take g, h ∈ G. If c = 0
or c′ = 0 there is nothing to prove, so suppose c, c′ 6= 0. By the previous Lemma (ii)we
have

1

c
ds(g, h) 6 dS′(g, h) 6 cdS(g, h) (2.19)

which shows that the two metrics induce the same topology.

(ii) An immediate consequence of the previous Lemma(iii)is

γs(n) = |BS(n)| 6 |BS′(cn)| = γS′(cn) 6 cγS′(cn), n > 1 (2.20)

Thus γs � γs′. The converse follows analogously by using c′ = max {`S (s′) | s′ ∈ S ′}

Definition 2.2.2 :(Growth type)

Let S ⊆ G be a finite symmetric generating subset of a group G. The equivalence class [γS]
associated to the growth function of G relative to S is called the growth type of G and we write
γ(G)

Note that the growth type is independent of a generating subset. By abuse of notation, we
shall some times write γ(G) ∼ exp(n) or γ(G) ∼ nd for some integer d, if the group G has
exponential or polynomial growth, respectively.

25



2.2 Growth functions 2 CHAPTER TOW :GROUP GROWTH

Example 2.2.2 :

(i) Consider the group Z and let S = {−1, 1} be the generating subset. The ball of radius n
is

BZ
S (n) =

{
g ∈ Z | `ZS (g) 6 n

}
= {−n,−(n− 1), . . . ,−1, 0, 1, . . . , n− 1, n}

so γZS (n) = 2n+ 1. It follows that γ(Z) ∼ n; in particular, Z has polynomial growth.

(ii) Consider the freegroup on two generators F2 and let S = {a, a−1, b, b−1} be the generating
subset. For each increase element in the ball of radius n − 1, three distinct words are
included in the ball of radius n (when n > 1 ). Thus,

γF2
S (n) = 1 + 4

n−1∑
i=0

3i = 23n − 1

This shows that γ (F2) ∼ 3n. In particular, F2 has exponential growth.
The next result states that all finite groups have the same growth type.

Proposition 2.2.3 :

Let G be a finitely generated group. G is finite if and only if γ(G) ∼ 1.

Proof Proposition 2.2.3 :

Let S ⊆ G be a finite symmetric generating subset. Suppose G is finite. As γs(0) = 1 we have
1(n) 6 γS(n), for all n > 0; i.e., 1 � γS. Note that γS(n) 6 |G| = |G|1(|G|n), for all n > 0.
That is, γS � 1 Conversely, suppose that γ(G) ∼ 1. In particular, γS(G) � 1, so there exists a
positive integer c > 1 such that γS(n) 6 c1(cn) = c. It follows that |G| 6 c

Proposition 2.2.4 :

if G is an infinite finitely generated group, then n � γ(G).

Proof Proposition 2.2.4 :

Choose a finite symmetric generating subset S ⊆ G and consider the inclusions

{eG} = BS(0) ⊆ BS(1) ⊆ · · ·BS(n) ⊆ BS(n+ 1) ⊆ · · · (2.21)

We widn to show that these inclusions are in fact all strict. In order to do this, we shall
first show that if Bs(n) = BS(n + 1) for some n > 0, then Bs(m) = Bs(n) for all m > n. We
proceed by induction on m. The start is trivial.

Suppose Bs(n) = Bs(n + 1) implies Bs(n) = BS(n + 1) = · · · = BS(m − 1) = BS(m) for
some m > n. We are to show that BS(m + 1) = BS(n). It is clear that BS(n) = BS(m) ⊆
BS(m + 1). Conversely, take g ∈ BS(m + 1); there exist clements g′ ∈ BS(m) and s ∈ S such
that g = g′s. By hypothesis g′ ∈ BS(m− 1), so

g ∈ BS(m− 1)S ⊆ BS(m) (2.22)

This shows that BS(m + 1) ⊆ BS(m), hence BS(m + 1) = BS(m) = BS(n) Now, if it were
the case that BS(n) = BS(n + 1) for some n > 0, then BS(m) = BS(n) for all m > n and
consequently G = Bs(n), which is untenable since G is assumed infinite. Thus all the inclusions
must be strict and we obtain

n 6 |BS(n)| = γS(n) (2.23)

for all n > 0; hence n � γs. This shows that n � γ(G)
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2.3 The growth rate, growth of subgroups
and quotients

Lemma 2.3.1 :

Let (an)n>1 be a sequence of positive real numbers satisfying an+m 6 anam for all natural
numbers m and n. Then

lim
n→∞

a1/n
n = inf

n>1
a1/n
n (2.24)

Proposition 2.3.1 :

Let G be finitely generated group and let S ⊆ G be finite symmetric generating subset. Then
the number defined by

λGS = lim
n→∞

γS(n)1/n (2.25)

is finite. In particular, it follows that λS ∈ [1,∞). This proposition renders the notion of a
growth rate well-defined.

Definition 2.3.1 :

We call the number λGS ∈ [1,∞), the growth rate of G relative to S. We may onit the stperscript
when there is no ambiguity.

Proposition 2.3.2 :

Let G be a finitely generated group and let N ⊆ G be a normal subgroup. Then the quotient
G/N is finitely generated and γ(G/N) � γ(G). If, in addition, N is finite, then γ(G/N) = γ(G)

Proof Proposition 2.3.3 :

Let S ⊆ G be a finite symmetric generating subset and let π : G→ G/N denote the canonical
epimorphism. Then S ′ := π(S) ⊆ G/N is a finite and symmetric subset. Let h ∈ G/N. By
surjectivity there exists g ∈ G such that π(g) = h. If we write g = s1 . . . sn, where s1, . . . , sn ∈ S,
then h = π (s1 · · · sn) = π (s1) · · · π (sn) ∈ S ′; thus S ′ generates G/N. Using surjectivity again
we see that .BG/N

S′ (n) = π(BG
S (n)), for all n > 1. Thus | BG

S (n)| 6 |BG/N
S′ (n) | or equivalently,

γ
G/N
S (n) 6 γGS (n) for all n > 1; i.e., γ(G/N) � γ(G)

Suppose, in addition, that |N | is finite. sinceBG/N
S′ (n) = π

(
BG
S (n)

)
we observe thatB}(n) ⊆

π−1
(
B
G/N
S′ (n)

)
and

∣∣BG
S (n)

∣∣ 6 ∣∣∣π−1
(
B
G/N
S′ (n)

)∣∣∣ =
∣∣∣N‖BG/N

S′ (n)
∣∣∣ 6 |N | ∣∣∣BG/N

S′ (|N |n)
∣∣∣ = |N |γG/NS′ (|N |n)

This shows that γS ≤ γ
G/N
S′ ; consequently γ(G/N) = γ(G)

Proposition 2.3.4:

Let H be a finitely generated subgroup of a finitely generated group p. Then γ(H) � γ(G)
Proef. Let SG and SH be finite symmetric generating subset of G and H respectively and put
S = SH ∪ SG. Note that S is a finite symmetric generating subset of G. For all n > 1, we have
BH
SH

(n) ⊆ BG
S (n) since SH ⊆ S and therefore

∣∣BH
SN

(n)
∣∣ 6 ∣∣BG

S (n)
∣∣ , i.e., γSN

(n) 6 γS(n), for all
n > 1. Thus γSH

� γS and γ(H) � γ(G)
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2.4 The growth of finitely generated nilpotent
groups

Theorem 2.4.1 : (Dixmier, Milnor, Wolf 1960 s)

Finitely generated nilpotent group has polynomial growth.

Theorem 2.4.2 : (Gromov 1980)

Any finitely generated almost nilpotent group has polynomial growth. The converse implication
is, in fact, also true, whence a group has polynomial growth if and only if it is almost nilpotent.
This is a remarkable result due to Gromov, see [9] The proof requires several steps, the proof
is much too big. We refer the reader to [9] .
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3 CHAPTE THREE: Amenability and group growth

3.1 Amenability

Definition 3.1.1 :(Aminability via measure)

A group G is amenable, if it is possible to define on it
a non-trivial finite, finitely additive, translation-invariant measure.
That means that we can find a function µ : 2G → R ≥ 0, which associates to each subset A

of G a number µ(A) ≥ 0, and which satisfies:

(1) If A,B ⊆ G and A ∩B = ∅, then µ(A ∪B) = µ(A) + µ(B)

(2) If A ⊆ G and x ∈ G, then µ(Ax) = µ(A)

(3) µ(G) > 0

The difference between this notion and the more customary notions of measure, such as
Lebesgue or Haar measures, is that, first, we require µ to be defined for all subsets of G, and,
on the other hand, we require additivity only for finite unions, not countable ones. From here
on, whenever we say "measure", we usually mean one which satisfies properties (1)− (3) above.

Obviously multiplying µ by any positive constant yields another measure with the same
properties, hence we will always assume that µ(G) = 1. We required our measure to be invari-
ant under right translations, but we can find also a left-invariant one, by defining ν(A) = µ (A−1)

(Aminabilty via means) viewed as a generalised averaging operation for bounded functions.
If X is a set, then `∞(X,R) denotes the set of all bounded functions of type X → R. Pointwise
addition and scalar multiplication turn `∞(X,R) into a real vector space. If G is a group, then
every left G -action on X induces a left G -action on `∞(X,R) via

G× `∞(X,R) −→ `∞(X,R)

(g, f) 7−→
(
x 7→ f

(
g−1 · x

))
A group G is amenable if there exists a G -invariant mean on `∞(G,R), i.e., an R -linear map
m : `∞(G,R) −→ R with the following properties:

• Normalisation. We have m(1) = 1

• Positivity. We have m(f) ≥ 0 for all f ∈ `∞(G,R) that satisfy f ≥ 0 pointwise.

• Left-invariance. For all g ∈ G and all f ∈ `∞(G,R) we have

m(g · f) = m(f)

with respect to the left G -action on `∞(G,R) induced from the left translation action of G on
G

Example 3.1.1 : (Amenability of finite groups)

Finite groups are amenable: If G is a finite group, then

`∞(G,R)→ R

f → 1

|G|
·
∑
g∈G

f(g)
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is a G -invariant mean on `∞(G,R). Or by measure µ(A) = |A|/|G| is a measure, and clearly
it is the only possible one.

(Non-amenability of free groups). The free group F2 of rank 2 is not amenable.
Let F2 = 〈x, y〉 be a free group of rank 2, with free generators x and y. Assume that µ is a

(left-invariant) measure on F2. Then µ (F2− {1})= 1, and F2 − {1} = A ∪ B ∪ C ∪D, where
A,B,C,D are the sets of reduced words starting by x, x−1, y, y−1, respectively. Then A−{x} =
xA ∪ xC ∪ xD, a disjoint union. since µ(A) = µ(xA), it follows that µ(C) = µ(D) = 0. A
similar argument shows that µ(A) = µ(B) = 0 and thus µ (F2) = 0, a contradiction. Thus F2

is not amenable.
(Amenability of Abelian groups). Every Abelian group is amenable.
The proof relies on the Markov-Kakutani fixed point theorem from functional analysis [7]

On any space with a measure we can develop the notion of the integral defined by that
measure. This is particularly simple in the case of an amenable group G, because all subsets of
G are measurable, and thus all functions are measurable. Let f(x) be a bounded real function on
G and let a ≤ f(x) < b (for all x ∈ G ). Divide the interval [a, b] in some way to subintervals,
i.e. choose points a = a0 < a1 < · · · < ak = b, let ∆ denote this subdivision, define Ai =
{x ∈ G | ai−1 ≤ f(x) < ai} The sets Ai constitute a partition of G. Put S∆ =

∑k
i=1 µ (Ai) ai.

Then S∆ ≥ a
∑k

i=1 µ (Ai) ≥ a. Similarly, if we put s∆ =
∑k

i=1 µ (Ai) ai−1, then s∆ ≤ b. If E is
a refinement of ∆, then SE ≤ S∆ and sE ≥ s∆. Any two divisions have a common refinement,
therefore for any two divisions we have sE ≤ S∆. Also 0 ≤ S∆−s∆ ≤ max (ai − ai−1) . It follows
that the infimum of the numbers S∆, taken over all subdivisions, equals the supremum of s∆.
This common value is defined to be the integral of f relative to µ, denoted as usual by

∫
fdµ

It is clear that the integral is additive and right-invariant, in the sense that given any
bounded function and an element y ∈ G, if we define fy(x) = f(xy), then

∫
fydµ =

∫
fdµ As

a first application of integration we have:

Proposition 3.1.1 :

If G is amenable, there exists on it a measure that is both right- and left-invariant.

Proof

Let µ be a measure on G, and define a new one by ν(A) =
∫
µ(xA)dµ. The verification that

this is a two-sided invariant measure is immediate.
Remark The class of amenable groups is denoted by AG.

Definition 3.1.2 :

Let P be any property of groups. A group G is locally P if each finitely generated subgroup of
G has property P .

Theorem 3.1.1 :(Inheritance properties of amenable groups).

(i) Subgroups and factor groups of amenable groups are amenable.

(ii) An extension of an amenable group by an amenable group is amenable.

(iii) A locally amenable group is amenable.

Proof
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(i) Let G be amenable and H ≤ G and N � G. A subset A of G/N is a collection xαN of
cosets of N, and we put µ(A) = µ (

⋃
xαN) . Next, let R be a set of representatives of the

left cosets of H in G, and for A ⊆ H put µ(A) = µ(RA). This defines measures on G/N
and H

(ii) Let ν be a measure on N, and let σ be a left-invariant measure on G/N. For a coset
Nx ∈ G/N define f(Nx) = ν(N ∩ Ax). This does not depend on the choice of the
representative x, because if y ∈ N, then ν(N ∩ Axy) = ν(N ∩ Ax)y = ν(N ∩ Ax),
and thus f is a function on G/N For A ⊆ G, put µ(A) =

∫
fdσ. This is an additive

function. Replacing A by Az(z ∈ G) we change f(Nx) to f(Nzx) = f(zNx), implying
µ(Az) = µ(A) by the left invariance of the integral with respect to ν

(iii) We first consider all functions from 2G to the closed interval [0,1] This can be seen as
the cartesian power [0, 1]2

G
, and with the product topology it is a compact space. The

set of all finitely additive invariant measures µ, satisfying µ(G) = 1, is defined by various
equalities between values of µ, and therefore it is a closed set (possibly empty). Let H be
a finitely generated subgroup of G, let µ be a measure on H, and extend it to G by setting
µ(A) = µ(A∩H). The resulting measure on G is finitely additive and gives G measure 1,
but it is invariant only with respect to multiplication by elements of H. The setMH of
all measures on G which are finitely additive and H -invariant is also closed, and we have
just seen that it is not empty. Taking several finitely generated subgroups H1, . . . , Hr, and
putting K = 〈H1, . . . , Hr〉 , the sets MHi

intersect in MK , and therefore the intersection
is not empty. since the sets MH are closed in a compact space, the intersection of all of
them is not empty, and any function in that intersection is an invariant measure on G

Definition 3.1.3 : (Elementary amenable).

The class of elementary amenable groups is the smallest class of groups that contains the
finite and the abelian groups and is stable under the four operations of taking (1) subgroups,
(II) quotients, (III) extensions and (IV) direct unions. The class is denoted by EG or E .

In the previous, we saw that the class of amenable groups is stable under the four operations
(I)-(IV). Since finite and abelian groups are amenable it is clear that EG is contained inAG

Lemma 3.1.1 :

Let G be a group and let N ⊆ G be a normal subgroup. If both N and G/N are amenable,
then G is amenable.

Proposition 3.1.2 :

All solvable groups are amenable.

Proof.

Let G be a solvable group. We shall proceed by induction on the solvability degree i. If
i = 0, then G = {eG} and there is nothing to prove. Suppose G has solvability degree i + 1
The derived subgroup D(G) is solvable of degree i hence amenable by hypothesis. Also, the
quotient G/D(G) is abelian, hence amenable, we conclude that G is amenable.

Every nilpotent group is solvable so nilpotent groups are amenable.
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3.2 Further caracteristions
of amenabiliy

The notion of amenability revolves around the (almost) invariance. We have seen the definition
via invariant means. In the following, we will study equivalent characterisations of amenability
and their use cases, focusing on geometric properties:

• almost invariant subsets (Følner sequences),

• paradoxical decompositions and the Banach-Tarski paradox,

Another geometric characterisation of amenability is based on:

Definition 3.2.1 :

Let the group G be generated by the set S, and let A ⊆ G. The boundary ∂A of A is the set of
elements at distance 1 from A, i.e. the elements x such that x /∈ A, but there exists an element
y ∈ A and a generator s ∈ S such that x = ys or x = ys−1

Definition 3.2.2 :

A finitely generated group G satisfies the Følner condition, , if inf |∂X|/|X| = 0, the infimum
being taken over all finite subsets X of G. Equivalently, there exists in G a Følner sequence ,
i.e. a sequence Fn of finite subsets of G such that limn→∞

|∂Fn|
|Fn| = 0

Definition 3.2.3 :

Let S be any set. A filter on S is a family F of subsets of S with the following properties:

(i) φ /∈ F(φ is the empty set).

(ii) A,B ∈ F ⇒ A ∩B ∈ F

(iii) A ∈ F , A ⊆ B ⇒ B ∈ F

A maximal filter is called an ultrafilter. We now fix a non-principal ultrafilter F on N, the
set of natural numbers. Let T be any topological space, and let {xn} be a sequence in T For
each x ∈ T, and each neighbourhood U of x, write O(x, U) = {n ∈ N | xn ∈ U}

Definition 3.2.4 :

We say x is the F -limit of {xn} , if for each U the subset O(x, U) belongs to F . We write
x = F limxn

Thus x is the F -limit of some sequence, if each neighbourhood of x contains almost all
members of that sequence.

Corollary 3.2.1 :

Any bounded sequence of real numbers F -converges, and its F -limit is unique. Corollary
3.2.2 : Let xn and yn be two bounded real sequences, and c a real number.

(a) F lim (xn + yn) = F limxn + F lim yn

(b) F lim (cxn) = cF limxn
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(c) If xn ≤ yn for all n, then F limxn ≤ F lim yn

Theorem 3.2.1 :

A group satisfying the Følner condition is amenable.

Proof Theorem 3.2.1 :

Let Xn be a Følner sequence in G, fix a nonprincipal ultrafilter F , and for each subset A
of G define An = A ∩ Xn µn(A) = |An| / |Xn| , and µ(A) = F limµn(A). The additivity of
µ is clear. Let s ∈ S be one of the generators of G. Then |As ∩Xn| = |A ∩Xns

−1| and
A ∩ Xns

−1 ⊆ An ∪ ∂Xn, and thus |As ∩Xn| / |Xn| ≤ µn(A) + |∂Xn| / |Xn| , yielding, upon
passage to the limit, µ(As) ≤ µ(A) In the same way we obtain µ(A) = µ (As · s−1) ≤ µ(As),
and thus µ(As) = µ(A)

The converse of the theorem is also true; thus a group is amenable iff it satisfies the Følner
conditions.

Definition 3.2.5 : (Paradoxical group).

A groupG is paradoxical if it admits a paradoxical decomposition. A paradoxical decomposition
of G is a pair

(
(Ag)g∈K , (Bh)h∈L

)
where K,L ⊂ G are finite and (Ag)g∈K , (Bh)h∈L are families

of subsets of G with the property that

G =

(⋃
g∈K

Ag

)
∪

(⋃
h∈L

Bh

)
, G =

⋃
g∈K

g · Ag, G =
⋃
h∈L

h ·Bh

are disjoint unions.

Example 3.2.1 :(Non-Abelian free groups are paradoxical).

Free groups of rank at least 2 are paradoxical.

Proof Example 3.2.1 :

We use the description of free groups in terms of reduced words. In order to keep notation
simple, we consider the case of rank 2 (higher ranks basically work in the same way). Let F be
a free group of rank 2, freely generated by {a, b}. We then define the following subsets of F .

1. Let A+ be the set of all reduced words starting with a positive power of a

2. Let A− be the set of all reduced words starting with a negative power of a

3. Let B+ be the set containing the neutral element, all powers of b as well as all reduced
words starting with a positive power of b.

4. Let B− be the set of all reduced words starting with a negative power of b, excluding the
powers of b

Then
F2 = A+ ∪ A− B−, F2 = A− ∪ a−1 · A+ F2 = B− ∪ b−1 · B+ are disjoint unions. So(

(Ae, Aa − 1){e,a−1

}
, (Be, Bb − 1) {e, b− 1}

)
is a paradoxical decomposition of F, where Ae :=

A−, Aa−1 := A+, Be := B− and Bh−1 := B+
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Theorem 3.2.2 : (Tarski’s theorem).

Let G be a group. Then G is paradoxical if and only if G is not amenable.

Proof Theorem 3.2.2 :

Let G be paradoxical and let
(

(Ag)g∈K , (Bh)h∈L

)
be a paradoxical decomposition of G. Assume

for a contradiction that G is amenable, and let m be an invariant mean for G. Because the
corresponding unions all are disjoint and m is left-invariant. Denoting characteristic functions
of subsets with χ . . . , we obtain

1 = m (χG) =
∑
g∈K

m (χg · Ag) =
∑
g∈K

m
(
g · χAg

)
=
∑
g∈K

m
(
χAg

)
1 =

∑
h∈L

m (χBh
)

and hence
1 = m (χG) =

∑
g∈K

m
(
χAg

)
+
∑
h∈L

m (χBh
) = 1 + 1 = 2

which is a contradiction. Therefore, G is not amenable
By the previous results:

Theorem 3.2.3 : [ Tarski & Følner]:

Let G be a finitely generated group. The following conditions on G are equivalent:

(a) G is amenable

(b) G satisfying the Følner condition

(c) G is not paradoxical.
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3.3 The relationship between growth
and amenability

Proposition 3.3.1 :

A group of subexponential growth is amenable.

Proof 3.3.1 :

Let G has subexponential growth, and let BS(n) = {g ∈ G | `S(g) 6 n} . Then |BS(n)| =

γS(n), ∂BS(n) is the set of elements of length n+1, and limn→∞ inf γS(n+1)
γS(n)

6 limn→∞ γS(n)1/n =

λGS = 1. But γS(n) 6 γS(n + 1), and thus limn→∞ inf γS(n+1)
γS(n)

= 1. But γS(n + 1) = |BS(n)| +
|∂BS(n)| , and thus limn→∞ inf |∂BS(n)|

|BS(n)| = 0 and there exists a subsequence of {BS(n)} which is
a Følner sequence.

Theorem 3.3.1 : (Pansu)

Let G be a finitely generated group of polynomial growth. Then for any finite generating set
S, the sequence of balls {Bs(n)}∞n=1 is a Følner sequence.

Proof Theorem 3.3.1 :

Idea is that |BS(n)| ∼ nd so

lim
n→∞

|∂BS(n)|
|BS(n)|

= lim
n→∞

|BS(n+ 1)\BS(n)|
|BS(n)|

= lim
n→∞

∣∣(n+ 1)d − nd
∣∣

|nd|
= 0

Corollary 3.3.1 ;

Groups of polynomial growth are amenable.

Theorem 3.3.2 :

A finitely generated elementary amenable group either has exponential growth or is nilpotent-
by-finite. As this requires more advanced group theory, we shall omit the proof. It can be found
in [16] .

Corollary 3.3.2 :

All finitely generated elementary amenable groups have regular growth.

Corollary 3.3.3 :

The groups of intermediate growth are amenable but not elementary amenable.

This is clear from the last two results. The Grigorchuk group Γ([5]) was the first example
of an amenable group that was not elementarily amenable.
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Abstract 

       In this note, we represent the notions of growth and amenability of 

groups and discuss the relationship between them.  

     Key words: group, subgroup , free group, finitely generated group, 

word length, word metric, growth function, group growth, exponential, 

polynomial growth ,subexponential growth ,regular and intermediate 

growth ,growth rate, amenability , measure, mean, amenable group , 

paradoxical group, folner condition, Tariski theorem, Grigorchuk  group. 

 

Résumé 

   Dans ce mémoire nous représentons les notions de la croissance des 

groups et la moyennabilité des groupes et discutons la relation entre 

eux. 

   Mots clés : groupe, sous-groupe, groupe libre, groupe finiment 

engendré, longueur de mot métrique des mots, fonction de croissance, 

croissance exponentielle, polynomiale, ou sous exponentielle, croissance 

régulière et intermédiaire, moyennablité, mesure, moyenne, groupe 

moyennable, groupe paradoxal, condition de folner, théorème de Tarisk, 

groupe de Grigorchuk. 

 

 ملخص

في هذه المذكرة قدمنا مفهومي التزايد و الطواعية وناقشنا العلاقة بينهما .           

دالة   ،طول الكلمة ،زمرة منتهية التوليد   ،زمرة حرة ،زمرة جزئية ، زمرة :  مفتاحيهكلمات      

،،  قياس  ،طواعية ،نسبة تزايد   ،منتظم لا  ، منتظم  أسي،لا   ،كثير حدودي ، تزايد أسي ،تزايد 

     زمرة غريغورتشوك . ،نظرية تاريسكي  فولنر،شرط ،مرة قابلة للطواعية متوسط، ز

 


