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Chapitre 1

General introduction

It is well known that due to the successes provided by both the quantum theory and general

relativity, each one separately, they were unable to integrate the laws of nature into a single

mathematical model. For this reason, several physical models have appeared which are based

on the generalization of Heisenberg�s principle. Among them, are a minimal observable length,

maximally observable momentum and length, etc. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. During the last

years, there has been a rapid development in special functions with re�ection symmetries and

the harmonic analysis related with root systems. These special functions of several variables

are investigated in quantum mechanics under a new deformation algebra it is called the Dunkl

operator. It was �rst proposed by Wigner in 1950 in order to the quantization of bosons. This

procedure makes the commutator of position and momentum dependent on some constants

called Wigner parameters, and also parity operators [11].

In the past years, there are some physicists who have taken care of these Dunkl derivations in

the quantum theory area. For example, the author Vincent X has provided the Dunkl oscillator

in the plane in Ref. [12]. Furthermore,the author A. Lapointe, L. Vinet have studied the problem

of the dunkl oscillator in Ref. [13]and the Dunkl oscillator in three dimensions [14] , also the

coulomb potential and the Klein�Gordon Oscillator have treated in Ref. [15]. Morevere the

problem of the free-particle spherical waves and the Pseudo-Harmonic Oscillator and the Mie-

type Potential has obtained an exact solution of the Schrodinger equation with Dunkl derivative

in Ref. [16].also the DKP-Dunkl oscillator equation is presented in Ref. [17].The author Charles

Dunkl introduced a new operator by combining the usual di¤erential and parity operators with

Wigner parameter. the Wigner-Dunkl-Newton mechanics with time-reversal symmetry [18] and
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explicit solution to the N-body Calogero problem, the relativistic Dunkl oscillator in (2 + 1)

dimensions [19], wherease in Ref. [20] has presented the thermal properties of relativistic Dunkl

oscillator .

In the present analysis, we exerted much e¤ort to understand the Dunkl derivation and

its applications to quantum systems. Using the wave equation method, we can establish the

exact solutions of the quantum particles in a relativistic and non-relativistic case under the

generalized Heisenberg algebra of the Dunkl operator. The limit cases give the expected results

of ordinary quantum mechanics.

This work is divided into the following chapters : The second chapter gives a brief overview

of the Dunkl operator as well as its uses in quantum theory. Whereas in the third chapter, we

give the exact solution of the non-relativistic case for a particle in box and Harmonic oscillator

potential in arbitrary dimensions D = 1; 2, and 3. In two and three dimensions the Harmonic

oscillator is calculated in polar and spherical coordinates respectively. In the fourth chapter,

which is the principal part of this work, we examine the Dunkl-Klein-Gordon oscillator within

Cartesian coordinates, then in spherical coordinates. Also in chapter 5, we study the e¤ect of

Dunkl-Dirac oscillator in one dimension. In the last chapter, we present a summary of the main

results and our general conclusions.



Chapitre 2

Mathematical tools for Dunkl

derivation

2.1 Important de�nitions of the Dunkl derivation

It is well known in Refs. [11] the Dunkl derivative instead of the normal derivative is de�ned

as :

D̂x = @x +
�

x

�
1� R̂

�
: (2.1)

where � is the Wigner parameter and R̂ is called a re�ection operator obeying

R̂f (x) = f (�x) . (2.2)

This e¤ect leads to two cases if f (x) is an even function, here the eigenvalue is one (i.e.,

R̂feven (x) = feven (x)). While if f (x) is an odd function, here the eigenvalue of R̂ is minus one

(i.e., R̂fodd (x) = �fodd (x)).
The role of the Dunkl derivative in quantum mechanics lies in the generalization of the

momentum operator

p̂ =
~
{
D̂x; (2.3)

and the position operator remains the same x̂ = x: This quantum mechanics is called the

Wigner-Dunkl quantummechanics. To clarify further, we can extract theWigner-Dunkl-Heisenberg

commutator relation as follow :

[x̂; p̂] = �{
h
x̂; D̂x

i
: (2.4)
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For even function we have R̂feven (x) = feven (x) ; Eq. (2:4) becomes as :

[x̂; p̂] feven = �{ [x̂; Dx] feven (2.5)

= �{ (x̂Dx �Dxx̂) feven (2.6)

= �{
�
x̂
�
@x +

�

x

�
1� R̂

��
�
�
@x +

�

x

�
1� R̂

��
x̂
�
feven (2.7)

= {feven + (�{)
�
x
�

x
� �

x
x
�
feven + {

�
x
�

x
� �

x
R̂x
�
feven (2.8)

= {feven + {
�
�R̂ +

�

x
x
�
feven (2.9)

=

�
x̂;�{ @

@x
� {

�

x

�
1� R̂

��
feven (2.10)

=

�
x̂;�{ @

@x

�
f +

h
x̂;�{�

x

�
1� R̂

�i
feven (2.11)

then we �nd

[x̂; p̂] = {
�
1 + 2�R̂

�
(2.12)

For odd function we �nd the same result.

In three dimensions, the Dunkl derivative is de�ned as

D̂j =
@

@xj
+
�j
xj

�
1� R̂j

�
: (2.13)

The Wigner parameter �j is made up of positive real values. The re�ection operators R̂j are

those that meet the following action :

R̂jf (xj) = f (�xj) ; R̂iR̂j = R̂jR̂i; R̂jjxi = ��ijxiR̂j; (2.14)

R̂j
@

@xi
= ��ij

@

@xi
R̂j: (nosummation). (2.15)

As a result, the Dunkl operators obey the algebra below :

pjD̂j = �D̂jpj;
h
D̂i;D̂j

i
= 0; (2.16)h

x̂; D̂j

i
= �ij

�
1 + 2�ijR̂ij

�
: (nosummation). (2.17)

When using the Dunkl derivative instead of the ordinary derivative. The scalar product is :

hf j gi =
Z
g� (kxk) f (kxk) jxj2� d3x . (2.18)

With respect to the state j i, the anticipated value of an operatorO can be de�ned asD
	 j Ô	

E
=

Z
	� (x) Ô	(x) jxj2� dx . (2.19)
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2.2 The properties of the Dunkl derivative

1- The Dunkl derivative in general dimensions is linear because :

D̂j (af (xj) + bg (xj)) = aD̂jf (xj) + bD̂jg (xj) : (2.20)

The Leibniz rule applies to the Dunkl derivative for any function f (xj), g (xj)

D̂j (f (xj) g (xj)) =
�
D̂jf (xj)

�
g (xj) + f (xj) D̂jg (xj)

� �j
xj

h�
1� R̂j

�
f (xj)

i h�
1� R̂j

�
g (xj)

i
: (2.21)

When the functionf (xj) or g (xj) is even, the Leibniz relation takes the form

D̂j (f (xj) g (xj)) =
�
D̂jf (xj) g (xj) + f (xj) D̂jg (xj)

�
; (2.22)

while in one dimension the Dunkl derivative satis�es the following Leibniz rule

D̂x (f (x) g (x)) =
�
D̂xf (x)

�
g (x) + f (x) D̂xg (x)

� �

x

h�
1� R̂

�
f (x)

i h�
1� R̂

�
g (x)

i
; (2.23)

also, if we havef(x) or g(x) is even, the ordinary Leibniz rule becomes :

D̂x (f (x) g (x)) =
�
D̂xf (x) g (x) + f (x)Dxg (x)

�
: (2.24)

2- Acting the Dunkl derivative on the monomial gives : In follow we calculate the Dunkl

derivation on function xn, we have :

D̂xx
n = @xx

n +
�

x
xn � �

x
R̂xn: (2.25)

After some simpli�ed we write

D̂xx
n = nxn�1 + �xn�1 � �

x
(�1)n xn�1 = [n+ �+ � (�1)n]xn�1

= [n+ � (1� (�1)n)]xn�1 =
h
n+ �

�
1� R̂

�i
xn�1: (2.26)

Or other form we write

D̂xx
n = [n]� x

n�1, (2.27)

where� �deformed number is de�ned by

[n]� = n+ � (1� (�1)n) . (2.28)
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The �rst ��deformed number is ([0]� = 0); the second is
�
[1]� = 1 + 2�

�
and we can

conclude in general deformed case as :

[2k]� = 2k; [2k + 1]� = 2k + 1 + 2�; (k = 0; 1; 2; ::::) . (2.29)

Here we know that all �-deformed number is non-negative if � > �1=2 is imposed. The
Dunkl derivative behaves like @x when acted on the even function, while it behaves like

@x +
2�
x
when acted on the odd function.

The square of the Dunkl derivative in one dimension is de�ned as

D̂2
xf =

�
@x +

�

x

�
1� R̂

���
@x +

�

x

�
1� R̂

��
f (2.30)

= @2xf + @
��
x

�
1� R̂

�
f
�
+
�

x

�
1� R̂

�
@xf +

�

x

�
1� R̂

�
f (2.31)

= @2xf +
�
� �

x2

�
1� R̂

�
f
�
+
�

x

�
1� R̂

�
@xf +

�

x

�
1� R̂

�
@xf (2.32)

= @2xf +
�
� �

x2

�
1� R̂

�
f
�
+ 2

�

x

�
1� R̂

�
@xf: (2.33)

Where we have
�

x

�
1� R̂

�
f = 0: (2.34)

Then we obtain

D̂2
x = @2x + 2

�

x

�
1� R̂

�
@x +�

�

x2

�
1� R̂

�
: (2.35)

The square of the Dunkl derivative in general dimension is de�ned as follows :

D̂2
i =

@2

@x2i
+ 2

�i
xi

�
1� R̂i

� @

@xi
� �i
x2i

�
1� R̂i

�
: (2.36)

It is well known the Dunkl derivative dose not obey chain rule because :

D̂xf (u (x)) =
�
@x �

�

x

�
1� R̂

�
f (u (x))

�
; (2.37)

we introduce the derivation of u (x)

=
du

dx

d

du
f (u) +

�

x

�
1� R̂

�
f (u (x)) : (2.38)

=
du

dx

d

du
f (u) +

�

x
f (u (x))� �

x
pf (u (x)) (2.39)

=
du

dx

d

du
f (u) +

�

x
f (u (x))� �

x
f (u (�x)) : (2.40)
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Consequently we write

D̂xf (u (x)) =
du

dx

d

du
f (u) +

�

x
(f (u (x))� f (u (�x))) : (2.41)

But, for a even function u(x) we have the series rule

D̂xf (u (x)) =
d

du
f (u) + D̂xu (x) . (2.42)

2.3 The important relations in quantum mechanics

1- The time-dependent Schrodinger equation reads

{
@

@t
	(x; t) = Ĥ (x; p)	 (x; t) =

�
p̂2

2m
+ V (x)

�
	(x; t) : (2.43)

Using the generalized momentum operator de�ned in Eq. (2:35) into the time-dependent

Schrodinger equation (2:43), we will get the next

{
@

@t
	(x; t) = Ĥ (x; p)	 (x; t) (2.44)

=

0@�@2x + 2�x
�
1� R̂

�
@x � �

x2

�
1� R̂

�
2m

+ V (x)

1A	(x; t) : (2.45)

Furthermore, we can �nd the exact solutions of this equation for the particle in a box

potential and Harmonic oscillator in one dimension. Thus we must de�ne the important

relations of the Dunkl operator in quantum mechanics.

2- The inner product :

In the Hilbert space related to one-dimensional, the inner product of Wigner-Dunkl quantum

mechanics is given by

hf j gi =
Z
g� (x) f (x) jxj2� dx , (2.46)

where jxj2� is a weight function.
The expectation value of a physical operator Ô with respect to the state  (x; t) is de�ned

by D
Ô
E
= h	 j O	i =

Z
	� (x; t)O	(x; t) jxj2� dx , (2.47)

andO is a Hermitian operator if it obeys

hO	 j 	i = h	 j O	i . (2.48)

The properties of the weight function :
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1- For an arbitrary even function f(x) we haveZ +1

�1
dx jxj2� D̂xf = 0 . (2.49)

2- For the odd function f(x) obeying limx!1 x
2�f (x) = 0 and � � 0 we haveZ +1

�1
dx jxj2� D̂xf = 0 , (2.50)

we have

h j  i =
Z
 � (x) (x) jxj2� dx: (2.51)

In order to obtain the projection relation, we must use the Eq. (2:51) and as we know

 (x) = h j xi and  � (x) = hx j  i ; we �nd

h j  i =
Z
jxj2� h j xi hx j  i dx; (2.52)

then we shorthand we have Z
jxj2� j xihx j dx = 1: (2.53)

To understand these relationships well, we will apply them to a set of physical examples

in several dimensions and we will treat them in the relativistic and non-relativistic cases.



Chapitre 3

Applications of the Dunkl operator in

non-relativistic case

3.1 Introduction

The particle in a box and harmonic oscillator potentials are one of those few problems that

are important to all branches of physics. They provide useful models for a variety of vibrational

phenomena that are encountered, for instance, in classical mechanics, electrodynamics, statis-

tical mechanics, solid-state, atomic, nuclear, and particle physics. In quantum mechanics, it

serves as an invaluable tool to illustrate the basic concepts and the formalism. For this, we will

examine these examples in the framework of the generalized Heisenberg algebra of the Dunkl

operator.

3.2 The Dunkl operator in one dimension

In this section, we will seek to �nd the exact solutions to the problem of a quantum particle

in non-relativistic case that is subject to a harmonic oscillating potential and a particle con�ned

to a box in one dimension with the presence of Dunkl operator.
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3.2.1 Particle in a box :

Consider a particle of mass m moving in the following potential

V (x) =

8<: 0 (�L < x < L)

1 elsewhere
: (3.1)

The time-independent Schrodinger equation is expressed as follows :

� 1

2m
D̂2
x	 = E	: (3.2)

Alternatively, we can write

� 1

2m

�
@2 +

2�

x
@ � �

x2

�
1� R̂

��
	 = E	: (3.3)

As we know the R̂�re�ection operator forces us to divide the wave equation.(3:3) into two
parts :

For the case of even parity is achieved by :

� 1

2m

�
@2 +

2�

x
@

�
	+ = E+	+: (3.4)

Using the series method, so the corresponding wave function of Eq. (3.4) writes as :

	�+ =
1P
n=0

a+nx
2n jxj� : (3.5)

In order to replace the form series of wave function 	�+ in Eq. (3.4), one must make the �rst

and second derivation on 	�+: Indeed we have,

@	+ =
1P
n=0

a+n
(2n+ �)

x
x2n jxj� ;

and

@2	+ =
1P
n=0

a+n (2n+ 1) (2n+ �� 1)x2n jxj� : (3.6)

After substituting these derivations into an equation.(3:4) we get

� 1

2m

�P1
n=0a

+
n

(2n+ �) (2n+ �� 1)
x2

x2n jxj� +
P1

n=0a
+
n (2n+ �)

2�

x2
jxj�
�

= E+
P1

n=0a
+
nx

2n jxj� (3.7)
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Then we will expand the series as follow, we obtain

� 1

2m
a+0 � (�� 1)x�2 jxj

� + a+1 (2 + �) (2 + �� 1) jxj�

+a+2 (4 + �) (3 + �)x2 jxj� + ::::+ a+0 �2�x
�2 jxj�

+a+1 (2 + �) 2� jxj
� + a+2 (4 + �) 2�x

2 jxj� + ::::

= E+

�
a+0 jxj

� + a+1 x
2 jxj� + ::::

�
: (3.8)

We �nd after simpli�cation :

� 1

2m
[a+0 � (�� 1)x�2 + a+1 (2 + �) (2 + �� 1)

+a+2 (4 + �) (3 + �)x2 + ::::+ a+0 �2�x
�2 (3.9)

+a+1 (2 + �) 2�+ a+2 (4 + �) 2�x
2 + ::::]

= E+
�
a+0 + a+1 x

2 + ::::
�
: (3.10)

All the terms in order (x�2) are,

� 1

2m

�
a+0 � (�� 1)x�2 + a+0 �2�x

�2� = 0: (3.11)

To give the following equation

� (�� 1) + �2� = 0: (3.12)

Consequently, in the same method we �nd for the other terms in order of x2; x4; ::: and x2k,

� 1

2m
[a+1 (2 + �) (2 + �� 1) + a+2 (4 + �) (3 + �)x2

+::::+ a+1 (2 + �) 2�+ a+2 (4 + �) 2�x
2 + ::::

= E+
�
a+0 + a+1 x

2 + ::::
�
: (3.13)

This equation gives

a+1 =
�2mE+

(2 + �) [�+ 1 + 2�]
a+0 ; (3.14)

and

a+2 =
�2mE+

(4 + �) (3 + �+ 2�)
a+1 : (3.15)

The recurrence relation is discovered by

a+n+1 =
�2mE+

(n+ 2 + �) (n+ 1 + �+ 2�)
a+n : (3.16)
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As we know the even wave function is 	�+ =
1P
n=0

a+nx
2n jxj� : In this stage we replace a+n by

function of a+n�1 with using relation (3.16), we �nd :

	�+ =
1P
n=0

�2mE+
(n+ 1 + �) (n+ �+ 2�)

a+n�1x
2n jxj� : (3.17)

As a result, we obtain the recurrence relation with the parameter a+0 ;

	�+ =
1P
n=0

�2mE+
(n+ 1 + �) (n+ �+ 2�)

�2mE+
(n+ �) (n� 1 + �+ 2�)

� :::
�2mE+

(n+ �) (n� 1 + �+ 2�)a
+
0 x

2n jxj� : (3.18)

Or we can write

	�+ = a+0
1P
n=0

(�2mE+)n

(n+ 2 + �) (n+ 1 + �+ 2�)
x2n jxj� : (3.19)

We use a constant value of a+0 = 1:

1- For the case of � = 0, we have

	�=0+ =
1P
n=0

(�2mE+)n

(n+ 2) (n+ 1 + 2�)
x2n: (3.20)

This function is the polynomial hypergeometric

	�=0+ =0 F1

�
;
1

2
+ �;

�mE+x2
2

�
: (3.21)

2- For the case � = 1� 2�; we have

	�=1�2�+ =
1P
n=0

(�2mE+)n

(n+ 3� 2�) (n+ 2)x
2n jxj1�2� : (3.22)

the above function is

	�=1�2�+ = jxj1�2�0 F1

�
;
3

2
� �;

�mE+x2
2

�
: (3.23)

When � = 0 and � = 0; the even parity solution is

	�=0+ =0 F1

�
;
1

2
;
�mE+x2

2

�
: (3.24)

we pose z = mE+x2

2

	�=0+ =0 F1

�
;
1

2
;�z

�
=

1P
n=0

(�1)n

(2n)
z2n; (3.25)
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this sum series is cos (z) function; therefore we obtain,

0F1

�
;
1

2
;
�mE+x2

2

�
=

1P
n=0

(�1)n

(2n)

 
2

r
mE+x2

2

!2n

= cos

 
2

r
mE+x2

2

!
= cos

�p
2mEx

�
: (3.26)

As a result we �nd,

	�=0+ = cos
�
2
p
2mE+x

�
: (3.27)

The solution 	�=1�2�+ is unacceptable since it leads to jxjp
2mE+

sin
p
2mE+x in the limit

� �! 0. The Eq. (3:21) can be expressed as a Bessel function :

Jn =

�
1
2
x
�n

n! 0
F1

�
n+ 1;

�1
4
x2
�
: (3.28)

Thus, we have

0F1

�
�+

1

2
;
�1
4

�p
2mE+x

�2�
=
J�� 1

2

�p
2mE+x

� �
�� 1

2

�
!�

1
2

p
2mE+x

��+ 1
2

: (3.29)

So we can write 	�=0+

	�=0+ = N+x
1
2��J�� 1

2

�p
2mE+x

�
: (3.30)

where N+ =
(�� 1

2)!�
1
2

p
2mE+

��� 1
2
is constant normalization of 	�=0+ �function. As we know, the

boundary condition 	+ (�L) = 0 determines the energy level for our system. This results,8<: 	+ (L) = L
1
2��

N+J�� 1
2

�p
2mE+L

�
= 0

	+ (�L) = �L
1
2��

N+J�� 1
2

�
�
p
2mE+L

�
= 0

; (3.31)

Which gives 8<: J�� 1
2

�p
2mE+L

�
= 0

J�� 1
2

�
�
p
2mE+L

�
= 0

: (3.32)

These equivalence by (
1P
n=0

�p
2mE+L

�n
n!

= 0), indeed we have

1 +
p
2mE+L+

�p
2mE+L

�2
2!

+

�p
2mE+L

�3
3!

+ :::::::: = 0; (3.33)

where

��� 1
2
;n =

�1

1 +

�p
2mE+L

�
2!

+

�p
2mE+L

�2
3!

+ ::::::

: (3.34)
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Thus we get the level energy for particle in one box

E+n =
1

2mL2
�2
�� 1

2
;n
; (n = 1; 2; 3; ::::) ; (3.35)

where ��� 1
2
;n, is the number of zeros in J�� 1

2
(x) :

The solution for odd parity 	� is :

�1
2m

�
@2 +

2�

x
@ � 2�

x2

�
	 = E�	�: (3.36)

The corresponding wave function of Eq. (3.36) is :

	�� =
1P
n=0

a�nx
2n+1 jxj� : (3.37)

In order to replace this series in Eq. (3.36), one must make the �rst and second derivation on

	�+: Indeed we have.

@	� =
1P
n=0

a�n (2n+ 1 + �)x
2n jxj� : (3.38)

and

@2	� =
1P
n=0

a�n (2n+ 1 + �) (2n+ �)
x2n

x
jxj� : (3.39)

After substituting these derivations into an equation (3:36) we get

�1
2m

264
1P
n=0

a�n (2n+ 1 + �) (2n+ �) x
2n

x
jxj�+

2�
x

1P
n=0

a�n (2n+ 1 + �)x
2n jxj� � 2�

x2

1P
n=0

a�nx
2n+1 jxj�

375
= E�

P
a�nx

2n+1 jxj� : (3.40)

Then we will expand this series as follow

�1
2m

24 a�0 (1 + �)�+ a�1 (3 + �) (2 + �)x+ a�2 (5 + �) (4 + �)x3

+::::+ a�0 (1 + �) 2�+ a�1 (3 + �) 2�x+

35 (3.41)

After simpli�cation Eq. (3.41) becomes as :

�1
2m

�
a�0 (1 + �)�+ a�0 (1 + �) 2�� a�0

2�

x

�
= 0: (3.42)

In order (x0); we �nd

(1 + �)�+ (1 + �) 2�� 2� = 0: (3.43)
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As a result, we write

� (1 + �+ 2�) = 0: (3.44)

Consequently, for the other terms in order of x3; x5; ::: and x2k+1, we write :

a�1 =
�2mE+

(3 + �) (2 + �+ 2�)
a�0 (3.45)

and

a�2 =
�2mE+

(5 + �) (4 + �+ 2�)
a�1 : (3.46)

The recurrence relation deduced from

a�n+1 =
�2mE�

(2n+ 2 + �) (2n+ 3 + �+ 2�)
a�n : (3.47)

In this stage we replace a+n by function of a
+
n�1 with using relation (3.47), we �nd :

	�� =
1P
n=0

�2mE�
(2n+ �) (2n+ 1 + �+ 2�)

a�n�1x
2n jxj� : (3.48)

As a result, we obtain the recurrence relation with the term a+0 ;

	�� =
1P
n=0

�2mE+
(2n+ �) (2n+ 1 + �+ 2�)

�2mE+
(2n� 2 + �) (2n� 1 + �+ 2�)a

�
n�2x

2n jxj� : (3.49)

Likewise for the rest, we obtain

	�� =
1P
n=0

�2mE�
(2n+ �) (2n+ 1 + �+ 2�)

�2mE�
(2n� 2 + �) (2n� 1 + �+ 2�)

� ::::
�2mE�

(2n+ 2 + �) (2n� 3 + �+ 2�)a
�
0 x

2n jxj� ; (3.50)

so

	�� =
1P
n=0

�2mE�
(2n+ 2 + �) (2n� 3 + �+ 2�)x

2n jxj� : (3.51)

We use a constant value of a�0 = 1:

1- For the case of � = 0, we have

	�=0� =
�2mE�
2 (3 + 2�)

x3: (3.52)

This function is the polynomial hypergeometric

	�=0� = x0F1

�
;
3

2
+ �;

�mE�x2
2

�
: (3.53)
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2- For the case � = 1� 2�; we have,

	�=�1�2�� =
�2mE�

(2� 1� 2�) (3� 1� 2�+ 2�)x
3 jxj�1�2� ; (3.54)

the above function is

	�=�1�2�� = jxj�1�2� x0F1
�
;
1

2
� �;

�mE�x2
2

�
: (3.55)

We have the odd parity solution for� = 0

	� �! sin
p
2mE�x: (3.56)

The solution 	�=1�2�+ is unacceptable since it leads to jxjp
2mE+

cos
p
2mE�xin the limit

� �! 0. The Eq. (3:53) can be expressed as a Bessel function :

Jn =

�
1
2
x
�n

n! 0
F1

�
n+ 1;

�1
4
x2
�
: (3.57)

Thus, we have

0F1

�
�+

3

2
;
�1
4

�p
2mE�x

�2�
=
J�+ 1

2

�p
2mE�x

� �
�+ 1

2

�
!�

1
2

p
2mE�x

��+ 1
2

: (3.58)

So we can write 	�=0�

	� = x
1
2��N�J�+ 1

2

�p
2mE�x

�
: (3.59)

where N+ =
(�� 1

2)!�
1
2

p
2mE+

��� 1
2
is a constant normalization of 	�=0� �function. As we know, the

boundary condition 	� (�L) = 0 determines the energy level for our system. This results is8<: 	� (L) = L
1
2��

N�J�+ 1
2

�p
2mE�L

�
= 0

	� (�L) = �L
1
2��

N�J�+ 1
2

�
�
p
2mE�L

�
= 0

: (3.60)

Which gives 8<: J�+ 1
2

�p
2mE�L

�
= 0

J�+ 1
2

�
�
p
2mE�L

�
= 0

: (3.61)

This gives (
1P
n=0

�p
2mE�L

�n
n!

= 0), indeed we have

1 +
p
2mE�L+

�p
2mE�L

�2
2!

+

�p
2mE�L

�3
3!

+ :::::::: = 0; (3.62)
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which gives p
2mE�L

 
1 +

�p
2mE�L

�
2!

+

�p
2mE�L

�2
3!

+ ::::::::

!
= �1; (3.63)

where

��+ 1
2
;n =

�1

1 +

�p
2mE�L

�
2!

+

�p
2mE�L

�2
3!

+ ::::::

: (3.64)

Thus, we get the level energy for particle in one box :

E�n =
1

2mL2
�2
�+ 1

2
;n
; (n = 1; 2; 3; ::::) ; (3.65)

where ��+ 1
2
;n,n is the number of zeros in J�+ 1

2
(x) :

3.2.2 Harmonic Oscillator potential

The Hamiltonian of a particle of mass m which oscillates with frequency ! under the in-

�uence of a one-dimensional harmonic potential is Ĥ = p̂2

2m
+ 1
2
m!2x2: The problem is how to �nd

the energy eigenvalues and eigenstates of this Hamiltonian in the existence of the Dunkl deriva-

tion. Two methods can study this problem, �rstly by direct calculation (di¤erential equation),

and the second method, called the ladder method, does not deal with solving the Schrodinger

equation, it deals instead with operator algebra involving operators known as the creation and

annihilation operators.

The Schrodinger equation for the re�ection symmetry problem of harmonic oscillators po-

tential in one dimension is written as�
� 1

2m
D̂2
x +

1

2
m!2x2

�
	 = E	: (3.66)

If we use the new variable
p
m!x = � , we get

D̂2
�	+ �

2	 = �	: (3.67)

where

� =
2E

!
: (3.68)

We assume the following Anzast 	 :

	 (�) = e�
�2

2 y (�) : (3.69)
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From Eq. (3.69) and Eq. (3.67) we have

D̂2
�y � D̂� (�y)� �D̂�y + �y = 0: (3.70)

or

D̂2
�y � 2�D̂�y + (�� 1� 2�p) y = 0: (3.71)

Even solution

We assume the even solution by the following series

y =
1P
n=0

an�
2n: (3.72)

On the monomial, the Dunkl derivative is used

D̂��
2n = [2n]� �

2n�1: (3.73)

and

D̂�

�
D̂��

2n
�
= D̂�

�
[2n]� �

2n�1
�
= [2n]� [2n� 1]� �2n�2: (3.74)

From Eqs. (3.73) and (3.74) we substitute them in Eq. (3:71) ; we �nd
1P
n=0

an [2n]� [2n� 1]� �2n�2 � 2�
1P
n=0

an [2n]� �
2n�1

+(�� 1� 2�)
1P
n=0

an�
2n = 0: (3.75)

We �nd out after simplifying it

(�� 1� 2�) a0�0 + a1 [2]� [1]� �
0 � 2a1 [2]� �2 + (�� 1� 2�) a1�2

+a2 [4]� [3]� �
2 � 2a2 [4]� �4 + (�� 1� 2�) a2�4 = 0: (3.76)

The recurrence relation given by

a1 =
2 [0]� + 1 + 2�� �+

(2) (1 + 2�)
a0

=
2 [0]� + 1 + 2�� �+

[2]� [1]�
a0: (3.77)

and

a2 =
2 [2]� + 1 + 2�� �+

(4) (3 + 2�)
a1

=
2 [2]� + 1 + 2�� �+

[4]� [3]�
a1: (3.78)
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also

a3 =
2 [4]� + 1 + 2�� �+

(6) (5 + 2�)
a2

=
2 [4]� + 1 + 2�� �+

[6]� [5]�
a2

=
2 [4]� + 1 + 2�� �+

[2 � 2 + 2]� [2 � 2 + 1]�
a2: (3.79)

The recurrence relation deduced from

an+1 =
2 [2n]� + 1 + 2�� �+

[2n+ 2]� [2n+ 1]�
an: (3.80)

Series termination request, we have

2 [2n]� + 1 + 2�� �+ = 0: (3.81)

which gives

(�+)N = 2 [2N ]� + 1 + 2�; N = 0; 1; 2; ::: : (3.82)

From Eq. (3.82) and �+ = 2E
!
, the energy level is written as

E+N =
!

2

�
2 [2N ]� + 1 + 2�

�
: (3.83)

In order to obtain the corresponding wave function, we give a polynomial�s recurrence relation,

we have,

an+1 =
2 [2n]� � 2 [2N ]�
[2n+ 2]� [2n+ 1]�

an: (3.84)

At this stage we de�ne the H+
N �s in the functiony corresponding toN :8>>><>>>:

H+
0 (x) = 1:

H+
1 (x) = 1 +

2([0]��[2]�)
[2]�[1]�

x2 = 1� 2
[1]�
x2

H+
2 (x) = 1 +

2([0]��[4]�)
[2]�[1]�

x2 +
2([2]��[4]�)
[2]�[3]�

2[4]�
[2]�

x4

: (3.85)

Therefore the �nal solution is

	N (�) = e
��2
2 H+

N ; N = 0:1:2:3 ::: :
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Odd solution

We put the even solution

y =
1P
n=0

bn�
2n+1: (3.86)

We insert the Eq.(3:86) into Eq.(3:71), we have

D̂��
2n+1 = [2n+ 1]� �

2n: (3.87)

and

D̂�

�
D̂��

2n+1
�
= D̂�

�
[2n+ 1]� �

2n
�
= [2n+ 1]� [2n]� �

2n�1: (3.88)

These lead to

1P
n=0

bn [2n+ 1]� [2n]� �
2n�1 � 2�

1P
n=0

bn [2n+ 1]� �
2n + (�� 1 + 2�)

1P
n=0

bn�
2n+1 = 0: (3.89)

after simpli�cation

�2b0 [1]� �1 + (�� 1 + 2�) b0�1 + b1 [3]� [2]� �
1 � 2b1 [2]� �3

+b2 [5]� [4]� �
3 � 2b2 [5]� �5 + (�� 1 + 2�) b2�5 = 0: (3.90)

In accordance with the terms we receive

b1 =
2 [1]� + 1� 2�� ��

[3]� [2]�
b0; (3.91)

and

b2 =
2 [3]� + 1� 2�� ��

[5]� [4]�
b1; (3.92)

also

b3 =
2 [5]� + 1� 2�� ��

[7]� [6]�
b2: (3.93)

The recurrence relation deduced from

bn+1 =
2 [2n+ 1]� + 1� 2�� ��

[2n+ 3]� [2n+ 2]�
bn (3.94)

Requiring that the series be terminated, we have

(��)N = 2 [2N + 1]� + 1� 2�; N = 0; 1; 2; ::: : (3.95)

From Eq. (3.95) and �� = 2E
!
, the energy level is written as

E�N =
!

2

�
2 [2N + 1]� + 1� 2�

�
: (3.96)
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Then there�s the polynomial solution, which has the following recurrence relation :

bn+1 =
2 [2n+ 1]� + 1� 2�� 2 [2N + 1]� � 1 + 2�

[2n+ 3]� [2n+ 2]�
bn: (3.97)

In order to obtain the corresponding wave function, we give a polynomial�s recurrence relation,

we have,

bn+1 =
2 [2n+ 1]� � 2 [2N + 1]�
[2n+ 3]� [2n+ 2]�

bn (3.98)

Therefore the �nale solution is

	N (�) = e
��2
2 H�

N ; N = 0; 1; 2 ::: : (3.99)

At this stage we de�ne the H�
N �s in the function y corresponding to N8>>>>>>>>>><>>>>>>>>>>:

H�
0 (x) = x

H�
1 (x) = x+

2([1]��[3]�)
[3]�[2]�

x3 = x� 2([3]��[1]�)
[3]�[2]�

x3

= x� 2([3]��[1]�)
[3]�!

x3

H�
2 (x) = x� 2([5]��[1]�)

[3]�[2]�
+

2([5]��[3]�)
[5]�[4]�

2([5]��[1]�)
[3]�[2]�

x5

= x� 2([5]��[1]�)
[3]�!

+
22([5]��[3]�[5]��[1]�)

[5]�!
x5:

: (3.100)

Use odd and even solutions

	M (�) = e
��2
2 H�

M ; M = 0; 1; 2 ::: . (3.101)

The energy level is

EM =
!

2

�
[M ]� + [M + 1]�

�
: (3.102)

3.2.3 Operator method for harmonic oscillator potential

Now we have presented the Hamiltonian operator for the re�ection symmetry problem in

harmonic oscillators in one dimension by the creation and annihilation operators a+ and a

method takes the following form :

â =

r
m!

2

�
x̂+

1

m!
D̂x

�
; â+ =

r
m!

2

�
x̂� 1

m!
D̂x

�
: (3.103)

Which given by

Ĥ =
!

2

�
ââ+ + â+â

�
: (3.104)
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The commutation relation between â and â+ is developed as follows :

�
â; â+

�
=

�r
m!

2

�
x̂+

1

m!
D̂x

�
;

r
m!

2

�
x̂� 1

m!
D̂x

��
=
m!

2

�
[x̂; x̂] +

�
x̂;
�1
m!

D̂x

�
+

�
1

m!
D̂x; x̂

�
+

�
1

m!
D̂x;

�1
m!

D̂x

��
: (3.105)

As we know [x̂; x̂] = 0 and
h
D̂x; D̂x

i
= 0; then we conclude that,

�
â; â+

�
=
m!

2

�
�{
m!

�
x̂;
1

{
D̂x

�
+
h {

m!
D̂x; x̂

i�
=
m!

2

�
1

m!

�h�
1 + 2�R̂

�
� {
�
{
�
1 + 2�R̂

��i
(3.106)

As a result, �
â; â+

�
= 1 + 2�R̂: (3.107)

If we use the number operator N̂ = â+â, the commutation relation
h
N̂ ; â+

i
is developed by :h

N̂ ; â+
i
=
�
â+â; â+

�
=
�
â+ââ+ � â+â+â

�
= â+

�
ââ+ � â+â

�
= â+ [N + 1�N ]

= â+: (3.108)

The same for the commutation
h
N̂ ; â

i
relation is given byh

N̂ ; â
i
=
�
â+â; â

�
=
�
â+ââ� ââ+â

�
=
�
ââ+ � â+â

�
â =

h
N̂ � N̂ � 1

i
â

= �â: (3.109)

Consequently we conclude that, h
N̂ ; â+

i
= â+;

h
N̂ ; â

i
= �â: (3.110)

In order to obtain the eigenvalues for the Hamiltonian operator (3.104) we use the following

relations

â+â =
h
N̂
i
�
; ââ+ =

h
N̂ + 1

i
�
: (3.111)

then by describing the Fock space :

N̂ j ni = n j ni; n = 0; 1; 2; 3::::: (3.112)
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As a result, the energy level is

En =
!

2

�
[n]� + [n+ 1]�

�
; n = 0; 1; 2 ::: : (3.113)

The same result of Eq. (3.113) is given in previous section (see, Eq. (3:102)):

3.3 The Dunkl operator in 2 and 3 dimensions

In this section, we examine how to solve the Schrodinger equation for spinless particles

moving in two and three dimensions potentials. We carry out this study of the Box and oscillator

harmonic potentials in two di¤erent dimensions in Cartesian coordinates system.

3.3.1 The Box Potential in Cartesian Coordinates

We consider the case of a spinless particle of mass m con�ned in rectangular box of sides

Lx; Ly; which can be de�ned as V (x; y) = Vx(x) + Vy(y);

Vxj(xj=1;2) =

8<: 0; 0 � xj � Lxj

1 elsewhere;
(3.114)

The wave function  (x; y) must vanish at the walls of the box. We have seen in previous section

the solutions for this potential with even case are of the form

	�=0+ = Nx
+x

1
2��x J�x� 1

2

�p
2mE+x

�
: (3.115)

and the corresponding levels energy are

E+nx =
1

2mL2
�2
�x� 1

2
;n
; (n = 1; 2; 3; :::) : (3.116)

where ��x� 1
2
;n is a n-th of zeros in J�� 1

2
(x) ; and J�� 1

2
(x) is the Bessel function. From these

expressions we can conclude the corresponding eigenfunctions and their levels energy :

	�=0+ (x; y) = Nx
+N

y
+x

1
2��xy

1
2��y

�J�x� 1
2

�p
2mE+x

�
J�y� 1

2

�p
2mE+y

�
: (3.117)

and

E+nx;ny =
1

2mL2x

1

2mL2y
�2
�x� 1

2
;nx
�2
�y� 1

2
;ny
: (3.118)
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The same remark we will do in odd case.

In the case when D = 3 dimensions we �nd the level energy for a particle in box as follow

E+nx;ny ;nz =
1

2mL2x

1

2mL2y

1

2mL2z
�2
�x� 1

2
;nx
�2
�y� 1

2
;ny
�2
�z� 1

2
;nz
: (3.119)

3.3.2 Oscillator Harmonic in Cartesian coordinates

The Schrodinger equation for the re�ection symmetry problem of harmonic oscillators po-

tential in two dimensions is developed by :�
� ~

2

2m
D̂2
1 �

~2

2m
D̂2
2 +

m!2

2
(x21 + x22)

�
 = E : (3.120)

We use the separation method variable, the solution of Eq. (4.38), indeed we have,

 =  (x1) (x2) : (3.121)

and

Ĥ = Ĥ1 + Ĥ2: (3.122)

where

Hj = �D̂2
j +

m2!2

~2
x2j with j = 1; 2: (3.123)

We assume the following de�nition
2m

~2
E = "1 + "2 (3.124)

Consequently, the Eq. (4.38) reduces by two wave equation for each value of j;�
@2

@x2j
+ 2

�j
xj

�
I� R̂j

� @

@xj
� �j
x2j
(I� R̂j)�

m2!2

~2
x2j +

2m

~
E

�
 (xj) = 0 (3.125)

In addition, since the commutator between Ĥj and R̂j equals zero (i.e.,
h
Ĥj; R̂j

i
= 0) the

eigenfunctions could be selected as they have a de�nite parity,R̂j (xj) = sj (xj) with sj = �1:
Eq (4.43) becomes as�

@2

@x2j
+ 2

�j
xj
(1� sj)

@

@xj
� �j
x2j
(1� sj)�

m2!2

~2
x2j � "j

�
 (xj) = 0 (3.126)

Then, we set the following transformations

�j =
m!

~
x2j ;  (�j) = �

1�sj
4

j e�
�j
2 �sj (�j) : (3.127)
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Thus, Eq. (4:43) becomes as�
�j

@2

@ �2j
+
�
1 + �j �

sj
2
� �j

� @

@�j
+ nj

�
�sj (�j) = 0 (3.128)

As we know the above equation (4:46) is similar to the problem which has solved in the previous

chapter, and it becomes the following solution

�sjn (�) = cF (a; b; �) = cF

�
(2�j + 1) (1� sj)

4
� ~"j
4m!

; 1� sj
2
+ �; �

�
: (3.129)

The �rst argument is equal to as, the con�uent hypergeometric function simpli�es to a polyno-

mial of degree n in y: We conclude that,

(2�j + 1) (1� sj)

4
� ~"j
4m!

= �nj; (3.130)

�
�
�j +

1

2

�
(1� sj) +

~"j
2m!

= 2nj; (3.131)

~"j
2m!

= 2nj +

�
�j +

1

2

�
(1� sj) ; (3.132)

where nj is non-negative integer quantum numbers. The energy eigenvalue function, which is

parity dependent, is quantized as follows

"sjnj = 2
~
m!

�
2nj +

�
1

2
+ �j

�
(1� sj)

�
: (3.133)

The generic solution of Equation .(4:46) can therefore be expressed in terms of the associated

Laguerre polynomials as

�sjnj (�j) = CsjL
�j�

sj
2

nj

�m!
~
x2j

�
: (3.134)

where Csj is a constant normalization term that can be calculated using Equation.(4:13). We

have, Z
x�e�xL

�j�
sj
2

nj (x)L
�j�

sj
2

mj (x) = �nm
(n� �)!

n!
: (3.135)

This relation is transformed by following new variable

� =
m!

~
x2 =) dx =

d�

2
p

m!
~ �

: (3.136)
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Therefore Eq. (4:13) is simpli�ed by

h j  i =
��csj ��2 Z d�

2
p

m!
~ �

�
1�sj
2 e��

�
L
�j�

sj
2

nj (�)

�2 �����
r

�

m!

�����
2�j

(3.137)

=

��csj ��2
2
p

m!
~

Z
d��

�sj
2 e��

�
L
�j�

sj
2

nj (�)

�2 �����
s

�
m!
~

�����
2�j

(3.138)

=

��csj ��2
2
�
m!
~

� 1
2
+�j

Z
��j+

sj
2 e��

�
L
�j�

sj
2

nj (�)

�2
d�: (3.139)

This given

h j  i =
��csj ��2

2
�
m!
~

� 1
2
+�j

(nj + �j � sj)!

nj!
= 1

=)
��csj ��2 = 2�m!~ � 1

2
+�j nj!

(nj + �j � sj)!
: (3.140)

We get the following expression for the normalization constancy after a computation

csj =

s
2
�m!
~

� 1
2
+�j nj!

(nj + �j � sj)!
: (3.141)

In order to obtain the level energy for our system we use the equation (4:42) : We can write,

E =
~ ("1 + "2)

2m
; (3.142)

and "j are calculated in Eqs. (4.51), then we �nd,

E(s)n1;n2 = 2
~
m!

��
2n1 +

�
1

2
+ �1

�
(1� s1)

�
�
2n2 +

�
1

2
+ �2

�
(1� s2)

��
: (3.143)

where nj=1;2 = 0; 1; 2; ::: .

In three dimensions we can �nd the same result in Ref.[18].

3.4 The Dunkl operator in polar coordinates

Using polar and spherical coordinates, we describe the motion of a particle moving in polar

and spherically symmetric potentials. After presenting a general treatment of method separation

in existence the re�ection operator, we will conclude this section by calculating the energy levels

of the isotropic harmonic oscillator.
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Harmonic oscillator in two dimensions

The Cartesian coordinates (x; y) of a vector x are related to its spherical polar coordinates

(�; ') by

x1 = � cos'; y = � sin': (3.144)

From Eq. (3.120) and Eq. (3.144) the Hamiltonian Ĥ operator can be written as

Ĥ = A� +
1

�2
B': (3.145)

where Â� and B̂' are given by respectively

Â� = �
1

2

�
@2
�
+
1

�
@'

�
� 1
�
(�x + �y) @� +

1

2
�2: (3.146)

B̂' = �
1

2
@2' + (�x tan'+ �y cot') @' + �x

�
I � R̂x

�
2 cos2 '

+ �y

�
I � R̂y

�
2 sin2 '

: (3.147)

with m = ! = ~ = 1:

In polar coordinates, the re�ection operator act on the wave function gives to the following

transformations :

R̂xf (�; ') = f (�; � � ') ; (3.148)

R̂yf (�; ') = f (�;�') ; : (3.149)

After this step we can use the separation method with 	(�; ') = P (�) � (') : This gives�
Â� +

1

�2
B̂'

�
P (�) � (')� "P (�) � (') = 0: (3.150)

Or in other form

� (') �2Â�P (�)� � (')P (�) "�2 + P (�) B̂'� (') = 0: (3.151)

After this we devise Eq. (3.151) by P (�) � (') ; we �nd

1

P (�)
�2Â�P (�)� �2"+ �(') B̂'� (') = 0: (3.152)

Consequently, Eq. (3:152) leads to the following two equations

Â�P (�)� "P (�) = �m
2

2�2
P (�) : (3.153)
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and

B̂'� (') =
m2

2
� (') : (3.154)

where m
2

2
is the separation parameter. Also, we can write the Eqs. (3.153) and (3.154) as follow :

Â�P (�)� "P (�) +
m2

2�2
P (�) = 0: (3.155)

and

B̂'� (')�
m2

2
� (') = 0: (3.156)

We start by examining the angular equation 3.156 it has the explicit form

�00 � 2 (�x tan'� �y cot') �
0 � �x

�
I � R̂x

�
cos2 '

� �y

�
I � R̂y

�
sin2 '

+m2� = 0: (3.157)

The re�ection operator commutes with the Hamiltonian
h
Ĥ; R̂x

i
=
h
Ĥ; R̂y

i
= 0, we shall label

the eigenstates by the eigenvalues sx; sy = �1 of the re�ection operators R̂x and R̂y:
At this stage when we use sx; sy = +1: The Eq. (3:157) written by�

d2

dx2
� 2

�
�x
sin'

cos'
� �y

cos'

sin'

�
d

dx
�m2

�
�++ = 0: (3.158)

After this we use a new variable x = � cos 2'; we will �nd :

dx

d'
= 2 sin 2': (3.159)

d2

d'2
=

d

d'

�
2 sin 2'

d

dx

�
= 4 cos 2'

d

dx
+ 4 sin2 2'

d2

dx2
: (3.160)

as we know x = � cos 2'; we can obtain

cos 2' = cos2 '� sin2 '

) cos2 ' =
1� x

2
: (3.161)

and

1� sin2 ' = 1� x

2
) sin2 ' =

1 + x

2
: (3.162)

As a result

cot' =

r
1� x

1 + x
; tan' =

r
1 + x

1� x
: (3.163)

We substitute in Eq. (3:158)�
4 cos 2'

d

dx
+ 4 sin2 2'

d2

dx2
� 2 (�x tan'� �y cot') 2 sin 2'

d

dx
+m2

�
�++ = 0; (3.164)
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or �
4 cos 2'

d

dx
+ 4 sin2 2'

d2

dx2
� 8

�
�x sin

2 '� �y cos
2 '
� d

dx
+m2

�
�++ = 0; (3.165)

which gives�
�4x d

dx
+ 4

�
1� x2

� d2

dx2
� 8

�
�x

�
1 + x

2

�
� �y

�
1� x

2

��
d

dx
+m2

�
�++ = 0: (3.166)

After simpli�cation we obtain :��
1� x2

� d2

dx2
+ (�y � �x � (1 + �y + �x)x)

d

dx
+
m2

4

�
�++ = 0: (3.167)

In accordance with the general form of Jacobi polynomial P (�;�)n (z) equation is de�ned as

follows,��
1� z2

� d2
dz2

+ (� � �� (�+ � + 2) z)
d

dz
+ n(n+ �+ � + 1)

�
P (�;�)n (z) = 0: (3.168)

we �nd

�+ � + 2 � 1 + �y + �x: (3.169)

� � � � �y � �x: (3.170)

n(n+ �+ � + 1) � m2

4
(3.171)

these lead as

2� = 2�y � 1) � = �y �
1

2
: (3.172)

2� = 2�x � 1) � = �x �
1

2
: (3.173)

m2 = 4n(n+ �y + �x) (3.174)

At this stage we can write �++ = cnP
(�x� 1

2
;�y� 1

2)
n (x) this solution corresponds to the eigenvalue

m2 = 4n(n+ �x + �y) with n 2 N and cn is a normalization constant, we can obtain it by the

following relation :Z 2�

0

jcnj2 P (�x�1=2;�y�1=2)n P (�x�1=2;�y�1=2)m

��cos2 (')���x ��sin2 (')���y d' = 1: (3.175)

or

1

2

Z 2�

0

jcnj2 P (�x�1=2;�y�1=2)n P (�x�1=2;�y�1=2)m j1� xj�x j1 + xj�y dx

(1� x)1=2 (1 + x)1=2
= 1: (3.176)
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when '! 0) x! �1 and '! �=2) x! 1; then we obtain

2

2�x+�y

Z 1

�1
jcnj2 P (�x�1=2;�y�1=2)n P (�x�1=2;�y�1=2)m j1� xj�x j1 + xj�y dx

(1� x)1=2 (1 + x)1=2
= 1:

(3.177)

we use the following standard relation (see, Ref.[?])Z 1

�1
(1� x)� (1 + x)� P (�;�)n P (�;�)m dx =

2
�+�+1

2n+ �+ � + 1

� (n+ �+ 1)� (n+ � + 1)

� (n+ �+ � + 1)n!
�n;m:

(3.178)

So Eq. (3.177) writes as

2 jcnj2
1

2n+ �x + �y

� (n+ �x + 1=2) � (n+ �y + 1=2)

� (n+ �x + �y)n!
= 1: (3.179)

which gives

cn =

s
(2n+ �x + �y) � (n+ �x + �y)n!

2�
�
n+ �x +

1
2

�
�
�
n+ �y +

1
2

� : (3.180)

Thus, if sx = sy = +1, the equation (3.157) has the solution

�++ =

s
(2n+ �x + �y) � (n+ �x + �y)n!

2�
�
n+ �x +

1
2

�
�
�
n+ �y +

1
2

� P (�x+ 1
2
;�y+

1
2)

n (x) : (3.181)

In the same method we can calculate the general solution of the cases : jsx; syi = j�1;�1i ;
j1;�1i ; j�1; 1i as follow

�00 � 2 (�x tan'� �y cot') �
0 � �x

(1� sx)

cos2 '
� �y

(1� sy)

sin2 '
+m2� = 0: (3.182)

we take the following Anzast

� = sink ' cosp '~� (') (3.183)

The Eq. (3.182) transforms by

~�00 � 2 (�x tan'� �y cot') (�p tan (') + k cot (')) ~�

� (2 (�x (1� sx) + p) tan'� (2�y (1� sy)� k) cot') ~�0

+(�p tan (') + k cot ('))2 ~�

�(�x (1� sx) + p)

cos2 '
~�� (�y (1� sy) + k)

sin2 '
~� +m2 ~� = 0: (3.184)
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With some simpli�cations

~�00 (') + 2 [(k + �y) cot'� (p+ �x) tan'] ~�
0 (')

+
�
� (k + p)2 � 2 (k + p) (�x + �y) +m2

�
~� (')

+

24k (k � 1)� 2�y
�
(1�sy)
2

� k
�

sin2 '
+
p (p� 1)� 2�x

�
(1�sx)
2

� p
�

cos2 '

35 ~� (') = 0: (3.185)

we put x = � cos 2' we �nd �
1� x2

�
~�00 (x)+

+ [� (1 + (k + �y) + (p+ �x))x+ ((k + �y)� (p+ �x))] ~�
0 (x)

+
1

4

�
� (k + p)2 +m2 � 2 (k + p) (�x + �y)

�
~� (x)

+

"
1

2

 
k(k�1)�2�y

�
(1�sy)

2
�k
�

1+x
+

p(p�1)�2�x( (1�sx)2
�p)

1�x

!#
~� (x) = 0: (3.186)

The values of k and p can be determined them if the above equation is the Jacobi polynomial

di¤erential equation P (�;�)n (x). Which leads to the following equations

k (k � 1)� 2�y
�
1� sy
2

� k

�
= 0: (3.187)

p (p� 1)� 2�x
�
1� sx
2

� p

�
= 0: (3.188)

Their solution are given by the following equations

k =
1� sy
2

; p =
1� sx
2

: (3.189)

While the other parameters are

�+ � + 2 � (1 + (k + �y) + (p+ �x)) : (3.190)

� � � � ((k + �y)� (p+ �x)) : (3.191)

n (n+ �+ � + 1) �
�
� (k + p)2 � 2 (k + p) (�x + �y) +m2

�
: (3.192)

we obtain

� � k + �y �
1

2
: (3.193)

� � p+ �x �
1

2
: (3.194)
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The normalization in general case is written as

cn;sx;sy =

s
(2n+ �x + �y) �

�
n+ �x + �y +

k
2
+ p

2

� �
n� k

2
� p

2

�
!

2�
�
n+ �x +

k
2
� p

2
+ 1

2

�
�
�
n+ �y � k

2
+ p

2
+ 1

2

� : (3.195)

we �nd

�sxsy =

s
(2n+ �x + �y) �

�
n+ �x + �y +

k
2
+ p

2

� �
n� k

2
� p

2

�
!

2�
�
n+ �x +

k
2
� p

2
+ 1

2

�
�
�
n+ �y � k

2
+ p

2
+ 1

2

� sink ' cosp 'P
(p+�x� 1

2
;k+�y� 1

2)
n� k

2
� p
2

(x) :

(3.196)

In particularly cases, we have, when sx = sy = �1, the solution reads

��� =

s
(2n+ �x + �y) � (n+ �x + �y + 1) (n� 1)!

2�
�
n+ �x +

1
2

�
�
�
n+ �y +

1
2

� sin' cos'P
(�x+ 1

2
;�y+

1
2)

n�1 (x) : (3.197)

It is understood that P (�;�)�1 (x) = 0 and hence that��� = 0: Also, when sx = +1and sy = �1,
the solutions reads :

�+� =

s
(2n+ �x + �y) �

�
n+ �x + �y +

1
2

� �
n� 1

2

�
!

2� (n+ �x) � (n+ �y + 1)
sin'P

(�x� 1
2
;�y+

1
2)

n� 1
2

(x) : (3.198)

Lastly, when sx = �1 and sy = 1, the solution to the angular equation has the expression :

��+ =

s
(2n+ �x + �y) �

�
n+ �x + �y +

1
2

� �
n� 1

2

�
!

2�
�
n+ �x +

1
2

�
� (n+ �y)

sin'P
(�x+ 1

2
;�y� 1

2)
n� 1

2

(x) : (3.199)

After this stage we can �nd the radial solution of Eq. (3.155) as�
@2� +

1

�
(1 + 2�x + 2�y) @� +

�
2"� �2 � m2

�2

��
P (�) = 0: (3.200)

This equation has for solutions

P (�) = cn;ke
��2=2�2nL

(2n+�x+�y)
k

�
�2
�
: (3.201)

Using the orthogonality relation of the Laguerre polynomials, one �nds that the radial wave-

function normalization obeysZ 1

0

Pk (�)Pk0 (�) �
1+2�x+2�yd� = �k;k0 : (3.202)

we obtain

cn;k =

s
2k!

� (k + 2n+ �x + �y + 1)
; (3.203)

with the energy eigenvalues

" = 2k + 2n+ �x + �y + 1: (3.204)
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Harmonic oscillator in three dimensions

In spherical coordinates, the Cartesian coordinates (x1; x2; x3) of a vector x are related to

its spherical polar coordinates (r; �; ') by

x1 = r sin � cos'; x2 = r sin � sin'; x3 = r cos �: (3.205)

As we know from the previous transformations, we have

@

@x1
=

@

@r

@

@x
+

@

@�

@�

@x
+

@

@'

@'

@x

= sin � cos'
@

@r
+
1

r
cos' cos'

@

@�
� sin'

r sin �

@

@'
(3.206)

@

@x2
= sin � sin'

@

@r
+
1

r
cos' sin'

@

@�
+
cos'

r sin �

@

@'
: (3.207)

@

@x3
= cos �

@

@r
� sin �

r

@

@�
: (3.208)

also we can show that the Laplacian operator reduces to

@2

@x21
+

@2

@x22
+

@2

@x23
=
1

r2

�
@

@r

�
r2
@

@r

�
+

1

sin �

@

@�

�
sin �

@

@�

�
+

1

sin2 �

@2

@'2

�
: (3.209)

Substituting Eqs. (3.206)-(3.208) into Eq. (3.209) we �nd�
1

r2

�
@

@r

�
r2
@

@r

�
+

1

sin �

@

@�

�
sin �

@

@�

�
+

1

sin2 �

@2

@'2

�
+2

�1
x1

�
I� R̂x

��
sin � cos'

@

@r
+
1

r
cos' cos'

@

@�
� sin'

r sin �

@

@'

�
+2

�2
x2

�
I� R̂y

��
sin � sin'

@

@r
+
1

r
cos' sin'

@

@�
+
cos'

r sin �

@

@'

�
+2

�3
x3

�
I� R̂z

��
cos �

@

@r
� sin �

r

@

@�

�
� �1
x21
(I� R̂x)

��2
x22
(I� R̂y)�

�3
x23
(I� R̂z)�

m2!2

~2
r2 +

2m

~
E

�
 (r; �; ') = 0: (3.210)

After simpli�cation, Eq. (4.63) reduces to"
Ĵr +

Ĵ'
r2 sin2 �

+
Ĵ�
r2
+
2m

~
E

#
	 = 0 (3.211)

where the operators Ĵr; J' and J� are respectively

Ĵr =
@2

@r2
+
2

r

h
1 +

�
I� R̂1

�
�1 +

�
I� R̂2

�
�2 +

�
I� R̂3

�
�3

i @
@r
� m2!2

~2
r2; (3.212)
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and

Ĵ' =
@2

@'2
+ 2 [�1 cot'+ �2 tan']

@

@'
� �1
cos2 '

�
I� R̂1

�
� �2
sin2 '

�
I� R̂2

�
: (3.213)

and

Ĵ� =
@2

@�2
+ cot � + 2 [(�2 + �1) cot � � �3 tan �]

@

@�
� �3
cos2 '

�
1� R̂3

�
: (3.214)

In spherical coordinates, the re�ection operator act on the wave function gives to the following

transformations :

R̂1	(r; �; ') = 	 (r; �; � � ') ; (3.215)

R̂2	(r; �; ') = 	 (r; �; � � ') ; (3.216)

R̂3	(r; �; ') = 	 (r; � � �; ') : (3.217)

After this step we can use the separation method with 	 = z (r)� (�) � (') : Then, Eq. (4.64)

is written as "
Ĵr +

Ĵ'
r2 sin2 �

+
Ĵ�
r2
+
2m

~
E

#
z (r)� (�) � (') = 0 (3.218)

then "
�(�) � (')

�
r2Ĵr +

2m

~
Er2

�
z (r) +z (r)

 
Ĵ'
sin2 �

+ Ĵ�

!
�(�) � (')

#
= 0 (3.219)

that�s to say à dire �
Ĵr +

2m

~
E

�
z (r) =

q2

2r2
z (r) : (3.220)

and  
Ĵ'
sin2 �

+ Ĵ�

!
�(�) � (') = �q

2

2
� (�) � (') : (3.221)

and the second is related to (�; ')-variables,"
Ĵ'
sin2 �

+ Ĵ�

#
�(�) � (') = �$2�(�) � (') : (3.222)

where q is the separation constant.

From the equation (3:222) we can re-write by :�
Ĵ' + sin

2 �

�
Ĵ� +

q2

2

��
�(�) � (') = 0: (3.223)
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The �rst operator in Eq. (3.223) is related by '�variable and the second operator is related
by ��variable, for these considerations we devise by �(�) � (') ; we obtain�

1

� (')
Ĵ'� (') +

sin2 �

�(�)

�
Ĵ� �

q2

2

�
�(�)

�
= 0: (3.224)

This later leads to

1

� (')
Ĵ'� (') = �
2: (3.225)

sin2 �

�(�)

�
Ĵ� �

q2

2

�
�(�) = 
2: (3.226)

here 
 is also the separation constant.

After these we can write the equations (3.213) and (3.214) as follow :�
@2

@'2
+ 2 [�1 cot'+ �2 tan']

@

@'
� �1
cos2 '

�
1� R̂1

�
� �2
sin2 '

�
1� R̂2

�
+ 
2

�
� (') = 0:

(3.227)

and�
@2

@�2
+ cot �

@

@�
+ 2 ((�1 + �2) cot � � �3 tan �)

@

@�
� �3
cos2 '

�
1� R̂3

�
� 
2

sin2 �
+
q2

2

�
�(�) = 0:

(3.228)

Using the eigenvalues of the operators of re�ection, we �nd,�
@2

@'2
+ 2 [�1 cot'+ �2 tan']

@

@'
� �1
cos2 '

(1� s1)�
�2
sin2 '

(1� s2) + 

2

�
� (') = 0:

(3.229)

and�
@2

@�2
+ cot �

@

@�
+ 2 ((�1 + �2) cot � � �3 tan �)

@

@�
� �3
cos2 '

(1� s3)�

2

sin2 �
+$

�
�(�) = 0:

(3.230)

The solution of Eq. (3.229) is calculated in previous section

� = cosk (') sinp (') ~� (x)

While the second equation, we use the following anzast (see., the reference [4]),

�(�) = cos� (�) sin2� (�) ~� (cos �) : (3.231)

After these changes we can �nd,

~� (x) = C'P
(�2+p� 1

2
;�1+k� 1

2)
n� p

2
� k
2

cos (2')
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and

~� (�) = C�P
(�2+p� 1

2
;�1+k� 1

2)
`� �

2
cos (2�) : (3.232)

where C' and C� are the normalization constants and they are written as

C' =

s
(2n+ �x + �y) �

�
n+ �x + �y +

k
2
+ p

2

� �
n� k

2
� p

2

�
!

2�
�
n+ �x +

k
2
� p

2
+ 1

2

�
�
�
n+ �y � k

2
+ p

2
+ 1

2

� :

and

C� =

s�
2`+ 2� + �x + �y + �z +

1
2

�
�
�
`+ 2� + �x + �y + �z +

1
2
+ �

2

� �
`� �

2

�
!

�
�
`+ 2� + �x + �y + 1� �

2

�
�
�
`+ �z � 1

2
+ �

2

� : (3.233)

For the validity of the given solutions, the separation constants have to satisfy the following

conditions :


2 = 4� (� + �1 + �2) : (3.234)

and

q2 = 4 (l + �)

�
l + � + �1 + �2 +

1

2

�
: (3.235)

also for the values of k; p, � and �

k =
1� s1
2

p =
1� s2
2

� =
1� s3
2

and � is a positive integer.

Following that, we seek an exact solution to the radial equation. we will start by substituting

Eq. (4:86) and Eq. (4:87) into Eq. (3:220), we �nd�
@2

@r2
+
2

r
(1 + �1 + �2 + �3)

@

@r
� r2 + 2E

�
4 (l + �)

�
l + � + �1 + �2 +

1
2

�
r2

)
z (r) = 0: (3.236)

After this later we can write the following ansazt

z = �2(�+l)e�
�
2� (�) ; (3.237)

So, the function � (�) are given by

� (�) =

s
2nr

� (nr + �+ 1)
L�nr (r) ; (3.238)
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with � =
�
2 (l + �) + �1 + �2 + �3 +

1
2

�
and correspond to the total energy

E = 2 (nr + l + �) + �1 + �2 + �3 +
3

2
: (3.239)



Chapitre 4

Applications of the

Dunkl-Klein-Gordon oscillator

4.1 Introduction

In this section, we will examine the Dunkl-Klein-Gordon oscillator in one dimension and

three dimensions. In three dimensions we will study this poblem in representation of Cartesian

and spherical coordinates.

4.2 Klein-Gordon oscillator in one dimension

The Hamiltonian of Dunkl-Klein-Gordon oscillators equation in one dimension is written as

Ĥ =

�
E2 �

�
1

{
D̂x + {m!x

��
1

{
D̂ � {m!x

�
�m2

�
: (4.1)

the corresponding wave equation of Eq. (4.1) is obtained by substituting the Dunkl derivative

Ĥ	(x) = 0 (4.2)

By developing all operators in Eq. (4.1) we �nd

Ĥ = E2 +
�
D̂2
x +m2x2!2 + D̂xm!x�m!xD̂x �m2

�
(4.3)

As we have

D̂xm!x�m!xD̂x =
h
D̂x;m!x̂

i
(4.4)
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Substituting Eq. (4:4) into Eq. (4:3) we get

Ĥ = @2 +
2�

x
@ � �

x2

�
1� R̂

�
+
h
D̂x;m!x̂

i
�m2 + E2

= @2 +
2�

x
@ � �

x2

�
1� R̂

�
+m2!2x2 � im! [x̂; p̂] + E2 �m2

= @2 +
2�

x
@ � �

x2

�
1� R̂

�
+m2!2x2 +m! (1 + 2�p) + E2: (4.5)

The Dunkl-Klein-Gordon Hamiltonian operator is simpli�ed by,

Ĥ =
d2

dx2
+
2�

x

d

dx
� �

x2

�
1� R̂

�
+m2!2x2 +m!

�
1 + 2�R̂

�
+ E2 �m2 (4.6)

The re�ection operator commutes with the Hamiltonian
h
Ĥ; R̂

i
= 0; they should have a com-

mon eigenbasis. Therefore, they can be diagonalized simultaneously. So, the eigenfunction,

 (x), can be selected to have a de�nite parity R̂ (x) = s (x) with s = �1. As a result, Eq.
(4:2) appears as�

d2

dx2
+
2�

x

d

dx
� �

x2
(1� s) +m2!2x2 +m! (1 + 2�s) + E2 �m2)

�
	s (x) = 0: (4.7)

or by other writing �
d2

dx2
+
2�

x

d

dx
� �

x2
(1� s) +m2!2x2 + c

�
	s (x) = 0 (4.8)

Where c = m! (1 + 2�s)+E2�m2): So, to solve the wave equation. (4.8), we use a new variable

y = m!x2: For these we will calculate the following important terms presented in Eq. (4.8),

d	s

dx
=
d	s

dy

dy

dx
: (4.9)

d2	s

dx2
=
dy

dx

d

dy

�
dy

dx

d	s

dy

�
: (4.10)

where dy
dx
= 2m!x; we �nd

d	s

dx
= 2m!x

d	s

dy
;
1

x

d	s

dx
= 2m!

d	s

dy
: (4.11)

also

d2	s

dx2
=

d

dx

�
2m!x

�
d	s

dy

��
=

�
2m!

�
d	s

dy

��
+

�
2m!x

d

dx

�
d	s

dy

��
: (4.12)
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which gives

d2	s

dx2
= (2m!x)2

�
d2	s

dy2

�
+ 2m!

�
d	s

dy

�
= 4m!y

d2	s

dy2
+ 2m!

�
d	s

dy

�
. (4.13)

Substituting Eq. (4.11) and Eq. (4:13) into Eq.(4:8) and using the new variable y = m!x2, we

get �
4m!y

d2

dy2
+ 2m!

d

dy
+ 4m!y�

d

dy
� m!�

y
(1� s)�m!y + c

�
 s = 0: (4.14)

or �
y
d2

dy2
+

�
�+

1

2

�
d

dy
� �

4y
(1� s)� 1

4
y +

c

4m!

�
	s = 0 (4.15)

At this stage we use the following ansazt

	s = y
1�s
4 e�

y
2	s (y) ; (4.16)

we will develop the d	s

dy
and d2	s

dy2
; we �nd :

d	s

dy
=
1� s

4
y
1�s
4
�1e�

y
2	s � 1

2
y
1�s
4 e�

y
2	s + y

1�s
4 e�

y
2
d	s

dy

= y
1�s
4 e�

y
2
d	s

dy
+

�
1� s

4y
� 1
2

�
y
1�s
4
�1e�

y
2	s. (4.17)

Then

d2	s

dy2
=

d

dy

�
1� s

4
y
1�s
4
�1e�

y
2	s

�
� d

dy

�
1

2
y
1�s
4 e�

y
2	s

�
+

d

dy

�
y
1�s
4 e�

y
2
d	s

dy

�
: (4.18)

The �rst term of Eq .(4.18) is developed as

d

dy

�
1� s

4
y
1�s
4
�1e�

y
2	s

�
=

�
1� s

4

��
1� s

4
� 1
�
y
1�s
4
�2e�

y
2	s

�1
2

�
1� s

4

�
y
1�s
4
�1e�

y
2	s +

1� s

4
y
1�s
4
�1e�

y
2
d	s

dy
: (4.19)

For second term is developed as

d

dy

�
1

2
y
1�s
4 e�

y
2	s

�
=
1

2

�
1� s

4

�
y
1�s
4
�1e�

y
2	s

�1
4
y
1�s
4 e�

y
2	s +

1

2
y
1�s
4 e�

y
2
d	s

dy
; (4.20)

and the third term is

d

dy

�
y
1�s
4 e�

y
2
d	s

dy

�
=

�
1� s

4

�
y
1�s
4
�1e�

y
2
d	s

dy

�1
2
y
1�s
4 e�

y
2
d	s

dy
+ y

1�s
4 e�

y
2
d2	s

dy2
: (4.21)
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As a result we �nd with some simpli�cation,

d2	s

dy2
=

�
�(3 + s) (1� s)

16y2
� 1� s

4y
+
1

4

�
y
1�s
4
�2e�

y
2	s

+

�
1� s

2y
� 1
�
y
1�s
4
�1e�

y
2
d	s

dy
+ y

1�s
4 e�

y
2
d2	s

dy2
; (4.22)

or

y
d2	s

dy2
= yy

1�s
4 e�

y
2
d2	s

dy2
+

�
1� s

2
� y

�
y
1�s
4
�1e�

y
2
d	s

dy

+

�
�(3 + s) (1� s)

16y
� 1� s

4
+
y

4

�
y
1�s
4
�2e�

y
2	s (4.23)

Substituting Eq.(4:17) and Eq.(4:23) into Eq.(4:15) and devised by (y
1�s
4
�2e�

y
2 ), we obtain

y
d2	s

dy2
+

�
1� s

2
� y

�
d	s

dy
+

�
�(3 + s) (1� s)

16y
� 1� s

4
+
y

4

�
	s +

�
�+

1

2

�
d	s

dy

+

�
�+

1

2

��
1� s

4y
� 1
2

�
	s � �

4y
(1� s)	s � 1

4
y	s +

c

4m!
	s = 0: (4.24)

After simpli�cation

y
d2	s

dy2
+
�
1� s

2
+ �� y

� d	s
dy

� 1� s2

16y
	s

+

�
�2�+ 1

4
� 1� s

4
+

c

4m!

�
	s = 0: (4.25)

Since s = �1 and c = m! (1 + 2�s) + E2 �m2, then Eq. (4.25) becomes as :

y
d2	s

dy2
+
�
1� s

2
+ �� y

� d	s
dy

�
�
(2�+ 1) (1� s)

4
� E2 �m2

4m!

�
	s = 0: (4.26)

Which can be rewitten as

y
d2	s

dy2
+ (b� y)

d	s

dy
� a	s = 0 (4.27)

Where b = 1� s
2
+ � and a = (2�+1)(1�s)

4
� E2 �m2

4m!
:

Here Eq.(4:27) is called kummer�s di¤erential equation ,the solution can be expressed in

terms of the con�uent hypergeometric function of the �rst kind F (a; b; y) =1 F1 (a; b; y) ;

	sn (y) = cF (a; b; y) = c:F

�
(2�+ 1) (1� S)

4
� E2 �m2

4m!
; 1� s

2
+ �; y

�
(4.28)

As a result, the wave function reads

	sn(x) = c (m!x)
1�s
2 e�

m!x2

2 F

�
(2�+ 1) (1� S)

4
� E2 �m2

4m!
; 1� s

2
+ �;m!x2

�
(4.29)
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If the �rst input is equal to a, the con�uent hypergeometric function simpli�es to a polynomial

of degree n in y,
(2�+ 1) (1� s)

4
� E2 �m2

4m!
= �n (4.30)

The solution of this equation is

E

m
= �

s
4
!

m
n+ 2

!

m

�
�+

1

2

�
(1� s) + 1: (4.31)

where !
m
= r we have

En;s
m

= �

s
4rn+ 2r

�
�+

1

2

�
(1� s) + 1: (4.32)

4.3 Klein-Gordon oscillator in three dimensions

In this section, we will try to solve the Klein-Gordon oscillator in three dimensions by

replacing the ordinary momentum operator by Dunkl derivation with the stationary Klein-

Gordon oscillator equation�
E2 �

�
1

�
D̂j + �m!xj

��
1

�
D̂j � �m!xj

�
�m2

�
 = 0 with j = 1; 2; 3; (4.33)

where m and ! are the rest mass and oscillator frequency, respectively.

By following the Dunkl algebra which is de�ned in the previous section, the Dunkl-Klein-

Gordon oscillator equation in three dimensions is developed by,h
E2 �

�
D̂2
j �m!D̂jxj +m!xjD̂j + (m!xj)

2
�
�m2

i
 = 0; (4.34)

or �
D̂2
j �m!

h
D̂j; x̂j

i
� (m!xj)2

�
+ E2 �m2) = 0: (4.35)

Multiplying both sides by a minus sign, and we have
h
D̂j; x̂j

i
=
�
1 + 2�jR̂j

�
; we geth

�D̂2
j �m!

�
1 + 2�jR̂j

�
+ (m!xj)

2
i
 =

�
E2 �m2

�
 : (4.36)

As a result Eq. (4.36) is developed by :h
�D̂2

1 � D̂2
2 � D̂2

3 �m!
�
1 + 2�1R̂1

�
�m!

�
1 + 2�2R̂2

�
�m!

�
1 + 2�3R̂3

�
+m2!2(x21 + x22 + x23)

i
 =

�
E2 �m2

�
 : (4.37)
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or �
�D̂2

1 � D̂2
2 � D̂2

3 � 2m!(
3

2
+ �1R̂1 + �2R̂2 + �3R̂3)

+m2!2(x21 + x22 + x23)
�
 =

�
E2 �m2

�
 : (4.38)

In follow sections, the above wave equation we will calculate exactly in Cartesian and spherical

coordinates.

4.3.1 Cartesian coordinates solution

In this subsection, we use the separation method variable to solve exact solution for Eq.

(4.38), indeed we have,

 =  (x1) (x2) (x3) : (4.39)

and

Ĥ = Ĥ1 + Ĥ2 + Ĥ3: (4.40)

where

Hj = �D̂2
j �m!

�
1 + 2�jR̂j

�
+ (m!xj)

2 with j = 1; 2; 3: (4.41)

We assume the following de�nition

E2 �m2 = "1 + "2 + "3 (4.42)

Consequently, the Dunkl-Klein-Gordon oscillator equation (4.38) reduces by three wave equa-

tion for each value of j;

�
@2

@x2j
+ 2

�j
xj

�
1� R̂j

� @

@xj
� �j
x2j
(1� R̂j)�m2!2x2j +m!

�
1 + 2�jR̂j

�
� "j

�
 (xj) = 0

(4.43)

In addition, since the commutator between Ĥj and R̂j equals zero (i.e.,
h
Ĥj; R̂j

i
= 0) the

eigenfunctions could be selected as they have a de�nite parity,R̂j (xj) = sj (xj) with sj = �1:
Eq (4.43) becomes as�

@2

@x2j
+ 2

�j
xj
(1� sj)

@

@xj
� �j
x2j
(1� sj)�m2!2x2j +m! (1 + 2�jsj)� "j

�
 (xj) = 0 (4.44)

Then, we set the following transformations

�j = m!x2j ;  (�j) = �
1�sj
4

j e�
�j
2 � (�j) : (4.45)
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Thus, Eq. (4:43) becomes as�
�j

@2

@ �2j
+
�
1 + �j �

sj
2
� �j

� @

@�j
+ nj

�
�sj (�j) = 0 (4.46)

As we know the above equation (4:46) is similar to the problem which has solved in the previous

chapter, and it becomes the following solution

�sn (�) = cF (a; b; �) = cF

�
(2�j + 1) (1� sj)

4
� "j
4m!

; 1� sj
2
+ �; �

�
: (4.47)

The �rst argument is equal to as, the con�uent hypergeometric function simpli�es to a polyno-

mial of degree n in y: We conclude that,

(2�j + 1) (1� sj)

4
� "j
4m!

= �nj; (4.48)

�
�
�j +

1

2

�
(1� sj) +

"j
2m!

= 2nj; (4.49)

"j
2m!

= 2nj +

�
�j +

1

2

�
(1� sj) ; (4.50)

where nj is non-negative integer quantum numbers. The energy eigenvalue function, which is

parity dependent, is quantized as follows

"sjnj = 2m!

�
2nj +

�
1

2
+ �j

�
(1� sj)

�
: (4.51)

So the general solution to the equation (4:46) can be expressed in terms of the associated

Laguerre polynomials as

�sjnj (�j) = CsjL
�j�

sj
2

nj

�
m!x2j

�
: (4.52)

where Csj is a constant normalization term that can be calculated using Eq.(4:13). We have,Z
x�e�xL

�j�
sj
2

nj (x)L
�j�

sj
2

mj (x) = �nm
(n� �)!

n!
: (4.53)

This relation is transformed by following new variable

� = m!x2 =) dx =
d�

2
p
m!�

: (4.54)

Therefore Eq. (4:13) is simpli�ed by

h j  i =
��csj ��2 Z d�

2
p
m!�

�
1�sj
2 e��

�
L
�j�

sj
2

nj (�)

�2 �����
r

�

m!

�����
2�j

(4.55)

=

��csj ��2
2
p
m!

Z
d��

�sj
2 e��

�
L
�j�

sj
2

nj (�)

�2 �����
r

�

m!

�����
2�j

(4.56)

=

��csj ��2
2 (m!)

1
2
+�j

Z
��j+

sj
2 e��

�
L
�j�

sj
2

nj (�)

�2
d�: (4.57)
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or

h j  i =
��csj ��2

2 (m!)
1
2
+�j

(nj + �j � sj)!

nj!
= 1

=)
��csj ��2 = 2 (m!) 12+�j nj!

(nj + �j � sj)!
: (4.58)

We get the following expression for the normalization constant,

csj =

s
2 (m!)

1
2
+�j nj!

(nj + �j � sj)!
: (4.59)

In order to obtain the level energy for our system we use the equation (4:42) : We can write,

E =
p
"1 + "2 + "3 +m2; (4.60)

and "j are calculated in Eqs. (4.51), then we �nd,

E(s)n =
�
2m!

�
m2 + 2 (n1 + n2 + n3)

�
+2m!

��
1

2
+ �1

�
(1� s1) +

�
1

2
+ �3

�
(1� s3) +

�
1

2
+ �2

�
(1� s2)

��1=2
: (4.61)

where nj=1;2;3 = 0; 1; 2; ::: .

Exact solutions in spherical coordinates

In spherical coordinates, the Cartesian coordinates (x1; x2; x3) of a vector x are related to

its spherical polar coordinates (r; �; ') by

x1 = r sin � cos'; x2 = r sin � sin'; x3 = r cos �: (4.62)

From Eq. (4.43) and by substituting Eqs. (3.206)-(3.208) into Eq. (4.43) we �nd�
@2

@r2
+
2

r
(1 + �1 + �2 + �3)

@

@r
+

�
1

r2
cot � +

2

r2
(�1 + �2) cot � �

2

r2
�3 tan �

�
@

@�

1

r2
@2

@�2
+

1

sin2 �

@2

@'2
+

2

r2 sin2 �
(�2 cot'+ �1 tan')

@

@'
� �1
r2 sin2 � cos2 '

�
1� R̂1

�
�2

r2 sin2 � sin2 '

�
1� R̂2

�
� �3
r2 cos2 '

�
1� R̂3

�
++m2!2r2

�
sin2 � cos2 '+ sin2 � sin2 '+ cos2 '

�
+2m!

�
3

2
+ �1R̂1 + �2R̂2 + �3R̂3

�
� E2 +m2

�
	 = 0: (4.63)

After simpli�cation, Eq. (4.63) reduces to�
@2

@r2
+
2

r
(1 + �1 + �2 + �3)

@

@r
+m2!2r2+

2m!

�
3

2
+ �1R̂1 + �2R̂2 + �3R̂3

�
+

Ĵ'
r2 sin2 �

+
Ĵ�
r2
+�E2 +m2

)
	 = 0 (4.64)
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where the operators J' and J� are

J' =
@2

@'2
+ 2 [�1 cot'+ �2 tan']

@

@'
� �1
cos2 '

�
1� R̂1

�
� �2
sin2 '

�
1� R̂2

�
: (4.65)

and

J� =
@2

@�2
+ cot � + 2 [(�2 + �1) cot � � �3 tan �]

@

@�
� �3
cos2 '

�
1� R̂3

�
: (4.66)

In spherical coordinates, the re�ection operator act on the wave function gives to the following

transformations :

R̂1	(r; �; ') = 	 (r; �; � � ') ; (4.67)

R̂2	(r; �; ') = 	 (r; �; � � ') ; (4.68)

R̂3	(r; �; ') = 	 (r; � � �; ') : (4.69)

After this step we can use the separation method with 	 = z (r)� (�) � (') : Then, Eq. (4.64)

is written as �
r2
�
@2

@r2
+
2

r
(1 + �1 + �2 + �3)

@

@r
+m2!2r2

+2m!

�
3

2
+ �1R̂1 + �2R̂2 + �3R̂3

�
� E2 +m2

�
+

J'
sin2 �

+ J�

�
z (r)� (�) � (') = 0 (4.70)

The �rst and second line in Eq. (4.70) are related by r�variable, whereas the third line is
related by � and ' variables. That leads Eq. (4.70) to become as�

�(�) � (') r2
�
@2

@r2
+
2

r
(1 + �1 + �2 + �3)

@

@r
+m2!2r2

+2m!

�
3

2
+ �1R̂1 + �2R̂2 + �3R̂3

�
� E2 +m2

�
z (r)

+z (r)
�
J'
sin2 �

+ J�

�
�(�) � (')

�
= 0 (4.71)

After this we devise by z (r)� (�) � (') we �nd�
r2

z (r)

�
@2

@r2
+
2

r
(1 + �1 + �2 + �3)

@

@r
+m2!2r2

+2m!

�
3

2
+ �1R̂1 + �2R̂2 + �3R̂3

�
� E2 +m2

�
z (r)

+
1

� (�) � (')

"
Ĵ'
sin2 �

+ Ĵ�

#
�(�) � (')

)
= 0 (4.72)
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Therefore, Eq. (4:72) will be divided into two wave equations. The �rst is related to r�variable�
r2
�
@2

@r2
+
2

r
(1 + �1 + �2 + �3)

@

@r
+m2!2r2

+2m!

�
3

2
+ �1R̂1 + �2R̂2 + �3R̂3

�
� E2 +m2

�
z (r) = $2z (r) ; (4.73)

and the second is related to (�; ')-variables,"
Ĵ'
sin2 �

+ Ĵ�

#
�(�) � (') = �$2�(�) � (') : (4.74)

where $ is the separation constant.

From the equation (4:74) we can re-write by :h
Ĵ' + sin

2 �
�
Ĵ� +$2

�i
�(�) � (') = 0: (4.75)

The �rst operator in Eq. (4.75) is related by '�variable and the second operator is related by
��variable, for these considerations we devise by �(�) � (') ; we obtain�

1

� (')
Ĵ'� (') +

sin2 �

�(�)

�
Ĵ� �$2

�
�(�)

�
= 0: (4.76)

This later leads to

1

� (')
Ĵ'� (') = �
2: (4.77)

sin2 �

�(�)

�
Ĵ� �$2

�
�(�) = 
2: (4.78)

here 
 is also the separation constant.

After these we can write the equations (4.77) and (4.78) as follow :�
@2

@'2
+ 2 [�1 cot'+ �2 tan']

@

@'
� �1
cos2 '

�
1� R̂1

�
� �2
sin2 '

�
1� R̂2

�
+ 
2

�
� (') = 0:

(4.79)

and�
@2

@�2
+ cot �

@

@�
+ 2 ((�1 + �2) cot � � �3 tan �)

@

@�
� �3
cos2 '

�
1� R̂3

�
� 
2

sin2 �
+$

�
�(�) = 0:

(4.80)

Using the eigenvalues of the operators of re�ection, we �nd,�
@2

@'2
+ 2 [�1 cot'+ �2 tan']

@

@'
� �1
cos2 '

(1� s1)�
�2
sin2 '

(1� s2) + 

2

�
� (') = 0: (4.81)
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and�
@2

@�2
+ cot �

@

@�
+ 2 ((�1 + �2) cot � � �3 tan �)

@

@�
� �3
cos2 '

(1� s3)�

2

sin2 �
+$

�
�(�) = 0:

(4.82)

In order to determine the separation constants, and the solution of equations (4.79) and (4.80),

we use the following ansazt (see., the reference [12]),

� (') = cosk (') sinp (') ~� (cos') : (4.83)

The same remark we can �nd for the second equation (4.80),

�(�) = cos� (�) sin2� (�) ~� (cos �) : (4.84)

After these changes we can �nd (see chapter 3),

~� (x) = C'P
(�2+p� 1

2
;�1+k� 1

2) cos (2')

and

~� (�) = C�P
(�2+p� 1

2
;�1+k� 1

2) cos (2�) : (4.85)

where C' and C� are the normalization constants. For the validity of the given solutions, the

separation constants have to satisfy the following conditions :


2 = 4� (� + �1 + �2) : (4.86)

and

$2 = 4 (l + �)

�
l + � + �1 + �2 +

1

2

�
: (4.87)

also for the values of k; p, � and �

k =
1� s1
2

p =
1� s2
2

� =
1� s3
2

and � is a positive integer.

Following that, we seek an exact solution to the radial equation. we will start by substituting

Eq. (4:86) and Eq. (4:87) into Eq. (3:220), we �nd�
@2

@r2
+
2

r
(1 + �1 + �2 + �3)

@

@r
+m2!2r2 + 2m!

�
3

2
+ �1s1 + �2s2 + �3s3

�
�
4 (l + �)

�
l + � + �1 + �2 +

1
2

�
r2

)
z (r) = 0: (4.88)
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After this later we can write the following ansazt

z = ��+le�
�
2� (�) ; (4.89)

and by taking the new variable � = m!r2: We �nd�
�
@2

@�2
+

�
3

2
+ 2 (l + �) + �1 + �2 + �3 � �

�
@

@�

+(�1k + �2p+ �3�) + (l + �) +
E2 �m2

4m!

�
� (�) = 0 (4.90)

The following is the solution to the above equation in terms of Laguerre polynomials :

� (�) = CrL
4(l+�)(l+�+�1+�2+ 1

2)
N (�) : (4.91)

where N is a quantum number given by

N = � (�1k + �2p+ �3�) + (l + �) +
E2 �m2

4m!

= �1
2
[�1 (1� s1) + �2 (1� s2) + �3 (1� s3) + 2 (l + �)] +

E2 �m2

4m!
: (4.92)

Thus we get the level energy

N = �1
2
[�1 (1� s1) + �2 (1� s2) + �3 (1� s3) + 2 (l + �)] +

E2 �m2

4m!

or

E2 = 4m!

�
N +

1

2
[�1 (1� s1) + �2 (1� s2) + �3 (1� s3) + 2 (l + �)]

�
+m2: (4.93)

So the spectral energies are

E = �
p
2m! [2 (N + l + �) + �1 (1� s1) + �2 (1� s2) + �3 (1� s3)] +m2: (4.94)

As a result, the three-dimensional Dunkl-Klein-Gordon oscillator�s radial eigenfunctions become

z = ��+le�
�
2� (�) = ��+le�

�
2CrL

4(l+�)(l+�+�1+�2+ 1
2)

N (�) : (4.95)

We observe that the energy spectrum explicitly depends not only on the quantum numbers

(N; �; `) but the other parameters, (�j; sj), which characterize the Dunkl derivative. Therefore,

we conclude that the energy spectrum is dependent on a term originating from the conven-

tional Klein-Gordon oscillator and an additional term originating from the Dunkl derivative.
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It is worth noting that, as in the previous section, the maximal contribution of the Dunkl

term is obtained for s1 = s2 = s3 = �1, while the minimal contribution is achieved from
s1 = s2 = s3 = +1: In addition such a correction term, which depends explicitly on sj , lifts

the degeneracy of energy levels. Before we conclude this section, we brie�y would like to intro-

duce the orthogonality relation of the angular and radial parts of the wavefunction. Using the

following orthogonality relation

Z
 
(s1;s2;s3)
N;�;l  

(s1;s2;s3)
N;�;l jr sin � cos�j2�1jr sin � sin�j2�2jr cos �j2�3r2dr sin �d�d� = 1 (4.96)



Chapitre 5

Application of the Dunkl-Dirac

oscillator

5.1 Dirac oscillator in one dimension

In this section we will present the Dunkl-Dirac oscillator equation in one dimension, which

is expressed as� �
�x

�
1

{
D̂ � {�m!x

�
+ �m

�
	 = E	: (5.1)

where the spinor wave function is de�ned in a two-component spinor 	
�
�1
�2

�
, and the Dirac

matrices are written in 2� 2 matrix

�x =

0@ 0 1

1 0

1A ; � =

0@ 1 0

0 �1

1A ; (5.2)

In matrix form Eq. (5:1) is analytic given by240@ 0 1
{
Dx

1
{
Dx 0

1A�
0@ 0 �{m!x
�{m!x 0

1A+
0@ m 0

0 �m

1A350@ �1

�2

1A = E

0@ �1

�2

1A : (5.3)

After simpli�cations, we �nd0@ 0 1
{
Dx + im!x

1
{
Dx � im!x 0

1A0@ �1

�2

1A =

0@ E �m 0

0 E +m

1A0@ �1

�2

1A : (5.4)

Finally, we get the two equations below8<:
�
1
{
D̂x + {m!x

�
�2 = (E �m) �1�

1
{
D̂x � {m!x

�
�1 = (E +m) �2

: (5.5)
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From the second equation for the set of (5:5) we write

�2 =

�
1
{
D̂x � {m!x

�
�1

(E +m)
: (5.6)

By substituting this Eq. (5.6) in the �rst equation of the set (5:5), we obtain�
1

{
Dx + {m!x

� �1
{
Dx � im!x

�
�1

(E +m)
= (E �m) �1: (5.7)

or �
1

{
Dx + im!x

��
1

{
Dx � im!x

�
�1 = (E �m) (E +m) �1: (5.8)

As a result, we write h�
D̂ �m!x

��
D̂ +m!x

�
+ E2 �m2

i
�1 = 0: (5.9)

At this stage, we can express the solution for the upper component of the spinor as the same

solution of Eq. (18) which presented in previous chapter of Klein-Gordon oscillator. So the

solution of Equation. (5:9) becomes as

�s1 = N1 (m!x)
1�x
2 e

�m!x2
2 F

�
�n; 1� s

2
+ �;m!x2

�
: (5.10)

Whereas to obtain the component�2; we have

�2 =

�
1
{

�
d
dx
+ �

x
(1� s)� {m!x

��
(E +m)

�1: (5.11)

Using some simpli�cations we �nd

�2 =
�{

(E +m)

��
1� s

2

�
�1 �m!x�1 +N (m!x)(

1�s
2 ) e

�m!x2
2

dF

dx
+
�

x
(1� s) �1 +m!x�1

�
:

(5.12)

According to the spinor solution,

	sn = Ns (m!x)
1�x
2 e

�m!x2
2

0B@ 1

�{
(E+m)

�
d
dx
+
(�+ 1

2)(1�s)
x

� 1CAF
�
�n; 1� s

2
+ �;m!x2

�
: (5.13)



Chapitre 6

General Conclusion

In this wok, we have examined in nonrelativistic case the isotropic harmonic oscillator and a

particle in box in one, two and three dimensions using Cartesian coordinates. As well as in two

and three dimensions we have determined the exact solution of isotropic harmonic oscillator

potential in polar and spherical representations. In addition, we generalize this problem in

relativistic case for Dunkl oscillator model in three-dimensional using Cartesian and spherical

coordinates. With theses choices, we found the exact spectrum energy and the normalized

radial wave functions in coordinates space. For spinorial particle we examined the problem

Dunkl Dirac oscillator in one dimension.
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Abstract:                                                                                                                            

In this work, we adapt the mathematical foundations of quantum mechanics in the presence 

of the Dunkl derivative. First, we got to know its mathematical expressions and effect on 

various quantum systems. Through our treatment of some of them: for example, in non-

relativistic quantum mechanics, we treat using Cartesian coordinates an infinite quantum well 

and harmonic oscillator, then using the polar and spherical coordinates we discussed the issue 

of the isotropic harmonic oscillator. Finally, in relativistic quantum mechanics, we applied this 

derivative to the Klein-Gordon oscillator and the Dirac oscillator equations respectively. 

Key words: The Dunkl derivative, Particle in a box, Harmonic oscillator, The Dunkl-Klein- Gordon 

oscillator,  The Dunkl-Dirac oscillator. 

 

Résumé:                                                                                    
Dans ce travail, nous adaptons les fondements mathématiques de la mécanique quantique en 

présence de la dérivée de Dunkl. Tout d'abord, nous avons appris à connaître ses expressions 

mathématiques et l'effet sur divers systèmes quantiques. A travers notre traitement de certains 

d'entre eux: par exemple, en mécanique quantique non relativiste, on traite en coordonnées 

cartésiennes un puits quantique infini et un oscillateur harmonique, puis en coordonnées polaires et 

sphériques on aborde le problème de l'oscillateur harmonique isotrope. Enfin, en mécanique 

quantique relativiste, nous avons appliqué cette dérivée respectivement aux équations de 

l'oscillateur de Klein-Gordon et de l'oscillateur de Dirac. 

Mots clés : Le dérivé de Dunkl, Particule dans une boîte, Oscillateur harmonique, L'oscillateur de 

Dunkl-Klein-Gordon, L'oscillateur de Dunkl-Dirac. 

             :الملخص

 على البداية في تعرفنا حيث ،Dunkl مشتق وجود في الكم لميكانيك الرياضية الاسس بتكييف قمنا العمل هذا في

 نسبي، الغير الكم ميكانيك في :مثلا ،منها لبعض معالجتنا خلال من الكمية الأنظمة مختلف في وتأثيره الرياضية عبارته

 ناقشنا  الكروية و القطبية الاحداثيات باستخدام ثم توافقي، هزاز و لانهائي كمومي بئر ةالديكارتي الاحداثيات باستخدام عالجنا

 و جوردن كلاين هزاز معادلتي على المشتق هذا بتطبيق قمنا النسبي الكم ميكانيك في الأخير وفي.   توافقي هزاز لةأمس

 .ديراك هزاز

 هزاز ، Dunkl-Klein- Gordon هزاز ، توافقي هزاز ، صندوق في مجسي ، Dunkl مشتق :الكلمات المفتاحية

Dunkl-Dirac. 

 


