
Supporting Failing Database Queries in a Flexible
Context: A Data-Driven Approach

Lila Oudjoudi1 and Allel Hadjali2

1 ESI, BP 68M, 16270, Oued Smar, Algérie

l.oudjoudi@gmail.com

2 IRISA/ENSSAT, University of Rennes 1
Technopole Anticipa 2205 Lannion Cedex France

hadjali@enssat.fr

Abstract. We investigate the problem of handling of failing queries involving
fuzzy predicates. We propose an approach that leverages data distribution of the
target database. It consists in two steps: i) Query translation that aims at
translating the failing fuzzy query into a crisp query by means of a particular
semantic distance between sets; ii) Query relaxation which consists in
expanding the translated query criteria with similar values. To rank-order the
approximate query results, a method is proposed

Keywords: Flexible queries, empty answers, semantic distance, similarity
measures, relaxation.

1 Introduction

The practical need for endowing intelligent information systems with the ability to
exhibit cooperative behavior has been recognized since the early' 90s. The most well-
known problem approached in this field is the failing query problem: users' queries
return an empty set of answers. Several approaches have been proposed to deal with
this issue, see [9] for an overview. Most of them rely on the relaxation paradigm that
aims at expanding the scope of a query searching for answers that are in the
neighborhood of the original user's query.

On the other hand, relying on flexible (or fuzzy) queries (i.e., queries that could
contain fuzzy constraints) has the main advantage of diminishing the risk of empty
answers. Indeed, fuzzy queries express preferences and retrieve elements that are
more or less satisfactory rather than necessarily ideal. However, it still may happen
that the database does not have any element that satisfies, even partially, the fuzzy
criteria formulated by the user. Only few works have been done for dealing with this
problem in the fuzzy database querying [2][4][10][18]. They mainly aim at relaxing
the fuzzy requirements involved in the failing query. Query relaxation can be
achieved by applying an appropriate transformation to gradual predicates of a failing
query. Such a transformation aims at modifying a given predicate into an enlarged
one by widening its support. Recently, other kind of approaches which are based on

80

leveraging a past query workload (log of past user queries) have been proposed in
[3][13]. The principle consists in replacing the failing query by the most similar one
among the queries of the workload. All the approaches can be viewed as query-driven
methods, i.e., they primarily operate on the failing query.

In this paper, we propose an approach for dealing with failing flexible conjunctive
queries that leverages data distribution of the target database. It constitutes another
direction to address the problem in a flexible context; the idea is somewhat close to
the principle of similarity search. Instead of relaxing the failing initial query, we first
look for the values in the database that are maximally close to the fuzzy predicates
specified in that query and then we explore the neighborhoods of such values.
Informally speaking, the approach proceeds in two steps: i) Query translation that
aims at translating the failing fuzzy query into a (crisp) point query by means of a
particular semantic distance measure between sets; ii) Query relaxation which
consists in expanding the translated query criteria with similar values. To rank-order
the query results, a ranking method is proposed.

The paper is structured as follows. Some basic notions are introduced in section 2.
In section 3, we review some related work. Section 4 provides an overview of the
approach proposed. Section 5 discusses the relaxation of both categorical and
numerical query conditions. Section 6 describes a query results ranking method by
learning attribute importance weights. In section 6, we conclude and outline some
future works.

2 Basic Notions

2.1 Flexible Queries

Flexible queries [6] are requests in which user's preferences can be expressed. Here,
the fuzzy sets framework is used as a tool for supporting the expression of
preferences. The user does not specify crisp conditions (Boolean predicates), but
fuzzy ones (which correspond to fuzzy predicates such as Young, Tall or Cheap)
whose satisfaction may be regarded as a matter of degree. As a consequence, the
result of a query is no longer a flat set of elements but is a set of discriminated
elements according to their global satisfaction of the fuzzy constraints appearing in
the query.

Fig. 1. Fuzzy predicates Young = (0, 25, 0, 15) and Well-paid = (5, +∝, 2, 0).

1

5 Salary (k€)

Satisfaction
degree

3 4.2

0.6

1

 40 25 0 Age

Satisfaction
degree

31

0.6

81

An elementary fuzzy predicate P can be modeled as a function µP from a domain U to
the unit interval. The degree µP (u) represents the extent to which element u satisfies
the vague predicate P (or equivalently the extent to which u belongs to the fuzzy set
of objects which match the fuzzy concept P). Here, we use trapezoidal membership
functions (t.m.f.) that can be encoded by a quadruplet (A, B, a, b) where [A, B] (resp.
[A-a, B+b]) represents the core (resp. the support) of P. A typical example of a fuzzy
query is: "retrieve the employees which are Young and Well-paid", see Figure 1.

2.2 Semantic Distance

We introduce here a particular semantic distance between fuzzy (or crisp) sets. It
relies on the Hausdorff distance measure whose principle is reviewed hereafter.

2.2.1 Crisp Sets: Consider two subsets A and B of a space U (equipped with a
metric). The most popular scalar extension of distance between A and B is the
Hausdorff distance defined as [7][11]:

dH(A, B) = max {H(A, B), H(B, A)}, (1)

where H(A, B) stands for the directed Hausdorff distance from A to B. We have H(A,
B) = Supu∈A d(u, B) and d(u, B) = Infv∈B d(u, v). The expression d(u, v) stands for a
standard distance (such as Euclidean distance). Formula (1) can be written in the
following condensed form:

dH(A, B) = max {supu∈A infv∈B d(u, v), supv∈B infu∈A d(u, v)}. (2)

The idea that governs this distance is the following: for each element in A look for the
closest element in B, then check for the element in A for which the distance to the
closest element in B is maximal. The same is done exchanging B and A and the
longest distance of the two component is kept. Intuitively, if the Hausdorff distance is
δ, then every point of A must be within a distance δ of some point of B and vice versa.

Example 1. Let A = [a1, a2] and B = [b1, b2] be two regular intervals and let d(u, v) =
|u − v|. Then, it easy to check that dH(A, B) = max(|a1 − b1|, |a2 − b2|). ♦

2.2.2 Fuzzy Sets: The Hausdorff distance between fuzzy sets can be either fuzzy or
scalar. Hereafter, we only focus on the scalar version. For the fuzzy evaluation, more
details are available in [11]. Here, we use the definition proposed in [7]. This
definition is more general and is valid in the case of two fuzzy sets with unequal
maximum memberships. In the following, we consider only fuzzy sets with the same
supremum.

Let F and G be two discrete fuzzy sets. Let T = {t1, t2, …, tm} the set of all the
distinct membership values of F and G. The Hausdorff distance between F and G is
defined by the following expression:

()
∑

∑

=

==
m

i i

t
m

i tHi
H

t

)G,F(dt
G,Fd ii

1

12 , (3)

82

where Fti (resp. Gti) stands for the ti-level cut1 of F (resp. G). ()G,FdH
2 can be seen as

a membership-weighted average of the crisp Hausdorff distances between the level
sets of the two fuzzy sets.

Example 2. Let U = {1, 2, 3, 4, 5, 6, 7} be a universe of discourse. Let also F and G
be two discrete fuzzy sets on U defined as follows: F = {0.7/1, 0.2/2, 0.6/4, 0.5/5, 1/6}
and G = {0.2/1, 0.6/4, 0.8/5, 1/7}. One can see that T = {0.2, 0.5, 0.6, 0.7, 0.8, 1}.

Table 1. The Hausdorff distance between the α-cuts of F and G

By formula (3), and using Table 1, we get

()G,FdH
2 = (0.2 ⋅ 1 + 0.5 ⋅ 3 + 0.6 ⋅ 3 + 0.7 ⋅ 4 + 0.8 ⋅ 1 + 1 ⋅ 1) / 3.8 ≅ 2.13 ♦

In case of continuous fuzzy sets, formula (3) is modified in the following form [7]:

()G,FdH
2 =

() ()dtG,Ftd
dtt

dtG,Ftd
ttH

ttH
∫

∫
∫ =

1

01

0

1

0 2 (4)

Example 3. Let now U represent the numeric universe of discourse of the variable
"age" of a person. Let also F = "about thirty" and G = "between_26_and_28" two
fuzzy sets on U defined by the following two t.m.f.: F = (30, 30, 3, 3) and G = (26,
28, 1, 1). One can observe that Fα = [3α + 27, 33 − 3α] and Gα = [α + 25, 29 − α] .
Then, Applying formula (4), we get

()G,FdH
2 = ()dt)t()t(,)t()t(maxt∫ −−−+−+1

0 33329273252 = 7/2 ♦

It has been pointed out in [7] that expression (3) (resp. (4)) is a metric and reduces to
the classical Hausdorff distance when sets are crisp.

3 Related Work

Several Works have been proposed to deal with the empty answers problem. Such
works can be found in both domains of databases and information retrieval, including
web search. Due to space limitation, we only provide here a review on some
approaches proposed in the database fuzzy querying context. See [9][4][16][14] for an
overview of the approaches suggested in the crisp queries context.

In the fuzzy querying setting, approaches can be classified into two main
categories and are mainly query-driven. The first one is based on the relaxation

1 An α-levet cut of the fuzzy set F is defined as {u ∈ U, µF(u) ≥ α}.

αi
Fα

i
 Gα

i
 H(Fα

i
 , Gα

i
) H(Gα

i
 , Fα

i
) dH(Fα

i
, Gα

i
)

0.2 {1, 2, 4, 5, 6} {1, 4, 5, 7} 1 1 1
0.5 {1, 4, 5, 6} {4, 5, 7} 3 1 3
0.6 {1, 4, 6} {4, 5, 7} 3 1 3
0.7 {1, 6} {5, 7} 4 1 4
0.8 {6} {5, 7} 1 1 1
1 {6} {7} 1 1 1

83

paradigm. Query relaxation aims at expanding the scope of a query searching and
consists in modifying some query conditions by enlarging them or just eliminating
some of them. Andreasen and Pivert [2] have proposed an approach where the basic
modification used relies on a particular expansive linguistic modifier. This approach is
merely a technical operation, lacking of any semantics. Moreover, it provides no
intrinsic semantic limits for controlling the relaxation process and fails to deal with
classical crisp queries. In [5][4] a relaxation method is proposed that makes use of a
parameterized proximity relation. Given a fuzzy predicate P, the idea is to compute
the set of predicates that are close to P in the sense of the proximity relation defined
on the domain of P. Even, if this method is endowed with a clear semantics, it can
lead to a combinatory explosion induced by the relaxation of the predicates from a
conjunctive query. To know whether these relaxed queries provide a non-empty
answer, one has to evaluate them. In [18], the authors consider flexible queries
addressed to data summaries and propose a method based on a specified distance to
repair failing queries. If no summary fits a query Q, alternative queries are generated
by modifying one or several fuzzy labels involved in Q. This requires a pre-
established order over the considered attributes domains since a label is replaced by
the closest one. The resulting queries are ordered according to their closeness to the
original one (measured by the specified distance). See also the work done in [10].

The second category is based on leveraging a past query workload (i.e., a
collection of queries that have been executed on the database system in the past and
have produced non-empty answers). The principle consists in replacing the failing
query by the most similar (semantically speaking) one among the queries of the
workload. To compute the proximity between queries, a measure of substitution is
suggested in [3] which assumes the availability of a resemblance relation over every
attribute domain involved in the target database. An alternative proximity query
measure is studied in [13]. It relies on a particular distance between sets, called the
Hausdorff distance. Only attributes with domains endowed with a metric have been
considered in this work.

Our work is inspired from [1] and [17] for computing the importance weights for
each specified attribute and for deriving the similarity coefficients between two
(categorical or numerical) values. In [1], an automatic ranking method based on
Information Retrieval (IR) techniques for the empty answers problem is proposed.
The importance scores of tuples are extracted using a workload and a data analysis.
In [17], a system called AIMQ is proposed to address the problem of answering
imprecise queries over Web databases. It learns attribute importance and values
similarity measures from the database. It can only determine the attribute importance
sequence (without the specific weights). This result is invariant for the different user
queries. See also [12] for the incremental version of AIMQ, called IQPI. Let us
mention the work done in [15] that uses, in a similar way as above, data and query
workload statistics for relaxing crisp queries in order to provide approximate answers
to the user.

Our approach differs from that in [2][3][4][5][13] in leveraging only data
distribution for relaxing failing queries, and from [1][17][15] in focusing on fuzzy
queries.

84

4 Overview of the Approach

Let us first state the problem of interest. Assume that D is a (Web) regular database
with categorical and numerical attributes A = {A1, …, Am} and D(Ai) represents the
domain of values of attribute Ai in the database D. Let also Q = P1 ∧∧∧∧ … ∧∧∧∧ Pk (k < m)
be a conjunctive flexible query where the symbol '∧∧∧∧' stands for the connector 'and'
and is interpreted by the 'min' operator. Let ΣQ be the set of answers to Q over D. The
set ΣQ contains the items of the database that satisfy somewhat the fuzzy requirements
involved in Q, i.e., each item has a strict positive satisfaction degree.

Definition. We say that Q is a failing query if ΣQ = ∅.

This means that no data in the database somewhat satisfies all of the fuzzy conditions
involved in Q. In the literature, this problem is known as the Empty Answers Problem.

Let us assume that Q is a failing user query. To deal with this problem, one way is
to provide approximate answers to the user. To this end, we propose a data-driven
approach that leverages the data distribution of the target database. It consists in a
two-step procedure (see Figure 2):

Fig.2. Architecture of the approach

Step 1: Query Translation. It aims at translating Q into a (crisp) point query of the
form:

Qt = v1 ∧∧∧∧ … ∧∧∧∧ vk,
where vi ∈ D(Ai). For each Pi, i = 1, …, k, pertaining to attribute Ai, we look for the
point vi ∈ D(Ai) that is maximally close, semantically speaking, to the fuzzy set
modelling Pi. To do so, we assess the semantic distance between the set Ei and Pi
where the t.m.f. of Ei is given by (vi, vi, 0, 0) (resp. {1/ vi}) if Pi is a numerical (resp.
categorical) attribute. This can be achieved by computing the Hausdorff distance
between Ei and Pi (discussed in Section 2.2).

Example 4. To illustrate this step, consider a relation EMP(Name, Age, Salary)
describing employees of a company, whose extension is given in Table 2. Consider
also the query Q = "find employees who are young and earn around 38 k$". Q can

Failing
Flexible
Query Q

Database

Query
Translator

Crisp Query

Qt

Semantic
distance

Similarity
Estimator

Relaxed Query

DBMS

Processing

and
 Ranking

R
anked

A
pproxim

ate
A

nsw
ers to Q

85

simply write Q = (Age = Young) ∧ (Salary = Around_38) where Young and
Around_38 are fuzzy sets represented respectively by the t.m.f. (0, 25, 0, 10) and (38,
38, 2, 2). One can observe that Q returns an empty answer when evaluating over
relation EMP of Table 2.

Now according to step 1 and using the Hausdorff distance between each Age.value
(resp. Salary.value) and Young (resp. Around_38), Q is rewritten in Qt = (Age = 38) ∧
(Salary = 35). ♦

Table 2. Extension of Relation EMP

Name Age Salary
(k$) µYoung(u) µAround_38(v)

Dupont 48 45 0 0

Martin 46 42 0 0

Durant 42 35 0 0

Dubois 38 28 0 0

Lorant 40 30 0 0

Now according to step 1 and using the Hausdorff distance between each Age.value
(resp. Salary.value) and Young (resp. Around_38), Q is rewritten in Qt = (Age = 38) ∧
(Salary = 35). ♦

Remark. If there are several values {vi
1, …, vi

h} from D(Ai) that are maximally close to
Pi, we translate the fuzzy query condition (Ai is Pi) into (Ai ∈ {vi

1, …, vi
h}).

Step 2: Query Relaxation. We rewrite Qt under the form

Qt = C1∧∧∧∧ … ∧∧∧∧ Ck

where Ci = (Ai = vi) for i = 1,…, k. Then, for each condition Ci in Qt, we extract
values of its corresponding attribute Ai having similarity factor above some user-
defined sub-threshold λi. Then, we add those values into the range of Ci. Thus, we get

a relaxed version of Ci, denoted by iC
~

. A relaxed version, denoted by tQ
~

, of the

query Qt is then built by joining all the relaxed conditions iC
~

.

Full details about the above two steps will be provided in the next sections.

5 Query Relaxation

The idea of query relaxation advocated consists in expanding the translated query
criteria with similar values. So, we need to measure the similarity between the
different pairs of values.

5.1 Relaxation of Categorical Query Conditions

We present an approach for measuring the similarity index between two categorical
attribute values. This approach is borrowed from [17]. The similarity between two

86

values binding a categorical attribute is measured as the percentage of common
Attribute-Value pairs (AV-pairs) that are associated to them. Consider a used car
selling Web database CarDB(Make, Model, Price, Color, Year). Each tuple in CarDB
represents a used car for a sale. For instance, Make = Ford is AV-pair over the
database CarDB.

- Each AV-pair is considered as a selection query and submitted to (a sample
of) the database, separately.

- The result of running each query is a set of tuples which is called a
supertuple (ST).

- The supertuple contains a bag of keywords for each attribute in the relation
not bound by the AV-pair.

For example, Table 3 shows the supertuples of the AV-pair "Make = Toyota" and
"Make = Ford" over the database CarDB.

Table 3. The supertuples obtained from running

(a) the query "Make = Toyota".

Model Camry: 3, Corolla: 4

Price 10k-15k: 4 , 15k-20k: 3

Color Blue: 1 , Black: 3 , White : 3

Year 2005: 2 , 2006: 3 , 2007 : 2

(b) the query "Make = Ford"

Model Focus: 2, F150: 3

Price 10k-15k: 3 , 15k-20k: 2

Color Blue: 2 , Red: 2 , White : 1

Year 2005: 1 , 2006: 4

The values within the supertuple of Table 3-(a) indicate that there are totally 7 records
in the database having "Make = Toyota". ♦

The similarity between two attribute values (AV-pairs) is measured as the
similarity shown by their supertuples. This latter is measured by using the Jaccard
coefficient. Let ST1 and ST2 be two supertuples with m attributes and Ai is ith attribute,
we have

∑ =
=

m

i ii)A.ST,A.ST(J)ST,ST(VSim
1 2121 ,

where J(.,.) stands for the Jaccard Coefficient and is computed as J(A, B) =
A∩B/A∪B. Consider for instance the attribute "Make", if we want to measure
the similarity between the value "Toyota" and the value "Ford". First, we compute the
supertuple ST1 (resp. ST2) resulting from the query "Make = Toyota" (resp. "Make =
Ford)" (See Table 3). Then, we compute VSim(ST1, ST2) = (2⋅0)/(4⋅7) + (2⋅5)/(4⋅7) +
(2⋅1)/(3⋅10) + (1⋅4)/(4⋅8) ≈ 0.54 2. So, VSim(Toyota, Ford) = VSim(ST1, ST2) = 0.54.

2 Here, we use Jaccard Coefficient with bag semantics to determine the similarity between two

supertuples, see [17].

87

Now if needed, one can normalize the above similarity measure by using for instance

the arithmetic mean, i.e., ∑ =
=

m

1i i2i121)A.ST,A.ST(J
m

1
)ST,ST(VSim .

5.2 Relaxation of Numerical Attribute Values

To estimate the similarity coefficient between a pair of different numerical values, we
use an approach which is inspired from [8][1]. Let {a1,.., an} be the values of
numerical attribute A occurring in the database. Then the similarity coefficient
VSim(a, v) between the two values a and v can be defined by the following equation

VSim(v, a) = 1 /(1 + ((a – v)/h)2)

where h is the bandwidth parameter. A popular estimation for the bandwidth is h =
1.06σn-1/5 where σ is the standard deviation of {a1, ….., an}, see [1] for more details.
Let λ be a given similarity threshold, and v the numerical value specified by the
query. Then, one can observe that the values that have similarity degree (above λ)
with v are restricted by the following interval:

() []λλλλλ /)(hv,/)(hv,vI −+−−= 11

Input: Qt = {C1, …, Ck} with Ci = (Ai = vi) for i = 1,k

Sub-thresholds {λ1, …, λk}

1. tQ
~

= ∅; i := 1 ;

2. while i ≤ k do
3. begin
5. iC

~
:= Ci;

 6. if Ai is numerical attribute then

7. replace the range of iC
~

with I(vi, λi);

8. if Ai is categorical attribute then
9. For a in D(Ai) do
10. If VSim(vi, a) = VSim(ST(vi), ST(a)) > λi then
11. add a into the range of
12. endif
13. endif
14. tQ

~
:= tQ

~
 ∪ iC

~

15. i := i + 1;
16. end

Output: the query relaxation kt C
~

C
~

Q
~ ∧∧= K1

Algorithm 1. Query relaxation (where ST(v) is the supertuple associated with the value v).

88

5.3 Query Rewriting

Let us assume that the sub-threshold λi (i = 1, k) for each specified attribute in Q is
given by the user. The principle of the query relaxation algorithm (see Algorithm 1) is

to replace each condition Ci = (Ai = vi) involved in Qt by its relaxed variant, iC
~

, as

explained in Sections 5.1 and 5.2.

Remark. If the relaxed query, tQ
~

, resulting from Algorithm 1 still returns an empty

answer set, one can re-execute Algorithm 1 by assigning other appropriate values to
the sub-threshold λi.

Note that for large-scale databases, the evaluation of the relaxed query may result in
too many relevant answer items. So, it is extremely desirable to rank such query
results according to their relevance. This is what we will discuss in the next section.

6 Results Ranking Strategy

One factor that can affect query results ranking is the attribute importance weights
(since attribute importance of the same attribute is usually different for users). It
would then be interesting to automatically learn such importance weights. Approaches
for estimating attribute importance can be divided into two classes [17]: (i) data
driven where the attribute importance is identified using the data distribution of the
database; (ii) query driven where the importance of an attribute is determined by the
frequency with which it appears in user queries. So, this last technique requires a
database workload (log of past user queries) which constrains its use for new systems.
In the following, we use the first technique to learn the importance of each attribute
by leveraging the distribution of its value specified in the query in the database.

6.1 Attribute Weight Assignment

The idea is to associate a weight to each specified attribute according to the
distribution of its value in the database. For instance, for a query with condition "Year
= 2008 and Price < 10000", the specified attribute Year may have less importance for
user (there may be many used car have the date of shipment in 2008) than the
attribute Price (relatively fewer used cars priced below $10000).

To this end, we use the well-known Inverse Document Frequency (IDF) factor
that has been used extensively in IR. IDF suggests that commonly occurring words
convey less information about user's needs than rarely occurring words, and thus
should be weighted less. Recall that IDF(w) of a word w is a measure indicating how
many documents in which w appears. We can then adapt this technique to our
problem by considering each database tuple (and query) as a small document [1].

- Categorical Attribute

For every v in the domain of attribute Ai, we define IDF i(v) such that

IDF i(v) = log(n/Fi(v)),

89

where n is the number of tuples in the database and Fi(v) is the frequency of tuples t in
the database where t.Ai = v. In the following, the importance of specified categorical
attribute value is treated as the importance of its corresponding attribute.

- Numerical Attribute

For numerical data, the definition of traditional IDF as above is inappropriate. The
frequency (and hence the IDF) of a numerical value should depend on nearby values.
To measure the closeness of numerical attribute values, we make use of a robust
definition proposed in [1]. Let Vi = {v i

1, ….., vi
n} be the set of values of attribute Ai

that occur in the database. For any value v, IDF i(v) is defined in the following way
(where h is the bandwidth parameter mentioned in section 5.2):

=

∑
=

 −
−n

j

h

vv
i j

i

e

n
log)v(IDF

1

2

1

The intuition of the above formula is: the denominator represents a numeric extension
of the concept of frequency of v (the sum of "contributions" to v from every the other
point vi

j in the database). The further v is from vi
j, the smaller its contribution. The

importance of specified numerical attribute value is treated as the importance of its
corresponding attribute

Denoting by Wi(Ai) the weight associated with attribute Ai specified in the user
query and by applying a normalization, we finally obtain:

∑
=

=
k

j
jj

ii
ii

)v(IDF

)v(IDF
)A(W

1

6.2 Ranking

To rank-order the answer tuples t returned to the relaxed query, one can use the
following ranking score:

() () (),A.t,A.QSimAW
k

td iit

k

i
iiQt

×= ∑
=1

1

where Wi(Ai) is the importance weight of attribute Ai specified in the original query Q,
and Sim(v, a) stands for the similarity measures between categorical or numerical
attribute values as explained in section 5.
The idea is that the larger the similarity score dQ(t) is, the higher the ranking score is
for the result tuple t. Thus, we can provide the end-user with the top-N answers
according to the above ranking.

90

7 Discussion and Conclusion

In this paper, an alternate approach for dealing with failing queries in a flexible
context is proposed. Starting from the user query, we translate the original query into
a crisp query and then we rewrite this resulting query by relaxing the query criteria
ranges. The two key concepts of the approach are the distance semantic introduced
and the similarity measures discussed (between two categorical or numerical attribute
values). Ranking the relevant answers is also investigated by learning the importance
of each attribute specified in the query. Since the approach mainly operates on the
actual data of the queried database, it could constitute a promising alternative to
approximately answer a failing query.
 As can be seen, the approach requires some pre-computations and some additional
access to the entire database before getting final approximate answers to the failing
query. Pre-computations mainly consists in: i) calculating the semantic distance
between attribute values in the database and the fuzzy predicate present in the query
for every attribute specified in the query; ii) measuring the similarity between each
value of attribute involved in the translated query and values binding this attribute in
the database. Let us take a look at the second type of calculus in case of categorical
attribute. Instead of performing this calculus for each failing query, one can measure
the similarity between every pair of values binding this attribute once and for all
(provided that database will not change), and the similarity results will be stored in a
Table. To mitigate also the problem of scanning the entire database, one can select a
sample dataset (sufficiently representative) for estimating the similarity measures.

We acknowledge that experiments on real databases are needed to demonstrate the
efficiency and effectiveness of the approach. To this end, one can observe that at the

end of the query answering process, it is a precise (point or range) query (tQ
~

) that is

evaluated over the database. So, one can implement the approach over (traditional)
existing database systems. To such existing systems, two modules have to be added
(see Figure 2) (i) a query translator that converts the flexible query into a crisp query;
(ii) a similarity estimator that computes the similarity measures between attribute
values. Experiments to perform allow also for providing an idea about the extra cost
resulting from the use of the approach. Besides, only attributes with domains
endowed with a metric can be addressed by the approach. It would be interesting to
extend it to attributes with non metricized domains (as color attribute).

References

1. S. Agrawal, S. Chaudhuri, G. Das, V. Hristidis, A. Gionis, Automated ranking of database
query results. CIDR 2003.

2. T. Andreasen, O. Pivert, On the weakening of fuzzy relational queries, in 8th Int. Symp. On
Meth. for Intell. Syst., Charlotte, USA, 1994, pp. 144-151.

3. P. Bosc, C. Brando, A. Hadjali, H. Jaudoin, O. Pivert, "Semantic proximity between queries
and the empty answer problem", In IFSA World Congress, Lisbon, Portugal, 2009.

4. P. Bosc, A. Hadjali, O. Pivert, Incremental Controlled Relaxation of Failing Flexible
Queries, Journal of Intelligent Information Systems, Vol. 3(3), 2009, pp. 261-283.

91

5. P. Bosc, A. Hadjali, O. Pivert, Empty versus Overabundant Answers to Flexible Queries,
Fuzzy sets and Systems Journal, Vol. 159(16), 2008, pp. 1450-1467.

6. P. Bosc and O. Pivert.: SQLf : a relational database language for fuzzy querying. IEEE
Transactions on Fuzzy Systems, vol. 3(1),pp. 1–17, 1995.

7. B.B. Chaudhuri and A. Rosenfeld, "A modified Hausdorff distance between fuzzy sets",
Information Sciences, Vol. 118, pp. 159-171, 1999.

8. V. Cross and T. Sudkamp, "Similarity and Compatibility in Fuzzy Set Theory: Assessment
and Applications", Studies in Fuzziness and Soft Computing, No 93, Physica-Verlag, 2002.

9. F. Corella, K.P. Lewison, A brief Overview of Cooperative Answering. Technical Report,
http://www.pomcor.com/whitepapers/cooperative_responses.pdf, August 2009.

10. M. De Calmès, D. Dubois, E. Hullermeier, H. Prade, and F. Sedes, F, Flexibility and fuzzy
case-based evaluation in querying: An illustration in an experimental setting. Int. Journal of
Uncertainty, Fuzziness and Knowledge-based Systems, 11(1), 43-66, 2003.

11. D. Dubois and H. Prade, "On distances between fuzzy points and their use for plausible
reasoning", In Proc. Int. Conf. on Systems, Man and Cybernetics, 1983, pp. 300-303.

12. S.M. Fakhr Ahmad, M.H. Sadreddini, M. Zolghadri Jahromi, IQPI: An incremental system
for answering imprecise queries using approximate dependencies and concept similarities.
Journal of Computer Sciences, 34(2), 2007.

13. A. Hadjali, Providing Approximate Answers to Flexible Failing Queries. Technical Report,
September 2009.

14. G. Luo, Efficient detection of empty-result queries. VLDB '06, pp. 1015-1025, 2006.
15. X. Meng, ZM. Ma, L. Yan, Providing flexible queries over Web databases. KES'08, pp.

601-606, 2008.
16. C. Mishra, N. Koudas, Interactive query refinement. EDBT'09, pp. 862-873, 2009.
17. U. Nambiar, S. Kambhampati, Answering Imprecise Queries over Autonomous Web

Databases. ICDE'06, pp. 45-54, 2006.
18. W.A. Voglozin, G. Rashia, L. Ughetto and N. Mouaddib, Querying the SaintEtiq

summaries: Dealing with null answers. Proc. IEEE Inter. Conf. on Fuzzy Systems, pp. 585-
590, USA, 2005.

92

	Evaluation de Requêtes Flexibles dans un Contexte Non-Centralisé : Une Approche Basée sur les Résumés Distribués, Abdelkader Alem, Allel Hadjali
	Organisation
	Comité de Pilotage
	Comité de Programme
	Session 1A - Théorie des graphesheightwidthwidthheight
	Le nombre de domination par contraction, Tablennehas Kamel
	Bounds on the domination number in oriented graphs, Lyes Ouldrabah, Mostafa Blidia
	Note on b-colorings in Harary graphs, Zoham ZEMIR, Noureddine Ikhlef-Eschouf, Mostafa Blidia
	Double domination edge removal critical graphs, Mostafa Blidia, Mustapha Chellali, Soufiane Khelifi, Frédéric Maffray
	Session 1B - Requêtes non standardsheightwidthwidthheight
	OptAssist : outil d'assistance pour l'optimisation des entrepôts de données relationnels, Kamel Boukhalfa, Ladjel Bellatreche, Zaia Alimazighi
	Evaluation de Requêtes Flexibles dans un Contexte Non-Centralisé : Une Approche Basée sur les Résumés Distribués, Abdelkader Alem, Allel Hadjali
	Supporting Failing Database Queries in a Flexible Context: A Data-Driven Approach, Lila Oudjoudi, Allel Hadjali
	Traitement des requêtes CO (Content Only) sur un corpus de documents XML, SAMIA FELLAG, MOHAND BOUGHANEM
	Session 2A - Optimisation Iheightwidthwidthheight
	Analyse de sensibilité d'un problème d'optimisation paramètré, NACHI Khadra
	Generating efficient solutions with reservation levels in Multiobjective Stochastic Integer linear Problems, Fatima BELLAHCENE
	Résolution d'un problème de programmation quadratique avec une M-matrice, HASSAINI Katia, BIBI Mohand Ouamer
	Algorithme itératif d'optimisation globale des fonctions höldériennes utilisant les courbes -denses, Rahal Mohamed, Ziadi Abdelkader
	Session 2 B - Extraction des connaissances et classificationheightwidthwidthheight
	Vers une modélisation booléenne des règles d'association, Abdelhak Mansoul, Baghdad Atmani
	Classification des images des dattes par SVM : contribution à l'amélioration du processus de tri, Djeffal Abelhamid, Regueb Salah, Babahenini Mohamed Chaouki, Taleb Ahmed Abdemalik
	Analyse de l'impact du changement : approche et étude de cas, Abdi Mustapha Kamel, Lounis Hakim
	Session 4 A - Optimisation IIheightwidthwidthheight
	FH2(P2, P2) hybrid flow shop scheduling with recirculation of jobs, Nadjat Meziani, Mourad Boudhar
	Ordonnancement sur machines identiques en présence d'ouvriers spécialisés., wafaa labbi, mourad boudhar
	Scheduling problem subject to compatibility constraints, Mohamed Bendraouche, Mourad Boudhar
	Séparation et Evaluation pour le problème d'ordonnancement avec blocage., Abdelhakim Aitzai, Abdelkader Bentaher, Hamza Bennoui, Mourad Boudhar, Yazid Mati
	Session 4 B - Réseaux et applications répartiesheightwidthwidthheight
	Impact de la prise en compte des Contraintes Transactionnelles lors de l'Orchestration des Services Web, KHEBIZI ALI, SERIDI HASSINA
	Tolérance aux pannes dans les grilles de calcul, MEROUFEL Bakhta, GHALEM Belalem, HADI Nadia
	Un protocole de routage ER-AODV à basse consommation d'énergie pour les réseaux mobiles ad hoc, said khelifa, zoulikha mekkakia maaza
	Vers la spécification des exigences de sécurité des systèmes d'information, CHEHIDA Salim, RAHMOUNI Mustapha kamel
	Session 4 C - Optimisation IIIheightwidthwidthheight
	Vers un Nouveau Protocole Pour Contrer l'Inversion de Priorité, Amel Doukhani, Nacira Ghoualmi
	Problème d'Assemblage Orthogonal Rectangulaire, Approche Algorithmique, Isma Dahmani, Rachid Ouafi
	Commande optimale de processus thermiques de grande dimension, Pierre Spiteri
	Réseaux de Neurones Récurrents Appliqués à l'Automatisation du Marché à Terme : cas Producteur-Consommateur, Salima KENDI, Fodil LAIB, Mohammed Said RADJEF
	Session 5 A - Agents, ontologies et applicationsheightwidthwidthheight
	Un Modèle SMA pour le Diagnostic Collectif, Khaled Allem, ramdane maamri, Zaidi sahnoun
	Optimisation d'Alignement d'une Ontologie Multi-Points de Vue et une Ontologie Classique, Lynda DJAKHDJAKHA, Mounir HEMAM
	Un Algorithme de Partitionnement d'Ontologies Orienté Alignement, Soumaya Kasri, Fouzia Benchikha
	Une approche multicritère pour lever l'ambiguïté morphologique dans le texte arabe, CHERAGUI Mohamed Amine, HOCEINI Youssef, ABBAS Moncef
	Session 5 B - Graphes et optimisationheightwidthwidthheight
	Plongement et placement de certaines classes d'arbres dans l'hypercube, KABYL Kamal, BERRACHEDI Abdelhafid
	Flow shop problem with transportation considerations, Nacira CHIKHI, Mourad BOUDHAR
	Extremal trees for new lower bounds on the k-independence number, Nacéra Meddah
	Benders Decomposition Approach to Set Covering Problems, salim haddadi, Nacira Hamidane
	Session 5 C - Programmation par contraintes et ses applicationsheightwidthwidthheight
	Control with constraints of a class of hybrid system based on adaptive method of linear programming., Aldjia Nait Abdesselam, Mohamed Aidene, Said Djennoune
	Local symmetry breaking in the satisfiability problem, BelaÏd BENHAMOU, Tarek NABHANI, Richard OSTROWSKI, Mohamed Réda SAÏDI
	Solving linear bilevel programming by DC algorithm, Aicha ANZI, Mohammed Said RADJEF
	QCSP+ non bloquants : un cas spécial de problèmes quantifiés, Arnaud Lallouet, Jérémie Vautard
	Session 6 A - Traitement d'imagesheightwidthwidthheight
	Recalage hybride des images médicales basé sur l'information mutuelle et l'ICP accéléré, Leila Benaissa Kaddar, Nacéra Benamrane
	UNE APPROCHE BASÉE AGENT POUR LA DÉTECTION DE RÉGIONS, KAZAR Okba, GUIA Sana Sahar
	Segmentation d'image de biopuces par Champ de Markov tolérant les déformations locales de grille., Christophe Gouinaud
	Pseudo-CT basée sur l'IRM pour la correction d'atténuation, Hassen Chaibi, Rachid Nourine
	Session 6 B - Optimisation IVheightwidthwidthheight
	Mapping Real Time Applications on NoC Architecture with Hybrid Multi-objective PSO Algorithm, BENYAMINA Abou El Hassan, BELDJILALI Bouziane, DELLAL Karima, ELTAR Dalila
	Multiobjective programming under generalized V-type I invexity, Hachem Slimani, Mohammed Said Radjef
	Une Approche pour l'accélération de la génération de colonnes appliquées au problème de rotations d'équipages, Abdelkader LAMAMRI, Hacène AIT HADDADENE, Anass NAGIH
	Mathematical Integer Programming for a One Machine Scheduling Problem, Samia Ourari, Cyril Briand, Brahim Bouzouia

