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Abstract— In this paper, we develops a new fast on line
algorithms for motion estimation. This new algorithm is based
on the Horn & Schunck algorithm with a new kind of recurrent
neural network called   Discrete Zhang Neural Networks
(DZNN) and Simoncelli’s matched-pair 5 tap filters. We
simulate the network on a sequential processor and compare its
performance with a sequential algorithm based on the Jacobi
method. Experimental results on synthetic and real image
sequences for the method are given to demonstrate its fastness
in comparison with Jacobi method.
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I. INTRODUCTION

OTION estimation is the process of determining
motion vectors that describe the transformation from

one 2D image to another; usually from adjacent frames in a
video sequence. Motion estimation is known to be a
fundamental step in many applications in image processing,
pattern recognition, data compression, and biomedical
technology [1].

A great   number   of   approaches   for   Optical   Flow
estimation have been proposed in the literature, including
differential, correlation-based, energy-based, and phase-

(DZNN) has been proposed by Zhang and co-workers for
solving online time-varying and/or static problems [10-19],
such as time-varying Sylvester equation solving, time-
varying matrix inversion,  and  time-varying  linear
inequalities. All these models which are generally
independent of   each other   prove   an   efficiency and
superiority for the online application [20]. Motivating by the
fastness and robustness of these methods versus the gradient
based neural networks;  we propose a parallel
implementation of the Horn & Schunck motion estimation
method in image sequences using DZNN for the online
matrix inversion. The remainder of this paper is organized as
follows: Section 2 presents the standard Horn & Schunck’s
method of optical  flow  computation.  A  real-time
computation of dense optical flow for 2D images by the
classical Horn & Schunck model by using discrete Zhang
neural networks is described in section 3. Section 4 shows
the experimental results obtained using our fast  image
motion estimation method. Finally, section 5 contains the
conclusion.

II. HORN & SCHUNCK FORMULATION

The Horn & Schunck’s differential method [2] is mainly
based on optimizing an energy function (over a domain ):

based methods [1]. The benchmark of the based differential
methods is certainly the one proposed by Horn & Schunck  ( I t



 uI x  vI )2  2 ( u
2
 v

2
)dxdy (1)

[2]. They imposed a global constraint of smoothness on the
velocity field and the optical flow estimation is reduced to a

where I  I (x, y, t) denotes image brightness function at

minimization problem of a functional, where the solution time t , (u, v) designates optical velocity, (u,v) its spatial

obtained using iterative Gauss–Seidel method is high derivatives, (I x , I y , I t ) the spatiotemporal image brightness
computational cost [3]. In recent years, a number of different
schemes have been proposed to implement the Horn &
Schunck optical flow algorithms in real-time [4-9] where the

derivatives, and  is the weighting parameter.
We can rewrite the Euler-Lagrange equations as:

2 2 2
accuracy and the fastness depend largely on the number of
iterations and the size of the image respectively.

Since March 2001, a special kind of recurrent neural
networks called the Discrete Zhang Neural Network

I x u  I x I y v  I x I t    u


I I u  I 2v  I I  2 2vx y            y y t

Let  be discretized via a unit-spacing grid D

(2)

and the
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xi

yi

i

2

2

grid points indexed by the integers 1,2, , N

with z k1  Pz k  d (8)

N  nm (is the number of discretization points). We take where d is the 2N real vector with entries:
numbering to be top-down and left-to-right. For all grid d  (I xi I /(I 2  I 2  2c ))
point indices i1,2, , N , a discrete approximation of the

2i1 ti xi yi i

Euler-Lagrange equations (2) is [3]: d2i  (I yiIti /(I xi  I yi   ci )) , i1,2, , N;
2 2 2

I 2 u i  I xi I yivi  I xi I ti 
2 (u j  u i )  0 and P is the 2N  2N Jacobi matrix corresponding to the



I xi I yiu i

jN i

 I 2 vi  I yi I ti 
2  (v j  vi )  0

(3)
2 2 block division of A .The elements of P are:

P2i,2i  P2i1,2i1  0,i1, , N
jN i 

P  (I xi  
2c )

 2i,2 j 2 2 2 2where (u i , vi )  (u, v) i is the optical velocity vector at grid 


ci (I xi  I yi )   ci

point i ; I xi , I yi , Iti are the values at i of I x , I y , I t , 
P2i1,2 j  P2i,2 j1 

(I xi  I yi )
2 2 2 2respectively, and N i is the set of indices of the neighbors of  ci (I xi  I yi )   ci (9)

i . For the 8-neighborhood, card (N i )  8 for points interior  (I 2  2c )P2i1,2 j1 
yi i

2 2 2 2to the discrete image domain, and card (Ni )  8 for ci (I xi  I yi )   ci

boundary points. By rewriting (3),   we   can   have   the
following system of linear equations [3]:

(I xi 
2ci )u i  I xi I yi vi 

2u j  I xi I ti

i, j1,, N, suchthat jN i

with all other elements equal to zero, including the diagonal
entries. jN i

 2
(4)

I xi I yiu i  (I yi  
2ci )vi 

2 v j  I yi I ti
 jN i

III. SOLUTION VIA DISCRETE ZHANG NEURAL NETWORK

In many engineering applications, the online inversion of
where ci  card (Ni ) .

The minimization of the above energy leads to solving a
linear system of equations:

matrices is usually desired when the dimension of the matrix
is large. Recently, a special kind of recurrent neural network
for online matrix inversion has been proposed by Zhang et

Az  b

where z  (z1, , z2N )T  R2N

(5)

be the vector with

al.[14,16].It is well known [14] that DZNN method is
preferable for solving large sparse systems which the rate of
the convergence is high. To avoid the direct computation of

coordinates z2i1  u i , z2i  vi , i1, , N , the inverse matrix, we propose to use the discrete Zhang
b  (b1 , , b2N )T R 2N be the vector with coordinates neural network for the online matrix inversion.

To solve for a matrix inverse, the DZNN system design isb2i1  I xi I ti i , b2i  I yi I ti , i1, , N 
based on the equation, AX (t) I  0 , with AR 2N2N and

and the stiffness matrix AR 2N2N is symmetric positive-
definite [3] with elements [3]: I  2N2N denotes an identity matrix. We can define a

2 2 matrix–valued error function such as [9]A2i1,2i1  I xi   ci  (t)  AX (t)  I .Then, we use the negative of the gradient
2 2

A2i,2i  I yi  ci



A2i1,2i  A2i,2i1  I xi I yi

for all i1, , N (6) as the descent direction:
d(t)

 f  (t)
dt

(9)

A2i1,2 j1  A2i,2 j  
2 for all i, j1, , N, such that

where the parameter 


2N2N is a positive-definite
jN i , all other elements being equal to zero. matrix used to scale the convergence rate of the solution and

System (5) is a large-scale sparse system of linear f () : 2N2N 2N2N f () denote the activation
equations.  The solution to equation (5) can be solved in function-matrix. In general, any monotonically increasing
closed form when A is a non-singular matrix. Mitiche and
Mansouri [3] proved that the matrix A is symmetric

odd activation function f () can be used for recurrent neural

positive-definitive. The solution to (5) is given by:

z  A1b (7)

networks construction (such as the linear, sigmoid, power,
and power–sigmoid functions) [14]. Expanding (9) leads to:

 



with the Jacobi method, the updates can be activated in

AX (t)  f AX (t)  I (10)

parallel for all image points at each iteration and it can be
written in matrix form as [3]:

To make every entry converges to zero at the same rate
and at the same time, we take  I with   0 which leads

to:
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AX (t)  f AX (t)  I  (11) IV. SIMULATION RESULTS

We note here to ensure that the matrix A is non-singular
hence the ZNN model can be rewritten as [14]:

X (t)  A1 f AX (t)  I  (12)

In this section the experimental results obtained by using
the DZNN are presented and compared with those obtained
by the Jacobi method. To demonstrate the performance of
our algorithm, a variety of images have been tested,

as A1 is unknown and X (t) could be very close to A1 including synthetic images and real image. For all

after some number of iterations, the matrix A1 in equation simulations, we estimate the spatial and temporal

(12) could be replaced by X (t) . Then we can rewrite the

equation (12) as:

X (t)  X (t) f AX (t)  I  (13)

Finaly , the discrete-time update equation for the network
to be simulated on a sequential computer is :

derivatives of images by Simoncelli’s matched-pair 5 tap
filters after smoothing   by a simple averaging kernel
(1/4,1/2,1/4)   with superior accuracy to the Gaussian 1.5
filter [21-22] .

A. Synthetic Image Sequences

X (t)  (X (k 1)  X (k)) / h (14) Tow synthetic image sequences were used to test our
method quantitatively and compare it with other optical flow

where h denote the sampling time parameter. Then the techniques. The Sinusoid-1 is the least complicated
discrete model of ZNN is then given by:
X (k  1)  X (k)  X (k) f AX (k)  I 


(15)

sequences to extract motion from. The images have no sharp
changes in brightness, no occlusion boundaries, and a

where  h  0 is the step size. constant velocity in space and time. A 2-dimensional

Because the matrix A is positive-definitive, the initial state sinusoid texture translates with constant velocity to the top

to start the DZNN can be chosen as: right of the screen with velocity V  (1.585,0.863)

X (0)  2I / trace(A) (16) pixels/frame, Figure 2 shows the first sinusoid texture used

In order to implement the Zhang network, Eq. (15) has
been transformed into a vectorial form  based on the
Kroneker product  and the vectorization operator
vec(.) [13].

The matrix-form equation (15) can be reformulated as the
following vector-form equation:
vec(X (k  1))  vec(X (k))   (I  X (k))

and true flow field.
The Yosemite sequence is more complex with a wide

range of velocities, it consists of fly-through of a virtual
valley with a cloudy, since it not only has detailed textures,
non-constant flow and sharp changes in brightness, but it
also has occlusion between the top of the valley and the sky.

 f (I  A)vec(X (k))  vec(I )
where activation-function mapping f ()

(17)

in (17) is

defined the same as in (15) except that its dimensions are
2 2

changed hereafter as f () : (2N ) 1  (2N ) 1 .

The DZNN model for the online matrix inversion is show
the figure (1) according to the equation (17).

Fig. 2. Sinusoid-1 a) one frame from the sequence, b) the
respective true flow field

In all the demonstrations, we have compared the
estimated optical flow to the true optical flow in order to
determine quantitative results. The angular error measure

 
between the computed optical flow ve and the true flow vc is

adopted in the experiments [1].
 



Fig. 1. Block diagram of the DZNN

However, with the DZNN method, the optical flow can be
activated in parallel for all image points, to afford a
significant gain in execution time.

E  ar cos(vc  ve )

(18)
The accuracy and the number of iterations obtained to

compute the optical flow for the Sinusoid-1 image sequence
are shown in Tables 1. For all these  experiments,  the
accuracy is reported for a flow of 100% density computed

using the DZNN method with pre-selected error1014 .
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TABLE 1: Angular error and number of iterations obtained on
the Sinusoid-1 sequence.

Image
size

DZNN method Jacobi Method
λ=102 λ=10-3 λ=102 λ=10-3

angular
error[°]

16x16 14.85 14.72 14.85 14.72
32x32 8.90 8.89 8.90 8.89

iteration
s

16x16 29 58 552 532
32x32 33 61 1227 1209

From Table 1, we can see that the proposed method
requires 33 iterations to reach an average error of 8.9098°,
whereas the numerical scheme of Jacobi Method takes 1227
iterations to converge to a same average error. This proves
that the proposed method offers a faster convergence speed.

5
10

DZNN Method
Jacobi Method

0
10

-5
10

the considered displacement.

Fig. 4. Optical flow of the sinusoid-1 computed with
  100 using DZNN or Jacobi method

In the second experiment, we use the famous Yosemite
sequence with clouds. The accuracy in the computed optical
flow for this sequence is shows in figure 5. We note, that the
convergence error and the angular error decrease in the same
manner for the two methods, but our method reached the
minimum error just after a few iterations which make  it
faster and stable than the Jacobi method.

5
10

-10
10

0 DZNN Method

-15
10

0 100 200 300
Iterations

10 Jacob Method

-5

(a) Convergence curves of the two methods 10

70

60 10

DZNN Method
Jacobi Method

40

30

-15

0 500 1000 1500 2000
Iterations

20 (a) Convergence curves of the two methods.
10 14

0 13
0 100 200 300

Iterations 12

(b) Impact of the two methods on the average Error
Fig. 3. Sinusoid-1 : Impact of our method and Jacobi
method on the convergence error and the average error

for 100 .

From the table 1, and the figure (3), we note that the
results of the Jacobi method are insensitive to the
regularization parameter  ¸ whereas the results of our
method are sensitive to the regularization parameter  , for
example we found that a gain of number of iteration is about
50% is obtained by passing from   0.001 to 100 .The
optical flow obtained for  100 is shown in figure 4.

In order to represent the computed optical flow, each
velocity vector is encoded according to the color map; witch
gives the angle while the brightness represents the norm of

11

10

9

8

7

6

5
0 500 1000 1500 2000

Iterations

(b) Impact of the two methods on the average Error.
Fig.5. Yosemite: Impact of our method and Jacobi method

on the convergence error and the average Error.

The main advantage of this representation comes from the
possibility of drawing a dense optical flow, whereas a vector
field representation can mask or highlights some absurd
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points due to its sampling. Thus, Figure. 6 illustrates the
motion field performs on the Yosemite sequence with clouds
using DZNN and Jacobi methods. The ground truth flow
and the error distribution are also shown. As seen in Figure
6.(d-f), the Yosemite sequence results with Jacob method
have many errors obtained after 27 iterations. The average
angular error is 8.384°. Much of this error occurs in the sky
and in the left side of the valley. The valley in the middle
and right side has a good texture and almost no occlusion,
giving the good results seen. Furthermore, our method
(DZNN) has the best performance with an average angular
=5.763° obtained after 27 iterations (in figure 6(g-i)), while
the Jacobi method requires 446 iterations to obtain this
accuracy. Much of this error occurs in the sky. In figure 6(e)
and 6(h), small angular error are observed in blue.

be verified by using   these   estimates   in   a motion-
compensated interpolation. For this task, a bilinear
interpolation is used. The impact of the proposed and Jacobi
methods on motion –compensated prediction and prediction
error- are show in Figure.8 and 9.

Fig.7. One frame from the Hamburg Taxi sequence and the
zoom in at the taxi.

5
10

0
10

-5
10

-10
10

-15
10

-20
10

500 1000 1500 2000 2500
Iterations

(a) Convergence curves of the two methods

38

Fig. 6 Impact of DZNN method and Jacobi method for the
Yosemite sequence with clouds

a) Synthetic sequence, (b)  Ground  truth  (Color  map),  (c)
Ground truth (Vector field), (d) Color  map  result  with  Jacob
method after 27 iterations, (e) Angle Error map result with Jacob
method , (f) Computed vector field with Jacob method , (g) Color
map result with DZNN after 27 iterations,(h) Angle Error map
result with DZNN and (i) Computed vector field with DZNN

B. Real Image Sequence

Our method was also tested on the Hamburg Taxi
sequences ,  this  real  sequence  contains  three  principal
moving objects : the taxi turning around the corner (1
pixel/frame), a car in the lower left , driving from right (3
pixels/frame) and a van in lower right driving right to left (3
pixels/frame). Figure 7 shows one frame from the Hamburg
Taxi sequence and the zoom   in at the taxi . The
regularization parameter  ¸ is empirically chosen to be 100
for the implementation of our and the Jacobi methods.

Since it is very difficult to determine the true optical flow
for real images, usually only qualitative testing is performed.
The validity of motion estimates for this real sequence can

37

36

35

34

33
500 1000 1500 2000 2500

Iterations

(b) Impact of the two methods on the PSNR
Fig. 8. Impact of our method and Jacobi method on the
convergence error and the PSNR for the Hamburg Taxi

sequence.
Figure 8 shows the dynamic of the Jacobi method and

DZNN method and the respect PSNR rate, we note that the
PSNR rate increase in the same manner for the two methods,
but our method reached the maximum PSNR just after a few
iterations method with make it faster than the Jacobi method.

The motion in the zoom in at the taxi (figure 9-a) is
shows in figure 9-b. From the zoom in at the taxi , we can
see that moving object was clearly captured and located by
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our method with few iterations (35) , while the Jacobi
method requires 2040 iterations with a SNR=37.34dB.

V. CONCLUSION

In this paper we have developed a new fast on line
algorithms for the estimation of optical flow for image
sequences. This new algorithm was based on the Horn and
Schunck algorithm with DZNN method and Simoncelli’s
matched-pair 5 tap filters. Experimental results on synthetic
and real image sequences for our method are given to
demonstrate its fastness in comparison with Jacobi method.
There are several basic advantages of our algorithm. It is
well known that the DZNN is a parallel algorithm. It has
high parallel efficiency when parallel computers are used
[12,23-24]. The DZNN algorithm is also very efficient when
the problem under consideration is too large. Furthermore,
our method is faster than the (sequential) Jacobi method.

Fig. 9 Results of zoom in the taxi for the Hamburg Taxi
sequence.
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