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Abstract— Fractional order PIλDμ controllers are the most 

common fractional order controllers used in practice. The 

proposed method is useful in designing fractional order PID 

controllers for a Doubly Fed Induction Machine (DFIM). Our 

objective is to develop robust controller that ensure good 

robustness stability and performances. Fractional order PID 

parameters are obtained by minimization a coast function 

(Standard H∞ problem) with MIN-MAX algorithm. Finally, 

numerical results are given to show the effectiveness of the 

fractional order PIλDμ controllers over their H∞ (LMI’s) 

method.  

    Key-Words— Fractional PIλDμ, DFIM , MIN-MAX algorithm, 

H∞ method. 

 

I. INTRODUCTION 

oday, wind energy has become an interesting option for 

energy production in addition to other renewable energy 

sources. While the majority of wind turbines are fixed speed, 

the number of variable speed wind turbines is increasing [1]. 

The DFIM offers excellent performances with robust control 

and it is commonly used in the wind industry turbine [2], [3]. 

There are many reasons for using the doubly fed induction 

machine for variable speed wind turbines, such as reduced 

efforts on mechanical parts, noise reduction and the 

possibility of controlling active and reactive power [4].  

The variation of electrical and mechanical parameters of 

the DFIM, degrade the performance of control and may lead, 

in some cases to unstable operating modes. Conventional 

methods of control (vector control, direct torque control) 

have many disadvantages for control such as: sensitivity to 

parametric variations, for example the variation of rotor 

resistance, leading to a loss of decoupling; the variation of 

the switching frequency causes audible noise and the 

oscillations of torque and flux around hysteresis bands. 

Therefore, we have to deal with model parameters 

uncertainties, disturbances and noise measurement to ensure 

control performances. 

The proposed method is a PID controller structure of 

fractional order. This controller is simple to implement, 

robust against parameters uncertainties, disturbances and 

minimizes the effect of measurement noise. The method 

represents the application of robust control of a non-integer 

order “C.R.O.N.E” on a system described by a mathematical 

model [14]. The model involves unstructured multiplicative 

uncertainty to demonstrate the ability of the robustness in 

performance and stability of the DFIM in the presence of 

various phenomena and disturbing noises. The aim here is to 

achieve by the proposed method, results better than those 

obtained by the robust controller 
H (LMI’s). 

This paper is organized as follows: In section II a 

synthesis of the fractional controller is presented. The 

section III describes the formulation of the Optimization 

Problem. The model of the DFIM and space state 

representation is given in sections IV. Simulation results and 

discussion are provided in section V. Finally this work is 

concluded in the last section. 

II. SYNTHESIS OF THE FRACTIONAL CONTROLLER  

The transfer matrix of the controller proposed in this study 

is based on the use of fractal order in the power of the 

Laplace operator. The powers of the integral and derivative 

actions are defined by [5]. This represents the transformation 

integro-derivative fractal that is defined by the two 

mathematicians: Grûnwald–Letnikov (GL) and Riemann–

Liouville (RL) [6], [7]: 

 

According to (GL): 

 

)()1(lim)(
/)(

0

jhte
j

hteD
hat

a

j

h
ta 








 







 


                  (1)    

 

According to (RL): 
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Where, (.)  is the Euler gamma function. By convention, 

the Laplace transform describing the operation integro-

differential in the sense of RL is set for the initial condition: 

0t  and  ( 10   ) [6], [7]. 

 

)())(( sFtfDL s

ta

                                                      (3) 

 

The most common form of a fractional order PID 

controller is the DPI  controller, involving an integrator 

of order  and a differentiator of order  , where   and 

T 
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 can be any real numbers. The transfer function of such a 

controller has the following form [8]: 

 
 ssKssKsKsK dip )()()()(                                 (4) 

 

From the above definitions, the synthesis method 

proposed in this paper uses the formalism of the particular 

transfer matrix of the controller as follows: 

 

     xsKxsKKKxsK ,,:, 4321                                       (5) 

 

With: 
1K : Weighted level gain, )0(1

2

  GK mm :  

decoupling matrix system. Its plays an important role in the 

transfer of fractional controller. It decouples the one hand, 

the outputs of the closed loop system steady. On the other 

hand, it reduces the sensitivity of the closed loop system to 

disturbance of model parameters.  
mmCxsK ),(3

: Fractional integral action which represents 

by the following structure: 
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  mmCxsK ,4
 : Fractional derivative action which is 

represented by the following structure: 
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III. FORMULATION OF THE OPTIMIZATION PROBLEM 

Consider the Multi-Input Multi-Output (MIMO) feedback 

control system as in Fig. 1, in which )(sG  is the nominal 

plant, )(s  is represented a multiplicative uncertainty. It is 

assumed that system )(s is stable with its maximum 

singular value bounded. As in (6) 

 

     maxmin

1

3maxmax ,)()(    jWj     (6) 

 

 
 Fig. 1: A feedback control system with multiplicative 

uncertainty. 

 

Where, )(sS is the sensitivity function, which denotes the 

transfer function from set point 
refy  to control error e , or 

from disturbance d to e and   noise. The following sets of 

characteristics are possible: 

1. We want to achieve good disturbance rejection from 

external signals at low-frequency region. This can 

be achieved by making the sensitivity 

  1
),()()(



  xsKsGIsS mm
 as small as 

0 . 

2. Make the closed loop transfer function small at high 

frequencies limit excitation by noise. This can be 

achieved by making )()( sSIsT mm  
 as small 

as  . 

3. Guard against instability from parameter variations. 

This is achieved by minimizing )()( sSsK . 

The user-defined performance is specified as the limit of 

frequency-weight 
H -norm: 

 

1)()(1 sSsW                                                                   (7) 

 

Where, )(1 sW is a frequency dependent weighting 

function, which penalizes the control error  e . From the 

Small Gain Theorem [9], the closed-loop system will be 

robustly stable under the uncertainties bounded if the 

following condition is satisfied: 

 

1)()(3 sTsW                                                                  (8) 

 

Consider the shape of the feedback as in Fig. 2. 

 

 
Fig. 2: Block diagram of the increased system. 

 

The minimization problem is formulated as the standard 

H -problem (Mixed Sensitivity), as in: 
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The desirable robust PID  controller )(sK  should 

maximize    for best performance while satisfies: 

( 1
clT ) for robustness. To represent different controller 

specifications in a unified framework, the model )(sG is 

augmented into a two-port generalized plant )(sP which 

includes )(sG and weighting functions )(1 sW and )(3 sW : 
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Transfer function matrix 
clT , is now represented by the 

lower Linear Fractional Transformation (LFT) [8]: 

 

  )()()(

)()()())(),((

21

1

22

1211

sPsKsPI

sKsPsPsKsPFT lcl





          (11) 

 

Where 
sk is the set of all internally stabilizing controllers 

fractional order PID controller with the introduction of the 

weights. The object is to find a stabilizing controller, 

)(sK such that: 

 

   

   
1min

3

1



 sTsW

sSsW

skk


                                                   (12) 

 

 The following robustness cost function as in (12) can be 

minimized by using a MIN-MAX optimization algorithm. 

The MIN-MAX optimization problem consists of 

simultaneously optimizing several objective functions. 

Consider, without loss of generality, the minimization of 

the n components 
kf , ),...,1( nk  of a vector function 

)(xF of a vector variable x  in a search space m , with 

[13]. 
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Such that:  
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Where; x , b , 
eqb , 

jx  and jx  are vectors, A  and 
eqA  

are matrices,  and )(xC , )(xCeq
, and )(xF are functions 

that return. 

IV. MODELING AND STATE SPACE OF THE DFIM  

A. DFIM Modeling 

The dynamics of the system to be controlled is described 

by the following differential equations (are given in (d, q) 

frame orientation) [10], [11]: 

The stator voltage differential equations: 
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The rotor voltage differential equations: 
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                                           (17) 

The stator flux vectors equations: 
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The rotor flux vectors equations: 
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The electromagnetic couple flux equation: 
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s
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The electromagnetic couple mechanic equation: 
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B. State space of DFIM  

For the MIMO plant of the doubly fed asynchronous 

machine (DFIM), we consider: 

 Trs VIu   input vector,  Tqsdss III  is considered 

as disturbance input vector since they depend on the load. 

However, in the field synchronous reference frame, 
dsI  and 

qsI  are constant in steady state. So, their derivatives are 

considered equal to zero.   Tqrdrr VVV   the set-control 

vector which given by the robust fractional order controller. 

 Tqrdrsx   the output vector and the state-variable 

vector of the doubly fed asynchronous machine. 
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 Using the numerical values which are summarized as in 

table1, the state space of the nominal model is determined by 

applying the “linmod” function of the Matlab software on 

the Simulink system given from the equations (15) to (20). 

Yields also the following transfer functions matrix: 

 

DBAsICsG  1)()(                                               (21) 

C. Uncertainty modeling 

And the following unstructured output multiplicative 

uncertain model is modeled by: 

 

)())(()(
~
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The model-plant mismatch is represented as multiplicative 

uncertainty )(s  .  
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V. SIMULATION RESULTS AND DISCUSSION 

In the synthesis of fractional controller, the system can be 

increased by the weights )(1 sW   and )(3 sW  as shown as in 

Fig. 2. These weights specify, respectively, the shape of 

)(sS  and )(sT  [11]. They are chosen such that: the 

specification of the robustness and stability are given by the 

following transfer matrix: 
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In order to achieve the desired performance of rejection of 

measurement noise, the modulus of the complementary 

sensitivity function must remain below the modulus of 

)(1

3 sW   for the entire frequency range. The specification of 

robust performance is given by the following transfer matrix: 
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Hence, the robust performance is achieved if the modulus 

of the sensitivity function must remain directly below the 

modulus of )(1

1 sW   for the entire frequency range. 

From these conditions we can define the optimization 

problem as in (12) with considered constrain, Such that:  
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The structure of the proposed controller is given by the 

following transfer matrix: 
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The vector of parameters to be determined is given by: 
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The Optimization problem in equation as in (12) solved 

using the MIN-MAX algorithm. We obtain:  
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Frequency responses (sensitivity functions )(sS ) of the 

fractional order PID controller are compared with 

H (LMI’s) controller as shown in Fig.4. As in Fig.4, the 

proposed method gives a much better margin robustness 

performances than the other methods (satisfy required 

performance specifications). 
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Fig.4: Direct sensitivity and performance robustness 

condition. 

 

The obtained curve of the direct sensitivity function in low 

frequencies, interpreted in the temporary domain that the 

feedback system reject quickly disturbances input. It also 

provides good tracking dynamics. These results cannot be 

realized by 
H (LMI’s) control.   

Frequency responses (complementary sensitivity 

functions )(sT ) of the fractional order PID controller are 

compared with 
H (LMI’s) controller as shown in Fig.5. As 

seen from Fig.5, the proposed method gives a much better 

margin robustness performances than the other methods 

(satisfy robust stability).  
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Fig. 5: Complementary sensitivity and stability robustness 

condition. 

 

In order to confirm results found in the frequency domain. 

To exanimate the dynamics of tracking, an impulse input 

step 1)( tyref
. Fig. 6 gives the simulation result.  
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Fig.6: Dynamics of tracking input set-point. 

 

The simulation result confirms a good tracking of unit step 

reference by using fractional order PID. 

To demonstrate the robustness of our approach, an impulse 

input disturbance with magnitude 45.0)( td is given at 

time st 1500 .  
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Fig.7: Dynamics of disturbances rejection. 

 

Fig. 7 gives the simulation result. The simulation result 

demonstrates the effectiveness of our approach to reject 

quickly disturbance.  This result, confirms the satisfaction of 

the robustness condition of stability and performances 

presented in Fig.4 and Fig.5. 

 

To demonstrate the robustness of our approach for the 

minimization of the measurement noise effect, the variance 

of the applied noise is equal to 3.0 ; is given at time 

st 1000 .  
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Fig.8: Dynamics of noise effect minimization 

 

The simulation results in Fig.8 indicate a better 

performance using the proposed method (offer the best 

minimization of the noise measurements effect). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Table1: Parameters of the DFIM 

VI. CONCLUSION 

In this paper, a robust control method based on fractal 

structure has been proposed.  The method is validated on an 

electrical machine described by a linear model with 

unstructured parameters uncertainties of multiplicative type. 

The parameters of the controller are obtained by solving 

unsmooth optimization problem subject to constraints. The 

advantage of the method is that provides a robust controller 

structure simple for implementation with calculus time less 

than that obtained by  
H (LMI’s) controller. It also ensure a 

good tracking dynamics,   best disturbance rejection and less 

sensible to measurement noises. The obtained results confirm 

the robustness of this method compared to the method 

H (LMI’s). 
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Parameters of the  DFIM Value 

Stator Resistance Rs= 5Ω 

Rotor Resistance Rr= 1.01Ω  

Stator Inductance Ls=0.341 H  

Rotor Inductance Lr=0.341 H  

Mutual Inductance M=0.135 H  

Inertia moment J=0.054×1000 m2  
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