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Abstract. We investigate the problem of handling of failing queries involving 
fuzzy predicates. We propose an approach that leverages data distribution of the 
target database. It consists in two steps: i) Query translation that aims at 
translating the failing fuzzy query into a crisp query by means of a particular 
semantic distance between sets; ii) Query relaxation which consists in 
expanding the translated query criteria with similar values. To rank-order the 
approximate query results, a method is proposed    
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1   Introduction 

The practical need for endowing intelligent information systems with the ability to 
exhibit cooperative behavior has been recognized since the early' 90s. The most well-
known problem approached in this field is the failing query problem: users' queries 
return an empty set of answers. Several approaches have been proposed to deal with 
this issue, see [9] for an overview. Most of them rely on the relaxation paradigm that 
aims at expanding the scope of a query searching for answers that are in the 
neighborhood of the original user's query.  

On the other hand, relying on flexible (or fuzzy) queries (i.e., queries that could 
contain fuzzy constraints) has the main advantage of diminishing the risk of empty 
answers. Indeed, fuzzy queries express preferences and retrieve elements that are 
more or less satisfactory rather than necessarily ideal. However, it still may happen 
that the database does not have any element that satisfies, even partially, the fuzzy 
criteria formulated by the user. Only few works have been done for dealing with this 
problem in the fuzzy database querying [2][4][10][18]. They mainly aim at relaxing 
the fuzzy requirements involved in the failing query. Query relaxation can be 
achieved by applying an appropriate transformation to gradual predicates of a failing 
query. Such a transformation aims at modifying a given predicate into an enlarged 
one by widening its support.  Recently, other kind of approaches which are based on 
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leveraging a past query workload (log of past user queries) have been proposed in 
[3][13]. The principle consists in replacing the failing query by the most similar one 
among the queries of the workload. All the approaches can be viewed as query-driven 
methods, i.e., they primarily operate on the failing query.  

In this paper, we propose an approach for dealing with failing flexible conjunctive 
queries that leverages data distribution of the target database. It constitutes another 
direction to address the problem in a flexible context; the idea is somewhat close to 
the principle of similarity search. Instead of relaxing the failing initial query, we first 
look for the values in the database that are maximally close to the fuzzy predicates 
specified in that query and then we explore the neighborhoods of such values. 
Informally speaking, the approach proceeds in two steps: i) Query translation that 
aims at translating the failing fuzzy query into a (crisp) point query by means of a 
particular semantic distance measure between sets; ii) Query relaxation which 
consists in expanding the translated query criteria with similar values. To rank-order 
the query results, a ranking method is proposed.  

The paper is structured as follows. Some basic notions are introduced in section 2. 
In section 3, we review some related work. Section 4 provides an overview of the 
approach proposed. Section 5 discusses the relaxation of both categorical and 
numerical query conditions. Section 6 describes a query results ranking method by 
learning attribute importance weights. In section 6, we conclude and outline some 
future works.     

2  Basic Notions 

2.1   Flexible Queries 

Flexible queries [6] are requests in which user's preferences can be expressed. Here, 
the fuzzy sets framework is used as a tool for supporting the expression of 
preferences. The user does not specify crisp conditions (Boolean predicates), but 
fuzzy ones (which correspond to fuzzy predicates such as Young, Tall or Cheap) 
whose satisfaction may be regarded as a matter of degree. As a consequence, the 
result of a query is no longer a flat set of elements but is a set of discriminated 
elements according to their global satisfaction of the fuzzy constraints appearing in 
the query.  

 
 
 
 
 
 
 

 

Fig. 1. Fuzzy predicates Young = (0, 25, 0, 15) and Well-paid = (5, +∝, 2, 0).  
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An elementary fuzzy predicate P can be modeled as a function µP from a domain U to 
the unit interval. The degree µP (u) represents the extent to which element u satisfies 
the vague predicate P (or equivalently the extent to which u belongs to the fuzzy set 
of objects which match the fuzzy concept P). Here, we use trapezoidal membership 
functions (t.m.f.) that can be encoded by a quadruplet (A, B, a, b) where [A, B] (resp. 
[A-a, B+b]) represents the core (resp. the support) of P. A typical example of a fuzzy 
query is: "retrieve the employees which are Young and Well-paid", see Figure 1. 

2.2   Semantic Distance 

We introduce here a particular semantic distance between fuzzy (or crisp) sets. It 
relies on the Hausdorff distance measure whose principle is reviewed hereafter.     

2.2.1  Crisp Sets: Consider two subsets A and B of a space U (equipped with a 
metric). The most popular scalar extension of distance between A and B is the 
Hausdorff distance defined as [7][11]:   

dH(A, B) = max {H(A, B), H(B, A)},                       (1) 

where H(A, B) stands for the directed Hausdorff distance from A to B. We have H(A, 
B) = Supu∈A  d(u, B) and d(u, B) = Infv∈B d(u, v). The expression d(u, v) stands for a 
standard distance (such as Euclidean distance). Formula (1) can be written in the 
following condensed form:  

dH(A, B) = max {supu∈A  infv∈B d(u, v), supv∈B  infu∈A d(u, v)}.        (2) 

The idea that governs this distance is the following: for each element in A look for the 
closest element in B, then check for the element in A for which the distance to the 
closest element in B is maximal. The same is done exchanging B and A and the 
longest distance of the two component is kept. Intuitively, if the Hausdorff distance is 
δ, then every point of A must be within a distance δ of some point of B and vice versa.       

Example 1. Let A = [a1, a2]  and B = [b1, b2]  be two regular intervals and let d(u, v) = 
|u − v|. Then, it easy to check that dH(A, B) = max(|a1 − b1|, |a2 − b2|). ♦  

2.2.2  Fuzzy Sets: The Hausdorff distance between fuzzy sets can be either fuzzy or 
scalar. Hereafter, we only focus on the scalar version. For the fuzzy evaluation, more 
details are available in [11]. Here, we use the definition proposed in [7]. This 
definition is more general and is valid in the case of two fuzzy sets with unequal 
maximum memberships. In the following, we consider only fuzzy sets with the same 
supremum. 

Let F and G be two discrete fuzzy sets. Let T = {t1, t2, …, tm} the set of all the 
distinct membership values of F and G. The Hausdorff distance between F and G is 
defined by the following expression:  
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where Fti (resp. Gti) stands for the ti-level cut1 of F (resp. G). ( )G,FdH
2  can be seen as 

a membership-weighted average of the crisp Hausdorff distances between the level 
sets of the two fuzzy sets.  

Example 2. Let U = {1, 2, 3, 4, 5, 6, 7} be a universe of discourse. Let also F and G 
be two discrete fuzzy sets on U defined as follows: F = {0.7/1, 0.2/2, 0.6/4, 0.5/5, 1/6} 
and G = {0.2/1, 0.6/4, 0.8/5, 1/7}. One can see that T = {0.2, 0.5, 0.6, 0.7, 0.8, 1}.  

Table 1. The Hausdorff distance between the α-cuts of F and G   

 
By formula (3), and using Table 1, we get  

( )G,FdH
2  = (0.2 ⋅ 1 + 0.5 ⋅ 3 + 0.6 ⋅ 3 + 0.7 ⋅ 4 + 0.8 ⋅ 1 + 1 ⋅ 1) / 3.8  ≅ 2.13        ♦ 

In case of continuous fuzzy sets, formula (3) is modified in the following form [7]: 

( )G,FdH
2  = 

( ) ( )dtG,Ftd
dtt
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ttH
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∫
∫ =

1

01

0

1

0 2                              (4) 

Example 3. Let now U represent the numeric universe of discourse of the variable 
"age" of a person. Let also F = "about thirty" and G = "between_26_and_28" two 
fuzzy sets on U defined by the following two t.m.f.: F = (30, 30, 3, 3) and G = (26, 
28, 1, 1). One can observe that Fα = [3α + 27, 33 − 3α]  and Gα = [ α + 25, 29 − α] . 
Then, Applying formula (4), we get  

( )G,FdH
2  = ( )dt)t()t(,)t()t(maxt∫ −−−+−+1

0 33329273252   = 7/2        ♦ 

It has been pointed out in [7] that expression (3) (resp. (4)) is a metric and reduces to 
the classical Hausdorff distance when sets are crisp.    

3   Related Work  

Several Works have been proposed to deal with the empty answers problem. Such 
works can be found in both domains of databases and information retrieval, including 
web search. Due to space limitation, we only provide here a review on some 
approaches proposed in the database fuzzy querying context. See [9][4][16][14] for an 
overview of the approaches suggested in the crisp queries context.    

In the fuzzy querying setting, approaches can be classified into two main 
categories and are mainly query-driven. The first one is based on the relaxation 

                                                           
1 An α-levet cut of the fuzzy set F is defined as {u ∈ U, µF(u) ≥ α}.  
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0.2 {1, 2, 4, 5, 6} {1, 4, 5, 7}  1 1 1 
0.5 {1, 4, 5, 6} {4, 5, 7} 3 1 3 
0.6 {1, 4, 6} {4, 5, 7} 3 1 3 
0.7 {1, 6} {5, 7} 4 1 4 
0.8 {6} {5, 7} 1 1 1 
1 {6} {7} 1 1 1 
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paradigm. Query relaxation aims at expanding the scope of a query searching and 
consists in modifying some query conditions by enlarging them or just eliminating 
some of them. Andreasen and Pivert [2] have proposed an approach where the basic 
modification used relies on a particular expansive linguistic modifier. This approach is 
merely a technical operation, lacking of any semantics. Moreover, it provides no 
intrinsic semantic limits for controlling the relaxation process and fails to deal with 
classical crisp queries. In [5][4] a relaxation method is proposed that makes use of a 
parameterized proximity relation. Given a fuzzy predicate P, the idea is to compute 
the set of predicates that are close to P in the sense of the proximity relation defined 
on the domain of P. Even, if this method is endowed with a clear semantics, it can 
lead to a combinatory explosion induced by the relaxation of the predicates from a 
conjunctive query. To know whether these relaxed queries provide a non-empty 
answer, one has to evaluate them. In [18], the authors consider flexible queries 
addressed to data summaries and propose a method based on a specified distance to 
repair failing queries. If no summary fits a query Q, alternative queries are generated 
by modifying one or several fuzzy labels involved in Q. This requires a pre-
established order over the considered attributes domains since a label is replaced by 
the closest one. The resulting queries are ordered according to their closeness to the 
original one (measured by the specified distance). See also the work done in [10]. 

The second category is based on leveraging a past query workload (i.e., a 
collection of queries that have been executed on the database system in the past and 
have produced non-empty answers). The principle consists in replacing the failing 
query by the most similar (semantically speaking) one among the queries of the 
workload. To compute the proximity between queries, a measure of substitution is 
suggested in [3] which assumes the availability of a resemblance relation over every 
attribute domain involved in the target database. An alternative proximity query 
measure is studied in [13]. It relies on a particular distance between sets, called the 
Hausdorff distance. Only attributes with domains endowed with a metric have been 
considered in this work.         

Our work is inspired from [1] and [17] for computing the importance weights for 
each specified attribute and for deriving the similarity coefficients between two 
(categorical or numerical) values. In [1], an automatic ranking method based on 
Information Retrieval (IR) techniques for the empty answers problem is proposed. 
The importance scores of tuples are extracted using a workload and a data analysis.  
In [17], a system called AIMQ is proposed to address the problem of answering 
imprecise queries over Web databases. It learns attribute importance and values 
similarity measures from the database. It can only determine the attribute importance 
sequence (without the specific weights). This result is invariant for the different user 
queries. See also [12] for the incremental version of AIMQ, called IQPI. Let us 
mention the work done in [15] that uses, in a similar way as above, data and query 
workload statistics for relaxing crisp queries in order to provide approximate answers 
to the user.  

Our approach differs from that in [2][3][4][5][13] in leveraging only data 
distribution for relaxing failing queries, and from [1][17][15] in focusing on fuzzy 
queries.          
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4   Overview of the Approach  

Let us first state the problem of interest. Assume that D is a (Web) regular database 
with categorical and numerical attributes A = {A1, …, Am} and D(Ai) represents the 
domain of values of attribute Ai in the database D. Let also Q = P1 ∧∧∧∧ … ∧∧∧∧ Pk (k < m) 
be a conjunctive flexible query where the symbol '∧∧∧∧' stands for the connector 'and' 
and is interpreted by the 'min' operator. Let ΣQ be the set of answers to Q over D. The 
set ΣQ contains the items of the database that satisfy somewhat the fuzzy requirements 
involved in Q, i.e., each item has a strict positive satisfaction degree.  

Definition. We say that Q is a failing query  if ΣQ = ∅.  

This means that no data in the database somewhat satisfies all of the fuzzy conditions 
involved in Q. In the literature, this problem is known as the Empty Answers Problem.  

Let us assume that Q is a failing user query. To deal with this problem, one way is 
to provide approximate answers to the user. To this end, we propose a data-driven 
approach that leverages the data distribution of the target database. It consists in a 
two-step procedure (see Figure 2): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Architecture of the approach 

Step 1: Query Translation.  It aims at translating Q into a (crisp) point query of the 
form: 

Qt = v1 ∧∧∧∧ … ∧∧∧∧ vk, 
where vi ∈ D(Ai). For each Pi, i = 1, …, k, pertaining to attribute Ai, we look for the 
point vi ∈ D(Ai) that is maximally close, semantically speaking, to the fuzzy set 
modelling Pi. To do so, we assess the semantic distance between the set Ei and Pi 
where the t.m.f. of Ei is given by (vi, vi, 0, 0) (resp. {1/ vi}) if Pi is a numerical (resp. 
categorical) attribute. This can be achieved by computing the Hausdorff distance 
between Ei and Pi (discussed in Section 2.2). 

Example 4. To illustrate this step, consider a relation EMP(Name, Age, Salary) 
describing employees of a company, whose extension is given in Table 2.  Consider 
also the query Q = "find employees who are young and earn around 38 k$". Q can 
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simply write Q = (Age = Young) ∧ (Salary = Around_38) where Young and 
Around_38 are fuzzy sets represented respectively by the t.m.f. (0, 25, 0, 10) and (38, 
38, 2, 2). One can observe that Q returns an empty answer when evaluating over 
relation EMP of Table 2.  

Now according to step 1 and using the Hausdorff distance between each Age.value 
(resp. Salary.value) and Young (resp. Around_38), Q is rewritten in Qt = (Age = 38) ∧ 
(Salary = 35).                ♦ 

Table 2. Extension of Relation EMP 

Name Age Salary 
(k$) µYoung(u) µAround_38(v) 

Dupont 48 45 0 0 

Martin 46 42 0 0 

Durant 42 35 0 0 

Dubois 38 28 0 0 

Lorant 40 30 0 0 

Now according to step 1 and using the Hausdorff distance between each Age.value 
(resp. Salary.value) and Young (resp. Around_38), Q is rewritten in Qt = (Age = 38) ∧ 
(Salary = 35).                ♦ 

Remark. If there are several values {vi
1, …, vi

h} from D(Ai) that are maximally close to 
Pi, we translate the fuzzy query condition (Ai is Pi) into (Ai ∈ {vi

1, …, vi
h} ).       

Step 2: Query Relaxation. We rewrite Qt under the form  

Qt = C1∧∧∧∧ … ∧∧∧∧ Ck 

where Ci = (Ai = vi) for i = 1,…, k. Then, for each condition Ci in Qt, we extract 
values of its corresponding attribute Ai having similarity factor above some user-
defined sub-threshold λi. Then, we add those values into the range of Ci. Thus, we get 

a relaxed version of Ci, denoted by iC
~

. A relaxed version, denoted by tQ
~

, of the 

query Qt is then built by joining all the relaxed conditions iC
~

.  

 
Full details about the above two steps will be provided in the next sections.  

5   Query Relaxation 

The idea of query relaxation advocated consists in expanding the translated query 
criteria with similar values. So, we need to measure the similarity between the 
different pairs of values.  

5.1  Relaxation of Categorical Query Conditions  

We present an approach for measuring the similarity index between two categorical 
attribute values. This approach is borrowed from [17]. The similarity between two 

86



values binding a categorical attribute is measured as the percentage of common 
Attribute-Value pairs (AV-pairs) that are associated to them. Consider a used car 
selling Web database CarDB(Make, Model, Price, Color, Year). Each tuple in CarDB 
represents a used car for a sale. For instance, Make = Ford is AV-pair over the 
database CarDB.  

- Each AV-pair is considered as a selection query and submitted to (a sample 
of) the database, separately.  

- The result of running each query is a set of tuples which is called a 
supertuple (ST). 

- The supertuple contains a bag of keywords for each attribute in the relation 
not bound by the AV-pair. 

For example, Table 3 shows the supertuples of the AV-pair "Make = Toyota" and 
"Make = Ford" over the database CarDB.   

Table 3. The supertuples obtained from running  

(a) the query "Make = Toyota". 

Model Camry: 3, Corolla: 4 

Price 10k-15k: 4 , 15k-20k: 3  

Color Blue: 1 , Black: 3 , White : 3 

Year  2005: 2 , 2006: 3 , 2007 : 2 
 

(b) the query "Make = Ford" 

Model Focus: 2, F150: 3 

Price 10k-15k: 3 , 15k-20k: 2 

Color Blue: 2 , Red: 2 , White : 1 

Year  2005: 1 , 2006: 4  

The values within the supertuple of Table 3-(a) indicate that there are totally 7 records 
in the database having "Make = Toyota".                                                                     ♦ 

The similarity between two attribute values (AV-pairs) is measured as the 
similarity shown by their supertuples. This latter is measured by using the Jaccard 
coefficient. Let ST1 and ST2 be two supertuples with m attributes and Ai is ith attribute, 
we have 

∑ =
=

m

i ii )A.ST,A.ST(J)ST,ST(VSim
1 2121 , 

where J(.,.) stands for the Jaccard Coefficient and is computed as J(A, B) = 
A∩B/A∪B. Consider for instance the attribute "Make", if we want to measure 
the similarity between the value "Toyota" and the value "Ford". First, we compute the 
supertuple ST1 (resp. ST2) resulting from the query "Make = Toyota" (resp. "Make = 
Ford)" (See Table 3). Then, we compute VSim(ST1, ST2) = (2⋅0)/(4⋅7) + (2⋅5)/(4⋅7) + 
(2⋅1)/(3⋅10) + (1⋅4)/(4⋅8) ≈ 0.54 2. So, VSim(Toyota, Ford) = VSim(ST1, ST2) = 0.54. 

                                                           
2 Here, we use Jaccard Coefficient with bag semantics to determine the similarity between two 

supertuples, see [17].  
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Now if needed, one can normalize the above similarity measure by using for instance 

the arithmetic mean, i.e., ∑ =
=

m

1i i2i121 )A.ST,A.ST(J
m

1
)ST,ST(VSim .      

5.2  Relaxation of Numerical Attribute Values  

To estimate the similarity coefficient between a pair of different numerical values, we 
use an approach which is inspired from [8][1]. Let {a1,.., an} be the values of 
numerical attribute A occurring in the database. Then the similarity coefficient 
VSim(a, v) between the two values a and v can be defined by the following equation 

VSim(v, a) = 1 /(1 + ((a – v)/h)2) 

where h is the bandwidth parameter. A popular estimation for the bandwidth is h = 
1.06σn-1/5 where σ is the standard deviation of {a1, ….., an}, see [1] for more details.  
Let λ be a given similarity threshold, and v the numerical value specified by the 
query. Then, one can observe that the values that have similarity degree (above λ) 
with v are restricted by the following interval: 

( ) [ ]λλλλλ /)(hv,/)(hv,vI −+−−= 11  

 

Input: Qt = {C1, …, Ck} with Ci = (Ai = vi) for i = 1,k  

Sub-thresholds {λ1, …, λk}  

1. tQ
~

= ∅; i := 1 ;           

2.   while i ≤ k do 
3.   begin 
5.  iC

~
:= Ci; 

  6.   if Ai is numerical attribute then   

7.   replace the range of iC
~

with I(vi, λi);     

8.  if  Ai is categorical attribute then   
9.   For a in D(Ai) do  
10.    If VSim(vi, a)  = VSim(ST(vi), ST(a))  > λi then  
11.           add a into the range of      
12.    endif 
13.   endif  
14.  tQ

~
:=  tQ

~
 ∪ iC

~
   

15.  i := i + 1; 
16. end 

Output: the query relaxation kt C
~

C
~

Q
~ ∧∧= K1    

 
Algorithm 1. Query relaxation (where ST(v) is the supertuple associated with the value v).      
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5.3  Query Rewriting 

Let us assume that the sub-threshold λi (i = 1, k) for each specified attribute in Q is 
given by the user. The principle of the query relaxation algorithm (see Algorithm 1) is 

to replace each condition Ci = (Ai = vi) involved in Qt by its relaxed variant, iC
~

, as 

explained in Sections 5.1 and 5.2.    

Remark. If the relaxed query, tQ
~

, resulting from Algorithm 1 still returns an empty 

answer set, one can re-execute Algorithm 1 by assigning other appropriate values to 
the sub-threshold λi.     
 
Note that for large-scale databases, the evaluation of the relaxed query may result in 
too many relevant answer items. So, it is extremely desirable to rank such query 
results according to their relevance. This is what we will discuss in the next section.  

6  Results Ranking Strategy 

One factor that can affect query results ranking is the attribute importance weights 
(since attribute importance of the same attribute is usually different for users). It 
would then be interesting to automatically learn such importance weights. Approaches 
for estimating attribute importance can be divided into two classes [17]: (i) data 
driven where the attribute importance is identified using the data distribution of the 
database; (ii) query driven where the importance of an attribute is determined by the 
frequency with which it appears in user queries. So, this last technique requires a 
database workload (log of past user queries) which constrains its use for new systems. 
In the following, we use the first technique to learn the importance of each attribute 
by leveraging the distribution of its value specified in the query in the database.       

6.1 Attribute Weight Assignment 

The idea is to associate a weight to each specified attribute according to the 
distribution of its value in the database. For instance, for a query with condition "Year 
= 2008 and Price < 10000", the specified attribute Year may have less importance for 
user (there may be many used car have the date of shipment in 2008) than the 
attribute Price (relatively fewer used cars priced below $10000).  

To this end, we use the well-known Inverse Document Frequency (IDF) factor 
that has been used extensively in IR. IDF suggests that commonly occurring words 
convey less information about user's needs than rarely occurring words, and thus 
should be weighted less. Recall that IDF(w) of a word w is a measure indicating how 
many documents in which w appears. We can then adapt this technique to our 
problem by considering each database tuple (and query) as a small document [1].    

- Categorical Attribute  

For every v in the domain of attribute Ai, we define IDF i(v) such that 

IDF i(v) =  log(n/Fi(v)), 
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where n is the number of tuples in the database and Fi(v) is the frequency of tuples t in 
the database where t.Ai = v. In the following, the importance of specified categorical 
attribute value is treated as the importance of its corresponding attribute.   

- Numerical Attribute 

For numerical data, the definition of traditional IDF as above is inappropriate. The 
frequency (and hence the IDF) of a numerical value should depend on nearby values. 
To measure the closeness of numerical attribute values, we make use of a robust 
definition proposed in [1]. Let Vi = {v i

1, ….., vi
n} be the set of values of attribute Ai 

that occur in the database. For any value v, IDF i(v) is defined in the following way 
(where h is the bandwidth parameter mentioned in section 5.2):  
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The intuition of the above formula is: the denominator represents a numeric extension 
of the concept of frequency of v (the sum of "contributions" to v from every the other 
point vi

j in the database). The further v is from vi
j, the smaller its contribution. The 

importance of specified numerical attribute value is treated as the importance of its 
corresponding attribute    

Denoting by Wi(Ai) the weight associated with attribute Ai specified in the user 
query and by applying a normalization, we finally obtain: 

∑
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6.2 Ranking 

To rank-order the answer tuples t returned to the relaxed query, one can use the 
following ranking score: 

( ) ( ) ( ),A.t,A.QSimAW
k

td iit

k

i
iiQt

×= ∑
=1

1
 

where Wi(Ai) is the importance weight of attribute Ai specified in the original query Q, 
and Sim(v, a) stands for the similarity measures between categorical or numerical 
attribute values as explained in section 5.  
The idea is that the larger the similarity score dQ(t) is, the higher the ranking score is 
for the result tuple t. Thus, we can provide the end-user with the top-N answers 
according to the above ranking.    
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7  Discussion and Conclusion  

In this paper, an alternate approach for dealing with failing queries in a flexible 
context is proposed. Starting from the user query, we translate the original query into 
a crisp query and then we rewrite this resulting query by relaxing the query criteria 
ranges. The two key concepts of the approach are the distance semantic introduced 
and the similarity measures discussed (between two categorical or numerical attribute 
values). Ranking the relevant answers is also investigated by learning the importance 
of each attribute specified in the query. Since the approach mainly operates on the 
actual data of the queried database, it could constitute a promising alternative to 
approximately answer a failing query.     
     As can be seen, the approach requires some pre-computations and some additional 
access to the entire database before getting final approximate answers to the failing 
query. Pre-computations mainly consists in: i) calculating the semantic distance 
between attribute values in the database and the fuzzy predicate present in the query 
for every attribute specified in the query; ii) measuring the similarity between each 
value of attribute involved in the translated query and values binding this attribute in 
the database. Let us take a look at the second type of calculus in case of categorical 
attribute. Instead of performing this calculus for each failing query, one can measure 
the similarity between every pair of values binding this attribute once and for all 
(provided that database will not change), and the similarity results will be stored in a 
Table. To mitigate also the problem of scanning the entire database, one can select a 
sample dataset (sufficiently representative) for estimating the similarity measures.         

We acknowledge that experiments on real databases are needed to demonstrate the 
efficiency and effectiveness of the approach. To this end, one can observe that at the 

end of the query answering process, it is a precise (point or range) query (tQ
~

) that is 

evaluated over the database. So, one can implement the approach over (traditional) 
existing database systems. To such existing systems, two modules have to be added 
(see Figure 2) (i) a query translator that converts the flexible query into a crisp query; 
(ii) a similarity estimator that computes the similarity measures between attribute 
values. Experiments to perform allow also for providing an idea about the extra cost 
resulting from the use of the approach. Besides, only attributes with domains 
endowed with a metric can be addressed by the approach. It would be interesting to 
extend it to attributes with non metricized domains (as color attribute).  
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