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Introduction

There are three types of machine learning: supervised, unsupervised and reinforce-

ment. In supervised learning [10], the training data set includes the pairs (x,y) such that: x

is the input and y is the output. As shown in [10], the supervised learning is divided into

two categories, regression in the case of outputs are continuous values, and classification in

the case of outputs are discrete values. During the process of supervised learning the dataset

divides into two parts, the first part is used for learning in the aim to build a mathematical

model between the inputs and outputs, the second part for testing the model to predict the

output of test data set.

Statistical learning Theory (SLT) is a basic theoretical tool of the problem of function esti-

mation a given set of data and also for developing practical algorithms for estimating multi-

dimensional functions. As shown in [12] the model of learning can be described as follows:

Given a set of n training data D = {(x1, y1), ...., (xn, yn)/xi ∈ Rm, yi ∈ R}, with in-

dependently and identically distributed (iid) unknown probability distribution p(x, y) =

p(x)p(y/x). The problem of learning is that of choosing from a given set of functions

{f(x, α)/α ∈ H} the one which predicts the supervisor’s response in the best possible way.

In order to select the best approximation, the following expected value:

E(L(y, f(x, α)) =

∫
L(y, f(x, α))dp(x, y)

is chosen as a criterion to be minimized over the class of functions {f(x, α)/α ∈ H}, with

L(y, f(x, α)) is a loss function that measure the error between yi and f(xi, α).
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Introduction

Support Vector Machines (SVM) is a supervised learning algorithm developed in the frame-

work of (SLT) by V.Vapnik in 1995. It is widely used for solving classification problems.

The idea of SVM is to find an optimal hyperplane which is equivalently to solve a learning

problem, where f(x) = wTφ(x) + b with w, b are the parameters of the machine and φ is a

mapping from Rm to Rm′ (m′ > m). This kind of algorithm is used in different applications

such as image segmentation, regression problem . . . etc. In our dissertation, we focus on the

support vector regression (SVR) for estimating the cumulative distribution function (CDF)

which is proposed by [4]. Concerning this manuscript is organized as follows.

• Chapter 01: Preliminaries

This chapter is divided into two parts:

Part01:

In this part, the Hilbert spaces notion and the optimization problems with some theo-

ries are presented.

Part02:

Probability theory and the estimation of the cumulative distribution function are de-

tailed in this part.

• Chapter 02: Support Vector Machines

In this chapter, we define the support vector machines (SVM) for classification and

regression as a princpal tool in the estimation of the probability density function (PDF).

• Chapter 03: Support Vector Density Estimation

In this final chapter, we try to detail a technique [4] for estimating the cumulative

distribution function which is based on the empirical distribution function and

the support vector machines (SVM).

Finally, a conclusion is written to summarize this work.

2



Chapter 1

Preliminaries
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Part I

Optimization
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Chapter 1 : Preliminaries

1.1 Reminder

1.1.1 Hilbert Space

Definition 1.1.1 [10] A space (X,<,>) is called an inner product where <,> the application

from X ×X in R+ verifies for all x, y, z ∈ X and α ∈ R:

• <x, y> = <y, x>.

• <x, x> = 0⇔ x = 0.

• <αx, y> = α<x, y>.

• <x+ y, z> = <x, z>+<y, z>.

The quantity <x, y> is called the inner product of x and y and the couple (X,<,>) is called

a semi-Hilbertian sapce.

Remark 1.1.1 The application ||.|| from X to R:

||x|| =
√
<x, x>,

call norm and (X, ||.||) call normed space.

Remark 1.1.2 If X = Rm and for x ∈ Rm:

||x|| =

√√√√ m∑
i=1

x2i .

Definition 1.1.2 ([10],[8]) A Hilbert space is complete (every element from this space is the

limit of suite of cauchy converges) separable inner product space.

Definition 1.1.3 [8] We call (Xn)n∈N is the suite of cauchy if:

∀ε > 0,∃nε ∈ N/∀n,m ≥ nε −→ ||Xn −Xm|| < ε.

5



Chapter 1 : Preliminaries

Definition 1.1.4 [8] We call the function f is integrable noted f ∈ L1(Rn), if:

∫
Rn

|f(x)|dx <∞, ∀x ∈ Rn.

1.1.2 Convexity and Matrixes

Definition 1.1.5 [10] A set M ⊆ Rn is convex if:

tx+ (1− t)y ∈M, ∀x, y ∈ Rn, ∀t ∈ (0; 1).

Definition 1.1.6 [10] A function f : Rn → R is convex if:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ Rn, ∀λ ∈ [0; 1].

Remark 1.1.3 If this inequality be equal then the function call linear.

Remark 1.1.4 A linear function from a Hilbert space to anthon call linear operator.

Definition 1.1.7 [10] A matrix H is symmetric if and only if:

HT = H.

Definition 1.1.8 [10] A symmetric matrix H is positive semi-definite if and only if:

xTHx ≥ 0, ∀ x ∈ Rn, x 6= 0.

1.1.3 The convex optimization problem

Definition 1.1.9 [10] Optimization problem is a technique to find the optimal (best) points

(max or min) of the objective function subject to some constraints.

Definition 1.1.10 [10] The objective function is the value you are training to optimize (op-

6



Chapter 1 : Preliminaries

timal decision, minimal error,...).

Definition 1.1.11 [10] Constraints set boundaries for where the optimizer cannot go, there

are two types (equality and inequality) constraints.

Definition 1.1.12 [7] The variables of the problem can be of various nature (real, integer,

boolean,...) and are expressed from qualitative or quantitative data.

Definition 1.1.13 [10] The feasible region is the domain where the objective function is

defined, we will denote it by a convex subset:

M = {x ∈ Rn/ the constraints are satisfied }. (1.1)

Definition 1.1.14 [10] The optimization problem is called a linear programme (LP) if the

objective function and the constraints are linear functions, if the objective is quadratic func-

tion and the constraints are linear, then the optimization problem call quadratic programme

(QP).

Problem 1.1.1 [10] Finding x the solution of the convex optimization problem:



min
x∈M

f(x)

subject to

gi(x) ≤ 0, i = 1, ...n

hi(x) = 0, i = 1, ...m

(1.2)

where the functions are convex.

Remark 1.1.5 To go from maximum to minimum, we need to change the sign of the objec-

tive function.

Remark 1.1.6 As the objective function and all the constraints are convex, together with

convexity of the feasible region so the optimization problem is convex.

7



Chapter 1 : Preliminaries

1.2 Optimization Theory

1.2.1 Lagrange Formulation

Definition 1.2.1 [10] To solve an optimization problem (1.2), it suffices to search for a

stationary point of the lagrangian function given by:

L(x, α, β) = f(x) +
n∑
i=1

αigi(x) +
m∑
i=1

βihi(x), (1.3)

where the coefficient α and β are called the Lagrange multipliers.

Theorem 1.2.1 Let (x∗, α∗, β∗) be a feasible solution of the lagrangien function, then:

L(x∗, α∗, β∗) ≤ f(x∗), (1.4)

where x∗ ∈M is a feasible solution of the primal problem (1.2).

Proof. [10] From the definition of L(x∗, α∗, β∗), we have:

L(x∗, α∗, β∗) = f(x∗) +
n∑
i=1

α∗i gi(x
∗) +

n∑
i=1

β∗i hi(x
∗),

≤ f(x∗).

Because the only point verifie for all i, gi(x) ≤ 0 and hi(x) = 0 are the solution of the primal

optimisation problem.

1.2.2 Fermat’s Theorem

Theorem 1.2.2 For a point to be a minimum or maximum of function continuously differ-

entiable its derivative is null, this sufficient condition with convexity of the function.

Proof. Suppose f defined on the interval [a; b], and let c ∈ [a; b], we proof that c is the

extremi point (max).

8



Chapter 1 : Preliminaries

Since f differentiable on c (the derivative exists) we have that:

f
′
(c) = lim

h−→0

f(c+ h)− f(c)

h
,

we have: lim
h−→0−

f(c+ h)− f(c)

h
≥ 0 and lim

h−→0+

f(c+ h)− f(c)

h
≤ 0,

then

0 ≤ f
′
(c) ≤ 0⇒ f

′
(c) = 0

1.2.3 Karush-Kuhn-Tucker Conditions

Theorem 1.2.3 If x∗ minimizes the problem (1.2), then there exists lagrange multipliers α∗

and β∗ (vectors) such that the following:

min
x
L(x, α∗, β∗) = max

α,β
L(x∗, α, β) = L(x∗, α∗, β∗). (1.5)

α ≥ 0, β ≥ 0. (1.6)

α∗i gi(x
∗) = 0, i = 1, ...n. (1.7)

β∗i hi(x
∗) = 0, i = 1, ...m. (1.8)

The last two equations call KKT complementary conditions.

9
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Chapter 1 : Preliminaries

1.3 Reminder

1.3.1 Probability Space

Definition 1.3.1 [8] We call to the family A σ-algebra (tribe) on the non empty set Ω if A

containing the empty set, stable by complementary and countable union. The couple (Ω,A)

is called measurable space.

Exemple 1.3.1 Borelian σ-algebra of R is the smallest tribe containing all open intervals,

noted BR.

Definition 1.3.2 [8] Let (Ω1,A1) and (Ω2,A2) be two measurable spaces. The function

f : Ω1 −→ Ω2 is said to be measurable if:

f−1(B) ∈ A1, ∀B ∈ A2.

Definition 1.3.3 [8] Let (Ω,A) be measurable space. The random variable is a measurable

function from Ω to R, noted X.

Definition 1.3.4 [8] A probability on (Ω,A) is an application P from A in [0;1] such as:

• P(∅) = 0 and P(Ω) = 1.

• P(∪i∈NBi) =
∑

i∈N P(Bi), for any sequence of disjoints sets Bn ∈ A.

The triplet (Ω,A,P) is called probability space.

1.3.2 Probability Law

Definition 1.3.5 [8] Let X be a random variable definied on (Ω,A,P), the law of X is the

probability PX on (R,BR) defined by PX(B) = P(X ∈ B), for any event B ∈ BR.

11



Chapter 1 : Preliminaries

Remark 1.3.1 If X is a discrete variable then:

P(X ∈ B) =
∑
x∈B

P(X = x).

Definition 1.3.6 [6] We defined the function f call density as the solution of the equations:

•
∫
R f(x)dx = 1.

• f(x) ≥ 0, ∀x ∈ R.

Remark 1.3.2 If X is a continues variable then:

P(X ∈ B) =

∫
B

f(x)dx.

Definition 1.3.7 [6] A monotonic function of the real random variable X is called cumula-

tive distribution function, noted FX(x) verifie the conditions:

• Continuous on the right limit on the left.

• lim
x−→−∞

FX(x) = 0 and lim
x−→+∞

FX(x) = 1.

Remark 1.3.3 The CDF for the real random variable X is:

FX(x) = P(X ≤ x) =


∑
xi≤x

P(X = xi) , in the discrete case,

∫ x
−∞ f(t)dt , in the continues case.

Definition 1.3.8 [6] We call esperance the linear functin of the real random variable X,

noted E(X) such as:

E(X) =


n∑
i=1

xiP(X = xi) , in the discrete case,∫
R
xf(x)dx , in the continues case.

12



Chapter 1 : Preliminaries

Definition 1.3.9 [6] We call variance the quadratic funtion of the real random variable X,

noted V ar(X) such as:

V ar(X) = E[(X − E(X))2],

= E(X2)− E2(X), if X ∈ L2(Ω).

Where

E(X2) =


n∑
i=1

x2iP(X = xi) , in the discrete case,∫
R
x2f(x)dx , in the continues case.

Remark 1.3.4 X is square integrable (X ∈ L2(Ω)) if |X|2 has a finite esperance.

Definition 1.3.10 [6] Let (Xn)n∈N and X be random variables in R, the sequence (Xn)n∈N

converges to X in probability if:

∀ε > 0 lim
n−→∞

P (|Xn −X| < ε) = 1. (1.9)

Noted Xn −→P X.

1.3.3 Basic notion

Definition 1.3.11 [2] The population is a set of objects on which a study is carried out.

These objects are called individuals. And any property studied in individuals called character

or variable noted X.

Definition 1.3.12 [2] A sample is a part from the population that has a small size that

achieves a chracteristic.

13



Chapter 1 : Preliminaries

Definition 1.3.13 [6] Consider the sample X1, X2, ..., Xn, we say that is independent if:

P(X1 6 x1, X2 6 x2, ..., Xn 6 xn) = P(X1 6 x1)P(X2 6 x2) · · ·P(Xn 6 xn),

= [P(X1 6 x1)]
n, if they are identical.

Definition 1.3.14 [2] We call estimator of θ any statistic (variable defined as being a func-

tion of the sample X1, . . . , Xn) noted θ̂, whose values are plausibly close to θ.

Definition 1.3.15 [6] We call θ̂ is an unbiased estimator if and only if:

E(θ̂) = θ ⇔ E(θ̂ − θ) = 0. (1.10)

If E(θ̂) 6= θ, then θ̂ call bias estimator.

1.4 Non parametric Estimation

1.4.1 Cumulative Distribution Function

Definition 1.4.1 [6] Suppose the sample X1, X2, . . . , Xn iid of F (unknown).

A good estimator for F is the empirical distribution function, noted Fn defined by:

Fn(x) =
1

n

n∑
i=1

I]−∞;x](xi),

where

I]−∞;x](xi) =


1 if xi ≤ x,

0 otherwise.

14



Chapter 1 : Preliminaries

1.4.2 Elementary Properties

• Bias of EDF

E(Fn(x)) =
1

n

n∑
i=1

E(I]−∞;x](xi)) = P(X ≤ x) = F (x).

Therefore, for any point x, Fn(x) is an unbiased estimator of F (x) [4].

• Variance of EDF

For all x the variance of the estimator Fn(x) is given by:

V ar(Fn(x)) =
1

n
F (x)(1− F (x)).

Noted σ2 = V ar(Fn(x)) [4].

Proof. We use the definition of variance with the iid of the sample.

σ2 = var(Fn(x)) =
1

n2

n∑
i=1

var(I]−∞;x](xi)) =
1

n
var(I]−∞;x](xi)),

=
1

n
E[(I]−∞;x](xi))

2]− 1

n
E2(I]−∞;x](xi)),

=
1

n
E(I]−∞;x](xi))−

1

n
E2(I]−∞;x](xi)),

=
1

n
F (x)− 1

n
F 2(x) =

1

n
F (x)(1− F (x)).

• Convergence of EDF

For all x, Fn(x) converge to F in probability, we take ε = σ, then [9]:

|Fn(x)− F (x)| < σ for n very large p.s

15



Chapter 2

Support Vector Machines

The Support Vector Machines (SVM) is a supervised learning technique. The

idea of SVM is to find a hyperplane in high-dimensional space (number of features) has a

maximum margin to increase the likelihood of separating data with confidence. One of its

main advantages is that it uses part of the training data (support vectors) to search for

hyperplane and after the separation, the system can easily predict new data labels. In this

chapter we will look at the case of the binary classification and how to find the term of the

classifier in the linear separable data and generalize it to non linear seprable data in hard

and soft margin. The kernel trick that can be used to the separation without transform the

data. In the last part from the chapter we take SVR for SVM example and we only care

about the error outside the tube not like the linear regression before (calculate the error for

all the data).

2.1 Hard Margin

Suppose the training data set, D = {(x1, y1), ...., (xn, yn), xi ∈ Rm, yi ∈ {−1,+1}}, where xi

is the ith feature and yi called the class (label).

16



Chapter 2 : Support Vector Machines

2.1.1 Linear Classification

Definition 2.1.1 [7] Hyperplane is a binary classifier is represented by the equation:

wTx+ b = 0, w ∈ Rm, b ∈ R, (2.1)

where w is the weight and b is the bias.

Definition 2.1.2 [7] The decision rule for the classification is given by the sign of (2.1), if

the sign positive then x in class 1 otherwise x in the class -1.

Figure 2.1: Hard Margin in 2-D space.

Remark 2.1.1 Because the data are linear separable (figure 2.1 [3]).

Equivalently:

yi =


+1 if wTxi + b ≥ 1,

−1 if wTxi + b ≤ −1.

(2.2)

The combination of (2.2) is:

yi(w
Txi + b) ≥ 1, i = 1, ..., n. (2.3)

17



Chapter 2 : Support Vector Machines

Definition 2.1.3 [1] (Margin) given that w is perpendicular to the hyperplane, the distance

between the hyperplane and any point xi in terms the size of w is:

∣∣wTxi + b
∣∣

||w||
,

if xs is the closest point to the hyperplane, we obtain:

∣∣wTxs + b
∣∣

||w||
=

1

||w||
, then the margin

is equal to
2

||w||
.

Maximizing Margin:

In order to maximize the margin, for mathematical convenience,
1

2
wTw is minimized subject

to the constraint (2.3) ([7],[14]), then:

1. The COP: 

min
w,b

1

2
wTw

subject to

yi(w
Txi + b) ≥ 1 , i = 1, . . . n.

(2.4)

2. We use the lagrange multipliers for transforming (2.4) to the lagrangian function:

L(w, b, α) =
1

2
wTw −

n∑
i=1

αi[yi(w
Txi + b)− 1], αi ≥ 0. (2.5)

3. The lagrange L should be minimized w and b and maximized the vector α. We apply the

Fermat’s theorem, this function is solved by calculating the partial derivatives ([7],[13]):

∇wL = w −
n∑
i=1

αiyixi = 0. (2.6)

∂L

∂b
=

n∑
i=1

αiyi = 0. (2.7)

18



Chapter 2 : Support Vector Machines

4. Set off the value of (2.6) and (2.7) into equation (2.5), we get:



max
α≥0

L(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

subject to

n∑
i=1

αiyi = 0

αi ≥ 0 ∀i = 1, . . . , n.

(2.8)

5. The KKT conditions are satisfied. Consequently,

αi[yi(w
Txi + b)− 1] = 0, ∀i = 1, ...n. (2.9)

From the condition (2.9), most of αi = 0 and the others verifie yi(w
Txi + b) = 1 called

the support vectors [10].

Figure 2.2: Support Vectors in 2-D space.

On definied the set:

SV = {xi/ αi > 0}, ∀i = 1, ...n. (2.10)

6. On obtain ([14],[3]):

w =
∑

xi ∈ SV

αiyixi. (2.11)

b = yi − wTxi. (2.12)

19



Chapter 2 : Support Vector Machines

7. This results given after we move to QP ([7],[10]):



min
α≥0

1

2
αTHα− 1Tα

subject.to

Y Tα = 0

α ≥ 0

where α = (α1, . . . , αn)T , 1 is an (n,1) unit vector and H denotes a matrix SPSD.

Solution 2.1.1 ([7],[14],[1]) Using the equation of hyperplane (2.1) we obtain the maximum

margin hyperplane:

f(x) =
∑

xi in SV

αiyix
Txi + b. (2.13)

Note that the sign of this function in order to classify new data.

Exemple 2.1.1 In (1-D) space the hyperplane has became a point and the number of support

vectors is two.

2.1.2 Non linear Classification(kernel method)

In this case the dataset is non linear separable in X (input space). Cosider the mapping

function [10]: Φ : X −→ Z, this function can transform the dataset to Z space (high

dimensional feature) which the data are linearly separable.

Remark 2.1.2 We need from Z space [7]:

1. L(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjΦ(xi)
TΦ(xj).

2.
n∑
i=1

αiyi = 0, αi ≥ 0 ∀i = 1, ...n.

And the decision function is given by:

1. g(x) = sign(wTΦ(x) + b).

20



Chapter 2 : Support Vector Machines

2. w =
∑

φ(xi)areSVs

αiyiφ(xi), b = yi − wTΦ(xi).

Generalized Inner Product:

Definition 2.1.4 Given two point x1 and x2 from X space [10].

Let:

Φ(x1)
TΦ(x2) = k(x1, x2) (the kernel). (2.14)

Exemple 2.1.2 [7] let, x1 = (x11, x12)
T ,we choose, Φ(x1) = (x211,

√
2x11x12, x

2
12)

T ,

then:

k(x1, x2) = (x211,
√

2x11x12, x
2
12)(x

2
21,
√

2x21x22, x
2
22)

T ,

= (x211x
2
21 + 2x11x12x21x22 + x212x

2
22).

Figure 2.3: The hyperplane in X and Z space.

The trick: We can compute k(x1, x2) without transforming x1 and x2, consider:

k(x1, x2) = (xT1 x2)
2,

= (x11x21 + x12x22)
2,

= Φ(x1)
TΦ(x2).

Remark 2.1.3 Note that in order to calculate Φ(x1)
TΦ(x2) in Z space, we calculate this
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Chapter 2 : Support Vector Machines

product directly in X space by the kernel trick. The type of example calls the polynomial

kernel.

Generality [14]

If X ≡ Rm and the scalar product are a polynomial of order p. Equivalent:

k(x1, x2) = (c+ xT1 x2)
p,

= (c+ x11x21 + x12x22 + . . .+ x1mx2m)p.

This calculation can be very difficult if the number of features (Z space) is very large.

Gaussian (RBF) kernel [10]

We use the kernel function RBF (Radial Basis Function) given by:

k(x1, x2) = exp(−||x1 − x2||
2

2σ2
),

which σ represents the bandwidth went the dimensionality of Z space are infinite.

The two types of kernel (polynomial and Gaussian RBF) are the most popular function.

linear separable [7]

k(x1, x2) = xT1 x2.

Proposition 2.1.1 [10](Mercer’s condition) The matrix H in quadratic programming is

a SPSD, this condition (kernel validation) can confirm a Z space exists.

Solution 2.1.2 [7](The final hypothesis)

g(x) = sign(
∑
αi>0

αiyik(xi, x) + b). (2.15)

b = yj −
∑
αi>0

αiyik(xi, xj), for any αj > 0. (2.16)
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Chapter 2 : Support Vector Machines

2.2 Soft Margin

In the general, we don’t have the optimal hyperplane, that can be classified all the

data. Sometime we must leave some data on the wrong side of a decision boundary, this

misclassification represented by a non-negative slack variable ξ ∈ Rn given by [10]:

ξi = max(0, 1− yi(wTxi + b)), for all couple (xi, yi).

We introdute constraint ([13][7]):

Figure 2.4: Margin violation.

yi(w
Txi + b) ≥ 1− ξi, i = 1, ...n. (2.17)

And we try to maximize the margin and minimizing the sum of the errors [3], we obtaint the

COP: 

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi

subject.to

yi(w
Txi + b) ≥ 1− ξi, i = 1, . . . n.

ξi ≥ 0, i = 1, . . . n.

(2.18)

Where C > 0 is a penalty parameter represent the balance between the two terms of the

objective function, this problem has a meaning for some finite values.
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Lagrange formulation:

L(w, b, ξ, α, β) =
1

2
wTw + C

n∑
i=1

ξi −
n∑
i=1

αi[yi(w
Txi + b)− 1 + ξi]−

n∑
i=1

βiξi. (2.19)

The same steps:

∇wL = w −
n∑
i=1

αiyixi = 0. (2.20)

∂L

∂b
=

n∑
i=1

αiyi = 0. (2.21)

∂L

∂ξi
= C − αi − βi = 0. (2.22)

We get [14]: 

max
α≥0

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj

subject.to

n∑
i=1

αiyi = 0 , i = 1, ...n.

0 ≤ αi ≤ C , i = 1, . . . n.

(2.23)

The KKT comlementarity condition below:

αi[yi(w
Txi + b)− 1 + ξi] = 0, i = 1, ...n. (2.24)

Solution 2.2.1 We get the same solution in the linear separable case (hard margin) for

(w, b) and for the decision rule is given by:

1. xi is correctly classified if αi = 0, ξi = 0 or αi = C, ξi < 1.

2. xi is misclassified if αi = C and ξi > 1.

Types of support vectors [7]

1.xi call margin support vectors: if 0 < αi < C and ξi = 0.

2.xi call non-margin support vectors: if αi = C and ξi > 0.
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Chapter 2 : Support Vector Machines

Remark 2.2.1 We used the soft margin in slightly non separable type, in the seriously non

separable type we use the kernel.

In the case of multiple classifications, we look for the hyperplanes of each two classes.

2.3 Support Vector Regression

SVR is a part from SVM for classification, it used for approximate a function

(hyperplane) that has at most ε deviation from the actually obtained the labels for all the

data (y ' f(x)). This new parameter call the ε-insensitivity loss function measure the error

of the approximation [7]:

ξ =


0 , if |y − f(x)| ≤ ε,

|y − f(x)| − ε , otherwise.

(2.25)

Figure 2.5: The deviation ε in the linear regression hyperplane.

Suppose the training data set [5]: D = {(x1, y1), ...., (xn, yn), xi ∈ Rm, yi ∈ R}, for all point

outside the ε-tube (margin) we introdute the slack variables:

ξ+i = yi − f(xi)− ε, for the points above an ε− tube, (2.26)

ξ−i = f(xi)− yi − ε, for the points below an ε− tube. (2.27)
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The non linear regression hyperplane represented by:

f(x) = wTφ(x) + b , w ∈ Rm, b ∈ R.

And we use the combination constraintes (2.25) with (2.26) and (2.27), the COP has the soft

margin form [10]:



min
w,b,ξ

1

2
wTw + C

n∑
i=1

(ξ+i + ξ−i )

subject.to

yi − wTφ(xi)− b ≤ ε+ ξ+i , i = 1, . . . n

wTφ(xi) + b− yi ≤ ε+ ξ−i , i = 1, . . . n

ξ+, ξ− ≥ 0

where C represents the balance between the flatness of the hyperplane and the losses. We

use the same principles as the SVC to solve the problem:

lagrangian function [7]

L(w, b, ξ+, ξ−, α+, α−, β+, β−) =
1

2
wTw + C

n∑
i=1

(ξ+i + ξ−i )

−
n∑
i=1

α+
i (ε+ ξ+i + wTφ(xi) + b− yi)

−
n∑
i=1

α−i (ε+ ξ−i + yi − wTφ(xi)− b)

−
n∑
i=1

β+
i ξ

+
i −

n∑
i=1

β−i ξ
−
i .
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The same steps:

∇wL = w −
n∑
i=1

(α+
i − α−i )φ(xi) = 0.

∂L

∂b
=

n∑
i=1

(α+
i − α−i ) = 0.

∂L

∂ξ+i
= C − α+

i − β+
i = 0.

∂L

∂ξ−i
= C − α−i − β−i = 0.

We get:



max
α+,α−≥0

n∑
i=1

yi(α
+
i − α−i )− ε

n∑
i=1

(α+
i + α−i )− 1

2

n∑
i=1

n∑
j=1

(α+
i − α−i )(α+

j − α−j )k(xi, xj)

subject.to

n∑
i=1

α+
i =

n∑
i=1

α−i

0 ≤ α+
i , α

−
i ≤ C , i = 1, . . . n

The KKT comlementarity condition below:

α+
i (ε+ ξ+i + wTφ(xi) + b− yi) = 0, i = 1, ..., n.

α−i (ε+ ξ−i + yi − wTφ(xi)− b) = 0, i = 1, ..., n.

And we get for all SVs:

f(x) =
∑
i

(α+
i − α−i )k(xi, x) + b.

w =
∑
i

(α+
i − α−i )φ(xi).

b = yj −
∑
i

(α+
i − α−i )k(xj, xi)− ε, for 0 < α+

j < C.

In the linear regression hyperplane, φ(xi) = xi and k(xi, xj) = xTi xj.
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Support Vector Density Estimation

SVM is a non parametric approach, developed to solve the density estimation

problem too. The objective of SVM is to estimate the probability density function by sup-

port vector regression or in other words “estimate the cumulative distribution function by

the equation of the hyperplane and the density function can be easily obtained ”. In this

chapter, we see how to estimate the targets and the advantage of this estimation (converge

in probability) to control the deviation. For give the expression of density, we definied an

operator and some conditions to choise the kernel to make it a density of probability. To

complete this work, we use non parametric estimation on cross kernel in order to confirm

that is density of probability.

3.1 Basic idea to use SVM approach

Given the iid sample [4]:

D = {x1, . . . , xn/xi ∈ Rm}, (3.1)
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but the SVM is a supervised method, we must have the targets. We definite the EDF where

the vectors x and xi of dimension m [11]:

Fn(x) =
1

n

n∑
i=1

I]−∞;x](xi), (3.2)

I]−∞;x](xi) =
m∏
k=1

I]−∞;xk](x
k
i ). (3.3)

For all xi, we estimate yi ' Fn(xi), constructing the data :

D = {(x1, Fn(x1)), . . . , (xn, Fn(xn))}, (3.4)

we have from SVR, the definition of the ε-insitivity combinate with what we get, then [9]:

∣∣∣Fn(xi)− F̂ (xi)
∣∣∣ ≤ ε+ ξi, i = 1, ..., n,

from an ather side, we know Fn is unbiased and converge in probability to F (for n very

large):

|Fn(xi)− F (xi)| < σ, for all fixed xi, (3.5)

where σ2 is the variance.

From (3.5) we can control the free parameter ε in the SVR by the standard deviation:

εi = σ̂i =

√
1

n
Fn(xi)(1− Fn(xi)). (3.6)

Using the data:

D = {(x1, Fn(x1), ε1), . . . , (xn, Fn(xn), εn)}. (3.7)
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3.1.1 Linear operator equations

Definition 3.1.1 [15] We definied the linear operator A from a Hilbert space to anthor:

Af(x) = F (x), f(x) = wTψ(x).

Where f is a linear combination of functions and w is the coefficients of the hyperplane.

Then:

F (x) = Af(x) = wTφ(x), (3.8)

and we have from SVR, w =
∑
i

(α+
i − α−i )φ(xi) (φ(xi) are SVs).

Set off in (3.8):

F̂ (x) =
∑
i

(α+
i − α−i )φ(xi)

Tφ(x),

=
∑
i

(α+
i − α−i )k(xi, x), (3.9)

and

f̂(x) =
∑
i

(α+
i − α−i )φ(xi)ψ(x),

=
∑
i

(α+
i − α−i )κ(xi, x). (3.10)

Where κ(xi, x) call the cross kernel.

3.1.2 Kernel Validation

1. To guarantee the positivity of PDF (CDF monotonic function), we choose a monotonic

non-symmetrical kernel from L1 with positive coefficients (α−i = 0, ∀ i = 1, . . . , n),
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Chapter 3 : Support Vector Density Estimation

then:

F̂ (x) =
∑
i

α+
i k(xi, x), (3.11)

f̂(x) =
∑
i

α+
i κ(xi, x). (3.12)

2. If x ∈ [0; 1] we have F (0) = 1 and F (1) = 1, we choose the kernel satisfys these

conditions, then:

∑
i

α+
i k(0, xi) = 0, (3.13)∑

i

α+
i k(xi, 1) = 1. (3.14)

For more explain see [4].
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Conclusion

During the preparation of this modest work, we have tried in the first to present

the support vector machines (SVM) with mathematical formulation, then we explained how

to use it in different applications such as classification and regression problems. In the

second part of this dessertation, we focused on the ability of (SVM) to approximate the

probability density function. At the end of this work, we presented a technique for

estimating the cumulative distribution function which is based on the empirical distribution

function and the support vector machines (SVM).

Finally, we hope to have the ability to explore this vast field of artificial intelligence.
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Résumé:

Notre objective dans ce mémoire est d’évoquer le domaine de l’apprentissage statistique, définir   les 
machines à vecteurs de support ou séparateurs à vaste marge (SVM) comme un outil de base  dans la 
théorie d’éstimation et de montrer leur capacité à estimer une densité de probabilité. 
Les mots clés:
 Apprentissage statistique, Séparateurs à vaste marge(SVM), Noyau, estimation  d’une densité. 

Abstract:

Our aim in this dissertation is to evoke the area of statistical learning, to define the support vector  
machines (SVM) as a basic tool in the estimation theory, and to show their ability to estimate a  
probability density function. 
Key-words: 
Statistical learning, Support vector machines (SVM), kernel, density estimation. 

الملخص:

هدفنا في هذه المذكرة هو استحضار مجال التعلم الاحصائي لتعريف آلية المتجهات الداعمة كأداة أساسية في نظرية التقدير واظهار
قدرتها لتقدير الكثافة الاحتمالية.

الكلمات المفتاحية:
التعلم الاحصائي، آلية المتجهات6 الداعمة، النواة، تقدير الكثافة.
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