UNIVERSITE KASDI MERBAH – OUARGLA

FACULTÉ DES HYDROCARBURS, DES ÉNERGIES RENOUVELABLES ET DESSCIENCES DE LA TERRE ET DE L'UNIVERS

DEPARTEMENT DES SCIENCES DE LA TERRE ET DE L'UNIVERS

Mémoire de Master Académique

Domaine : Sciences de la Terre et de l'Univers Filière : Géologie Spécialité : Géologie des Bassins sédimentaires

THEME

SYNTHESE GEODYNAMIQUE DU BASSIN DE LA TAFNA (TLEMCEN, ALGERIE NORD OCCIDENTALE)

Présenté par :

M ^{elle}: BETTAYEB LEILA

Soutenu publiquement le 16 juin 2021

Devant le jury :

ZIOUIT KHALDIA	Univ.Ouargala	MAA	Président
BENZINA MUSTAPHA	(B)Univ. Ouargala	МСВ	Encadreur
DRAOUI ABD EL MALEK	Univ.Ouargala	MAA	Examinateu

Année Universitaire : 2020/2021

Remerciements

Je tiens à exprimer toute ma reconnaissance à mon Directeur de mémoire monsieur **MOSTAPHA BENZINA** . Je le remercie de m'avoir encadré, orienté, aidé et conseillé.

J'adresse mes sincères remerciements à tous les professeurs et chargés de cours du Département de géologie en général et de la spécialité des bassins sédimentaires en particulier, et à tous ceux qui ont orienté leurs réflexions de leurs paroles, écrits, conseils et critiques et ont accepté l'entretien et la réponse. mes questions lors de mes recherches.

Je remercie mes chers parents qui ont toujours été à mes côtés : « Vous avez tout sacrifié pour vos enfants, n'épargnant ni la santé ni l'effort. Vous m'avez donné un bel exemple de travail acharné et de persévérance. Je dois avoir une éducation dont je suis fier. "

Je remercie mes sœurs pour leurs encouragements. Je remercie particulièrement mon frère aîné « Saleh » et tous mes frères pour leur aide.

SOMMAIRE

Pren	nier Chapitre : CADREGENERAL ————————————————————————————————————	•
I.	GENERALITES GEOGRAPHIQUES ET GEOLOGIQUES	3
	A. Contexte géographique	3
	algérien	3 5
	 B. Contexte géologique. 1. Aperçu géologique sur le bassin d'étude. 2. Place du bassin d'étude dans le cadre de l'évolution 	5 5
П	géodynamique	11 12
II. III.	OBJECTIFS DU MEMOIRE	12
IV.	METHODOLOGIE	12
Deux I.	xièmechapitre : ETUDESTRUCTURALE	13
Deux I. II.	xièmechapitre : ETUDESTRUCTURALE	13 13
Deux I. II. III.	xièmechapitre : ETUDESTRUCTURALE	13 13 16
Deux I. II. III.	xièmechapitre : ETUDESTRUCTURALE NTRODUCTION LATECTONIQUE CASSANT DONNEES STRUCTURAL DE DIFFERENTS SECTEURS D'ETUDES 1. Le secteur de Hadjret El Gat	13 13 16 16
Deux I. II. III.	xièmechapitre : ETUDESTRUCTURALE NTRODUCTION LATECTONIQUE CASSANT	13 13 16 16 18
Deux I. II. III.	xièmechapitre : ETUDESTRUCTURALE NTRODUCTION. LATECTONIQUE CASSANT DONNEES STRUCTURAL DE DIFFERENTS SECTEURS D'ETUDES 1. Le secteur de Hadjret El Gat. 2. Les secteur de Djorf El Ghetae. • Les décrochements de Djorf El Ghetae.	13 13 16 16 18 19
Deux I. II. III.	xièmechapitre : ETUDESTRUCTURALE NTRODUCTION. LATECTONIQUE CASSANT DONNEES STRUCTURAL DE DIFFERENTS SECTEURS D'ETUDES 1. Le secteur de Hadjret El Gat. 2. Les secteur de Djorf El Ghetae. • Les décrochements de Djorf El Ghetae. 3. Le secteur de Sekkak.	13 13 16 16 18 19 21
Deux I. II. III.	xièmechapitre : ETUDESTRUCTURALE NTRODUCTION. LATECTONIQUE CASSANT DONNEES STRUCTURAL DE DIFFERENTS SECTEURS D'ETUDES 1 Le secteur de Hadjret El Gat. 2 Les secteur de Djorf El Ghetae. 4 Le secteur de Sekkak. 4 Le secteur de DjorfGhrayef.	13 13 16 16 18 19 21 22
Deux I. II. III.	xièmechapitre : ETUDESTRUCTURALE NTRODUCTION. LATECTONIQUE CASSANT DONNEES STRUCTURAL DE DIFFERENTS SECTEURS D'ETUDES 1. Le secteur de Hadjret El Gat. 2. Les secteur de Djorf El Ghetae. • Les décrochements de Djorf El Ghetae. 3. Le secteur de Sekkak. 4. Le secteur de DjorfGhrayef. 5. Le secteur d' El Bordj	13 13 16 16 18 19 21 22 24

Troisième chapitre : SYNTHESE GEODYNAMIQUE

I.	ANALYSE DE DIRECTION FRACTURATION	27
II.	EVOLUTION STRUCTURALE DE LA REGION D'ETUDE	29
III.	RELATION ENTRE LE VOLCANISME ET LA TECTONIQUE	30
V.	CONCLUSION ET CHRONOLOGIE DES FRACTURES	33
	REFERENCES BIBLIOGRAPHIQU	34
	LISTE DES FIGURE	36
	LISTE DE TABLEAU	38
	RESUME	39
	ABSTRACT	40

Première Chapitre : Cadre Général

I. GENERALITES GEOGRAPHIQUES ET GEOLOGIQUES

A. Contexte géographique

1. Présentation des bassins néogènes sublittoraux du Nord-Ouest algérien

Les bassins néogènes sublittoraux qui font partie du tell parmi les grandes structures géologiques, se prolongent le long de la côte nord du pays (fig. 1 & 2). Il s'agit essentiellement du bassin de la Tafna, du bassin de bas Chélif, du bassin de moyen Chélif et enfin du bassin de Metidja. plusieurs études stratigraphiques, sédimentologiques et structurales ont été menés dans ce bassin. Dans ce cadre, nous contenterons de citer le chef - d'œuvre de PERRODON (1957), les synthèses géodynamiques de GUARDIA (1975), FENET (1975) et TOMAS (1985) et enfin l'étude sédimentologique moderne de NEURDIN-TRESCARTES (1992).D'autre travaux ont été réalisé dans les années quatre-vingt dix par l'université d'Oran et qui s'intéressée plus aux études stratigraphiques et paléontologiques de ces bassins néogènes.

Figure . 1 : Situation générale de la région d'étude (Kheloufi 2015) .

2. Limites de la région d'étude

Les Monts de SabaaChiouck forment la limites nord-est de notre secteur d'étude, alors que au Sud on trouve les Monts de Tlemcen ; à l'Est par les Monts de Tessala et enfin à l'Ouest par la faille bordière du massif des Traras (FBT) qui s'étend sur plusieurs kilomètres (fig. 3).

Figure .3 : Situation géographique du bassin de la Tafna (d'après THOMAS, 1985).FTM : Faille Tafna-Magoura ; FTB : Faille bordière des Traras.

B. Contexte géologique

1. Aperçu géologique sur le bassin d'étude

la série stratigraphique rencontrée dans le bassin de la Tafna est come suite (fig. 4). De bas en haut, nous distinguons :

présence de coulées volcaniques. Il s'agit des roches basaltiques souvent très altérées, de couleur verte.

Figure .4 : Cadre géologique du l'Oranie

(Extrait de la carte géologique de l'Algérie au 1/500.000, inBOUCIF, 2006).

Le Miocène forme un cycle sédimentaire complet dans les bassins sublittoraux de l'Algérie occidentale, qui est divisé en Miocène inférieur et supérieur (PERRODON, 1957). Et des terrains synchro-nappe et des autres post-nappe (Guardia, 1975)

Guardia, 1975 les a définies les terrains Synchro-nappescomme des terrains autochtones qui correspondent au Miocène inférieur et moyen, débutent par un niveau conglomératique très durs, à blocs bien roulés hétérométriques et polygéniques, formés d'éléments calcaires dolomitiques à ciment calcareo-gréseux, très résistants pouvant atteindre 20 m de puissance. Dans sa partie supérieure ils est constituée par des argiles marneuses de teinte verdâtre, au sein desquelles s'intercalent des bancs décimétriques de grès ferrugineux friables formant un ensemble d'une épaisseur pouvant dépasser 100 m.

Ces terrains sont constitués des marnes à lits gréseux dans lesquelles s'intercalent des barres de grès, ils correspondent à notre formation d'étude et sont attribués au SerravallienGuardia (1990).

Le Serravallien est constitué essentiellement par une épaisse série d'argiles marneuses grises ou bleutées, qui par altération deviennent ocre et parait sous forme par une alternance d'épaisse couches de marnes de couleur bleue et des bancs gréseux de dimensions décamétrique à métrique de type molasse (PERRODON, 1957 et GUARDIA, 1975). Cette série est recouverte par endroit par des gisements basaltiques d'AïnKial. En d'autres points, les terrains de recouvrement sont discordants et d'âge miocène supérieur (PERRODON, 1957). Le Serravallien repose souvent en discordance sur le miocène inférieur, déformé et partiellement érodé.

La base du Serravallien, en particulier dans le bassin de la Tafna, est marquée par un niveau discontinu de poudingues relativement peu consolidés à ciment argilo-gréseux. Le série mesure 300 m d'épaisseur d'environ, comprend une intercalation de nombreux bancs décimétriques de grès jaunes, plus fréquents au sommet de la série.

Le Miocène supérieur se trouve dans une bande étroite comprise entre la Méditerranée et les collines la région de pierre du chat, qui s'étend depuis la bordure du massif des Traras à l'Ouest jusqu'aux abords de la Sebkha d'Oran à l'Est. Il comprend des marnes de couloir noire parfois bleue, des sables, des grès, des calcaires, des diatomites et des gypses (PERRODON, 1957).

Deux cycles sédimentaires qui caractérisent ces terrains

Un premier cycle est représenté par une formation détritique de couleur lie-de-vindatée du miocène moyen supérieur. Une première partie datée du miocène supérieur (Tortonien supérieur – Messinien basal), constituée par des alluvions continentales de couleur rouge et des marnes saumâtres et des marnes marine

Un deuxième cycle subdivisé en deux parties : elle est d'âge Messinien et représentée par des calcaires à Algues et à Polypiers.

Le Plio-Quaternaire est représenté par deux principales formations. L'une déposée dans un milieu marin et l'autre dans des conditions continentales. La formation dite marine est constituée de marnes ou de marnes-argileuses affleurant sur la rive droite de l'Oued Tafna. Par ailleurs, les dépôts conglomératiques prédominent nettement dans la sédimentation continentale. Les sédiments continentaux sont de nature variable. Il s'agit d'une série complexe de dépôts discontinus formés d'éléments hétérométriques (des travertins, des alluvions, des marnes avec peu ou pas de galets et des limons).

1011/

9

Figure .6 : Distribution des principaux marqueurs de nanofossilescalcaires dans la coupe d'Oued El Ghrour, Formation d'Aïn El Kihal (d'après MAZOUZI, 2004).

2. Place du bassin d'étude dans le cadre de l'évolution géodynamique

Le bassin de la Tafna est constitue les limite occidentaux des bassins littoraux néogènes de l'Algérie (NEURDIN, 1992). Il dessine un sillon complexe de direction WSW-ENE. (fig. 7)

Il appartient à la zone tellienne (FENET, 1975) et est inclus dans le domaine externe de la chaîne alpine. Son évolution paléogéographique est liée aux phases paroxysmales de l'orogenèse alpine (GUARDIA, 1975) et c'est durant le Miocène inférieure qu'il s'est individualisé.

Figure . 7 : Organisation structurale du Nord de l'Algérie (NEURDIN, 1992).

II. PROBLEMATIQUE

La situation géographique des bassins sédimentaires néogènes comme les autres bassins sublittoraux nous a conduits à poser plusieurs questions.

Qu'elle est le mode de la genèse du bassin de la tafna, ainsi y a-t-il une relation, ressemblance différence entre sa genèse et la création des autres bassins néogènes déjà cités auparavant ?

Est-ce que l'analyse structurale peuvent le placer cette portion du bassin dans le cadre de l'évolution géodynamique globale (échelle considéré) ?

III. OBJECTIFS DU MEMOIRE

A l'aide d'une série de mesure structural sur le terrain suivi par une analyse structurale de diffèrent (structures/ formes) on cherche.

De ressortie les grand line structuraux

De cherche d'établir la chronologie de ces évènement.

Faire une synthèse qui englobe le tout dans une chronologie logique.

IV. METHODOLOGIE <u>Sur terrain</u>

En prenant les mesures nécessaires dans chaque station. Direction du pendage/couches/ plis/ failles.

<u>Au labo.</u>

Faire la projection stéréographique (Canevas de Schmidt, hémisphère inférieur)

Etablir une analyse structurale des données.

Cherche une explication d'une manière systématique.

Deuxième Chapitre : Etude Structural

I. INTRODUCTION

La tectonique, ou géologie structurale, est une discipline des Sciences de la terre qui étudie les structures, les déformations et les mouvements qui affectent les terrains géologiques ainsi que les mécanismes qui en sont responsables.

Structure c'est l'agencement des couches d'échelle kilométrique ou planétaire où la déformation des couches perdent leur structure originelle, généralement, horizontales. Ainsi les mouvements tectoniques indiquent l'ensemble des déformations que subit l'écorce terrestre sous l'effet des forces géologiques, ou contraintes.

En résumé, les matériaux de l'écorce terrestre se déforment, parfois sous nos yeux. Par exemple, à l'occasion de grands tremblements de terre, on observe couramment l'apparition de fractures qui tranchent les terrains. Le plus souvent, les déformations ne sont visibles ni à l'œil nu, ni à l'échelle humaine. Elles se déroulent sur des millions d'années, à une échelle géologique.

II. Latectoniquecassante

Les roches, ou les couches géologiques, peuvent subirdeux types de déformation:

Ellessecassent.Onparlealorsdetectoniquecassantequidonnenaissanceàdes fractures.

Ellesse plissent, forment des plis.On parledetectonique souple.

Ce type de tectonique donne naissanceà desfractures de plusieurs catégories. On distingueles dia clases et les failles.

Lesdiaclases

Onparledediaclaselorsquelesterrainssecassentendeuxouenplusieursblocssansque cesderniers s'éloignentlesunsdes autres.Onditqu'il n'yapasdéplacement relatif.

Les failles : Définition – Différents types de failles

Unefailleestunecassuredescouchesavecundéplacemententrelesdeuxparties.Les terrainssetrouvent morceléset déplacésles unspar rapport auxautres.

Figure .8 :Les éléments descriptifs d'un plan de faille.

Sur le terrain, l'étude structurale passe par la description géométrique des élémentsobservés. Il faut donc être capable d'indiquer leur position, et surtout leur orientation, dans l'espace.

Orientation d'un plan

Si on ne s'intéresse que à l'orientation d'un plan (et pas à sa position), il suffit de deuxparamètres pour ladécrire totalement : un paramètrepour son orientationen carte(azimut,*strike*)etunpoursonpendage(*dip*).Cesparamètres sontdesangles.

L'azimut : peutsemesurer de deux façons différentes :

Angledelalignedeplusgrande penteavecleNord (dipdirection); Angled'unehorizontaleavecleNord(strikedirection).

Le **pendage** se mesure comme un angleavec l'horizontale(90° = vertical) ; comme onne dispose alors que d'un angle entre 0 et 90° , il faut aussi préciser « de quel coté » sesituele pendage.

Figure .9 :L'Azimut et pendage des couches.

Plongement : angle d'une droite orientée vers le bas, avec l'horizontale (Raoult et Foucault, 1984). Sa valeur vaut de 0 à 90° et est mesurée dans un plan vertical. Le sens du plongement doit être précisé quand on associe direction et plongement pour caractériser l'orientation d'une ligne. Ce n'est pas nécessaire quand la mesure associée au plongement est l'azimut.

Pour définie l'évolution du bassin de la Tafna ,différentes areas structurales ont été réalisées et des perceptions structurales ont été faites le long de ses bordures nord et sud . Les données des fracturation sont rapportées dans les attaches et des rosaces ont été construites pour identifier les principales headings des failles .Ces données sont projetées sur le canveas stéréographique de Schmidt (hémisphère inférieur). Pour déterminer l'orientation du vecteur des contraintes à l'origine de la faille.

III. Données structural de différents secteurs d'études

N60E	N08E	N60E	N70E	N125E	N115E
N130E	N05E	N60E	N70E	N95E	N08E
N15E	N170E	N140E	N06E	N08E	N09E
N20E	N170E	N140E	N06E	N10E	N08E
N10E	N165E	N30E	N130E	N100E	N25E
N80E	N167E	N40E	N130E	N07E	N08E
N75E	N167E	N55E	N150E	N08E	N120E
N74E	N60E	N165E	N70E	N120E	N107E
N120E	N55E	N175E	N70E	N120E	N115E
N175E	N60E	N05E	N75E	N80E	N30E
N174E	N125E	N10E	N80E	N80E	N10E
N80E	N20E	N160E	N62E	N80E	
N70E	N10E	N150E	N80E	N168E	
N70E	N00E	N150E	N75E	N165E	
N128E	N150E	N140E	N80E	N10E	
N20E	N150E	N140E	N90E	N10E	
N140E	N125E	N130E	N100E	N120E	
N140E	N130E	N140E	N90E	N120E	

1. Le secteur de Hadjret El Gat

 Tableau . 1: DirectiondesfracturationsdelarégionHadjeretElGat.

1. Partie structurales du secteur

Cette partie de bassin a été affectée intensément d'une géodynamique plissée et faillée la où on trouve une série des plis qui prennent la direction E-W.

2. Les directions des fracturations

Class	ses de direction	Nombre de fractures par direction	Pourcentage %
А	360°-20°	24	23 %
В	20°-40°	4	4%
С	40°-60°	7	7 %
D	60°-80°	19	19 %
Е	80°-100°	5	5%
F	100°-120°	9	9%
G	120°-140°	16	16 %
Н	140°-160°	6	6%
Ι	160°-180°	11	11%
Total	9 classes	101	100 %

Au niveau Hadjret El Gat, les mesures de direction de la fracturation ci après. Par ailleurs, la figure 10 représente la distribution directionnelle des diaclases (tableau 1 & 2).

Figure. 10 : Rosace de distribution directionnelle des diaclases (Secteur de Hadjeret El Gat).

Les failles normales

Ces faille son abondant dans tout les point de mesures et ils prennent en générale la direction NW-SE et N-S

Les failles Inverses

Ils sont abondant sur tout dans djebel Ghazouane et Chaebet El Krakebia et ils prennent la direction NW-SE.

N35E	N08E	N38E	N103E	N113E	N35E
N30E	N190E	N38E	N100E	N115E	N35E
N20E	N115E	N43E	N102E	N110E	N35E
N35E	N115E	N39E	N108E	N115E	N115E
N20E	N105E	N22E	N109E	N35E	N114E
N26E	N120E	N40E	N115E	N35E	N36E
N12E	N115E	N35E	N115E	N35E	N08E
N97E	N135E	N40E	N115E	N35E	N75E
N130E	N120E	N30E	N113E	N34E	N75E
N135E	N153E	N40E	N115E	N35E	N150E
N123E	N30E	N115E	N110E	N37E	N150E

2. Le secteur de Djorf EL Ghetae

Tableau .3 : DirectiondelafracturationdelarégiondeDjorfElGhetae

		Nombredefracturespar direction	Pourcentage%
А	360°-20°	6	09 %
В	20°-40°	28	42%
С	40°-60°	1	02 %
D	60°-80°	2	03 %
Е	80°-100°	1	02 %
F	100°-120°	24	36 %
G	120°-140°	1	02 %
Н	140°-160°	3	05%
Ι	160°-180°	00	00%
Total	9classes	66	100 %

Tableau.4: Récapitulatifdesmesures
 Contraction Contraction Contraction</t

Figure . 11 : Rosace de distribution directionnelle des diaclases (Secteur de Djorf El Ghetae)

• Les décrochements de Djorf El Ghetae (fig. 12)

Plusieurs mesures ont été faites dans la région de Djorf El Ghetae. Ces mesures sont relevées sur les miroirs des failles et projetés sur le canevas de Schmidt .Au total 25 mesures de pitch ont été faites et montrent que l'accident est décrochant .

Les gradins et les stries des glissemnt montrent que c'est un décrochemnt senestre

Figure . 12 : Stries de glissement avec leurs plans porteurs (A) : Canevas de Schmidt, hémisphère inférieur (Rouge décrochement senestre ; Bleu décrochement dextre ; Jaune faille inverse décrochant). Indice d'un décrochement sénestre dans Djorf el Ghetae (B).

3. Le secteur de Sekkak

N74EN	N110E	N30E	N12E	N130E	N20E
N63E	N90E	N30E	N10E	N120E	N130E
N84E	N105E	N125E	N08E	N26E	N00E
N30E	N40E	N120E	N30E	N28E	N170E
N76E	N50E	N118E	N30E	N27E	N30E
N11E	N35E	N25E	N120E	N20E	N54E
N04E	N70E	N27E	N36E	N110E	N125E
N120E	N32E	N175E	N20E	N115E	N00E

Tableau. 5: Direction des fracturations de la région de Sekkak.

Classesdedirection		Nombredefracturespar direction	Pourcentage%
Α	360°-20°	10	21%
В	20°-40°	15	31 %
С	40°-60°	02	04 %
D	60°-80°	04	08 %
E	80°-100°	02	04 %
F	100°-120°	09	19 %
G	120°-140°	04	08 %
Н	140°-160°	00	00 %
Ι	160°-180°	02	04 %
Total	9classes	48	100 %

 Tableau. 6: Familles des Direction de la fracturation de la région de Sekkak.

Figure .13 : Rosace de distribution directionnelle des diaclases (Secteur deSekkak)

N114E	N100E	N176E	N117E	N104E
N110E	N35E	N45E	N102E	N108E
N106E	N30E	N110E	N130E	N100E
N110E	N110E	N175E	N113E	N20E
N33E	N110E	N25E	N107E	N47E
N112E	N170E	N2OE	N95E	N45E
N114E	N170E	N40E	N95E	N170E
N105E	N98E	N93E	N103E	N164E
N105E	N107E	N165E	N70E	N173E
N104E	N104E	N170E	N168E	N177E

4. Le secteur de DjorfGhrrayef.

 Tableau.7 :DirectiondelafracturationdeDjorfEl Ghrayef.

Classesdedirection		Nombredefractures pardirection	Pourcentage%
А	360°-20°	2	04 %
В	20°-40°	4	08 %
С	40°-60°	3	06 %
D	60°-80°	1	02 %
Е	80°-100°	4	08 %
F	100°-120°	24	47 %
G	120°-140°	1	02%
Н	140°-160°	00	00 %
Ι	160°-180°	12	23 %
Total	9classes	50	100 %

Tableau.8:Récapitulatifdesmesures **Ghrayef**.

Figure . 14 :Rosace de distribution directionnelle des diaclases

(Secteur de DjorfEl Ghrayef)

5. Le secteur d'El Bordj

N150E	N50E	N00E	N55E	N43E	N140E
N135E	N46E	N130E	N142E	N64E	N155E
N90E	N40E	N130E	N05E	N152E	N40E
N160E	N40E	N40E	NOOE	N25E	N174E
N100E	N174E	N80E	N130E	N34E	N110E
N155E	N40E	N150E	N135E	N155E	N172E
N170E	N155E	N170E	N134E	N50E	N165E
N147E	N140E	N165E	N10E	N85E	N154E
N160E	N65E	N55E	N170E	N176E	N134E
N40E	N168E	N55E	N160E	N45E	
N66E	N30E	N142E	N164E	N10E	
N150E	N50E	N05E	N90E	N175E	
N153E	N78E	N00E	N125E	N164E	
N155E	N20E	N130E	N170E	N90E	
N165E	N76E	N135E	N156E	N165E	

 Tableau.9 :DirectiondelafracturationLesited'Elbordj.(CalcairesdeZarifet,DolomiesdeTlemcen)lam

 argeméridionaledubassin

Classesdedirections		Nombre	Pourcentage%
Classesdedirections		uenaciui	1 Ourcentage /0
		es	
		pardirection	
А	360°-20°	7	9%
В	20°-40	6	7%
С	40°-60	15	17%
D	60°-80°	5	6%
Е	80°-100°	5	6%
F	100°-120°	2	2%
G	120°-140°	7	9%
Н	140°-160°	17	20%
Ι	160°-180°	20	24%
Total	09Classes	84	100,00%

 Tableau.10 :Récapitulatifdesmesuresdedirectiondelafracturation(Sited'Elbordj).

Figure .15 : Rosace de distribution directionnelle des diaclases

(Secteurd'ElBordj)

N45E	N168E	N03E	N14E	N50E
N42E	N100E	N95E	N65E	N175E
N85E	N178E	N174E	N35E	N92E
N45E	NOOE	N178E	N178E	N88E
N45E	NOOE	N65E	N10E	N105E
N21E	N78E	N105E	N80E	N90E
N27E	N85E	N07E	N170E	N95E
N19E	N115E	N81E	N51E	N86E
N50E	N50E	N90E	N60E	N170E
N60E	N34E	N95E	N30E	NOOE
N105E	N110E	N85E	N27E	N96E
N15E	NOOE	N02E	N10E	N141E
N42E	N100E	N20E	N176E	N152E
N100E	N102E	N91E	N33E	

6. Le secteur de Tlemcen

Tableau.11 :DirectiondelafracturationLesMontsdeTlemcen.(lamargeMéridionaledu bassindansleformationscalcairesdeZarifeDolomiedesTlemcen).

Classes dedirections		Nombrede fractures pardirection	Pourcentage%
А	360°-20°	13	18%
В	20°-40	7	10%
С	40°-60	11	15%
D	60°-80°	6	10%
Е	80°-100°	17	24%
F	100°-120°	5	6%
G	120°-140°	3	4%
Н	140°-160°	-	0%
Ι	160°-180°	9	13%
Total	09Classes	71	100%

de Tlemcen)

Figure .16 : Rosace de distribution directionnelle des diaclases.

(Secteur de Mont de Tlemcen)

Troisième chapitre : Synthese géodynamiques

I. ANALYSE DE DIRECTIONS FRACTURATION

Plusieurs directions de fractures sont relevées dans le bassin de la Tafna (fig.16)

1. La direction NNE-SSW.

Cette direction a été enregistrée dans le bassin. Elle est présente dans le secteur de Hadjret El Gat ou elle affecte intensément les roches affleurantes. Ce réseau de fractures est moins développé au DjorfGhetae et dans le secteur de M'Digh (Monts de Tlemcen). Ce réseau est décrit dans les travaux de GUARDIA (1975) comme ayant un jeux vertical. Il a mis en évidence la direction NNE-SSW et la considère comme étant héritée d'une phase orogénique hercynienne et repris par l'orogenèse atlasique.

D'autres considèrent l'existence de décrochements senestres : Les accidents N10° correspondant aux grand transversaux a jeux senestre (GLANGEAUD, 1951; DUBOURDIEU, 1960 et 1962, ANDRIEUX et *al.*, 1971 *in*THOMAS, 1985). Dans ses travaux, THOMAS (1985) considère cette direction comme des transversaux décrochantes et reconnaît 04 phases différentes :

-une transtention (Serravallien-Tortonien inférieur);

-une transpression (Tortonien supérieur-Messinien);

-une transtention (Pliocène basal);

-une transpression (Plio-quaternaire -actuel

Figure .17 : Réseaux de famille de failles dans le bassin de la Tafna

Figure .18 : Direction des la fracturation dans le bassin de la Tafna .

Suivant les mesures relevées dans les sites du bensakrane et Hadjret El Gat, ce réseau est très développé.

Au niveau du Djebel Djedir, une autre direction est reconnue. Il s'agit d'une direction N-S.

Dans le Djebel Bsibsa, trois directions de fractures sont relevées: NE-SW, E-W, NW-SE.

Et enfin uu niveau de Bensakrane (Djorf El Gherayef), les fractures (décrochements senestres) relevées ont des directions comprises entre N340°-N20°.

2. La direction NE-SW

Cette direction est bien représentée dans les Monts de Tlemcen et dans les secteurs de Hadjret El Gat, Sekkak et Bensakrane « DjorfGherayef ». THOMAS (1985) a considèré ce réseau comme un réseau distensif.

3. La direction ENE-WSW

D'après BENEST (1985), les accidents liés à cette direction sont anciens et sont reconnus au niveau de la bordure méridionale du bassin (Mont de Tlemcen).

4.La direction E-W

Cette direction est bien repérée dans le secteur de Tlemcen. THOMAS (1985) signale que les principales failles sont associées à des structures plissées, et cela est confirmé par direction de l'anticlinale de Djebel Djedir.

5. La direction NW-SE

Généralement ces accidents jouent soit en dérochements dextres soit comme des failles normales (THOMAS, 1985). Cette direction est bien représentée dans presque tous les secteurs El Ghetae, El Gherayef et Sekak.

II. EVOLUTION STRUCTURALE DE LA REGION D'ETUDE

L'Algérie Nord occidentale a connu deux grandes périodes orogéniques: une tectogénèse dite pré-atlasique et l'autre tectogenèse appelée atlasique (GUARDIA ,1975).

-La tectogénèse pré-atlasique.

Elle regroupe tous les mouvements tectoniques ayant affectés le socle pendant la période de sédimentation de la couverture secondaire. Ces mouvements sont décelés grâce aux perturbations provoquées au cours de la subsidence. Ils concernent les failles N20 et N50 qui rejouent ainsi en régime distensif et permettent l'individualisation des bordures orientale et occidentale des Traras respectivement du Trias au Crétacé.

-La téctogénèse atlasique

Elle concerne les mouvements qui se sont produits pendant l'émersion définitive de la région au Crétacé supérieur, et au cours de la transgression miocène. Les structures observées sont rapportées à trois phases tectogéniques essentielles.

-La première phase majeure de tectogénèse

D'âge éocène, cette phase agit en compression. Elle est responsable de l'ébauche des principaux plis de grande amplitude qui déforment la région.

-La seconde phase

D'âge oligo-miocène, elle se révèle d'une très grande importance dans l'édification architecturale de la région. Elle est distensive et permet l'individualisation des horsts et des grabens grâce au rejeu vertical important des accidents principaux N50 et pour une moindre part N20.

-La dernière phase

Il s'agi d'une phase compressive. Elle débute au Miocène supérieur et ses effets s'étendue jusqu'au Quaternaire. Elle se manifeste par le rejeu d'accidents en mouvements décrochants et par des déversements des structures formées lors des phases antérieures.

III- RELATION ENTRE LE VOLCANISME ET LA TECTONIQUE

L'emplacement des appareils volcaniques, à l'Oranie nord-occidentale D'une manière générale suivent les principaux accidents qui affectent cette région (Guardia, 1975 ; Thomas, 1976 et 1985, Sadran, 1958 ; Louni-Hacini, 2002).

La présentation des volcanismes du Mio-plio-quaternaire du bassin de la Tafna est dans les secteurs suivants : (Fig.17et18)

- La région d'AïnTemouchent - La région des Souahlia

- La région de la basse Tafna - La région du M'Sirda

Figure .19 :Position stratigraphique et âge du volcanisme en Oranie nord- occidentale (d'après Mégartsi, 1985)

Pour la région d'AïnTemouchent, les centres volcaniques sont disposés pratiquement parallèlement à la direction atlasique (SW-NE) ce qui confirme la relation entre le volcanisme et la tectonique (Guardia, 1975 ; Sadran, 1958 ; Thomas, 1976 et 1985).

Concernent la région de la basse Tafna, ses volcanismes prennent une direction N20 ce qui semblent en concordance avec la direction de la transversale Tafna-Magoura(Megartsi, 1985). Les centres volcaniques qui se situent à la limite occidentale du bassin de la Tafna s'alignent conformément avec la faille bordière des Traras (Sadran, 1958).

Dans les secteurs de M'Sirda et du Sahel d'Oran (aux environ de Bouzedjar), l'activité volcanique est d'âge Miocène et l'ensemble des formations volcaniques sont de type calcoalcalins. A partir de ces résultats nous pouvons déduire que le bassin de la Tafna a connu une activité très intense de point de vue volcanisme et tectonique au cour du Néogène. ainsi que la majorité des centres volcaniques suivent les accidents tectoniques. Ce dynamisme prouve que la région était sans aucun doute active et Qui témoigne l'existence d'une relation entre les émissions volcaniques et les accidents tectoniques.

> Figure .20 : Position stratigraphique et âge des laves volcaniques en Oranie nordoccidentale (Mégartsi, 1985).

IV. CONCLUSION ET CHRONOLOGIE DES FRACTURES

L'analyse structurale a permis de reconnaître plusieurs familles de fractures qui ont une importance régionale. Ces directions moyennes des failles ont toutes contribué, ensemble ou séparément à la structuration du domaine tlemcenien. A partir des différentes relations existantes entre ces familles de failles, une reconstitution de leur chronologie peut être établie:

Ainsi, les réseaux les plus anciens sont ceux orientés à N20 et N50. Ceux -ci affectent essentiellement le socle et se retrouvent aussi dans la couverture. Ils sont donc hérités de l'orogenèse hercynienne et ont été, par la suite, repris par les phases alpines. N10 Ce réseau est hérité d'une phase orogénique hercynienne et repris par l'orogenèse atlasique. (GUARDIA, 1975).

Au niveau de la couverture, les fractures de direction (N-S) et N120 se surimposent aux deux premières et sont donc plus récentes. Elles sont liées aux phases atlasiques au cours desquelles les failles de direction moyenne N50 et N20 ont rejoué en accidents subverticaux et en failles-plis (GUARDIA, 1975).

La tectonique plicative a pris une direction perpendiculaire à celle de raccourcissement entre les deux plaques Afrique et Europe.

REFERENCES BIBLIOGRAPHIQUES

ANDRIEUX, J. (1971) - La structure du Rif central. Etude des relations entre la tectonique de compression et les nappes de glissement dans un tronçon de chaine alpine. Notes Mem. Serv. Géol. Maroc, 235, 155 p.

BENZINA (2012) -Evolution tecto-sedimentaire du bassin de la tafna (tlemcen, algerie nord occidentale)

- **DUBOURDIEU, G. (1962) -** Dynamique Wegenerienne de l'afrique du Nord. In : livre a la mémoire du Professeure P. FALLOT. Mém. Sér. Soc. Géol. France, 1, 627-644.
- FENET B.(1975) -Recherche sur l'alpinisation de la bordure Septrionale du bouclier africain a partir de l'étude d'un élément de l'orogénése nord-maghrébin : les monts du Djebel Tessal et les massif littoral oranais. *Thése. Sc.*, Nice, 301 p.
- GLANGEAUD, L. (1951) Interprétation tectonophysiques des caractères structuraux et paléogéographiques de la méditerranée occidentale. Bull. Soc. Géol. Fr., Paris, série 6, t. 1, p. 735-762, 3 fig.
- GUARDIA P. (1975) -Géodynamique de la marge alpine du continent africain d'après l'étude de l'Oranie nord-occidentale. Relations structurales et paléogéographiques entre le Rif externe, le Tell et l'avant-pays atlasique. *Doctorat d'Etat,* Univ. Nice, France, 286 p.
- LOUNI-HACINI, A. (2002) Transition du magmatisme calco-alcalin au magmatisme alcalin au Néogène dans l'Oranie (Algérie nord-occidentale). Thèse de Doctorat d'Etat, USTHB., Alger.
 - MAZOUZI, A. (2004) La sédimentation détritique profond de la formation des « Grés d'aïn el kihal » (Serravallien) dans la région d'el fhoul (bassin de la tafna, algerie nord occidental). 60 p., 31fig 7.

- MEGARTSI, M. (1985) -Le volcanisme Mio-Plio-Quaternaire de l'Oranie Nord occidentale : Géologie, Pétrologie, Géodynamique. Thèse Doctorat d'Etat, USTHB, Alger, 296p.
- NEURDIN-TRESCARTES J. (1992) Le remplissage sédimentaire du bassin néogène du Chelif, modèle de référence de bassins intra-montagneux. *Doctoratd'Etat*, Univ. Pau et Pays de l'Adour, 605 p.
- **PERRODON A. (1957)** -Etude géologique des bassins néogènes sublittoraux de l'Algérie occidentale. *Ser.Cart. Géol. Algérie, Alger.* 328 p., 96 fig., 8 photos, 4 pl. h-t.
- RAOULT ET FOUCAULT (1984) -de JC Dionne · 1985 Cahiers de géographie du Québec. Foucault, A. et Raoult, J.F. (1984) Dictionnaire de géologie. Paris, Masson (Coll. Guides géologiques régionaux), 2eédition.
- SADRAN, G. (1958) -Les formations volcaniques tertiaires et quaternaires du Tell oranais. Service de la Carte Géologique de l'Algérie, Alger. 535 p., 61 fig., 61 pl. photo.
- **THOMAS, G. (1985)** Géodynamique d'un bassin intra-montagneux, le bassin du bas Cheliff occidental (Algérie) durant le Mio-Plio-Quaternaire. *Doctorat d'Etat*, Univ. Pau,594 p.
- THOMAS,G. (1976) -Mise en évidence de décrochements dextre Est-Ouest d'âge Quaternaire en Algérie Nord Occidentale, C.R. Acad. Sc. Paris, t. 283, 893-896

LISTE DES FIGURES

Fig. 1	Situation générale de la région d'étude (Kheloufi 2015) modifiée	3
Fig. 2	Position géographique des bassins néogènes sublittoraux de l'Algérie	
	occidentale (d'après Perrodon, 1957)	4
Fig. 3	Situation géographique du bassin de la Tafna (d'après Thomas, 1985)	5
fig. 4	Cadre géologique du l'Oranie .(Extrait de la carte géologique de l'Algérie au	
	1/500.000, in BOUCIF, 2006)	6
Fig. 5	Bassin Miocène synchro-nappes (Guardia, 1975)	9
Fig. 6	Distribution des principaux marqueurs de nanofossiles calcaires dans la	
	coupe d'Oued El Ghrour, Formation d'Aïn El Kihal (d'après Mazouzi,	
	2004)	10
Fig. 7	Organisation structurale du Nord de l'Algérie	11
Fig. 8	Les éléments descriptifs d'un plan de faille	14
Fig.9	L'Azimut et pendage des couches	15
Fig.10	Rosace de distribution directionnelle des diaclases	
	(secteur de Hadjeret El Gat)	17
Fig.11	Rosace de distribution directionnelle des diaclases (secteur de Djorf El	
	Ghetae)	19
Fig.12	Stries de glissement avec leurs plans porteurs (A) : Canevas de Schmidt	20
Fig.13	Rosace de distribution directionnelle des diaclases (secteur de sekkak)	22
Fig.14	Rosace de distribution directionnelle des diaclases	23
Fig.15	Rosace de distribution directionnelle des diaclases (secteur d'El bordj)	25
Fig.16	Rosace de distribution directionnelle des diaclases.(secteur de mont de	
	Tlemcen)	26
Fig.17	Réseaux de famille de failles dans le bassin de la Tafna	27

Fig.18	Direction des la fracturation dans le bassin de la Tafna	28
Fig.19	Position stratigraphique et âge du volcanisme en Oranie nord- occidentale	
	(d'après Mégartsi, 1985)	31
Fig.20	Position stratigraphique et âge des laves volcaniques en Oranie nord-	
	occidentale (Mégartsi, 1985)	32

LISTE DES TABLEAUX

Tableau .1	Direction des fracturations de la région Hadjeret El Gat	16
Tableau .2	Familles des Direction de la fracturation de la région Hadjeret El Gat	17
Tableau .3	Direction de la fracturation de la région de Djorf El Ghetae	18
Tableau. 4	Récapitulatif des mesures de direction de la fracturation de Djorf El	
	Ghetae	18
Tableau. 5	Direction des fracturations de la région de Sekkak	21
Tableau .6	Familles des Direction de la fracturation de la région de Sekkak	21
Tableau .7	Direction de la fracturation de DjorfGhrayef	22
Tableau .8	Récapitulatif des mesures de direction de la fracturation DjorfEl	
	Ghrayef	23
Tableau .9	Direction de la fracturation Le site d'El bordj. (Calcaires de	
	Zarifet, Dolomies de Tlemcen) la marge méridionale du bassin	24
Tableau .10	Tableau 10- Récapitulatif des mesures de direction de la fracturation	
	(Site d'El bordj)	24
Tableau .11	Direction de la fracturation Les Monts de Tlemcen. (la marge	
	Méridionale du dubassindansleformationscalcairesdeZarife	
	DolomiedesTlemcen)	25
Tableau .12	Récapitulatif des mesures de direction de la fracturation de M'Digh	
	(Monts de Tlemcen)	26

RESUME

L'objectif de cette étude est possible qu'à partir des mesures des directions dans différents secteurs au niveau de la formation des « Grès d'AïnKihal » dans le bassin Neogene de la Tafna (Algérie nord occidentale). Ces mesures a pour but d'établis un essai de une chronologique de l'évolution géodynamiques.

En effet, l'analyse structurale a permis de reconnaître plusieurs familles de fractures d'une importance régionale. Les directions moyennes des failles contribuent ensemble ou séparément à la structuration du domaine Tlemcenien. Notons qu'au niveau de la couverture, les directions de la fracturation montrent une parfaite relation avec les phases atlasiques.

Mots -clés :

Néogène, Tafna, Algérie nord occidentale, chronologique, l'évolution géodynamiques.

ABSTRACT

The purpose of this study is doable through a set of direction measurements in different sectors at the level of the formation of "AïnKihal Sandstone" from the Neogene basin of Tafna (north-western of Algeria). The objective of these measurements is to establish a test of a chronological geodynamic evolution.

Indeed, structural analysis has identified several families of fractures of regional importance. The average fault directions contribute together or separately in the structuration of the Tlemcenian domain. Taking in to consideration that at the level of the cover, the directions of the fracturing show a perfect relationship with the atlas phases.

Key words:

Neogene, Tafna, Northwestern of Algeria, chronological, geodynamic evolution.