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Abstract—In this paper, we present an Auto-Regressive (AR) 

spectral estimator using a special kind of recurrent neural 
network proposed by Zhang called Continuous-time Zhang 
Neural Network (CZNN) to solve a system of linear equations. 
This neural network is characterized by an implicit dynamics 
and designed by defining a vector-valued error function instead 
of the usual scalar-valued norm-based error function used in 
the Gradient based Neural Networks (GNN). The output of the 
CZNN is the estimated AR coefficients so that the spectrum of 
the signal can be directly obtained in terms of the AR 
coefficients. For comparative purposes, the GNN model is also 
employed for AR parameters estimation.   
    Key-Words— Spectral Estimation, AR model, Gradient-
based neural network, Zhang neural network. 

I. INTRODUCTION 

HE main objective of spectrum estimation is the 
determination of the power spectrum density from a 

finite set of measurements of a random process. Spectral 
estimation has been widely used in many practical 
applications such as radar, speech and communication, to 
mention a few [1].  Over the last century, a great of effort 
has been made to develop new techniques for high 
performance spectral estimation. Broadly, the developed 
techniques can be classified in two categories: 
nonparametric and parametric methods. The non parametric 
spectral estimation approaches are relatively simple, and 
easy to compute via the FFT algorithm. However, these 
methods require the availability of long data records in order 
to yield the necessary frequency resolution.  

For the parametric approaches, we first design a model for 
the process of interest which is described by a small number 
of parameters. Based on this model, the spectral density 
estimate of the process can be obtained by substituting the 
estimated parameters of the model in the expression for the 
spectral density [1].  

The most frequently used models in the literature are the 
autoregressive (AR), the moving average (MA), the 
autoregressive moving average (ARMA), and the sum of 
harmonics (complex sinusoids) embedded in noise. These 
parametric methods have a number of advantages as well as 
disadvantages over non-parametric methods. One of the 
advantages is their high resolution capability especially with 
a small number of data records. Also one of the 
disadvantages is the difficulty of determining a priori the 
order of the model for a given signal. In addition to these 

classical problems, many of the alternative spectral 
estimation methods require intensive matrix computation 
which my not be practical for real-time processing [2-4].  

Since March 2001, a special kind of recurrent neural 
networks called the Zhang neural network (ZNN) has been 
proposed by Zhang and co-workers for solving online time-
varying and/or static problems. Motivating by the fastness 
and robustness of these methods versus the gradient based 
neural networks [5-12]; we propose in this paper to employ 
the Continuous-time Zhang Neural Network (CZNN) for 
AR spectral estimator and compare it with the gradient-
based neural network (GNN).  

The major advantage of neural networks over other 
methods resides in their capability to perform more complex 
calculation in real times due to their parallel-disturbed 
nature. The neural network consists of a large number of 
simple devices; each one computes little more than weighted 
sums. Consequently the complexity of computation can be 
dramatically reduced and the total computation time is 
comparable to the response time of a single processor which 
can be very small [1,13].  The aim of our study is to provide 
an AR parameters estimator utilizing the real time 
characteristics of neural networks. 

The paper is organized as follows: Section II states the 
AR parameters estimation problem. In section III, the 
dynamics of the CZNN and the GNN to solve this problem 
is developed. Computer simulation results for online spectral 
estimation based on the CZNN and the GNN models are 
presented in section IV followed by some concluding 
remarks. 

II. STATEMENT OF THE PROBLEM  

Consider the parameter estimation problem of the noisy 
AR signal system [1,13]: 
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vector; is the regression 

vector of the AR process of the known order ;  

is white Gaussian process with variance . Our objective 
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data points. Generally  is small relative to , so we 

can estimate  using [1]: 

)(ne

i nxa
1

(

 i)

Nx

x

px



(

(

(

),2 

 T





)2

)(

)1

N

px

p



ia

)(nx






















a

a

a



2

1

)

)(nx

 ne )(





p

i
ia

1










Nx

px

x



(

(

(

p ),1

a ,, 2 





)1

)1

)(

N

p

p



S 1





p

i

inxnx ))()(ˆ  (2) 

 nxnxnx ()(ˆ)(  (3) 

we first write (1) as linear equations in matrix and vector 
form [1,27]: 
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then the above linear equations can be written[1,13]: 
xaS   (5) 

The AR coefficient ’s can be estimated by different 

ways, however, solving directly the linear equations instead 

to the computation of the inverse firstly, and then the 

multiplication     is more efficient and accurate.  
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where is the normalized frequency. f

III. NEURAL NETWORK BASED SPECTRAL 

ESTIMATOR  

To apply the neural network, the parameters estimation 
problem must be transformed to a minimization problem 
suitable for dynamic neural networks processing [14]. In this 
method the AR coefficients estimation problem is solved by 
constructing a network that has an energy function which is 
the same as the function to be minimised.  

In the following, two kinds of recurrent neural networks 
for the AR parameters estimation will be presented. The 
former is based on the gradient-descent method in 
optimization to minimize a quadratic cost function [11]. The 
last, which is designed by Zhang et al , consists to minimize 
a vector-valued error function.  

A.  Continuous-time Zhang Neural Network 

Let be the matrix data, the vector 

parameters to be estimated and the available 
signal samples. The CZNN system design is based on the set 
of linear equations

ppN S pa
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0)(  xtSa . 

Commonly, the number of signal samples is larger than 
the model order. In the following, we suppose that . 

As we can see, the system equation is over determined; 
therefore the equation can be transformed as [6,15]:  
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where  denotes the transpose of S  TS
We can define now a vector –valued error function 
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and then, we use the negative of the gradient as the descent 
direction: 
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where the parameter  is a positive-definite matrix 
used to scale the convergence rate of the solution and 

denote the activation function-vector. 
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Expanding (9) leads to: 
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To make every entry converges to zero at the same rate 
and at the same time, we take IΓ  with 0 which leads 

to: 

  xSaSaSS  )()( tft TT   (11) 

If we make and , equation (11) becomes: SSW T xSb T
 bWaaW  )()( tft   (12)               

In order to implement the CZNN, Eq. (12) can be written 
as the following explicit dynamics by using derivative and 
self-feedback for its i th neuron’s dynamics-equation [5]: 
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Figure (1) shows the architecture of the CZNN model for 
solving online the system (5) according to the equation (13). 
The circuit realizing the CZNN consists of summers,   

integrators and weighted connections. As we know, 

the complexity of a neural network is defined as the total 
number of multiplications and additions per iteration, it can 

be seen that the CZNN requires  multiplications and 

additions per iteration.   
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Fig. 1.  Architecture of the CZNN model 

B. Gradient-based neural network 

Conventional gradient-based neural networks (GNN) 
have been developed and widely investigated for online 
solution of the linear system [7,8,11,16]. The design 
procedure consists to define the norm-based scalar-valued 
error function  and then exploit the negative of its 

gradient as the descent direction to minimize [11].  
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   denoting the two norm of a vector. The minimum 

point of this cost function is the solution of the above linear 
system . aSx 

To reach a minimum let us take the negative of the 
gradient of the energy function 

 xSaS
a

T 




E

  (15) 

By using a typical continuous-time adaptation rule, 
equation (15) leads to the following differential equation 
(linear GNN): 
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where 0  is a design parameter used to scale the GNN 

convergence rate, and its should be set as large as hardware 
permits. 

We could obtain the general nonlinear GNN model by 
using a general nonlinear activation function  )(f  as 

follows [7]: 

 xSSa(t)Sa TTft  )(  (17) 

Or equivalently:  
 bWaa  )()( tft   (18) 

In the same manner as we have done in the first 
subsection, we could draw the structure of the GNN model 
as in figure (2). This second type of recurrent neural 

networks requires just  multiplications and 

additions per iteration. 
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Fig. 2.  Architecture of the GNN model 

IV. COMPUTER SIMULATIONS 

In this section we present some examples to illustrate the 
accuracy and the fastness of the CZNN for AR coefficients 
estimation. In the first example we consider the AR signal 
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The input process  is white Gaussian process with 

variance . To perform the CZNN for solving the 

parameters estimation problem, we let the number of process 

samples 

)(ne
52 10.4 n

64N and the convergence rate parameter 610 . 

Figure ( ws3) sho  the convergence behavior of the state 
trajectory of the CZNN and GNN models. As we can see, 
starting from a random initial state )0(a , the two networks 

converge to an optimal solution of th stem (5). However, 
the CZNN is faster than the GNN. In figure (4), we can see 

that the CZNN reach an error over 410 in s

e sy

5 . The same 

error is reached in ms5 by the GNN and just after the GNN 
model oscillates. W note here, to avoid the oscillatory 
phenomena, we can reduce the convergence rate parameter 
and the GNN becomes more slowly. In table (1), we 
summarize the computed results obtained by averaging 100 
independent simulations and utilizing different algorithms. 
The Mean Square Error is defined as [13]: 
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remark, the results obtained by the CZNN are As we 
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similar to those obtained by the least square (LS) algorithm 
which is well known as an optimal estimator in presence of 
white Gaussian noise.  
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Fig. 4. Convergence behaviour of the norm error 
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Fig. 3. Convergence behaviour of the state trajectory of the (a) 

TABLE I COMPUTED RESULTS OF ESTIMATED PARAMETERS 

 MSE 

 

CZNN and (b) GNN model 
 

UZING DIFFERENT ALGORITHMS 
 

1a  2a  3a  4a  

True -2.037 2.433 -1.783 0.701 0 
LS -2.020 2.387 -1.729 0.683 0.2924 

Burg -2.007 2.350 -1.676 0.646 0.3222 
Yule -1.774 1.933 -1.280 0.455 0.9985 
GNN -2.010 2.369 -1.701 0.661 0.3175 

CZNN -2.020 2.387 -1.729 0.683 0.2924 

 
 the second example of computer simulations, we desire 

to
In
 estimate the spectrum of a signal. The signal test is a 

multiple sinusoids embedded in white Gaussian noise. The 

local SNR for the k th sine wave is defined as [1]: 
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where is the amplitude of the th sinusoid. 
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usoids. The normalized frequencies 21, ff and 3f  were 

chosen as 0.1, 0.11 and 0.2 Hz respectiv The S  was 
fixed to 15dB for all sinusoids. Also the model order was 
selected as 12 for the two networks. The convergence rate 

parameters were selected to 610 for the CZNN and 10 for 
the GNN. 
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Figure (5) justifies the high resolution capability of the AR 
model. 
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Fig. 5. The estimated s ) CZNN and (b) GNN 

As we can see from figure (6), the GNN model converge 

in

 mo effi

pectrum by the (a
model  

 over S1 to an error of 110 , however, the CZNN converge 

to an error of 1310 in mS5 Thus, we could summarize that 
the CZNN is re cient and effective for online 
spectrum estimation, as compared with the conventional 
GNN. 
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V. CONCLUSION 

Recently have been used as 
co
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