UNIVERSITE KASDI MERBAH OUARGLA

Faculté des Sciences Appliquées Département de Génie Electrique

Mémoire MASTER ACADEMIQUE

Domaine : Sciences et technologies Filière : Electrotechnique Spécialité : Machines électriques Présenté par :

GHERAIR ELHABIB SERRAOUI TIDJANI

Thème:

Identification des paramètres électriques par

les invariants d'un moteur asynchrone à cage

d'écureuil

Soumis au jury composé de :

MCA

MAA

MAA

M^{me} BOUALI KHADIDJA

M. SAHRAOUI Lazhar

M. IDER ZAHIR

Président Encadreur/rapporteur Examinateur UKM Ouargla UKM Ouargla UKM Ouargla

Année universitaire 2020/2021

REMERCIEMENTS

Merci

Tout d'abord, nous remercions Dieu Tout-Puissant pour la bonne santé, la volonté et la patience qu'il nous a données tout au long de notre vie.

une étude.

Nous adressons nos sincères remerciements à M. **SAHRAOUI Lazhar**, notre promoteur de ce travail, et ses conseils pertinents, ses orientations et sa sagesse pour sa grande patience et diligence envers nous, et pour ses suggestions qui ont grandement facilité ce travail.

Nous remercions **Bouali Khadija**, maître de conférences à l'Université de Ouargla, de nous avoir honoré en tant que président du jury. Cette thèse.

Nous lui exprimons notre gratitude.

Nous adressons nos sincères remerciements au professeur. Aider Zaher Professeurs de l'Université de Ouargla IIs ont eu la gentillesse de mobiliser leur temps et leurs compétences pour juger ce travail, en leur souhaitant plein succès.

Nous tenons à exprimer nos sincères remerciements à ceux qui nous ont apporté leur soutien et contribué à l'élaboration de cette thèse de près ou de loin.

Remerciements particuliers aux étudiants de deuxième année de master en génie électrique.

S. Tidjani G.El Habib

ONédicace

Je dédie ce modeste travail à tous ceux qui ont contribué de près ou de loin à la réalisation de mon projet, je le dédie donc à :

Et que les premiers d'entre eux sont les parents, car ils ont une grande bénédiction qui atteint les hauteurs du ciel, car leur présence a été la raison de mon éducation et de ma réussite. A ma chère mère, Fatima Ben Azza qui n'a ménagé aucun effort pour me rendre heureuse, et à mon cher père, Mammar qui a un visage souriant et une tendresse inépuisable, que Dieu vous accorde santé, bonheur et longue vie.

A ceux qui dépendent d'eux pour tout, grand et petit (mes chers frères

et sœurs.)

Pour le merveilleux ingénieur Younes Saifi le propriétaire des informations utiles.

Pour le professeurs Hacene Mellah le propriétaire des informations utiles.

A mes amis et connaissances que j'aime et respecte.

A mes professeurs de la faculté de génie électrique.

Gherair Elhabib

Dédicace

Dieu merci pour la bénédiction des parents, je dédie cet humble travail à mon soutien et l'eclat de mon chemin vers: qui m'a appris la persévérance et comment marcher la tête haute

Mon cher père (Khalifa)

Et à la <mark>sou</mark>rce de tendresse et Im Koror Batavant qui m'accueille avec le sourire et me fait ses adieux avec l'invitation de ma chère m<mark>ère</mark> (D<mark>je</mark>maa Serraoui)

Et à mon deuxième père et à la montagne sur laquelle il s'est appuyé Dans l'adversité mon frère (Mohammed Lakhdar) et toutes mes soeurs et mes neveux en général.

et Mohammed bin Azza en particulier , et à mes cousins et à toute la famille Serraoui en général et en particulier : Youcef, Abd ennour,Mesbah ,Abdel Ghani Et Younes, Abdel Hafed Et Houcine ,Djamal,Abdel aziz...

et tous ceux qui ont laissé une bonne impression dans mon cœur est un signe d'amour et de respect.

à ma motivation pour réussir, ma chère fiancée

7idjani Serraoui

LISTE DES FIGURE

Chapitre I

Constitution et Príncipe fonctionnement d'un MAS

Figure I.1 : Eclaté d'un moteur asynchrone à cage	5
Figure I.2 : Stator de la machine asynchrone	6
Figure I.3 : Rotor à cage d'écureuil	7
Figure I.4 : Vue d'un rotor bobiné	7
Figure I.5 : Schéma de principe d'un rotor bobiné	8
Figure I.6 : Rotor à double cage	8

Chapitre II

Modélisation de la machine asynchrone en régime

Figure II.1: Représentation des enroulements d'un moteur asynchrone dans le plan électrique.	13
Figure II.2 : Représentation du repère tournant de Park.	17
Figure II.3 : Repérage angulaire des systèmes d'axes des différents repères.	18
Figure II.4 : Résultats de simulation lors du démarrage en charge de la machine sous tension et	
fréquence nominales dans le repère lié au stator.	24
Figure II.5 : Les courant _{abc} du la sorté de machine tréphasé	26
Figure II.6: Evolution des grandeurs rotoriques de la machine à simple cage dans le repère lié au	l
rotor	26

Chapitre III

Modélisation de la machine asynchrone en régime permanent	
Figure III.1.Modèle aux circuits couplés	29
Figure III.2.Schéma équivalent ramené au stator avec inductances de fuites partielles.	31
Figure III.3.Schéma équivalent ramené au stator avec inductance de fuites totalisées au rotor	32
Figure III.4.Schéma équivalent ramené au stator avec inductances de fuites totalisées au stator	34
Figure III.5 Evolution du courant statorique diphasé et du couple on fonction la vitesse et le	
glissement en régime permanent de la machine sous tension et fréquence nominales	35
Figure III.6 Schéma équivalent du modèle idéalisé de la machine	37

Chapitre IV

Identification de la machine asynchrone à cage par les invariants

Figure IV.1 Schéma équivalent de la machine asynchrone à cage en régime permanent	40
Figure IV.2 l'impédance Z en fonction du glissement.	43
Figure IV.3 Facteur de puissance en fonction du glissement.	43

LISTE DES TABLEAUX

Chapitre IV

Identification de la machine asynchrone à cage par les invariants

Tableau IV.1 : Tableau de mesure	44
Tableau IV.2 : Résultat de la première étape	44
Tableau IV.3 : Résultat de la première étape avec $L_{\sigma s} = 0 H$	44
Tableau IV.4 : Résultat de la première étape avec $L_{\sigma r} = 0 H$	44
Tableau IV.5 : comparésone Les paramètres Calculé et exactes	45

Notations et symboles

MAS	Machine asynchrone.
s,r	Indices relatifs au stator et au rotor.
R _s	résistance propre d'une phase statorique.
R _r	résistance propre d'une phase rotorique.
L _s	inductance propre d'une phase statorique.
L _r	inductance propre d'une phase rotorique.
M_s	l'inductance mutuelle entre deux phases statoriques.
M_r	l'inductance mutuelle entre deux phases rotoriques.
M_{rs}	inductance mutuelle stator par apport au rotor.
M _{sr}	l'inductance mutuelle rotor par apport au stator.
V _{sabc}	le tension triphasé statorique.
V _{rabc}	le tension triphasé rotorique.
i _{sabc}	le courant triphasé statorique.
i _{rabc}	le courant triphasé rotorique.
ϕ_{sabc}	le flux triphasé à traver le enroulement statorique.
ϕ_{rabc}	le flux triphasé à traver le enroulement rotorique.
α	écart angulaire électrique entre une phase du stator et celle du rotor.
Р	nombre de paire de pôles.
θ	écart angulaire mécanique telle que $\alpha = p\theta$.
Ω	vitesse angulaire de rotation.
ω	vitesse angulaire électrique telle que $\omega=p\Omega$.
Се	couple électromagnétique.
Cr	Couple de charge.
θ_s	Angle électrique formé par l'axe direct d et l'axe de la phase a du stator.
$\theta_{\rm r}$	Angle électrique que forme l'axe direct d et l'axe de la phase a du rotor.
α	Ecart angulaire entre l'axe de la phase a du stator avec celui du rotor de la même
	phase.
J	Moment d'inertie de la machine.
f	Coefficient de frottement.
W	Pulsation mécanique [rad/s].
W_s	Pulsation statorique [rd/s].

W_r	Pulsation rotorique [rd/s].
V	Tension [V].
L	Courant [A].
j	Grandeur imaginaire tel que $j^2 = -1$.
x	Grandeur instantanée (tension, courant ou flux).
\overline{x}	Grandeur complexe instantanée associée à x.
σ	Coefficient de dispersion.
MIV _S	Modèle des paramètres invariants.
PPs	Paramètres primitifs.

SOMMAIRE

2

CHAPITRE I Constitution et Príncipe fonctionnement d'un MAS I.1 Introduction 5 I.2 Constitution de la machine asynchrone 5 I.2.1 Stator 5 I.2.2 Le rotor 6 I.2.2.1 Rotor à cage d'écureuil 6 I.2.2.2 Rotor bobiné 7 I.2.2.3 Rotor à double cage 8 I.3 Principe de fonctionnement de la machine asynchrone 8 I.3.1 Le glissement 9 I.3.2 Fréquence rotorique 10 I.3.3 Rendement η 10 I.3.4 Domaine d'utilisation des moteurs asynchrones 10 I.3.5 Avantages et inconvénients 11 I.3.5.1 Avantages 11 I.3.5.2 Inconvénients 11 I.4 Conclusion 11

Chapitre II

Modélisation de la machine asynchrone en régime dynamique

II.1 Introduction	13
II.2 Modélisation triphasée	13
II.2.1 Description hypothèses simplificatrices	13
II.2.1.1 Description	13
II.2.1.2 Hypothèses simplificatrices	13

II.2.1.3 Modèle dynamique dans le repère triphasé	14
II.2.2 Équations électriques et magnétiques	14
II.2.2.1 Équations électriques	14
II.2.2.2 Équations magnétiques	15
II.3 Couple électromagnétique	15
II.4 Modélisation diphasée	16
II.4.1 Transformation de Park et de Concordia	16
II.4.2 Modèle dynamique dans le repère de Park	17
II.4.2.1 Equations des flux	17
II.4.2.2 Equations des tensions	19
II.4.3 Modèle vectoriel de la machine dans le modèle de Park	20
II.5 Expression du couple électromagnétique	21
II.6 Choix des référentiels	22
II.6.1 Référentiel stationnaire lié au stator	22
II.6.2 Référentiel stationnaire lié au rotor	22
II.6.3 Référentiel stationnaire lié au champ tournant	23
II.7 Equation mécanique	23
II.8 Simulation	24
II.9 Conclusion	27

Chapitre III

Modélisation de la machine asynchrone en régime permanent

III.1 Introduction	29
III.2 Simplification des équations	29
III.2.1 Equations des grandeurs complexes spatiales dans un référentiel lié au champ tournant	29
III.3 Modèles équivalents	29
III.3.1 Modèle avec circuit couplés	29

III.3.2 Modèle avec inductances de fuites partielles	30
III.3.3 Modèle avec inductances de fuites totalisées au rotor	31
III.3.4 Modèle avec inductances de fuites totalisées au stator	33
III.4 Simulation	35
III.5 Modèle dynamique de la machine en tenant compte des pertes fer	36
III.5.1 Schéma équivalent du modèle idéalisé	36
III.5.2 Modèle dynamique avec pertes fer	36
III.6 Conclusion	37

Chapitre IV

Identification de la machine asynchrone à cage par les	s invariants
--	--------------

IV.1 Introduction	39
IV.2 Schéma équivalent en régime permanent	39
IV.3 Expression de l'impédance d'entrée	40
IV.4 Méthodes d'identification	41
IV.5 Méthode des invariants	42
IV.6 Identification numérique	42
IV.6.1 Méthode de Newton-Raphson	42
IV.7 Mesures effectuées	43
IV.8 Résultats d'identification	44
IV.9 Validation des résultats	45
IV.10 Conclusion	45

Conclusion Générale	47
Annexe A	48
Références Bibliographiques	49

INTRODUCTION GENERALE

Introduction Générale

De tous les moteurs électriques, le moteur à induction est le plus répandu vu sa robustesse, son cout et sa simplicité. Il n'est donc pas surprenant de voir qu'il fait l'objet de nombreux travaux de recherche visant l'amélioration de sa modélisation et à optimiser sa conception. En dépit de sa simplicité de fabrication et de mise en œuvre, la modélisation et le calcul d'un moteur asynchrone n'est une tâche facile.[9]

Depuis l'invention de la machine asynchrone en 1889, elle ne cesse de progresser elle occupe une part importante dans l'industrie de la transformation d'énergie (près de 80 %), ceci est dû à sa robustesse, sa grande fiabilité, la quasi-absence de l'entretien, sa facilité de mise en œuvre, la simplicité de sa construction et son coût réduit.[3]

Plusieurs axes de recherches sont destinés à l'étude de cette machine : sa modélisation et sa commande. Ainsi, il est exigé dans l'élaboration des lois de commande performantes, un modèle fiable et suffisamment précis par la connaissance de ses paramètres. De nos jours, un afflux des travaux de recherche consistent en l'identification des paramètres des machines électriques par différentes méthodes en guise de réaliser les meilleures approches possibles du modèle de la

machine. L'identification paramétrique de la machine asynchrone est l'un des objectifs les plus importants en vue de sa simulation, sa commande .[2]

Objectif et structure du mémoire

L'objectif assigné à ce travail est d'expliquer des différentes (mettre en œuvre au moins une méthode) méthodes d'identification des paramètres de la machine asynchrone, contribuent considérablement à l'identification initiale exigée par les méthodes numériques. Pour bien présenter notre travail, nous l'avons organisé en quatre chapitres :

- Le premier chapitre est un aperçu général sur la constitution et le fonctionnement de la machine asynchrone
- Dans le deuxième chapitre nous exposons un rappel de la modélisation de la machine asynchrone triphasée en régime dynamique par la méthode des deux axes de Park qui permet de transformer la machine asynchrone triphasée en une machine asynchrone diphasé équivalente. Cela permet d'établir un modèle mathématique complet de Park mis sous forme d'équation d'état

- Dans le troisième chapitre nous exposons la modélisation de la machine asynchrone en régime permanent, quand la vitesse devient constante, le régime permanent est atteint et les grandeurs électriques et magnétiques sont toutes des fonctions sinusoïdales du temps. Ceci est une représentation Les divers schémas équivalents qui peuvent être associé à ces équations facilitent l'étude des fonctionnements en régime permanent.
- Le quatrième chapitre, propose les deux méthodes utilisées à savoir la méthode en deux étapes (TSM) et de Newton-Raphson pour son identification numérique. l'identification des paramètres électriques de la machine asynchrone en régime permanant à partir du schéma équivalent ramené au stator.

Ce mémoire est achevé par une conclusion générale.

CHAPITRE I

CONSTITUTION ET PRINCIPE DE FONCTIONNEMENT DE LA MACHINE ASYNCHRONE

I.1 Introduction

La machine asynchrone ou bien le moteur à induction est une machine électrique tournante à courant alternatif dont sa vitesse de rotation est inférieure à celle du champ magnétique du stator d'où vient le nom « asynchrone ». Cette machine est réversible ça veut dire qu'elle peut fonctionner comme moteur en transformant l'énergie électrique en énergie mécanique comme elle peut fonctionner comme génératrice en transformant l'énergie mécanique en énergie électrique. Le domaine de puissance va de quelques watts à plusieurs mégawatts. Cette machine est reliée directement au réseau industriel à tension et fréquence constante.

I.2 Constitution de la machine asynchrone

Figure. I.1 : Eclaté d'un moteur asynchrone à cage.

Un moteur asynchrone triphasé comporte deux parties principales : un stator ou inducteuret un rotor ou induit séparés par un entrefer de faible épaisseur.[1]

I.2.1 Stator

Les différents types des moteurs asynchrones ne se distinguent que par le rotor ; dans tous les cas le stator reste au moins dans son principe le même. Il est constitué d'un enroulement bobiné réparti dans les encoches du circuit magnétique statorique destiné à produire le champ tournant. Ce circuit magnétique est constitué d'un empilage de tôles dans lesquelles sont découpées des encoches parallèles à l'axe de la machine.[4]

Figure I.2 : Stator de la machine asynchrone.

I.2.2 Le rotor

Le rotor du moteur supporte un bobinage bobinage triphasé décalés de $2\pi/3$ à même nombre de pôles que celle du stator . Ces 3 bobinages sont couplés en étoile et court-circuités sur euxmêmes. Ce type de rotor est dit bobiné mais on peut envisager un rotor plus sommaire constitué de barres conductrices court-circuitées par un anneau conducteur à chaque extrémité. Le rotor est la partie mobile du moteur asynchrone. Couplé mécaniquement à un treuil d'ascenseur par exemple, il va créer un couple moteur capable de fournir un travail de montée et de descente de la cabine d'ascenseur. Il se compose essentiellement :

D'un empilage de disques minces isolés entre eux et clavetés sur l'arbre du rotor afin de canaliser et de faciliter le passage du flux magnétique.

D'une cage d'écureuil en aluminium coulé dont les barreaux sont de forme trapézoïdale pour les moteurs asynchrones standards et fermés latéralement par deux "flasques" conductrices.[5]

I.2.2.1 Rotor à cage d'écureuil

C'est le plus fréquent. Ce type de rotor a été inventé par Michail Ossipowitsch Doliwo-Dobrowolski en 1889. Il est constitué de tôles ferromagnétiques et de barres conductrices très souvent en aluminium avec des extrémités court-circuitées par deux couronnes également conductrices, sa résistance électrique est très faible.[1]

Figure I.3 : Rotor à cage d'écureuil.

I.2.2.2 Rotor bobiné

Le rotor bobiné (à bagues) : il porte un système d'enroulements triphasés, raccordés en étoile \dot{a} trois bagues sur lesquelles frotte trois balais accessibles par la plaque à bornes et mis en courtcircuit pendant les régimes de fonctionnements normaux. Ce mode d'exécution permet l'accès direct aux grandeurs électriques rotoriques, et éventuellement la modification de certaines caractéristiques, spécialement couple-vitesse, par insertion d'un rhéostat extérieur ou par adjonction d'un convertisseur statique ; **[2]**.

Figure I.4 : Vue d'un rotor bobiné .

Figure I.5 : Schéma de principe d'un rotor bobiné.

I.2.2.3 Rotor à double cage

Il comporte deux cages coaxiales : une cage externe à une résistance élevée, elle est active au démarrage pour réduire l'appel du courant et d'augmenter le couple.

une cage interne (en cuivre) est moins résistive, elle est active en régime nominal et cela pour réduire les pertes par effet joule au rotor.[4]

I.3 Principe de fonctionnement de la machine asynchrone

Le principe des moteurs asynchrones réside dans l'utilisation d'un champ magnétique tournant produit par des tensions alternatives .On alimente les trois bobines statoriques qui sont déphasées de 120 degrés par une source alternative triphasée, ceci permet de créer un champ magnétique tournant, on peut le considérer comme un champ constant qui tourne à la pulsation de synchronisme[1][4] :

$$\Omega_S = \frac{W_S}{P} \qquad [rd/s]$$

Ce fonctionnement est reposé sur le principe de l'interaction électromagnétique du champ tournant, créé par le courant triphasé fourni à l'enroulement statorique par le réseau, et des courants induits dans l'enroulement rotorique lorsque les conducteurs de ce dernier sont coupés par le champ tournant.

Lorsque le rotor tourne à une vitesse Nr différente du synchronisme, l'application de la loi de faraday à un des roulements rotoriques montre que celui-ci devient le siège d'une force électromotrice $e = -\frac{d\varphi}{dt}$ qui étant court-circuité sur les enroulements va donner naissance à un courant dont l'intensité est limitée par l'impédance de ce dernier. L'interaction entre ce courant et le champ glissant va donner naissance à des forces de Laplace ($d\vec{F} = i. d\vec{L} \wedge \vec{B}$) s'exerçant sur le rotor dont le moment par rapport à l'axe de rotation constituera le couple de la machine. Lorsque le champ est sinusoïdal, sa vitesse de rotation est:

$$N_S = \frac{f}{p}$$
 en tr/s ou $N_S = \frac{60f}{p}$ tr/min

Où

f : est la fréquence d'alimentation.

p : représente le nombre de paires de pôles

L'interaction électromagnétique des deux parties de la machine n'est possible que lorsque la vitesse du champ tournant (Ns) diffère de celle du rotor (Nr), c'est à dire lorsque Ns≠Nr, car dans le cas contraire, c'est-à-dire lorsque Ns=Nr, le champ serait immobile par rapport au rotor et aucun courant ne serait induit dans l'enroulement rotorique [3].

I.3.1 Le glissement

Le glissement est l'une des grandeurs qui caractérisent le moteur asynchrone des autres moteurs, c'est l'écart entre la vitesse du champ tournant statorique et la vitesse de la rotation de la machine exprimé relativement à la vitesse synchrone, il est évalué comme suit [3,4]

$$g = \frac{N_S - N_r}{N_S} = \frac{\Omega_S - \Omega_r}{\Omega_S}$$

Ns : vitesse de rotation du rotor en [tr/min].

 Ωs : vitesse mécanique synchrone de rotation du champ tournant en [rad/s].

 Ω r: vitesse mécanique de rotation du rotor en [rad/s].

Si le rotor tournait à la vitesse synchrone Ω s, donc aussi vite que le flux tournant de stator, le flux à travers chacune des bobines rotoriques serait constant. Donc il y aura plus de f.e.m induite au rotor, donc plus de courant, plus de couple et plus de rotation

I.3.2 Fréquence rotorique

Si le rotor tourne à la vitesse Ωr , il est balayé par le flux entrainé à la vitesse $\Omega s - \Omega r$ donc les forces électromagnétiques et les courants induits ont pour pulsation[3] :

 $\omega_r = g. \omega_s$

Et la fréquence rotorique

$$f_r=g.f_s$$

I.3.3 Rendement η

Le rendement ŋ est une grandeur qui exprime la performance d'un moteur asynchrone, elle est définie comme étant le rapport entre la puissance utile et la puissance absorbée[1][3].

$$\eta = \frac{P_U}{P_a}$$

I.3.4 Domaine d'utilisation des moteurs asynchrones

Le moteur asynchrone, ou moteur à induction, est le moteur le plus utilisé dans la plupart des entrainements électrique. Son principal avantage réside dans l'absence de contacts électriques glissants, ce qui conduit à une structure simple, robuste mécanique et facile à construire, leur stator est relié directement au réseau industriel à tension et fréquence constante, il tourne à vitesse peu différente de la vitesse de synchronisme; c'est lui qui est utilisé pour la réalisation de la quasi-totalité des entraînements à vitesse constante. Il permet aussi la réalisation d'entraînements à vitesse variable et la place qu'il occupe dans ce domaine ne cesse de croître.[6]

A titre d'exemple on peut citer:

-La première génération, le TGV Sud-Est, utilisait une traction à moteur à courant continu.

-La seconde génération, le TGV Atlantique, passe à l'utilisation des machines synchrones.

-La troisième génération, le TGV Trans-Manche, poursuit la révolution engagée en passant au moteur à induction associé à des onduleurs de tension.

Aujourd'hui, la plus part des machines utilisées dans le domaine de l'énergie éolienne sont des machines asynchrones selon ces deux modes : à vitesse variable et à vitesse fixe. Grâce au machines asynchrones la conversion de l'énergie électromécanique dans les systèmes éoliens a fait une nette amélioration technologique vu leurs robustesses, leurs performances et leurs coût de revient. Elles sont classées les premières devant les machines synchrones et les autres machines.[1]

I.3.5 Avantages et inconvénients de la machine asynchrone

Comme les autres machines électriques, la MAS présente quelques avantages et inconvénients qui sont liés à plusieurs facteurs : sa structure, sa stratégie de commande et ses applications .

I.3.5.1 Avantages

Parmi les avantages de la machine asynchrone et notamment en fonctionnementmoteur, on peut Citer :

- sa robustesse mécanique.
- son faible coût.
- l'absence d'entretien constant.

I.3.5.2 Inconvénients

L'inconvénient majeur du moteur asynchrone est relié à l'absorption du réactif qu'il faut parfois Compenser, à des pertes de glissement et surtout à la nécessité de fonctionner pratiquement au Voisinage de la vitesse de synchronisme.

- Le courant de démarrage plus élevé (5 à 8 fois le courant nominal).
- Difficile de contrôler la vitesse[6]

I.4 Conclusion

Dans ce chapitre on a présenté quelques généralités sur la machine asynchrone, ses différents constituants ainsi que son principe de fonctionnement, ce qui va contribuer à entamer les autre chapitres et mettre en évidence le modèle mathématique de la MAS en régime dynamique qui sera l'objectif du deuxième chapitre.

CHAPITRE II

MODELISATION DE LA MACHINE ASYNCHRONE EN REGIME DYNAMIQUE

II.1 Introduction

Un modèle est un outil mathématique qui permet de représenter ou de reproduire un système réel donné. L'intérêt d'un modèle est l'analyse et la prédiction du comportement en régime statique et dynamique du système physique. L'objectif de ce chapitre est de donner un aperçu sur la modélisation des machines asynchrones triphasées sous forme d'équation.

II.2 Modélisation triphasée

II.2.1 Description hypothèses simplificatrices

II.2.1.1 Description

Un moteur asynchrone comporte au stator un enroulement dont les trois phases sont nommée a, b et c et au rotor un enroulement dont les trois phases sont nommées A, B et C[10].

Figure II.1: Enroulements d'un moteur asynchrone dans le plan électrique.

II.2.1.2 Hypothèses simplificatrices

La modélisation s'appuie sur un certain nombre d'hypothèses :

- La machine présente une parfaite symétrie triphaséde construction
- L'entrefer est de largeur constante, l'effet des encoches est négligé
- La répartition spatiale des inductions magnétiques d'entrefer est sinusoïdale
- Le circuit magnétique est linéaire, la saturation l'hystérésis et les pertes ferromagnétiques ne sont pas prises en compte
- Les résistances sont constantes, la variation avecla température et l'effet de peau sont ignorés.

II.2.1.3 Modèle dynamique dans le repère triphasé

Les phases statoriques sont alimentées par un réseau de tensions sinusoïdales équilibrées à amplitude et fréquence constantes.

Définissons et désignons par :

R_s , L_s	résistance et inductance propre d'une phase statorique.
R_r , L_r	résistance et inductance propre d'une phase rotorique.
M _s	l'inductance mutuelle entre deux phases statoriques.
<i>M</i> _r	l'inductance mutuelle entre deux phases rotoriques.
M _{sr}	inductance mutuelle stator par apport au rotor et $M0$ est sa valeur maximale.
M _{rs}	l'inductance mutuelle rotor par apport au stator.
V_{sabc}, V_{rabc}	les tensions triphasées statoriques et rotoriques.
i _{sabc} , i _{rabc}	les courants triphasés statoriques et rotoriques.
ϕ_{sabc}, ϕ_{rabc}	les flux triphasés à travers les enroulements statoriques et rotoriques.
А	écart angulaire électrique entre une phase du stator et celle du rotor.
Р	nombre de paire de pôles.
Θ	écart angulaire mécanique telle que $\alpha = p\theta$.
Ω	vitesse angulaire de rotation.
ω	vitesse angulaire électrique telle que $\omega=p\Omega$.
Се	couple électromagnétique.

II.2.2 Équations électriques et magnétiques

II.2.2.1 Équations électriques

Les équations électriques de la machine asynchrone sont celles d'un circuit mobile dans un champ tournant, où le flux est fonction du temps et de l'angle entre les enroulements [10][11]:

$$V_j = R_j i_j + \frac{d\phi_j}{dt}$$
(II.1)

Au stator :

$$V_{as} = R_s i_{as} + \frac{d\phi_{as}}{dt}$$
(II.2)

$$V_{bs} = R_s i_{bs} + \frac{d\phi_{bs}}{dt}$$
(II.3)

$$V_{cs} = R_s i_{cs} + \frac{d\phi_{cs}}{dt}$$
(II.4)

Au rotor :

$$V_{ar} = R_r i_{ar} + \frac{d\phi_{ar}}{dt}$$
(II.5)

$$V_{br} = R_r i_{br} + \frac{d\phi_{br}}{dt}$$
(II.6)

$$V_{cs} = R_r i_{cr} + \frac{d\phi_{cr}}{dt}$$
(II.7)

II.2.2.2 Équations magnétiques

Au stator

$$\begin{bmatrix} \phi_{as} \\ \phi_{bs} \\ \phi_{cs} \end{bmatrix} = \begin{bmatrix} L_s & M_s & M_s \\ M_s & L_s & M_s \\ M_s & M_s & L_s \end{bmatrix} \begin{bmatrix} i_{as} \\ i_{bs} \\ i_{cs} \end{bmatrix} + \begin{bmatrix} m_{aa} & m_{ab} & m_{ac} \\ m_{ba} & m_{bb} & m_{bc} \\ m_{ca} & m_{cb} & m_{cc} \end{bmatrix} \begin{bmatrix} i_{ar} \\ i_{br} \\ i_{cr} \end{bmatrix}$$
(II.8)

avec:
$$\mathbf{m} = \begin{bmatrix} m_{aa} & m_{ab} & m_{ac} \\ m_{ba} & m_{bb} & m_{bc} \\ m_{ca} & m_{cb} & m_{cc} \end{bmatrix} = \mathbf{M} \begin{bmatrix} \cos \alpha & \cos \left(\alpha + \frac{2\pi}{3}\right) & \cos \left(\alpha + \frac{4\pi}{3}\right) \\ \cos \left(\alpha - \frac{2\pi}{3}\right) & \cos \alpha & \cos \left(\alpha + \frac{2\pi}{3}\right) \\ \cos \left(\alpha - \frac{4\pi}{3}\right) & \cos \left(\alpha - \frac{2\pi}{3}\right) & \cos \alpha \end{bmatrix}$$
(II.9)

Au rotor

$$\begin{bmatrix} \phi_{ar} \\ \phi_{br} \\ \phi_{cr} \end{bmatrix} = \begin{bmatrix} L_r & M_r & M_r \\ M_r & L_r & M_r \\ M_r & M_r & L_r \end{bmatrix} \begin{bmatrix} i_{ar} \\ i_{br} \\ i_{cr} \end{bmatrix} + \begin{bmatrix} m_{aa} & m_{ab} & m_{ac} \\ m_{ba} & m_{bb} & m_{bc} \\ m_{ca} & m_{cb} & m_{cc} \end{bmatrix} \begin{bmatrix} i_{as} \\ i_{bs} \\ i_{cs} \end{bmatrix}$$
(II.10)

avec:
$$[m]^{t} = \begin{bmatrix} m_{aa} & m_{ab} & m_{ac} \\ m_{ba} & m_{bb} & m_{bc} \\ m_{ca} & m_{cb} & m_{cc} \end{bmatrix} = M \begin{bmatrix} \cos \alpha & \cos \left(\alpha - \frac{2\pi}{3}\right) & \cos \left(\alpha - \frac{4\pi}{3}\right) \\ \cos \left(\alpha + \frac{2\pi}{3}\right) & \cos \alpha & \cos \left(\alpha - \frac{2\pi}{3}\right) \\ \cos \left(\alpha + \frac{4\pi}{3}\right) & \cos \left(\alpha + \frac{2\pi}{3}\right) & \cos \alpha \end{bmatrix}$$
(II.11)

II.3 Couple électromagnétique

Notions par:
$$[I] = \begin{bmatrix} i_{sabc} \\ i_{rabc} \end{bmatrix}$$
 et $[I] = \begin{bmatrix} [L_{ss}] & [M_{sr}] \\ [M_{rs}] & [L_{rr}] \end{bmatrix}$ (II.12)

Avec [i]: vecteur courant et [L]: matrice des inductances

le couple électromagnétique s'exprime par la relation suivante :

$$C_{e} = \frac{1}{2} p[i]^{\pi} \frac{\partial}{\partial \alpha} [L][i]$$
(II.13)

II.4 Modélisation diphasée

II.4.1 Transformation de Park et de Concordia

Le passage du modèle triphasé au modèle diphasé équivalent est réalisé par des transformations normées de Park et de Concordia permettant la conservation de la puissance. Le repère de Park est constitué par trois axes(d, q, o) orthogonaux deux à deux dont d est l'axe direct, q est l'axe orthogonal à d et o est l'axe homopolaire.

Si α désigne l'angle électrique formé par l'axe direct d du repère diphasé et le repère fixe de la phase a du stator et X est une grandeur qui peut désigner un courant, un flux ou une tension, on a alors :

$$\begin{bmatrix} X_a \\ X_q \\ X_0 \end{bmatrix} = \begin{bmatrix} P(\Psi) \end{bmatrix} \begin{bmatrix} X_a \\ X_b \\ X_c \end{bmatrix}$$
(II.14)

avec :

 $[P(\Psi)] = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos \Psi & \cos \left(\Psi - \frac{2\pi}{3}\right) & \cos \left(\Psi + \frac{2\pi}{3}\right) \\ \cos \left(\Psi + \frac{2\pi}{3}\right) & -\sin \left(\Psi - \frac{2\pi}{3}\right) & -\sin \left(\Psi + \frac{2\pi}{3}\right) \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$ (II.15) $[P(\Psi)]$ est la matrice de transformation directe de Park modifiée à l'angle α et son inverse est

donnée par :

$$[P(\Psi)]^{-1} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos\Psi & \cos\left(\Psi - \frac{2\pi}{3}\right) & \cos\left(\Psi + \frac{2\pi}{3}\right) \\ \cos\left(\Psi + \frac{2\pi}{3}\right) & -\sin\left(\Psi - \frac{2\pi}{3}\right) & -\sin\left(\Psi + \frac{2\pi}{3}\right) \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
(II.16)

 $[P(\Psi)]$ est une matrice orthogonale puis que :

$$[P(\Psi)]^{T}[P(\Psi)] = [I]$$
(II.17)

Si nous attribuons la valeur zéro à Y nous obtenons une nouvelle transformée dite de Concordia [C]. Ainsi les axes sont habituellement désignés par α , β et le passage aux axes s'effectue par la matrice de rotation $[R_{(\Psi)}]$ de telle sorte que :

$$[P(\Psi)]^T[R(\Psi)] = [C] \tag{II.5}$$

$$[C] = \frac{1}{\sqrt{3}} \begin{bmatrix} \sqrt{2} & -\frac{1}{\sqrt{2}} & \sqrt{2} \\ 0 & \sqrt{\frac{3}{2}} & -\sqrt{\frac{3}{2}} \\ 1 & 1 & 1 \end{bmatrix} \text{ et } [R(\Psi)] = \begin{bmatrix} \cos \Psi & \sin \Psi & 0 \\ \sin \Psi & -\cos \Psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(II.18)

avec :

Figure II.2 : Représentation du repère tournant de Park.

II.4.2 Modèle dynamique dans le repère de Park :

Désignons par :

 θ_s :angle électrique formé par l'axe direct d et l'axe dela phase a du stator

 θ_r : angle électrique que forme l'axe direct d et l'axe de la phase a du rotor

α: écart angulaire entre l'axe dela phase a du stator avec celui du rotor de la même phase Sur la figure (II.3) les trois angles sont rigidement liés par la relation suivante dite relation d'auto pilotage

$$\theta_s = \theta_r + \alpha \tag{II.19}$$

Le passage du modèle triphasé au modèle diphasé de Park s'effectue par l'application des transformées de Park $[P(\theta_s)]$ et $[P(\theta_r)]$ respectivement aux grandeurs statoriques et aux grandeurs rotoriques

II.4.2.1 Equations des flux

En appliquant la transformée de Park aux flux à travers le stator :

$$\left[\phi_{sdq0}\right] = \left[P(\theta_s)\right] \left[\phi_{sabc}\right] \tag{II.20}$$

En substituant le flux par son équation (II.8) il devient :

$$\left[\phi_{sdq0}\right] = \left[P(\theta_s)\right]\left[L_{ss}\right]\left[i_{sabc}\right] + \left[P(\theta_s)\right]\left[M_{sr}\right]\left[i_{rabc}\right] \tag{II.21}$$

$$\left[\phi_{sdq0}\right] = \left[P(\theta_s)\right]^{-1} \left[i_{sdq0}\right] \tag{II.22}$$

Et

$$\left[\phi_{rdq0}\right] = \left[P(\theta_r)\right]^{-1} \left[i_{rdq0}\right] \tag{II.23}$$

on a alors :

$$[\phi_{sdq0}] = [P(\theta_s)][L_{ss}][P(\theta_s)]^{-1}[i_{sdq0}] + [P(\theta_s)][M_{sr}][P(\theta_r)]^{-1}[i_{rdq0}]$$
(II.24)

Figure II.3 : Repérage angulaire des systèmes d'axes des différents repères.

Un long calcul de produits matriciels conduit à ce résultat :

$$\begin{bmatrix} \Phi_{sd} \\ \Phi_{sq} \\ \Phi_{so} \end{bmatrix} = \begin{bmatrix} I_s - M_s & 0 & 0 \\ 0 & I_s - M_s & 0 \\ 0 & 0 & I_s + 2M_s \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{so} \end{bmatrix} + \begin{bmatrix} 3/2 M_0 & 0 & 0 \\ 0 & 0 & 3/2 M_0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_{rd} \\ i_{rq} \\ i_{ro} \end{bmatrix}$$
(II.25)

Si la même opération est effectuée pour les flux à travers le rotor on a:

$$\left[\phi_{rdqo}\right] = \left[P(\theta_r)\right] \left[\phi_{rabc}\right] \tag{II.26}$$

En remplaçant le flux par son équation (II.10) on obtient :

$$\left[\phi_{rdqo}\right] = \left[P(\theta_r)\right]\left[L_{rr}\right]\left[i_{rabc}\right] + \left[P(\theta_r)\right]\left[M_{rs}\right]\left[i_{sabc}\right] \tag{II.27}$$

sachant que

$$[\phi_{sdq0}] = [P(\theta_s)]^{-1}[i_{sdq0}]$$
(II.28)

Et

$$\left[\phi_{rdq0}\right] = \left[P(\theta_r)\right]^{-1} \left[i_{rdq0}\right] \tag{II.29}$$

Il vient que :

$$[\phi_{rdq0}] = [P(\theta_r)][L_{rr}][P(\theta_r)]^{-1}[i_{rdq0}] + [P(\theta_r)][M_{rs}][P(\theta_s)]^{-1}[i_{sdq0}]$$
(II.30)

un long calcul de produits matriciels a conduit à ce résultat :

$$\begin{bmatrix} \Phi_{rd} \\ \Phi_{rq} \\ \Phi_{ro} \end{bmatrix} = \begin{bmatrix} I_r - M_r & 0 & 0 \\ 0 & I_r - M_r & 0 \\ 0 & 0 & I_r + 2M_r \end{bmatrix} \begin{bmatrix} i_{rd} \\ i_{rq} \\ i_{ro} \end{bmatrix} + \begin{bmatrix} 3/2 M_0 & 0 & 0 \\ 0 & 0 & 3/2 M_0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{so} \end{bmatrix}$$
(II.31)

Définissons à présent :

$$\begin{split} L_s &= I_s - M_s &: \text{inductance cyclique du stator} \\ L_r &= I_r - M_r &: \text{inductance cyclique du rotor} \\ L_{s0} &= I_s - 2M_s &: \text{inductance cyclique homo polaire du stator} \\ L_{r0} &= I_r - 2M_r &: \text{inductance cyclique homo polaire du rotor} \\ M &= 3/2 M_0 &: \text{inductance mutuelle cyclique du stator par apport au rotor} \end{split}$$

Compte-tenu des valeurs nulles des composantes homopolaires des courants statoriques et rotoriques car la machine dont les enroulements sont symétriques est alimentée par un système de tensions triphasées équilibrées, les équations des flux s'écrivent finalement sous cette forme : Au stator :

$$\begin{bmatrix} \phi_{sd} \\ \phi_{sq} \end{bmatrix} = \begin{bmatrix} L_s & 0 \\ 0 & L_s \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} + \begin{bmatrix} M & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} i_{rd} \\ i_{rq} \end{bmatrix}$$
(II.32)

Au rotor :

$$\begin{bmatrix} \phi_{sd} \\ \phi_{sq} \end{bmatrix} = \begin{bmatrix} M & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} + \begin{bmatrix} L_r & 0 \\ 0 & L_r \end{bmatrix} \begin{bmatrix} i_{rd} \\ i_{rq} \end{bmatrix}$$
(II.33)

II.4.2.2 Equations des tensions:

Il en est de même pour les équations des tensions au stator et au rotor, pour les ramener dans le repère de Park, il suffit de leur appliquer les transformations de Park modifiées.

Au Stator

$$[V_{sabc}] = [R_s][i_{sabc}] + \frac{d}{dt}([\Phi_{sabc}])$$
(II.34)

mais:

$$[V_{sabc}] = [P(\theta_s)]^{-1} [V_{sdqo}]$$
(II.35)

on aura donc :

$$[P(\theta_{s})]^{-1}[V_{sdqo}] = [R_{s}][P(\theta_{s})]^{-1}[i_{sdqo}] + \frac{d}{dt}([P(\theta_{s})]^{-1}[\Phi_{sdqo}])$$
(II.36)

Multiplions à gauche l'équation membre à membre par $[P(\theta s)]$ nous obtenons :

$$\left[V_{sdqo}\right] = \left[P(\theta_s)\right] \left[R_s\right] \left[P(\theta_s)\right]^{-1} \left[i_{sdqo}\right] + \left[P(\theta_s)\right] \frac{d}{dt} \left(\left[P(\theta_s)\right]^{-1} \left[\Phi_{sdqo}\right]\right)$$
(II.37)

Sachant que :

$$[P(\theta_{s})]\frac{d}{dt}[P(\theta_{s})]^{-1} = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \left(\frac{d\theta_{s}}{dt}\right)$$
(II.38)

et après un simple calcul de produit matriciel, les tensions s'écrivent :

$$\begin{bmatrix} V_{sd} \\ V_{sq} \\ V_{so} \end{bmatrix} = \begin{bmatrix} R_s & 0 & 0 \\ 0 & R_s & 0 \\ 0 & 0 & R_s \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \\ i_{so} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Phi_{sd} \\ \Phi_{sq} \\ \Phi_{so} \end{bmatrix} + \frac{d}{d\theta_s} \begin{bmatrix} -\Phi_{sq} \\ \Phi_{sd} \\ \Phi_{sd} \\ \Phi_{so} \end{bmatrix}$$
(II.39)

Au rotor ; une procédure analogue à celle du stator conduit aux équations suivantes :

$$\begin{bmatrix} V_{rd} \\ V_{rq} \\ V_{ro} \end{bmatrix} = \begin{bmatrix} R_{r} & 0 & 0 \\ 0 & R_{r} & 0 \\ 0 & 0 & R_{r} \end{bmatrix} \begin{bmatrix} i_{rd} \\ i_{rq} \\ i_{ro} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Phi_{rd} \\ \Phi_{rq} \\ \Phi_{ro} \end{bmatrix} + \frac{d}{d\theta_{r}} \begin{bmatrix} -\Phi_{rq} \\ \Phi_{rd} \\ \Phi_{ro} \end{bmatrix}$$
(II.40)

Compte-tenu de la nullité des composantes homopolaires et sachant que :

$$\frac{d\theta_r}{dt} = \frac{d\theta_s}{dt} - p\Omega \tag{II.41}$$

ces équations (II.39)et (II.40) s'écrivent finalement :

Au stator :

$$\begin{bmatrix} V_{sd} \\ V_{sq} \end{bmatrix} = \begin{bmatrix} R_s & 0 \\ 0 & R_s \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Phi_{sd} \\ \Phi_{sq} \end{bmatrix} + \frac{d\theta_s}{dt} \begin{bmatrix} -\Phi_{sq} \\ \Phi_{sd} \end{bmatrix}$$
(II.42)

Au rotor :

$$\begin{bmatrix} V_{rd} \\ V_{rq} \end{bmatrix} = \begin{bmatrix} R_{r} & 0 \\ 0 & R_{r} \end{bmatrix} \begin{bmatrix} i_{sd} \\ i_{sq} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \Phi_{rd} \\ \Phi_{rq} \end{bmatrix} + \left(\frac{d\theta_{s}}{dt} - p\Omega\right) \begin{bmatrix} -\Phi_{rq} \\ \Phi_{rd} \end{bmatrix}$$
(II.43)

Ce modèle est dit scalaire qui peut être converti en un modèle vectoriel qui semble plus au moins simple surtout quand il s'agit de travailler en SIMULINK sous MATLAB.

II.4.3 Modèle vectoriel de la machine dans le modèle de Park

Si \overline{X} est un vecteur dont les composantes sont X_d et X_q , ce vecteur s'écrit :

$$\overline{X} = X_d + jX_q$$

Ce vecteur peut désigner évidemment un courant, une tension ou un flux. Compte-tenu des équations précédentes(II.33), (II.34) ,(II.42) et (II.43) du modèle scalaire on obtient un nouveau modèle dit vectoriel dans le repère de Park.

Pour les tensions :

Au stator :

$$\overline{V}_{s} = R_{s}\overline{i}_{s} + \frac{d\overline{\phi}_{s}}{dt} + j\frac{d\theta_{s}}{dt}\overline{\phi}_{s}$$
(II.44)

Au rotor :

$$\overline{V}_{s} = R_{r}\overline{i}_{r} + \frac{d\overline{\phi}_{r}}{dt} + j\left(\frac{d\theta_{s}}{dt} - p\Omega\right)\overline{\phi}_{s}$$
(II.45)

Pour les flux

Au stator :

$$\overline{\phi}_s = L_s \overline{i}_s + M_{\overline{i}_r} \tag{II.46}$$

Au rotor :

$$\overline{\phi}_r = L_r \overline{i}_r + M_{\overline{i}_c} \tag{II.47}$$

II.5 Expression du couple électromagnétique

L'évaluation de l'expression du couple électromagnétique à partir de la formule (II.13) nécessite un calcul relativement délicat. Le recours aux composantes 2D est le plus indiqué.La puissance active absorbée par les enroulements statoriques et rotoriques du moteur dans le modèle diphasé est donnée d'une manière générale par :

$$P_{a} = \Re(\overline{V}_{s}\overline{\Gamma}_{s}^{*}) + \Re(\overline{V}_{r}\overline{\Gamma}_{r}^{*})$$
(II. 48)

En substituant Vs et Vr par leurs valeurs des équations précédentes (II.44) et (II.45) on obtient :

$$P_{a} = R_{s}i_{s}^{2} + R_{r}i_{r}^{2} + \Re\left(\frac{d\overline{\Phi_{s}}}{dt}\,\overline{\iota_{s}^{*}} + \frac{d\overline{\Phi_{r}}}{dt}\,\overline{\iota_{r}^{*}}\right) + \Re\left(jw_{s}\overline{\Phi_{s}}\overline{\iota_{s}^{*}} + jw_{r}\overline{\Phi_{r}}\overline{\iota_{r}^{*}}\right)$$
(II.49)

Cette puissance est scindée en trois parties :

1. une première partie qui représente la puissance dissipée dans les enroulements statoriques et rotoriques par effet joules:

$$P_{j} = R_{s}i_{s}^{2} + R_{r}i_{r}^{2}$$
(II.50)

2. une seconde partie qui représente l'énergie des échanges électromagnétiques entre les sources :

$$\Re \left(\frac{\mathrm{d}\overline{\phi_{\mathrm{s}}}}{\mathrm{dt}} \ \overline{\mathbf{l}_{\mathrm{s}}}^{*} + \frac{\mathrm{d}\overline{\phi_{\mathrm{r}}}}{\mathrm{dt}} \ \overline{\mathbf{l}_{\mathrm{r}}}^{*} \right) \tag{II.51}$$

3. une troisième partie représente la puissance mécanique transmise au rotor :

$$P_{\rm m} = \Re \left(j w_{\rm s} \overline{\Phi_{\rm s}} \overline{\mathbf{r}_{\rm s}}^* + j w_{\rm r} \overline{\Phi_{\rm r}} \overline{\mathbf{r}_{\rm r}}^* \right) \tag{II.52}$$

Cette dernière peut se mettre sous la forme :

$$P_{\rm m} = pM\Omega\Im(\bar{\iota}_{\rm s}\bar{\iota}_{\rm r}^{*}) \tag{II.53}$$

mais :

$$P_{\rm m} = C_e \Omega \tag{II.54}$$

Il en résulte que le couple électromagnétique s'écrit donc :

$$P_{\rm m} = pM\Omega\Im(\bar{\iota}_{\rm s}\bar{\iota}_{\rm r}^{*}) \tag{II.55}$$

Cette dernière expression prend une seconde forme si nous replaçons le courant dans le rotor à partir de l'équation du flux (II.49). Ainsi l'expression du couple électromagnétique s'écrit :

$$C_e = p\Im\left(\overline{\iota_s}\overline{\Phi_s}^*\right) \tag{II.56}$$

Cette équation (II.70) apparaît sous forme d'un produit vectoriel :

$$C_e = p\left(\overline{\Phi_s} \otimes \overline{\iota_s}^*\right) \tag{II.57}$$

II.6 Choix des référentiels :

II.6.1 Référentiel stationnaire lié au stator

Ce référentiel est obtenu en faisant coïncider l'axe d du repère (d-q) avec celui de la phase 'A'du stator, de façon à ce que le système d'axes (d-q) soit immobile par rapport au stator. Ce référentiel permet d'étudier des variations importantes de la vitesse de rotation associées ou non avec des variations de la fréquence d'alimentation.

$$\begin{cases} \theta_{s=0} \\ \frac{d\theta_s}{dt} = W_s = 0 \end{cases}$$
(II.58)

d'où :

$$\theta_r = -\theta_m \tag{II.59}$$

car

$$\frac{d\theta_m}{dt} = W_s - W_r = W_m \tag{II.60}$$

d'où les équations électriques :

$$\begin{cases} V_{ds} = \frac{d\Phi_{ds}}{dt} + R_s i_{ds} \\ V_{qs} = \frac{d\Phi_{qs}}{dt} + R_s i_{qs} \end{cases}$$
(II.61)

$$\begin{cases} V_{dr} = \frac{d\Phi_{dr}}{dt} + W_m \phi_q + R_r i_{dr} \\ V_{qs} = \frac{d\Phi_{qr}}{dt} - W_m \phi_{dr} + R_r i_{qr} \end{cases}$$
(II.62)

II.6.2 Référentiel stationnaire lié au rotor:

Ce référentiel peut être intéressant dans les problèmes de régimes dynamique où la vitesse de rotation est considérée comme constante.

$$\begin{cases} \theta_r = 0\\ \theta_s = \theta_m \Longrightarrow W_s = W_m \end{cases}$$
(II.63)

$$\frac{d\theta_m}{dt} = W_m = \frac{d\theta_s}{dt} = W_s \tag{II.64}$$

d'où les equations électriques :

$$\begin{cases} V_{ds} = \frac{d\Phi_{ds}}{dt} - W_{m}.\phi_{qs} + R_{s}.i_{ds} \\ V_{qs} = \frac{d\Phi_{qs}}{dt} - W_{m}.\phi_{ds} + R_{s}.i_{qs} \end{cases}$$
(II.65)

$$\begin{cases} V_{dr} = \frac{d\Phi_{dr}}{dt} + R_r. i_{dr} \\ V_{qr} = \frac{d\Phi_{qr}}{dt} + R_r. i_{qr} \end{cases}$$
(II.66)

II.6.3 Référentiel stationnaire lié au champ tournant:

Ce référentiel n'introduit pas de simplification. Cependant c'est le référentiel le plus utilisé dans l'étude de l'alimentation des moteurs asynchrones à fréquence variable et dans l'étude de la transmittance du moteur relativement à de petites variations autour d'un régime de fonctionnement donné.

$$\frac{d\theta_s}{dt} = W_s \quad ; \qquad \frac{d\theta_r}{dt} = W_r \quad ; \qquad \frac{d\theta_m}{dt} = W_s - W_r = W_m$$

D'où les équations électriques :

$$\begin{cases} V_{ds} = \frac{d\Phi_{ds}}{dt} - W_m \phi_{qs} + R_s i_{ds} \\ V_{qs} = \frac{d\Phi_{qs}}{dt} + W_m \phi_{ds} + R_s i_{qs} \end{cases}$$
(II.67)
$$\begin{cases} V_{dr} = \frac{d\Phi_{ds}}{dt} - (W_s - W_m)\phi_{qr} + R_r i_{dr} \end{cases}$$
(II.68)

$$\begin{cases} V_{qr} = \frac{d\Phi_{qr}}{dt} + (W_s - W_m)\phi_{dr} + R_r i_{qr} \end{cases}$$
(II.68)

II.7 Equation mécanique

L'application du principe fondamentale de la dynamique des solides en rotation donne:

$$\sum C = J \frac{d\Omega}{dt}$$
(II.69)

avec :

 $\sum C$: est la somme des couples auxquels sont soumises les parties en mouvement.

J : est le moment d'inertie de toutes les parties en mouvement.

Si ce même principe est applique à la machine en fonctionnement moteur, les couples qui s'opposent au mouvement sont :

- Le couple résistant de la charge Cr
- Le couple des frottements visqueux qui est pratiquement proportionnel à la vitesse de rotation Ω il s'exprime donc par :

$$C_f = f\Omega \tag{II.70}$$

Le couple développé par le moteur est Ce.

Ainsi l'équation mécanique, qui vient pour compléter le modèle de la machine, s'écrit donc :

$$C_e - C_r = J \frac{d\Omega}{dt} + f\Omega \tag{II.71}$$

Cette équation est valable pour n'importe quel type de machine.

II.8 Simulation

Une simulation en SIMULINK sous MATLAB est effectuée en vue de suivre le comportement des différentes grandeurs qui caractérisent la machine. La machine objet de cette simulation est d'une puissance de1.5kW et ses paramètressont données à l'annexe 1.

Sur les figures de (II.4) obtenues par simulation montrent que toutes les grandeurs dépendent de la charge mécanique appliquée à la machine sauf les flux qui accusent une faible variation autour de leurs valeurs à vide. En effet, sur la vitesse diminue lorsqu'on applique à l'instant t = 0.5s un couple résistant de 2 fois son couple nominal.Cette dépendance est aussi prévisible sur la caractéristique mécanique de la machine, par contre le couple électromagnétique, suit la charge après une série d'oscillations qui ne durent qu'un bref instant. Ces oscillations expliquent bien ce bruit au démarrage de la machine.

Les courants statoriques, figure (II.4.a) et rotoriques, figure (II.4.b) augmentent avec la charge. Cet appel de courant statorique est justifié par la demande de lapuissance électrique convertie en puissance mécanique sur l'arbre du rotor. Il en est de même du courant rotorique qui est un courant induit, image du courant statorique.

a - Grandeurs statoriques

b-Grandeurs rotoriques

c-Grandeurs mécaniques

Figure II.4 : tension et fréquence nominales dans le repère lié au stator.

Figure II.5 : Les courant_{abc} du la sorté de machine tréphasé.

Figure II.6 : Evolution des grandeurs rotoriques de la machine dans le repère lié au rotor.

II.9 Conclusion

Dans ce chapitre on a procédé à la modélisation de la machine asynchrone en régime dynamique puis cn a réalisé la simulation de la machine sous tension et fréquence nominales dans le repère lié au stator et au rotor.

CHAPITRE III

MODELISATION DE LA MACHINE ASYNCHRONE EN REGIME PERMANENT

III.1 Introduction:

Dans beaucoup d'applications, le moteur asynchrone est branché directement sur le réseau triphasé. Le stator est alors alimenté par un système triphasé équilibré de tension. Quand la vitesse devient constante, le régime permanent est atteint et les grandeurs électriques et magnétiques sont toutes des fonctions sinusoïdales dutemps. Les équations de la machine se simplifient et on utilise la méthode classique des grandeurs complexes. Les divers schémas équivalents qui peuvent être associé à ces équations facilitent l'étude des fonctionnements en régime permanent.

III.2 Simplification des équations :

III.2.1 Equations des grandeurs complexes spatiales dans un référentiel lié au champ tournant :

Dans un référentiel lié au champ tournant, les grandeurs d'espace des flux sont indépendantes du temps en régime sinusoïdal permanent et leurs dérivées sont donc nulles. Les équations des grandeurs complexes spatiales se simplifient [11]:

$$\underline{V_s} = R_s \, \underline{i_s} + j w_s \underline{\phi_s} \tag{III.1}$$

$$\underline{V_r} = R_r \, \underline{i_r} + jgw_s \underline{\phi_r} \tag{III.2}$$

$$\varphi_{\underline{s}} = L_{\underline{s}} \underline{i}_{\underline{s}} + M \underline{i}_{\underline{r}}$$
(III.3)

$$\underline{\varphi_s} = L_s \, \underline{i_s} + M \underline{i_r} \tag{III.4}$$

Dans les formules des tensions, remplaçons les flux par leurs expressions en fonction des courants :

$$\underline{V_s} = R_s \, \underline{i_s} + j L_s w_s \underline{i_s} + j M w_s \underline{i_r}$$
(III.5)

$$\underline{V_r} = R_r \underline{i_r} + jL_r gw_s \underline{i_r} + jMgw_s \underline{s}$$
(III.6)

III.3.Modèles équivalents:

III.3.1.Modèle avec circuit couplés:

Les équations précédentes correspondent à celles d'un schéma monophasé comportant deux bobines d'inductance et couplées par une inductance mutuelle M

Figure III.1: Modèle aux circuits couplés.

III.3.2.Modèle avec inductances de fuites partielles :

Le rapport de transformation :

$$m = \frac{k_r N_r}{k_s N_s}$$
(III.7)

On peut alors définir l'inductance cyclique de fuites du stator :

$$l_{\rm s} = L_{\rm s} - \frac{M}{m} \tag{III.8}$$

Et l'inductance cyclique de fuite du rotor :

$$l_{\rm r} = L_{\rm r} - \rm mM \tag{III.9}$$

En remplaçant dans les équations des circuits couplés, nous obtenons :

$$\underline{V_s} = R_s \underline{I_s} + j \underline{I_s} w_s \underline{I_s} + j \frac{M}{m} w_s \underline{I_s} + j M w_s \underline{I_r}$$
(III.10)

$$0 = \frac{R_r}{g} \underline{I_r} + j l_r w_s \underline{I_r} + j m M w_s \underline{I_r} + j M w_s \underline{I_s}$$
(III.11)

Ramenons ensuite les grandeurs rotoriques au stator en posant :

$$\underline{l'_r} = -\underline{m}\underline{l_r} \tag{III.12}$$

$$R'_{r} = \frac{R_{r}}{m^{2}}$$
(III.13)

$$l'_{\rm r} = \frac{{\rm R}_{\rm r}}{m^2} \tag{III.14}$$

 I'_r : Le courant rotorique ramené au stator.

 R'_r :La résistance du rotor ramenée au stator.

 l'_r : L'inductance cyclique de fuites du rotor ramenée au stator.

Remarque:

Le signe(-) est dû au choix initial de la convention de signe du courant rotorique. En introduisant ces paramètres dans les formules précédentes, nous arrivons à :

$$\underline{V_s} = R_s \underline{I_s} + j \underline{l_s} w_s \underline{I_s} + j \frac{M}{m} w_s (\underline{I_s} - \underline{I'_r})$$
(III.15)

$$0 = -\frac{m^2 R'_r}{g} \frac{l'_r}{m} - jm^2 l'_r w_s \frac{l'_r}{m} + jM w_s (\underline{I_s} - \underline{I'_r})$$
(III.16)

Nous pouvons alors introduire le courant magnétisant :

$$\underline{\mathbf{I}}_{\underline{m}} = \underline{\mathbf{I}}_{\underline{s}} - \underline{\mathbf{I}'}_{\underline{r}} \tag{III.17}$$

Et l'inductance cyclique magnétisante :

$$L_m = \frac{M}{m}$$
(III.18)

Nous arrivons ainsi à :

$$\frac{V_s}{V_s} = R_s I_s + jL_s w_s I_s + jL_m w_s I_m$$
(III.19)

$$0 = \frac{\kappa_r}{g} \underline{I'_r} + jl'_r w_s \underline{I'_r} - jL_m w_s \underline{I_m}$$
30
(III.20)

Ces relations permettent de représenter le schéma équivalent ramené au stator avec inductances de fuites partielles :

Figure III.2:Schéma équivalent ramené au stator avec inductances de fuites partielles.

III.3.3. Modèle avec inductances de fuites totalisées au rotor :

A partir des équations du circuit couplé, exprimons les tensions aux bornes des inductances :

$$\underline{V'_s} = jL_s w_s \underline{I_s} - jM w_s \underline{I_r}$$
(III.21)

$$\underline{V'_r} = jMw_s\underline{I_s} + jL_rw_s\underline{I_r}$$
(III.22)

Exprimons le courant statorique dans la relation (III.21) :

$$\underline{I_s} = \frac{V_{\prime s}}{jL_s w_s} - \frac{M}{L_s} \underline{I_r}$$
(III.23)

Et remplaçons dans la relation (III.22) :

$$\frac{V'_{r}}{L_{s}} = \frac{M}{L_{s}} V'_{s} + j L_{r} w_{s} \left(1 - \frac{M^{2}}{L_{s} L_{r}}\right) I_{r}$$
(III.24)

L'inductance de fuites totalisées au rotor est défini par :

$$L_{Br} = L_r (1 - \frac{M^2}{L_s L_r})$$
(III.25)

Soit :

$$L_{Br} = \sigma L_{r} \tag{III.26}$$

σ: Coefficient de dispersion dont l'expression est : $\sigma = 1 - \frac{M^2}{L_s L_r}$

La relation obtenue dans la relation (III.24) s'écrit alors :

$$\underline{V'_r} = \frac{M}{L_s} \underline{V'_s} + j L_{Br} w_s \underline{I_r}$$
(III.27)

Ramenons Maintenant les grandeurs rotoriques au stator en posant :

$$\underline{\mathbf{I}''_{r}} = -\frac{M}{L_{s}}\underline{\mathbf{I}_{r}}$$
(III.28)

$$R''_{Br} = \left(\frac{L_s}{M}\right)^2 R_r \tag{III.29}$$

$$L''_{Br} = \left(\frac{L_s}{M}\right)^2 L_{Br} \tag{III.30}$$

 I''_r :Le courant rotorique ramené au stator.

R"_r:La résistance du rotor ramenée au stator.

l"_{Br}:L'inductance cyclique de fuites du rotor ramenée au stator.

Nous avons ainsi :

$$\frac{L_s}{M} \underline{V'_r} = \underline{V'_s} + j L''_{Br} w_s \underline{I''_r}$$
(III.31)

Définissons le courant magnétisant par :

$$\underline{\mathbf{I}_{sm}} = \underline{\mathbf{I}_s} - \underline{\mathbf{I}''_r} \tag{III.32}$$

Nous avons par ailleurs :

$$\underline{V_s} = R_s \underline{I_s} + \underline{V'_s}$$
(III.33)

Après introduction des grandeurs ramenées au stator cette dernière formule devient :

$$\frac{L_s}{M} \underline{V'_r} = \frac{R''_r}{g} \underline{I''_r}$$
(III.34)

Ces différentes relations permettent de tracer le schéma équivalent ramené au stator avec inductances de fuites totalisées au rotor et ramenées au stator.

Remarque

Les paramètres ramenés I'_r . I_m et R'_r introduits dans la méthode des fuites partielles diffèrent des paramètres I''_r . I_{sm} et R''_r utilisés dans la méthode des fuites totales car le rapport de transformation m du premier cas est remplacé par le rapport $\frac{M}{Ls}$ dans le second cas.

III.3.4 Modèle avec inductances de fuites totalisées au stator :

A partir des équations du circuit couplé, exprimons, les tensions aux bornes des inductances :

$$\underline{V'_s} = jL_s w_s \underline{I_s} + jM w_s \underline{I_r}$$
(III.35)

$$\underline{V'_r} = jL_s w_s \underline{I_s} + jL_r w_s \underline{I_r}$$
(III.36)

Exprimons le courant rotorique dans la relation (III.36) :

$$\underline{I_r} = \frac{V_r}{jL_r w_s} - \frac{M}{L_r} \underline{I_s}$$
(III.37)

Et remplaçons dans la relation (III.35) :

$$\underline{V'_s} = \frac{M}{L_s} \underline{V'_r} + j L_s w_s \left(1 - \frac{M^2}{L_s L_r}\right) \underline{I_s}$$
(III.38)

L'inductance de fuites totalisées au stator est définie par :

$$L_{BS} = L_{s} \left(1 - \frac{M^2}{L_{s}L_{r}}\right) \tag{III.39}$$

Soit

$$L_{Bs} = \sigma L_s \tag{III.40}$$

La relation obtenue dans (III.38) s'écrit alors :

$$\underline{V'_s} = \frac{M}{L_r} \underline{V'_r} + j L_{Bs} w_s \underline{I_s}$$
(III.41)

Ramenons maintenant le courant rotorique au stator en posant

$$\underline{\mathbf{I}}_{\underline{q}} = -\frac{\mathbf{L}_{\mathbf{r}}}{\mathbf{M}} \underline{\mathbf{I}}_{\underline{\mathbf{r}}}$$
(III.42)

Définissons le courant magnétisant par :

$$\underline{\mathbf{I}}_{\underline{d}} = \underline{\mathbf{I}}_{\underline{s}} - \underline{\mathbf{I}}'_{\underline{q}} \tag{III.43}$$

Mettons la première équation des circuits couplés sous la forme

$$\underline{V'_s} = j\sigma L_s w_s \underline{I_s} + j(1-\sigma) L_s w_s \underline{I_s} + jM w_s \underline{I_r}$$
(III.44)

Soit:
$$\underline{V'_s} = j\sigma L_s w_s \underline{I_s} + j(1-\sigma) L_s w_s (\underline{I_s} + \frac{M}{(1-\sigma)L_s} \underline{I_r})$$
(III.45)

Remplaçons dans la dernière parenthèse le coefficient de dispersion par son expression :

$$\underline{V'_{s}} = j\sigma L_{s} w_{s} \underline{I_{s}} + j(1-\sigma) L_{s} w_{s} (\underline{I_{s}} + \frac{L_{r}}{M} \underline{I_{r}})$$
(III.46)

Nous voyons ainsi apparaître le courant magnétisant :

$$\underline{V'_{s}} = j\sigma L_{s} w_{s} \underline{I_{s}} + j(1 - \sigma) L_{s} w_{s} \underline{I_{d}}$$
(III.47)

Nous avons par ailleurs :

$$\underline{V_s} = R_s \underline{I_s} + \underline{V'_s}$$
(III.48)

Et

$$\underline{V'_r} = -\frac{R_r}{g}\underline{I_r}$$
(III.49)

Après introduction des grandeurs ramenées au stator, cette dernière formule devient :

$$\frac{M}{L_r}\underline{V'_r} = \frac{M^2}{L_r^2}\frac{Rr}{g}\underline{I_q}$$
(III.50)

Ces différentes relations permettent de tracer le schéma équivalent ramené au stator avec inductances de fuites totalisées au stator [12]:

Figure III.4:Schéma équivalent ramené au stator avec inductances de fuites totalisées au stator

III.4 Simulation

Figure III.5: Evolution du courant statorique diphasé et du couple on fonction la vitesse et le glissement en régime permanent de la machine sous tension et fréquence nominales.

III.5 Modèle dynamique de la machine en tenant compte des pertes fer

Pour établir le modèle dynamique de la machine qui tient compte des pertes dans le fer, on a établi un schéma équivalent du modèle idéalisé en régime dynamique dans le repère d'axes α,β dans un premier temps. Une résistance RFE introduite.

III.5.1 Schéma équivalent du modèle idéalisé

Les inductances de fuite respectivement au stator et au rotor sont définies par :

$$L_{\sigma s} = L_s - M$$
 et $L_{\sigma r} = L_r - M$ (III.51)

Le courant magnétisant qui sert à produire le flux dans l'entrefer de la machine est donné par :

$$i_m = i_s + i_r$$
 (III.52)

Les équations des flux :

Au stator :

$$\phi_{s} = L_{\sigma s} i_{s} + M i_{m}$$
(III.53)

Au rotor :

$$\phi_{\mathbf{r}} = \mathbf{L}_{\sigma \mathbf{r}} \mathbf{i}_{\mathbf{r}} + \mathbf{M} \mathbf{i}_{\mathbf{m}}$$
(III.54)

Les équations des tensions s'écrivent donc :

Au stator :

$$V_{s} = R_{s}i_{s} + L_{\sigma s}\frac{di_{s}}{dt} + M\frac{di_{m}}{dt}$$
(III.55)

Au rotor :

$$0 = R_r i_r + L_{\sigma r} \frac{di_r}{dt} + M \frac{di_m}{dt} - j\omega \phi_r$$
(III.56)

La figure (III.6) montre le schéma équivalent du modèle idéalisé en régime dynamique de la machine.

III.5.2Modèle dynamique avec pertes fer

Pour tenir compte des pertes dans le fer, une résistance R_{Fe} est insérée en parallèle avec la branche magnétisante du schéma équivalent représenté sur la figure III.4. Le modèle dynamique de la machine sera défini ainsi :

Le courant qui traverse la résistance R_{Fe} est défini par :

$$i_m + i_{Fe} = i_s + i_r$$
 et $R_{Fe} i_{Fe} = Mi_m$ (III.57)

Les équations des tensions et des flux aussi bien pour le stator que pour le rotor restent inchangées.

Figure III.6 :Schéma équivalent du modèle idéalisé de la machine asynchrone.

III.6 Conclusion

Dans ce chapitre on a procédé à la modélisation de la machine asynchrone en régime permanent puis On a réalisé la simulation lors de démarrage en charge de la machine sous tension et fréquence nominales dans le repère lié au stator (lorsqu'on a applique un couple résistan.

CHAPITRE IV

IDENTIFICATION DE LA MACHINE ASYNCHRONE A CAGE PAR LES INVARIANTS

IV.1 Introduction

Les données des plaques signalétiques ainsi les données fournies par les constructeurs des machines asynchrones ne sont pas suffisants pour connaitre tous les paramètres électriques et mécaniques de ces machines, et c'est pour cela on a recours à des essais pratiques pour la détermination de ces paramètres, et avant ca, il faut élaborer un modèle mathématique de la machine asynchrone composé par un système d'équations contenant des paramètres qu'il faut les déterminer avant tout étude sur ces machines.

Ce chapitre sera consacré, en premier temps, à l'élaboration du schéma équivalent en régime permanent de MAS, ensuite on procédera à la méthode proposé pour l'identification des paramètres électriques de MAS.

IV.2. Schéma équivalent en régime permanent

Soit le modèle vectoriel dans le repère lié au stator (β , α) qui s'écrit pour :

les tensions $\overline{V}_s = R_s \overline{i}_s + \frac{d\overline{\phi}_s}{dt}$ (IV.1)

$$\overline{0} = R_r \overline{i}_r + \frac{d\overline{\phi}_r}{dt} - jw\overline{\phi}_r$$
(IV.2)

les flux

$$\overline{\phi}_s = L_s \overline{i}_s + M \overline{i}_r \tag{IV.3}$$

$$\overline{\phi}_r = L_r \overline{i}_r + M \overline{i}_s \tag{IV.4}$$

En introduisant les inductances de fuites respectivement au stator et au rotor

$$L_{\sigma s} = L_s - M \tag{IV.5}$$

$$L_{\sigma r} = L_r - M \tag{IV.6}$$

Et sachant de la relation d'auto pilotage $w_s = w_r + w$ et $\frac{d}{dt} = jw_s$ en régime permanent, le modèle devient pour:

 $\overline{I}_m = \overline{I}_s + \overline{I}_r$

$$\overline{\phi}_s = L_\sigma \overline{I}_s + M \overline{I}_m \tag{IV.7}$$

$$\overline{\phi}_r = L_{\sigma r} \overline{I}_r + M \overline{I}_m \tag{IV.8}$$

(IV.9)

avec

- les tensions :

Il en résulte que :

-les flux :

$$\overline{V}_s = (R_s + jw_s L_{\sigma s})\overline{I}_s + jw_s M\overline{I}_m$$
(IV.10)

$$\overline{0} = (R_r + jw_r L_{\sigma r})\overline{I}_r + jw_r M\overline{I}_m$$
(IV.11)

Le glissement est défini par :

$$g = \frac{w_s - w}{w_s} \tag{IV.12}$$

$$\boldsymbol{w}_r = \boldsymbol{g}\boldsymbol{w}_s \tag{IV.13}$$

En substituant w_r par son équation (IV.13)dans l'équation (IV.11)et en divisant cette même équation membre à membre par g, les équations (IV.10)et (IV.11)deviennent :

$$\overline{V}_s = (R_s + jw_s L_{\sigma s})\overline{I}_s + jw_s M\overline{I}_m$$
(IV.14)

$$\overline{0} = \left(\frac{R_r}{g} + jw_r L_{\sigma r}\right)\overline{I}_r + jw_r M\overline{I}_m$$
(IV.15)

Le schéma équivalent en régime permanent est maintenant tracé sans aucune difficulté.

Figure IV.1 Schéma équivalent de la machine asynchrone à cage en régime permanent

Ces paramètres qui figurent sur ce schéma sont appelés paramètres primitifs (PP_s) de la machine qui doivent faire l'objet d'une identification.

IV.3. Expression de l'impédance d'entrée

L'impédance complexe d'entrée de la machine à simple cage en fonction des paramètres primitifs est donnée par :

$$\overline{z} = R_s + jw_s L_{\sigma s} + \frac{jw_s M\left(\frac{R_r}{g} + jw_s L_{\sigma r}\right)}{\frac{R_r}{g} + jw_s (M + L_{\sigma r})}$$
(IV.16)

En osons $a = jw_s$, l'expression (IV.16) devient :

$$\overline{z}(a,g) = R_s + aL_{\sigma s} + \frac{aM\left(\frac{R_r}{g} + aL_{\sigma r}\right)}{\frac{R_r}{g} + a(M + L_{\sigma r})}$$
(IV.17)

En posant :

$$A = \frac{(L_{\sigma s} + M)L_{\sigma r} + L_{\sigma s}M}{R_r}$$
(IV.18)

$$B = \frac{R_s(L_{\sigma r} + M)}{R_r}$$
(IV.19)

$$C = L_{\sigma r} + M \tag{IV.20}$$

$$D = R_{\rm s} \tag{IV.21}$$

l'impédance, en fonction de ces nouveaux paramètres A, B, C et D, qui sont appelés paramètres du modèle invariant (MIV_S) de la machine s'écrit donc :

$$\overline{z}(a,g) = \frac{a^2gA + agB + aC + D}{ag\frac{B}{D} + 1}$$
(IV.22)

IV.4. Identification des paramètres électriques

Le vecteur de paramètres à identifier pour la machine asynchrone à cage :

$$X = [R_s, L_{\sigma s}, M, R_r, L_{\sigma r}]^T$$
(IV.30)

La résistance R_s est habituellement mesurée à chaud par la méthode voltampermétrique. Cette méthode consiste à alimenter une phase du stator par une source de tension continue et de mesurer le courant qui la traverse et la tension entre ses bornes. Etant donné sa faible valeur, le montage aval est impérativement choisi.

Les paramètres primitifs (*PPs*) de la machine sont déterminés par la mesure de l'impédance en plusieurs points de fonctionnement. Le glissement est mesuré à partir de la vitesse de rotation Ω . L'impédance complexe peut s'écrire sous cette forme :

$$\overline{Z} = Z\cos\varphi + jZ\sin\varphi \tag{IV.31}$$

avec :

$$\Re(\overline{Z}) = Z\cos\varphi \tag{IV.32}$$

$$\tilde{\mathfrak{g}}(\overline{Z}) = Zsin\varphi \tag{IV.33}$$

Ainsi l'impédance complexe est connue par la mesure de son module et son facteur de puissance. Le module de l'impédance Z est obtenu en mesurant évidemment la tension d'alimentation V_s et le courant I_s absorbé par la machine. Il s'agit dans un premier temps de formuler un système d'équations non linéaires :

$$f_i(X) = 0 \ i = 1, n$$
 (IV.34)

avec

$$f_i(X) = \overline{Z}_i(a, g_i) - \overline{Z}_{mi}(g_i) \quad i = 1, n \tag{IV.35}$$

Le nombre de points de mesures effectuées n doit être suffisant de façon à ce que le nombre de paramètres à identifier soit égal au nombre d'équations.

 $\overline{Z}_{mi}(g_i)$, $\overline{Z}_i(a, g_i)$ désigne respectivement l'impédance complexe mesurée à un point de fonctionnement donné **i** et l'impédance modèle en ce même point.

On peut également séparer la partie réelle de la partie imaginaire de l'impédance complexe et augmenter le nombre d'équations et diminuer par conséquent le nombre de points de mesures à n/2. Dans la seconde étape, il s'agit de résoudre ce système numériquement. Ce système d'équations formulé à partir des paramètres primitifs n'admet malheureusement pas de racines. Il existe plusieurs voies ou méthodes pour contourner ce problème. [8]

IV.5 Méthode des invariants

Parmi ces méthodes, on en trouve la méthode des paramètres invariants en deux étapes. La première consiste à identifier les paramètres du modèle invariant de la machine. Les vecteurs de paramètres à identifier:

$$X = [A, B, C, D]^T$$
(IV.36)

Les mêmes mesures sont effectuées que précédemment puis on formule un système d'équations non-linéaires qui va être aisément résolu.

La deuxième étape consiste à retrouver les paramètres primitifs en connaissant ceux du modèle invariant de la machine après l'introduction d'une restriction. **[12]**

IV.6 Identification numérique

Pour la résolution numérique d'un système d'équations non linéaires, il en existe plusieurs méthodes de résolution. A notre niveau nous contentons d'utiliser la méthode de Newton -Raphson. Dans ce qui suit, nous passons en revue une brève solution de la méthode de Newton -Raphson.

IV.6.1 Méthode de Newton-Raphson

Notons par
$$X_* = [X_{1^*}, X_{2^*}, \dots, X_{n^*}]$$
 (IV.39)

le vecteur solution du système non linéaire.

$$f_i(x) = 0 \quad i = 1, n$$
 (IV.40)

Si chaque fonction f_i est continue et continuellement différentiable, alors par développement en série de Taylor au voisinage d'un estimé X^k obtenu à la k-ieme itération et qui proche de X_* , nous obtenons :

$$f_i(X_*) = f_i \Big(X^k + (X_* - X^k) \Big)$$
(IV.41)

$$f_i(X_*) = f_i(X^k) + \sum_{j=1}^n \frac{\partial f_i(X)}{\partial X_j} \Big|_{X=X^k} \left(X_j^* - X_j^k \right) + \frac{1}{2} \sum_{j=1}^n \sum_{1=1}^n \left(X_j^* - X_j^k \right) \left(X_1^* - X_1^k \right) \frac{\partial^2 f_i(X)}{\partial X_j \partial X_1} \Big|_{X=X^k} + \dots = 0$$
(IV.42)

En négligeant les termes en $(X_i^* - X_i^k)^2$ et ceux du degré supérieur le système (IV.42)s'écrit:

$$f_i(X^k) = -\sum_{j=1}^n \frac{\partial f_i(X)}{\partial X_j} \Big|_{X=X^k} \left(X_j^* - X_j^k \right)$$
(IV.43)

$$E_{ij}^{k} = \frac{\partial f_{i}(X)}{\partial X_{j}} \bigg|_{X=X^{k}} i = 1, n \text{ et } j = 1, n$$
(IV.44)

soit

Le vecteur d'erreurs ΔX^k est défini par :

$$\Delta X_j^k = X_{J^*} - X_J^k \tag{IV.45}$$

puis le vecteur F^k par :

$$F_i^k = -f(X^k) \tag{IV.46}$$

Ainsi la relation (IV.43) s'écrit :

$$E^k \Delta X^k = F^k \tag{IV.47}$$

L équation (IV.47)est un système linéaire que nous pouvons résoudre.

$$\Delta X^k = -(E^k)^{-1} F^k \quad \text{avec det} (E^k) \neq 0 \tag{IV.48}$$

On peut obtenir un meilleure estimé X^{K+1} de X^* par :

$$X^{K+1} = X^k + \Delta X^k \tag{IV.49}$$

Cette dernière équation (IV.49)s'écrit :

$$X^{K+1} = X^k - (E^k)^{-1} F^k$$
(IV.50)

On continue à chercher ce meilleure estimé jusqu'à ce que :

$$|X^* - X^k| \to 0 \tag{IV.51}$$

IV.7 Mesures effectuées

Les mesures effectuées sur la machines en simulation sont indiquées sur les figures ci-dessous.

1. Module de l'impédance en fonction du glissement

Figure IV.2 l'impédance Z en fonction du glissement.

2.Le facteur de puissance en fonction du glissement.

Figure IV.3 Facteur de puissance en fonction du glissement.

Tableau de mesure

Tableau	IV.1	:	Tableau	de	mesure	
		•	1			

g (%)	5.17	5.26
$Z(\Omega)$	82.32	72.97
Cos φ	0.5906	0.7155
$\Re(\overline{Z})(\Omega)$	70.89	59.34
$\Im(\overline{Z})$ (Ω)	41.86	42.46

IV.8 Résultats d'identification

En Simulink sous MATLAB, existe une fonction dite *fsolve* que nous avons utilisé pour résoudre un système d'équations non linéaires à quatre inconnus.

Les résultats de cette identification sont regroupé dans ces tableaux

Tableau IV.2 : Résultat de la première étape.

Α	В	С	D
0.0022	0.3493	0.274	4.85

En appliquant une restriction bien appropriée, c'est-à-dire on néglige l'inductance de fuite au stator on a:

Tableau IV.3 : Résultat de la première étape avec $L_{\sigma s} = 0 H$.

Rs (Ω)	Rr (Ω)	M (H)	Lr (H)	Ls (H)
4.85	4.282	0.274	0.3084	0.274

En négligeant cette fois ci l'inductance de fuite au rotor on obtient:

	Tableau IV.4 :	Résultat de la premi	ere étape avec $L_{\sigma r}$	= 0 H.
Rs (Ω)	Rr (Ω)	M (H)	Lr (H)	Ls (H)
4.85	3.8093	0.2435	0.2435	0.2741

D/ 1/ . . 0 11 **...** TT 7 4

IV.9 Validation des résultats

Une fois qu'on terminé l'identification des paramètres de la machine , on est amené à comparer ces paramètres avec ceux des paramètres exactes

	Paramètres identifiés	Paramètres exactes	Erreur absolue	Erreur relative
$R_s(\Omega)$	4.85	4.85	0	0
$R_r(\Omega)$	3.8093	3.805	0.0043	0.00113
M (H)	0.2435	0.258	0.0145	0.0562
L _s (H)	0.274	0.274	0	0
L _r (H)	0.2435	0.274	0.0305	0.1113

Tableau IV.5 : comparésone Les paramètres Calculé et exactes.

IV.10 Conclusion

Au cours de ce chapitre, le schéma équivalent généralisé a été établi. Ceci a permis de présenter plusieurs modèles simples à nombre de paramètres réduit et aisément identifiables et qui présentent tous la même impédance totale vue du stator.

La méthode d'identification est présentée sur la base des méthodes numériques utilisées et nous avons déjà évoqué la méthode de Newton-Raphsen, afin d'estimer les paramètres de l'appareil.Le chapitre a été complété en précisant les paramètres de programmation utilisant la fonction fsolve en SIMULINK sous MATLAB.

Conclusion Générale

Conclusion Générale

Le travail présenté dans ce mémoire traite de la modélisation et l'identification paramétrique du moteur asynchrone triphasé, le but étant d'estimer au mieux les paramètres du moteur.

La machine asynchrone a fait l'objet d'une étude du chapitre I, puis nous étions dans le deuxième chapitre avec la modélisation dans le système dynamique, à la fois la trame triphasée et la trame de parc à deux phases à l'aide d'une approche analytique. Ensuite, nous au chapitre II Modélisation dans le système permanent de système dynamique au cours de ce modèle de sport et de simulation à **Simulink** sous **Matalab**, ce qui doit suivre le comportement des quantités électromagnétiques et mécaniques.

Parmi ces modèles, on peut citer le modèle de paramètres invariants et celui à nombre minimal de paramètres.

L'identification, en se servant de ces modèles ,doit passer par un certain nombre d'étapes qui consiste à formuler un système d'équations non linéaires, faire des mesures puis résoudre ce système numériquement en utilisant des méthodes numériques comme celle du gradient ou de Newton- Raphson ou utiliser tout simplement la fonction fsolveen in programme sous **MATLAB**. Une dernière étape consiste à valider ces résultats d'identification.

L'identification paramétrique a beaucoup d'intérêts :

Améliorer les performances en fournissant de bons paramètres. Facilite l'utilisation des variateurs de vitesse en fournissant simplement les paramètres de la machine qui est connectée.

Annexe A : Paramètres de la machine

Les paramètres de la machine asynchrone a cage d'écureuil que nous avons utilisée dans nos simulations sont :

paramètres	Valeurs
Puissance nominale	1.5KW
Fréquence nominale	50HZ
Facteur de puissance	0.8
Tension nominale	220V
Résistance statorique	4.85 Ω
Résistance rotorique	3.805 Ω
Inductance cyclique stator	0.274 H
Inductance cyclique rotor	0.274 H
Inductance mutuelle cyclique	0.258 H
Nombre de paires de pôles	2
Moment d'inertie	0.031 Kg.m ²
Coefficient de frottement visqueux	0.008 N.m.s/rd
Vitesse nominale	1430 tr/min

Références Bibliographiques

[1] B. Nacereddine, " Identification Des Parametres Electriques De La Machine Asynchrone A Cage D'ecureuil", mémoire de magister, Universite Mouloud Mammeri De Tizi Ouzou, 2012.

[2] Chergui Rebaia , « Identificationdes Parametres D'une Machine Asynchrone Triphasée» Mémoire De Ingénieur d'Etat en Electrotechnique. Université de Batna. 2014.

[3] METROUH Mohamed , MOUSSI Rafik ,« Identification d'une machine asynchrone à cage » Mémoire de Master Académique. Université Mouloud Mammeri De Tizi Ouzou.2017.

[4] B. Ait Menguelette ,« Identification des paramètres d'un moteur asynchrone : Application au moteur du laboratoire » Mémoire de Master Académique. Université Mouloud Mammeri De Tizi Ouzou.2013.

[5] B.Walidhimoura Abedelkader ,« Etude Et Simulation D'une Machine Asynchrone Alimente Par Un Onduleur De Tension A Commande MLI » Mémoire de Master .Université badji Mokhtar Annaba. 2017.

[6] ABBAD Abdellah ,GHERBI Allel, « Commande D'un Moteur Asynchrone Par La Logique Floue Adaptative » Mémoire de Master .Université de Boira . 2018.

[7] A. Diche ,« Modélisation de la machine asynchrone à cage d'écureuil pourvue de cales
 Ferromagnétiques » Mémoire De Ingénieur d'Etat en Electrotechnique. Université Mouloud
 Mammeri De Tizi Ouzo 2010

[8] F.Corcoles , J.Pedra , M. Salichs , L.Sainz « Analysis Of The Induction Machine Parameters Identification » IEEE Transaction On Energy Conversion, Vol.17,No.2, pp.183-190 , June 2002

[9] M.Bouheraoua « Identification des paramètres d'un moteur asynchrone triphasé à cage avec la méthode des éléments finis» Mémoire De Ingénieur d'Etat en Electrotechnique. Université Mouloud Mammeri De Tizi Ouzo 2012

[10] BOUCIF Smail, « Modélisation des Modes de Démarrages Sans à-coups et Freinage des Entraînements Electriques à Moteur Asynchrone » Mémoire De Ingénieur d'Etat en Electrotechnique. Université Mouloud Mammeri De Tizi Ouzo. 2017

[11] F. Sifaoui H. Mendaci « Modelisation Et Controle Scalaire D'une Machine Asynchrone Triphasee » Mémoire de Master . Université Mouloud Mammeri De Tizi Ouzo 2014

[12] Sahraoui Lazhar, «Modélisation identification, et commande d'une machine d'induction à double cage» mémoire de magister, université de Batna. 2008

Résumé

Cette thèse traite de la modélisation de machines asynchrones triphasées dans le système transitoire et permanent et la détermination des paramètres par des méthodes numériques utilisant des expériences pratiques Les résultats de la définition sont validés par simulation dans Simulink au sein de MATLAB.

Mots – clés ; Machine Asynchrone (MAS).

ABSTRACT

This thesis focuses on the modeling of three-phase asynchronous machines in transient and permanent systems and the determination of parameters by numerical methods using practical experiments. The definition results are validated by simulation in Simulink within MATLAB.

Keywords : Asynchronoud Machine (MAS).

ملخص

تركز هذه الأطروحة على نمذجة الآلات غير المتزامنة ثلاثية الطور في أنظمة عابرة ودائمة وتحديد المعلمات بالطرق العددية باستخدام التجارب العملية. يتم التحقق من صحة نتائج التعريف عن طريق المحاكاة في Simulink داخل MATLAB.

الكلمات المفتاحية : الألة غير المتزامنة (MAS).