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NOTATIONS

»V : denotes the full gradient operator.

» div: denotes the full divergence operator.

» V., : denotes the gradient in the slow variable.

» div,: denotes the divergence in the slow variable.
» V,: denotes the gradient in the fast variable.

» div,: denotes the divergence in the fast variable.

» curl,: denotes the rotation vector in the slow variable in two dimensions, such that

__0
Oxo

e
61’1

curl, =

» curl,: denotes the rotation vector in the fast variable in two dimensions, such that

_ 0
Oy2
curl, =
! 0
oy1
- 1 .
» <>: denotes the mean operator which is defined by < . >= m fY .dy, where |Y| is the measure

of Y.

(R™), which are Y-periodic.

loc

» L;(Y): denotes the subspace of functions in L}

» H/(Y): denotes the subspace of functions in Hj,

loc

(R™, which are Y-periodic.

» M7*™: denotes the set of n X n symmetric matrices.
M0, ,9) = { 4 € L (@ MP")sls! < A < GG for any € R}

viil



where « is the uniform coercivity constant and 5 is L*™- bound, with «, 8 are positive, such that
0<a<p.

» M™": denotes the set of all possibly non-symmetric where,

M(a, 5,9Q) = {A € L‘”(Q;M”X”);a|§|2 < A(z)e.€ < BIEP for any € € Rn}

» M(a, 5,9Q): denotes the set of n x n symmetric matrices,
M(a, 8,82) = {A(:L‘) € L>®(Q; M) such thata|¢|* < A(x)€.€ < BIE]* for any € € R”}

where « is the uniform coercivity constant and 3 is L*°- bound, with «, § are positive, such that
O<a<p. .

» M(a, 5,Q): denotes the set of all possibly non-symmetric

M(a, 5,Q) = {A(az) € L= (€ M™ ") such thata|é]? < A(z)€.& < BIE]? for any € € R”}

>D/() = [CR(Q).

> C’jfo(Y): denotes the space of infinitely differentiable functions in R™ which are periodic of period
Y.

» C4(Y) : denotes the Banach space of continuous and Y-periodic functions. Eventually, denotes the
space of infinitely smooth and compactly supported functions in €2 with values in the space C’QX’(Y).
» D(;C°(Y)) : denotes the space of infinitely differentiable functions with compact support in
with respect to the first argument and taking values in C7* (Y') with respect to the second argument.
) R compactly embedded .

»0;;: represents the symbol of Kronecker .

» n; the outer normal.
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INTRODUCTION

This work aims to the asymptotic study of the boundary layers in periodic homogenization of some
elliptical problem.
This thesis contained two parts:

x The first part puts forward the improvement of the estimates obtained on the boundary layer
correctors in the classical problem of homogenization in divergence form with Dirichlet boundary
conditions and provides the third-order error estimates with and without the boundary layer correc-
tors.

x The second part sheds new light on the homogenization of a three-dimensional piezoelectric
heterogeneous structure and presents a new approach to the homogenized problem of periodic, het-
erogeneous and non-isotropic piezoelectric plate when the thickness and the period of this plate
tending to zero simultaneously, where in both studies we have used the energy method of Tartar.

It is divided into three chapters structured as follows:
Chapter I: Homogenization and boundary layers

In the first chapter, we present a brief history of the homogenization and boundary layers and
we give a general panorama of homogenization method techniques with some illustrations, we ended
this chapter by a quick overview of the boundary layers in elasticity and thin elastic plates.
Chapter II: Error estimates

In the second chapter, we pose the classical problem of homogenization and we present the error
estimates that have been done upon this problem. The main achievements in this chapter, including

contributions to the field can be summarized as follows:



1. Error estimates of the second and third orders with and without boundary layers terms.

2. Third-order error estimates with and without the third-order boundary layer corrector in two-

dimension, using the mixed-method.

Chapter III: Homogenization of a piezoelectric structure by the energy method

In this chapter, we are interested in the homogenization of a piezoelectric structure by the energy
method in two cases, we started by the case of three-dimensional piezoelectric structure, then we
applied the same steps for the case of periodic, heterogeneous and non-isotropic piezoelectric plate.

The contributions of this chapter are presented as follows:

1. Establishing the convergence theorem using the energy method of Tartar for the case of three-

dimensional piezoelectric structure.

2. Outlines the limit of the piezoelectric problem for the case of the periodic and heterogeneous

and non-isotropic plate when the thickness and the period of this plate are comparable.



CHAPTER 1

HOMOGENIZATION AND BOUNDARY LAYERS

1.1 The concept of homogenization

Definition 1.1.1. Homogenization method is a mathematical theory of averaging, which allows the
calculation of composite effective properties knowing the topology of the composite unit cell and
the replacement of the composite medium by an ”equivalent” homogeneous medium to solve the
global problem.

Among it’s advantage in relation to other methods that it needs only the information about the unit
cell and this last can have any complex shape. Note that the homogenization method used to study:
1) Differential operators with rapidly oscillating coefficients.

2) Boundary value problems with rapidly changing boundary conditions.

3) Equations in perforated domains.



Example of application:
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Figure 1.1: Illustration of the homogenization of perforated beam and break wall

1.2 Brief history

In this section we give a short (possibly incomplete) historical development of homogenization
methods. The problem of replacement of a heterogeneous material by an equivalent homogeneous
one dates back to at least the 19th century. This was raised in works by Poisson [92], Maxwell
[76] and Rayleigh [95]. In 1881, Maxwell [76] studied the effective conductivity of media with small
concentrations of randomly arranged inclusions, and Rayleigh [95] studied the same problem with
periodically distributed inclusions in 1892.

In 1906, Einstein [47] investigated the effective viscosity of suspensions with hard spherical parti-
cles in incompressible viscous fluids. A good survey of results on this question until 1926 can be found
in [69]. Striking contributions were made in the 1930s. Voight [112] calculated effective parameters
of polycrystal, such as, the stiffness tensor, by averaging the appropriate values over volume and
orientation, while Reuss [96] used averaging of the component of the reverse tensor (compliance) for
the same problem.

Later on, Hill [[58], [59]] and II'ushina [63] rigorously proved that Voight and Reuss methods give
the upper bound and the lower bound, respectively, of those effective parameters. For results in the
direction of the so-called Reuss-Voight inequality (Hill’ fork), such as the Hashin-Shtrikman bounds,

we refer to [[64], Chapter 6] and references therein.



It should be noted that iterated homogenization type problems were considered for the first time
by Bruggeman in 1935 [23] The first asymptotically exact scheme for calculating effective parameters
of laminated media was proposed in 1946 by Lifshits and Rozentsveig [[70],[71]].

In 1964, Marchenko and Khruslov [74] introduced a general approach based on asymptotic tools
which could handle numerous physical problems, including for example (for the first time), boundary
value problems with fine-grained boundary [[74],[75]].

From the early 1970s, further development of the mathematical study of phenomena in heteroge-
neous media is done by averaging differential equations with rapidly oscillating coefficients, and the
first results (according to e.g., [[7], [13]] are in [[11],[14], [15], [19], [20],[41], [86],[98] ].

The name homogenization was first introduced in 1974 by Babuska [12].

1.3 Homogenization techniques

Several homogenization methods were developed in the 1970s, and homogenization became a subject

in Mathematics. The methods introduced include:

1.3.1 Parametrized Measures (Young Measures)

Young measures were developed by L.C Young [113]. They were initially used for treating problems
of calculus of variations, until L. Tartar [102] developed it as a tool for the analysis of non-linear
partial differential equations. Young measures can be used to compute the weak limit of any function
of weakly converging fields. Additional information on Young measures can be found in [16], [89],

[54], just to cite a few.

Definition 1.3.1. Let K be a bounded open set in R™ and let u : Q0 — R™ : be a measurable function

such that uw € K a.e. We define a measure j1 on £ X R™ by

(1, 8(, X)) = / b, u(x))dz.

for all continuous function ¢ with compact support contained in € X R™. u is known as the Radon

measure or the generalized measure associated to u.

Proposition 1.3.1. The Radon measure j has the following properties.

5



1. p>01de (u,¢) >0if ¢ >0.
2. suppp C graph u i. e. if ¢ =0 on graph u then (u, ¢)=0.

3. If p(x, ) = V() then
06) = [ .

Let K be a bounded set in R™ and (2, a bounded open set in R". Let u; : 2 — R™ be a
sequence such that u; € K a.e..

Then

there exists a subsequence {u;;} and a family of probability measures {v, },cq (i-e., v, > 0,
vz(R") =1)

with supp v, C K such that for F a continuous function on R”,
F(uj) — f weakly* in L>®(€2), as k — oo

where

f(x) = (ve, F(N)) = /Rn Ve(AN)F(N)dA ae..

The family {v, },eq is called the Young measure associated to the subsequence {u;y}.

1.3.2 Method of Asymptotic Expansion

The most traditional method in homogenization theory is the so-called method of asymptotic expan-
sions which dates way back to the 1960s. it is widely used in mechanics and physics. It was originally
introduced for mechanical problems by engineers till mathematicians began to use it in the study of
problems with periodic coefficients. The method of two-scale asymptotic expansions applied to the

following well-posed problem in H}(£2)

—divA-NVu. = f in §Q,
(P.) (1.3.1)
u. =0 on 01,

postulate that the solution u. of (P.) admits the ansatz

ue(x) = up(z, g) + euy (z, g) + %uy(, g) + 3uy(, g) + etuy(m, g) + e (1.3.2)



where each function u;(x,y) is Y-periodic with respect to y = % When this expansion is substituted
into problem (1.3.1), the terms with equal powers of £ are equated and a series of problems are
obtained. Solving these problems leads to the homogenized problem and the homogenized solution.
This method is systematically formalized to handle homogenization of boundary value problems
with periodic rapidly oscillating coefficients by Bensoussan, Lions and Papanicolaou [18], see also
Keller and Larsen [[67],[68]], and Sanchez- Palencia [99]. More details on the Asymptotic Expansions

method will be stated in chapter 2.

1.3.3 G-convergence

The G-convergence is a notion of convergence associated with sequences of symmetric, second-order,
elliptic operators. It was introduced in the late sixties by Spagnolo [101]. The G means Green because
this type of convergence corresponds roughly to the convergence of the associated Green functions.
The main result of the G-convergence is a compactness theorem in the homogenization theory which
states that, for any bounded and uniformly coercive sequence of coefficients of a symmetric, second-
order, elliptic equation, there exist a subsequence and a G-limit (i.e., homogenized coefficients) such
that, for any source term, the corresponding subsequence of solutions converges to the solution of the
homogenized equation. In physical terms, it means that the physical properties of a heterogeneous
medium (such as its permeability, conductivity, or elastic moduli) can be well approximated by
the properties of a homogeneous or homogenized medium if the size of the heterogeneities is small
compared to the overall size of the medium. For simplicity, we introduce the notion of G-convergence
for a specific example of operators, namely, a scalar diffusion process with a Dirichlet boundary
condition i.e. problem (1.3.1), but all the results hold for a large class of second-order, elliptic
operators and boundary conditions. Let {2 be a bounded open set in R™. We consider a sequence A,
of diffusion tensors in M,(«, 3,12), indexed by a sequence of positive numbers e going to 0. Here,
¢ is not associated with any specific length scale or statistical property of the diffusion process. In
other words, no special assumptions (like periodicity or stationarity) are placed on the sequence A..
The G-convergence of operators associated with the sequence A. is defined below as the convergence

of the corresponding solutions ..

Definition 1.3.2. The sequence of tensors A, is said to G-converge to a limit A*, as e goes to 0, if,



for any right-hand side f € L*(Q) in (1.5.1), the sequence of solutions u. converges weakly in Hg ()

to a limit ug which is the unique solution of the homogenized equation associated with A*.

—divA*NVuy = [ in €,
(1.3.3)
ug =0 on 0f).
This definition makes sense because of the compactness of the set M(«, 5,€2) with respect to
the G-convergence, as stated in the next theorem.

For any sequence A. in M(a, 3,€2), there exist a subsequence (still denoted by ) and a

homogenized limit A*, belonging to M(a, 3, 2), such that A. G-converges to A*.

The original proof of Theorem 2 (due to Spagnolo [101]) was based on the convergence of the Green
functions associated with (1.3.1). Another proof uses the I'-convergence of De Giorgi. A simpler
proof was found by Tartar in the framework of the H-convergence which is a generalization of the
G-convergence to the case of non-symmetric operators. The interested reader is referred to the next

subsection on H -convergence for a discussion of such a proof.

Remark 1.3.1. If a sequence A. converges strongly in L""(Q)"2 to a limit A, then its G-limit A*
coincides with A. In general the G-limit A* of a sequence A. has nothing to do with its weak-*
L*>(Q)-limit. For example, a straightforward computation in one dimension shows that the G-limit
of a sequence A. is given as the inverse of the weak-*L>®(Q) -limit of AZ' (the so-called harmonic
limit). This last result holds true only in one dimension, and no explicit formula is available in higher
dimensions.

The G-convergence enjoys a few useful properties as enumerated in the following proposition.
Proposition 1.3.2. 1. If a sequence A. G-converges, its G-limit s unique.
2. Let A, and B, be two sequences which G-converge to A* and B*, respectively. Let w € ) be

a subset strictly included in 2, such that A. = B in w. Then, A* = B* in w (this property is

called the locality of G-convergence).

3. The G-limit of a sequence A is independent of the source term f and of the boundary condition

on 0S2.



4. Let A, be a sequence which G-converges to A*. Then, the associated density of energy A-Vu..Vu.
also converges to the homogenized density of energy A*Vug.Vug in the sense of distributions

in €.

1.3.4 TI'-convergence

The T'-convergence is an abstract notion of functional convergence which has been introduced by
De Giorgi ([[42]] and [[43]]). It is not restricted to homogenization, and it has many applications
in the calculus of variations, such as singular perturbation problems. A detailed presentation of
[-convergence and several applications may be found in the books [[24]] and [[39]]. We first give the
abstract definition of I'-convergence and the fundamental theorem of I'-convergence which motivates

this definition.

Definition 1.3.3. Let X be a metric space endowed with a distance d. Let € be a sequence of positive
indexes which goes to zero. Let F. be a sequence of functions defined on X with values in R The

sequence F. is said to I'-converge to a limit function Fy if, for any point v € X,
1. All sequences x. converging to x satisfy Fo(z) < lim i(])ana(xg), and
e—

2. There exists at least one sequence x. converging to x, such that
Fo(x) = limF.(z.)
e—0

Definition 1.3.4. A sequence F. is said to be d-equicoercive on X if there exists a compact set K
(independent of €) such that

inf F, = inf F.(x).

sex () 2eK (z)

The definition of I'-convergence makes sense because of the following fundamental theorem which
yields the convergence of the minimum values and of the minimizers for an equicoercive I'-converging

sequence.



Let F. be a d-equicoercive sequence on X which I'-converges to a limit Fj. Then,

1. the minima of F converge to that of Fy, i.e.,

minky(z) = lim(inf FE(.T)), and

zeX e—=0 \ zeX

2. the minimizers of F. converge to those of [y, i.e., if z. converges to z and

llg(l)FE(:cg) = lli%(;lel)f(Fg(az)),then, X is a minimizer of Fy.

Assume that the metric space X (with the distance d) is separable (i.e., contains a dense
countable subset). Let F. be a sequence of functions defined on X. Then, there exist a

subsequence F. and a I'-limit Fj such that F. I'-converges to Fo.

A proof of the above theorems may be found in [39]. Their main interest is to show that the notion
of I'-convergence is, roughly speaking, equivalent to the convergence of minimizers. Note, however,

that they do not give any method, in practice, for computing the I'-limit Fj.
Remark 1.3.2. The relevance of I'-convergence to homogenization is the following.

Consider, for example, the problem (1.3.1) of linear diffusion process in a periodic domain €2 with
period €. Assume that the tensor of diffusion is A(%), where A(y) is a symmetric, coercive, and
bounded matrix which is Y-periodic. It is well-known that, when the matrix A is symmetric, the P.

D. E. (?7) is equivalent to the following variational problem: find u¢ € H}(2) which achieves the

1
min (/A<x>Vu€.Vu€—/fug>. (1.3.4)
weHl )\ 2 Jq € Q

Therefore, the I'-convergence of the functionals subject to minimization in (1.3.4) is equivalent to

minimal value of

the homogenization of the P. D. E. (1.3.1). The advantage of the I'-convergence is that it is not

restricted to linear equations (or equivalently quadratic functionals).

10



1.3.5 H -convergence

The H -convergence is a generalization of the G-convergence to the case of non-symmetric problems.
More than that, it provides a new constructive proof (the so-called energy method) of the main
compactness theorem, which is both simpler and more general than the previous proofs. The H-
convergence (H stands for "homogenization”) was introduced by Murat and Tartar [79], [80] and [106]
in the mid-seventies. As for the G-convergence, we simply introduce the notion of H -convergence
for a scalar diffusion process with a Dirichlet boundary condition, although all the results hold for
any second-order, elliptic operators and boundary conditions.

Let Q2 be a bounded open set in R™, we consider the same problem (1.3.1)but at this once the sequence
A, of diffusion tensors is in M(a, 3, 2). Once again, ¢ is not associated with any specific length scale
or statistical property of the diffusion process. We emphasize that the tensors A. are not necessarily
symmetric. This corresponds to a possible drift in the diffusion process.

The H-convergence of the sequence A, differs from the previous G-convergence in the sense that it

requires more than the mere convergence of the sequence of solutions .

Definition 1.3.5. The sequence of tensors A. is said to H-converge to a limit A*, as € goes to 0,
if, for any right-hand side f € H™*(Q) in (1.8.1), the sequence of solutions u. converges weakly in
H () to a limit ugy, and the sequence of fluzes A.Vu. converges weakly in L*(Q)N to A*Vug, where

ug 18 the unique solution of the homogenized equation associated with A*.

—divA*Vug = f in §Q,
(1.3.5)
up =0 on 0f2.

This definition makes sense because of the following compactness result.

For any sequence A, in M(a, 3,€2), there exist a subsequence (still denoted by ¢) and a

homogenized limit A*, belonging to M/(«, %2, ), such that A. H-converges to A*.

Remark 1.3.3. Notice that the set M(«, 3,) is not stable with respect to the H-convergence (as
is the case for the G-convergence), because the L>(Q)-bound of the H -limit can be increased by

a factor ofg > 1. This is a specific effect of the non-symmetry of a sequence A.. In physical

11



terms, it means that microscopic convective phenomena can yield macroscopic diffusive effects. The
proof of Theorem 5 is constructive and based on the so-called energy method described in section
1.3.7. Beyond its theoretical interest for proving the above compactness result, the energy method
of Tartar is of paramount importance in practical applications because it gives a convenient recipe
for homogenizing any second-order, elliptic system. A detailed proof of Theorem 5 may be found
in [79]. Like G-convergence, H-convergence satisfies the same properties as stated in Proposition
1.3.2, namely, uniqueness of the H-limit, locality, independence of the H-limit with respect to the
boundary condition, and convergence of the energy density. To conclude this subsection, we give a
simple example which demonstrates the necessity of requiring the convergence of the fluxes A.Vu, on
top of that of the solutions u. to have a coherent definition of H -convergence. Let B be a constant

skew-symmetric matriz, i.e., such that its entries satisfy
bij = _bji fO?” all 1 S Z,j S n.
Then, for any real-valued function u,

2,02
Therefore, if u is a solution of the homogenized equation (1.3.5), it is also a solution of the following

equation

—div ((A* + B)Vu) =f inQ,
(1.3.6)
u=20 on 0f2.

Assume for a moment that the definition of H-convergence is the same as that of G-convergence (i.e.,
only the convergence of solutions is required). Then, if A* is a H -limit of a sequence A., so is A*+ B
for any constant, skew-symmetric matriz B, which contradicts the uniqueness of the H-limit (a highly
desirable feature of any type of convergence). Therefore, in the non-symmetric case, the definition
of H-convergence must include an additional condition compared to that of G-convergence. This is

precisely the role of the convergence of flures A.Vus,.

1.3.6 Iterated Homogenization

In the two-scale convergence method, we considered homogenization problems in periodic media

where only two different length scales were considered, namely, the macroscopic (of the order of the
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domain size) and the microscopic (of the order of the heterogeneities period), which have a ratio
denoted by . Of course, in the real world, porous media are far from being periodic and usually
exhibit many different length scales of heterogeneities. The very crude modeling of subsection 1.3.9
can be further improved by considering not only a single scale of heterogeneities but several periodic
scales of heterogeneities (up to a countable infinite number of scales). This type of homogenization
problem is called reiterated homogenization (following a terminology of [18]) because, under a mild
assumption on the separation of scales, it amounts to successively homogenizing the smallest scale
while keeping the larger ones fixed. Here, we shall simply state the main result of this process of
reiterated homogenization on a model problem to explain the main ideas without dwelling too much
on technicalities. Our model problem is a diffusion equation in a multiply periodic domain Q (a
bounded open set in R™). We assume that there are n scales of heterogeneities £1, s, ..., £, which
depend on a single positive parameter ¢ which tends to zero. The key assumption is that all scales

go to zero as € does, while remaining ordered, £; being the largest and ¢,, the smallest, i.e.,

hH(l)Ei(E) =0, forl<i<n, (1.3.7)
e~
and

im—=E) 0 fer2<i<n, (1.3.8)

For simplicity, the rescaled unit cell Y; at each scale is assumed to be the same, equal to the unit cube

Y = (0.1)". The tensor of diffusion in 2 is given by an n x n matrix A(z, £

- .
s &y - o), nOt necessarily

symmetric, where A(z,yi,...,y,) is a continuous function of all variables x €  and y; € Y; which
is Y;-periodic in y;. Furthermore, this matrix A satisfies the usual coerciveness and boundedness
assumptions: there exist two positive constants « and 3, satisfying 0 < o < 3, such that, for any

constant vector £ € R™ and at any point (x, 41, ..., Yn),

O“é’Q S Z Ai,j(xayh >yn)€z§] S 6‘5’27

ij=1

where A; ; denotes the entries of the matrix A.
Denoting the source term by f € L?*(f2) and enforcing a Dirichlet boundary condition, our model

problem of diffusion in a multiply periodic medium reads

—div (A(:c, i, N x)Vu5> =f inQ,
€1 En

(1.3.9)
u. =0 on OS2
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By applying the Lax-Milgram lemma, equation (1.3.9) admits a unique solution u. in HJ(£2). More-

over, u, satisfies the following a priori estimate:

uell gy < Cllfllz2 ), (1.3.10)

where C is a positive constant which does not depend on e. It implies that the sequence u. is
bounded in the Sobolev space H}(€2). To compute the homogenized diffusion tensor we need the
following notations. Let A, (vo,y1,-..,yn) be the original tensor A(z,y1,...,y,) (for convenience, the
macroscopic variable x is denoted by o). For 0 < i < n — 1, a tensor A;(yo, y1, ..., y;) is defined as
the homogenized tensor of A;1(yo, 1, ..., yi, £) where all the larger scales yo, y1, ..., y; are kept fixed.
We also denote the last homogenized tensor Ay (yo) by A*(x), for which there is no more micro-scale.
In other words, the rule for computing the final homogenized tensor A*(x), is to separately and
sequentially homogenize the different scales from the smallest to the largest. More precisely, at each
scale 1 <4 < n, we introduce the solutions w} (yo, 1, ..., %) with 1 < p < n, defined, at each point
(Yo, Y1, -, Yi—1), as the unique solutions in H;(YZ)/R of the local problems:
— div, (A,-(yo,yl, i) (€, + Vin;(yo, Y1, ...,yi)) =0 inY;,
| (1.3.11)
Yi — X;(yoayl, o Yi) Y; — periodic,

with (€,)1<p<n, the canonical basis of R". Then, the sequence A;(yo, y1, ..., y;) is defined by its entries,

AV (Yo, Y1, -0 Yi) I/ Air(Wo. y, - Ui ¥is1) (@ + Vi Xo) (6 + Vi o D dyi. (1.3.12)
y

Formulas (1.3.11) and (1.3.12) are usually used for computing the homogenized coefficients of a
single-scale periodic medium. Finally, the main result of this reiterated homogenization process is

the following theorem.
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The sequence u, of solutions of equation(1.3.9) converges weakly in Hj () to u. the unique
solution of the homogenized problem,
—div, (A*Vu) =f inQ,
(1.3.13)
u=0 on 08,

where the homogenized diffusion tensor is given by the last term Ay of the sequence defined

by (1.3.12).

Theorem 6 was first proven in [18] when the scales are successive powers of ¢, i.e., g; = &' (this
assumption favors the use of multiple-scale asymptotic expansions). A general proof of Theorem 6
(including the case of an infinite number of scales) is given in [6], where a notion of multiple-scale
convergence is introduced . Reiterated homogenization has been used in [10] for rigorously justify-
ing the so-called differential effective scheme for computing effective coefficients in a heterogeneous
medium with an infinite number of length scales. The differential effective scheme is a well-known
method for estimating mechanical properties of composite materials (see, e.g., [84]). Loosely speak-
ing, it amounts to computing homogenized coefficients as the solution of an ordinary differential
equation. This differential effective scheme could also be applied to evaluate diffusion constants in

porous media, but, to our knowledge, it has never been done so far.

1.3.7 The Energy Method
1.3.7.1 Setting of a Model Problem

A very elegant and efficient method for homogenizing partial differential equations has been devised
by Tartar [106] and[79], which has later been called the energy method although it has nothing to
do with any kind of energy. It is sometimes more appropriately called the oscillating test function
method, but it is most commonly referred to as the energy method, and we shall stick to this name.
The energy method is a very general method in homogenization. It does not require any geometric
assumptions about the behavior of the p.d.e. coefficients: neither periodicity nor statistical properties

like stationarity or ergodicity. Actually, it encompasses all other approaches in the framework of H
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-convergence. As was already mentioned in the previous section, the energy method is a constructive
proof for the compactness theorem of H -convergence. However, to expose the energy method in its
full generality may hide the key ideas of the method in a lot of technicalities. Therefore, for clarity, we
prefer to present the energy method on a model problem of periodic homogenization. Nevertheless,
we reemphasize that the energy method works also for non-periodic homogenization, as the reader
can be convinced by referring to [79] and [35]. We consider a model problem of diffusion in a periodic
medium, a usual example in all textbooks on homogenization, but, of course, the energy method
covers many other problems with slight changes.

In order to get the hang of the energy method we consider the same model problem of diffusion
(1.3.1) in a periodic medium, of course the energy method covers many other problems with slight

changes.

1.3.7.2 Proof of the main convergence result

In this section we give a rigorous proof of Theorem 7, following a general method due to Tartar
([106], [105]). This method relies on the construction of a class of oscillating test functions obtained

by periodizing the solution of a problem set in the reference cell.
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Let f € H'(Q) and u. be the solution of (1.3.1). Then,

u. —ug  weakly in Hy(S2),

(1.3.14)
ANVu, — A*Vuy  weakly in (L*(Q))",
where ug(z) is the unique solution in H{ () of the homogenized problem
—divA*™Vuo(z) = [ in Q,
(1.3.15)
uy =0 on 09,
In (1.3.15), the homogenized diffusion tensor A* = (aj;)1<ij<n is constant, elliptic and
given by
A= [ eals) (s + T ) (13,10
Y

where x/(y) are defined, as the unique solutions in [, (Y)/R of the so-called cell problems

— divy (A& + Vpd (1) =0 in,
(1.3.17)
y— Xj(y) Y — periodic,

with (€;)1<j<n, the canonical basis of R™.

Before start proving the above theorem we need to recall the weak limits theorem of rapidly oscillating

periodic functions.
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Let 1 < p < 400 and f be a Y-periodic function in LP(Y). Set

fe(x)=f(=) ae onR"

Then, if p < o0, ase — 0

fe = My (f) = |)1/|/Yf(y)dy weakly in LP(Q),

for any bounded open subset €2 of R”.

If p = 0o, one has

fe = My (f) = |Yllfyf(y)dy weakly® in L=(Q).

Proof. (proof of theorem 7 ) The proof will be divided into 3 steps.
Step 1: Existence and uniqueness
We start the demonstration by proving the existence and uniqueness of of the solution u., the

variational formulation of (1.3.1) is given by

/AEV%WE :/fv Yo € Hy(Q). (1.3.18)
Q Q

The existence and uniqueness of of the solution u. follow immediately by Lax-Milgram theorem.
Step 2: A priori estimate
From (1.3.10), we have that u. — ug weakly in H}(Q) and u. — g strongly in L*(€). This implies
that Vu, is bounded in (L?())", which further implies that up to a subsequence, Vu, — Vuy weakly
in (L?(Q))", so

u. —ug  weakly in Hy(S),

(1.3.19)
u. —ug  stongly in L*(),

Introduce now

- S . - . Ou.  _ Ou. . Oug
&= (£17£27“7£n) = <Za1jaxj>azj8xjw»anjaxj) = AVu,. (1.3.20)

Jj=1
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From (1.3.18), it is easily seen that £°, satisfies

/vaE:/fU Yo € Hy(Q). (1.3.21)
Q Q

It is self-evident that using the ellipticity of the matrix A. and the a priori estimate (1.3.10), yields

1671l 2y (1.3.22)
Hence, we can extract a subsequence still denoted by £° such that
&€ —~ & weakly in (L*(Q))™.
Passing to the limit in (1.3.21), leads to

alino Q§EVvd:1: = /Qf*Vvd:U = /fvda:,Vv € H} ()
= —/Qdiv(ﬁ*)vdm = /fvdx,Vv € Hy(Q) (1.3.23)
= —divg* = f in Q.
Now we are left with the task of determining the equation verified by £*, and this is what involves
the following step.
Step 3: The limit problem (the homogenized problem)

Showing now that

£ = A*Vu.

Set
. . L )
w! = ew’ (E) =—eX’ +ex, j=1,..,n,

it is obvious that

w! — e;x weakly in H (),

w! — e;x strongly in L*(2), (1.3.24)

Vw! —e;  weakly in (L*(Q))".

where x are not the solutions of the cell problems, defined in (1.3.17), but that of the dual cell

problems

—div(AL(V, X +¢;)) =0 inY,
(AL(VX +€5)) (13.25)
y— (y) Y — periodic.
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Set now
n

| (€ o€ 5 € auf € auf € 8U5 ]
772(771a772a 777n) = (Zajlaxjaajﬁaxjv "7ajn8xj> = szwg (1326)

j=1

Observe that
w = A(D)Vul(D)

= (Avud) (%)
= (ALVY + A')(2).

Since A'Vy/ (f) and Aﬁ(f) are periodic functions, Hence, applying Theorem 8 one derives the

convergence
= (ALVwl) = (A + A'e)) = (A%)'e;  weakly in (L*(Q))". (1.3.27)
We can show easily (see for instance .......... ) that n? verifies
/Qngw =0 Yoc€ H}Q). (1.3.28)

Let ¢ € D(Q) and choose pw! as test function in (1.3.21) and pu. as test function in (1.3.28). We

have respectively,
/§€VWZ¢+/£EV¢w£—/f¢wZ, Y € D(Q),
Q Q Q

(1.3.29)
/ ngVuEgo + / nﬁVgoug =0, VeeD9).
0 Q

See that from the definitions (1.3.20) and (1.3.26), one has

EVw! = A*Vu Vu! = A'Vuw!Vu, = ! Vu,.

Therefore by subtraction, the first integrals in the expressions above cancel and we obtain

/ EVoul - / WV, = / fowl, Ve eDQ)
Q Q Q

Making use of the convergences (1.3.19), (1.3.7.2), (1.3.27) and (1.3.24), one can now pass to the

limit in this identity and get
/ §e;xVe — /(A*)t@u0V<p = / fejzp, Yo e D). (1.3.30)
Q Q Q

20



Choosing e;x¢ as test function in the last equation of (1.3.23)

/g‘*Vgoxjdm+/§*<pé}d$:/f:l:ijda: Vo € D(Q) (1.3.31)
Q Q Q

Substituting (1.3.31) in (1.3.30) gives

/ & pds = — / (A%) ', Vpuyds (1.3.32)
Q Q

we derivate the left-hand side integral of (1.3.32) in the sense of distribution with taking into account

the fact that (A*)t is constant, we get

Afjgpdmz/ﬁV((A*)tuo)jgodx, Vo € D(Q). (1.3.33)

Hence
& = ((4)'Vu),

This ends the proof of Theorem 7.

Remark 1.3.4. As a final comment, let us reemphasize that the energy method is not restricted
to the periodic case and works without any assumption about the behavior of the sequence of the
diffusion tensor. The energy method is also valid for some nonlinear problems involving convex
minimization (see Subsection 1.3.4 and references therein), and monotone operators (corresponding

to non-symmetric problems).

For more details on the energy method see.............

1.3.8 The Compensated Compactness method

This was introduced by L. Tartar [102] and F. Murat [81] in the 1970s, for the of vector-valued
(systems of nonlinear PDEs). First, they proved that under certain conditions on the derivatives
of weakly converging sequences, the product of two of such sequences converge to the product of
their limits in the sense of distributions. This result is known as the Div-curl lemma which it
is applicable to non-periodic problems and nonlinear homogenization problems. In the study of

elliptic problems in divergence forms, this lemma comes in handy. However, one can not apply
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it to any quadratic product because it requires some specific conditions on the derivatives of the
weakly converging quantities. See [102], [81], [50] for more details on Compensated Compactness, a

prototype of the result is given below.

Definition 1.3.6. Given a vector w € (L*(Q))™. The matriz (curlw);; is defined by:

_ Ow; Ow;

- 8:1?]' 8I1

(curl w);; fori,j=1,...,n.

Lemma 1.3.1. (Div-Curl Lemma) Let P., Py, V., and Vi be vector fields in L*(Q2) such that

P. — Py, V. = Vyin L*(Q) as € — 0. (1.3.34)
If in addition
divP. — divPy in H*(Q), and curl V. =0, (1.3.35)
then
P.V. = PV, in D'(Q), (1.3.36)

Recall that the convergence as distributions (in D'(Q2)) in (1.3.36) means that

Vo € C'SO(Q),/ P.V.¢ dx — / Py\Vyo dx
0 Q

Remark 1.3.5. The name compensated compactness comes from the fact that the additional prop-
erties (1.3.35) compensate for the lack of strong convergence of the factors in the product which in

general is needed for passing to weak limits in the product.
Proof. See [21]. O

There are different variants of the div-curl lemma that can be applied to various problems, the
relation between the div-curl lemma and the homogenization can be viewed in the proof of the

following theorem for the classical problem (1.3.1)
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Let u. be the weak solution of problem (1.3.1) with f € L?(Q) and A. € M(a, 3,9Q) is
Y-periodic. Then

1. u. — up weakly in H}(Q),
2. A.Vu, — A*Vuy weakly in (L?(Q))"
Furthermore, uy € Hg () is the weak solution to the homogenized problem:

—div (A*Vuo) =f inqQ,

(1.3.37)
up =0 on 09,
and the coefficients of the homogenized matrix A* are given by
ox?
T (y) — a2 (y)]dy,
= [ st~ a5 )y
where x7(y) are the weak solutions in H}(Y") to the cell problem
. ; day; .
~ain( AN ) = -G i,
Yi (1.3.38)

/ij(y)dy = 0.

Proof. From (1.3.10), we have that u. — ug weakly in Hg () and u. — ug strongly in L?(2). This
implies that Vu, is bounded in (L?(Q2))", which further implies that up to a subsequence, Vu, — Vi
weakly in (L*(Q))". If A. converges strongly to A* then we can pass to the limit. But dealing with
composite materials, one cannot have a strong convergence of the matrix A..

From the membership of A. to M(«, 3,2) one has weakly* convergence of A, to A* in L>(Q)™*™,
which implies weak convergence in L*(2)"*", to A*.

That leaves us to finding the limit of the product of two weakly convergent sequences A.Vu.. As
mentioned earlier, this is not straightforward and generally, the product of two weakly convergences

does not converge to the product of their limit, hence we employ the div-curl Lemma.
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Recall the weak formulation of (1.3.1)

/A(x)VuE.V¢:/f¢ Vo € HY(Q). (1.3.39)
Q € Q

To resolve the difficulty of the limit of the product of two weakly convergent sequences A.Vu., one
can choose special test functions ¢ = ¢. € H}(Q2) which depend on ¢ in such a way that we can
apply the Div-Curl Lemma. Given an arbitrary test function ¢ € C5°(Y') (a dense subset of Hg(2)),
we construct a special set of oscillating test functions, ¢. such that the following conditions hold:
(H\) 6. — ¢ weakly in L*(Q);

(Hy) div <A(§)V¢E> — div <A*V¢> strongly in H1(Q);

(Hs)  A(%)V¢. — A*V¢ weakly in L*(Q);

Step 1: Passing to the limit in (1.3.39). under the Assumption that there exists a family of test functions
satisfying properties (H1)(H3).
Set
P.:= A(%)Vo.,
Py = A*V¢.
Note that (H3) implies that P. — P, weakly in L*(Q2), and that (H2) implies that divP. — div P,
strongly in H~1(Q). Set

V. :=Vu,

observe that

curlV, = curlVu. = 0. All of the hypotheses of the Div-Curl
Lemma hold and thus we can pass to the limit in the product of weakly convergent sequences

in the left-hand side of (1.3.39) after taking ¢. as a test function

/ AE)Vu Ve, — / AVueVo, (1.3.40)
Q ¢ Q

For the right-hand side of (1.3.39), use (H1) to pass to the limit

/Qfgbsdrc—>/ﬂfqbdrc.
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Step 2:

Thus,

/ A*VuyVodr = / fodx, Yo e C°(Y). (1.3.41)
Q Q0
This holds for all test functions ¢ € C5°(2), and by density of C5°(Q2) in H (), (1.3.41) holds

for every ¢ € H}(Q2) . Thus, Theorem9 (homogenization limit) is proved provided that we

prove existence of functions ¢. with properties (H1)-(H3).

Construction of oscillating test functions ¢..

Given ¢ € C5°(Q), set
"L 0o i
— — 1.3.42
@“;%WJ’ (13.42)
where x/ are the solutions to the cell problem (1.3.38). Condition (H1) follows immediately

from the form of (1.3.42). Indeed, for all ¢ € L*(€2), the Cauchy-Schwarz inequality yields

m(Z/%())<M(Dmmm@mem@—m

(1.3.43)
since x? € H/(Y).

To prove (H3) observe that

EJrea(soir (] (i) on

where the L? norm of the last term is of order . Take the weak L? limit in the right-hand side

of (1.3.44) using the Averaging Lemma (we assume that |Y'| = 1 for simplicity):

( >V¢E 4/ )+ Vyx(y)]dy.Vo(z). (1.3.45)

Note that the first term in the right-hand side of (1.3.44) depends not only the fast variable
y =  but also on the slow variable z. However one still can apply the Averaging Lemma using
the fact that each term has the form of product of a smooth function depending on x only and

€T

periodic function depending on £. Indeed, for example, considering the first term in (1.3.44)

we have by Averaging Lemma

/ﬂA(“Z)Vﬂb( dx—>/ U dy]v o)y (x)da, (1.3.46)
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for arbitrary function ¢ € L?(2), therefore A<§> Vo. — A*V¢(z). Thus we have proved
(H3).

It remains to prove the key property (H2). To this end we compute

) x an
il a(2)vo] = L 3 g gy [ et (5 + )
¢ O [«
+A(€)A¢> < ) 9,0, <6> (1.3.47)
8 ] g 13 13
+ ediv [A(:) ; (V(?:;é) (x)xj] = Igl) + 1 )+ Il( ),

The first term (_51) actually zero since functions x? are solutions of the cell problem. The second term

I(()s) converges weakly in L? to
%6 ox’
J AN / A(y)A A

0 ¢ 06 D7

o 9 .
=N e | AW e ild
axj axje v (y) |:€]+VyX:| y

(]

(1.3.48)

= div[A*V§].

As above, (1.3.48) can be proved by applying the Averaging Lemma. Thus Iés) converges to
div[A*V¢] strongly in H~'(2) . Indeed, weak convergence in L*(Q) implies boundedness in L?(12)
which in turn by the compactness of the embedding L?(Q) C H~1(Q) implies strong convergence in

H-Y(Q). Finally, I\ converges to 0 strongly in H~'(Q). Indeed, I\° has the form I\ = edivF.

with F. := A(g) 3 (v;”) (x)Xj(ﬂE”)).

Recall that for any vector-valued function v € L*(§2) one can define div w € H'({2) by the formula

(div u,¢) = / u.Veo dv, Vo € Hy(S). (1.3.49)
Q

Therefore

= ‘<FE, VSD>L2,L2

(divFe, o) -1, mye) <[EEllzellell g < Cllpll g

ie., ||[1(€)HH—1 = O(e). Thus conditions (H1), (H2), and (H3) are satisfied, and the proof of Theorem

9 (the homogenization limit) is complete. O]
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1.3.9 Two-Scale Convergence
1.3.9.1 A Brief Presentation

Contrary to the previous homogenization methods, the two-scale convergence method is devoted
only to periodic homogenization problems. It is, therefore, a less general method than the I', G, and
H-convergence, but, because it is dedicated to periodic homogenization, it is also more efficient and
simple in this context. Two-scale convergence was introduced by Nguetseng [83] and Allaire [4]. It
has been further generalized to the stochastic setting of homogenization in [22], thus, considerably
extending its scope. The next sub-subsection is concerned with the main theoretical results which
are at the root of this method, whereas the last sub-subsection contains a detailed application of
the method on a simple model problem. Before going into the details of the two-scale convergence
method, let us explain its main idea and the reasons for its success. In periodic homogenization
problems, it is well-known that the homogenized problem can be heuristically obtained by using the
two-scale asymptotic expansions as described in many textbooks (see, e.g., [13], [18], [99]). Denoting
the size of the periodic heterogeneities (a small number which goes to zero in this asymptotic process)
by € and the sequence (indexed by ¢) of solutions of the considered partial differential equation with

periodically oscillating coefficients by u., a two-scale asymptotic expansion is an ansatz of the form,
x x x x x
us(x) = ug(x, g) + euq(x, E) + 2uy (1, E) + 3ug(z, E) + etuy(x, E) + (1.3.50)

where each function w;(x,y) in this series depends on two variables, = the macroscopic (or slow)
variable and y the microscopic (or fast) variable, and is Y-periodic in y (Y is the unit period).
Inserting the ansatz (1.3.50) in the equation satisfied by u. and identifying powers of ¢ leads to
a cascade of equations for each term wu;(x,y) . In general, averaging with respect to y yields the
homogenized equation for ug. Unfortunately, mathematically, this method of two-scale asymptotic
expansions is only formal because, a priori, there is no reason for the ansatz (1.3.50) to hold true.
Thus, another step is required to rigorously justify the homogenization result obtained heuristically
with this two-scale asymptotic expansion (see, for example, the energy method). Despite its frequent
success in homogenizing many different types of equations, this method is not entirely satisfactory
because it involves two steps, formal derivation and rigorous justification of the homogenized problem,

which have little in common and are partly redundant. Consequently, there is room for a more efficient
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method which will combine these two steps in a single, simpler one. This is exactly the purpose of
the two-scale convergence method which is based on a new type of convergence (see Definition 1.3.7).
Roughly speaking, the two-scale convergence is a rigorous justification of the first term of the ansatz
(1.3.50) for any bounded sequence ., in the sense that it asserts the existence of a two-scale limit

uo(,y), such that u., tested again any periodically oscillating test function, converges to ug(z,y):

/Q ug(x)w(x,g)dxﬁ /ﬂ /Y wo(, y) (@, y)dudy (1.3.51)

Two-scale convergence is an improvement over the usual weak convergence because equation (1.3.51)
measures the periodic oscillations of the sequence u.. The two-scale convergence method is based
x

on this result: multiplying the equation satisfied by u. with an oscillating test function ¢(z, %) and

passing to the two-scale limit automatically yields the homogenized problem.

1.3.9.2 Statement of the Principal Results

Let us begin this subsection with a few notations. €2 is an open set of R (not necessarily bounded),

and Y = (0,1)™ is the unit cube.

Definition 1.3.7. A sequence of functions u. in L*(2) is said to two-scale converge to a limit ug(x,y)

belonging to L*(Q2 X Y') if, for any function p(x,y) in D(€; Cye(Y)), it satisfies

lim ug(x)w(x,i)dx—>/Q/Yuo(x,y)<p(x,y)dxdy (1.3.52)

e—0 Q

This notion of "two-scale convergence” makes sense because of the next compactness theorem.

Theorem 10.

From each bounded sequence u. in L*(2), one can extract a subsequence, and there exists

a limit ug(x,y) € L*(2 x Y') such that this subsequence two-scale converges to .

Proof. See [4]. O
We give now a few examples of two-scale convergences.

1. Any sequence u. which converges strongly in L?(Q) to a limit u, two-scale converges to the

same limit w.
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2. For any smooth function ug(z,y), Y-periodic in y, the associated sequence

us(x) = up(x, E) two-scale converges to ug(z,y).
£

3. For the same smooth and Y-periodic function ug(z,y), the sequence defined by
Ve = up(z, ;—2) has the same two-scale limit and weak-L? limit, namely, [, uo(x,y)dy (this is a
consequence of the difference of orders in the speed of oscillations for v, and the test functions
o(x, g) Clearly, the two-scale limit captures only the oscillations which are in resonance with

those of the test functions ¢(z, f).
€

4. Any sequence u, which admits an asymptotic expansion of the type

where the functions u;(z,y) are smooth and Y-periodic in y, two-scale converges to the first

term of the expansion, namely, ug(x,y).

Lemma 1.3.2. (Generalized Averaging Lemma) Assume that f(x,y) is Y-periodic in y and

f € C(Q;Cper(Y)), then,

iy [ 70 Dg(aio = [ ([ fw0))otolde, v 22

Remark 1.3.6. Let us summarize the relations between weak-L?, strong-L?, and two-scale conver-

gences:

e Strong-L? convergence implies two-scale convergence.

o Two-scale convergence implies weak-L? convergence

So, if the strong-L? limit exists, then the two-scale limit also exists and the limits agree. In contrast, if
the two-scale limit exists, then a weak-L? limit also exists but these limits may be different. Namely,
the weak-L? limit can be obtained by averaging the two-scale limit in the y variable over its period,

as the following example shows.

Example 1.3.1. Let u. = sin(g), x € [0,27]. Since Y = [0,27] is a periodic cell, and u. is

bounded,then we can apply the generalized Averaging Lemma to deduce

/()%sin(i)ﬂx)@(i:) —>/Q/Y5m(y)¢(x)@(y)_
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By definition 1.5.7 of two-scale convergence we deduce sm(f) e sin(y). However, considering the

weak limit, we can apply the (reqular) Averaging Lemma to see that

szn(g) — /Ysin(y) = 0 weakly in L*(Q).

Conversely, can we have a weakly convergent sequence that does not two-scale converge? The

following example answers this question.

Example 1.3.2. Let u, = (—1)"sin(nx), € = =. In the weak sense, we know that u, converges to

A%p4wmn<iz)m—:£sm@)—o

If n =2k, k € N, then by the generalized Averaging Lemma, we have that usgy g sin(y) However,

when n = 2k + 1, then we have g1 e —sin(y). Therefore, a two-scale limit for u, does not exist.

Theorem 11.

Let u. be a sequence of functions in L?*(€2) which two-scale converges to a limit ug(z,y) €

L*(QxY).
1. Then, u. converges weakly in L*(Q2) to u = [,, uo(z, y)dy, and
g%HUsH%%Q) 2 ||U0||2LZ(QxY) 2 ||UH%2(Q)- (1.3.53)
2. Assume,further, that ug(z,y) is smooth and that

l%”“zf”%?(m = HUOH%Q(QXY)' (1.3.54)
Then,

X
H%—wugm@méa (1.3.55)

Proof. See [5]. O

Remark 1.3.7. The smoothness assumption on ug in the second part of Theorem 11 is needed only
to ensure the measurability of ug(x,2) (which otherwise is not guaranteed for a function of L>(QxY').

One can further check that any function in L*(Q2 x Y) is attained as a two-scale limit (see Lemma
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1.13 in [4]), which implies that two-scale limits have no extra regularity. So far we have considered

only bounded sequences in L*(Y). The next theorem investigates the case of a bounded sequence in

H'(9).

Theorem 12.

Let u. be a bounded sequence in H'(€). Then, up to a subsequence, u.two-scale converges

to a limit u € H'(Q2), and Vu, two-scale converges to
Vau(x) + Vyu(z,y),

where the function u,(x,y) belongs to L*(Q; H{ (Y))/R).

Proof. See [4]. O

Remark 1.3.8. There are many generalizations of Theorem 12 which gives the precise form of the
two-scale limit of a sequence of functions for which some extra estimates on part of their derivatives
are available. To obtain as much information as possible on the two-scale limit is a key point in
applying the two-scale convergence method, as described in the next subsection. For completeness, we

give an examples below of such generalizations of Theorem 12, the proofs of which may be found in

[4].
Theorem 13.

1. Let u. be a bounded sequence in L?*(€2), such that eVu, is also bounded in L*(Q)".

Then, there exists a two-scale limit ug(z,y) € L*(Q; H}(Y)/R) such that, up to a

subsequence, u. two-scale converges to ug(x,y), and eVu. to Vyug(z,y).

2. Let u. be a bounded sequence of vector-valued functions in L?*(2)", such that its
divergence divu. is also bounded in L?(f2). Then, there exists a two-scale limit
up(z,y) € L*(Q x Y)™ which is divergence-free with respect to y, i.e., divyug = 0,
has a divergence with respect to x, div,ug, in L?(Q2 x Y), and such that, up to a

subsequence, u. two-scale converges to uy(z,y) and divu. to div,ug(x,y).
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1.3.9.3 Application to a Model Problem

This sub-subsection shows how the notion of two-scale convergence can be used for homogenizing
partial differential equations with periodically oscillating coefficients. Our purpose is to give a tutorial
on the two-scale convergence method, Therefore, the usual model problem of diffusion in a periodic
medium is reconsidered. Of course, the principles of the two-scale convergence method are valid in
many other cases with only slight changes, including nonlinear (monotone or convex) problems. We
now describe the so-called two-scale convergence method for homogenizing problem (1.3.1), where
the tensor of diffusion A. € L>®(Y)"*" is not necessarily symmetric.

In a first step, we deduce the precise form of the two-scale limit of the sequence u. from the a
priori estimate (1.3.10). By application of Theorem 12, there exist two functions, v € H}(Q) and
uy(z,y) € L%Q;H&(Y)/R), such that, up to a subsequence, u. two-scale converges to u, and Vu,
two-scale converges to V,u(z) + Vyui(z,y). In view of these limits, u. is expected to behave as
u(z) + euy (z,y).

Then, in a second step, we multiply equation (1.3.1) by a test function similar to the limit of .,

namely, p(z) + ep1(z, 7), where p(z) € D(Q2) and ¢ (z, ) € D(Q; C5°(Y)). This yields
/QA(j)Vua. (V(p(x) + Vyo1(z, g) + eV (z, :)) dr = /g}f(g@(m) + ey (x, :)) dr.  (1.3.56)

Regarding At(g) <ch(x) + Vy1(z, ‘;)) as a test function for the two-scale convergence (see remark
9.4 in [32]), we pass to the two-scale limit in (1.3.56) for the sequence Vu.. Although this test
function is not necessarily very smooth, as required by Definition 1.3.7. Thus, the two-scale limit of

equation (1.3.56) is given by

// (V wz) + Vyu (@, y)> (VSO( )+ Vyer(z, y)>dxdy—/f (@). (1357

In a third step, we read off a variational formulation for (u,u;,) in (1.3.57). Note that (1.3.57) holds
true for any (¢, 1) in the Hilbert space Hg(Q) x L*(€; H}(Y')/R) by density of smooth functions in

this space. Endowing it with the norm

\/<IIVU( Mz + 1IVyur(, y)HL?(QxY))
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The assumptions of the Lax-Milgram lemma are easily checked for the variational formulation
(1.3.57). The main point is the coercivity of the bilinear form defined by the left-hand side of

(1.3.57). The coercivity of A yields

/Q /Y Aly) (vzu(:p) + Vi (z, y)) : (Vu(x) + Vyu (z, y)) dady

>a [ [ 19ule) + Vo) Paody (13.5%)
QJY

:a/]Vu(J:)]2dx+a//\Vyul(:c,y)|2d:5dy
Q aJy

By applying the Lax-Milgram lemma, we conclude that there exists a unique solution (u,u;) of the
variational formulation (1.3.57) in Hg(Q) x L*(Q; H}(Y')/R). Consequently, the entire sequences .
and Vu,. converge to u and V,u(x)+V,ui(x,y) respectively. An easy integration by parts shows that
(1.3.57) is a variational formulation associated with the following system of equations, the so-called
"two-scale homogenized problem”:

—div, (A(y) <qu(3:) + Vyul(x,y)>> = 0in Q XY,
—div, (/ A(y) (qu(x) + Vyul(x,y)>> = f(x) in Q

Y

(1.3.59)
y = ui(z,y) Y periodic

u =0 on 0N.

At this point, the homogenization process could be considered achieved because the entire sequence
of solutions u. converges to the solution of a well-posed limit problem, namely, the two-scale ho-
mogenized problem (1.3.59). However, it is usually preferable, from a physical or numerical point of
view, to eliminate the microscopic variable y (one does not want to solve the small scale structure).
In other words, we want to extract and decouple the usual homogenized and local (or cell) equations
from the two-scale homogenized problem. Thus, in a fourth (and optional) step, the y variable
and the u; unknown are eliminated from (1.3.59). It is an easy algebraic exercise to prove that u,

can be computed in terms of the gradient of u through the relationship

u(e,y) =3 2 @) @, y), (1.3.60

where x7(y) are defined, at each point x € €2, as the unique solutions in Hﬁl /R. of the cell problems

1 e 1<i<n i . s .. L.
(see chapter 2) with (€;)1<;<, the canonical basis of R". Then, plugging formula (1.3.60) into (1.3.59)
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yields the usual homogenized problem for u:

—divA*Vuy = f  in Q,

(1.3.61)
up =0 on 09,
where the homogenized diffusion tensor is given by its entries

ain, (40) (& + V) ) = vin .
(1.3.62)

y— X' (y) Y periodic
A, = [ AWE + V) + T )y (13.63)

Y

Of course, all the above formulas coincide with those usually obtained by using asymptotic expan-
sions. Due to the simple form of our model problem, the two equations of (1.3.59) can be decoupled
in a microscopic and a macroscopic equation, (1.3.62) and (1.3.61) respectively, but we emphasize
that it is not always possible. Sometimes, it leads to very complicated forms of the homogenized
equation, including integro-differential operators. Thus, the homogenized equation does not always
belong to a class for which an existence and uniqueness theory is easily available, contrary to the
two-scale homogenized system, which, in most cases, is of the same type as the original problem, but

with double the number of variables (x and y) and unknowns (u and u,).

1.3.10 H-Measures

1.3.10.1 Brief presentation

The notion of H-measure has been introduced by Gérard [52] and Tartar [104]. It is a default
measure which quantifies, in the phase space (i.e. the physical space times the Fourier space of
propagation directions), the lack of compactness of weakly converging sequences in L*(R"). . In
other words, it indicates where in the physical space, and at which frequency in the Fourier space,
are the obstructions to strong convergence. As recognized by Tartar [104], this abstract tool has
many important applications in the mathematical theory of composite materials. We briefly recall
the necessary results on H-measures and refer to [52], [104] for complete proofs. Note that H-Measures

only apply to sequences of functions that converge weakly to zero.
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Theorem 14.

(Existence of H-Measures) There exists a subsequence ( still denoted by ¢) and a family of

complex-valued Radon measures (p;;(, €))1<ij<p on R"™ x S, such that for every ¢y, ¢o €
Co(R™) and V(&) € C(S,-1), , it satisfies

L e@aes (é)u”(dx i) = T, [ Flor ) Flon D)0 (,Z)s

The matrix of measures p = (p;;) is called the H-measure of the subsequence u.. It takes
its values in the set of hermitian and non-negative matrices

p
p=f,, > Aidjpi; >0, VAeC,

1,j=1

Let us explain the notations of Theorem 14:5,,_; is the unit sphere in R", C'(S,_;) is the space of
continuous complex-valued functions on S,_1, Co(S,_1) that of continuous complex-valued functions
decreasing to 0 at infinity in R”, and Z denotes the complex conjugate of the complex number z.

Finally,F is the Fourier transform operator defined in L?(R") by

(Fo)(E) = | ol)e "9z,

In Theorem 14, the role of the test functions ¢; and ¢, is to localize in space, while that of v is to

localize in the directions of oscillations.

Remark 1.3.9. Theorem 1/ furnishes a representation formula for the limit of quadratic objects of
the sequence u.. When we take 1» = 1, we recover the usual default measure in the physical space, i.e.

fSn ) pij (., d€) is just the weak * limit measure of the sequence ulu? , which is bounded in L*(R™).

567

Therefore, the H-measure gives a more precise representation of the compactness default, taking into

account oscillation directions.

Theorem14 can be easily generalized to more general quadratic forms of u. in the context
of pseudo-differential operators (see section 18.1 in [60]). Let us recall that a standard pseudo-
differential operator q is defined through its symbol (g;;(z,§)) in C*°(R™ x R") by

1<i,j<p

Zf (q” r,& fu]())
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for any smooth and compactly supported function u. In the sequel, we shall only use so-called poly-
homogeneous pseudo-differential operators of order 0, i.e. whose (principal) symbol (qij(x, 19 ))1 <ij<p

is homogeneous of degree 0 in £ and with compact support in x. Recall also that a poly-homogeneous

pseudo-differential operators of order 0 is a bounded operator in L?(R™)?.

Theorem 15.

(Localization of H-measures) Suppose u. is a sequence converging weakly to zero in

L*(R™;R?) and define an H-measure p If . is such that

p

p
0

Z Z pr. (Ajk(x)ujg) — 0 strongly € H,;} (),

j=1 k=1

then

Aj(z W™ =0 =0 in QxS ¥Ym

M@

>

Jj=1

el
Il

1

where Ajj, are continuous in 2.

1.3.11 The periodic unfolding method

Periodic unfolding was introduced in 2002 by D. Cioranescu, A. Damlamian, and G. Griso, the un-
folding method is particularly well adapted for perforated domains. For an extensive presentation
and some applications of the unfolding method in periodic homogenization, we refer to e.g.,[36] and
[34]. Loosely speaking, the main ingredient of the unfolding method in periodic homogenization is

the unfolding operator.

1.3.11.1 The unfolding operator 7.

In R™, let © be an open set in R” set Y a reference cell (ex. ]0,1["). More generally Y can be replaced

by an n-dimensional parallelepiped
Y= {Abi+ ..+ XNy 0< N < 1i=1,..,n},

where by, ..., b, € R™is an n-tuple of independent vectors. [z]y denotes the unique integer combination

> _j—1 kjb; such that z—[z]y belongs to Y, and set {2}y = z—[z]y. The decomposition » = [2]y —{z}y
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is the usual decomposition into the integer and fractional parts. Then, for each x € R™ and ¢ > 0,

we have

()

Definition 1.3.8. define 7.(w)(z,y) € LP(Q x Y) forw € LP(Q), (p € [1,00]) by

B I C E ) RV

0 a.e. else.

for any x € Q, 1.(w)(z, {}Y) =w(x) and T.(wv) = 7.(w)T:(V),
Yo, w e L*(9).

(1.3.64)

The advantage of using this operator in the homogenization of different partial differential equations

is that it allows to transform any series of strongly oscillating periodic functions of the form {f(%)}

into a constant sequence {f(y)}. This simplifies the demonstration of the homogenization result

since there is no need to use special techniques to circumvent the difficulty due to the products of

weak convergences.

Proposition 1.3.3. (proprieties of 7.) One has the following integration formula:

1
/ wdr = — 7.(w)dzdy Yw € L*(S).
Q Y| Jaxy

For {w.} C LP(Q), if 7.(w.) — w in LP(2 X Y'), then w. — w in LP(S)) where w = ﬁ [y wdy

Proposition 1.3.4. (relation with two-scale convergence) Let {w.} C LP(2), p € (1,00), be a

bounded sequence. The following are equivalent:
(i) {r-(w.)}e converges weakly to w in LP(2 X Y'),

(11) {w.}. two-scale converges to w.

Periodic unfolding appears to be equivalent to two-scale convergence. However, it is both simpler and

more efficient.

Proposition 1.3.5. (7. and gradients) For every w € WP(Q) one has
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Vy(7e(w)) = e((Vow)).
If {w.} € Wh'P(Q), is a bounded sequence in LP(S)) such that
To(we) = W in LP(Q x Y') with e||Vw.||Lro) < C,
then
e(re(Vywe)) = Vyw in LP(2 x Y).

Furthermore, the limit function w is Y -periodic, namely belongs to LP($; WLP(Y)).

per

1.3.11.2 Periodic unfolding and homogenization

One considers the limit behavior as € to 0" of the solutions of the e—problem:

/AEVUEVUZ/fv Yo € Hy (), (1.3.65)
Q Q

where, for each e, A. is assumed measurable and bounded in L*(£2) One also assumes uniform

ellipticity
aléP < ALELSBIEPP ae z€Q,

with strictly positive constants o and 3. Traditionally, A. is derived as A(xz, £) from a A(z,y) which
is assumed Y-periodic as a function of its second variable. With f € H~1(Q2), {u.} is bounded in

H{(2) so that there is a subsequence(still denoted ¢,) and some uy with v, — ug in Hy(£2).

38



Theorem 16.

(standard periodic homogenization) Suppose that A. and f satisfy the above hypotheses.

Suppose furthermore that

B.(z,y) = 1.(A:)(z,y) = B(z,y) a.eQxY. (1.3.66)

Then there exists @ € L*(Q; H!, (Y)) such that

per
mo(us) — ug in LA HY(Y)),
(1.3.67)
7-(Vue) = Vyug + Vya in L*(Q x Y).

The pair (ug, @) is the unique solution of the problem: V¥ € H}(Q),V® € L*(Q; HL,,.(Y)),

per

Illfl [ B (vgcuo + vya) <Vx\11(x) + vycp(x,y)> _ /Y . (1.3.68)

Remark 1.3.10. 1. Problem (1.3.68) is of standard variational form on
H=HNQ) x L*(Q; HE, (Y)/R).

per

2. The only situations for which (1.5.66) is known to hold, are sums of the following four cases
where B always equals A: A(x,y) = Aly), A(z,y) = Ai(x)As(y), A € LY(Y;C(Q)), A €
LY, C(Y)).

Some advantages of the method are:
e More cases can be treated.

e Omne can put together several kind of holes with deferent boundary condition (impossible using

test functions).
e Some assumptions on correctors can be weaker.

e Nice for some linear problems.
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1.4 An overview of boundary layers

The boundary-layer theory began with Ludwig Prandtl’s paper on the motion of a fluid with
very small viscosity, which was presented at the Third International Congress of Mathematicians in
August, 1904, at Heidelberg and published in the Proceedings of the Congress in the following year.
This paper marked an epoch in the history of fluid mechanics, opening the way for understanding
the motion of real fluids.

L. Prandtl [90] showed that for a sufficiently high Reynolds number, the flow over a solid body
can be divided into an outer region of inviscid flow unaffected by viscosity (the main-stream) and a
region close to the surface of the body where viscosity is important (the boundary layer). He derived
a system of equations for the first approximation of the velocity in the boundary layer (the boundary
layer equations). On the interface between the boundary layer and the main-stream, the two flows
are properly matched.

Asymptotic modeling and homogenization problems in connection with the boundary layer theory
have been considered for 50 years. Averaging techniques have been used for modeling boundary layer
of fluid on a porous surface having a micro-inhomogeneous structure, see [[72],[73]].

The boundary layer concept used in fluid mechanics was actually extended to all similar singular
problems. Singularly perturbed partial differential equations can yield solutions with zones of rapid
variation. These zones are called layers and often appear at the boundary of the domain (then are
called boundary layers) and also at the interior of the domain, then are called interior layers.

The construction of an approximate solution to a partial differential equation consists in three
main steps: identifying the location of layers (boundary or internal), deriving asymptotic approx-
imations to the solution in the different zones, deriving a uniformly valid solution over the whole
domain. The (slowly varying) solutions for the regular distinguished limits are called outer solutions,
while the solutions obtained for the layers (singular distinguished limits) are called inner solutions.

Among the methods used for solving singularly perturbed partial differential equations, let us
mention the method developed by Vishik and Lyusternik [111], called the VishikLyusternik method
or the method of boundary layer functions. This method is based on the construction of an asymp-
totic expansion of the solution. This asymptotic expansion consists of a so-called regular series and

a boundary layer series.
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The notion of boundary layer is also widely used in the homogenization theory, for elliptic
boundary-value problems with periodically oscillating coefficients, with small period &, to improve
the macroscopic approximations given by the homogenization procedure in the neighborhood of the
boundary of the domain, one needs to introduce boundary layer correctors. Such correctors can be
defined by using boundary layer functions (called sometimes boundary layers). In homogenization
theory, boundary layers are solutions to problems defined on the boundary layer cell. The correctors
are constructed via the boundary layers by an appropriate scaling with €, their energies are negligibly

small outside a neighborhood of the boundary. See for instance [ [53], [94]] and the references therein.

1.5 Singularly Perturbed Differential Equations

Differential equations are often used as mathematical models describing processes in physics, chem-
istry, and biology. In the investigation of a number of applied problems, an important role is played
by differential equations that contain small parameters at the highest derivatives. Such equations are
called singularly perturbed differential equations. These equations describe various processes that

are characterized by boundary and/or interior layers. Consider the following simple example:
Example 1.5.1. (See [65]) Consider the following Differential equation

d
gd—;‘ = —u+t, 0<t<1, w(0)=1. (1.5.1)

where € is a small positive parameter: 0 < ¢ < 1. The solution of this problem is
u(t) = (1+e)exp{—1/t} +t—e.

The graph of u.(t) for small € > 0 is presented in Fig 1.2. Note two characteristic features of this

problem:

1. In the subinterval [,1] (where § is a small number) the solution u.(t) is close to uy(t) = t,
that is, to the solution of the equation that we obtain from (1.5.1) for e = 0. We will call such
equation the reduced equation. Thus, the solution ug(t) = t of the reduced equation gives an

approzimation for the solution u-(t) of Problem (1.5.1) in the subinterval [0, 1] for small € > 0.

2. in the subinterval [0,0] the solution u.(t) changes rapidly from the initial value u.(0) = 1 to

values close to uy(t). In this subinterval, ug(t) does not approrimate u.(t). The subinterval
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[0,0] is called a boundary layer. A generalization of this example is Tikhonov’s system (z

and y are vector functions) [97]

u
. w=,()=t
: I
1
udt) {
i
l
|
|
|
! ; L.
0 & 1t

Figure 1.2: The exact solution wu.(t) and the * solution () of the reduced

1.5.1 The Regular and boundary Layer Parts of the Asymptotic Expan-
sion

Consider in a bounded domain 2 (with 9 itself is) the following well-posed problem in H{)(f2),

with Dirichlet boundary-data

—divA.Vu. = f in Q, (1.5.2)

ue=0 on 0Q. (1.5.3)
We seek an asymptotic expansion of the solution of (1.5.2) in the form
x x x [ x x
UE(I) = ’U,Q(.QT7 g) + €U1(IL’, g) + EQUQ(.'L', g) + €3U3(Jf, g) + €4U4(Jf, g) + e (154)

Which is called the regular part of the asymptotic expansion, but this last does not generally satisfy

the boundary condition (1.5.3), which requires adding a boundary layers terms ufl’e(x) that are called
boundary Layer Part. In the terminology of the paper of Vishik and Lyusternik [111], the regular
terms of the asymptotics introduce a discrepancy into the boundary condition. The purpose of

the boundary layer functions is to compensate for this discrepancy. Note that the boundary layer
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functions together with the regular terms must satisfy the boundary condition (1.5.3). More details
on the boundary layers part will be found in Chapter 2 .

1.5.2 Corner boundary layers

The construction of an asymptotic solution in the previous subsection was carried out under an
essential assumption: The boundary 0f) of the domain 2 is assumed to be a smooth curve. The
normal to the curve exists at each point and the boundary layer functions were constructed from the
solutions of ordinary differential equations with derivatives taken along these normals. In the case
when the boundary of the domain is no longer smooth, but contains corner points, the structure
of the asymptotic solutions becomes more complicated in vicinities of these points. The boundary
layer functions constructed in the previous subsection are not sufficient to describe the asymptotic
behavior of the solution near the corners, moreover it introduce additional discrepancies in the
boundary conditions on the corners. Hence, again we need to introduce a new type of boundary
layer functions, corner boundary functions, in the vicinities of the corner points, such that we

seek an asymptotic expansion of the solution of (1.5.2) in the form
ua(w) = S, y) + U (@) + U (o).

For more examples on the subject see [65]

1.6 Boundary layers in elasticity

We consider in R? a bounded domain 2 made of elastic composite materials, with smooth boundary
0% , Moreover, we assume that its mechanical properties are periodic with a small period Y, described
with the aid of a small parameter €. The body is subjected to forces of density f, is fixed for example
on a portion I't of its boundary and we assume that the remainder I"? of its boundary is free. Let
us set @ = (1, g9, x3) a point of Q and y = (y1,y2, y3) € Y. One sets,the equilibrium problem defined
by :

(_97,(®)

= n €
oz, foin Q,

755(x) = Co (D) ey (" (@))) i 2

u (r) =0 on I,

(1.6.1)

£ € __ 2
o;n; =0 onlI”.
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Where o7; = 05, is the Cauchy tensor with Cyjp € L>(Y) are periodic and elliptic and symmetric

coefficients, u®(x) the displacement, e;;(u°(z)) the strain tensor :

e;j(uf(z)) = %(8“5 + %), and n is the outside unit normal of 2. The solution u¢(z) is searched under

Ox;

the form of an asymptotic expansion
w () = u(z,y) + eul (2, y) + *u?(z,y) + ...
As a sequence, we get the corresponding expansions for strain and stress

eg'(‘x) = egj('I'?y) + Eezlj(x7y) + ..

)

of =0 (z,y) + eailj(x,y) + ..

ij ij
where
ey = eije(u”) + ey (uh),
o1y = aigmep (),
such that
(3 22), e
Then

u' = expe (1’ ()X (y) + ¢,

where x*"(y) are Y-periodic solutions of the local problems

0

- aiyj{aijkl((smkdlr + ekz(Xkr(ZJ)))} =0

and the homogenized coefficients are

Uy = /Y {%’kl <5mk5zr + e (X’“(?D)) }

Then ug is the solution of the homogenized equation and the boundary condition

o} . ho_ 0 _ h 0 :
oz, Ii; 045 = Oij = aijmremr,x(u (), in Q,
J?j Y

ug =0 on I,

<0fj>n]— =0 onl?
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h
ij

where (07;) are the average of 0};. We note that (o};) are an approximation of ¢7; on I'* and that
afjnj # 0 on I'?, which is a source of boundary layer phenomena. We intend to describe the influence
of the periodic structure by the microscopic variable y (resp. the macroscopic variable x) in (1.6.2).
To this end, we search for an expansion (1.6.2) with functions u’ Y-periodic with respect to the
variable y and smooth with respect to x. Indeed, each u’(z,y) is defined on 2 x Y.

It is evident that this locally periodic expansion is fit to describe the solution in regions of €2 far
from its boundary, or from regions where the local effects are not Y-periodic. But in practice, we
need a more precise analysis of the local stress field, at the microscopic scale of the heterogeneities,
specially near the boundaries, note that the asymptotic expansion technique allows to obtain an
approximation of the micro-stresses within the material by a localization method. But in this way,
the micro-stresses do not satisfy the boundary conditions of Neumann, in addition they are supposed
periodic as the structure and this hypothesis must be discussed near a boundary. Consequently,
the approximation obtained by the classical homogenization theory, is not very satisfactory in the
neighborhood of a Neumann boundary. As a result, near the boundary 02 of the body we must
consider boundary layers where the solution is searched under the form (1.6.2) but now x runs in 02
and y in the strip S Fig.1.3 and v’ is searched to be S-periodic instead of Y-periodic (the periodicity

is parallel to the free boundary). Note, in Fig. 1.3 for instance, that S is a semi-infinite strip formed

by Y-periods (plus perhaps ”"parts” of periods at the intersection with 9€).

\

\

Figure 1.3: The strip s

In this case, the solution in the boundary layer region takes the form : (the superscript bl is for
"boundary layer”) :

uf(z) = u®"(z,y) + eu (2, y) + ... (1.6.9)
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such that each u*" is defined for z € I'* and S-periodic in y, It is clear that two such expansions
"must agree”, i.e. the boundary layer contains a transition region between the genuine boundary
layer and the "outer” region (outer to the boundary layer). Note that the solution u® equals to the

sum of the two expansions, in order to guarantee that the boundary conditions are verified.

Remark 1.6.1. 1. In homogenization theory, boundary layers are solutions to problems defined
on a semi-infinite strip [0,1]"1x]0, 0o[, whose energies decrease exponentially with respect to

the second variable.

2. The construction of the boundary layers in general domains is up to now an open question.
The only cases where results have been obtained are when the domain is a half space. Recently,
Allaire and Amar studied boundary layers in rectangular domains which are either fized or have

an oscillating boundary.

1.7 Boundary layers in thin plates

In this section we present the steps to construct a valid asymptotic expansion with boundary layers
terms for the displacement «(z) in thin plates (see [40] for more details).

Consider a thin plate Q" = w X (—n,n), where the mean surface w is an open subset in R? and the
thickness n is a small parameter designed to tend to zero. We suppose that the boundary 0f) is
divided into horizontal boundaries w x {£n} and lateral boundary I'” = Ow x (—n,n). There are
three types of plates, such that the kind of each plate is referred to the boundary conditions imposed
on the lateral boundary, i.e:

u"=0on I = hard clamped plate,

u'n=0and uj =0 on T = soft clamped plate, (1.7.1)

u'xn=0andul =0o0nT" = simply supported plate,

with n is the inner unit normal to I'".

1.7.1 Outer and inner ansatz

In the case of thin plates, before postulating the outer and inner ansatz, it is needful to make a

scaling to the domain Q7, the displacement u” and the forces if they are exist, namely, we transform
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the studied problem into a problem posed over a fixed domain, which does not depend on 7.
The outer ansatz is the same of what we were mentioned in last sections, but here we use the scaled

displacement u(n) instead of u” i. e.
u(n)(z) = u®(z) + qut(x) + n*u?(z) + .. + nfu®(z) + .. (1.7.2)

where the u*are independent of 7, corrected by a boundary layer expansion the inner Ansatz. These
inner and outer expansions are familiar notions in the theory of matching asymptotics [62], where
the idea is somewhat different: it consists of trying to describe the asymptotics either in primitive
variables, or in boundary layer variables in different zones and to match both in an intermediate
zone. Here we search for a combined expansion which is valid everywhere. More precisely, we find

that the ingredients of a correct Ansatz are the following.

1. Kirchhoff-Love displacements uf.;: It is well known that the limit of u(e) is a Kirchhoff-

Love displacement, namely:

UIIC(L,a = CS(IQ) - xSaaCéc(xa)a C?(L,?, = Ciif(xa) (1.7.3)
Indeed we find that such a displacement appears at each level of the asymptotic.

2. Displacements with mean values zero in each vertical fiber :

1
/ uF (24, 23)das = 0V 24 € w, (1.7.4)
-1
which are determined by the solution of a Neumann problem on the interval [-1, 1]. Added to

the previous Kirchhoff- Love displacements (1.7.3), they constitute the outer expansion part of

the Ansatz (1.7.2).

3. Boundary layer terms

r the distance to Ow,
wh = wh(n7lr, s, x3) with (1.7.5)

s the arc length in Ow.
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They compensate for discrepancies in imposed lateral boundary conditions and describe phenomena
rapidly” varying and decreasing near I', their introduction allows for a complete resolution. They
constitute the inner expansion part of the Ansatz. For every k, w*(t, s, z3) is exponentially decreasing
as t — +o0.

With y denoting a cut-off function equal to 1 in a neighborhood of dw, we consider the localized

1

function y(r)wk(n=tr, s, z3).

Collecting all these features, we get the following expansion

u(n) = ufe, +nuic, +nx(r)wh(n ' s, 25,0) + Y nF(uf, + 0"+ x(r)wF (07 s, 25)). (1.7.6)
k>2
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CHAPTER 2

ERROR ESTIMATES

This chapter is dedicated to the study of error estimates in the periodic homogenization of elliptic
equation in divergence form with Dirichlet boundary conditions. We remind that the homogeniza-
tion theory consists in substituting a non-homogeneous material for an homogeneous material with
equivalent mechanic properties. Among several basic techniques in homogenization theory we are
concerned in this chapter with the two-scale asymptotic expansions method (see Subsection 1.3.2,

Chapter 1), through which the solution u. of our problem can be written as the ansatz
U = ieiui(:r, E), (2.0.1)
i=0 <

where ¢ is a small parameter (0 < ¢ < 1) which represents the size of the basic period Y = (0,1)?,
the leading term wug denotes the homogenized solution and wu; for i € N* are called correctors which
are periodic with respect to the second variable. This method is very simple and powerful, but
unfortunately is formal since the ansatz (2.0.1) is fit to describe the solution in regions of 2 far
from its boundary and this is the most drawback of this expansion. Thus, the two-scale asymptotic
expansion method is used only to guess the form of the homogenized problem. As a consequence,
near the boundary, one must consider boundary layers terms, such that matching both (2.0.1) and
boundary layers terms ansatz gives an asymptotic expansion for the solution u. which is correct
everywhere.

An important point to bear in mind is that the phenomenon of boundary layer appears in PDE either

due to the boundary conditions or the geometry of the domain. We note that boundary layers are
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often more important for improving the rate of convergence than the usual periodic correctors. For
instance, taking into account the boundary layers in our problem, we obtain in the first approximation
an estimate of order € for the remainder term, whereas without the boundary layers we can only get
an estimate of order £2. To the best of our knowledge, the only situation where there is no boundary
layer is the case of periodic boundary conditions. The purpose of our study is to find the error
estimates of the third-order with or without boundary layer terms in the periodic homogenization
of elliptic equations in divergence form with Dirichlet boundary conditions. Thus, the originality
of the present study lies in the improvement of the homogenization approximation by taking into
account the third-order corrector. To our knowledge, the third-order corrector was not studied in

homogenization theory.

2.1 Setting of the problem

We start by recalling the basic notions of the asymptotic homogenization method for periodic struc-
tures (see [18, 32]). Let Q be a bounded open subset of R™ with Lipschitz continuous boundary.
Let A(y) be a square symmetric matrix with entries a;;(y) which are Y-periodic functions belonging

to L>(Y'). We assume that there exist two constants 0 < A < A < +o0o such that, for a.e. y € Y,
MEP < a&& < AEJ?, VE € R™

Let A.(z) = A(g) be a periodically oscillating matrix of coefficients where € is a small positive
parameter (0 < & < 1). For a given function f € L?(Q2) we consider the following well-posed problem
in H} ()
—divAVu. = f in Q,
(P.) (2.1.1)
u. =0 on 0N.

We postulate the following ansatz for the solution wu.(x)

x T T T T
u.(z) = up(z, g) + euy (x, g) + uy(x, g) + us(x, g) + ety (x, g) + o (2.1.2)

x
where each function u;(x,y) is Y-periodic with respect to y = —.
€

Suppose that a function ¥¢(z) = ¥(z,y) depends on both the slow and the fast coordinates. We
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make use of the chain rule of differentiation we obtain the following relations:

OV (z,y) _ 0¥(zy)  10%(xy) =
or Ox e dy YT
divVe (z) = div,V(z,y) + idivy\ll(x,y), (2.1.3)

1
VU =V, U(x,y) + gVy\I/(x, Y).
Plugging the asymptotic expansion (2.1.2) in (2.1.1) taking into account (2.1.3) and identifying

different powers of ¢ yields a cascade of equations. Defining an operator L. by L.p = —divA.V,

one can write L, = e 2Ly + e 'Ly + Lo, where

0 0

Lo = —@(aij(y)@)
0 0 0 0
Ly = _aiyi(aij(y)&ixj) - %(aij(y)@)
0 0

Ly = —a—%(aij(y)a—%).
So the first equation in (2.1.1) is identical to the following system
Loug =0
Lou; + Liug =0
Lous + Lyuy + Loug = f
(2.1.4)

L0u3 + L1u2 + Lgul =0

Louyg + Lyuz + Lous = 0

By application of the Fredholm alternative for periodic elliptic PDEs to (2.1.4), we deduce that each
equation in (2.1.4) has a unique solution w;(z,y) (up to a constant 4; that depends on z only).
The first equation in (2.1.4) leads us to deduce that ug(z,y) = ug(z) is independent of y.

The second equation gives u; in terms of ug

wn,y) = —xf‘<y>§§j<x> T i), (2.1.5)

where x7(y) are the unique solutions in H;(Y’) of the first cell problem

Baij

[/xj(y)dy = 0.
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The third equation in (2.1.4) gives us

y 0*u . ou -
us(w,y) = X () 5= = = X () 5= () + () (2.1.7)
? J J

where ¥ € Hﬁl(Y) are the unique solutions of the second cell problem

Y

(2.1.8)
/ X" (y)dy = 0,
%
o’ 0 .
with by = ai;(y) — air(y) o ayk(a k()X')
The fourth equation in (2.1.4) gives ug
y Pu o 0%y () N
— gk 0 1] 1 — J s I 2.1.9
us(2,9) = X" () 5 - Jr,0m, | X O s, X () o, () + () (2.1.9)
where x* € Hﬁl(Y) are the unique solutions of the third cell problem
Lox"* = ciji, — / cr(y)dy — in Y
Y (2.1.10)
/ X7 (y)dy = 0,
Y
with i = —ai;x* + i(a- k) + O
ijk — ii X 8ym im X im 8ym .
The fifth equation in (2.1.4) gives uy
i (94&0 ” 83U~1 (ZU) 82122 (1’) . 8123
— \tjmp ijk 1] NI it
+ 124(1‘)
where ™ € Hul(Y) are the unique solutions of the fourth cell problem
L()Xijmp = dijmp - / dijmp(y)dy inY;
Y (2.1.12)

/ X7 (y)dy = 0,
Y

bS] XJ mp

0 .
with dz mp — (Ii‘me + — aikX]mp + i .
Jmp J ayk( ) ayk
The homogenized problem of (P¢) is obtained by averaging the third equation in (2.1.4). It is given
by

—divA*Vuy = f in Q,
(Py) (2.1.13)
u =0 on 09,

52



where the coefficients of the homogenized matrix A* are given by

a; =/Y[aij(y) —amg;i(y)]dy (2.1.14)

such that (aj;) is bounded, symmetric and uniformly elliptic. The problem (Pp) is well-posed in
Hy(9).
The functions 7, s, U3 and 1y are non-oscillating functions which represent the average of uy, ug, uz and uy

respectively and are solutions in €2 of the equations

83u0
—div]A*Vu =< Cjp > ———, 2.1.15
WAV () Cigk O0x;0x 0z, ( )
84U0 83121
—div]A*V =<dijipy > ————F+ < Cjjp > —————, 2.1.16
il () gkl 8xi8xj8xk8xl+ Cigh 0x;0x ;07 ( )
85U0 84211
—div|A*Vu: =< €iikim > <djipg > —————
i ()] Cijht 3xi3xj5'xk3xl(9xm+ akl Ox;02 ;01,01
_ (2.1.17)
b s Pl
ik Ox;0x;0xy,’
where
ijklm ij 8yr ir zrayr )
and
86u0 85’L~L1
—div[A*V1, =< hiigtmn > < €iiklm >
il () akl 3xi6xj8xk8x18xm3xn+ Cight 02;02;0x,01,0x,, (2.1.18)
gkl 0x;0x,;0x,01, 1k Ox;0x;0x),’
where
mn a jklmn 0 jklmn
Rijkimn = CLz‘ijl + @(airxjkl )+ air@(X]kl )
such that y/*mn ¢ Hul(Y) are the unique solutions of the fifth cell problem
Loxjklmn(y) = Cijkim— < €ijkim >
(2.1.19)

/ X (y)dy = 0.
Y

Remark 2.1.1. The functions ty, Uy, U3, and U4 are not uniquely defined since the equations (2.1.15),
(2.1.16), (2.1.17), and (2.1.18) haven’t any boundary conditions, and it is very difficult to determine
them. However, there is a special geometric case allows us to find out the boundary conditions for

only i (see, for instance [2]).
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It is technically complicated to keep track of boundary conditions when seeking u. in the form

(2.1.2), especially near the boundary, so we expect u. to behave like

ue () = uo() + efur (z,y) + 1" (2)] + £ [us(w, y) + 15 (2)] + ...... (2.1.20)
where each boundary layer term u?l’a satisfies
—divAEVu?l’s =0 in Q
. (2.1.21)
ult = —u;(z, =) on 99
€

Remark 2.1.2. i) Since dQ is Lipschitz continuous and u’"* € H'(Q), so (2.1.21) has a unique
solution.

ii) The advantage of the new ansatz (2.1.20) is that each term u; + u?l’g satisfies a homogeneous
Dirichlet boundary condition.

i11) Both the coefficients and the Dirichlet boundary data in (2.1.21) are periodic and rapidly oscil-
lating.

iv) The case where the boundary data in (2.1.21) is not oscillating and belongs to LP(0R), 1 < p < oo,
was studied by Avellaneda and Lin [9)].

bl,e

v) The asymptotic analysis of (2.1.21) turns out to be more difficult than that of (P-) since u; " is

not uniformly bounded in the usual energy space H'(Q). More precisely we have
|

The asymptotic analysis of (2.1.21) is a very difficult problem that has been addressed only

0<j§>, |

bl,e
%

bl,e
%

bl,e

(3

=0(1), ‘ u

@)

=O0(1) for allw CC Q. (see[l7])

HY(Q) N H' (w)

for very special domain, namely with boundaries that are hyperplanes (see [94]) and the references
therein). A major progress was made in the pioneering work of Gérard-Varet and Masmoudi [53] for

solutions to elliptic systems of divergence type, under the assumption that €2 is a smooth, bounded

bl,e

i

and uniformly convex domain® of R™ (n > 2).They proved that, as € — 0, the unique solution u

of (2.1.21) converges strongly in L*(Q) to some function u"*, which is solution of

—divA*Vul"* (z) = 0 in Q,
ul*(z) = —;(x) on A9,

7

LA convex set C is said to be uniformly convex if there exists a function §(r) positive for r > 0, and zero only
for r = 0, such that z,y € C and Hz - %H < 0(||lz — y||) imply z € C.
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where A* = (aj;) is defined in (2.1.14), and w; is the homogenized Dirichlet boundary data that
depends non trivially on u;, A and Q. More recently, Armstrong & al [8] have improved the results

of Gérard-Varet and Masmoudi [53] to the case LP(€2) where 2 < p < 0.

2.2 An overview of some error estimates

In this section we present a brief overview of some known results on error estimates in periodic
homogenization for the problem (P.). Let’s start with the error estimate between wu. and wg the
unique solutions of (P.) and (Pg) respectively. For f smooth (f € C*(Q)), using the maximum

principle, Bensoussan & al. [18] obtained the estimate
Jue — uOHLOO(Q) < Ct, (2.2.1)
and for x7 € L>(Y), Jikov et all. [64] obtained the estimate

e — ol 20y < Cee. (2.2.2)

The error estimate with a first-order corrector in the periodic homogenization for the problem
(P.) was given under additional regularity assumptions on uy or on the cell functions y’. Under the

assumption that y/ € W (Y), Bensoussan et all [18] obtained the estimate
[te — o — ewr[| gy < CVe. (2.2.3)

The same estimate (2.2.3) is obtained by Jikov & al. [64], under the assumptions that uy € C?(Q)
and V,x?/ € L*(Y), and by Allaire and Amar [2] under the assumption that uy € W*°(Q).

The estimate (2.2.3) has a general character since it holds for a wide range of boundary value
problems, and not only for the Dirichlet problem.

Without any regularity assumptions on y’/ and under the hypothesis that uy € H?(Q), where
Q2 is a bounded domain in R™ with C™! regularity, Griso [56] using the periodic unfolding method

introduced in [31] and further developed in [33, 34], proved the estimate
e —uo — 5U1||H1(Q) <Cve HU0HH2(Q) ) (2:2.4)
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where uy (7, £) = Xj(f)QE(g—E(:L‘)), reQ. = Ugezn {€€ + €Y with (£ +eY)NQ # 0},
Q@) &) = % M (0) (€ + )T Tt § = | 2] for ¢ € LAQ), i = (ir,nin) € {0,1)7,

i1y

Mg (0)(2) = & [,y 6ly)dy and

. TEZEE gy, =1
T = z € (e§+eY).
1— 228 g =0
For any open set w CC ) compactly embedded in €, under the assumption that uy € W3>(Q),

Allaire and Amar (Theorem 2.3, [2]) obtained the interior estimate
[ue — w0 — ew| () < Ce, (2.2.5)

where C' depends on w.
Under the assumptions that €2 is a bounded domain in R with C™! regularity and f € L*(),

Griso [57] proved the same estimate above
lue = uo = el iy < Cel[fll 2y » (2.2.6)

where Cy depends on n, A*, w and 99, uy(z, %) = Xj(f)Qs(g%‘;(x)).

Cioranescu & al. [34] proved the estimates (2.2.4) and (2.2.6) with

x . Oug

) = xj(g)af%(x)’ without Q..

x
uy (z, -

Using the first-order boundary layer corrector defined in (2.1.21), under the assumptions that
A. € C®(R")™" Y —periodic, uy € H?(Q), where Q C R? is a bounded domain with Lipschitz

boundary satisfying a uniform exterior sphere condition?, Moskow and Vogelius [78] obtained the

Under the assumption that ug € W2*°(Q), Allaire and Amar [2] obtained the same estimate

estimate

bl,e
Us — Uy — EUL — EUy

< Ce. (2.2.7)
Hg ()

above.

2 A domain Q C R™ satisfies an exterior sphere condition at ¢ € 9Q if there exists y € R and p > 0 such that

By(y) N = {¢}.
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In the general case of non-smooth periodic coefficients, where €2 is a bounded convex polyhedron
or a bounded convex domain and ug € H?(f2), inspired by Griso’s idea, Onofrei and Vernescu [87]

proved the estimate

T ou
we =g~ (G2~ <Be| < Ce Junllagey 2.2
j

H;(Q)

where 3 is the solution to (2.1.21) with uy(z, £) = Xj(f)%(az).
J

For more results on first-order estimates, we also quote the references [94, 109, 91].

Taking into account the second-order corrector, under the assumptions that f € C*(Q), u; =

Uy = 0 and X7, x* in WH(Y), Cioranescu and Donato [32] obtained the estimate
Hug — Ug — eUy — EQUQHHl(Q) < Cy/e. (2.2.9)

Using the first-order boundary layer corrector, under the assumptions that €2 is a cubic domain

and ug € W?*(Q), where u; is defined by (2.1.5) and @ satisfies (2.1.15), Allaire and Amar [2]

|

This result shows that with the help of the second-order corrector, and the first-order boundary

obtained the estimate

(M

< Cen. (2.2.10)

bl
Us — Ug — EUY — EUT " — EQUQ‘
HY(Q)

layer corrector, one can essentially improve the order of the estimates (2.2.9) and (2.2.7) respectively.
We note that the result (2.2.10) is obtained provided that u; satisfies (2.1.15) otherwise, the estimate
is wrong. For the case of a convex bounded domain €2 with smooth enough boundary, and under
the assumptions that ug € H3(Q2), u; = 4z = 0 and x?, x” in W'P(Y) for some p > n, Onofrei and

Vernescu [88] proved the estimate

The following section sets out the principal results, such that it presents the error estimates of the

e =g — euy — eul — | < O fuoll ey (2:2.11)

L)

third-order for the problem (2.1.1) with and without boundary layers terms. Note that these last,
are stated under the assumptions that A. € (LOO(Y))MH (i.e. the coefficients a;; are not smooth),

and either the homogenized solution uq is smooth or the solutions of the cell problems are smooth.

Remark 2.2.1. This section represents our published article see [107].
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2.3 Third-order corrections in periodic homogenization for
elliptic problem

In this section we need more regularity for g the solution of (Py) which requires more regularity
on the data, and we suppose that the functions u; = (u;) =0, ¢ = 1,2,3,4. Since we will not try to
compute the minimal regularity required for 2 and f, we simply assume in the sequel that 2 is a
bounded domain with 92 € C* and f € C*°(Q) which implies, according to the regularity theory
(see Evans [49]), that uy € C*(2). Using the density of C*(Q) in W™?(Q) for all m € N* and

1 < p < oo, we have uy € W™P(Q).

The first result concerns the second-order error estimate with boundary layers correctors. In this

case, we need the regularity H?3(Q2) for uq.

Theorem 17.

Let u. and g be the unique solutions of (P.) and (Py) respectively, with 2 C R™ is a strictly

convex bounded domain with dQ € C*. Assume that f € C*(Q) and Y% € Whee(Y).

|

Then

2 ble

U — g — euy — Uyt — 2uy — %l < Oe? ol gr3(q) - (2.3.1)

Hg(Q)

Definition 2.3.1. The domain §2 is strictly convex if the open straight segment joining any two

points of 082 lies entirely in 2.
Proof. Defining r.(z) = g(wS — g — euy — eult — 2uy — 2ubF),
it satisfies
1 1
—divA Vr. = < (f + divANug) + —divA.-Vuy + divA-Vus mn
3 2 (2.3.2)
re=0 on 0f).

Using the relations (2.1.3), (2.1.4) and the fact that ug is independent of y, we get

1 1
f + diUAEVuO = f — L2u0 — nguo = LOU2 + L1U1 — gL1U0

1 1
diUAEVul = —L2u1 - leul - *QL()Ul
9 9
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1 1
diUAEVUQ = _L2u2 - *Ll’LLQ - *ZLQUQ.
9 9

So the equation (2.3.2) is reduced to
1 1 1 1 1
—dZ"UASVTE =3 (L()UQ + L1U1 — L1UQ> + - (-LgUl — leul — 2L0U1>
€ € € € €
1 1
+ <—L2U2 — —Lyjuy — QLOUZ)
€ €

1 1 1
= 3 (L1U0 + L0U1) + o) (LOUQ + Lyuy — Lyuy — L0U2) s (L2U1 + L1U2) — Louy
1
== *Loug - LQU/Q.
€

Then the variational formulation of (2.3.2) is

Find r. € Hy(Q) such that
1
fQ ANr.Vodr = B fQ (Loug) pdx — fQ (Louy) ¢pdz, Vo € HE(Q).

We have for all ¢ € Hj () the estimate

/ AN N pdx
Q

1
= |- /Q (Lous)¢dr — /Q (div, AV yus)pdz + /ﬂ (div, AV yus)pdx — /Q (Lous) o

< 1/(L0u3) qﬁdq:—/(divaEVyug) odx| +
€ Ja Q

/(divaEVyu;;) pdr — / (Lausg) ¢pdx
Q

Q

_l’_

= —/(divAEVyug) ¢dx
Q

/ (dZUzAE(vaQ + va?,)) ¢d$
Q

= / AV usVodx
Q

+ ‘— / Ag(vaQ + Vyug)ngdx
Q

+

<2 ‘/ AV usVodz
Q

/ AV usVodx
Q

Using the L> boundedness of A., and that ||V us||r2) < Cus||uol| sy and || Vaus| 220y < Cluol| a3,

we get

/ A NVr.Vaodr
Q

< Clluollma@) 191130y » Yo € Ho ().

By taking ¢ = r. and using the ellipticity of A., we obtain

Al @ < / AVrVrede < Clluollas Il gy

which implies that

7l g 0 < Clluoll sy
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The second result deals to the third-order error estimate without the boundary layer correctors. For

this case, we need ug to be in H*().

Theorem 18.

Let u. and ug be the unique solutions of (P.) and (Ppy) respectively, with Q@ C R™ is a

bounded domain with 92 € C*°. Assume that f € C>(Q2) and x7, ¥ and x“* € Wl (Y).

Then

Hug — Uy — Uy — e2ugy — 63U3HH1(Q) < Cyfe (2.3.3)

For the proof of this theorem we need to use the following tools:

Proposition 2.3.1. Let F be in H'(Q2). Then, there exist n+1 functions fo, f1,..., fn in L*(Q)

such that

ofi

F f0+21 la

in the sense of distributions. Moreover

1110y = inf 2ol fillZ2()

where the infimum is taken over all the vectors (fo, f1,...fn) € [L*()]"TL. Conversely, if (fo, f1, -

is a vector in [L?(Q)]"™, then F € H™1(Q) and it satisfies
11 F-10) < 2ol fillZ2)-
(See [Proposition 3.42; [32]]).
Lemma 2.3.1. Let Q) be a bounded domain with a smooth boundary and
Bs ={x € Q, p(x,00) < 6} with ¢ > 0.
Then there exists &y > 0 such that for every § € (0,08) and every v € H*(Q) we have

1
[vllz2(85) < CO2]v][m1 ()

- Jn)

where p(x,0) denotes the distance of x € Q from the set 92, and Cg is a constant independent of

o and v.
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Proof. (See [Chapter 1, Lemma 1.5, [85]]).

Theorem 19.

Let A(z) be an uniformly elliptic bounded matrix and 0f2 be Lipschitz continuous. Suppose
€

that

feH Q) and g € H2(99) then, there exists a unique u. € H'(€2) solution to

—div(AS)Vu) = inQ
£
u. =g on 0S)

and

Proof. (See [Theorem 23.4, [48]]).

We now give the proof of Theorem 18.

Proof. We set:

Z. = u. — (ug + euy + e%ug + ®us),

uy = up(x),
U Xjﬁuo
1= X 53
(%Uj
ij 82u0
U ==
2 X 6%1‘81']'?

3
81‘¢61‘j3$k7

then,
L.Z. = L.u. — LE(UO +euy + £2u2 + EBU3>

= Lou. — (67 2L + e 'Ly + Ly)(ug + uy + e%uy + 3us)
= Lou. — e 2Loug — e *(Louy + Liug) — (Loug + Liuy + Loug)
— e(Lous + Louy + Liug) — €2(Lyus + Louy) — €*(Lous).

Using the equations of (2.1.4), we get

LEZE = —52<L1U3 + LQUQ) — Eg(Lgu?,).
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Since

0 —1 0 and 0 =c 0
ox; €0y dy;  Ox;

a simple computation shows that:

z Oy Oy P T oo T 0y
L = —apn(— — &5 \im(— R G v wwar v
1 “ (s OYm 02030201}, gaxz(al (€)X (g)axmaﬂfiaxjaxk)
—€L2U3,
g (Bt O
Lous alm(E)X (E 07102,,01;0;
then:
Ok &g o T o g
[ 9 E 30 Y INik(IN_ 2 0
=e © (alm(e) Y 8x18x¢8xj3$k> : (5110[ (alm(ﬁ)x (5)85%8%8%‘8951@

_ 2 (B O
€ azm(g)X (5)8@8:&”8%8%]"

Taking into account that u. and ug vanish on the boundary 02, then it follows easily that 7. satisfies
L.Z.=¢*F° inQ

Z. =eG* on 01,

where
x Ok 0y T X 9y
F® = —ap(— — ()X (D) e
a (6) OYp, 0210x;02;07), al (5)X (5)8x18xm8xi8xj
0 T X o*u
_ (2 P e U
E(axl <alm(5)x <€)8xm8xi8xj8xk))’
L G = —Up — EUy — €2U3.
We put
x Ok 0y T, .. x 0y
L= — — — B PO Y i D
0 alW(e) Yy, 0x,02;,02 0y, alm(e)x (5)833183:,”81‘,-3%’

X T

. ot
B = —aim (S (2) 5

£’ 0w, 0;0x;0x)

Under the assumptions on a,, g, x“and x7* we get
[ Folz2(0) < C, (2.3.4)
[ Fil[r20) < C. (2.3.5)
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Using the Proposition 2.3.1, then from (2.3.4) and (2.3.5) we obtain F° € H~(Q).
Let us now look at the function G. . We prove the following estimate:
At this point, we need to introduce the function m. € D(Q2) defined as follows

me =0 if p(x,00) > 2
C

|Vmel| o) < -

For the existence of such kind of functions see [32] and the references therein.

Set

supp V. = {z, p(z,0Q) < 2¢} which will be denoted by U..

Using the H'-norm, we have

IVl @y = IVellzwny + IV Vel 2@y
Clearly, from the definition of m,. and the regularity properties of ug, x’, Y’ and x”*, one has that

IVell 2oy < €.

On the other hand, we have

Pug(x) Mz Pug(z)

ove B 10x* & Oug(x) o, T
0x; () = me(z) [5 Y; (g) 0xy, X (g)axz@xk Qy; e’ 0x0x
gxkz(f Puo(2) _63Xklm T Pug () _ 2 kzm(f 0'uo(2)
e’ 0w;0x;,01; Oy; e’ 0x,0x0x,, e’ 0w;0x;,02,02,,
Ome | oo, Oug(x) ki Puo(r) 5 pm T 9o ()
+6’xi [ (5) Oxy, X (s 01,07, (s 0,010, |

Again, on the account of the above definition of m. and the regularity properties of ug, x*, ¥* and

x*m it is easy to check that

; 1
IVVEl 2,y < ECHUOHHl(UE) +C,

and owing to Lemma 2.3.1, we derive that
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1
[woll 1,y < Ce2 [Juoll g2y -

Then we conclude that

Vel ey < C+ e Cos luoll g1
< C + 7' 0(Ce? [Jug| o)
< Ce? .

On 09, V. = (., this gives that

;1
|G| |Vl ClIVellaey = ClVellmr .y < Ce= .

1 = | 1 <
H2 (69) H3(09)

Using the regularity results of Theorem 19, we deduce that

1
1 Z:\| ) < EX1FF|lm-1(0) + €| Ge|| < Cez,

1
HZ(99)
which proves the theorem. Ol

The third result is about the third-order error estimate without the third boundary layer corrector.
In this case, we need ug to be in W4*°(Q).
Using the Sobolev embedding result (see Adams [1]): Let [ € N, m € N* and 1 < p < oo. If either
(m—10p >norm—1=mnandp=1, then WmP(Q) — WH(Q), for p < ¢ < 0o. So we have
WrHL(Q) — W4°(Q) and like ug € C=(Q) € W™P(Q) for all m € N* and 1 < p < oo, then
ug € WH>(Q).

Theorem 20.

Let u. and wuy be the unique solutions of (P.) and (Pp) respectively, with Q C R" is
a strictly convex bounded domain with 9Q € C*. Assume that f € C*°(Q) and x%7*,

XUk € Wh(Y). Then

< Ces. (2.3.6)

bl bl
Ue — Uy — €U — EU T — E2uy — %uy T — € u3‘

In order to proof this theorem we need the following Lemma :
Lemma 2.3.2. Let ¢. be a sequence of functions in WH>(Q) such that

C
[¢=llzoi) < C and ||V | r(o) < =
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Let z. € H () be the solution of

—divAVz. =0 in S,
Ze = ¢. on 0f).
Then it satisfies

C
||Za||H1(Q) < %

Proof. For the proof we refer the reader to (Lemma 2.6, [2]) O

Proof of Theorem 20

. 1
Defining 7. () = = (ue — ug — euy — cul _ ¢
€

b,
2uy — 2uy — 3ug),

it satisfies

1 1 1
—divA.Vr. = = (f + divA.Vug) + S divA.Vuy + —divA.Vuy + divA.Vug in Q,
€ £ €

xT

re = —ug(z, g) on 0N.
(2.3.7)
We decompose r. = 7! + 72, where r! satisfies
, .1 . L. I : .
—divAVr, = = (f + divA-Vug) + =divA.Vu, + —divA.-Vus + divA-Vug in
el €2 € (2.3.8)
rl=0 on 0L,
and r? satisfies
—divA.Vr2 =0 in €, (4.6)
2 (e By kT Puo oo
T'e u3(x’€) X (E)afla.f]afﬂk on OS2

x
Using the fact that us(x, =) satisfies
€

)

o |Q

usllLe@ <€ and  [[Vus| (@) <

C
then Lemma 2.3.2 gives that |[r2 i) < 7 On the other hand, we will now estimate r} the
€

solution of the problem (2.3.8). Using the results obtained in the proof of Theorem 17 and the fact

that

1
diUAEVU3 = —LQU3 — *L1U3 — 7L0U3
3 3
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we get
. ) 1 1
—dZUAEVTg == —LQU3 — g (L1U3 + LQUQ) = _L2u3 + gLou4.

The variational formulation of (2.3.8) is

Find r! € HY(Q) such that

[y AVriVede = i Jo (Lous) pdx — [, (Loyuz) ¢dx, Yo € Hy(9Q).

We have for all ¢ € Hj () the estimate

= / AV, u,Vodx
Q

+ ‘—/ AE(VJEUg + va4)v¢d$
Q

_l’_

<2 ‘/ AV uyVodr
Q

/ AV usVodx
Q

Using the L* boundedness of A., V,us and V,us we get

| AV ods| < C ol o € HYO).
Q

By taking ¢ = r! and using the ellipticity of A., we obtain
2
Mt o) < | AriVrlde < Can ]y
Q

which implies that
<C

HrelHHg(Q) =L

Finally, we get &||r|| g1(q) < Ce3 which establishes the desired estimate. [

/(diUxAEVym) ¢d$—/(L2U3) ¢dx
Q

1
/AEVﬁV(z)da: = 6/(L0u4) d)dsv—/ (divg AV yus) d)da:—k/ (divg AV yus) ¢d$—/(L2U3) ¢dx
Q Q Q Q 0
< 1/ (Louy) ¢d$—/(diva5Vyu4) ¢dx| +
g Jo Q
_|- / (div AV yus) odz| + / (dive Ac(V s + Vyus)) dda
Q Q

Q

The fourth result concerns the third-order error estimate with boundary layers correctors. In this

case, we need uy to be in W4>(Q).
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Theorem 21.

Let u. and ug be the unique solutions of (P.) and ( Py ) respectively, with Q C R™ is a strictly

convex bounded domain with 9Q € C™. Assume that f € C=(Q) and y7* € Wt (Y).

Then
bl, bl, : 3,0l
‘ Ue — Up — EU — €U — E7Ug — 20Uy — Uz — 7y ° < Ce3. (2.3.9)
Hg(2)
. 1 be 9 2 ble 3 3 bley - :
Proof. Defining r.(z) = —(u: —up — cup — euy ™ — e%ug — e%uy ™ — ’ug — £uy ), it satisfies

€
) 1 . 1 . 1 . ) .
—divA.Vr, = g(f + divA.Vug) + ;deAEVul + gdeEVuz + divA.Vus in €, (4.7)
Te = 0 on 0f).

This problem is the same as (2.3.8), so the solution r. has the same estimate of 7! the solution of

(2.3.8), i.e.
HT’eHHg(Q) = ||T;||H5(Q) <C.
Thus,
Ue — ug — eug — el — 2uy — Ul — By — Bube = &3 |re|| < e
€ 0 1 1 2 2 3 3 HL(Q) - ellHI(Q) = :
Which completes the proof. Ol

Remark 2.3.1. In accordance with the results obtained in Theorems 17, 18, 20, 21and the estimates
(2.2.3) and (2.2.9), we infer that the correctors have no influence on the improvement of the order
of the error in the estimates. Howewver, the introduction of boundary layers terms improves these

estimates.

The conditions posed on the homogenized solution uy and on the solutions of the cell-problems
X% and %™ in Theorems 20 and 21 in the above section, bring us to the following question : if we
assume minimal regularity assumptions, can one prove differently and obtain the third-order error
estimates as stated in theorems 20 and 217
Our study succeed to answer this question in dimensions two, and this is exactly what will be shown

by the following section.
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2.4 Third-order corrections in periodic homogenization us-
ing mixed method

For the study carried out in this section we need the following results.
Lemma 2.4.1. (Lemma 1.3.1 [110]) A function v € L(Y)?, (v € LF(Y)?) satisfies
divv=0 and /U—O.
Y
iff there exists a function ¢ € Hﬁ1 (V)2 (qb € Hﬁl(Y))d), such that
v = curle.

Lemma 2.4.2. Let f € L{(Y) be a periodic function. There exists a solution in H}(Y) (unique up

to an additive constant) of

—div,A(y)Vw(y) = mY,
yAW)Vu(y) = f (2.41)
y— w(y) Y — periodic.

iff [y f(y)dy =0 (this is called the Fredholm alternative). Such that L;(Y') and H}(Y) denote the

2
loc

subspaces of functions in L} (R™) and H. (R™), respectively, which are Y-periodic.
Proof. See [18]. O

Proposition 2.4.1. (Proposition 3.31 [32])

Suppose that O) is Lipschitz continuous. Then there exists a constant Cy such that
1Y@ y3 o) < Ca@ulla @), Vo€ HI(Q),

where ~y(u) denotes the trace of u.

2.4.1 Position of the problem

Let us consider the same problem as in the previous section. Let u. € H}(Q2) denotes the solution

to the following well-posed problem

—divA.Vu. = f in §Q,
(P.) (2.4.2)

u-=0 on 09,
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where € be a bounded open subset of R? with a Lipschitz continuous boundary, such that €2 satisfies
a uniform exterior sphere condition. Let A(y) be a square symmetric matrix with entries a;;(y) (7,7 =

1,2), which are Y-periodic functions belonging to C*°(Y") and satisfying
MEP < a6 < AP, VE € R?, where 0 < A < A < +oo.

Let A.(x) = A(E) be a periodically oscillating matrix of coefficients where ¢ is a small positive
€

parameter (0 < e < 1). For a fixed f € L?(Q), We search . in the form of an asymptotic expansion

i.e.

T x : x
u. = up(x, g) + euy(x, g) + ..+ e'uy(x, g) + oy (2.4.3)

g = ug(x),
j 0u0
ur(7,y) = —x (y)%(ﬂﬁ)a
j
g 0%u
us(, ) = X7 (y) 5 — - (2.4.4)
0T
; u
u3(1‘7 y) =X ]k(y) axax Oaxk
i0T;

ua(z,y) = X" (y) 0;0x;01,01,
Remark 2.4.1. Since a(y) is C*(Y), then, according to the reqularity theory (see Evans [49]), it

follows immediately that X7, X, x7* and 9™ are C=(Y).

In the sequel of this section, we assume that f € H?(Q), which implies, according to the regularity

theory that uy € H*(Q2). It is straightforward to verify that (P.) can be written as

ANVu, —v. =0,
(2.4.5)
—divv, = f.
We expected that v. behaves like
ve = vo(x, g) + evy (x, g) + .. + elv(z, g) + ., (2.4.6)

where each v; is Y-periodic in the fast variable 7y = £”

Remark 2.4.2. The benefit of finding an equivalent problem to (P.) is to compute v; which are very

important in the proof of our first main result.
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By taking into account that V =V, + %Vy and div = div, + édivy together with identifying the

different powers of £ we get

a(y)Vyue =0
(871) ( ) y =0
—divyvy = 0,
() a(y)Vaug + a(y)Vyus —vg =0
€
t —divgvy — divyvy = f,
() ( a(y)Vaur + a(y)Vyus — v =0
€
—divgvy — divyvy = 0,
- [ a()Vatta + () V5 — 03 = 0
€
—divgvg — divyvg = 0.

The task now is to determine v;. Let us start by wvp. It is clear from (2.4.8); that

vy = a(y)Vyug + a(y)Vyu,.

Furthermore, we have

. . Ox? ) Oug , Oy , Ox? ) Oug
—dlvy(Uo)i = —dwy{aij — alkayk}al'] = —dwy{aij}a—xj + dﬂ}y aikaiyk aixj
0
= {—divya;; + divyaij}ﬂ (from (2.1.6))
895]-
= 0.
So that we recover (2.4.7)q, hence, we can conclude that
( (vo); = a,,_a,% Jug
0)i — i ik 3yk axja
ou ou
19U 0
) el = G
—(divgvo) = f,
—divy(vo) = 0.

\
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It is obvious that under (2.4.8), and (2.4.9);, one can have

. . oX7\ 0*u
V1 = a(y)vmul + a(y)vyu% v.€. (Ul)k = < — akiX’ + an 5?; > axia;j,
82u0

((v1)k) = <C”k(y)>8xi8xj’

(v1) (2.4.13)
(divgvy) =0,
divyv; = —divzvg — f.
From (2.4.9), and (2.4.10),, we obtain
( . p axz‘jk a3u0
Vo = a’(y)VZUQ + a(y)vyu37 1.€. (UZ)m - (amkxj + Ay ayl ) 85(}@‘8.7}]‘8.7}]9’
83U0
V2)m) = dmz YR
(v2) (2)n) = i) 5 52 (2.4.14)
(divyvg) =0,
divy vy = —div,v;.
It remains to determine v3, the construction of v3 will be divided into three steps :
Step 1: The construction of the function ¢(z,y).
From (2.4.7)3, we have
—divyvy = —div,(vg — ATVug) = 0. (2.4.15)
According to (2.4.12), it is simple matter to show that
{(vg — A¥Vug)) = 0. (2.4.16)

Combining (2.4.15) with (2.4.16), then by using Lemma 2.4.1, we deduce that there exists a function
q(z,y) such that:
vo — ATVug = curlyqg. (2.4.17)

Due to the fact that vy — A? Vg is a function of separated variables z and y, ¢ itself is and factors
into
q(z,y) = ¥(y)Vue. (2.4.18)

Since a;; and x? are Y-periodic and belonging to C*°(Y), then the function ¢ = (¢¥*(y))1<a<2, also is

Y-periodic and belonging to (C*(Y))? . As uq is assumed to be in H*(Q), q(x,y) is in H?(Q) with

71



respect to x. Furthermore we have

9%q(x,y) N d%q(x,y)

divy (curlyq(x,y)) = — O0y1 0 Y2011

= —div,(curlyq(x,y)) (2.4.19)

= —div,vg — f.
Remark 2.4.3. We see at once that q(x,y) is Y-periodic and depends linearly on ¥V ug, thus one

can obtain
2
0 Ug

8:152-81:j

sup|V.q(z,y)| < Cz a.e. x € Q. (2.4.20)
yey i

Step 2: The construction of p(x,y) in terms of q(z,y).

Taking advantage of (2.4.19) and the definition of v; from (2.4.13), on the one hand
divy(vy — curlyq(z,y) — (1) + (curlyq(z,y))) = divy(vy — curl,q(z,y))
= —divyvg — f + divg(vo) + f (2.4.21)
—0,

and on the other hand

<(v1 —curlyq(z,y) — (v1) + (curlyq(x, y)>)> = 0. (2.4.22)

It follows that one can apply Lemma 2.4.1, and get a function p(z,y) the unique solution to

curlyp(x,y) = vy — curlyq(z,y) — (v1) + (curlyq(x,y)). (2.4.23)

On account of the fact that vy —curl,q(x, y) — (v1) + (curl.q(x,y)) is a function of separated variables

x and y, p(z,y) itself is and factors into

0*u
p(z,y) = w(y) axa;- (2.4.24)
iU

Again, since a;j, x?, ¥ and the function ¢ (y) (defined in (2.4.18)) are Y-periodic and belonging to
C>=(Y), then the function w = (w*(y))1<a<a, also is Y-periodic and belonging to (C*(Y))? . As uy
is assumed to be in H*(Q), p(z,y) is in H?*(Q) with respect to x. Furthermore we have
divy(curlyp(z,y)) = —div, (curlyp(z,y))
= —div,v1 + divyeurlyq(z, y) + divg (vy) — div,(curlyq(z,y)) (2.4.25)

= —div,v,.
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2

0 , then one able to get
xic(?:z:j

Remark 2.4.4. Owing to the fact that p(x,y) depends linearly on
83u0

7 J

€y —
Y 1,5,k

a.e. x € Q. (2.4.26)

Step 3: The determination of K(z,y) and vs.

Under (2.4.14) and (2.4.25 ), makes it obvious that

divy (va(w, y) = curlop(z,y) = (v2) + {curlzp(w,y))) = divy (v2 = curlzp(z,y)) (2.4.27)

=0.

On the other hand, we have

<(vg(x,y) — curlyp(z,y) — (va) + (curlyp(x, y)>)> = 0. (2.4.28)

Combining (2.4.27) with (2.4.28) and by applying Lemma 2.4.1, we could find a function K(x,y)
solution to

curl, K (z,y) = va(x,y) — curlyp(x,y) — (v2) + (curlyp(z, y)). (2.4.29)

Using the fact that (ve(z,y) — curlyp(x,y) — (v2) + (curl,p(x,y))) is a function of separated variables
x and y, K(x,y) itself is and factors into

83u0

K =0(y) ————. 2.4.
(a.0) = ) g (2430)

Since a;j, X, x¥* and the function w(y) (defined in (2.4.24)) are Y-periodic and belonging to C*°(Y’),
then the function

® = (P(y))1<a<a, also is Y-periodic and belonging to (C*°(Y))? . As wug is assumed to be in
HY(Q), K(x,y) is in H*() with respect to .

93
Remark 2.4.5. It is easily seen that K(z,y) is Y-periodic and depends linearly on $, S0
zeaxjaxk

that one has the estimate

84
sup| VK (z,y)| < C Z 0 a.e. v €. (2.4.31)
yey ikl

y 0x;0x ;0,01
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Thus, it is convenient to take vy = curl, K (x,y), by a simple manipulations we can conclude that

vy = curl, K (z,y),
(v3) ¢ divgvs =0, (2.4.32)
divyvs = —div,vs.

Making use of (2.4.31) we get

34u0

. 2.4.
0@8@8@8@ ( 33)

suplvg| < C Z

yey

2.4.2 The boundary layers terms

Under the assumption that ug € H*(2), so the functions uy, us, uz defined in (2.4.4) have a traces in

H %(89), consequently, and owing to Proposition 2.4.1 we can extract the following estimates:

HulHHE Q) < Clluoll ),
[uzl 3 o) = Clluol g0, (2.4.34)
HU3HH§ o9) CH“OHH‘%Q)

bl,e bl,e bl,e

Therefore we can introduce the boundary layers functions u; ", uy,” and wg" the unique solutions

o (Puﬁl*g)’ (Pugl,s) and (Pugz,e) respectively, where
(mm()vWﬂ:o in Q,

(B ) (2.4.35)
W =uy  on 09,

and
( div(a ( )Vubls) =0 inQ,
(P ) (2.4.36)
’ ut® =y on 09,
and (
: z bl.e .
div(a(—)Vus™) =0 in Q,
() @(Z)Ves™) (2.4.37)
( ul® =usz on 9.

bl,e l,e

Remark 2.4.6. The ezistence and uniqueness of ul , Uy and ug can be deduced immediately from

Theorem 19.
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From the L?-estimates proved in ([9]) and the formula for each u;(x,y), it follows that

45" | L2y < Cllua(w, =)l L2g00) < Clluol iy,

HUZZ’EHLz(Q) < C’Huz(i& )HL?(aQ) < CHU0HH4(9)7 (2-4-38)

lus Nl 2@ < Clus(z,

Ol8 o8 o8

M rze0) < Clluol|lgao)-
2.4.3 The main results

The first result concerns the third-order error estimate with the third-order boundary layer corrector.

For this case we need the regularity H*(Q) for uy.

Theorem 22.

Let u. and ug denote the unique solutions of (P.) and (Py) respectively, suppose that

f € H*(Q) then

Hug — Ug — €U — EQUQ — €3U3 + Eul{l’e + Egugl’a + €3Ugl7£||Hé(Q) < 083||’LL0||H4(Q)

Proof. The proof will be divided into three steps.
Step 1: The definitions of 1. and &, .
Let
Ve = U — Uy — Uy — €2uy — U,
& = a(g)Vu8 — vy — vy — €2vy — 303,

such that
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X

( Wi = a(g)VuE - a(g)Vuo —ea(=)Vu; —e¢ a(g)VUQ —€ a( YWus

O}

divg, = div(a(g))Vug) — divgvy — gdivyvo — edivyvy — divyvy — € 2div,ve — edivyvy
— divyvs — 52divyvg
= —f(z) — divywy — edivyvy + divyvy + f(2) — e2divgvy — edivyvy — 3divgvs
— e*div, vy
= —edivgvy — edivyvy
=0.

x x 5 T 3
a(g)ng & = a( Wu, — a(g)Vuo - 5a(6)Vu1 — € a(g)VuQ —€ a(E)Vu;g — a( )Vue + v

+ev; + 521)2 + 53v3

\H
\i%

= —a(g)Vmuo —ca(—=)Vyuy —a(=)Vyu — ¢ a(E)V Ug — Ea(i)VyUQ —€ a( )V us3

~_ O
~ O

— 52a(§)vyu3 + a(g Vg + a(g Vyu + 6a( )V uy + 6a( )V uo

+e a( )Vyus + ¢ a( VVaty + e°v3

=& (v3 — a(g)vxug).

(2.4.39)
Step2: The estimation of Ha( IVthe — & || 120
Since x“* are in C*(Y') and uy € H*(Q2) we see that
su yvu|<CZL (2.4.40)
y@[/) 3 0x;0x;0x,01; | o
Therefore from (2.4.33) and (2.4.40) we conclude that
x 5 PO
1a(=2) Ve = &llr2@) < e°llvsll2(@) + €°lla(Z) Vaus| 2o
c c (2.4.41)
< Ce*luol|mie).
Step3: The estimation of ||1b. + eul® + e2ul® + 63ugl’€||Hé(Q).
Let g € L*(Q) and w. € H}(Q) the solution to
—div(a(E)sz) =g inQ,
€ (2.4.42)

we =0 on 0N.
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Since . + Eu?l’a + s%l;lvf + €3ugl’€ € H}(Q), so by using the Green Formula the integration yields

/(QbE + eud + E2ub + EuY)g do = / —div(a(=)Vw.) (W, 4+ eul™ 4+ 2u + ul ) da
Q Q €

= / a(g)(w}e + eVl 4 2Vul© + £Vuy*). Ve, dr
Q

0
- / a(2)Vep. Ve, — / div(a(2) eVl + 2= 1 V) wode
Q ¢ Q €
- / a(2)Vp. Vew.de
q €
(2.4.43)
Making use of (2.4.39) and taking advantage of the ellipticity of A, we get
x x
/a()VwE.ngdx = /(a()lea—fe).Vwa—i—/ﬁe.ngdx
Q € Q ¢ Q
= /(a(z>vws_§5)'vws_/wg
Q Q
- /(a(i)wa —&).Vw. dr (2.4.44)
Q
x
< Ha(g)v% — &2 @ llwe ll 3 e
x
< Olla(0) Ve = &l llgll -1

Using the estimate obtained in (2.4.41), it follows that:

X
\ /we +eup® + efusC + ety ) g dr| < C||a(g)V¢£ — &2 llglla-1 @),
Q

by dividing by ||g||g-1(@yand taking the supremum over all g # 0,we immediately conclude that

< ‘ fQ(zl)E + EU?LE —+ €2ugl"€ + €3ugl,€)g ‘

x
sup < COlla(=) Ve — &2
HgHH*l(Q) €
S C€3||u0||H4(Q).

(2.4.45)

Hence, it seems clear that
[ + eul® 4 uy* + €3u§l’EHHé(Q) < C&°||uo || e, (2.4.46)
which establishes the formula. O]

The second result is about the third-order error estimate without the third-order boundary layer

corrector. Again, for this case we need the regularity H*() for .
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Theorem 23.

Let u. and ug denote the unique solutions of (P.) and (Py) respectively, suppose that

f € H*Q), then

e — 1o — euy — 2uy — 3ug + eul® + €2ugl€HH1 @ < Ce? l|2ol] 2 (02)

Proof. Using the result obtained in Theorem 22, we have
e — g — eur — 2uy — 3uz + eul® + 2ub®|| i)

= |lue — up — eus — 2ug — 3uz + eul™® + 2uy® + 3l — 3ul || gy
(2.4.47)

< lue — up — cuy — %up — %z + eul + %y + ¥y + &% ul | )

< O ||uol|aay + €°llus |l o)
The task is now to estimate ||ugl’€|\H1(g). Since us has a trace in Hz(99), consequently, owing to
Theorem 19 we can conclude that

bl,
s =My < Casllusll 4 o)

The proof is completed by showing that

lus|| 1 - < Cae 2. (2.4.48)

H2(69)
For this purpose, we define the function k.(z) € D(2), such that

ke =1if p(z,00) <e

he = 0 if plw,00) > 2, (2.4.49)
C
[VEe|[roe(e) < =

For the existence of such kind of functions see [32] and the references therein.

Let us put

‘/; = ReUg,

such that

supp Vo = {x, p(x,00Q) < 2},
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which will be denoted by U..
At this stage, the only point remaining to get (2.4.48), is the estimation of ||VZ|| g1 ().

Making use of H'-norm, we get
Vel woy = IVell 2wy + IVVell o)

Clearly, from the definition of k., and the assumption that vy € H*(Q), with taking advantage of
aij(y), x7* € C>=(Y'), we obtain

oox. Ou

Klg(x)X”k(g)ax‘a.f‘%ﬁEk
10T

83’&0

8xi8xj8xk

IVallz2w.) =
L2(U2)

X

< ‘x”k(

)
Lee(Y)
33u0

0x;0x 0z,

c L2(U) (2.4.50)

<c|

L2(U:)

< Clluo|l 3.

Hence

Vel 22y < Clluol| sy (2.4.51)

Let us now estimate the gradient of V, first we have

oV 1OX9* . Dug(w) i Ty Mug(x)

(x) = k()< = - (=)

ox; e Oy € 0r,0x;0xy £’ 0x;0x;0x1,01
k(@) [ i r ()

+ ox; {X ( € ) Ox;0x;0zy |

Again, from the above definition of k., and the assumption that uy € H*(Q), with taking advantage

(2.4.52)

of

aij(y), X% € C>=(Y'), one can have

C aSUO ‘ 84u0
vV e s +C0\ 555 , 2.4.53
H E||L2(Us) € 3xi3xj3k L2(U.) 8xi8xj8xk8xl L2(U.) ( )
however,

IVVZ 2.y < CeHluollmsw.) + Clluollmsw.)- (2.4.54)

Furthermore, by applying Lemma 2.3.1, we derive that

1

o || g3y < Ce? |lug || ga@)- (2.4.55)
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Combining (2.4.51) with (2.4.54) and making use of (2.4.55), we conclude that:

Vel < Clluollgsw.) + CeHluoll gsw.) + Clluoll maw.)

1 _ 1
< Ce? luo|l @) + Ce ™ (Ce?|lug||maey) + Clluoll oy

-1
S 057 ||U0||H4(Q)

On 092, V. = ugz, so

||u3||H%(aQ) H2(09) =

Using the regularity results of Theorem 19, we deduce that

1
s [l < Cllus] Ce [uol| a(o)-

1 <
H2(09) =

Substituting (2.4.58) in (2.4.47), we get

lue — uo — uy — e%uy — ez + euy™ + €2Ugl’a||,{1<m

5
< C€3H’LL0HH4(Q) + (Ce2 HUOHH‘l(Q)

< Ce: |ol| 42

which is precisely the assertion of the theorem.
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< C=*luo| | mragey + ]|us || a1 ()
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(2.4.57)
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CHAPTER 3

HOMOGENIZATION OF A PIEZOELECTRIC STRUCTURE BY

THE ENERGY METHOD

3.1 Case of 3D structure

The generation of electric charges in certain crystals when subjected to mechanical force was dis-
covered in 1880 by Pierre et Jacques Curie and is nowadays known as piezoelectric effect (or direct
piezoelectric effect). The inverse phenomenon, that is, the generation of mechanical stress and strain
in crystals when subjected to electric fields is called inverse piezoelectric effect and was predicted in
1881 by Lippmann (see [61]). The effect is found useful in applications such as the production and
detection of sound, generation of high voltages, electronic frequency generation, micro-balances, and
ultra fine focusing of optical assemblies. It is also the basis of a number of scientific instrumental tech-
niques with atomic resolution, the scanning probe microscopies such as STM, AFM, MTA, SNOM,
etc., and everyday uses such as acting as the ignition source for cigarette lighters and push-start

propane barbecues.

3.1.1 Notations and geometry

Let Q2 C R? be a bounded domain occupied by a piezoelectric material with Lipschitz boundary

[' = 09, points of Q are denoted by x = (x1, z, 23).
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We consider two decompositions of the boundary I,

D=0 uTY with T)! NI =0, and meas(Ty") > 0,

(3.1.1)
[ =Ty UTy with T NTY =0, and meas(T§) > 0.
Let Y =[0,Y] x [0,Y2] x [0,Y3], denotes the basic period, points of Y are denoted by
_ _(fL %2 T3
Y= (y17y27y3) - ( P R )7
where € denotes the size of the period.
In the sequel we consider the following three-dimensional piezoelectric model
0 . . ,
_87%[0-7’]] = fz in €
0
o (D] =r in
o5 = gi on M
Din; =0 on T}
ut =0 on I} (3.1.2)
=0 on T}
where
g g g 19 agpa
O = Oz’jk:l(x)ekl(u ) — Pkij(x)axk
0p°
Df — pe €) _ ¢€ ,
L i zkl(x)ekl(u ) Ezk(x) axk

Note that the unknown of the piezoelectric structure model (3.1.2) is the pair (u®, ¢°),

where
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Notation Designation
f is the density of the mechanical volume force.
g is the the density of the mechanical surface traction.
r is the density of the electric volume charge.
u Q= R? denotes the displacement vector field.
p: Q>R is the electric potential, that is a scalar field.
o5 Q= R is the stress tensor.
D —R3 is the electric displacement vector.
ex(u®) is the linear strain tensor.
C5 () = Cijkl(f) is the elastic fourth order tensor field.
Pgp(z) = Pyr(%) is the piezoelectric third order tensor field,.
€5 (z) = e (%) is the dielectric second order tensor field.

Table 3.1: Notaions and designations of the piezoelectric problem

We assume that

Cijit = Criij =

Cijk:l S LOO(Q),

3C > 0 : Cijr(x) Xij X > CXij X, Vo € Q, for every symmetric 3 x 3real matriz X;;,

fe (LX) re (L2(Q))°, g € (LX) and

the elastic tensor Cjjy; is symmetric, positive defined, it verifies

Cjitt = Cijiks

the piezoelectric third order tensor P, is symmetric, it verifies

Py = Pu
P € L>(Q)

Y — periodic,
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the dielectric tensor ¢;; is symmetric, positive defined, it verifies

€ij = €ji,
€5 € LOO(Q), (315)

3C > 0: ¢;(2)X; X; > C,Vx € Q, for any vector X; € R3,

3.1.2 Homogenization by the energy method of Tartar

The previous works (see for instance, Racila and Boubaker [93], Mechkour [77] ) have only focused
on the formal asymptotic analysis or on the two-scale convergence methods [77] to homogenize the
piezoelectric problem, however, until now there is no result on the homogenization of (3.1.2) by
the energy method.Indeed, the major difficulty in establishing such theorem using Tartar’s method
(see chapter 1, subsection 1.3.7) is the choice of the oscillating test functions and this is the most
challenge, in fact, if one follows the same steps as in [[32],chapter 8 ] to prove the convergence
theorem by the energy method, for the case of piezoelectric problem, he will fined him-self in wild
tangle because, a lot of terms will not be canceled after the subtraction of the resulting equations
and furthermore they not converge, that is why by proving the following theorem of convergence
using Tartar’s method, we believe that we have designed an innovative solution to this problem by

choosing a suitable oscillating test functions.
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Theorem 24.

Let (u, %) € (H'(Q))? be the unique solutions of (3.1.2), then

1
ua HLQ) ’LLO,
. HY(Q)
o g,
6 L2(Q) " ou 0 N a(po (3.1.6)
Uij Cz]kl a kij%?
12(0) b Guk B 0"
D; D =P, L —
| ) ikl a Ez] 8asj’
where (u’, ¢°) are the unique solutions in H'(Q2)? of the homogenized problem
n O pn 00
OO0 M Ox0xy,
o uO 82tp0
pPh k h —
ikl 81’ 81' + 6” 83:18% "
u'=0 only, (3.1.7)
(oz‘j)nj =g onTM,
=0 on FOE,
(DfYn; =0, onT¥,
where the homogenized coefficients Cty, P, Pl €l
awkl
kl
B mn mn Cz sz d s
W 7 Comtiemu + Couts) + Pos) 5o Ly
O(RF + Yk
le = |Y| / Czjmn emn y(q)k) + sz]( )(ay)}d%
" (3.1.8)

o)

o kl
Pl = v / { ()€ () + Pay) = ein(1) 5 Ly

Proof. The proof will be divided into 4 steps.

Step 1: The variational formulation Let us define the two following spaces:

V={v|ve H(Q)v=0o0nT}},
V= {y e H(Q),v=00nTf},
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equipped with the two norms (equivalent to the usual norm H! )

= (20

i,7=1

ku=<§3/<am)) o, 6lloey = ol + ¥l

Multiplying the first equation by a test function v € V and the second one by © € ¥, and summing

(3.1.9)

the two obtained equations we get the following variational problem:

€ € 154 a(Pe 154 €
/Q [Cijklekl(u ) + P 3xk]€ij(v)dﬂ? —/Q {ijzekl(u ) — ]kaxk] oz, /fvdx + /FM gvdl'y!
Y (3.1.10)
—l—/rw
Q

Step 2: A priori estimates

Lemma 3.1.1. The solutions (u®,¢°) of (3.1.2) are bounded.

Proof. We take v = u® and ¢ = ¢° in (3.1.10) we get:

0¢® 0
/ijklekl(ue)ew( )dx+/ ]kago ;0 de = /fusdaﬂ—/ guEde4+/rg05dJ;. (3.1.11)
Q Lj Q rM Q

On the one hand,

taking advantage of the ellipticity of Cf;; and €5, we obtain
A ||?
GCL‘k

0p® 0
#Clles ()l [ Chwentulestu)in+ [ GZEEde (11
J

‘

L*(9)

Applying Korn inequality together with the relation (a + b)? < 2(a? 4 b%) on (3.1.12) we get:

2
0 0
o (et v S/Cﬁﬁmfﬁd Mx+/]k¢ % 4, (3.1.13)
[9) 3xk8

and on the other hand,

making use of Cauchy Schwarz inequality and trace theorem, we have

0 0¢*
/qmm<wa>m+/]k 9 g < 1 fll o 12y + Cllgll s 16 o

O O, (3.1.14)
+ 7l z2 @) [l0°] 22 ) -
Using the Poincaré inequality, we get
8¢3¢ . .
/ igiewt (e (u )d”“r/ I By O, z, < Ol fllza@lwfllv + Cllgll L2y llufllv ( |
3.1.15

+ Cllrll 2%l w,
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which implies that

0 0p°
Ce, Ve (uf)d e ZF T dr < O|(uF, o) ||vxw- 3.1.16
| Comeutureswyan + [ G555 < Clat, ) v (31.16)

Combining (3.1.13) and (3.1.16), we deduce that:

2
(It lv) < Cle v, (51.17)
which leads to
e [lw+lu[lv< C, (3.1.18)
which means that
[uslly < C,
(3.1.19)
l¢flle < C.

So, we can extract a subsequences still denoted by wu., . such that
UE Hiﬂ) qu

o (3.1.20)
o= T g0,

Using (Rellich Kondrachov theorem ) H(Q2) < L*(Q), so

c

L*(9)
ut — u°,

(3.1.21)
ELQ(Q) 0
Yo P

Furthermore, from (3.1.19) we can extract a subsequence still denoted by % such that
J

o i)

afj €j7

then, the derivate in the sense of distributions yields

/auﬁdx:/—ueaﬁda: V9 € D(Q),

passing to the limit in the previous equation

im [ 29 de — —lim usgﬁdl’ V9 e D(Q),
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gives

/éﬁdw——/ 057? Ve D)

:>/§]z9dx_/19dx V9 € D(Q)

ou
:>/Q(§j—8xj>19dx:0 Vi € D(Q)

oud

J

ous L) 9u0
895]- 31‘]‘ :

=

Again, from (3.1.19) we can extract a subsequence still denoted by 7 a‘p such that

0p° 12(9)
aZEj 7

then, the derivation in the sense of distributions yields

0% bia _/— O e vwe D),
o 0z; Q Ox;

passing to the limit in the previous equation

lim/&p ——lim/ V0 Y U e D(Q),
=0 /¢ 8xj e—0 8xj
gives
Y
/)\j\I/da::—/ a—daz VU e D)
Oz

:>/)\\Ild:r_/&p\11dx VU € D(Q)

:»/( a{ﬂj)\l!d =0 VYVUeDQ)
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So, we conclude

129) | (3.1.24)

ou® r2() Ou’
Oz, da;’
0¢° r2() 09"
Oz, 228

Set
£

9"
E):pk’

€ € € € 8(106
A] = ijlekl(u ) — ejkaijjjk

Y5 = Chimen(u®) + P

1,

(3.1.25)

2

g g 2
195 e = [ 25
Q
8 &
LA

2
dx

&

9¢°
8Ik

2

@) (3.1.26)

2
+2| P

0p°
&xk

2

< Ollex(u) |72y + C‘

0°
ox k

L*(Q)
= Clluc|ly + Clesll%
< C (from (3.1.19))

= ||E%||L2(Q) < C.

2
Hence, we deduce that we can extract a subsequence still denoted by X, such that X5, sy 5.
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2
IS ey = [ |A5[° o

0° 2
= /Q P‘fklekl(u ) — ijaixk dx
151 £ ? £ 8()05 ? d
< Q2 Piagen(u)| +2 Ejk&ck x
< Ollert(u®) |32 + C‘ % :
- FEOT T Oy ] oo (3.1.27)
0p° 2
€112
ThllL2@)

= Clluelly + Cllelly
< C (from (3.1.19))
= [[Af][2 < C.
Thus, we deduce that we can extract a subsequence still denoted by A such that

LXQ)
A T A

So, we conclude

12(Q) (..
ij Zij)

(3.1.28)

L) .
As T A

It is worth noting that X7, satisfies

0%y _ in Q (3.1.29)
o, =fi . .
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Indeed, taking ¢» = 0 in (3.1.10) brings us to

Also, A} verifies

£

0
/ [C’fjklekl(ua)—i-P,fij(p] eij(v)dx:/fvdx—i—/ gudl'M
Q al'k Q F{”

@/ijeij(v)dx:/fvder/ gudT¥ Yo e V.

Q Q M
Passing to the limit (taking v € D(Q))
lig(l) QEfjeij(U)dx:/QEZjeij(U)da;

(3.1.30)

:/fvdm

Q

o5,
:>/— JUid.T:/fUdﬂU
Q 8:1:]- QO

o
:>/ - —filuu=0 YveV
Q 8[Ej

ox}
=~ ijJ = fZ :

on;

—5 =7, (3.1.31)

which is easy to check following the same techniques above.

Step 3: The introduction of the oscillating test functions

Let

p;"™" () = exi™ (=) + dimTn,

),

o8

@emn (J}) _ glemn(

m |8

(3.1.32)

T
mi () = (2

~—

Y

IF™(x) = eR™ +

where (x™"(y), ¥™"(y)) and (®™(y), R™(y)) are the unique solutions in H}(Y") with zero average of
the cell problems (Pymn gmn) and (Ppm gm ), respectively

(P )

9 mn K oUmy)\ _
_8yj {C@‘jkl(y) (ekl,y(X (y)) + Tmn) + Pkij(y)ayk} =0 inY,
9 mn K oUmy)\ _ .
3 {ij(y) (enty (X™™ (1)) + Tm) — ejk(y)ayk} —0 inY, (3.1.33)

/ X" = 0,/ =0 X" wm" Y — periodic,
Y Y
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and

—(%{Oijkl(y)ekl,y@m(y)) + Prij(y) (5km + mg;gy)) } =0 inY,
(Pom gm) —;%{ijl(y)ekl,y(@m(y)) — €r(y) (6km + 8127;53/)) } =0 inY, (3.1.34)

/ ¢ = 0,/ R™=0 o™ R™ Y — periodic,
% Y

with

mn

Tkl = %[&ﬂmaln + 6kn5lm] 1 S kz l) m,n S 3

is the unit tensor of the fourth-order. Such that (p;"™""(x), =" (z)) and (" (z), [*™(x)) are the

(3

solutions of (Plf’@) and (P: ;) respectively, i.e.

a € £, mn 151 aGE”’nn
_axj{cijklekl(p )+ sz‘jaxk}

(P;@) a 5 £, mn 5 agg,mn
B Plaen(p™™") — %TM

J

0,

(3.1.35)
0,

and

0 orem
(PE ) xj ory,
7,1 o {

Oz

(3.1.36)
0.

154 g,m 15 a]a’m
ijlekl(ﬁ’ )_ejkaxk}

Lemma 3.1.2. We have the following convergences (¢ — 0):

mn .y @)
1) pi™" () — OimiTn,

)

2
28,

2
3) IFm(z) 28 4,

4) m; " (x)

2 &) (3.1.37)

L*(Q)

— 0.

Proof. We only give the main ideas of the proof.

1. Since p;™", ©%™(z), I*™(z) and 77" (x) are bounded functions independently of ¢ in L?(),

it follows that they are convergent.

2. Taking advantage of the periodicity of each functions, and making use of Theorem 8, the lemma

follows.
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Set Heemn
%zlginn = Ciipen(p™™) + Pgiijv
1.
N o (3.1.35)
Sjmn = ]klekl(p ) - ejkak
We see at once that C‘Zl]fm and Sjlnin verify the problems (Py1.- ) and (Pgi ), respectively, i. e.
a(xl ,€
Py ) g
i (3.1.39)
P . 9% _
( S]l;jn) . amj )
which is clear from (3.1.35). Set now
. . or=m
%12]7771 - Cijklekl( ) + szg a
. oo (3.1.40)
S = chzekl(Tr ) = €k o1y

From (3.1.36) it is a simple mater to check that &

’L

7o and S o> verify the problems (P2 ) and (Pga.),

ijm

respectively,i.e.

8026
(Py2e ) 8”m =0,
' 5 (3.1.41)
OSjm

P e )t n = U.
( s]?m) oz, 0

Since \s”fm, C‘fjfn, Sjlrfm and S are Y-periodic, thus owing to Theorem 8 one has the following con-

vergences:
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z x ., 0esm"
%zlj’inn - MY(%zljfnn) = MY <C§jkl(€)6kl(p6,mn) —+ Pkaij(i)

e/ Oy
! oe™"
W,/y<cjkz(y)€kz,y(p )+ k](y) i ) y
S i oy
= /Y (Cijkl(y)ekl,y(x )+Cl]mn+Pk”(y)ayk>dy

€ € 5 x em e L orem
Sim — My (S3,) = My (Cijkz(e)ekz(ﬁ ")+ Pkij(e)axk>

! . orm
= |Y"/Y <Cijkl(y>€kl’y(ﬂ' ) + szj(y)(aylg>dy

)

1 " O(R"™ + yYm
= !Y!/y <Cijkz(y)6kl,y(f1’ >+Pkij(y)(ayk)>dy-
3.1.42
le lLe e (L c,mn e (T 90" ( )
Sjmn - My(S]mn) = MY ijl(g)ekl(p ' ) - ejk(g) aiEk
1 oo™
= — P; ) — e (y)——— | dy.
[ (Pt = utn) %) ay
1 oumn
- M/Y <ijl(y)€kl,y(xmn) + P]mn - ij(y) 8yk >dy
2 2,e e (L e,m e (T or=m
s = w53 = My (P Do) - D5 )
1 orm
- — | (P ™) — €i(y) =—
V] /Y ( ikt () erty (T™) — €1(y) E )dy
1 . O(R™ + Ym,
= ’Y’/y <ij1(y)€kl,y(‘b ) — ij(y)(ayk)>d
Step 4: The homogenized coefficients
We can write the equation (3.1.10) as
d¢* o Op° O
e ei (V) + Py |y (0) 20— — e (uf) | + €
| [Camentioreso) + 28, [eo 32— esturg | + g 55 o
:/fvdx+/rwdx+/ gudlV
Q Q M
taking in (3.1.43)
vi(x) = —w(x)p;™" (z),
where w € D(12),
then,
£, mn £, mn aw £, mn
eij(v) = e (—w(x)p™™"(z)) = —w(x)e; (p~™") — %Pi’ €9
J
and taking

P(x) = w(z)O=""(x)
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then,
o 0e=™"  Jw

8xk - e al‘k * 8$k9 ( )
We obtain
8“} £, mmn
- [{ et et + 52 @) b
Q Lj
0p° ow
_ Pe (MmN c,mn
[P @5 [westrm + 5 o) Jas
0es™  Qu
_ € £ &,mn 3.1.44
{Pkw (x)eq;(u) {w o 8xk@ (x)} }da: ( )

It [ 005™  dw ...
{e p(T )817€ {w oz, —l—a—xj@ (J:)] }dx

/fZ em”wdx—i—/r@a’m"wdx.

Now, we multiply the first equation of (3.1.39) by a test function v € V and the second one by

1 € U, summing the two obtained equations yields

€ e,mny 3 69877”71(‘/1") B [ Emn a¢ ge=m" aw
[ { Cant@rentsr s+ iy )| 5 Des0) = et 5 + G g5
(3.1
taking in (3.1.45)
vi(r) = —w(z)u;(z),
where w € D(Q),
then
9 aw [
ey v) = e () = —w(z)er(u)(x) — ()
j
and taking
b(x) = w(z)p®(z),
we get

mn g aw
Cola)ontr™™) e + G2 }}d

005" (x 8w
J

{
{
{Pﬁij(x)eij(pg’m") {awﬁ + O¢” w} }dx (3.1.46)
{

8xk Bxk
., 008 L Ow o 0¢°
+ A ejk(aj)iaxk [81:]%0 +8xjw] }da:
=0.
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Subtracting (3.1.46) from (3.1.44), gives

_/ {kal(x)ekl(u )[weij(PE’mn)+§ pfmn}dx
e
- [{rn 25 « o]
a5 ]
+/Q{C“’“ SJen smn)[w%( o+ gz Hdw
+/Q{PU 8@””{%“( (@ >+§Zu}}dw
+/Q{P” z)ei;(p Em”){wgf:+§;l;wﬂ}dx

/ ()395’"" 0p®  Ow o Lz
Q i Oxy, 8:1:] 8%

/fZ Em”wdx—i—/rw@a’m"dx,

(3.1.47)

At this level, we must shed light on the importance of using the energy method, which apears in the

above substraction, this end allows one to cancel the terms where one cannot identify the limit since

they contain products of only weakly convergent sequences. Moreover, as we show below, the other

terms all pass to the limit and the limit expression will be found easily.

Equation (3.1.47) follows that

€ € 151 8@ 8“) £,mn
- /Q {Cijkl(‘r)ekl(u )+ P )8 }ax]P dx

€ € ago aw g, mn
- [{ Pt - g0 ge | Sremmas

€ £, mn 154 a®€mn aw €
+/Q{C¢jkl($)ekl(ﬂ’ )+Pkij(x)axk}ax] dx

007 dw
+ [ { Pt - g0 %5 5

/fZ Em"wd:c+/rw@€’m”dx,

oodx

which leads from (3.1.25) and (3.1.38) to

€ Emnaw € Emn8 le le
/E : adx—/A e 8deaﬁ—i—/C‘”mnuzaalav+/5]mn<,0 —d:r.

/fz 5m"wdx+/rw@5’m"dx.
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Letting € — 0 in the resulting integrals in (3.1.49) and taking advantage of the convergences(3.1.24),

(3.1.37), (3.1.28) and (3.1.42), brings

* a C"l Oaiw 1 8711}
- [ ) e+ [ @t S e [ (85,0005 as
/ fZ m:ﬂn wdx

ox,, ow
] * 1 O 1
<:>+/ i OimTntW 4 X7;0im —— . w+/g< S ) Ui axjd$+/<SJmn>

= — / fi(Oimn) wdz
Q

This gives by using (3.1.29) that

ouy Y
S — (S5 L—(S] : = D(9).
[ (i = b g = (8305 Jude =0, v € D(@)

0x;
oul 0"
* R ie% ! 7 1
= Z]mn <‘Sijmn> axj + <Sjmn> 8z]~
. 1 oo™ Ju
= Y = [| |/Y<Cijkl(y)€kly( ") + Prij(y >8y>d ]ﬁx]

1 9OMmN 190
P Y e () e
+ L |/y< ikt (Y)erty (P™) — €i(y) Em >d ] oz,

1 o owmr ou
= [[Y\ /Y (Cijkl(y)ekl,y(x )+Cijmn+Pkij(y)8y>d }8%

1 o ovmn "
+ [|Y| g Piri(y)erty(X™) + Pimn — €jx(y) o )dy} o

Taking now in (3.1.43)

vi(z) = —w(x)m; " (z),
where w € D(12),
then,
g,m e,m aw g,m
¢ij(v) = eij(-wr™")(z) = —w(@)ey(r7") — o —m " (2)
J
and taking
U(z) = w(z) "™ ()
then,
oY orem - ow
- o, Tam )
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We get

ors™  Jw
P (Ve (uf W pem| Vg 3.1.51
/Q k}lj(x)ej(u )|:w a$k + 8.I'k :|} €z ( )
dp® | oIF™  Ow
< - — 15" bd
+/Q{€]k(x)axk {“’ oz, " o, ]} !

- —/fl— wwf’mdx—l—/rwlg’mdx.
Q Q
Now, we multiply the first equation of (3.1.41) by a test function v € V and the second one by

1 € U, summing the two obtained equations yields

€ g,m . 15 als,m . o . g,m 817[) g aIE7m 8,(/} .
[ { Canentrmesto) + Pyt esto) - eutwm 52 + i 52 =0, a5

taking in (3.1.52)

vi(z) = —w(a)us(z),

where w € D(Q),
then

613 (0) = e (—wi) = —w(z)ey () (z) — 3“’ “(2)
and taking

b() = w(z)p (),
then
T — e + S

We get

ow
- /Q {Ciejklekl(ﬂg’m) |:weij(us) + %uf] }da;
arem ow
— Pe.. - (€ oW e
/Q kij (-75) e {we” (u )(l’) + axj u2:| }dl’
0 ™ ! Oz, Oxp

+/ I, 00 L 0 el gy
erk oxy, 0x; axj“’
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Subtracting (3.1.53) from (3.1.51), gives

Chim(@)en (u®) {’wez‘j( ™) + gzﬂg } }dm

0p° o ow ..,
- [w(m)eij(ﬂ ™)+ a—m]m (x)] }d:c

i (T)eij(uf) [wal B a—wls m] }dx

k &vk ka

cO0pt | arem o ow o,
Ejk(‘?xk [w 9z, + 8—%] ]}dw

0
Czklekl(ﬂg,m) |:weij(u5) + a;qu:| }d:p (3.1.54)
J
orsm . ow
S0 G ) + g i
PE

0p®  Ow
kij (x)e” (ﬂ-g’m) |:U) aik + axk‘p{| }dw
ors™ [ de®  ow .
—/fi(x) ZU’/Tf’md.T—i-/TwIE’md.T.
Q Q

Equation (3.1.54) yields

=%
=

<
<.

o5
8

_l’_

— = — = A= A=
e
T o

_l’_

+
S — T — S — S — o o 5 5

=

S,
<.

_l’_

[
.M

/Q{ Gm(T)en(u) + Pr;(z )gi}ﬂfmgg}]dx

/Q{Psz w)ep(u®) — €5 (z )gik}fs’mgzdx
+/Q{ngkl T)en (™) + Pgji(x )a;;:}“ gzdw (3.1.55)
v [ { Pt - 6.5 for o

—/fi wwf’mdx+/rw15’mdx.
Q Q

From (3.1.25) and (3.1.40) , we deduce that (3.1.55) is equivalent to
ow ow 2, ow 2 ow
— | X —dr — [ A5 TP —d S uE o d St —dx.
/Q ij gy ax] /Q j 81'] l‘+/ mmuza $+/ ]m(p (9.5!7] €z

—/fmf’mwdx+/ﬂ€’mwdx.
Q Q

Letting € — 0 in (3.1.56) and taking advantage of the convergences (3.1.24), (3.1.37), (3.1.28) and

(3.1.56)

(3.1.42),
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we get

6(/\; l’m) o2 0 ? ) &PO
& ST w /(Jijm>a jwdx—/(Sjm>axjwdq;
Z/mcmwdx
Q
= g c%cjx w dx + A rwdx /<\Smm>a ]w (S &ij z
:/rxmwdx
Q
OA; ou? dp
J m m A* - C\Q L — 2 —_— d
=0, Ywe D),
ON* Ol 8900
L B — f_ Q2 VI g2 \EF
= oz, T — T + A, <\sz]m>a$j (S5n) oz, (3.1.57)
= 0.
ON* 0 Ou 0"
o= A — (S35 — () o 1.31
¢W+ m <\g”m>8xj (S5 oz, (from (3.1.31))
8u? 8()00

=AY = (32 )

iym

2 VI

0x; (i Or;
* 1 m or Ou;
= A, = |:’Y’/Y (C'z‘jkz(y)@kl,y(7r )+ Pkij(y)ayk>d4 Ox;

1 . oIm D"
+ [|Y|/y (ijl(y)ekl,y(ﬂ' )—ejk(y)a%)dy]axj,

1 " O(R™ +ym)\ , 1 0u?
- |:’Y"/Y <Oljkl(y)ekl,y(q) )+ sz](y)%c)dy} 87%

[l et
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3.2 Homogenization of a periodic piezoelectric heteroge-
neous plate

A plate is a mechanical structure a dimension of which (the thickness) is very much smaller than the
others. According to the small thickness of the plate, the three-dimensional elasticity-equations may
be approached by two-dimensional equations set on the middle plane of the plate. P. G. Ciarlet and
P. Destuynder [26] and [27], P. G. Ciarlet and S. Kesavan [28], P. G. Ciarlet and P. Rabier [29] and
P. Destuynder [44] showed, for different cases, that the displacements of slendered three dimensional
body converge to the solutions of the two dimensional equations when the thickness tends to zero.
Now, in the previous works upon the homogenization of elastic plates (G. Duvaut et A. M. Metellus
[46]), the considered equations are the two-dimensional equations of plates, then, in order to use
these results to calculate the homogenized coefficients of a periodic plate, this plate must have a
thickness very much smaller than the size of the period. This hypothesis is not always satisfied, the
structure of some composite plates (see e.g. [66] ) shows that the period and thickness of the plate
are sometimes comparable. In the sequel we are interested with the case when the thickness n and
the period ¢ of an periodic piezoelectric plate are of the same order, the specific feature of such
structures is that the periodicity occurs only in two directions. This section is devoted to the study
of the limit behavior of (u®, ") when 7 and ¢ are tending together towards zero and we prove a
convergence result with the aid of Tartar’s method following the same steps as the previous section,
note that such study had already done by Cioranescu &al [37] for the case of three-dimensional
lattice structures and by D. Caillerie [25] for the case of thin elastic and periodic Plates, which calls
us into question can one do the same study upon an periodic piezoelectric plate? the answer of this

important question will be found in Theorem 25.

3.2.1 General description of the plate

Let w C R? be a bounded domain with Lipschitz continuous boundary dw, g, 7. subsets of dw with
meas (79) > 0, The domain w is covered periodically by cell Y = [0,Y3] x [0, Y5] x [-1,1] a point
y €Y is given by y = (y1,v0,43) = (2, 2, %3) where ¢ denotes the size of the periods. We denote

7 = 0w \ Y0,7s := 0w \ Ye. We consider Q" = w X ( -, 77) a thin plate with middle plane w and
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thickness 27 and the boundary sets
[ = wx {£n},
Lp = Y0 X (=n,m),
Il =7 x (=n,m), (3.2.1)
Ty =7 % (=n,m),
[y =T1U (e x (=n,m))-
Points of Q" are denoted by 2" = (z7,z3,27) We now give the classical equations defining the

mechanical and electric equilibrium state of the plate Q7.

0
B R o
ax; {O-’L'] ] f’L m
0
3 (D] = r" in Q7
L
oiin =gl on TLUTY

D"n] =0 on Ty
u=0 on I, (3.2.2)

" =0 on TV,

where
ous” O
o = O (" ko pen(qen
iJ ’ij‘l( )61'7 k‘l]( ) axz
o ., O

D" = P(a")

— n
oz} € (7") ox)
3.2.2 Change of scale

In order to study the limit when the both (¢ and n — 0) we shall make a relation between ¢ and 7
to ensure that the two go to zero in the same time, so, we set 7 = ke, where k is a positive constant.

Let us define the two following spaces
V={vve H(Q)*v=00nT" ,},

U ={y e H(Q),Y=0o0nTl,},
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equipped with the norms (equivalent to the usual norm H')

1

(1))

1,7=1

¥l = (Z/ (g’;f))

[0, Plloxw = [[Vllv + [[¢]le-

To work on a fixed domain independent of 7, we make a dilatation in the x3-direction, defined by

Zo = To and zz = 72

After the dilatation, system (3.1.10) can be written in the following variational form

( ous v, ous Jv; ous dv; ous dv;
k € h ~ ™t k -1 € h ~ ™t € h ™ k —2e h ~ ™t d
( E) /Q {C + ( 5) (szh?) 823 aza) + i3ha aza 82’3) + ( 6) CthB 823 823} z

iahy 0z 024
D¢ Ov; L pe Do (%i) © (ke)2ps Oy avi}dz

c 8@6 a'Ui -1 5 i3 _rr -7t -
+(k€) /Q { 'yiaaiz’y aza + (]{E) ( 3ia 82’3 aza i3 aZ'a 823 313 82’3 823
€ auf 877[) -1 e 8uf 871/) € aufai -2 pe auf%
(ke) /Q {PMO‘ 0724 3727  (ke) ™ (P 0z3 024  Fia 0724 823> () Oz3 023 az
. 0p° Y i 05700 OpT0Y 2 09700
+(k3€) /Q {Eow 82’,\{ 8Za + (]fE) <€a3 823 aza + €3a aza (92’3 + (k‘{{) €33 82’3 823 dz

= (k&)/fEU+/ givdzldzl+/ ge_vdzldzl+(k£)/r51/)
L Q r, r_ Q

We devise on (ke) we obtain

( . Ou, v o e Ous O, _Ous, vy o . Ous, vy

/Q {Cm}w 0z, 0z + (k) <th3 023 0z st 0zq 023 () g 023 Oz o
. 0y v, 1 e O¢° Ov; . 09 Oy, —ope O¢° %

+/Q {Pwa 02y 024 + (k) (Psm Oz3 024  Fois 0zq 023 k) s Oz3 Oz3 o
_ouE i pe QU 00 Ous 9y 2 pe OUj OY

/Q {P”"a 02002, ) (P‘“'?’ 825 020 W00, 02y ) T B Py O

Oyt O VAR R . 0 O
/{ S0+(/-ge)1< Ll AU *0>+(ka)26338f3%}dz

€ €
0z 024 B2y 020 024 023

:/fav+(k5)_1/ givdzldzl—i—(ks)_l/ ga_vdzldzl—f—/rgwdz
Q r, r_ Q

We now let e — 0 in system (3.2.5). We have the following homogenization result.
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3.2.3 Limit for ¢ — 0: Homogenization and reduction of the dimension

Theorem 25.

Assume that

) g

— Lz("-’) *
(ke) 1gi = g1, (3.2.6)
e L1® r*.

r

Then there exist two functions v’ € H'(w) and ¢ € H'(w) such that when & — 0,
Ut HiQ) UO

o (3.2.7)
o= T g0,

And the functions v° € H'(w) and ¢° € H'(w) satisfying the homogenized system

i 02"
h i h *.— .

! d ;

iomy 8Za827 am’y Oz azv / f Z3 + g + Im mw,

0*ud 02" !
P! . h = / “dzy i
7 020,02 oy 02,02, . P (3.2.8)

u’ =0 on ",
0’ =0 on 7e.

The homogenized coefficients are given by

Xh w 5zmy’y) 6 \l;m’y
+ Pg;
'Lamfy |]r| / < lO{hB ayﬁ ch(y)

dyp
ox; ! o™y
-1 LG o pe 27
+k {Cwm ay3 + ice 8y3 })dy,

1 od; IR +y
P, = v/, <Ciah5(y)ay; + Pﬁm(y)w

o] OR”
+ k™ {Czah?; P?na }) dy
s y3

Xh o + 5imy7) o™y
am «a — €q
v 2 < wl) =5, )5y

ax;" ov™
k™S Pypz—"— — —_ dy,
+ { h3 8y EaB ay?) }) Y

(R + y-)
Ea'y |Y|/ < ozhﬁ Eaﬂ(y)T

0P 8R7
EY Ps—t —e.—— b |dy.
" { " Y3 o3 Y3 }) Y

(3.2.9)
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Remark 3.2.1. The functions (X V(2 2g), U (2L %,23)) and (CIW(%, 2 23), RV (2, %72'3)) are
defined in (3.2.42) and (3.2.43) respectively.

Proof. (Proof of Theorem 25) The proof is done in several steps. In the first one, we obtain a
priori estimates. In the second step, by choosing appropriate test functions, we derive a limit equation

whose coefficients are identified in the last step by making use of Tartar’s variational method.

3.2.4 A priori estimates

Lemma 3.2.1. The solutions (uf,¢°) of (3.2.5) are bounded.

Proof. Taking v = u® and ¥ = ¢° in (3.2.5), gives

. Ouj, 0us . 1 Ouj,\ Ous . 1 Ouj, 1 0u§
/Q Clamr g, 5z T 2Ciats (m) 9z, T Cians (m) (k azg)dz

0¢° 0¢° 10y 10 (1 g
E 26, =2 )d 2.
i /Q €ay 0zy 024 o3 <k: 823> 8za (k‘s 92 ) \ke 023 ) (3.2.10)
:/ f5u€+ (kE:)_l/ Edz1dz2 + ke / 5 EledZQ +/’]”Eg0€_
Q Iy Q
Set
QE . 8“2 QE ( 1 )81@
hy = 9, h3 — \ 7.2 )
i v 0 (3.2.11)
g 9% g - (L9
T 82'77 5 ke 823 '

Substituting 5, and 65 in the right hand-side of (3.2.10), it becomes

/ Clrany Oy 05+ 207013003050 + Ciznz 03,3053d2

(3.2.12)
/Q €ar 0505, + 2603050, + €350505d2.
Which is equivalent to
/Qijhlgilgfjdz -+ / €;,0;05dz. (3.2.13)
Using the ellipticity of the coefficients Cf;;,, and €;; we get the estimate
2
(ZW 2@ + ZZHQMHL?(Q)) <O 6Nz + C Dl Gl
h=1 I=1 i hil (3.2.14)

S/ﬂcfjthilQ?de+/€”9f@jdz
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The above formula leads us to

2
ous ous 1 oug \ ous 1 ous 1 ous
€ e < € h 7 20¢ h % € h i
C(HSD H\I/ + HU HV> = /S;szhwazfy aza + Czah3<k€ 823)82}1 +Cz3h3< ) < )dZ

ke Ozg ke Oz3
. 0p® 0p° . (109" \Op® (1 0¢° 1 Op°
+ /Q Cay 0zy Ozq 2a <k€ 823> 0%a + e ke Ozz ) \ ke Oz3 dz.

(3.2.15)
On the other hand, making use of Cauchy Schwarz and Poincaré inequalities together with trace

theorem applied on the left-hand of (3.2.5) and owing to assumptions (3.2.6), one can have

4

[ully < C,

< (ke)C,

L2(2)

(3.2.16)

\ LZ(Q)

So, we can extract a subsequences still denoted by u¢, ¢ such that

we T 0 = u(z),
o (3.2.17)
o T 00 = o(2).
And since H'(Q) — L*(Q2), so

c

™
~
S
=2

(3.2.18)

Furthermore, from (3.2.16) we can extract a subsequence still denoted by 8“5 such that

ous L2(Q)
8,2@ a

then, the derivate in the sense of distributions yields

ou o
= — D(Q
O /Q —uf 5 dz VY 9eD),

“a

passing to the limit in the previous equation

: ou® oV
llg(l) Qazal‘}dz —hm ua—zadz V9 e D(Q),
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gives

/ﬁaﬁdz——/ 0519 Ve D(Q)

:>/5a19dz—/8u019d V9 € D(Q)
Q

= / (ga - 8u>19dz —0 WeDQ) (3.2.19)
Q 8Zoz

ou’

0z4

ous LX) g0
O0za O0za "

:>£oz:

=

Again, from (3.2.16) we can extract a subsequence still denoted by a@ such that

p° 12(0)
0724

Ta,

then, the derivation in the sense of distributions yields

0p° 0V
VUdz = | —¢p°*— v e D(Q
o dz = /Q 8 dz Y VU e D),

passing to the limit in the previous equation

im [ 27w gz = —lim gpsg‘lj dz YU e D(Q),

£—0 Qaza =0 Jq g

gives

/Ta\lfdz:—/gooa\lldz V¥ e D)
Q Q aza

O
= | Tovds= | SEwd: ¥ weD©
Za

:>/ ( 8 >\Il dz=0 Y UeDQ) (3.2.20)
Ra
=T, =
8za
0p° L2(Q) 9y0
MR N
Also, from (3.2.16) it follows immediately that we can extract a subsequence still denoted by 3 8“’7
and such that
ou;, 12
0, 1200,
3 (3.2.21)
9¢° 12(©) 0
8213 .
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Indeed, (3.2.16) point out that ?3%2 is bounded, hence we can extract a subsequence still denoted by

—gui such that
z3
ous,

823

-,

in view of the proprieties of the weak convergence , one can get

ouy,
82’3

< limin
I€llz2(@) < liminf .

< lirréinf(k‘s)C,

<0 (3.2.22)

=¢llz2@)= 0,

ouj, L2(@)

s 0.

A quick glance at (3.2.19) shows that
823 823 ’
and from (3.2.21), it is self-evident that
oup _ (3.2.23)
D2 V- 2.
Which implies that

u®(21, 29, 23) = u’(21, 29) (3.2.24)

By analogy, we can find that
Op* L2(Q)
82’3

0p° 12(0) Op°
From (3.2.17) : 690 g (9i
z3 Z3

From (3.2.21) : 0,

(3.2.25)

"
i — )
= Oz (3.2.26)
(100('217 292, 23) - 900(217 22)~

However, we are able to draw a number of conclusions
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HY(Q)
u® S u®,

L2(Q
u® —>) ul,

0u 17(@) 0w’
0%, 0z’
ou’ (@)

D23 ’
uo(zl,ZQ, 23) = u0(21,zz),

. (3.2.27)
o= Y 0,

0p* 120 99"
024 02y
0g° 12

o @
823

@0(21, 22, Zs) = 900(21, Z2)~

O
Set
ous, 0¢° 1 ous, 0¢*®
e _ce YU pe Ek e YUh | pe
ij ijhy aZ’y + yij aZ’y +( 6) ijh3 823 + 31 823 )
Taking ¢» = 0 in (3.2.5), then from the definitions of &, and £ it is apparent that
v v _
/ i Yy (ke) &5, S / fevdz + (ke) 1/ grvdzidzs. (3.2.28)
QO 8za 82:3 O i
Another consequence of (3.2.16) is that
1651 20y < C, (3.2.29)
It follows that up to a subsequence
e LX)
5 3 (3.2.30)

The following lemma gives the proprieties of &, and &5 the limits of £, and &5, respectively.

Lemma 3.2.2.

8 1 1
1) (9(/ ffadzg) = (/ fz*> +g’;k,+ +QZ— n w,
Fa \J-1 -1 (3.2.31)

2) &5=0 in Q.

109



Proof. Let w; € D(Q),i € 1,2,3 and set

23
= (kﬁ&) / wi<zlv 225 t)dt7
0

as a test function in (3.2.28), we obtain

(k;e)/Q fa(/oz3 Wdt)dz+/Qﬁfgw,-(zl,zg,z;;)dz
— ]4} c ' i\ <1y <22, d d
(6)/ﬂfl</0 w(zzt)t)z
k ke)~tge 3 i(21, 22, t)dt | dz1dzy
—|—(5)/F+((6) 1)(/0 w(zzt)t)zz

+ (ks)/ ((ke)"'g;°) </023 w;(21, 22, t)dt) dz1dzo

(3.2.32)

and by passing to the limit for ¢ — 0, we get

5:3 = 0.

Taking now v; € D(w) in (3.2.28), then

/flagvl dz:/ffvidz-l—(ks)_l/givdz1d22+(ks)_l/givdzleQ.
Q w w

Integration by parts yields

1 1
_/88(/ fadz?,)wdzlsz—/ (/ ffdz;),)vidmdzri—(ks)l/ (gfr—i—ga)z)dzld@
w 02 1 w 1 .

Vv € D(w),

passing to the limit for ¢ — 0 gives

a 1
(L) ([ ) s o

(3.2.33)
O
Introduce now
€ 5 aulez € a(pe 5 auh 890
G = Py 0z, ~ €y 0z, + (ke)™ {P]h3 923 €3 D23
Taking v = 0 in (3.2.5), then from the definitions of (¢ and (5 it is obvious that
0
/ Cap,” 1<3aw répdz, Wi € 0. (3.2.34)
Q
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Based on the results stated on (3.2.16), we get
1 22 0) < C,

It follows that up to a subsequence

L2(2)

¢

The following lemma gives the proprieties of (} and (3, the limits of (] and (3, respectively.

(3.2.35)

(3.2.36)

Lemma 3.2.3.
8 1 1
1) 8(/ C;dz;),) = / r*dzs, in w,
Fa \J-1 = (3.2.37)
2) G=0 inQ
Proof. Let w € D(€2) and taking in (3.2.5)
23
U= (k’s)/ w(z1, 29, t)dt,
0
with v = 0, then one has
z3 t z3
—(ka)/gg</ Wmdt)dz—/ggwdzz (ke)/r5</ w(zl,ZQ,t)dt>dz. (3.2.38)
Q 0 0zq Q Q 0
Letting ¢ — 0, results
/ Gwdz =0, Yw e D),
Q (3.2.39)

~@=1)

111




Taking now ¢ € D(w) in (3.2.34), then we get

—/chgidz:/grgwdz.

Integration by parts yields

[ [ catmYvantea= [ ([t

Letting € — 0, leads to

1 1
/8 (/ C;d23>¢d21d22—/ (/ r*d23>wdzldz2
w 02a \J_; L\ )
0 ! 1
= </ C;dz;;) :/ r*dzs.
0za \ J_1 .

3.2.5 Application of Tartar’s method

Vi € D(w)

(3.2.40)

It remains to express & and ¢* in terms of u° and ¢°. we will apply the method of oscillating test

functions due to Tartar. Let

£,my

P (2) = exy(2) + Onm2y
O™ (2) = W™ (z)
™ (2) = e®,(2)

IF7(2) = =eR" + z,,
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where (x™7((Z, 2, 23)), U7 ((&, 22, 23))) and (P7(Z, 2, 23), R7(Z, £, z3)) the unique solutions in
g g g g g g g g

H} (Y') with zero average of the cell problems (Pymv,umr) and (Pev,rv), Tespectively

D [ D e g 4 p P
G 2 (0 + T3+ Paal) P

4, 0 Xy (y) 3‘1”'”((@)}
— k' Crans () D 4 Py () Y
0 a{ hd(y) ay3 ’ (y) ayS

st () + T2+ Pran 2

ox;" oV (y ,
Ci3h3(y)Xahy3(y) + Pgw(y)ayg()} =0 inY,
ov™
0 (v) }
Ys

Paat) 2 () ea3<y>a‘%n;;y)}

{
P3hﬁ(y)§ X?f”(y)) + —635(y)w
[

(PXW’Y’\I/WVY) a {P

Q
>
=
s
Q.)
/\\
+
)—%
=3
S
~_
|
@)
Q
=

(3.2.42)

Y3

o o™ .
PBhS(Q)M — 633(3/)82/3(”} =0 mY,

/X"W—O/\I/WV—O O7 Ry, ys — periodic,
Y %

where

T = 0pmyy, 1 <h,m<3.
And ) 9 997 (y) P
n\Yy
o . P . . 2l
aya {Czahﬂ(y) 8y5 + Bza(y) a (R (y) + yv)}

— k_l(,ﬁx{cz‘ahs(y) 8‘1;’;& ) + P3za(y) aRV( ) }

)

CiShﬂ (y) 8y3

8
0%, (y) OR(y) .
... P Y
Cisns(v) Dy + Pyi3(y) Dy =0 Y,

(Proe) 3 o { Purs) g — o) o= (7)) 3249

Paal) P — a(p 20}

{
+k1£{Pgh5(y) Dy —635(y>£ﬂ(m(y)+y~,)}
{

-~ 0] (y) 8R7(y) )
2 O n\Y) _
+k P3p3(y) s €s3(y) s 0 nY

/ P = O,/ R'=0 @7 R y,ys — periodic.
\ Y Y
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Such that (p;,""(x), 0™ (x)) and (7" (x),1°7(x)) are the solutions of (P%g) and (PZ;) respec-

tively, i.e.
0 op;™" 0e=™
{ijhz pa + Pri—— o2 }: ;
(Fro) i ggem (3.2.44)
EN P SR
And s 7o
T ; &
{ ijhl h +Pm'j o2 }:07
° 2.4
(Pﬂ'l . aﬂ.}iv A 8[677 (3 5)
a AL oz | Y
Lemma 3.2.4. We have the following convergences
2
1) pi""(2) s Ohim 2
2
2) @=m1(z) =& g,
. (3.2.46)
3) IF7(2) — 2,
2
47 (2) 2% o,
Proof. See the proof of Lemma 3.1.2. O]
Set:
8p€ Y 0esmY B apE Yy o0esmY
e _ e 5 1 € 3
%ijmfy = Ui~ 925 ,Biszﬁ + (ke) { ijth + Pyis—— 923 .
3.2.47
1e . Opy m” 0e=™ e Op™ 005 ( )
Simy = Pjnp 25 JB 025 + (ke) Ps o) — €53 92 |
From (3.2.44) we see at once that Z]m,y and Sj;fb,y verify the problems (P@ll;m) and (Ps;fw), respec-
tively, i. e.
a(\l € 8(\1 €
(P )i = (ko) =
o agj; _ 8523 (3.2.48)
Pg-): —2M0 4 (k)72 = .
(Pgie ) D + (ke) ™ D3

Multiplying the first equation of (3.2.48) by a test function v € V' and the second one by 1) € ¥, we

get the following variational problem

/s“ Qi | (ko)1 /%“ Wi_y wev,

iamsy a i3mry 623

le YV le g
/Sam'yaza /SBm'yaZS 7 v¢€

(3.2.49)



Set now

o oI om” oI="
2 _ e h e -1 YMh
%ij'y — YijhB 825 + Pﬁij az + (]C&‘) { ijh3 823 PB%] az } (3 ) 50)
st pe om, . 0I% (ke pe om,” 8[5"’ o
i = Fing 0zp gz 0zp 302 3 0z
From (3.2.45) it is a simple mater to check that Ufm and S],fw verify the problems (Py2:) and
iy
(Pg2.), respectively, i.e.
ek
8@26 8(\25
(Pyoc) : Diey ()1 08 _
Sijy 02 0z3
e e (3.2.51)
Pgo): 2 4 (ke