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Introduction

Singular perturbation theory concerns the study of problems featuring a parameter

for which the solutions of the problem at a limiting value of the parameter are different

in character from the limit of the solutions of the general problem; namely, the limit

is singular. In contrast, for regular perturbation problems, the solutions of the general

problem converge to the solutions of the limit-problem as the parameter approaches the

limit-value. Though classically having their origins in the study of differential equations,

singular perturbation problems occur in a broad array of contexts.

A great deal of the early motivation in this area arose from studies of physical problems

(O’Malley 1991, Cronin and O’Malley 1999). Notable examples are Poincare’s work on

time-scales for periodic phenomena in celestial mechanics and Prandtl’s work on fluid

flow (Van Dyke 1975 ), Van Der Pol’s work on electric circuits and oscillatory dynamics

studies of biological systems and chemical reaction kinetics by Segel and others and Each

of these areas yield problems whose solutions have features that vary on disparate length-

or time-scales.

Particularly, in the theory of anisotropic singular perturbation boundary value prob-

lems, the solution uε does not converge, in the H1 -norm on the whole domain, towards

some u0, since the perturbation is only taken in some directions. Thus we construct

correctors which are simple functions that ensure the affinity of uε towards u0 in H1

-space.

In this work, we will consider the same problem as in [5] but with Dirichlet boundary

conditions, then we construct a composite asymptotic approximations to get the conver-

gence results on the whole domain.

The dissertation is organized as follow
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In the first chapter, We provide the necessary basic tools for our study.

In the second chapter, we deduce the outer asymptotic expansion and some conver-

gence results far away from the boundary layers from [2] for our problem.

Then, in the last chapter, we give the definition of the formal correctors and a justifi-

cation of the proposed composite asymptotic expansion.
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Chapter 1

Basic Tools

We recall in this chapter some basic notions and properties as an introduction to linear

elliptic problems (see [1, 8, 9]).

1.1 Lq–spaces and Distributions

Definition 1 Let q ≥ 1 be a real number, Ω an open subset of Rn, n ≥ 1

Lq (Ω) =

{
v : Ω → R, v is measurable and

∫
Ω

|v (x)|q dx <∞
}
,

and

L∞ (Ω) = {v : Ω → R, v is measurable | ∃κ such that |v (x)| ≤ κ, a.e. x ∈ Ω} .

Equipped with the norm

|v|q,Ω =

{∫
Ω

|v (x)|q dx

} 1
q

,

and

|v|∞,Ω = inf {κ such that |v (x)| ≤ κ, a.e. x ∈ Ω}

respectively, where Lq (Ω) and L∞ (Ω)) are Banach spaces.

In the following we recall some elementary properties of Lq–spaces (in particular, the

case where q = 2).

Theorem 2 (Tonelli) Let u(X1, X2) : Ω1 ×Ω2 → R be a measurable function satisfying
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1.
∫
Ω2

u(X1, X2) dX2 <∞ a.e. X1 ∈ Ω1,

2.
∫
Ω1

dX1

∫
Ω2

u(X1, X2) dX2 <∞.

Then u ∈ L1 (Ω1 × Ω2).

Theorem 3 (Fubini) Assume that u ∈ L1 (Ω1 × Ω2). Then for a.e. x ∈ Ω1, u(X1, X2) ∈

L1(Ω2) and ∫
Ω2

u(X1, X2) dX2 ∈ L1 (Ω1) .

Similarly, for a.e. X2 ∈ Ω2,

u(X1, X2) ∈ L1(Ω1) and
∫
Ω1

u(X1, X2) dX1 ∈ L1 (Ω2) .

Moreover, one has∫
Ω1

dX1

∫
Ω2

u(X1, X2) dX2 =

∫
Ω2

dX2

∫
Ω1

u(X1, X2) dX1 =

∫∫
Ω1×Ω2

u(X1, X2) dX2 dX1.

We denote by D (Ω) the space of infinitely differentiable functions with compact sup-

port in Ω where the support of a function ρ is defined as

suppρ = the closure of the set {x ∈ Ω | ρ (x) ̸= 0} .

Definition 4 Let Ω ⊂ Rn be open and let 1 ≤ q ≤ ∞. We say that a real value function

u belongs to Lq
loc (Ω) if uχ ∈ Lq(Ω) for every compact set K contained in Ω where χ is

the characteristic function of K.

Note that if u ∈ Lq
loc (Ω) then u ∈ L1

loc (Ω). Then we have

Lemme 1 Let u ∈ L1
loc (Ω) such that∫

Ω

uφ dx = 0, ∀φ ∈ D (Ω) .

Then u = 0 a.e. on Ω.
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If X is a normed linear space, then the collection of bounded linear functional on X

is called its dual space and is denoted by X ′. In particular, for any 1 ≤ q < ∞ the dual

of Lq (Ω) can be identified with Lq (Ω) where q′ is the conjugate number of q which is

defined by
1

q
+

1

q′
= 1,

i.e., q′ = q
q−1

with the convention that q′ = +∞ when q = 1 (in particular if q = 2 we

also have q′ = 2).

Theorem 5 (Holder’s inequality) Assume that u ∈ Lq (Ω) and v ∈ Lq′ (Ω) with 1 ≤

q ≤ ∞. Then uv ∈ L1 (Ω) and ∫
Ω

|uv| dx ≤ |u|q,Ω |v|q′,Ω .

For q = 2, q′ = 2, we have the Cauchy–Schwarz inequality in L2 (Ω). We also recall

the classical form of Young inequality

κ1κ2 ≤
1

q
κq1 +

1

q′
κq

′

2 ∀κ1, κ2 ≥ 0

with 1 < q <∞. More general Young inequality can be written as

κ1κ2 ≤
ε

q
κq1 +

1
q−1
√
εq′
κq

′

2 ∀κ1, κ2 ≥ 0

where ε is positive constant. Note that the last inequality can be derived from the previous

one by replacing κ1 and κ2 by q
√
εκ1 and κ2/ q

√
ε respectively.

In the following we would like to introduce the notion of distributions.

Definition 6 A distribution T on Ω is a continuous linear functional on D (Ω). We will

denote by

⟨T, φ⟩ := T (φ) ∀φ ∈ D (Ω) ,

and by D′ (Ω) the space of all distributions on Ω.

In what follows, we use the abbreviation Dα, for α = (α1, α2, . . . , αn) ∈ Nn, the partial

derivative given by

Dα =
∂|α|

∂α1
x1 · · · ∂αn

xn

where |α| = α1 + · · ·+ αn. In the next we will clarify the preceding definition.
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Definition 7 Let T ∈ D′ (Ω) for some open set Ω ⊂ Rn.

1. If α is any multi-index, then we define DαT , the α–weak partial derivative, by

⟨DαT, φ⟩ = (−1)|α| ⟨T,Dαφ⟩ .

2. Given ψ ∈ C∞ (Ω), we define ψT by

⟨ψT, φ⟩ = ⟨T, ψφ⟩ .

Remark 8 One of the key feature of distributions is the fact that we can differentiate

them - in some sense - as much as we wish. Indeed, if u is a function that is k–times

differentiable in Ω, k ≥ |α|, then the distribution Dαu coincides with the function Dαu,

the partial derivative of u in the usual sense.

We define now the convergence in D′ (Ω).

Definition 9 Let (Tn)n∈N be a sequence of distributions on Ω. We say that when n→ ∞,

Tn → T in D′ (Ω)

iff

⟨Tn, φ⟩ → ⟨T, φ⟩ , ∀φ ∈ D (Ω) .

Now we recall the notion of weak convergence. A sequence (un), n ∈ N, in a normed

space, X is called weakly convergent to an element u ∈ X , if

f (un) → f (u) as n→ +∞, ∀f ∈ X ′.

In this case u is called a weak limit of the sequence and we write

un ⇀ u as n→ +∞.

Note that

un → v in X ⇒ un ⇀ v in X , as n→ +∞.

The converse is not true in general. However, a weakly convergent sequence is bounded.

Then we have
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Proposition 10 Let un, u ∈ Lq (Ω). If we suppose that when n→ +∞,

un → u in Lq (Ω) , (respectively un ⇀ u in Lq (Ω) ) 1 ≤ q <∞,

then we have

un → u in D′ (Ω) .

Proposition 11 The operator Dα, α ∈ Nn is continuous on D′ (Ω), i.e.

Tn → T in D′ (Ω) ⇒ DαTn → DαT in D′ (Ω) as n→ ∞.

We conclude this section by the following results often used to prove the weak conver-

gence of a whole sequence.

Theorem 12 (Weak compactness of balls) If (un) is a bounded sequence in a Hilbert

space H, there exists a subsequence (unk
) of (un) and u ∈ H such that

unk
⇀ u as nk → ∞.

Proposition 13 Let X be a reflexive Banach space and (un) a bounded sequence in X .

We assume that there exists u ∈ X such that every weakly convergent subsequence of (un)

has a limit equal to u; then the whole sequence (un) weakly converges to u.

We also have

Theorem 14 Let un, vn be two sequences in H such that un → u and vn ⇀ v when n

tends to +∞. Then we have

⟨un, vn⟩ → ⟨u, v⟩ in R, as n→ +∞.

1.2 Lax–Milgram Theorem

Lax–Milgram theorem is a key tool for solving elliptic partial differential equations. In-

stead of a scalar product one can consider more generally a continuous bilinear form.

Suppose that (H, ⟨., .⟩H) is a Hilbert space, V ⊆ H is a linear subspace of H, and ⟨., .⟩V
is an inner product on V that turns V into a Hilbert space.
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Moreover, we suppose that the embedding V ↪→ H is continuous, i.e. there is a positive

constant κ such that

|v|H ≤ κ |v|V ∀v ∈ V . (1.1)

Definition 15 A bilinear form a : V × V → R is said to be

1. continuous if there is a positive constant Λ such that

|a (u, v)| ≤ Λ |u|V |v|V ∀u, v ∈ V ,

2. coercive if there is a positive constant λ such that

a (v, v) ≥ λ |v|2V ∀v ∈ V .

Then we have the following theorem.

Theorem 16 (Lax–Milgram) Assume that a(., .) is a continuous coercive bilinear form

on V. Then, given any f ∈ V ′, there exists a unique element u ∈ V such that

a(u, v) = ⟨f, v⟩V ∀v ∈ V .

1.3 Essential Features of the Sobolev Spaces

The Sobolev spaces are very convenient tools to study the partial differential equations.

In this section we concentrate ourselves to the most simple ones. Then, we firstly define

W 1,q(Ω) as follows

W 1,q (Ω) = {v ∈ Lq (Ω) | ∂xi
v ∈ Lq (Ω) , i = 1, ..., n} ,

where ∂xi
v denotes the derivative of v in the weak sense. Equipped with the norm |.|q,Ω

is a Banach space and it is reflexive for 1 < q <∞.

In the next, we focus on the properties of Hilbert spaces. For q = 2, Ω be an open

subset of Rn, n ≥ 1. We denote by H1 (Ω) the subset of L2 (Ω) defined by H1 (Ω) :=

W 1,q (Ω) which is a Hilbert space equipped with the scalar product

(u, v)1,Ω =

∫
Ω

(∇u · ∇v + uv) dx,

11



where “∇u” denotes the Gradient vector (∂x1u, ∂x2u, . . . , ∂xnu)
T . However, here we can

also state

Theorem 17 Assume that Ω is a bounded Lipschitz domain of Rn, then the canonical

embedding from H1 (Ω) into L2 (Ω) is compact.

We use of the above theorem in partial differential equations as follows. From any

bounded sequence in H1 (Ω) we can extract a subsequence converges weakly in H1 (Ω),

strongly in L2 (Ω), and almost everywhere in Ω.

Now, let us denote by Γ0 a subset of Γ = ∂Ω the boundary of Ω, such that

|Γ0| > 0,

where |Γ0| denotes the measure of Γ0. Define C1
0

(
Ω̄,Γ0

)
as the set of continuously differ-

entiable functions on Ω̄ (Γ is a Lipschitz boundary). An important subspace of H1 (Ω) is

V the space defined as

V = the closure of C1
0

(
Ω̄,Γ0

)
in H1 (Ω) .

The mapping

|u|V =

{∫
Ω

|∇u (x)|2 dx

} 1
2

= |∇u|2,Ω (1.2)

defines a norm on V which is equivalent the H1–norm when Ω is bounded. This is an

immediate consequence of the following lemma.

Lemme 2 (Poincaré’s inequality on V) Let Ω be a bounded open subset of Rn. There

exists a positive constant κ such that

|v|2,Ω ≤ κ |v|V = κ |∇v|2,Ω ∀v ∈ V .

In particular when Γ0 = Γ = ∂Ω we set H1
0 (Ω) := H1

0 (Ω,Γ) which is the closure of

D (Ω) in H1 (Ω). We denote by H−1 (Ω) the dual space of H1
0 (Ω).

An other most important properties of the trace are the following

12



Theorem 18 (Green formula) For all u, v ∈ H1(Ω), we have∫
Ω

v (x) ∂xi
u (x) dx = −

∫
Ω

∂xi
v (x)u (x) dx+

∫
∂Ω

γ0 (v) γ0 (u) νi dσ

where ν = (ν1, ..., νn) the outward unit normal to Γ = ∂Ω and γ0 (respectively dσ) denotes

the operator trace (respectively the superficial measure on Γ = ∂Ω).
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Chapter 2

Outer Asymptotic Expansion

In this chapter we construct an outer asymptotic development to the weak solution of

anisotropic singular perturbation problems of elliptic type. Since the perturbation is only

taken in one direction, the convergence of this expansion is ensured in the Sobolev Space

far away from the boundary layer.

2.1 Position of the Problem

In order to describe the class of problems that we would like to address, we first introduce

some basic notations and hypotheses. Let Ω be a bounded open cylinder in Rn i.e.

Ω = ω1 × ω2 = (−1, 1)× ω2,

where ω2 is bounded lipschitz domain of Rn−1 (n > 1 ), we denote by x = (x1, . . . , xn) =

(X1, X2) the points of Rn where

X1 = (x1), X2 = (x2, . . . , xn),

i.e., we split the coordinates into two parts. Throughout this manuscript ∂xi
denotes the

partial derivative in the xi−direction. With these notation we set

∇u = (∂x1u, . . . , ∂xnu)
T =

(
∂X1u
∇X2u

)
,

where

∇X2u = (∂x2u, . . . , ∂xnu)
T .

14



For a function

f ∈ L2(Ω), (2.1)

we ensure the existence and the uniqueness, (from Lax-Milgram theorem), of a weak

solution uε to {
−ε2∂2X1

uε −∇X2 · (∇X2uε) = f in Ω,
uε = 0 on ∂Ω,

(2.2)

in the following sense

 uε ∈ H1
0 (Ω),

ε2
∫
Ω

∂X1uε∂X1v dx +

∫
Ω

∇X2uε · ∇X2v dx =

∫
Ω

fv dx, ∀v ∈ H1
0 (Ω).

(2.3)

2.2 Formal Asymptotic Expansion

As it is shown in (see [4]) the limit u0 of uε is the unique solution, for a.e. X1 ∈ ω1, to

the following lower dimension problem{
−∇X2 · (∇X2u0(X1, ·)) = f(X1, ·) in ω2,
u0(X1, ·) = 0 on ∂ω2,

(2.4)

in the following sense, for a.e. X1 ∈ ω1 u0(X1, ·) ∈ H1
0 (ω2),∫

ω2

∇X2u0(X1, X2) · ∇X2v dX2 =

∫
ω2

f(X1, X2)v dX2, ∀v ∈ H1
0 (ω2).

(2.5)

The existence and the uniqueness of u0 is followed from the Lax-Milgram theorem, since

for a.e. X1 ∈ ω1 = (−1, 1), f(X1, ·) ∈ L2(ω2) . The convergence holds out on the whole

domain Ω, but with respect to topologies weaker than that of the space of existence of

uε; H
1 (Ω). We mean the following functional space

V (Ω) =
{
u ∈ L2 (Ω) | ∇X2u ∈ Lp (Ω)

}
,

equipped with the norm

|u|2V(Ω) =

∫
Ω

(
|u (x)|2 + |∇X2u (x)|

2) dx.
15



The improvements related to the convergence uε → u0 investigated on one hand the

topology type by considering the standard Sobolev space on domains located far away

from the boundary layer {−1, 1} × ω2 and on the other hand the rate of convergence.

Unfortunately, these improvements are limited by the nature of the problem. It can go

until an exponential rate of convergence if u0 be independent of x1, however, a rate of

convergence as

uε − u0 = o (ε) in L2 (ω′
1 × ω2) , ω′

1 ⊂⊂ ω1

where ω′
1 = (−a, a) ⊂⊂ (−1, 1), 0 < a < 1, can not take place in general case.

Now, in order to reduce the approximation error we can propose an asymptotic devel-

opment of uε, i.e. it should be expressed as a power series of ε in the form

uε = u0 + εu1 + · · · . (2.6)

Consequently, this allows to chose Uε as a polynomial in ε, i.e.

UN
ε = u0 + εu1 + · · ·+ εNuN .

Formally, if we substitute the asymptotic expansion of (2.6) into (2.2) and expand the

left-hand side in powers of ε, we then deduce, after equating coefficients of equal powers of

ε, that the coefficient uN are solutions of the following system of boundary value problems,

defined on the section ω2 for a.e. X1 ∈ ω1 = (−1, 1),

{
−∇X2 · (∇X2u0(X1, ·)) = f(X1, ·) in ω2,

u0(X1, ·) ∈ H1
0 (ω2),

(2.7)

{
−∇X2 · (∇X2u1(X1, ·)) = 0, in ω2,

u1(X1, ·) ∈ H1
0 (ω2).

(2.8)

and for N ≥ 2,{
−∇X2 · (∇X2uN(X1, ·)) = ∂X1 · (∂X1uN−2(X1, ·)) in ω2,

uN(X1, ·) ∈ H1
0 (ω2).

(2.9)

Our perturbed problem is now reduced to a sequence of the elliptic boundary value prob-

lems (2.7), (2.8) and (2.9) which can be easily solved iteratively once the solution of (2.7)

has been constructed and has the necessary smoothness.
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Remark 19 It is clear by using the problem (2.7)-(2.9) defined each coefficients uN ,

N ∈ N, that we have only the pairs coefficients of the asymptotic representation (2.6), i.e.

ui = 0 for all i = 2k + 1, k ∈ N.

As it is mentioned above, the problem (2.9) will be solved iteratively. That is to say,

in order to define uN , for N ≥ 2, as a solution of (2.9) in the following weak sense, for

a.e. X1 ∈ ω1,
uN(X1, ·) ∈ H1

0 (ω2)∫
ω2

∇X2uN(X1, .) · ∇X2v dX2 =

∫
ω2

∂X1 (∂X1uN−2(X1, .)) v dX2 ∀v ∈ H1
0 (ω2).

(2.10)

we need to ensure the smoothness of uN−2, in the following sense

∂2X1
uN−2 ∈ L2(Ω). (2.11)

Again we have to ensure the existence and the uniqueness of uN−2, of course as solutions

of the same problem (2.10) replacing N by N −2 respectively, as well as their smoothness

in (2.11). So, to simplify the study, in the following we suppose that we have all the

necessary smoothness regularity for the existence of the coefficients uN ∈ H1 (Ω), where

N be an even integer, i.e. N = 2k, k ∈ N.

2.3 Asymptotic Convergence Results

Now we pass to the main outer asymptotic expansion result.

Theorem 20 (Outer Asymptotic Expansion of Higher Order) Under the sufficient

assumptions to get uN ∈ H1 (Ω) , N ∈ N, and for any ω′
1 ⊂⊂ (−1, 1), it holds that, when

ε→ 0,

RN(·; ε) = O
(
εN+1

)
, ∇X2RN(·; ε) = O

(
εN+1

)
, ∂X1RN(·; ε) = O

(
εN
)

(2.12)

in L2 (ω′
1 × ω2) where RN(·; ε) = uε −

N∑
i=0

εiui.
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Proof. First, we notice that for N = 0, the same results of this theorem are shown in [4,

Theorem 3]. For N > 0, we proceed by induction on N and suppose that the estimates

(2.12) take place for any N ′ < N , and we will prove this result for N . Strating from

(2.10) written for k = 2, 4, . . . , N and multiplying each k−identity by εk then summing

up over k = 2, 4, . . . , N , we obtain, for v ∈ H1
0 (Ω)

ε2
∫
Ω

∂X1

(
N−2∑
i=0

εiui

)
∂X1v dx+

∫
Ω

∇X2

(
N∑
i=0

εiui

)
· ∇X2v dx =

∫
Ω

f v dx

Of course the identity (2.5) is added and we integrated over ω1. Then subtracting the

above identity from (2.3), we get

ε2
∫
Ω

∂X1RN−2(x; ε)∂X1v dx+

∫
Ω

∇X2RN(x; ε) · ∇X2v dx = 0. (2.13)

Next, we consider a smooth function ρ = ρ(X1) supported in ω′′
1 ⊂⊂ ω1, ρ = 1 on

ω′
1 = (−a, a), 0 < a < 1 and 0 ≤ ρ ≤ 1. This allowed to take v = RN(·; ε)ρ2(X1) ∈ H1

0 (Ω)

as a test function in (2.13) that leads to

ε2
∫
Ω

ρ2∂X1RN−2(x; ε)∂X1RN(x; ε) dx+

∫
Ω

ρ2∇X2RN(x; ε) · ∇X2RN(x; ε) dx

= −2ε2
∫
Ω

∂X1RN−2(x; ε) (∂X1ρ) ρRN(x; ε) dx.

Thus ∫
Ω

ρ2∇εRN(x; ε) · ∇εRN(x; ε) dx

= −2ε2
∫
Ω

∂X1RN−2(x; ε) (∂X1ρ) ρRN(x; ε) dx− εN+2

∫
Ω

ρ2∂X1uN∂X1RN(x; ε) dx.

where ∇ε =

(
ε∂X1·
∇X2 ·

)
. Next applying the Poincaré and the Cauchy-Schwarz inequalities,

we get

|ρ∇εRN(·; ε)|22,Ω ≤ 2ε2
√
Cω2 |∂X1ρ|∞,ω′′

1
|∂X1RN−2(·; ε)|2,ω′′

1×ω2
|ρ∇X2RN(·; ε)|2,Ω

+εN+1 |∂X1uN |2,Ω ε |ρ∂X1RN(·; ε)|2,Ω , (2.14)

where Cω2
is the Poincaré constant. Then, using Young’s inequality and the convergences

(2.12) on ω′′
1 = (−b, b) , 0 < a < b < 1 for all N ′ < N , we end up with

ε2 |ρ∂X1RN(·; ε)|22,Ω + |ρ∇X2RN(·; ε)|22,Ω ≤ Cε2N+2.
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This completes the proof.

The authors M.Chipot and S.Guesmia improves in [4] the results (2.13) by

|uε − u0|2,ω′
1×ω2

= O(ε2), |∇X2 (uε − u0)|2,ω′
1×ω2

= O(ε2), (2.15)

and

|∂X1 (uε − u0)|2,ω′
1×ω2

= O(ε), (2.16)

under more smoothness assumptions on the data, i.e. the function f .

Then we end up with

Theorem 21 Let N = 2k, k ∈ N\ {0}, we have

|RN (·; ε)|2,ω′
1×ω2

= O(εN+2), |∇X2RN (·; ε)|2,ω′
1×ω2

= O(εN+2), (2.17)

and

|∂X1RN (·; ε)|2,ω′
1×ω2

= O(εN+1), (2.18)

where RN (·; ε) = uε −
N/2∑
i=0

ε2iu2i.

Proof. Using (2.14), we have∫
Ω

ρ2∇εRN (.; ε) · ∇εRN (.; ε) dx = −2ε2
∫
Ω

∂X1RN−2 (.; ε) (∂X1ρ) ρRN (.; ε) dx

−εN+2

∫
Ω

ρ2∂X1uN∂X1RN (.; ε) dx.
(2.19)

We suppose that

ρ2∂X1uN ∈ H1
0 (ω1). (2.20)

Thus, by using Green’s formula it follows that∫
Ω

ρ2∇εRN (.; ε) · ∇εRN (.; ε) dx = −2ε2
∫
Ω

∂X1RN−2 (.; ε) (∂X1ρ) ρRN (.; ε) dx

+εN+2

∫
Ω

∂X1

(
ρ2∂X1uN

)
RN (.; ε) dX1 dX2,

(2.21)
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so ∫
Ω

ρ2∇εRN (x; ε) · ∇εRN (x; ε) dx

= −2ε2
∫
Ω

∂X1RN−2 (x; ε) (∂X1ρ) ρRN (x; ε) dx

+2εN+2

∫
Ω

∂X1uN (∂X1ρ) ρRN (x; ε) dx

+εN+2

∫
Ω

(
∂2X1

uN
)
ρ2RN (x; ε) dx,

(2.22)

Using the Cauchy-Schwarz and Poincaré inequalities, we get

|ρ∇εRN (.; ε)|22,Ω ≤ +2ε2
√
Cω2 |∂X1RN−2 (·; ε)|2,ω′′

1×ω2
|∂X1ρ|∞,ω′′

1
|ρ∇X2RN (·; ε)|2,Ω

+2εN+2
√
Cω2 |∇X1uN |2,Ω |∇X1ρ|∞,ω′′

1
|ρ∇X2RN (·; ε)|2,Ω

+εN+2
√
Cω2

∣∣∂2X1
uN
∣∣
2,Ω

|ρ∇X2RN (·; ε)|2,Ω
(2.23)

Using Young’s inequality and (2.18) reads for N − 2, we get

|ρ∇εRN (.; ε)|2,Ω ≤ CεN+2. (2.24)

This completes the proof of the theorem.

Corollary 22 We can also get

|RN (·; ε)|H1(ω′
1×ω2)

= O(εN+2). (2.25)

Proof. Using the Triangular inequality, we have

|∂X1RN (·; ε)|2,ω′
1×ω2

≤ |∂X1RN+2 (·; ε)|2,ω′
1×ω2

+ εN+2 |∂X1uN+2|2,ω′
1×ω2

. (2.26)

Using (2.18) in the above inequality, we obtain

|∂X1RN (·; ε)|2,ω′
1×ω2

≤ CεN+2, (2.27)

since uN+1 = 0. Then, from (2.17), we get

|RN (·; ε)|2,ω′
1×ω2

≤ CεN+2.

This completes the proof of the corollary.
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Chapter 3

Composite Asymptotic Expansion

In this chapter, we will construct a composite asymptotic expansion on the whole domain.

3.1 Formal Correctors and Properties

For the construction of the correctors to each coefficient of the outer asymptotic expansion

uN , N ∈ N, given in Chapter 2, we denote by S+
l , S

−
l the half-cylinders

S+
l = (l,+∞)× ω2,

S−
l = (−∞, l)× ω2,

where l ∈ R. Then, we define the following functions

ρ[1](x) =

{
1− x on [0, 1]
0 on (1,+∞)

, (3.1)

ρ[−1](x) =

{
0 on (−∞,−1)
1 + x on [−1, 0]

, (3.2)

ρ̆[1](x) =


0 on (−∞, 0)
x on [0, 1]
1 on (1,+∞)

, (3.3)

ρ̆[−1](x) =


1 on (−∞,−1)
−x on [−1, 0]
0 on (0,+∞)

. (3.4)
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For the first boundary layer, i.e. near x1 = 1, we introduce u[1]N as the solution, for

ε > 0, N ∈ N, to
u
[1]
N ∈ H1

0 (S
+
0 ),∫

S+
0

∇u[1]N · ∇v dx =

∫
S+
0

∇
{
ρ[1](X1)uN(1−X1, X2)

}
· ∇v dx ∀v ∈ H1

0 (S
+
0 ).

(3.5)

The existence and the uniqueness of u[1]N , N ∈ N, follow from the Lax-Milgram theorem.

Then we set

w
[1]
N (X1, X2) = u

[1]
N (X1, X2)− ρ[1](X1)uN(1−X1, X2), a.e.x ∈ S+

0 , (3.6)

and denote by θ[ε,1]N the function defined as

θ
[ε,1]
N (X1, X2) = w

[1]
N (

1−X1

ε
,X2) a.e.x ∈ Ω. (3.7)

Then, for ε > 0 and N ∈ N, we can consider w[1]
N as the weak solution to

∆w
[1]
N = 0 in S+

0 ,

w
[1]
N = −uN(1, X2) on {0} × ω2,

w
[1]
N = 0 on (0,+∞)× ∂ω2.

(3.8)

In other part, for the second boundary layer, i.e. near x1 = −1, we introduce also

u
[−1]
N as the solution, for ε > 0, N ∈ N, to

u
[−1]
N ∈ H1

0 (S
−
0 ),∫

S−
0

∇u[−1]
N · ∇v dx =

∫
S−
0

∇
{
ρ[−1](X1)uN(−1−X1, X2)

}
· ∇v dx ∀v ∈ H1

0 (S
−
0 ),

(3.9)

The existence and the uniqueness of u[−1]
N , N ∈ N, follow from the Lax-Milgram theorem.

Then we set

w
[−1]
N (X1, X2) = u

[−1]
N (X1, X2)− ρ[−1](X1)uN(−1−X1, X2) a.e.x ∈ S−

0 , (3.10)

and denote by θ[ε,−1]
N the function defined as

θ
[ε,−1]
N (X1, X2) = w

[−1]
N (

−1−X1

ε
,X2) a.e.x ∈ Ω. (3.11)
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Then, for ε > 0 and N ∈ N, w[−1]
N is the weak solution to

∆w
[−1]
N = 0 in S−

0 ,

w
[−1]
N = −uN(−1, X2) on {0} × ω2,

w
[−1]
N = 0 on (−∞, 0)× ∂ω2.

(3.12)

Notation 23 We denote

• For v ∈ V+ = {v ∈ H1(Ω+) | v = 0 on ∂Ω+\ {0} × ω2} , Ω+ = (0, 1)× ω2

v̂(X1, X2) =

{
v(X1, X2), X1 ≥ 0, X2 ∈ ω2,

v(−X1, X2) X1 < 0, X2 ∈ ω2.
(3.13)

• For v ∈ V− = {v ∈ H1(Ω−) | v = 0 on ∂Ω−\ {0} × ω2} , Ω− = (−1, 0)× ω2

ṽ(X1, X2) =

{
v(−X1, X2), X1 ≥ 0, X2 ∈ ω2,

v(X1, X2) X1 < 0, X2 ∈ ω2.
(3.14)

In the following, we mention some properties of the above formal boundary layer

functions (or correctors).

Lemme 3 For N ∈ N, the following identities hold

i) For every v ∈ V+∫
Ω+

∇εθ
[ε,1]
N · ∇εv dx = −

∫
Ω−

(
ε2∂X1θ

[ε,1]
N ∂X1 v̂ +∇X2θ

[ε,1]
N · ∇X2 v̂

)
dx (3.15)

ii) For every v ∈ V−∫
Ω−

∇εθ
[ε,−1]
N · ∇εv dx = −

∫
Ω+

(
ε2∂X1θ

[ε,−1]
N ∂X1 ṽ +∇X2θ

[ε,−1]
N · ∇X2 ṽ

)
dx. (3.16)

Proof.

i) For l > 0, we set Ω+
l = (0, l) × ω2. Then first note that for v ∈ V+ we have

v̂ (1− εX1, X2) ∈ H1
0 (Ω

+
2
ε

). Then, if we replace the test function in the weak formu-

lation of (3.8) by v̂(1− εX1, X2), we have∫
Ω+

2
ε

∇w[1]
N (X1, X2) · ∇v̂(1− εX1, X2) dx = 0, (3.17)
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whence∫
Ω+

1
ε

∇w[1]
N · ∇v̂(1− εX1, X2) dx = −

∫
Ω+

2
ε
\Ω+

1
ε

∇w[ε,1]
N · ∇v̂(1− εX1, X2) dx. (3.18)

Using (3.7) in (3.18) and we set that X ′
1 = 1− εX1, we obtain respectively

∫
Ω+

1
ε

∇w[1]
N · ∇v̂(1− εX1, X2) dx

=

∫
Ω+

1
ε

∂X1θ
[ε,1]
N (X ′

1, X2) ∂X1v (X
′
1, X2) dx+

∫
Ω+

1
ε

∇X2θ
[ε,1]
N (X ′

1, X2) · ∇X2v (X
′
1, X2) dx,

(3.19)

and

−
∫

Ω+
2
ε
\Ω+

1
ε

∇w[1]
N ·∇v̂(1−εX1, X2) dx = −

∫
Ω+

2
ε
\Ω+

1
ε

∇θ[ε,1]N (X ′
1, X2)·∇v̂(X ′

1, X2) dx. (3.20)

Making the change of variable X1 → 1 − εX1 in the integrals above (3.19) and

(3.20), we obtain respectively∫
Ω+

1
ε

∇w[1]
N · ∇v̂(1− εX1, X2) dx =

1

ε

∫
Ω+

∇εθ
[ε,1]
N · ∇εv dx (3.21)

and

−
∫

Ω+
2
ε
\Ω+

1
ε

∇w[1]
N · ∇v̂(1− εX1, X2) dx = −1

ε

∫
Ω−

ε2∂X1θ
[ε,1]
N ∂X1 v̂ +∇X2θ

[ε,1]
N · ∇X2 v̂ dx

(3.22)

We compensate (3.21) and (3.22) in (3.18) this completes the proof of assertion i).

ii) For the second identity in the lemma, we set Ω−
l = (l, 0)×ω2 with l < 0. Then first

note that for v ∈ V− we have ṽ(−1 − εX1, X2) ∈ H1
0 (Ω

−
−2
ε

). Then if we replace the

24



test function in the weak formulation of (3.12) by ṽ(−1− εX1, X2), we get∫
Ω−

−2
ε

∇w[−1]
N (X1, X2) · ∇ṽ(−1− εX1, X2) dx = 0, (3.23)

whence∫
Ω−

−1
ε

∇w[−1]
N ·∇ṽ(−1−εX1, X2) dx = −

∫
Ω−

−2
ε

\Ω−
−1
ε

∇w[−1]
N ·∇ṽ(−1−εX1, X2) dx. (3.24)

Using (3.11) in (3.24) and setting that X ′
1 = −1− εX1, we get respectively

∫
Ω−

−1
ε

∇w[−1]
N ·∇ṽ(−1− εX1, X2) dx

=

∫
Ω−

−1
ε

∂X1θ
[ε,−1]
N (X ′

1, X2) ∂X1v (X
′
1, X2) dx

+

∫
Ω−

−1
ε

∇X2θ
[ε,−1]
N (X ′

1, X2) · ∇X2v (X
′
1, X2) dx,

(3.25)

and ∫
Ω−

−2
ε

\Ω−
−1
ε

∇w[−1]
N ·∇ṽ(X ′

1, X2) dx =

∫
Ω−

−2
ε

\Ω−
−1
ε

∇θ[ε,−1]
N (X ′

1, X2)·∇ṽ(X ′
1, X2) dx. (3.26)

Making the change of variable X1 → −1 − εX1 in (3.25) and (3.26), we have

respectively∫
Ω−

−1
ε

∇w[−1]
N · ∇ṽ(−1− εX1, X2) dx =

1

ε

∫
Ω−

∇εθ
[ε,−1]
N · ∇εv dx, (3.27)

and ∫
Ω−

−2
ε

\Ω−
−1
ε

∇w[−1]
N · ∇ṽ(X ′

1, X2) dx =
1

ε

∫
Ω+

ε2∂X1θ
[ε,−1]
N ∂X1 ṽ +∇X2θ

[ε,−1]
N · ∇X2 ṽ dx.

(3.28)
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We compensate (3.27) and (3.28) in (3.24).This completes the proof of the lemma.

Lemme 4 There exist positive constants C, α > 0 independent of ε such that for every

N ∈ N, we have ∫
S+

1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx ≤ Ce
−α
ε

∫
S+
0

∣∣∣∇w[1]
N

∣∣∣2 dx (3.29)

and ∫
S−

−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx ≤ Ce
−α
ε

∫
S−
0

∣∣∣∇w[−1]
N

∣∣∣2 dx. (3.30)

Proof. Without loss of generality, we assume that ε < 1.

i) Let γ+ε : [0,+∞) −→ [0, 1] be a continuous function such that

γ+ε (x) =


0 on (0, 1

ε
− 1),

x+ 1− 1
ε

on
[
1
ε
− 1, 1

ε

]
,

1 on (1
ε
,+∞).

Since γ+ε (X1)w
[1]
N ∈ H1

0 (S
+
0 ), we have∫

S+
0

∇w[1]
N · ∇

(
γ+ε (X1)w

[1]
N

)
dx = 0. (3.31)

Thus ∫
S+
0

∇w[1]
N · ∇w[1]

N γ
+
ε (X1) dx = −

∫
S+

1
ε−1

\S+
1
ε

∂X1w
[1]
N ∂X1γ

+
ε (X1)w

[1]
N dx

Then, we have

∫
S+

1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx ≤
1/ε∫
0

∫
ω2

∣∣∣∇w[1]
N

∣∣∣2 γ+ε (X1) dx+

∫
S+

1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx ≤
∫

S+
1
ε−1

\S+
1
ε

∣∣∣∂X1w
[1]
N

∣∣∣ ∣∣∣w[1]
N

∣∣∣ dx.
Young’s inequality∫

S+
1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx ≤ 1

2

∫
S+

1
ε−1

\S+
1
ε

∣∣∣∂X1w
[1]
N

∣∣∣2 dx+
1

2

∫
S+

1
ε−1

\S+
1
ε

∣∣∣w[1]
N

∣∣∣2 dx.
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Applying the Poincaré inequality in X2-direction, we get∫
S+

1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx ≤ 1

2

∫
S+

1
ε−1

\S+
1
ε

∣∣∣∂X1w
[1]
N

∣∣∣2 dx+
Cω2

2

∫
S+

1
ε−1

\S+
1
ε

∣∣∣∇X2w
[1]
N

∣∣∣2 dx

≤ (1 + Cω2)

2

∫
S+

1
ε−1

\S+
1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx

=
(1 + Cω2)

2

∫
S+

1
ε−1

∣∣∣∇w[1]
N

∣∣∣2 dx− (1 + Cω2)

2

∫
S+

1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx

so that ∫
S+

1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx ≤ r

∫
S+

1
ε−1

∣∣∣∇w[1]
N

∣∣∣2 dx,

where r = (1+Cω2)
2+(1+Cω2)

< 1. Iterating [1
ε
] times this formula, we then obtain∫

S+
1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx ≤ r[
1
ε
]

∫
S+

1
ε−[ 1ε ]

∣∣∣∇w[1]
N

∣∣∣2 dx.

Since 1
ε
− 1 < [1

ε
] ≤ 1

ε
, we deduce∫

S+
1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx ≤ r
1
ε
−1

∫
S+

1
ε−[ 1ε ]

∣∣∣∇w[1]
N

∣∣∣2 dx ≤ 1

r
e

1
ε
ln r

∫
S+
0

∣∣∣∇w[1]
N

∣∣∣2 dx

≤ Ce
−α
ε

∫
S+
0

∣∣∣∇w[1]
N

∣∣∣2 dx.

where α = − ln r.

ii) Let γ−ε : (−∞, 0] −→ [0, 1] be a continuous function such that

γ−ε (x) =


1 on (−∞, −1

ε
),

−x+ 1− 1
ε

on
[−1

ε
, −1

ε
+ 1
]
,

0 on (−1
ε
+ 1, 0).

Since γ−ε (X1)w
[−1]
N ∈ H1

0 (S
−
0 ), we have∫

S−
0

∇w[−1]
N · ∇

(
γ−ε (X1)w

[−1]
N

)
dx = 0. (3.32)
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Thus ∫
S−
0

∇w[−1]
N · ∇w[−1]

N γ−ε (X1) dx = −
∫

S−
−1
ε +1

\S−
−1
ε

∂X1w
[−1]
N ∂X1γ

−
ε (X1)w

[−1]
N dx.

So, we have ∫
S−

−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx ≤
∫

S−
−1
ε +1

\S−
−1
ε

∣∣∣∂X1w
[−1]
N

∣∣∣ ∣∣∣w[−1]
N

∣∣∣ dx.
Young’s inequality∫

S−
−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx ≤ 1

2

∫
S−

−1
ε +1

\S−
1
ε

∣∣∣∂X1w
[−1]
N

∣∣∣2 dx+
1

2

∫
S−

−1
ε +1

\S−
−1
ε

∣∣∣w[−1]
N

∣∣∣2 dx.

Applying the Poincaré inequality in X2-direction, we obtain∫
S−

−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx ≤ 1

2

∫
S−

−1
ε +1

\S−
−1
ε

∣∣∣∂X1w
[−1]
N

∣∣∣2 dx+
Cω2

2

∫
S−

−1
ε +1

\S−
−1
ε

∣∣∣∇X2w
[−1]
N

∣∣∣2 dx

≤ (1 + Cω2)

2

∫
S−

−1
ε +1

\S−
−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx

=
(1 + Cω2)

2

∫
S−

−1
ε +1

∣∣∣∇w[−1]
N

∣∣∣2 dx− (1 + Cω2)

2

∫
S−

−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx,

and thus ∫
S−

−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx ≤ r

∫
S−

−1
ε +1

∣∣∣∇w[−1]
N

∣∣∣2 dx,

where r = (1+Cω2)
2+(1+Cω2)

. Iterating [1
ε
] times this formula, we then obtain

∫
S−

−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx ≤ r[
1
ε
]

∫
S−

−1
ε +[ 1ε ]

∣∣∣∇w[−1]
N

∣∣∣2 dx.
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Since 1
ε
− 1 < [1

ε
] ≤ 1

ε
and r < 1, we deduce∫

S−
−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx ≤ r
1
ε
−1

∫
S−

−1
ε +[ 1ε ]

∣∣∣∇w[−1]
N

∣∣∣2 dx

≤ Ce
−α
ε

∫
S−
0

∣∣∣∇w[−1]
N

∣∣∣2 dx.

This completes the proof of the lemma.

Lemme 5 There exist positive constants C, α > 0 independent of ε such that for every

N ∈ N, we have

∫
Ω

|∇εΦN (·; ε)|2 dx ≤ Ce
−α
ε


∫
S+
0

∣∣∣∇w[1]
N

∣∣∣2 dx+

∫
S−
0

∣∣∣∇w[−1]
N

∣∣∣2 dx

 (3.33)

where ΦN (x; ε) = ρ̆[−1](X1)θ
[ε,1]
N (X1, X2) + ρ̆[1](X1)θ

[ε,−1]
N (X1, X2) in Ω.

Proof. From the definition of ΦN(·; ε), we have∫
Ω

|∇εΦN (x; ε)|2 dx =

∫
Ω−

∣∣∣∇ε

{
ρ̃[−1](X1)θ

[ε,1]
N (x)

}∣∣∣2 dx+

∫
Ω+

∣∣∣∇ε

{
ρ̃[1](X1)θ

[ε,−1]
N (x)

}∣∣∣2 dx.

(3.34)

For the first term of the right-hand side of (3.34), we obtain

T1 =

∫
Ω−

∣∣∣∇ε

{
ρ̃[−1](X1)θ

[ε,1]
N (X1, X2)

}∣∣∣2 dx

=

∫
Ω−

(
ε2
[
∂X1

{
ρ̃[−1](X1)θ

[ε,1]
N (X1, X2)

}]2
+
∣∣∣ρ̃[−1](X1)∇X2θ

[ε,1]
N (X1, X2)

∣∣∣2) dx

=

∫
Ω−

(
ε2
[
∂X1 ρ̃[−1](X1)θ

[ε,1]
N + ρ̃[−1](X1)∂X1θ

[ε,1]
N

]2
+
∣∣∣ρ̃[−1](X1)∇X2θ

[ε,1]
N

∣∣∣2) dx.

So

T1 ≤ 2ε2
∫
Ω−

∣∣∂X1 ρ̃[−1](X1)
∣∣2 ∣∣∣θ[ε,1]N

∣∣∣2 dx+ 2ε2
∫
Ω−

∣∣ρ̃[−1](X1)
∣∣2 ∣∣∣∂X1θ

[ε,1]
N

∣∣∣2 dx

+

∫
Ω−

∣∣ρ̃[−1](X1)
∣∣2 ∣∣∣∇X2θ

[ε,1]
N

∣∣∣2 dx.
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Using the Poincaré inequality in the above inequality, we obtain

T1 ≤ 2Cω2

∣∣∣∇X2θ
[ε,1]
N (X1, X2)

∣∣∣2
2,Ω−

+ 2ε2
∣∣∣∂X1θ

[ε,1]
N (X1, X2)

∣∣∣2
2,Ω−

+
∣∣∣∇X2θ

[ε,1]
N (X1, X2)

∣∣∣2
2,Ω−

≤ 2ε2
∣∣∣∂X1θ

[ε,1]
N

∣∣∣2
2,Ω−

+ (2Cω2 + 1)
∣∣∣∇X2θ

[ε,1]
N

∣∣∣2
2,Ω−

≤ 2(Cω2 + 1)

∫
Ω−

(
ε2
∣∣∣∂X1θ

[ε,1]
N

∣∣∣2 + ∣∣∣∇X2θ
[ε,1]
N

∣∣∣2) dx.

Making the change of variable X1 → 1−X1

ε
, we get

T1 ≤ 2(Cω2 + 1)ε

∫
S+

1
ε

∣∣∣∇w[1]
N

∣∣∣2 dx.

Using (3.29), we obtain∫
Ω−

∣∣∣∇ε

{
ρ̃[−1](X1)θ

[ε,1]
N (X1, X2)

}∣∣∣2 dx ≤ Ce
−α
ε

∫
S+
0

∣∣∣∇w[1]
N

∣∣∣2 dx. (3.35)

Now, for the second term of the right-hand side of (3.34), we get

T2 =

∫
Ω+

∣∣∣∇ε

{
ρ̃[1](X1)θ

[ε,−1]
N (X1, X2)

}∣∣∣2 dx

=

∫
Ω+

(
ε2
[
∂X1

{
ρ̃[1](X1)θ

[ε,−1]
N (X1, X2)

}]2
+
∣∣∣ρ̃[1](X1)∇X2θ

[ε,−1]
N (X1, X2)

∣∣∣2) dx

=

∫
Ω+

(
ε2
[
∂X1 ρ̃[1](X1)θ

[ε,−1]
N + ρ̃[1](X1)∂X1θ

[ε,−1]
N

]2
+
∣∣∣ρ̃[1](X1)∇X2θ

[ε,−1]
N

∣∣∣2) dx,

So

T2 ≤ 2ε2
∫
Ω+

∣∣∂X1 ρ̃[1](X1)
∣∣2 ∣∣∣θ[ε,−1]

N

∣∣∣2 dx+ 2ε2
∫
Ω+

∣∣ρ̃[1](X1)
∣∣2 ∣∣∣∂X1θ

[ε,−1]
N

∣∣∣2 dx

+

∫
Ω+

∣∣ρ̃[1](X1)
∣∣2 ∣∣∣∇X2θ

[ε,−1]
N

∣∣∣2 dx.

Using the Poincaré inequality,

T2 ≤ 2Cω2

∣∣∣∇X2θ
[ε,−1]
N (X1, X2)

∣∣∣2
2,Ω+

+ 2ε2
∣∣∣∂X1θ

[ε,−1]
N (X1, X2)

∣∣∣2
2,Ω+

+
∣∣∣∇X2θ

[ε,−1]
N (X1, X2)

∣∣∣2
2,Ω+

≤ 2ε2
∣∣∣∂X1θ

[ε,−1]
N (X1, X2)

∣∣∣2
2,Ω+

+ (2Cω2 + 1)
∣∣∣∇X2θ

[ε,−1]
N (X1, X2)

∣∣∣2
2,Ω+

≤ 2(Cω2 + 1)

∫
Ω+

(
ε2
∣∣∣∂X1θ

[ε,−1]
N

∣∣∣2 + ∣∣∣∇X2θ
[ε,−1]
N

∣∣∣2) dx.
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Making the change of variable X1 → −1−X1

ε
, we obtain

T2 ≤ 2(Cω2 + 1)ε

∫
S−

−1
ε

∣∣∣∇w[−1]
N

∣∣∣2 dx.

Using (3.30), we get∫
Ω+

∣∣∣∇ε

{
ρ̃[1](X1)θ

[ε,−1]
N (X1, X2)

}∣∣∣2 dx ≤ Ce
−α
ε

∫
S−
0

∣∣∣∇w[−1]
N

∣∣∣2 dx. (3.36)

We compensate (3.35) and (3.36) in (3.34). This completes the proof of the lemma.

Remark 24 There exists, for every N ∈ N, a positive constant C > 0 independent of ε

such that ∫
S+
0

∣∣∣∇X2w
[1]
N

∣∣∣2 dx ≤ C, (3.37)

∫
S−
0

∣∣∣∇X2w
[−1]
N

∣∣∣2 dx ≤ C. (3.38)

Indeed, it is clear by (3.8) (resp. (3.12)).

Remark 25 From what we done above, we can easily show that(
uN + θ

[ε,1]
N + θ

[ε,−1]
N − ΦN

)
∈ H1

0 (Ω) , N ∈ N.

Now, we can show the theorem below

Theorem 26 Let uε and uN , N ≥ 0, be the solutions to (2.3) and (2.10). Then, there

exist two constants C, α > 0 independent of ε, such that

3

4
|∇εRWN(·; ε)|22,Ω ≤ Ce

−α
ε

N∑
i=0


∫
S+
0

∣∣∣∇w[1]
i

∣∣∣2 dx+

∫
S−
0

∣∣∣∇w[−1]
i

∣∣∣2 dx

 (3.39)

−εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx,

where RWN(·; ε) = RN(·; ε)−
N/2∑
i=0

ε2i
[
θ
[ε,1]
2i + θ

[ε,−1]
2i − Φ2i(·; ε)

]
∈ H1

0 (Ω).
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Proof. Taking v = RWN(·; ε) ∈ H1
0 (Ω) in (2.13), we get

ε2
∫
Ω

∂X1RN−2(x; ε)∂X1RWN(x; ε) dx+

∫
Ω

∇X2RN(x; ε) · ∇X2RWN(x; ε) dx = 0.

Then∫
Ω

∇εRWN(x; ε) · ∇εRWN(x; ε) dx = −εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx

−
N∑
i=0

εi
∫
Ω

∇εθ
[ε,1]
i · ∇εRWN(x; ε) dx

−
N∑
i=0

εi
∫
Ω

∇εθ
[ε,−1]
i · ∇εRWN(x; ε) dx

+
N∑
i=0

εi
∫
Ω

∇εΦi(x; ε) · ∇εRWN(x; ε) dx,

whence

|∇εRWN(·; ε)|22,Ω = −εN+2

∫
Ω

∂X1uN∂X1RWN(.; ε) dx

−
N∑
i=0

εi


∫
Ω−

∇εθ
[ε,1]
i · ∇εRWN(.; ε) dx+

∫
Ω+

∇εθ
[ε,1]
i · ∇εRWN(.; ε) dx


−

N∑
i=0

εi


∫
Ω−

∇εθ
[ε,−1]
i · ∇εRWN(.; ε) dx+

∫
Ω+

∇εθ
[ε,−1]
i · ∇εRWN(.; ε) dx


+

N∑
i=0

εi
∫
Ω

∇εΦi(.; ε) · ∇εRWN(.; ε) dx.

Using (3.15) and (3.16) -since RWN(·; ε) ∈ V+, RWN(·; ε) ∈ V−, we get
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|∇εRWN(·; ε)|22,Ω = −εN+2

∫
Ω

∂X1uN∂X1RWN(.; ε) dx

−
N∑
i=0

εi
∫
Ω−

∇εθ
[ε,1]
i · ∇εRWN(.; ε) dx+

N∑
i=0

εi
∫
Ω−

∇εθ
[ε,1]
i · ∇ε

̂RWN(.; ε) dx

+
N∑
i=0

εi
∫
Ω+

∇εθ
[ε,−1]
i · ∇ ˜RWN(.; ε) dx−

N∑
i=0

εi
∫
Ω+

∇εθ
[ε,−1]
i · ∇εRWN(.; ε) dx

+
N∑
i=0

εi
∫
Ω

∇εΦi(x; ε) · ∇εRWN(; ε) dx,

Using the Cauchy-Schwarz inequality for the three last lines, we obtain

|∇εRWN(·; ε)|22,Ω ≤ −εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx

+
N∑
i=0

εi
∣∣∣∇εθ

[ε,1]
i

∣∣∣
2,Ω−

|∇εRWN(·; ε)|2,Ω−

+
N∑
i=0

εi
∣∣∣∇εθ

[ε,1]
i

∣∣∣
2,Ω−

∣∣∣∇ε
̂RWN(·; ε)

∣∣∣
2,Ω−

+
N∑
i=0

εi
∣∣∣∇εθ

[ε,−1]
i

∣∣∣
2,Ω+

∣∣∣∇ε
˜RWN(·; ε)

∣∣∣
2,Ω+

+
N∑
i=0

εi
∣∣∣∇εθ

[ε,−1]
i

∣∣∣
2,Ω+

|∇εRWN(·; ε)|2,Ω+

+
N∑
i=0

εi |∇εΦi(·; ε)|2,Ω |∇εRWN(·; ε)|2,Ω .
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Using Young’s inequality, we have

|∇εRWN(·; ε)|22,Ω ≤ −εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx

+
N∑
i=0

(
µ
∣∣∣∇εθ

[ε,1]
i

∣∣∣2
2,Ω−

+
1

4µ
|∇εRWN(·; ε)|22,Ω−

)

+
N∑
i=0

(
µ
∣∣∣∇εθ

[ε,1]
i

∣∣∣2
2,Ω−

+
1

4µ

∣∣∣∇ε
̂RWN(·; ε)

∣∣∣2
2,Ω−

)

+
N∑
i=0

(
µ
∣∣∣∇εθ

[ε,−1]
i

∣∣∣2
2,Ω+

+
1

4µ

∣∣∣∇ε
˜RWN(·; ε)

∣∣∣2
2,Ω+

)

+
N∑
i=0

(
µ
∣∣∣∇εθ

[ε,−1]
i

∣∣∣2
2,Ω+

+
1

4µ
|∇εRWN(·; ε)|22,Ω+

)

+
N∑
i=0

(
µ |∇εΦi(·; ε)|22,Ω +

1

4µ
|∇εRWN(·; ε)|22,Ω

)
.

Choosing µ = 3(N + 1), we get

3

4
|∇εRWN(·; ε)|22,Ω ≤ −εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx

+
N∑
i=0

3(N + 1) |∇εΦi(·; ε)|22,Ω

+
N∑
i=0

6(N + 1)
∣∣∣∇εθ

[ε,1]
i

∣∣∣2
2,Ω−

+
N∑
i=0

6(N + 1)
∣∣∣∇εθ

[ε,−1]
i

∣∣∣2
2,Ω+

.

Using (3.33) and making the change of variable X1 → 1−X1

ε
(resp. X1 → −1−X1

ε
) in the

last line, we obtain
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3

4
|∇εRWN(·; ε)|22,Ω ≤ −εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx

+
N∑
i=0

3(N + 1)Ce
−α
ε


∫
S+

1
ε

∣∣∣∇w[1]
i

∣∣∣2 dx+

∫
S−

−1
ε

∣∣∣∇w[−1]
i

∣∣∣2 dx


+

N∑
i=0

6(N + 1)

∫
S+

1
ε

∣∣∣∇w[1]
i

∣∣∣2 dx

+
N∑
i=0

6(N + 1)

∫
S−

−1
ε

∣∣∣∇w[−1]
i

∣∣∣2 dx.

Using (3.29) and (3.30), we get

3

4
|∇εRWN(·; ε)|22,Ω ≤ −εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx

+
N∑
i=0

3(N + 1)Ce
−α
ε


∫
S+
0

∣∣∣∇w[1]
i

∣∣∣2 dx+

∫
S−
0

∣∣∣∇w[−1]
i

∣∣∣2 dx


+

N∑
i=0

6(N + 1))Ce
−α
ε

∫
S+
0

∣∣∣∇w[1]
i

∣∣∣2 dx

+
N∑
i=0

6(N + 1)Ce
−α
ε

∫
S−
0

∣∣∣∇w[−1]
i

∣∣∣2 dx,

so that

3

4
|∇εRWN(·; ε)|22,Ω ≤ Ce

−α
ε

N∑
i=0


∫
S+
0

∣∣∣∇w[1]
i

∣∣∣2 dx+

∫
S−
0

∣∣∣∇w[−1]
i

∣∣∣2 dx


−εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx.

This completes the proof of the theorem.

Now we turn to our composite asymptotic expansion where we start by the first

composite asymptotic approximation on the whole domain Ω in the following section.
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3.2 First Composite Asymptotic Approximation

As the first convergence results, we have

Theorem 27 Under the sufficient assumptions on the data, we have the following error

estimate:∣∣∣uε − u0 − θ
[ε,1]
0 − θ

[ε,−1]
0

∣∣∣
2,Ω

= O(ε),
∣∣∣∇X2

(
uε − u0 − θ

[ε,1]
0 − θ

[ε,−1]
0

)∣∣∣
2,Ω

= O(ε),

(3.40)

and ∣∣∣∂X1

(
uε − u0 − θ

[ε,1]
0 − θ

[ε,−1]
0

)∣∣∣
2,Ω

= O(1). (3.41)

Proof. Using (3.39) reads for N = 0, we get

3

4
|∇εRW0(·; ε)|22,Ω ≤ Ce

−α
ε


∫
S+
0

∣∣∣∇w[1]
0

∣∣∣2 dx+

∫
S−
0

∣∣∣∇w[−1]
0

∣∣∣2 dx

−ε2
∫
Ω

∂X1u0∂X1RW0(x; ε) dx.

Using (3.37) and (3.38), we obtain
3

4
|∇εRW0(·; ε)|22,Ω ≤ Ce

−α
ε − ε2

∫
Ω

∂X1u0∂X1RW0(x; ε) dx,

since RW0(·; ε) ∈ H1
0 (Ω). Using the Cauchy-Schwarz and Poincaré inequalities, we get

3

4
|∇εRW0(·; ε)|22,Ω ≤ Ce

−α
ε + ε2 |∂X1u0|2,Ω |∂X1RW0(·; ε)|2,Ω .

Young’s inequality
1

2
|∇εRW0(·; ε)|22,Ω ≤ Ce

−α
ε + ε2 |∂X1u0|

2
2,Ω ,

so that

|∇εRW0(·; ε)|22,Ω ≤ Ce
−α
ε + Cε2.

Using the Triangular inequality, (3.33), (3.37) and (3.38), we obtain∣∣∣uε − u0 − θ
[ε,1]
0 − θ

[ε,−1]
0

∣∣∣
2,Ω
,
∣∣∣∇X2

(
uε − u0 − θ

[ε,1]
0 − θ

[ε,−1]
0

)∣∣∣
2,Ω

≤ Cε,

and ∣∣∣∂X1

(
uε − u0 − θ

[ε,1]
0 − θ

[ε,−1]
0

)∣∣∣
2,Ω

≤ C.

This completes the proof.

We can improve the rate of convergence as follow
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Theorem 28 The solution u0 to (2.5) is a strong limit of the sequence uε−
[
θ
[ε,1]
0 + θ

[ε,−1]
0

]
in H1(Ω) and the following error estimate is valid:∣∣∣uε − u0 − θ

[ε,1]
0 + θ

[ε,−1]
0

∣∣∣
2,Ω

= o (ε) ,
∣∣∣∇X2

(
uε − u0 − θ

[ε,1]
0 + θ

[ε,−1]
0

)∣∣∣
2,Ω

= o (ε) ,

(3.42)

and ∣∣∣∂X1

(
uε − u0 − θ

[ε,1]
0 + θ

[ε,−1]
0

)∣∣∣
2,Ω

= o (1) , (3.43)

Proof. Firstly, the estimates (3.40) and (3.41) are valuable. Then, we can extract a

weakly convergent subsequence of ∂X1(uε − u0 − θ
[ε,1]
0 + θ

[ε,−1]
0 + Φ0(·; ε)) in L2(Ω), since

the boundedness of
∣∣∣∂X1(uε − u0 − θ

[ε,1]
0 + θ

[ε,−1]
0 + Φ0(·; ε))

∣∣∣
2,Ω

, and according to (3.40),

it follows that the whole sequence converges weakly to zero, i.e.

∂X1(uε − u0 − θ
[ε,1]
0 + θ

[ε,−1]
0 + Φ0(·; ε))⇀ 0, in L2(Ω). (3.44)

Going back to (3.39),

3

4
|∇εRW0(·; ε)|22,Ω ≤ Ce

−α
ε


∫
S+
0

∣∣∣∇w[1]
0

∣∣∣2 dx+

∫
S−
0

∣∣∣∇w[−1]
0

∣∣∣2 dx


−ε2

∫
Ω

∂X1u0∂X1RW0(x; ε) dx.

(3.45)

Applying the weak convergence (3.44), we get

|∂X1RW0(·; ε)|2,Ω = o (1) , |∇X2RW0(·; ε)|2,Ω = o (ε) . (3.46)

Using the Poincaré inequality in the X2-direction, with the help of the estimates (3.46)

we complete the proof of the theorem.

We can also improve the rate of convergence again if we assume more smoothness

assumption on the data as in the following theorem.

Theorem 29 We have, as ε→ 0∣∣∣uε − u0 − θ
[ε,1]
0 + θ

[ε,−1]
0

∣∣∣
2,Ω

= O
(
ε2
)
,
∣∣∣∇X2

(
uε − u0 − θ

[ε,1]
0 + θ

[ε,−1]
0

)∣∣∣
2,Ω

= O
(
ε2
)
,

(3.47)
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and ∣∣∣∂X1

(
uε − u0 − θ

[ε,1]
0 + θ

[ε,−1]
0

)∣∣∣
2,Ω

= O (ε) , (3.48)

Proof. Integrating by part the last integral of (3.45), we get

3

4
|∇εRW0(·; ε)|22,Ω ≤ Ce

−α
ε + ε2

∫
Ω

∂X1 (∂X1u0)RW0(x; ε) dx,

since RW0(·; ε) ∈ H1
0 (Ω). Then

3

4
|∇εRW0(·; ε)|22,Ω ≤ Ce

−α
ε + ε2

∫
Ω

∂2X1
u0RW0(x; ε) dx.

Using the Cauchy-Schawrz, Poincaré and Young’s inequalities, we obtain

1

2
|∇εRW0(·; ε)|22,Ω ≤ Ce

−α
ε + 2ε2

∣∣∂2X1
u0
∣∣2
2,Ω
.

This completes the proof.

In the following we will show the convergence results for the higher order composite

asymptotic expansion.

3.3 Composite Asymptotic Expansion of Higher
Order

We have the following convergence results

Theorem 30 Under the sufficient assumption on the data, the solution u0 to (2.5) is a

strong limit of the sequence uε−
N∑
i=1

εiui−
N∑
i=0

εi
[
θ
[ε,1]
i + θ

[ε,−1]
i

]
in H1(Ω) and the following

error estimate is valid:∣∣∣∣∣uε −
N∑
i=0

εi
[
ui + θ

[ε,1]
i + θ

[ε,−1]
i

]∣∣∣∣∣
2,Ω

,

∣∣∣∣∣∇X2

(
uε −

N∑
i=0

εi
[
ui + θ

[ε,1]
i + θ

[ε,−1]
i

])∣∣∣∣∣
2,Ω

= O
(
εN+1

)
,

(3.49)

and ∣∣∣∣∣∂X1

(
uε −

N∑
i=0

εi
[
ui + θ

[ε,1]
i + θ

[ε,−1]
i

])∣∣∣∣∣
2,Ω

= O
(
εN
)
, (3.50)

where u2i, i = 1, 2, . . . , N/2, is the solution to (2.10).
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Proof. We have

3

4
|∇εRWN(·; ε)|22,Ω ≤ Ce

−α
ε

N∑
i=0


∫
S+
0

∣∣∣∇w[1]
i

∣∣∣2 dx+

∫
S−
0

∣∣∣∇w[−1]
i

∣∣∣2 dx


−εN+2

∫
Ω

∂X1uN∂X1RWN(x; ε) dx,

since RWN(·; ε) ∈ H1
0 (Ω). Using (3.37), (3.38), Cauchy-Schwarz and Poincaré inequalities,

we get
3

4
|∇εRWN(·; ε)|22,Ω ≤ Ce

−α
ε + εN+1 |∂X1uN |2,Ω ε |∂X1RWN(·; ε)|2,Ω .

Young’s inequality

1

2
|∇εRWN(·; ε)|22,Ω ≤ Ce

−α
ε + ε2N+2 |∂X1uN |

2
2,Ω ,

so that

|∇εRWN(·; ε)|22,Ω ≤ Ce
−α
ε + Cε2N+2.

Using the Triangular inequality, (3.33), (3.37) and (3.38), we obtain∣∣∣∣∣uε −
N∑
i=0

εi
[
ui + θ

[ε,1]
i + θ

[ε,−1]
i

]∣∣∣∣∣
2,Ω

,

∣∣∣∣∣∇X2

(
uε −

N∑
i=0

εi
[
ui + θ

[ε,1]
i + θ

[ε,−1]
i

])∣∣∣∣∣
2,Ω

≤ CεN+1,

and ∣∣∣∣∣∂X1

(
uε −

N∑
i=0

εi
[
ui + θ

[ε,1]
i + θ

[ε,−1]
i

])∣∣∣∣∣
2,Ω

≤ CεN .

since e−α
ε = O(ε2N+2). This completes the proof.
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Conclusion

From this study, we see that;

we can improve the convergence results by the higher order composite asymptotic

expansion in some particular case, for instance where we have more smoothness data.
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الملخص.
بالنسبة ، يتقارب لا uε الحل منتظمة، الغير المتباينة الاضطرابات ذات الحديةّ القيم مسائل ية نظر في

للحل مركبة مقاربة تقريبات نشكل العمل هذا في .u0 نحو الميدان، كامل على H1 الفضاء لنظيم
الميدان. كامل على التقّارب على للحصول يكلي دير بشروط مرفقة اهليجية خطية لمسألة الضعيف

. المفتاحية الكلمات
معدل المركبة، و المنتظمة المقاربة النشور خطية، مسائل اهليجي، المتباينة، الاضطرابات متباين،

المصححات. التقّارب،
Abstract. In the theory of anisotropic singular perturbation boundary

value problems, the solution uε does not converge, in the H1 -norm on
the whole domain, towards some u0. In this work, we construct a
composite asymptotic approximations for the weak solution of a linear
elliptic problem with Dirichlet bouandary conditions to get the
asymptotic convergence on the whole domain.
KeyWords. Anisotropic, singular perturbations, elliptic, linear
problems, regular and composite asymptotic expansions, rate of
convergence, correctors.


