UNIVERSITE KASDI MERBAH OUARGLA

Faculté des hydrocarbures, des énergies renouvelables, des sciences de la terre et l'univers Département de forage et mécanique des chantiers pétroliers Mémoire de fin d'étude En vue de l'obtention du diplôme de Master Option: Forage Présenté Par:

ABDERRAHMANI Zouhair, CHEKKAL Dhaouadi, KORDJANI Hicham

<u>Thème</u>

Caractérisation pétrophysique du champ pétrolier de hassi Messaoud par l'utilisation de la plate forme Techlog

Soutenu Le 15 / 06 / 2019

Devant le jury composé de:

Président: GHARIB Toufik

Rapporteur: FENNAZI Bilal

Examinateur: MECIBAH Ilyes

Univ. Ouargla Univ. Ouargla Univ. Ouargla

2018/2019

Dédicace

Je dédie ce mémoire a :

A mon très cher père et ma très chère mère A mon très cher frère FOUAD A mes très chères sœurs A toutes la famille CHEKKAL A toutes mes chère amies et collègues.

Dhaouadi.....

Je dédié ce travail à mes très chérs parents qui mon soutenue durant toutes mes études et partagé mes moments difficiles A mes chérs fréres et sœurs Toute la famille kordjani Mes chers amis d'enfance Mes amis du groupe master 02 forage

Hichem....

Je voudrais dédier ce modeste travail :

À toute ma famille qui m'ont tant soutenu et encouragé dans toute ma

vie,

Ma petite sœur kamilai.et mes chers fréres À tous mes amis.

À toute personne qui occupe une place dans mon coeur.

Zouhair,....

REMERCIEMENT

Nous tenons à remercier en premier lieu DIEU le tout puissant qui a fait que ce travail soit terminé; En achevant ce modeste travail, nous remercions vivement notre promoteur chargé du suivi notre travail : M.Fennazi bilal

Pour ses encouragements, ses conseils et sa disponibilité. Nous remercions également nos enseignants à l'UKM Nos amis et toutes les personnes qui nous ont aidés de près ou de loin à la réalisation de ce travail

TABLE DES MATIERES

Titre	Page
RESUME	-1
LISTE DES FIGURES	
LISTE DES TABLEAUX	
LISTE D'ABRIVIATION	
INTRODUCTION GENERALE	01
CHAPITRE01 : GENERALITE SUR LE CHAMP HASSI MESSAC	DUD
I.1.Introduction	02
I.2.Situation géographique du champ Hassi Messoud	02
I.3.Cadre géologique	03
I.4. Historique de recherche	05
I.5. Stratigraphie du champ	05
I.5.1. Socle	05
I.5.2. Infracambrien	05
I.5.3. Paléozoïque	05
I.5.4. Cambrien	06
I.5.5. Ordovicien	06
I.5.6 Mésozoïque	07
I.5.6.1 Le Trias	07
I.5.6.2. Le Jurassique	07
I.5.6.3 Le Crétacé	08
I.5.7. Le cénozoïque	08
I.6.Zonation du champ et numérotation des puits	10
I.7. Cadre structural (Tectonique du champ)	10
I.8. Aspect pétrolier	12
I.8.1.Roche mère (origine des hydrocarbures)	12
I.8.2.Roche de couverture	12
I.8.3.Pièges	13
I.8.3.1. Pièges structuraux	13
I.8.3.2. Pièges stratigraphiques	13
I.8.3.3 Pièges mixtes	14

I.9. Conclusion	15			
CHAPITRE II : Les diagraphie, théorie et outil				
II.1. Introduction	16			
II.2. Les paramètre pétrophysiques du réservoir	16			
II.2.1. La porosité	16			
II .2.2. La perméabilité	17			
II. 2.3.Saturation en fluides	19			
II.2.4. Argilosité Vsh (volume d'argile)	19			
II.3. Diagraphie différée	20			
II.3.1.Définition	20			
II.3.2.But de diagraphie	20			
II.3.3. Les moyenne technique d'enregistrement	21			
II 3.4.Classification des diagraphies différé	23			
II.3.5. Les différentes diagraphies enregistrées	24			
II.3.5.1. Diagraphie électrique (résistivité)	24			
II.3.5.1.1. Définition	24			
II.3.5.1.2. Application	24			
II.3.5.2. Digraphies de rayonnement Gamma	24			
II.3.5.2.1. Définition	24			
II.3.5.2.2 Application	25			
II.3.5.3. Digraphies neutron (indice d'hydrogéne966)	26			
II.3.5.3.1. Définition	26			
II.3.5.3.2. Application	27			
II.3.5.4. Diagraphie gamma-gamma (de densité)	27			
II.3.5.4.1. Definition	27			
II.3.5.4.2. APPLICATION	28			
II.3.5.5. Diagraphie acoustique (sonique)	29			
II.3.5.5.1. Définition	29			
II.3.5.5.2. Application	30			
II.3.5.6. Caliper	31			
II.3.5.6.1. Application	31			
II.4.Généralité sur le plate forme Techlog	32			
II.4.1. Définition	32			

II.4.2. Les différentes sections de logiciel Techlog	33
I.4.3. Chargement des données	33
II.4.4. L'objective de plate forme Techlog	35
II.4.5. Amélioration de l'efficacité opérationnelle de Techlog	35
II.4.6. Systems de Techlog	35
II.5. Conclusion	36
CHAPITRE III : RESULTAT ET DESCUSSION	S
III.1. INTRODUCTION	37
III.2. Calcul des paramètres pétrophysiques	37
III.2.1. Volume d'argile(Vsh)	37
III.2.2. Porosité et saturation d'eau	38
III.2.2.1. Estimation de la porosit	38
III.2.3 Saturation d'eau	40
III.2.4. Perméabilité (K)	42
III.3. Présentation des puits d'étude et son paramètre	43
III.3.1.PUITS MD-108	44
III.3.1.1.Fiche technique de puits MD-108	44
III.3.1.2. les diagraphies enregistrées de puits MD-108	45
III.3.1.3 Interprétation des logs diagraphique	46
III.3.2. PUIT OMJ-111	51
III.3.2.1. Fiche technique de puits OMJ-111	51
III.3.2.2. Les diagraphies enregistrées de puits OMJ-111	52
III.3.3. Puits OMM-302-BIS	54
III.3.3.1. Fiche technique de puits OMM-302-BIS	54
III.3.3.2. Les diagraphies enregistrées de puits OMM-302-BIS	55
III.3.4. Puits OMO-633	57
III.3.4.1. Fiche technique de puits OMO-633	57
III.3.4.2. Les diagraphies enregistrées de puits OMO-633	58
III.4.Analyse des résultats de l'interprétation de l'interprétation	60
III.5.Conclusion	62
CONCLUSION GENERALE	63

LISTE DES FIGURES

Figure	Titre de figure					
Figure.01	Situation géographique de la région de Hassi Messoud					
Figure.02	Situation géologique du champ de Hassi Messoud					
Figure.03	Le Contexte géologique de gisement du champ de Hassi Messoud					
Figure.04	Log stratigraphique synthétique de la région de Hassi Messoud	09				
Figure.05	Carte de zonation du champ de HMD [SONATRACH].	10				
Figure.06	les principaux évènements tectoniques affectant la plate -forme saharienne	11				
Figure.07	accumulation des hydrocarbures	12				
Figure.08	les principaux pièges structuraux	13				
Figure.09	pièges stratigraphiques	14				
Figure.10	pièges mixtes	14				
Figure.11	schéma représente l'appareille d'opération des diagraphies	21				
Figure.12	Schéma général d'un matériel de diagraphie	23				
Figure.13	Organigram represente la classification des diagraphies différé	23				
Figure.14	Schémas de principe de la sonde gamma ray	26				
Figure.15	Schémas représente le principe de la sonde neutron					
Figure.16	Schéma de l'outil de densité	29				
Figure.17	Schéma Principe de fonctionnement de la sonde sonique	30				
Figure.18	Schéma représente l'outil de mesure de caliper	32				
Figure.19	Chargement des données par Techlog	34				
Figure.20	données sous forme LAS	34				
Figure.21	fenêtre de calcule Vsh gamma ray	38				
Figure.22	fenêtre de calcule la porosité densité	39				
Figure.23	fenêtre de calcule la porosité sonique	40				
Figure.24	fenêtre de calcule la porosité neutron-densité	40				
Figure.25	fenêtre de calcule la saturation	41				
Figure.26	fenêtre de perméabilité wyllieb rose dans la Techlog	42				
Figure.27	plot de diagraphies enregistrées de puits MD-108	45				
Figure.28	plot de volume d'argile de puits MD-108	46				
Figure.29	plot de porosité de puits MD-108	47				
Figure.30	plot de saturation d'eau de puits MD-108	48				
Figure.31	plot de perméabilité de puits MD-108	49				

Figure.32	Plot des paramètres pétrophysiques de puits MD-108	50
Figure.33	plot de diagraphies enregistrées de puits OMJ-111	52
Figure.34	Plot des paramètres pétrophysiques de puits OMJ-111	53
Figure.35	Les diagraphies enregistrées de puits OMM-302-BIS	55
Figure.36	Plot des paramètres pétrophysiques de puits OMM-302-BIS	56
Figure.37	Les diagraphies enregistrées de puits OMO-633	58
Figure.38	Plot des paramètres pétrophysiques de puits OMO-633	59

LISTE DES TABLEAUX

Tableau	Titre de tableau					
Tableau.01	Les diagraphies enregistrées des puits	43				
Tableau.02	Récapitulation des résultats de l'interprétation puits MD-108	60				
Tableau.03	Récapitulation des résultats de l'interprétation puits OMJ-111	61				
Tableau.04	Récapitulation des résultats de l'interprétation puits OMM- 302	61				
Tableau.05	Récapitulation des résultats de l'interprétation puits OMO-633	62				

LISTE D'ABRIVIATION

Ф:	La porosité.			
Øt:	La porosité totale.			
Ø1:	La porosité primaire.			
Ø2:	La porosité secondaire.			
Q:	Débit du fluide traversant la roche en cm3/s.			
S:	Surface de passage du fluide en cm2.			
μ:	Viscosité du fluide en centpoises (viscosité dynamique			
$\Delta P/\Delta$:	Gradient de pression en bar/cm.			
k:	Perméabilité de l'échantillon exprimée en darcy (d).			
Rt:	Résistivité de la roche dans la zone vierge en ohms.m.			
Rw:	Résistivité de l'eau d'imbibition en ohms.m.			
m :	Facteur de cémentation, varie généralement entre 1,3 et 2,2.			
a:	Facteur qui dépend de la lithologie et varie entre 0,6 et 2.			
F :	Facteur de formation.			
Rxo :	Résistivité de la roche dans la zone lavée.			
Rmf :	Résistivité du filtrat qui remplit les pores de la roche.			
Sxo :	Saturation en filtrat et Sw.			
Shc :	Saturation en hydrocarbures dans la zone vierge.			
Shr :	Saturation en hydrocarbures résiduels dans la zone lavée.			
GRlu :	Gamma ray lu à partir du log.			
GRmin :	Gamma ray en face des bancs propres (sable).			
GRmax :	Gamma ray lu en face des argiles.			
Swir :	Saturation irréductible de l'eau.			
Vsh :	Volume d'argile.			
Фе:	Porosité Effective.			
SW-AR:	Saturation d'eau d'après formule d'archie			
Bvw:	Bulk volume watter.			
ØN-D:	Porosité notrone densité			
ØN-D eff :	Porosité neutrone densité effectife			
Pma :	Densité de matrice			
Pf:	Densité de fluide de filtrat			

Pb:	Densité lue					
Ød:	Porosité a partir log densité					
Δ Tlue :	Valeur de log sonic lue					
$\Delta \mathbf{T} \mathbf{f}$:	Valeur de temps parcouru dans le filtrat de boue					
Δ Tma :	Valeur de temps parcouru dans le matrice					
FDC:	Formation Density Compensated					
LDT:	Litho Density Tool					
CNL:	Compensated Neutron Log					
CBL:	Cement Bond Log					
Co ⁶⁰ :	L'élément de Copalte					
Cs^{137} :	L'élément de sicioum					
API;	American Petroleum Institute					
KTH:	Gamma ray sélective (k : Potassium / TH: Thorium)					
PHIT.S :	Porosité total d'après log sonic compressionel					
PHIT.SS :	Porosité totale d'après log sonic shear					
PHIE :	Porosité effective d'après log sonic compressionel					
ZDEN, ZCOR, ZHOR :	Log densité					
DDP:	Différence de potentiel					
PS:	Polarisation spontané					
DTCO, DTSO:	Log sonic compressionel					
DTSM, DTSQ:	Log sonic shear					
CNC:	Log neutron					
AT10, M2R1:	Shallow résistivity					
AT20/ M2R2, AT30 /M2R	3, AT60/M2R6 : Array résistivité (résistivité moyen).					
AT90/M2R9:	Deep resistivity					

INTRODUCTION GENERALE

Le gisement de Hassid Messaoud est le plus grand gisement d'hydrocarbure en

Algérie et l'un des plus grands du monde en raison de sa richesse et de sa production des huiles légères. Il appartient à la province la plus grande et la plus riche en Algérie appelée province triasique.

L'étendue du champ de Hassi Messaoud implique une variabilité de la production dans ses différentes parties. Ceci est nettement attesté par l'histoire de la production cumulée à ce jour.

Dans notre travail on se base sur les l'interprétation des paramètres petrophysique a l'aide de la plate forme Techlog qui est appropriée par Schlumberger qui permettant de faciliter la tâche de traitement et d'interprétation des paramètres pétrophysiques, il est utilisé par différentes compagnies pétrolieres telles que : Sonatrach, Schlumberger, Baker, Atlas, Halliburton....

Il ya quatre puits d'étude (MD-108, OMJ-111, OMM-302, OMO-633) dans chaque puits on choisit deux drains D5 et D4 qui situé successivement dans le réservoir Cambro-ordovicien et le réservoir Cambrien.

Pour cette présente étude, dont le plan est détaillé de la manière suivante :

- 4 Généralité sur le champ de Hassi Messaoud.
- 🖊 Diagraphie et outil
- **4** Analyse et discussion

CHAPITRE.I

I.1.Introduction :

Le gisement de Hassid Messoud est le plus grand gisement d'hydrocarbure en Algérie et l'un des plus grands du monde en raison de sa richesse et de sa production des huiles légères. Il appartient à la province triasique, la plus grande et la plus riche en Algérie. Il se trouve sur la partie extrême Nord la zone haute El-Biod-Hassi-Messoud formée par une suite d'horsts et grabens limités par des failles allant dans une direction subméridienne. Après la découverte de ce champ géant, des efforts ont été multiplié à travers différentes études jusqu'à ce que cette province soit devenue la plus étudiée et la plus connue en Algérie. Le champ de Hassi Messoud apparait comme un vaste dôme anticlinal avec une superficie de 4200 km2 Les dépôts du Cambrien constituent les réservoirs Ra, Ri, R2 et R3 de Hassi Messoud liés aux grès quartzitiques fissurés, érodés sous la discordance hercynienne et de couverture assurée par un épais dépôt du trias.

I.2. Situation géographique du champ Hassi Messoud :

Le champ de Hassi Messoud se situe à 650 km Sud-Sud-Est d'Alger, à 350 km de la frontière tunisienne, à 80 Km au Nord Est du gisement Rhourde El Baguel et à 280 Km du gisement de gaz de Hassi R'Mel (**figure.01**). Il est limité au Nord par les structures Djemaa de Touggourt, au Sud par le horst d'Amguid, à l'Est par la dépression de Ghadamès et à l'Ouest par le bassin d'Oued Mya.Le champ de Hassi Messoud a une superficie de 4200 Km². Sa localisation en coordonnées géographique (Lambert) est la suivante :

X = 790.000 - 840.000 km Est.

Y = 110.000 - 150.000 km Nord [1].

Figure.01 : Situation géographique de la région de Hassi Messoud (D'après Larousse 2004).

I.3.Cadre géologique :

Le champ de Hassi Messoud occupe la partie centrale de la province triasique. Il est limité du point de vue structure géologique par les structures suivantes (**figure.02**) :

- A l'Ouest par la dépression de l'Oued Mya.
- A l'Est par les hauts fonds de Dahar, Rhourde El Baguel et la dépression de Ghadames.
- Au Nord par la structure Djemmâa-Touggourt.
- Au Sud par le môle d'Amguid El Biod.

Du point de vue gisement il est limité par (figure.03) :

- les gisements d'Ouargla (Guellala, Ben Kahla et HaoudBerkaoui), au Nord-Ouest.
- les gisements d'El Gassi, Zotti et Al Agreb, au Sud-Ouest
- les gisements Rhourde El Baguel et Mesdar, au Sud-Est.[3]

Figure.02 : situation géologique du champ de Hassi Messoud (Document Sonatrach).

Figure.03 : Le Contexte géologique de gisement du champ de Hassi Messoud (Document Sonatrach).

I.4. Historique de recherche :

Le 16 janvier 1956 la SN.REPAL a amorcé le premier forage MD1 implanté à la suite d'une compagne de sismique réfraction, non loin du puits chamelier de Hassi-Messoud. Le 15 juin de cette même année, ce forage a mis en évidence dans les grés du Cambrien à la profondeur 3338 m une importante accumulation d'huile.

En mai 1957, le forage OM1 foré dans la concession Nord du champ de Hassi-Messoud à 7 Km au NNW de MD1 par la compagnie française des pétroles (CFP (A)) confirmait la présence d'un grand gisement d'huile dans les grés Cambrien.

Actuellement, le champ est divisé en 25 zones de production. Ces zones sont relativement indépendantes et correspondent à un ensemble de puits communiquant entre eux et se comportant de la même manière.

I.5. Stratigraphie du champ :

Pour étudier la géologie de la zone de "Hassi-Messoud", nous étendrons le champ d'investigation à tout le Bas Sahara, en raison de l'ampleur des phénomènes géologiques, stratigraphiques et tectoniques, caractérisant la région.

La région de "Hassi-Messoud", fait partie du bas du Sahara, qui se présente comme une cuvette synclinale, il est caractérisé par un remplissage sédimentaire plus ou moins circulaire ayant un diamètre de 600 Km, les profondeurs les plus importantes se trouvent au "Nord" dans la fosse "Sud saharienne".

De ce fait les dépôts mésozoïques reposent en discordance sur le Cambro-ordovicien. En allant vers la périphérie du champ, la série devient plus complète (**Figure.04**).De la base au sommet on distingue :

I.5.1. Socle :

Rencontré aux environs de 4000 mètres de profondeur, il est formé essentiellement de granite porphyroïde rose.

I.5.2. Infracambrien :

C'est l'unité lithologique la plus ancienne rencontrée par les forages de la région, notamment au Nord de la structure. Il est constitué de grés argileux rouges.

I.5.3. Paléozoïque :

Sur le socle, les formations paléozoïques reposent en discordance ; c'est la discordance panafricaine.

I.5.4. Cambrien : Essentiellement constitue de grès hétérogènes, fins à très grossiers entrecoupés de passées de silts argileux, micacés. On y distingue quatre (04) lithozones Ra, Ri, R2 et R3.

- Lithozone R3 : Son épaisseur moyenne est de 370 m. Il se compose de grés feldspathiques et micacés à grains moyens à très grossiers conglomératiques à la base, à ciment argileux abondant, admettant des passées de grés ferrugineux et d'argile silteuse.
- Lithozone R2 : Son épaisseur moyenne est de 100 m, il se compose de grés moyens à grossiers micacés, mal classés à ciment argileux assez abondant ?et admettant des intercalations de silts. Les stratifications sont souvent obliques.
- Lithozone Ra : Son épaisseur moyenne est de 125m, il se compose de grés à grés quartzites anisomètriques moyens à grossiers, à ciment argileux et siliceux, admettant de nombreuses passées de silts centimétriques et décimétriques. Les stratifications sont souvent obliques à entrecroisées, parfois horizontales. Les tigillites sont présentes dans la partie supérieure de la série. L'ensemble du Ra a été érodé au centre du champ.
- Lithozone Ri : Son épaisseur moyenne est de 42m, il se compose de grés quartzitiques, isométriques fins, bien classés, glauconieux à cimentargileux et siliceux, avec une présence abondante de tigillites.

I.5.5. Ordovicien : On distingue de la base au sommet quatre (04) unités lithologiques:

- Zone des alternances : Son épaisseur moyenne est de 20 mètres, désignée ainsi en raison de la présence de nombreuses passées d'argiles indurées alternant avec des bancs quartzites fins isométriques.
- Argile d'El-Gassi : son épaisseur moyenne est d'environ 50 mètres. Cette formation est constituée d'argile schisteuse, indurée pressentant une couleur verte à noire, rarement rouge. Cette argile peut être glauconnieuse ou carbonatée présentant une faune(graptolites) indiquant un milieu de dépôts marins, cette formation est surtout rencontrée sur les zones périphériques du champ.
- Grés d'EL Atchane: son épaisseur moyenne varie de 12 à 25 mètres, cette formation est constituée de grés fins à très fins, gris-beige à gris-sombre. Ces gréspeuvent être argileux ou glauconieux admettant de nombreuses passées argileuses et silteuses.
- Quartzites de Hamra : son épaisseur moyenne varie de 12 à 75 mètres, ce sont des grés quartzitiques fins, à rares intercalations d'argile.

I.5.6. Mésozoïque :

Il subdivise comme suite:

I.5.6.1 Le Trias :Il repose en discordance sur le Cambrien, au centre et sur l'Ordovicien aux flancs de la structure .C'est un faciès très varié résultant de la transgression qui fut à caractère laguno-marin, accompagnée par des coulées éruptives. Il est subdivisé en:

- Trias éruptif : Son épaisseur varie entre 0 et 92 mètres, localement on rencontre des coulées éruptives interstratifiées avec des grès du Trias, ce la semble indiquer la présence de plusieurs épanchements de coulées venant s'intercaler dans les faciès détritiques ces coulées ont souvent eu lieu dans les vallées hercyniennes.
- Trias argilo-gréseux : Son épaisseur moyenne est de 35 mètres, il constitue le premier remplissage du relief paléozoïque, et se subdivise en plusieurs unités qui se diffèrent par leurs lithologies et leurs réponses diagraphiques :
 - Les grès supérieurs
 - Les grès inférieurs
- **Trias argileux :** Son épaisseur moyenne est de 113 mètres, il est constitué d'argiles dolomitiques ou silteuses intercalés de banc de sel de couleur brunrouge.
- Trias salifère : Son épaisseur moyenne est de 340 mètres, il est constitué de banc de sel massif présentant au sommet des intercalations d'anhydrite et des bancs d'argiles légèrement silteuses et dolomitique.

I.5.6.2 Le Jurassique : Son épaisseur moyenne est 844 mètres, le Jurassique est un ensemble argilo-grèseux à intercalations de calcaire au sommet (Malm) et à alternances de faciès lagunaires et marins à la base (Dogger et Lias).

- Le Lias : Son épaisseur moyenne est de 300 mètres, le passage du Trias au Lias est caractérisé par une zone de marne dolomitique connue sous le terme de l'horizon B qui est un repère sismique. Le Lias est subdivisé en cinq (5) niveaux bien distincts s'intercalant entre eux sur toute l'épaisseur.
- Le Dogger : Son épaisseur moyenne est de 320 m, le Dogger subdivise en deux formations, le Dogger lagunaire à la base et le Doggerargileux au sommet.
- Le Malm : Son épaisseur moyenne est de 225 mètres, il est caractérisé par les dépôts d'argiles et de marne avec des intercalations des bancs de calcaire et dolomie accompagnés de quelques traces d'anhydrite.

CHAPITRE.I

I.5.6.3 Le Crétacé : Son épaisseur moyenne est de 1620 mètres, chapitre I Généralités sur le champ de Hassi MessaoudII est constitué de sept étages, de la base au sommet on distingue :

- Le Néocomien : Son épaisseur est de 185 mètres, il comprend deux niveaux, à la base un terme gréseux constitué de grès et de quelques passées d'argiles avec des passées de grès, au sommet un terme argileux représenté par des argiles avec nombreuses intercalations de calcaire et de dolomie.
- **Le Barrémien :** Son épaisseur moyenne est de 277 mètres, il est formé de grès fins à moyens carbonatés à plages d'anhydrite, alternant avec des niveaux d'argile gréseuse et dolomitique.
- L'Aptien : Son épaisseur est de 25 mètres, il est représenté par deux bancs dolomitiques encadrant un niveau argileux .La limite Aptien-Barrémien coïncide avec la barre calcairodolomitique qui représenté un bon repère sismique.
- L'Albien : Son épaisseur moyenne est de 350 mètres, constitué de grès et sable fin, avec des intercalations d'argile silteuse, il représente une immensenappe aquifère.
- Le Cénomanien : Son épaisseur moyenne est de 148 mètres, alternance d'anhydrite et d'argile rouge-brune, de marnes grises et de dolomie. La limite Cénomanien-Albien coïncide avec le passage des séries évaporitiques aux séries plus gréseuses de l'Albien.
- Le Turonien : Son épaisseur moyenne varie de 70 à 120 mètres, alternance de calcaire argileux, calcaire dolomitique et calcaire crayeux ; Au sommet apparaissent les bancs de calcaire. Le Turonien représente la nappe d'eau salée.
- Le Sénonien : Son épaisseur moyenne est de 230 mètres, a base, une série lagunaire présentant des bancs massifs de sel et des alternances d'anhydrite dolomie et d'argile grise, au sommet une série carbonatée présentant des bancs de calcairedolomitique argileux et des bancs d'anhydrite.

I.5.7. Le cénozoïque : Son épaisseur moyenne est de 360 mètres, il est constitué de calcaire dolomitique à l'Eocène et d'un recouvrement de type sableux au Mio-Pliocène.[1]

				C DI	CHA COUPI	MP DE E STRA ENTE	E HASSI MI ATIGRAPH S PHASES	ESSAOUD IQUE TYPE DE FORAGE																				
Ère			ETAGES	LITHO Ep		TUBAGES & BOUE		DESCRIPTION																				
		М	IO PLIOCENE		240	Re .	te 08 rel	Sable, Calcaire, Marne Sableux	🔶 Complexe aquifê																			
	Đ		EOCENE		218	x 18" 5	soue onitig 9.4 - 1, 45 - 56 45 - 56 t:Natu	Sable, Calcaire a Silex	🔶 Zone d'ébouler																			
		EN	CARBONATE		91	26"	l Bent D: 1, V: Filtra	Cakaire, Dolomie, Anhydrite																				
		INO	ANHYDRITIQUE		210	±500m		Anhydrite, Marne, Dolomie																				
		SEI	SALIFERE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	140			Sel massif et traces d'Anhydrite	Complexe d'ea																			
	ш		FURONIEN		99			Calcaire tendre crayeux																				
	ETAC	CI	ENOMANIEN		148		5	Anhydräe, Marne et Dolomie	l'injection																			
	B		ALBIEN		350		sion ii 2 - 1,2 5 - 55 = 4 - 5	Grés, Argile silteuse	Aquifère eau douce																			
E			APTIEN		25		émul = 1,15 7 = 4,1 itrat	Dolomie et Calcaire	Vinje ction et besoins généraux Pg:104 kg/sm ³ (- 1050																			
D		F	BARREMIEN		277	的论语	D	Argile, Sable, Grés																				
\circ		N	EOCOMIEN		185	86 -	Ba	Argiles, Grés, Dolomie,																				
Н			MALM		230	x 13		Argile, Marne, et Dolomie, Grés																				
0		5	ARGILEUX		107	16"		Argile, Marne, Dolomie																				
N		ĎŐ	LAGUNAIRE		223			Anhydrite, Dolomie, calcaire et Marne																				
2	IQUE	16.00	LD1		66	± 2300m	Several Second	Dolomie, Anhydrite et Argile																				
0	RASS	<i>v</i> n	LSI		90			Alternance Sel, Anhydrite et Argile																				
∞	TRIAS THE TRIAS	JUL	HUL	LIA	LD2		55	的影響	RMU	Anhydrite et Dolomie Cristalline	.																	
E																					34	L S2		60		NVE 60 60 - 10	Alternance de Sel et Argile	Laux chiorurees call D: 1.28
Σ															123	LD3		35		type 1 7 22	Alternance de Dolomie et de Marne	Pg:575kg/cm ³ (- 250						
									TSI		46	00m	ourd St D = 2 V = Filtr	Alternance de Sel d'Anhydrite et de Dolomie														
		TS2	oue L	Sel massif à intercalation d'Anhydrite et Argile	Manifestation																							
						ŝ	TS3		200	KOP 12"	MA .	Sel massif et trace d'Argile	argiles fluentes															
				A	RGILEUX		113		Sabot au G35	Argile Rouge Dolomitique ou Silteuses injectée de Sel et Anhydrite																		
			T.A.G		0 à35	± 3200m		Grés, Argile																				
		ERU	PTIF		0 à 92	. 373	Huil 53 - 50 2 - 3	Andésite	Zones de pertes de																			
	A	Quar	tzites d'El Hamra		75	ens T	e à L' D = L = 45 trat =	Grès très fins																				
िन्दो	VI CI I	Grès d	'El Atchane		25	rottage	Bow L Fil	Grès fins glauconieux																				
5)R.D.O	Argile	s d'El Gassi		50	8		Argile verte ou noire																				
ZOIQ		Zone des Alternances			18	±3320m		Alternances grès et argiles																				
	5	R Ison	létriq ues		42	5 " 32/	a mas	Grés Isométriques, Silts																				
EO	BRIE	R Anis	æmétriques		125	ge en.	lle Im 181 1-70 1-2-3	Grés Anisométriques, Silts																				
AL	CAM	R 2			100	arotta	: Hu D = 6 ' = 50 frot =	Grés Grossiers, Argile																				
Ч		R 3			370	1275.05	le a L F	Grés Grossiers, Argiles																				
Infra Camb rien			45	100	Boa	Gres Argileux rouge Gresite pornburoïde rosa																						
		auc						Land Later Land																				

Figure.04 : Log stratigraphique synthétique de la région de Hassi Messoud (D'après SCHLUMBERGER-SH 2007).

I.6.Zonation du champ et numérotation des puits :

L'évolution des pressions des puits en fonction de la production a permis de subdiviser le champ de HMD en 25 zones dites de production (**Figure.05**), d'extension variables. Ces zones sont relativement indépendantes et correspondent a un ensemble de puits communiquant entre eux et non pas avec ceux des zones avoisinantes, et se comportant de la même manière du point de vue pression de gisement. Les puits d'une même zone drainent conjointement une quantité d'huile en place bien établi. Toutefois il est important de souligner que le facteur de pression ne peut être le seul critère de caractérisation des zones.

Figure.05 : Carte de zonation du champ de HMD [SONATRACH].

I.7. Cadre structural (Tectonique du champ) :

La structure du champ de Hassi Messaoud se présente comme un vaste dôme anticlinalaplatit de direction générale Nord.Est-Sud.Ouest. Les accidents affectant le réservoir sont de deux types :

- Les failles de direction subméridiennes Nord.Nord.Est-Sud.Sud.Ouest ainsi que d'autres failles qui leur sont perpendiculaires de direction Ouest.Ouest.Nord-Est.Est.Sud ceci fait ressortir le caractère tectonique en Horst et Graben.
- Les cassures sans rejets qui ont eu un grand effet sur la fracturation du réservoir. La présence d'une faille majeure Nord Est-Sud Ouest, certainement héritée du socle qui divise le champ en deux compartiments principaux : occidental et oriental, le compartiment occidental est affecté par quelques failles de direction Nord Est-Sud

Ouest à Nord-Sud, mais il est surtout recoupé par des accidents transverses Nord Ouest-Sud Est, et le compartiment oriental, structuralement plus bas et plus complexe, partiellement recoupé par des profonds grabens semblant. Le flanc Est est effondré par un système de failles subméridiennes avec un relais

Nord Est-Sud Ouest(Figure.06).

ERES	D'IN M	EPOQUE TERVENTION IAXIMALE	NOMS DES PHASES	Nature et direction Des phases	EFFET SUR LES JEUX DE FAILLES
OIQUE	NEOGENE	MIOCENE	ALPIN TARDIF	N.0.60	Jeu en compréssion des accidents NO.60
CENOZ	PALEOGENE	EOCENE	ALPIN MOYEN EOCENE N.160	N.160	Jeu en compréssion des accidents N.160 et création de nouvelles Structures
QUE		CRETACE	PHASE AUTRICHIENNE		Jeu en inversesur les accidants
Sozoi		URASSIQUE	(ALPIN PRECOCE)	→/ (N.O.90	NO.90
ME		TRIAS			
		PERMIEN	PHASE HERCYNIENNE TARDIVE	N.120	Jeu en inverse sur les failles NW-SE
QUE	CARBONIFERE	VISIEN	PHASE HERCYNIENNE PRECOCE	N.0.40	Jeu en inverse sur les failles NE-SW
ī		Superieur	PHASE FRASNIEN NE	*/	Jeu en failles normale surles failles NE-SW
20	EVONIEN	Moyen		NW-SE	(variation de facies et d'épaisseur) (Volcanisme)
Ш	-	Inferieur	PHASE		Jeu en inverse sur les faillesN-S
A	S	BILURIEN			(Erosion sur les mole sub-méridien "Tihemboka")
	OF	RDOVICIEN	CALEDONIENNE	→ ← E.W?	
	(CAMBRIEN	PHASE PANAFRICAINE TARDIVE		Tectonique cassante réseauNE-SW Et NW-SE (Cratonisation du sahara central)

Figure.06 : les principaux évènements tectoniques affectant la plate -forme saharienne (d'après BOUDJAMA et BEICIP,modifié par B KADI 1992).

I.8. Aspect pétrolier :

I.8.1.Roche mère (origine des hydrocarbures) :

D'après les études de la S.N.REPAL du champ de HMD, il existe deux hypothèses possibles sur l'origine des hydrocarbures (roche mère) :

- Les argiles de l'Ordovicien (argiles d'El Gassi)
- Les argiles du Silurien

Les argiles d'El Gassi sont des argiles noires et organiques. Elles seraient à l'origine d'une grande contribution à l'accumulation des hydrocarbures de HMD. Cette formation de 38m à 50 m d'épaisseur est détectée dans les puits au-delà de la limite actuelle du champ ainsi que dans les grabens de la structure de HMD. Par contre les argiles du Silurien sont présentes sur les rebords du champ (à 20 km à l'Ouest, et à 100 km à l'Est).[1]

I.8.2.Roche de couverture :

Leur rôle est de couvrir les roches réservoirs afin d'empêcher la dysmigration des hydrocarbures vers la surface. Elles doivent être plastiques et imperméables (argiles, évaporites) (**figure.07**) La couverture des réservoirs ordoviciens est assurée respectivement par l'épanchement des roches éruptives ainsi que par les épaisses séries d'évaporites d'âge Triasique ou Jurassique. Pour les réservoirs cambriens, leur couverture est assurée par les argiles d'El Gassi. Donc les séries argilo-grèseuses du Lias et du Trias, et à un degré moindre la série inférieure (roches éruptives) du Trias, assurent l'étanchéité pour le quartzite de Hamra ; tandis que la série des argiles d'El Gassi et les intrusions intercalées forment une couverture remarquable à l'ensemble des réservoirs cambriens. [1]

Figure.07 : accumulation des hydrocarbures

I.8.3.Pièges :

Les pièges désignent les zones les plus favorables à la présence des accumulations des hydrocarbures, caractérisés par une faible pression et une plus basse température que celle des roches mères, et par une barrière qui oblige les hydrocarbures à s'accumuler. Il existe trois types de pièges :

I.8.3.1. Pièges structuraux :

Ces pièges sont le résultat de mouvement tectonique tel que les anticlinaux ou pièges par failles. (figure.08)

Figure.08 : les principaux pièges structuraux

I.8.3.2. Pièges stratigraphiques :

C'est la combinaison de deux milieux différents correspondant au passage d'un milieu perméable à un autre imperméable tel que les lentilles gréseuses et les biseaux. (figure.09)

Figure.09 : pièges stratigraphiques.

I.8.3.3 Pièges mixtes :

Ils sont à la fois structuraux et stratigraphiques, comme par exemple les pièges contre failles. Au niveau du bassin d'Oued Mya et le Nord- Est de Hassi Messoud, les pièges reconnus jusqu'à présent sont de type stratigraphique et structural. (figure.10)

Figure.10 : pièges mixtes.

I.9. Conclusion :

Le champ de HMD est caractérisé par sa grande capacité du réservoir et sa production élevée, et contribue à plus de 50 % de la production algérienne, néanmoins il présente une grande complexité géologique, et une hétérogénéité des réservoirs entrainant une variabilité de la production sur l'étendue du champ.

CHAPITRE.II

II.1. Introduction :

La pétrophysique au sens de l'industrie pétrolière et gazière, est la caractérisation et l'interaction des propriétés de roches et de fluide de réservoirs et non-réservoirs :

- 4 Déterminer la nature d'un réseau interconnecté d'espaces poreux (porosité).
- La distribution du pétrole, d'eau et du gaz dans les espaces interstitiels (saturation de l'eau).
- 4 Le potentiel de circulation des fluides à travers le réseau (perméabilité).
- **4** Délimitation les bancs imperméables (argilosité).
- Pour déterminer le volume d'hydrocarbures en place, il est nécessaire de connaître la porosité, les saturations et la hauteur imprégnée. Les diagraphies différées vont permettre d'obtenir ces informations. Elles permettent également de mettre en évidence les zones à pression de pore anormales.

II.2. Les paramètre pétrophysiques du réservoir :

Pour une meilleure exploitation d'un gisement d'hydrocarbures donné, la qualité de réservoir des niveaux productifs doit être déterminée, en se basant sur des paramètres pétrophysiques (porosité, perméabilité, épaisseur utile, saturation...), mesurés à partir des échantillons (plugs) prélevés des carottes par l'application des différentes techniques de diagraphie. Pour rappel quelques définitions sont à prendre en considération : la porosité, la perméabilité ainsi que la saturation et l'argilosité. [4]

II.2.1. La porosité :

La porosité (Φ) d'une roche est sa propriété de présenter des vides, pores et fissures. Elle s'exprime quantitativement par le pourcentage du volume poreux par rapport au volume total de la roche.

$$\Phi = 1 - \frac{\text{volume solide}}{\text{volume totale}} = \frac{\text{volume des pores}}{\text{volume totale}}$$

La porosité totale englobe :

- D'une part, la porosité intergranulaire ou inter-cristalline constituant la porosité primaire Ø1, qui dépend de la forme et de la taille des éléments solides, ainsi que de leur classement,
- D'autre part, la porosité vacuolaire, acquise par dissolution, et la porosité de fissure et de fracture, acquise mécaniquement, constituant la porosité secondaire Ø2 que l'on rencontre le plus souvent dans les roches chimiques ou biochimiques (calcaires).

La porosité totale est donné par : $\emptyset t = \emptyset 1 + \emptyset 2$

CHAPITRE.II

La porosité connectée représente le pourcentage de pores reliés entre eux. Elle peut être très inférieure à la porosité totale.

La porosité effective (ou utile) est la porosité accessible aux fluides libres. Elle est en générale inférieure de 20 à 25 % à la porosité totale. Ce pourcentage est d'autant plus élevé que la granulométrie de la roche est plus fine, ce qui accentue l'action des phénomènes capillaires, la porosité d'une roche est dite faible si elle est inférieure à 5 %, médiocre de 5 à 10 %, moyenne de 10 à 20 %, bonne de 20 à 30 % et excellente si supérieure à 30 %. Seule la porosité effective est intéressante pour déterminer le volume d'hydrocarbures "récupérable".[4]

La porosité est influencée par la taille des grains, leur arrangement, leurs formes, le ciment et la compaction. Il existe deux méthodes de mesure :

> Méthode directe :

Les mesure de porosité par cette méthode se fond au laboratoire sur des échantillons extraits. La méthode consiste à mesure le volume du solide Vs qui est obtenu par la poussé d'Archimède dans le xylène après saturation des échantillons par ce liquide. Ce volume du solide (total) est obtenu en calculant le poids spécifiques exerce par la phase solide. La porosité sera donnée par la formule suivante

$$\Phi = (Vt-Vs/Vt) = 1-(Vs/Vt) = Vv/Vt (\%)$$

Vv: volume des vides en Cm3

Vs : volume solide en Cm3

Vt: volume total de l'échantillon en Cm3

> Méthode indirecte :

Les mesures de porosité par cette méthode se font grâce aux diagraphies électriques et nucléaires.

- Neutron C.N.L (compensated neutron log)
- F.D.C (formation density compensated)
- Macro et micro résistivité (par la loi d'archie)
- Log sonic [5]

II .2.2. La perméabilité :

Un milieu poreux permet l'écoulement des fluides si les pores sont reliés entre eux et si les pertes de charge ne sont pas trop élevées. La perméabilité représente la facilité avec laquelle

un fluide de viscosité donnée traverse une formation ; elle est définie par la loi de Darcy qui est une loi de pertes de charge :

$$\mathbf{Q} = \mathbf{K} \cdot \frac{\mathbf{S}}{\boldsymbol{\mu}} \cdot \frac{\Delta \mathbf{P}}{\Delta \mathbf{L}}$$

Q : débit du fluide traversant la roche en cm3/s,

S : surface de passage du fluide en cm2,

μ : viscosité du fluide en centipoises (viscosité dynamique),

 $\frac{\Delta \mathbf{P}}{\Delta \mathbf{I}}$: Gradient de pression en bar/cm,

K : perméabilité de l'échantillon exprimée en darcy (d).

Lorsqu'un seul fluide est présent dans les pores, la perméabilité mesurée est la perméabilité **<u>absolue</u>** pour ce fluide.

Lorsque plusieurs fluides sont présents dans une roche, on définit la perméabilité <u>effective</u> de chacun des fluides. Elle est toujours inférieure à la perméabilité absolue. Elle exprime la propriété d'une roche à être traversée par un fluide en présence d'autres fluides. Elle dépend de la roche et de la saturation des différents fluides.

La perméabilité <u>relative</u> d'un fluide est le rapport perméabilité effective / perméabilité absolue.

A cause de l'hétérogénéité des roches, la perméabilité varie suivant la direction considérée. Dans un gisement, on est amené à distinguer la perméabilité horizontale et la perméabilité verticale.

La perméabilité est dite faible de 1 à 10 md, médiocre de 10 à 50 md, moyenne de 50 à 200 md, bonne de 200 à 500 md et excellente si supérieure à 500 md. La perméabilité des meilleurs réservoirs pétroliers est de l'ordre de quelques darcy.

Les diagraphies différées ne permettent pas de mesurer directement la perméabilité. Elle peut être déterminée en laboratoire à partir des carottes - mais la mesure présente un caractère ponctuel - ou partir des essais de puits qui fournissent une valeur concernant un volume de roche beaucoup plus important (d'autant plus important que la durée du test est longue).

La perméabilité peut être estimée par :

Le **Draw down** ou le **Buildup** enregistré pendant le pré-test lors d'une prise de mesure de pression (sondes : MDT, RDT, RCI).

A partir de la **porosité effective** et de la saturation en eau irréductible ou initiale en utilisant une formule empirique.

A partir des mesures de résonance Magnétique Nucléaire. [6]

II. 2.3. Saturation en fluides :

La saturation d'un fluide est le rapport du volume du fluide considéré sur le volume total des pores.

Par exemple, la saturation en eau Sw est :

$Sw = \frac{\text{volume d'eau}}{\text{volume des pores}}$

La somme des saturations est égale à 1.

Dans la quasi totalité des réservoirs d'hydrocarbures, il existe une certaine quantité d'eau qui mouille la paroi des pores dite eau irréductible. Le pourcentage de cette eau dépend de la dimension des pores de la roche. La valeur moyenne est de l'ordre de 20 %. Dans le volume de pores Vp se trouvent un volume Vw d'eau, un volume Vo d'huile et un volume Vg de gaz (Vw + Vo + Vg = Vp).

Les saturations en huile, eau et gaz exprimés en pourcents sont :

$$Sw = \frac{Vw}{Vp}So = \frac{Vo}{Vp}Sg = \frac{Vg}{Vp}$$

Avec Sw + So + Sg = 100 %.

La connaissance des volumes d'huile et de gaz en place dans un gisement nécessite la connaissance des saturations en tout point, ou au moins une approche satisfaisante. [6]

II.2.4. Argilosité Vsh (volume d'argile) :

La présence d'argile dans un banc réservoir diminue l'amplitude de la déflexion (P.S). Le log (P.S) enregistré dans une série de sables et d'argiles, L'atténuation est une fonction linéaire du pourcentage d'argile dispersée dans la roche (Chapellier 1998) Le volume d'argile au point X se calcule de la façon suivante :

$$Vsh = \frac{P.S.S - P.S.X}{P.S.S}$$

Vsh : Volume d'argile exprimé en pourcent (%).

P.S.S. : Valeur maximum de la déflexion P.S. dans l'intervalle considéré, valeur qui correspond à la ligne de base des sables.

P.S.X : Valeur de la déflexion P.S. à la profondeur choisie.

II.3. Diagraphie différée:

II.3.1.Définition :

La diagraphie différée est l'enregistrement des paramètres physiques des formations traversées par le forage ou des fluides qui renferment, des outils, ou sondes, conçus dans ce but, sont descendus dans le trou de forage à l'extrémité d'un câble qui assure la liaison avec les instruments de surface commandant les opérations, et groupés soit dans un camion, soit dans une cabine fixe pour les forages en mer (**figure.11**).

Pour autant que l'on sache relier les paramètres mesurés et leurs variations aux propriétés physiques et/ou chimiques des formations géologiques et des fluides contenus dans ces formations, on dispose d'un instrument sans égal pour étudier les roches et leur contenu éventuel.

Il existe des relations étroites entre les paramètres physiques enregistrés et les paramètres géologiques. On peut définir un "faciès géophysique " qui est pour un niveau donné, la somme des caractéristiques vues par les diagraphies.

Le "faciès géophysique" reste inchangé pour un même niveau au cours de plusieurs enregistrements successifs avec les mêmes outils, dans le même trou. Il en résulte que la modification d'un paramètre géologique doit se répercuter sur un ou plusieurs paramètres physiques. De même, une variation de paramètre physique aura une signification géologique.

Les diagraphies sont donc très utiles pour faire des corrélations de puits à puits et donnent des indications très précieuses sur les variations lithologiques. Les diagraphies sont exécutées par des sociétés de service ; En Algérie: Schlumberger, Halliburton, Hesp, Western Atlas. Baker... etc.

II.3.2.But de diagraphie :

- 4 L'utilisation des diagraphies dans notre étude consiste essentiellement à:
- 4 Déterminer le pourcentage d'argile à partir du GR.
- Évaluer la porosité des formations à partir de la combinaison des outils Sonique,Neutron et Densité.
- La localisation des réservoirs les plus favorables à l'accumulation économique d'hydrocarbure.
- 4 La nature et composition des solides et des fluides traversés par le sondage.

Figure.11: schéma représente l'appareille d'opération des diagraphies

II.3.3. LES MOYENS TECHNIQUES D'ENREGISTREMENT :

L'ensemble des équipements utilisés pour l'enregistrement des diagraphies comprend :(figure.12)

 UN TREUIL : volumineux et puissant sur le tambour duquel sont enroulés plusieurs milliers de mètres de câble. Le câble est un organe essentiel dont le rôle est à la fois mécanique et électrique. Fixé à une extrémité du tambour, il se termine à l'autre extrémité par un raccord rapide qui permet la connexion mécanique et électrique avec l'outil descendu dans le trou de forage. Le câble assure la transmission, vers l'outil, de l'énergie électrique assurant Son fonctionnement, et permet le retour en surface des signaux émis par l'outil. C'est le défilement du câble qui permet la mesure des profondeurs. La mesure des profondeurs est une mesure imparfaite ; le câble, en effet est soumis à des efforts considérables, il peut s'allonger sous l'effet de son poids ou par vieillissement, certains outils collent à la paroi du trou, il peut aussi y avoir des dépôts de boue sur le câble ou sur la molette. Une première chose à faire avant toute interprétation est de recaler les diagraphies entre elles.

- LES CIRCUITS DE CONTROLE ET DE COMMANDE : des appareils de mesure, ainsi que les équipements de traitement de l'information. Ils sont réunis dans des "panels" que l'on met en place dans des supports adaptés en fonction des outils utilisés.
- LES OUTILS : ce sont les appareils que l'on descend dans le trou de forage, à l'extrémité du câble. Cela peut aller de la simple électrode aux outils à plusieurs patins et aux outils de diagraphies de production en prospection pétrolière.
- UN SYSTEME D'ENREGISTREMENT : L'avancement du film ou du papier est synchrone du déroulement du câble et l'enregistrement se fait en fonction de la profondeur. De plus en plus un enregistreur digital remplace les dispositifs analogiques.

figure.12 : Schéma général d'un matériel de diagraphie [7]

CHAPITRE.II

II 3.4. Classification des diagraphies différé :

Figure.13 : Organigramme represente la classification des diagraphies différé

II.3.5. Les différentes diagraphies enregistrées:

Dans notre étude, on a enregistré les diagraphies suivantes :

II.3.5.1. Diagraphie électrique (résistivité) :

II.3.5.1.1. Définition :

Un courant électrique est envoyé dans la formation et l'on mesure la résistivité globale de la formation. Les matrices, à l'exception des argiles, sont très résistantes. Dans le cas des fluides, seule l'eau salée est conductrice du courant.

Les diagraphies de résistivité dépendent de la composition de la roche en élément solide et la nature des fluides contenus.

Le principe de mesure consiste à envoyer un signal par une source émettrice d'énergie (courant électrique ou champ magnétique), qui pénétra la formation et enregistrant la différence du potentiel (**D.D.P**) par un dispositif de mesure (récepteur), situé à une certaine distance de la source dite : espacement, C'est ainsi que selon l'espacement et la nature de la source d'énergie, que plusieurs outils sont définis.

Plusieurs combinaisons de résistivité (macro-résistivité et micro-résistivité) sont possibles pour une meilleure estimation des résistivités **Rt** et **Rxo**.

II.3.5.1.2. Application :

- La détermination des différentes résistivités **Rt** et **Rxo.**
- Fournit une image de la distribution radiale du fluide autour du trou de forage ce qui aide à l'évaluation qualitative de la perméabilité du réservoir.
- Estimation du diamètre d'invasion.

On peut dire que la résistivité électrique d'une roche dépend essentiellement :

- > De la qualité de l'électrolyte, c'est à dire de la résistivité du fluide d'imbibition Rw.
- > par conséquent, de la quantité de sels dissous,
- De la quantité d'électrolyte contenue dans l'unité de volume de la roche, c'est-à-dire de la porosité !,
- > Du mode de distribution de l'électrolyte.

II.3.5.2. Digraphies de rayonnement Gamma:

II.3.5.2.1. Définition :

Cette diagraphie mesure à l'aide d'un compteur à scintillation descendu au bout d'un câble, (**figure.14**) les rayons gamma naturelle émis par les formations traversés par le forage son symbole est le **GR** est son unité est l'**API**.

Le rayonnement gamma naturel est lié à la présence des trois éléments radioactifs : le Potassium, Thorium et l'Uranium dans les roches sédimentaires.

Toutes les roches peuvent à priori être radioactives du fait de la dissémination très générale de ces éléments, cependant leur fixation préférentielle sur les sédiments fins fait que ceux-ci sont généralement plus radioactifs que les sédiments grossiers. D'autre part les argiles se montrent le plus souvent fortement radioactives cette particularité peut avoir des causes très diverses :

- Il s'agit d'argiles potassiques.
- Les argiles ne sont pas potassiques mais elles s'accompagnent de nombreux minéraux accessoires à potassium, uranium et thorium.
- Les argiles, à l'origine non radioactive, ont adsorbé des cations comportant uranium et thorium. Ce cas est fréquent.

De plus certains types lithologiques sont naturellement radioactifs : niveaux de sels potassiques, grès micacés de mer du nord etc.
En fait les principales roches réservoirs peuvent être classées selon leur degré de radioactivité

Les facteurs influençant la mesure sont : la vitesse d'enregistrement, la constante du temps, le taux de comptage, le temps mort, la boue, le tubage, le ciment et les épaisseurs des bancs.

Le volume d'argile au point X se calcule alors de la façon suivante:

Vsh (%) = (GR lu - GR min) / (GR max - GR min).

GR lu: Gamma ray lu à partir du log

GR min: Gamma ray en face des bancs propres (sable)

GR max: Gamma ray lu en face des argiles.

II.3.5.2.1.Application :

- La détermination de la lithologie, en établissant un profil lithologique vertical.
- Courbe de référence pour le calage des diagraphies en profondeur.
- Estimation du pourcentage d'argile des réservoirs.
- Les corrélations entre sondages et la détection de discordances.
- Evaluation des minéraux radioactifs.
- Une approche de la perméabilité.

Figure.14 : Schémas de principe de la sonde gamma ray.

II.3.5.3. Digraphies neutron (indice d'hydrogéne966) :

II.3.5.3.1. Définition :

A l'aide de source appropriée on soumet les formations a un bombardement intense des neutrons rapides (**figure.15**), d'énergie initiale comprise entre **4** et **6 MeV**.

Grâce à leur vitesse initiale élevée (**10.000 Km/s**), les neutrons rapides ont un grand pouvoir de pénétration. Ils vont entrer, de ce fait, en collision avec les noyaux des atomes des formations qu'ils traversent et perdent progressivement de leur énergie.

La mesure de l'indice d'Hydrogène dépend en quelque sorte et surtout du nombre d'atomes d'hydrogène par l'unité de volume dans la formation, ceux-ci étant soit lies a l'eau ou aux l'hydrocarbure (donc a la porosité et a la saturation), soit a la composition moléculaire de la roche, mais aussi à un moindre degré, des autres atomes entrant dans la composition de la roche soit par suite de leur pouvoir ralentisseur, soit par leur pouvoir absorbant.

Les courbes neutrons enregistrés sont en échelle qui varie entre 0,45 et 0,15 m3/m3.

II.3.5.3.2. Application :

- L'évaluation de la porosité des roches de réservoir.
- Combine avec d'autres outils, il permet d'identifier la lithologie.
- Evaluation de la densité des hydrocarbures.
- Bon critère de corrélation de puits à puits.

Figure.15 : Schémas représente le principe de la sonde neutron.

II.3.5.4. Diagraphie gamma-gamma (de densité) :

II.3.5.4.1. Definition :

Elles sont toutes basées sur le principe de l'intersection entre une radioactivité incidente et les composantes de la formation soumises au bombardement radioactif. La source radioactive utilisée est généralement le Co^{60} et le Cs^{137} , elle émet des rayonnements gamma qui heurtent les atomes de la formation.

Trois types d'interactions se produisent suivant l'énergie des protons incidents :

- L'effet photoélectrique si l'énergie des photons est inferieur a 0,1 MeV.
- ✤ L'effet Compton si l'énergie des photons est entre 0,1 à 1MeV.

 L'effet de production de paire si l'énergie des photons est supérieur a 1,01 MeV.(figure.16).

Les diagraphies densité sont sensibles aux rayons gamma liés aux effets Compton ; de même pour des études minéralogiques, le développement des sondes de densité a rendu possible les énergies sensibles aux domaines photoélectriques.

Les courbes de densité enregistrées sont en échelle de sensibilité **1,95 à 2,95 g/cm³**. Les différents outils de diagraphie densité enregistrés sont **FDC**, LDT. [7]

- La sonde FDC : (formation density compensated) :c'est un dispositif à deux détecteurs des différents espacements.il permet l'enregistrement de la courbe de densité globale de la formation notée pb et la courbe de correction de densité notée Δ p. Cette sonde réduit certains effets de sondage tels que les effets de cavité et du mudcake.
- La sonde LDT (litho density tool) :c'est une amélioration de FDC, elle permet en plus de la mesure de la densité globale de la formation, l'enregistrement de la courbe d'absorption photoélectrique (Pef) de la roche.

II.3.5.4.2. APPLICATION :

- Détermination une porosité densité indispensable a l'interprétation moderne.
- La comparaison du neutron, densité et résistivité permet une identification des fluides dans les réservoirs et la localisation des contacts gaz/huile et huile/eau.
- Détecter la présence de gaz dans la zone envahie car elle provoque une forte diminution de la densité, donc une porosité densité anormalement haute.

Figure.16 : Schéma de l'outil de densité.

II.3.5.5. Diagraphie acoustique (sonique) :

II.3.5.5.1. Définition :

Le sonique mesure le temps que met une onde acoustique de fréquence comprise entre 20et 40 kHz pour traverser un pied de formation. La vitesse de propagation des ondes varie suivant la densité et la nature lithologique de la formation traversée.

Elle sera importante dans les solides et faible dans les fluides.

Le sonique est perturbé par la présence de caves.

Dans la pratique, le sonique log mesure le temps de transit ΔT entre deux récepteurs, d'onde longitudinales envoyées dans la formation.

Souvent le système utilisé comporte deux émetteurs et deux récepteurs couplés, ceci pour pouvoir corriger les décalages dans les temps de parcours, les effets de cave et le décentrement de l'outil.

Le temps de transit ΔT entre les deux récepteurs se mesure en µsecondes par pied, µs/pied.

Le ΔT est enregistré en échelle linéaire [6].

 $\Phi = \frac{\Delta t - \Delta tma}{\Delta tf - \Delta tma}$

 Φ = valeur de la porosité secondaire.

 Δt = lecture du sonic

 Δ tma = temps de transit dans la matrice

 Δ tf = temps de transit dans le fluide.

II.3.5.5.2. Application :

- Evaluer la porosité.
- Mettre en évidence les formations à pressions anormales (cas des argiles sous compactées).
- Identifier la lithologie.
- Faire des corrélations.
- Identifier les roches mères en se servant des informations fournies par le Gamma Rayet par les logs de résistivité.
- Aider l'interprétation des profils sismiques (calcul des vitesses d'intervalle, détermination des impédances acoustiques, etc.). Il permet de faire des calages en profondeur.
- Evaluer la qualité du ciment (CBL) entre le cuvelage et la formation.

Figure.17 : Schéma Principe de fonctionnement de la sonde sonique.

II.3.5.7. Caliper :

Les dispositifs caliper (Figure.18), font une partie intégrante de la plupart des outils de diagraphie standard, car la mesure de l'axe de forage est un paramètre extrêmement utile pour la correction de l'environnement, l'interprétation quantitative et le calcul du volume de ciment.

Si le trou est circulaire et uniforme, tout les calipers lisent la même valeur. Dans un trou elliptique, le caliper a un seul bras généralement aligné avec l'axe long, et les trois bras du caliper indique un diamètre plus grand que le petit axe, mais inférieure à l'axe long.

II.3.5.7.1. Application :

- Mesure du diamètre du trou pour l'estimation du volume de ciment nécessaire.
- Reconnaissance des zones poreuses et perméables (présence de mud-cake), calcul de l'épaisseur de mud-cake.
- Localisation des intervalles consolidés pour l'ancrage du packer d'essai de formation.
- Correction des mesures de différentes diagraphies de l'effet du trou ou du mud-cake en vue d'une interprétation plus précise.
- Donne une approche de la lithologie.

Figure.18. Schéma représente l'outil de mesure de caliper

II.4.Généralité sur le plate forme Techlog

II.4.1.Définition :

Le logiciel Techlog a été développé à Montpellier (Sud de la France) par la société Techsia. qui a été créée en 2000. La première version de Techlog a été commercialisée en 2002. Techlog a été développé pour avoir une interface moderne et familière permettant une visualisation et une interaction faciles de toutes les données, avec un flux de travail préétabli qui permet aux utilisateurs moins expérimentés de suivre, Techsia a rendu l'interprétation multi-puits plus accessible à tous les experts techniques. En 2009, Schlumberger a acquis Techsia et la plate-forme Techlog et assure actuellement le support et la commercialisation de Techlog. Techlog offre de nouvelles fonctionnalités dans chaque nouvelle version, non seulement dans l'interprétation pétrophysique et géologique, mais aussi dans l'interprétation

Petrel. Techlog dispose également du nouveau module acoustique qui ajoutera beaucoup plus de fonctionnalités à l'application.

Techlog est une plate-forme logicielle basée sur Windows, propriété de Schlumberger, destinée à agréger toutes les informations relatives aux puits de forage. Il permet à l'utilisateur d'interpréter n'importe quel log et données de base. Il répond au besoin d'une plate-forme unique capable de prendre en charge tous les flux d'intégration de données et d'interprétation, réduisant ainsi le besoin d'une multitude d'outils hautement spécialisés. En regroupant l'ensemble du flux de travail sur une seule plate-forme, le risque et l'incertitude peuvent être évalués tout au long de la durée de vie du puits de forage.

II.4.2. Les différentes sections de logiciel Techlog :

L'logiciel Techlog contient beaucoup des sections, parmi ces sections : Pétrophysique, mécanique, géomécanique, drilling, réservoir.

Dans notre étude on base sur le section de pétrophysique :

La plate-forme Techlog nous permet d'effectuer des interprétations basiques et avancées sur tous les types de données de puits de forage, y compris les logs, les carottes, les images, les photos et les sections fines. Nous pouvons concevoir notre propre flux de travail pétrophysique pour générer des interprétations rapides significatives basées sur l'expertise locale et l'application des méthodes standard de l'industrie pour la lithologie, la porosité, la saturation et la perméabilité.

I.4.3. Chargement des données :

Les diagraphies (logs) de puits ont été utilisées dans l'exploration et le développement de puits dans le cadre de forage pratique, pour fournir plus d'informations et une plus grande précision de l'estimation des réserves.

Les diagraphies sont utilisées pour identifier la profondeur et l'épaisseur de zone de production et pour distinguer le contact huil-eau-gaz.

Les données brutes disponibles sont les fichiers « .las ». LAS signifie Log ASCII Standard, qui est un format de fichier commun dans l'industrie pétrolière et gazière pour stocker des informations de diagraphie (log) de forage.

Les fichiers ".las" disponibles contiennent les diagraphies de puits. Analyse de certains de ces diagraphies pour obtenir la lithologie du réservoir ainsi que certaines propriétés pétrophysiques.

Tous les formats de données courants - provenant de divers outils, fournisseurs et millésimes de données sont facilement chargés via une puissante interface glisser-déposer

dans la plate-forme Techlog. Nous pouvons ensuite créer rapidement une vue d'ensemble pour visualiser, valider et corriger les données pour les effets environnementaux et les effets du bruit du signal.

Schlumberger Techlog64 2015.3 (rev: 158051)	Project: test 1	Status: in progress	Workspace: Techlog	workspace	×
Project Home Plot Data Ut	ility Studio	Petrophysics	Geology Geom	echanics Dri	lling 〈→ ‡‡ へ 🥐
Save Import Export Print Window screenshot	Composer	Report editor B / J		×	Ļ
Project	lechreport		FONT ∓ II X	loois view	Window
Search Search	Ten C Secondaria Control Contr	sarch (a) import (b) import sets A HTF-35 A HTF-35 CGR S DEPT CGR S DEPT CGR S TENS S TENS S TENS S TENS S TENS S TENS S TURA UURAN UURAN	ITF-35_6inO Measur Gamma Cable T Thoriun Uraniun	Tecl	h log ²⁰¹⁵
				1. A.	RAM

Figure.19 : Chargement des données par Techlog.

Excise Edition Format on Density Porosity 0,533 TRI #OPHI #OPHI Formation Density Porosity - loonite 0,533 TRI #OPHO Formation Density Porosity - sandstone 0,533 TRI #OPHO Formation Density Porosity - sandstone 0,533 TRI #RNN Formation Density computed from near detector 0,533 TRI #RNN Formation Density computed from near detector 0,533 TRI #RNC NO #RNC Near Density Calibrated NO NO NO NO #NDEC Near Density Calibrated NO NO NO NO #FDCC Far Barite Calibrated NO NO NO NO #FDCC Far Density Calibrated NO NO NO NO #FDCC Far Density Calibrated NO NO NO NO NO #DET Ttho Doy Calibrated NO	HGAW-11_PH6I	N_MAIN OH - Bloc-notes	10.00	P	1	And and	A	
#PPHI Formation Density Porosity - Limestone 0,333 TRI #DLTM Formation Density Porosity - Limestone 0,333 TRI #PPHD Formation Density Porosity - Sandstone 0,533 TRI #PPHD Formation Density Computed from near detector 0,533 TRI #RNOM Formation Density Computed from near detector 0,533 TRI #RNOK Formation Density Computed from far detector 0,533 TRI #RNOK No No No No #RNOK Near Density Calibrated No No #RNC Near Teal (Tichology Calibrated No No #FBAC Far Barite Calibrated No No #FDC Far Uthology Calibrated No No #FDC Far Uthology Calibrated No No No #Statt2E Fags No Fagge No -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00	Fichier Edition	Format Affichage ?						
HELL NO **DATAOK2 Density Data OK NO **A DEPT TENS BHVT AHVT CAL2 BITSIZE CAL3 CAL4 CAL5 CAL6 GR CAL1 RT10 RT90 R760 R730 3150.4128 -999.00 <td>#DPHI #DLIM #DPHD #DPHS #RHON #NBAC #NDEC #NBAC #NDEC #NLIC #FBAC #FDEC #FPEC</td> <td>Formation Density Porosit Formation Density Porosit Formation Density Porosit Formation Density Porosit Formation Density compute Near Barite Calibrated Near Density Calibrated Near Lithology Calibrated Far Barite Calibrated Far Density Calibrated Far Density Calibrated Far Peak Calibrated</td> <td>Y y - Limestone y - Dolomite dy - Sandstone d from nar detector d from far detector</td> <td>0,533 0,533 0,533 0,533 0,533 0,533</td> <td>TRI TRI TRI TRI TRI TRI NO NO NO NO NO</td> <td></td> <td></td> <td></td>	#DPHI #DLIM #DPHD #DPHS #RHON #NBAC #NDEC #NBAC #NDEC #NLIC #FBAC #FDEC #FPEC	Formation Density Porosit Formation Density Porosit Formation Density Porosit Formation Density Porosit Formation Density compute Near Barite Calibrated Near Density Calibrated Near Lithology Calibrated Far Barite Calibrated Far Density Calibrated Far Density Calibrated Far Peak Calibrated	Y y - Limestone y - Dolomite dy - Sandstone d from nar detector d from far detector	0,533 0,533 0,533 0,533 0,533 0,533	TRI TRI TRI TRI TRI TRI NO NO NO NO NO			
	<pre>#FLIC #DATAOK2 ~A DEPT 3150.4128 3150.5652 3150.7176 3150.724 3151.0224 3151.1748 3151.3272 3151.4796 3151.6320 3151.7844 3152.3940 3152.2416 3152.2416 3152.2416 3152.5464 3152.8512</pre>	Part Littlib logy Carlb acted Density Data OK TENS BHVT AHVT CAL2 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00 -999,00	BITSIZE CAL1 CAL3 -999.00 -999.00 -999.00 -999.00 -999.00 -999.	CAL4 CAL5 CAL6 -999.00 -999.00 -999.00<	NO GR CALI -999.00 -999.00	RT10 RT90 -999.00 -999.00 -999.00 -99	RT60 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00	RT30 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00 -999.00

Figure.20 : données sous forme LAS

II.4.4. L'objective de plate forme Techlog :

L'objectif est de traiter et d'interpréter les diagraphies du puits c'est déterminer la stratigraphie et les caractéristiques pétrophysiques du réservoir. L'étude a été réalisée grâce à une analyse qualitative et quantitative par la plate forme techlog.

L'analyse comprend la détermination des zones de roche perméable et dans chaque formation calcul de l'épaisseur de la formation et les propriétés pétrophysiques de chaque formation doivent être déterminé. La méthodologie pour chaque étape

II.4.5. Amélioration de l'efficacité opérationnelle de Techlog :

Nous pouvons effectuer des analyses en temps réel pour améliorer l'efficacité des opérations et réduire le temps de rotation entre le forage et l'analyse. Exécutez soit des modèles en conserve à partir du menu Techlog, soit nos propres scripts d'évaluation personnalisés qui intègrent notre propriété intellectuelle et optimisent l'interprétation dans des situations particulières.

Une fois que la minéralogie et les fluides des réservoirs sont bien compris et vérifiés par rapport aux données de base existantes, on peut les comparer aux réponses logarithmiques en utilisant des réseaux neuronaux pour extraire les faciès-nodules avec les attributs géologiques et des réservoirs. Ces attributs nous permettent de mieux comprendre le comportement de perméabilité des réservoirs. La perméabilité peut également être modélisée à l'aide de logs pondérés à l'aide de données de base et comparée aux résultats précédents.

Accroître le développement sur le terrain avec la plateforme Petrel. Les résultats pétrophysiques sont facilement extrapolés et envoyés au monde de la modélisation des réservoirs pour améliorer notre stratégie de développement sur le terrain. La plate-forme Techlog fournit des liens efficaces de l'échelle du puits de forage aux modèles géologiques, à la géomécanique et à l'ingénierie des réservoirs dans la plate-forme logicielle petrel.

II.4.6. Systems de Techlog

Une condition préalable pour tous les modules de la plate-forme Techlog, un noyau fournit la fonctionnalité de base, la visualisation et les capacités de recherche et de chargement des données.

Il y a 3 noyaux disponibles :

Base Techlog :

Une licence de base qui est fondamentale pour G&G, RE, le forage et les flux de travaux pétrophysiques.

Visionneuse Techlog :

Une interface utilisateur simplifiée et légère pour l'analyse des données et des flux de travail spécifiques.

Cadre océanique :

L'ocean de Techlog permet aux développeurs de relier leurs logiciels et algorithmes propriétaires à la plate-forme Techlog.

II.5. Conclusion :

Après le travail sur le plate forme Techlog, nous tirons les informations et on les a appliqués sur cet plate forme pour les analyser et interpréter la diagraphie des puits de notre zone d'étude.

III.1. INTRODUCTION :

Les propriétés physiques des roches sont estimées au moyen d'une analyse quantitative des diagraphies par Wireline. Ces propriétés sont définies par leurs formules respectives et dépendent du changement de géologie du réservoir avec la profondeur enregistrée par les outils géophysiques. La caractérisation d'un réservoir nécessite également des paramètres qualitatifs qui dépendront de caractéristiques du réservoir telles que lithologie (grès, calcaire), fluide du réservoir (huile, eau, gaz), roches (à grains fins, à grains grossiers, à grains moyens, schistes, propres, poreux, fracturé) mais aussi sur les matériaux utilisés lors du forage du puits comme le type de fluide de forage (boue d'eau douce, boue d'eau saliné ou boue à base d'huile). En effectuant l'analyse pétrophysique détaillée des réservoirs Par traitement des formules applicables dans la plate forme pour générer les caractéristiques pétrophysiques de réservoir.

III.2. Calcul des paramètres pétrophysiques :

III.2.1. Volume d'argile(Vsh) :

Dans les réservoirs argileux, beaucoup de paramètres sont affectés par la présence des argiles. Dans ce cas les corrections des effets d'argile sont obligatoires, pour mieux estimer ces paramètres. La présence d'argile dans la roche réservoir affecte la porosité et la perméabilité.

La correction de porosité c'est l'élimination de tous les vides remplis par l'argile, afin de donner une porosité significative. Le volume d'argile est aussi employé dans le calcul des différentes saturations. Il est considéré comme un indicateur de la qualité du réservoir dans lequel la teneur en argile est inférieure révèle généralement un meilleur réservoir.

Plusieurs méthodes peuvent estimer Vsh, la plus souvent utilisée le log (gamma ray GR) ; il y'a d'autres méthodes pour calculer ce paramètre [4]

✓ Méthode des Gamma ray :

C'est l'une des meilleures méthodes utilisées pour identifier et déterminer le volume d'argile, principalement en raison de sa réponse sensible aux minéraux radioactifs normalement concentrés dans les formations argileuses.

En considérant que la valeur moyenne maximale du Gamma ray est pure100% d'argile (ligne d'argile) et la valeur la plus basse pour indiquer ligne de sable.

Si l'échelle est considérée comme linéaire, toute valeur (GR) de Log des Gamma ray donnera l'indice des rayons gamma à partir de l'équation linéaire.

Lors du calcul effectué sur les zones d'intérêt, le Vsh a été calculé automatiquement à

Résultats et Discussions

l'aide de la formule indiquée ci-dessus de log GR avec le plate forme Techlog, le volume des valeurs de argile donne une indication de la lithologie de la formation dans la zone du réservoir.[9]

Select wells/datasets: wells.datasets: A GS-56.LQC A HGAW-10.LQC3 A HTF-35.LQC2 A MD-108 BIS.LQC4 A OMU-111.LQC6 A OMM-302-BIS.LQC7 A OMO-633.LQC5 S M2R1 M2R2 M2R3 M2R6		Data	type filter			Data type assignment	
wells.datasets in common A GS-56.LQC HGAW-10.LQC3 HTF-35.LQC2 MD-108 BIS.LQC4 OMU-108 BIS.LQC4 OMU-108 LSLQC4 OMU-633.LQC5 M2R1 M2R3 M2R3 M2R3	elect wells/datasets:		Select input:				
GS-56.LQC III S DTSQI Gamma Ray KTH HGAW-10.LQC3 III S FTEMP Gamma Ray.Gamma Ray Gamma Ray Matrix > MD-108 BIS.LQC4 III Gamma Ray.Gamma Ray Gamma Ray Matrix > Gamma Ray Matrix > MD-108 BIS.LQC4 IIII ME_FLAG Gamma Ray Shale > Gamma Ray Shale > MOM-302-BIS.LQC7 M2R1 M2R2 M2R3 M2R6 >	wells.datasets	×	in common	•			
A HGAW-10.LQC3 A HTF-35.LQC2 A MD-108 BIS.LQC4 A OMM-302-BIS.LQC7 A OMO-633.LQC5 A OMO-63	GS-56.LQC		TSQI	*	Gamma Ray >	<mark>§</mark> ктн	
▲ MD-108 BIS.LQC4 ▲ GME_FLAG Gamma Ray Shale > ▲ OMJ-111.LQC6 ▲ OMM-302-BIS.LQC7 ▲ M2R1 ▲ OMO-633.LQC5 ▲ M2R3 ▲ M2R6	A HGAW-10.LQC3 A HTF-35.LQC2		FTEMP Gamma Ray.Gamma Ray		Gamma Ray Matrix >		
A OMJ-111.LQC6 A OMM-302-BIS.LQC7 A OMO-633.LQC5 M2R3 M2R6	MD-108 BIS.LQC4		S GME_FLAG		Gamma Ray Shale >		
A OMO-633.LQC5 A M2R2 M2R3 M2R6	A OMJ-111.LQC6		M2R1		×		
5 M2R3 5 M2R6	MO-633.LQC5		M2R2		1		
			M2R3				
M2R9			M2R9				
				P.			

Vsh (%) = (GR lu - GR min) / (GR max - GR min).100

Figure.21. fenêtre de calcule Vsh gamma ray

III.2.2. Porosité et saturation d'eau :

III.2.2.1. Estimation de la porosité :

La porosité est un élément essentiel dans l'exploration pétrolière, elle est considérée comme étant une condition essentielle pour l'accumulation des hydrocarbures. Vue l'importance et la sensibilité de cette dernière beaucoup de méthodes ont été réalisé, afin de pouvoir l'estimer le mieux possible. Parmi les méthodes d'estimations on peut citer les suivantes :

4 Porosité Densité :

A partir de log de Densité on obtient la valeur de porosité densité dans les formations propres, Cette porosité a été calculée suivant la loi :

 $\Phi d = \frac{\mathrm{pma} - \mathrm{pb}}{\mathrm{pma} - \mathrm{pf}}$

Où

 ρb : densité de formation (g /cm³).

 ρf : densité du filtrat de boue (g /cm³).

 ρ ma : densité de la matrice (g/cm³).

	Data typ	pe filter		D	ata type assignment
elect wells/datasets:	Sel	lect input:			
wells,datasets	▼ al	1	-		
GS-56.LQC		CALI	A	Bulk Density >	Bulk Density
HGAW-10.LQC3		DENC		Resistivity >	Array Resistivity
MD-108 BIS.LQC4		Diameter.Caliper		Formation Temperature >	S FTEMP
▲ OMJ-111.LQC6 ▲ OMM-302-BIS.LQC7 ▲ OMO-633.LQC5	DT DT SHEAR		Matrix Density >		
	Gamma Ray.Gamma Ray	>	Fluid Density >		
		PERM		Cementation Exponent (m) >	
		Permeability.Permeability		Saturation Exponent (n) >	
		Porosity.Porosity	v	Invasion Factor >	
		4 · · · · · · · · · · · · · · · · · · ·			

Figure.22. fenêtre de calcule la porosité densité

4 Porosité sonique :

A partir de log de sonique on obtient la valeur de porosité Sonique dans les formations propres (grés).

Cette porosité a été calculée suivant la loi de Raymer, Hunt & Gartner[10] :

$$\boldsymbol{\Phi}\boldsymbol{s} = \frac{\Delta \mathbf{tlue} - \Delta \mathbf{tma}}{\Delta \mathbf{tf} - \Delta \mathbf{tma}}$$

Où

 $\Delta tlue$: valeur lue en face de l'intervalle considère (µs/ft).

 Δtf : valeur du temps de parcours dans le filtrat de boue (µs/ft).

 Δ tma : valeur du temps de parcours dans la matrice (µs/ft).

Résultats et Discussions

	Data type f	ilter		Dat	ta type assignment
elect wells/datasets:	Select i	input:			
vells.datasets	▼ all	•			
GS-56.LQC		Reference.Measured Depth		Compressional Slowness >	Compressional Slowness
HGAW-10.LQC3		RES_MED		Resistivity >	Array Resistivity
MD-108 BIS.LQC4	5	Resistivity. Array Resistivity		Formation Temperature >	S FTEMP
OMM-302-BIS.LQC7 OMO-633.LQC5 OMO-633.LQC5 Suration.Flushed Zone V Saturation.Water Saturatio Saturation.Water Saturatio Saturation.Water Saturatio Sowness.Shear Slowness W Temperature.Formation Te Volume.Bulk Fluid Volume	Resistivity.Micro Resistivity Saturation.Flushed Zone Wate		Compressional Slowness Matrix >		
	Saturation.Water Saturation	>	Compressional Slowness Fluid >		
	Slowness.Compressional Slov		Cementation Exponent (m) >		
	Slowness.Shear Slowness		Saturation Exponent (n) >		
	Volume.Bulk Fluid Volume		Invasion Factor >		
		4 × × × × × ×			

Figure.23. fenêtre de calcule la porosité sonique

4 Porosité de Neutron - Densité (c xN-D, φN-Deff)

La combinaison d'un log de neutrons qui mesure l'indice d'hydrogène (teneur en fluide) d'une formation, et le log de densité permet de lire à la fois la matrice et le fluide contient dans la formation. Cette combinaison est considérée comme une bonne approche pour déterminer la porosité.[3]

La porosité totale est calculée à partir de la méthode ci-dessous :

	Data type filter		Data type assignment				
elect wells/datasets: vells.datasets	Select input:	•					
GS-56.LQC	CALI	A.	Neutron Porosity >				
HGAW-10.LQC3 HTF-35.LQC2			Bulk Density >	Bulk Density			
MD-108 BIS.LQC4	5 Density.Bulk Density		Resistivity >	Array Resistivity			
OMJ-111.LQC6	MM-302-BIS.LQC7	rrectio	Formation Temperature >	5 FTEMP			
🛔 ОМО-633.LQC5	J DT		Fluid Density >				
	Gamma Ray.Gamma Ra	y	Cementation Exponent (m) >				
	PERM	br.	Saturation Exponent (n) >				
	S POR	-y	Invasion Factor >				
	Porosity.Effective Porosi Porosity.Neutron Porosi	ty tv ⊎	Color >				
	<	▶					

ΦΝ-D=0.5(ΦΝ-ΦD)

Figure.24. fenêtre de calcule la porosité neutron-densité

III.2.3. Saturation d'eau :

Elle représente le volume occupé par le fluide au volume total des pores : $SW = \frac{vf}{vp}$

La partie du volume utile de la roche occupée par les hydrocarbures Sh, est déterminée après le calcul de la saturation en eau de formation Sw.

Avec : n=2
$$Sw^n = \frac{Rx0}{Rt} = \frac{F.Rw}{Rt}$$

La détermination de la saturation en eau (Sw) est le plus difficile mais le plus important de tous les calculs pétrophysiques. Parce que les valeurs de saturation d'eau sont utilisées pour quantifier la saturation en hydrocarbures (1 - Sw).

La formule d'Archie est utilisée dans la formation propre Vsh< 10%:

$$\frac{1}{\mathrm{Rt}} = \frac{\mathrm{sw}^2}{F.\mathrm{Rw}}$$

Dans le cas des formations argileuses plusieurs relations ont été établies suivant la nature des argiles. [4]

	Data typ	pe filter		D	lata type assignment
elect wells/datasets: wells.datasets	Se T	elect input:	•		
GS-56.LQC	8	👔 🕺 CALI	42 10	Formation Resistivity >	% M2R9
HGAW-10.LQC3 HTF-35.LQC2		DEN DENC		Porosity >	Porosity
MD-108 BIS.LQC4		\\ 👭 Density.Bulk Density		Tortuosity Factor (a) >	
OMJ-111.LQC6 OMM-302-BIS.LQC7		Density.Bulk Density Correctio	5	Cementation Exponent (m) >	
A OMO-633.LQC5		DT		Saturation Exponent (n) >	
		DI_SHEAR Gamma Ray.Gamma Ray PERM PERM	•	Formation Water Resistivity >	

Figure.25. fenêtre de calcule la saturation

➢ Bulk volume water (BVW) :

C'est le produit de la saturation en eau (Sw) et de la porosité (ϕ). La formule utilisée pour déterminer la BVW :[9]

$$\mathbf{BVW} = \mathbf{Sw} \times \boldsymbol{\varphi}$$

> Saturation irréductible de l'eau (Swir)

C'est l'eau résiduelle autour du grain des roches qui ne peut pas être déplacée hors du réservoir avec huile ou eau.[9]

Dans une formation propre :

Swir =
$$\Phi e \times Sw$$
En formations argileux :Swir = $(\Phi T \times Sw) / (1 - (Vsh)^2) \times \Phi e$

Résultats et Discussions

> Résistivité de l'eau de formation (Rw) :

La résistivité de l'eau de formation est le paramètre clé dans la détermination de saturation des hydrocarbures **Shc** et saturation d'eau **Sw**.

Le filtrat de boue de forage envahit les zones perméables, de plus, la salinité du filtrat de boue peut varier sur une base ordinaire. Pour bien évaluer les logs de résistivités, **Rmf** (résistivité du filtrat de boue) doit être mesurée quotidiennement sur une plate-forme de forage.

Lorsque l'eau de la boue envahit une zone à gaz portant de l'eau salée, les résistivités entourant le puits seront considérablement modifiées.

La méthode la plus simple et plus rapide est de l'obtenir des catalogues faites suite à des recherches sur le même bassin, ou bien à partir des analyses chimiques, connaissances précédentes sur la région, tests de forage, ou bien dans les cas souvent rencontrés à partir des logs de diagraphies (log SP, logs de résistivités).[9]

III.2.4. Perméabilité (K) :

La perméabilité peut être prédite à partir de différents modèles :

L'équation de Wyllie et Rose [4] :

$K = C \times \Phi 3 / Swir$

Morris et Biggs (1967) en tant que modèle modifié par Timur en 1968 et Schlumberger en 1972 comme suit :

	Data	type filter	Data type assignment					
Select wells/datasets:		Select input:						
A G5-56.LQC A HGAW-10.LQC3 A HTF-35.LQC2 MD-10.8 BIS.LQC4 MD-10.8 BIS.LQC4 A OMJ-111.LQC6 A OMM-302-BIS.LQC7 A OMO-633.LQC5		all CALI Diameter.Caliper DT DT DT S DT CALI Gamma Ray.Gamma Ray PERM Permeability.Permeability POR POR POR POR POR POR POR POR Porsity.Effective Porosity P Padesesse Measured Double	Porosity > Irreducible Water Saturation >	Porosity Create * Cancel				

$K = a \times (\Phi b / Swirc)$

Figure.26: fenêtre de perméabilité wyllieb rose dans la Techlog

III.3. PRESENTATION DES PUITS D'ETUDE ET SON PARAMETRE:

Pour réaliser notre étude nous avons utilisé des données diagraphiques des trois puits (OMM-302. OMJ-111, MD-108, OMO-633) qui sont répartis sur notre champ d'étude HASSI MESSAOUD.

					Diagraphie		
Puits	Réservoir	Unité	Toi(m)	Mur(m)	enregistré		
	Cambro-ordivicien	D5	3402	3432	KTH-CAL-R1-R2		
MD-108	Cambrien Ra	D4	3432	3454	DTCQI-MD- FTEMP		
OMJ-111	Cambro-ordivicien	D5	3410	3455	KTH-CAL-MD -R1-R2-R3-R6-R9-		
	Cambrien Ra	D4	3455	3475	DTSQI-DTCQI- CNC-ZDEN- FTEMP		
OMM-	Cambro-ordivicien	D5	3395	3442	KTH-CAL-MD- R1-R2-R3-R6-R9-		
302	Cambrien Ra	D4	3442	3465	-DTCQI-CNC ZDEN-FTEMP		
OMO-	Cambro-ordivicien	D5	3350	3390	KTH-MD-ZHOR- DTSQI-DTCQI-		
033	Cambrien Ra	D4	3390	3420	FTEMP- AT10-AT20-AT30- AT60-AT90		

Tableau.01:Les diagraphies enregistrées des puits

III.3.1.PUITS MD-108 :

III.3.1.1.FICHE TECHNIQUE DE PUITS MD-108 :

BAKER HUGHES a GE company			HIGH	DEFINITI GAMM CAL	ON IN A RA IPER DPEN	IDU Y LC LOG HOI	CTION LOG SM DG LE ***	
FILE NO:	COMPAN	Y	SONATRACH PRODUCTION					
	WELL		MD-108 BIS					
APINO: FIELD								
		E	GWDC-13	SWDC-133 COUNTRY ALGERIA				
Ver. 4.11	LOCATIO	DN:						
FINAL PRINT X: 802 577.038						BHP/	GR	
1:200 Y: 3 507 206.980							GR/CAL	
						CBL/	GR/CCL	
							ELEVATIONS:	
PERMANENT DATUM	GL			N <u>139.965 M</u>		KВ	150.160 M	
LOG MEASURED FRO	M DF		10.200 M	ABOVE P.D.		DF	150.160 M	
DRILL. MEAS. FROM	DF					GL	139.965 M	
DATE		19-N	IOV-2018					
RUN TRI	.	1		1				
SERVICE ORDER								
DEPTH DRILLER		3495	95.0 M					
DEPTH LOGGER		3495	95.0 M					
BOTTOM LOGGED IN	ERVAL	3495	5.0 M					
TOP LOGGED INTERV	AL	3401	1.0 M					
CASING DRILLER		7 IN	(Q	3401.0 M	+		e	
BIT SIZE		5401 6 IN						
TYPE OF FLUID IN HO	LE	OBM	1		+			
DENSITY VISC		0.86	G/C3	9.0 CP	1			
PH FLU	ID LOSS	NA		NA				
SOURCE OF SAMPLE		FLO	WLINE				·	
RM AT MEAS. TEMP.		NA	(0	NA NA			@	
RMF AT MEAS. TEMP.		NA	(0	0 NA			@	
RMC AT MEAS. TEMP		NA	(0	NA NA				
SOURCE OF RMF	RMC	NA		NA				
		NA	0	y NA			œ	
MAX RECORDED TE		16 H	IOURS		+			
		н.	787	НМО	-			
RECORDED BY		B TC	UAHIR		+		I	
WITNESSED BY		S.LA	RABI / Z.BENI	VACER	1			

III.3.1.2. les diagraphies enregistrées de puits MD-108 :

Figure.27 : plot de diagraphies enregistrées de puits MD-108

III.3.1.3 Interprétation des logs diagraphique:

• Détermination de volume d'argile du puits MD-108 :

Figure.28 : plot de volume d'argile de puits MD-108

Well: MD-108 BIS UWI: Elevation: Х: SPUD date: Short name: Elevation datum: Y: Completion date: Longitude: Latitude: Status: Operator: Long name: Total depth: Coordinate system: PHIT_S Vshale Reference (M) (VSH_GR) VSH_GR * CAL **MD-108** v/v 1:200 CAL * PHIT_SS PHIT_S IN 16 30 30 3405 3410 3415 DS 3420 × 3425 3430 3435 3440 **D**4 3445 3450

• Estimation de porosité totale et effective du puits MD-108 :

Figure.29 : plot de porosité de puits MD-108 :

• Détermination la saturation du puits MD-108 :

Figure.30 : plot de saturation d'eau de puits MD-108

• Détermination la perméabilité de puits MD-108 :

Figure.31 : plot de perméabilité de puits MD-108

• DETERMINATION DES PARAMETRES PETROPHISIQUE DE PUITS MD-

Figure.32 : Plot des paramètres pétrophysiques de puits MD-108

III.3.2. PUIT OMJ-111 :

III.3.2.1. FICHE TECHNIQUE DE PUITS OMJ-111 :

BAKER HUGHES a GE company			BOREHOLE PROFILE GAMMA RAY LOG CALIPER LOG IN 6" OPEN HOLE					
FILE NO:	COMPAN	Y	SONATR/	CH PRODU	ICTION			
	WELL		OMJ-111				;	
API NO:	FIELD		HASSI MESSAOUD					
		IE	SPEC-232	C	OUNTR	Y ALGE	RIA	
Version	LOCATIO	DN:				OTHE	R SERVICES	
FINAL PRINT	LAT : 31DE	EG 49'	43.13595" N			HDIL_GR		
SCALE 1:200	LONG : 05	DEG 5	2' 18.16933"	E		ZDL CN	GBIL_GR	
	X= 771 81	1.738 N	38 M			DSL GR		
	Y= 3 524 7	68.061	М			XMAC_GR	CAL	
PERMANENT DATUMGLLOG MEASURED FROMDFDRILL. MEAS. FROMDF			_ ELEVATIO 10.52 M	N <u>173.47 M</u> ABOVE P.D.		ELE KB 183 DF 183 GL 173	EVATIONS: 99 M 99 M 47 M	
DATE		01-J/	AN-2018					
RUN	TRIP	3		1				
SERVICE ORDER		-						
DEPTH DRILLER		3485	3485.0 M					
DEPTH LOGGER		3485	3485.4 M					
BOTTOM LOGGE	D INTERVAL	3485	3485.4 M					
TOP LOGGED INT	ERVAL	3395	3395.0 M					
CASING DRILLER		7 IN	7 IN @ 3417.0 M			0	9	
		3418	.2 M					
		OPM						
DENSITY	VISCOSITY	1 38	GIC3	41.0 CP	_			
PH	FLUID LOSS	NA	0/00	NA				
SOURCE OF SAM	PLE	FLO	VLINE					
RM AT MEAS. TEI	MP.	NA	Q	NA		Ø	0	
RMF AT MEAS. TH	EMP.	NA	0	2		0	0	
RMC AT MEAS. T	EMP.	NA	0	NA		0	0	
SOURCE OF RMF	RMC	NA		NA				
RM AT BHT		N/A	0	2 N/A		0	0	
TIME SINCE CIRC	ULATION	28 HI	RS					
MAX. RECORDED	TEMP.	120.1	4 DEGC					
EQUIP. NO.	LOCATION	HL-6	707	HMD				
RECORDED BY		H.CH	IERIFI / T.DJE	FFAL	_			
WITNESSED DV		MDD	KEBBAB / T	METID				

III.3.2.2. Les diagraphies enregistrées de puits OMJ-111

Figure.33 : plot de diagraphies enregistrées de puits OMJ-111

• DETRMINATION DES PARAMETRES PETROPHISIQUE DE PUITS OMJ-111

Figure.34: Plot des paramètres pétrophysiques de puits OMJ-111

III.3.3. PUITS OMM-302-BIS :

III.3.3.1. FICHE TECHNIQUE DE PUITS OMM-302-BIS :

BAKER HUGHE a GE comp		HIGH DEFINITION INDUCTION LOG GAMMA RAY LOG CALIPER LOG *** IN 6" OPEN HOLE ***						
FILE NO:	COMPAN	Y SONA	SONATRACH PRODUCTION					
API NO:	OMM-3 HASSI	OMM-302-BIS HASSI MESSAOUD						
	RIG NAM	E SPEC-	SPEC-232 COUNTRY ALGERIA					
Ver. 4.10 FINAL PRINT SCALE 1:200	Ver. 4.10 LOCATION: FINAL PRINT LAT : 31 DEG 43 SCALE 1:200 LONG : 5 DEG 4 X = 764 077.0 Y = 3 513837.98			3' 55.08" N 47' 13.63856 E 02 M 18 M				
PERMANENT DATUM LOG MEASURED FROM DRILL. MEAS. FROM	ELEV/	ELEVATION 143.23 M 10.5 M ABOVE P.D.			VATIONS: 73 M 73 M 23 M			
DATE	11-MAR-2018							
RUN TRIP		1	1					
SERVICE ORDER		-						
DEPTH DRILLER		3474.0 M	74.0 M					
DEPTH LOGGER		3476.5 M	76.5 M					
		3476.5 M	76.5 M					
	L	3396.U IVI	@ 3304 0 M		@			
		3396.0 M	₩ 3394.U WI		a	:		
BIT SIZE		6 IN		1				
TYPE OF FLUID IN HOLI	E	OBM						
DENSITY VISCO	OSITY	0.97 G/C3	12 CP	1				
PH FLUIC	DLOSS	NA	NA					
SOURCE OF SAMPLE		NA						
RM AT MEAS. TEMP.		NA	@ NA		a	2		
RMF AT MEAS. TEMP.		NA	@ NA		a	2		
RMC AT MEAS. TEMP.		NA	@ NA		<u>@</u>	2		
	RMC	NA	NA Reve					
		N/A	@ N/A		a	1		
TIME SINCE CIRCULATI	ON	15 HRS		-				
		120.3 DEGC	HMD	1	1			
RECORDED BY		ZASLAOUI		1				
WITNESSED BY		-						

III.3.3.2. Les diagraphies enregistrées de puits OMM-302-BIS :

Figure.35. Les diagraphies enregistrées de puits OMM-302-BIS

• DETERMINATION DES PARAMETRES PETROPHISIQUE DE PUITS OMM-302 :

Figure.36: Plot des paramètres pétrophysiques de puits OMM-302-BIS

III.3.4. PUITS OMO-633

III.3.4.1. FICHE TECHNIQUE DE PUITS OMO-633

Company:						Schlumberger			
		SH-DP-HMD							
Well:		OMO-6	33						
Field:		HASSI	MESSAC	DUD					
Rig Name :		NABORS E-21			Country A		GERIA		
nig Name.		NADON	01-21	-21 Country.			ALGENIA		
	A	AIT-HDAR-GR (BS: 6") After DST & Deepening							
	D	Date : 19-January-2019							
ano	S	Scale: 1/200							
SA(1 e		172.00	
S F.		HASSIMES	SAOUD			E	lev.: K.B	. 178.00 m	
SI N SI N		X = 788 629	,491 m				G.L	. 168.70 m	
ASSA	2	Y = 3 51775	54.980 m		-		D.F	. 178.00 m	
ZIIOS	2 in	Permanent	Datum:	-	Ground Level	E	lev.:	168.70	
	000	Log Measure	ed From:		Kelly Bushing	9.	.30 m	above Perm.Datum	
un un	I.c	Drilling Meas	sured From:		Kelly Bushing			I CHEMICARDON	
Na ild:	5	Rig Nam	e:	S	Section:	Lon	igitude:	Latitude:	
Rig Ve	3	NABORS	F21	21 6in OH		6° 2' 49.59' E		31" 45' 40.78" N	
Logging Date	- 18		19-Jan-201	19					
Run Number		R5A	R5A						
Depth Driller			3429.00 m	3429.00 m					
Schlumberger Depth			3431.50 m	3431.50 m					
Bottom Log Interval		3431.00 m							
Top Log Interval			3310.00 m	3310.00 m					
Casing Driller Size @ Depth			7 n	0	3308.00 m				
Casing Schlumberg	per		3310 m						
Bit Size			6 in						
Type Fluid In Hole			OBM					8	
Density	Va	scosity	0.86 g/cm3	<u>k</u>	29 s				
S Fluid Loss	P	н	4 cm3	-					
Source of Same	ple		N/A						
RM @ Meas Temp			N/A	NA					
RMF @ Meas Temp			NVA.	N/A					
RMC @ Meas ren	RMC @ Meas temp		N/A.	All'A All'A				Ť	
Source HMF	PO	MC SHT	N/A		N/A				
Kin @ brit	(Participal)	WP 60 DHT	ttT dop0		1 News			L	
Max Hecordeo Terr	pera	Time	19 100 201	-0	00-15-00				
Losses on Bottom			10-100-201	19-Jan-2019 21-00:00					
Logger on Doubin	line.	Title	5525	3	57H1			Ť	
Departed By		caron.	Abdaeram	ad Ban	M RENELH	AD1		-	
Hocolada by			Autosana						
Witnessed By			LARABIBE	LARABIBENNACER					

III.3.4.2. Les diagraphies enregistrées de puits OMO-633

Figure.37. Les diagraphies enregistrées de puits OMO-633

• DETERMINATION DES PARAMETRES PETROPHISIQUE DE PUITS OMO-

Figure.38: Plot des paramètres pétrophysiques de puits OMO-633
CHAPITRE.III

III.4.ANALYSE DES RESULTATS DE L'INTERPRETATION :

Les résultats moyens de l'interprétation sont calculés de la façon suivante :

$$Xmoy = \frac{\sum_{i=1}^{n} xi}{n}$$

Avec :

x: Les valeurs des points de mesure.

n: Nombre de points de mesure.

Les valeurs ainsi trouvés sont mentionnées dans les tableaux ci-après :

Puits MD-108 :

MD-108	VSHmoy	PHIT.SS	PHIT.S	PHIE	SW	BVW	PERM
	(%)	(%)	(%)	(%)	(%)	(%)	(md)
D5	6.71	1.52	15.67	12.6	9.76	0.71	91.15
D4	9.6	3.39	10.05	7.1	11.9	0.77	21.83

Tableau.02 : Récapitulation des résultats de l'interprétation puits MD-108

Le puits MD-108 est composé de deux zones principaux, Il s'agit de :

4 zone D5 avec une épaisseur de 30 m.

↓ zone D4 avec une épaisseur de 23m.

L'interprétation faite à l'aide du plate forme Techlog montre que l'unité D5 présente des bons paramètres pétrophysiques que unité D4.

On remarque que le volume d'argile dans la zone D5 est inferieur à celui dans la deuxième zone et il en résulte une porosité effective plus grande dans la première zone que la deuxième et par conséquence on déduit que la première zone est plus propre que la deuxième.

On remarque aussi que la saturation en eau est moins élevée dans les deux zones.que signifier la présence massive de hydrocarbure .dans un milieu grés argileux avec perméabilité moyenne.

CHAPITRE.III

> Puits OMJ-111 :

OMJ-	VSH	PHIT.S	PHIT.SS	PHIE	SW	BVW	PER
111	(%)	(%)	(%)	(%)	(%)	(%)	(md)
D5	17.42	6.21	5.08	3.6	62.63	3.12	57.42
D4	16.14	5.84	4.25	3.45	74.58	2.85	12.31

Tableau.03	: Récapitulation	des résultats d	le l'interprétation	puits OMJ-111
	1			

Le puits omj-111 est composé de deux zones :

- **4** D5 avec une épaisseur de 45 m.
- **4** D4 avec une épaisseur de 20 m.

L'interprétation faite à l'aide du plate forme Techlog nos donne la remarque que la porosité effective reste faible malgré que le volume d'argile est augmenté, et une bonne saturation en eau que signifie une faible saturation des hydrocarbures tous dans un millieu grés argileux de capacité de circulation médiocre.

> Puits OMM-302 :

OMM-302	VSH	PHIT.S	PHIT.SS	PHIE	SW	BVW	PER
	(%)	(%)	(%)	(%)	(%)	(%)	(md)
D5	18.34	4.26	8.93	6.17	43.42	3.16	185.06
D4	11.86	7.32	4.78	4.63	63.54	3.05	25.86

Tableau.04 : Récapitulation des résultats de l'interprétation puits OMM-302

Le puits OMM-302 est composé de deux zones principaux, Il s'agit de :

- **4** D5 avec une épaisseur de 47 m.
- **4** D4 avec une épaisseur de 23 m.

L'interprétation faite à l'aide du plate forme Techlog montre que l'unité D5 présente des bons paramètres pétrophysiques que unité D4 sauf le volume d'argile que faire l'unité D4 plus propre que D5, mais les autres paramètres petrophisique indique que il ya bon quantités des hydrocarbure (d'après la porosité effective et la saturation en eau) dans un milieu grés

CHAPITRE.III

argileux de perméabilité élevé tous qui donne une grand quantité de production (production optimale plus élevé que l'autre unité D4).

OMO-	Vsh	PHIT.S	PHIT.SS	PHIT.D	PHIE.S	PHIE.D	SW	BVW	PERM
633									
D5	42.5	9.75	6.32	12.5	7.68	6.25	17.19	1.34	30.97
D4	43.7	11.38	12.23	9.67	9.43	6.45	28.38	4.19	61.12

> PUITS OMO-633 :

Tableau.05 : Récapitulation des résultats de l'interprétation puits OMO-633

Le puits OMO-633est composé de deux zones principaux, Il s'agit de :

- **4** D5 avec une épaisseur de 40 m.
- **4** D4 avec une épaisseur de 30 m.

L'interprétation faite à l'aide du plate forme Techlog montre que les deux unités D5 D4 ne sont pas propre a cause de la teneur massive des argiles on dit que ils sont grés argileux avec des bonne paramètres petrophysique d'un réservoir d'hydrocarbure avec perméabilité médiocre.

III.5.Conclusion

Après l'analyse des résultats de l'interprétation on conclut que le puits MD-108 est le plus performant vu qu'il possède de très bonnes caractéristiques pétrophysiques avec un réservoir moyennement épais et le puits OMJ-111 est le plus faible candidat.

Conclusion générale

A travers cette étude, nous avons évalué une interprétation du réservoir gréseux du champ de Hassi Messaoud.

Les résultats de l'évaluation pétrophysique du réservoir gréseux du champ de Hassi Messaoud présentent des caractéristiques pétrophysiques presque moyennes dans l'ensemble de ses drains producteurs favorisant ainsi des accumulations éventuelles d'hydrocarbures.

Ceci est traduit par les valeurs moyennes des paramètres de réservoir tels que : la porosité, la saturation en eau et le volume d'argile.

Cependant, l'utilisation du logiciel « Techlog» nous a facilité la tâche de traitement et d'évaluation des paramètres pétrophysiques à travers ses modules interactifs.

Bibliographie

- [1]: Amrani Kahina "Etude de l'influence de la géologie sur la mise en place du forage horizontal sur le champ de Hassi Messaoud " mémoire de fin d'étude de l'université de Bejaia 2016.
- [2]: Hamza Benessam" CARACTÉRISATION ET MODÉLISATION DU RÉSERVOIRE CAMBRO-ORDOVICIEN DE LA ZONE 23 DU CHAMP DE HASSI MESSAOUD"mémoire de fin d'étude de l'université de Tlemcen 2016.
- [3]: SOUILAH OMAR "apport des diagraphies a la reconnaissance géologique de réservoir cambrien Ra dans le secteur Nord-Ouest du champ de hassi messaoud " mémoire de fin d'étude de l'université de Ouargla 2016.
- [4]: Brik Ramzi " Interprétations et analyses des paramètres pétrophysiques à partir des diagraphies différées par l'utilisation du IP dans le champ du Gassi El Agreb."mémoire de fin d'étude de l'université de Ouargla 2018.
- [5]: SALIMA BLAL " ETUDE PETROPHYSIQUE ET DIAGRAPHIQUE De RESERVOIR R1 (CAMBRIEN) DE LA ZONE 17 -CHAMP DE HASSI MESSAOUD" mémoire de fin d'étude de l'université de Tlemcen 2013.
- **4** [6] : MR ; MCEIBAH.I " Notions de réservoir et propriété pétrophysiques associés "
- [7]: ZAHI ABDELHAMID " Interprétation et Analyse des Paramètres Pétrophysiques a partir des Diagraphies Différées du réservoir dévonien F6 du champ de TFT (bassin d'ILLIZI " mémoire de fin d'étude de l'université de Ouargla 2013
- **4** [8] : Hacine Rachid " Méthodes de diagraphies " Institue Algérien de Pétrole.
- [9]: Benhamida Mohamed Amin " interprétation et analysé des paramètres pétrophysiques a partir des diagraphies différés de réservoir gréseuse dans le champ de Hassi Messaoud " mémoire de fin d'étude de l'université de Ouargla 2017.
- [10]: BENACHOUR Hamza " Evaluation corrélative et diagraphique des paramètres pétrophysiques dans le gisement de BenKahla sud, réservoir TAGI (Berkaoui, bassin de Oued Mya)" mémoire de fin d'étude de l'université Ouargla 2016.

منخص:

قمنا بدراسة المعلومات البتروفيزيائية لحوض حاسي مسعود بصحراء الجزائر باستخدام التسجيلات السلكية .هذا النوع من الدراسة يسمح لنا بالكشف السريع عن منطقة الذبذبات الصوتية و تحديد الخصائص الصخرية و تقدير المسامية و التشبع للمنطقة المدروسة. من أدوات التسجيل نذكر أشعة جاما، النيوترون، المقاومية، أدوات الكثافة و الأدوات الصوتية، استخدم في الدراسة برنامج Techlog الذي يترجم المعلومات البتروفيزيائية في مخططات. كشفت دراستنا أن المصارف (D5, D4) في MD-108، 111-OM، 633-OMO و OMM-302 هي المصارف المنتجة. المحمارف المنتجة.

RESEUME :

Dans l'étude du réservoir de Hassi Messaoud, on a utilisé les diagraphies différées. Les enregistrements de ces diagraphies nous renseignent sur les paramètres pétrophyisiques et nous confirment la présence des hydrocarbures dans les forages en trou ouvert. Nous nous limiterons aux outils qui permettent une mise en évidence rapide sur chantier des zones réservoirs et de déterminer la lithologie, la porosité et la saturation de ces zones.

Les diagraphies utilisées sont: le caliper, le gamma ray, la résistivité, le neutron, les outils de densité et le sonique. Le software « Techlog» nous a permis d'analyser et d'exploiter les données des logs et nous a permis de faire l'évaluation des paramètres pétrophysiques du réservoir gréseux de Hassi Messaoud.

Notre étude a révélé que les drains (D5, D4) dans MD-108, OMJ-111, OMO-633 et dans OMM-302 sont les drains producteurs.

Mots clés : diagraphies, Techlog, réservoir, drains, pétrophysique.

ABSTRACT:

In the study of the Hassi Messaoud basin we used wireline logs. These records tell us about the pétrophysics parameters and we confirm the presence of hydrocarbons in the reservoir. We limit ourselves to the tools that allow rapid detection in the reservoir and determine the lithology, porosity and saturation .The logs used are: caliper, gamma ray, resistivity, neutron, density tools and sonic. The software "TechLog" enabled us to analyze and use the data log and allowed us to make the evaluation pétrophysics of the sandy reservoir of Hassi Messaoud.

Our study revealed that the drains (D5, D4) in MD-108, OMJ-111, OMO-633, and in OMM-302 are the producing drains.

Key words: wireline logs, Techlog, reservoir, drains, pétrophysics.