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Résumé

Abstract
In this work, we are interested in the Traveling Tournament Problem (TTP). TTP is a chal-

lenging combinatorial optimization problem in sports scheduling that aims to construct a double
round-robin tournament schedule minimizing the total distance traveled by the teams and satisfy-
ing, at the same time, the TTP-specific constraints. TTP is a well-known and important problem
within the collective sports communities since poor optimization in TTP can cause losses in the
budget of managing the leagues. We proposed an original enhanced Genetic Algorithm(E-GA) to
solve TTP. We used a local search as a subroutine to improve the intensification mechanism in
GA. Further, We propose a new technique called the aspiration technique to filter the search space
and keep only the feasible configurations. The aspiration technique allows memorizing information
on moves leading to feasible neighbor configurations, starting from a current configuration. The
overall method is evaluated on publicly available standard benchmarks and compared with other
techniques for TTP. The computational experiment shows that the proposed method could build
interesting results comparable to other state-of-the-art approaches

Keywords: traveling tournament problem ,combinatorial optimization , Genetic Algorithm
,local search.

Résumé
Dans ce travail, nous nous intéressons au problème bien connu Problème de Compétition

Sportif(TTP). Le TTP est un problème d’optimisation combinatoire difficile dans la program-
mation sportive qui vise à construire un calendrier de tournois à double ronde minimisant la dis-
tance totale parcourue par les équipes et satisfaisant, en même temps, les contraintes spécifiques
au TTP. Le TTP est un problème bien connu et important au sein des communautés sportives
collectives car une mauvaise optimisation du TTP peut entraîner des pertes dans le budget de
gestion des ligues. Nous avons proposé un algorithme génétique amélioré original (E-GA) pour
résoudre le TTP. Nous avons utilisé une recherche de voisinage variable comme sous-programme
pour améliorer le mécanisme d’intensification dans GA. De plus, nous proposons une nouvelle
technique appelée la technique d’aspiration pour filtrer l’espace de recherche et ne garder que les
configurations réalisables. La technique d’aspiration permet de mémoriser des informations sur
les mouvements conduisant à des configurations de voisinage réalisables, à partir à partir d’une
configuration actuelle. La méthode globale est évaluée sur des références standard accessibles
au public et comparée à d’autres techniques de TTP. L’expérience informatique montre que la
méthode proposée pourrait générer des résultats intéressants comparables à d’autres approches de
pointe.
Mots clés :compétitions sportives,optimisation combinatoire ,l’algorithme génétique, la recherche
locale.

6



Résumé

�
	
jÊÓ

ú



	
¯

�
éJ.ª�

�
éJ
k. AÓY

	
K @

	á�
�m�
�
' �
éÊ¾

�
�Ó ù



ë (TTP ).TTP Q

	
®�Ë@

�
éËñ¢�.

�
éÊ¾

�
�Öß.

	
àñÒ

�
JêÓ 	ám�

	
' , ÉÒªË@ @

	
Yë ú




	
¯

ú



�
æË @

�
éJ
ËAÔ

g
.
B

@
�
é
	
¯A�ÖÏ @ ÉJ
Ê

�
®
�
JË

�
éËñm.

Ì'@ h. ðX
	QÓ

�
H@PðX ÈðYg. ZA

�
�
	
� @

úÍ@


	
¬Yî

�
E ú




�
æË @

�
éJ


	
�AK
QË @ H. AªË


B@

�
éËðYg.

É
	
g@X

�
éÒêÓð

�
é
	
¯ðQªÓ

�
éÊ¾

�
�Ó TTP Q�.

�
Jª
�
K .

�
I

�
¯ñË@ �

	
®
	
K ú




	
¯ TTP �K.

�
é�A

	
mÌ'@ XñJ


�
®Ë @ ZA

	
�P@


ð

�
�Q

	
®Ë @ Aêª¢

�
®
�
K

�
èP@X@



�
éJ

	
K @
	Q�
Ó ú




	
¯ Q


KA�

	
k ú




	
¯ I. �.�

�
�K


	
à

@ 	áºÖß
 TTP ú




	
¯

	á�
�j
�
JË @

	
ª

	
�

	
à

B

�
éJ
«AÒm.

Ì'@
�
HA

	
�AK
QË @

�
HAªÒ

�
Jm.
×

Z @Qk. A
¿ Q�


	
ª
�
JÓ ú



k

�
Im�'. A

	
JÓY

	
j
�
J�@ . TTP ÉmÌ (E − GA) �

éJ
Ê�

@
�
é
	
J�m×

�
éJ

	
�J
k.

�
éJ
Ó

	PP@ñ
	
k A

	
JkQ

�
�
�
¯@ .

�
HBñ¢J. Ë @

�
éJ

	
®�

�
JË ¡

	
®
�
�Ë@

�
éJ

	
J
�
®
�
K ùÒ�

�
�

�
èYK
Yg.

�
éJ

	
J
�
®
�
K hQ��

�
®
	
K , ½Ë

	
X úÎ«

�
èðC« . GA ú




	
¯

	
J


�
Jº

�
JË @

�
éJ
Ë
�
@

	á�
�j
�
JË ú



«Q

	
¯

�
HA¿Qj

�
JË @ Èñk

�
HAÓñÊªÖÏ @

	
¡
	
®m�'. hñÒ¢Ë@

�
éJ

	
J
�
®
�
K iÒ�

�
� .¡

�
®
	
¯

�
é
	
JºÒÖÏ @

�
HA

	
JK
ñº

�
JËAK.

	
 A

	
®
�
JkB@ð

�
IjJ. Ë @

�
ékA�Ó

Q�
K
AªÓ úÎ«
�
ZA
	
JK.

�
éÊÓA

�
�Ë@

�
é
�
®K
Q¢Ë@ Õæ



J

�
®
�
K Õ

�
æK
 . ú



ÍAmÌ'@ 	áK
ñº

�
JË @ 	áÓ @

�
ZYK. ,

�
é
	
JºÒÖÏ @ P@ñm.

Ì'@
�
HA

	
JK
ñº

�
K úÍ@


ø


X

ñ
�
K ú




�
æË @

�
é
�
®K
Q¢Ë@

	
à

@
�
éJ
K. A�mÌ'@

�
éK. Qj.

�
JË @ Qê

	
¢
�
� . TTP �K.

�
é�A

	
mÌ'@ øQ

	
k

B@

�
HAJ


	
J
�
®
�
JËAK. Aî

�
D
	
KPA

�
®Óð PñêÒj. ÊË

�
ékA

�
JÓ

�
éK
PAJ
ªÓ

. øQ
	
k

B@ I. J
ËA�


B@

�
HYg


AK. Aî

�
D
	
KPA

�
®Ó 	áºÖß


�
èQ�

�
JÓ l .

�

'A
�
J
	
K úÍ@


ø


X

ñ
�
K

	
à

@ 	áºÖß


�
ékQ

�
�
�
®ÖÏ @

. ú


ÎjÖÏ @

�
Im�'. ,

�
éJ

	
�J
m.
Ì'@

�
éJ
Ó

	PP@ñ
	
mÌ'@ , É

�
JÓ

B@

	á�
�j
�
JËB@ , Q

	
®�Ë@

�
éËñ¢�. ú




	
¯
�
éÊ¾

�
�Ó :

�
éJ
kA

�
J
	
®ÖÏ @

�
HAÒÊ¾Ë@

7



Introduction
Many important and practical problems can be expressed as optimization problems.
Such problems involve finding the best of an exponentially large set of solutions. The
obvious algorithm, considering each of the solutions, takes too much time because
there are so many solutions. The optimization problem can be solved in an exact
method or an approximate method. The exact method provides optimal solutions
in a long time because it cannot solve NP-complete problems. As for approximate
algorithms (or heuristic), they give high-quality solutions in a reasonable time, but
there is no guarantee of finding a global optimal solution. In this work, we are
interested in the well-known NP-hard traveling tournament problem (TTP); TTP
is an interesting problem in both sports scheduling and combinatorial optimization.
It is known to be an NP-hard problem which makes finding quality solutions in a
short amount of time difficult. TTP has attracted significant interest recently since
a favorable TTP schedule can generate large incomes in the budget of managing the
league’s sport. Many approaches have been applied to solve TTP, including exact
or Approximate methods. In this work, we proposed an original enhanced Genetic
Algorithm(E-GA) to solve TTP. We used a variable neighborhood search as a sub-
routine to improve the intensification mechanism in GA. Further, We propose a new
aspiration technique to filter the search space and keep only the feasible configura-
tions. The aspiration technique allows memorizing information on moves leading to
feasible neighbor configurations, starting from a current configuration. The compu-
tational experiment shows that the proposed method could build interesting results
comparable to other state-of-the-art approaches .

Organization of the thesis:
To properly present our work, we have chosen the following structure: We start our
thesis with a general introduction introducing then:

The first chapter Wegiveareviewofthemaindefinitionandfundamentalissues of the
optimization problem.

The second chapter We describe the traveling tournament problem (TTP), the
main focus of this work. We also give an overview of past approaches to the TTP.

In the third chapter We present the proposed approach for TTP problem in
detail.

In the last chapter w highlights the experiments and compares our results with
the best ones in the literature.

8



CHAPTER 1

The Combinatorial Optimization
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Chapter 1 The Optimization

1.1 Introduction
In this chapter, we will learn about some basic concepts in optimization and in-
troduce combinatorial optimization problems and method to solve them by exact
or approximate method We also provided some examples of this problem and its
complexity.

1.2 Optimization Problem

An optimization problem (OP) is a class of problems resolved by optimization meth-
ods that aim to find an optimal solution in a vast set of possible solutions.[3]

1.2.1 Definition
An optimization problem can be formalized in the following way :P = (S, f, W )
Where :
P: represents the optimization problem.
S: symbolizes the search space of the problem domain.
f : represents the objective function .
W: corresponds to the set of problem’s constraints.
The search space S is defined through a set of variables = X1, X2, ..., Xn , generally
called decision variables or design variables. The search space may be subject to
a constraints W or restrictions. These restrictions are a set of definitions used to
specify whether a solution is feasible or not. In other words, they regulate whether
a solution can be accepted according to the rules of the problem domain. The f
fitness function or objective function is used to assess and determine the quality of
the solutions and guide the search process.[3]

A) The objective function :
A fitness function produces a real number (R), which is commonly referred to as

fitness.
f : S → R

∀s ∈ S, f(s) = fitness(R)
This number allows you to compare the results of all feasible solutions to a specific
optimization problem.[3]

• Local optimum: A solution s ∈ S is a local optimum if and only if there does
not exist a solution
∀s0 ∈ v(s) f(s) ≤ f(s0) In the case of a minimization problem

f(s) ≥ f(s0) In the case of a maximization problem
With V (s) the set of neighboring solutions of s.

• Global Optimum: A solution is a global optimum to an optimization prob-
lem if there are no other better solutions. The solution s∗ ∈ S is a global
optimum if and only if:
∀s ∈ S f(s∗) ≤ f(s) In the case of a minimization problem

f(s∗) ≥ f(s) In the case of a maximization problem
Therefore, the global optimum is the solution s∗ which verifies the previous

10



Chapter 1 The Optimization

property for all the neighborhood structures of the problem. Figure 1.1 schema-
tizes the curve of an evaluation function by showing the global and local opti-
mum .[4]

Figure 1.1: different minima and maxima

11



Chapter 1 The Optimization

B) Combinatorial optimization problems (COP)
A combinatorial problem is a problem where it is a question of finding the best
possible combination, That problem can be either a decision problem(a decision
problem is a problem where the resolution is limited to answering <yes> or <no>
to the question of whether there is a solution to the problem). [5]

1.3 The Resolution Methods ( a combinatorial optimization
problem):

The complexity of the problem can be solved in an exact method or an approximate
method. The exact method give an obtain optimal solutions in a long time because
it cannot solve NP-complete problems . As for approximate algorithms (or heuris-
tic), they give high-quality solutions in a reasonable time, but there is no guarantee
of finding a global optimal solution , Figure 1.2 shows that.

Figure 1.2: Classical Resolution Methods

12



Chapter 1 The Optimization

1.3.1 Exact Methods
Exact methods seek to find the optimal solution with certainty by explicitly or im-
plicitly examining the entire search space. They have the advantage of guaranteeing
the optimal solution, however, the computational time necessary for reaching this
solution becomes very excessive depending on the size of the problem and the num-
ber of objectives to optimize. What limits the use of this type of method for small
size problems. These generic methods are: Branch & bound, Branch & cut
and Branch & price, other methods are less general, such as: linear programming
in integers, the algorithm of A *. Other methods are specific to a given problem
like Johnson’s algorithm for scheduling. In the class of exact methods one can find
the following classical algorithms: dynamic programming, branch and X family of
algorithms developed in the operations research community, constraint program-
ming, and A * family of search algorithms developed in the artificial intelligence
community.[2]

A) The branch and bound algorithm and A :
Are based on an implicit enumeration of all solutions of the considered optimiza-

tion problem. The search space is explored by dynamically building a tree whose root
node represents the problem being solved and its whole associated search space.The
leaf nodes are the potential solutions and the internal nodes are sub-problems of the
total solution space. The pruning of the search tree is based on a bounding function
that prunes subtrees that do not contain any optimal solution. A more detailed
description of dynamic programming and branch and bound algorithms.[2]

General algorithm
1 Start
2 Place the start node of length 0 in a list.
3 3: Repeat
4 If
5 the first branch contains the sought node then
6 End successfully.
7 Else
8 - Delete the branch from the list and form new branches
9 by extending the deleted branch by one step.

10 - Calculate the cumulative costs of the branches and add
11 them to the list so that the list is sorted in ascending order.
12 Until (empty list or searched node found)
13 End

Listing 1.1: branch and bound algorithm[4]

B) Dynamic programming
Is based on the recursive division of a problem into simpler sub-problems.
This procedure is based on the Bellman’s principle that says that “the sub-policy
of an optimal policy is itself optimal” .This stagewise optimization method is the
result of a sequence of partial decisions. The procedure avoids a total enumeration
of the search space by pruning partial decision sequences that cannot lead to the
optimal solution.[2]

13



Chapter 1 The Optimization

Figure 1.3: division a problem into simpler sub-problems

C) Linear programming
We can reduce the structure that characterizes linear programming problems (per-
haps after several manipulations) into the following form:

Minimize c1x1 + c2x2 + .... + cnxn = z
Subjectto a11x1 + a12x2 + .... + a1nxn = b1

a21x1 + a22x2 + .... + a2nxn = b2
. . . . . . . . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + .... + amnxn = bm

x1, x2, ..., xn ≥ 0.
In linear programming z, the expression being optimized, is called the objective

function. The variables x1, x2...xn are called decision variables, and their values are
subject to m + 1 constraints (every line ending with a bi, plus the nonnegativity
constraint). A set of x1, x2...xn satisfying all the constraints is called a feasible point
and the set of all such points is called the feasible region. The solution of the linear
program must be a point (x1, x2, ..., xn) in the feasible region, or else not all the
constraints would be satisfied.[6]

1.3.2 Approximate methods
In the class of approximate methods, two subclasses of algorithms may be distin-
guished:
Approximation algorithms and Heuristic algorithms.
Unlike heuristics which usually find reasonably “good” solutions in a reasonable
time, Heuristics find “good” solutions on large-size problem instances.They may
be classified into two families: specific heuristics and metaheuristics. The specific
heuristics are tailored and designed to solve a specific problem and/or instance,
Metaheuristics are general purpose algorithms that can be applied to solve almost
any optimization problem.[2]

A) Approximation Algorithms
In approximation algorithms, there is a guarantee on the bound of the obtained
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solution from the global optimum . An ǫ-approximation algorithm generates an
approximate solution a not less than a factor ǫ times the optimum solution s .

Definition :An algorithm has an approximation factor ǫ if its time complexity is
polynomial and for any input instance it produces a solution a such that Where s is
the global optimal solution ,and the factor and defines the relative performance guar-
antee. The ǫ factor can be a constant or a function of the size of the input instance.
An ǫ-approximation algorithm generates an absolute performance guarantee21 ǫ, if
the following property is proven:

(s − ǫ) ≤ a ≤ (s + ǫ)

a ≤ ϵ ∗ sifϵ 1
ϵ ∗ s ≤ aifϵ < 1

B) Heuristic algorithms

B.1) Metaheuristics Unlike exact methods, metaheuristics allow to tackle large-
size problem instances by delivering satisfactory solutions in a reasonable time.
There is no guarantee to find global optimal solutions or even bounded solutions.
Metaheuristics have received more and more popularity in the past 20 years. Their
use in many applications shows their efficiency and effectiveness to solve large and
complex problems.

Optimization is everywhere; optimization problems are often complex; then meta-
heuristics are everywhere. Even in the research community, the number of sessions,
workshops, and conferences dealing with metaheuristics is growing significantly!,
Figure1.4 shows the genealogy of the numerous metaheuristics.[2]
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Figure 1.4: Genealogy of metaheuristics

B.2) Population-based metaheuristics Working on a set of points in the search space
starting with an initial solution population and then improving it over time itera-
tions, characterized by a tendency to explore and diversify . These methods are able
to generate "good" solutions, evenly distributed in the search space. We will cite,
among others, evolutionary algorithms, ant colonies and scatter search.[7]

B.3) Evolutionary algorithms Evolutionary algorithms are based on two fundamen-
tal principles of the evolutionary process of living beings: the survival of the best
adapted individuals and genetic recombination. The principle is to simulate the evo-
lution of a population of solutions, in consideration of these two rules, with a view to
converging towards a set of solutions particularly well suited to the environment in
which the problem being treated is identified. Holland uses the term adaptive plan
(survival of the best individuals, elimination of the others), denoting an algorithm
for the adaptation of a species of individuals in its environment. By its nature,
although stochastic, it should make the population evolve towards beings which
are better and better adapted to it. Evolutionary algorithms (EA) group together
all the stochastic techniques based on the simulation of the adaptation process in
natural environments, and bearing the names of genetic algorithms , evolutionary
strategies , evolutionary programming and genetic programming.[2]

B.3.1) Genetic algorithm The genetic algorithm represents a famous evolutionary
metaheuristic. It was proposed by Jhon Holland in 1975 . The genetic algorithm is
inspired by biological mechanisms such as Mendel’s laws and the theory of evolution
proposed by Charles Darwin [Darwin, 1859]. Its process of finding solutions to a
given problem mimics that of living beings in their evolution. It uses the same vo-
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cabulary as that of biology and classical genetics, so we speak of: gene, chromosome,
individual, population and generation.[7]

Basic Principle:

1 formulate initial population
2 randomly initialize population
3 repeat
4 evaluate objective function
5 find fitness function
6 apply genetic operators
7 reproduction
8 crossover
9 mutation

10 until stopping criteria

Listing 1.2: the Working Principle of a Simple Genetic Algorithm[1]

Figure 1.5: The basic GA operations [1]

These aspects are briefly described below. They are described in detail in the
next subsection

one generation is broken down into a selection phase and recombination phase.
Strings are assigned into adjacent slots during selection

Elements of genetic algorithms Genetic algorithms (GA) are inspired by classical
genetics and use the same vocabulary. In general, a genetic algorithm consists of a
population P of solutions called individuals, whose adaptation to their surroundings
is measured using a fitness function g which returns a real value, called fitness which
is the equivalent of the objective function in operations research. The general princi-
ple of a GA consists in simulating the evolution of a population of individuals using
evolutionary operators until a stopping criterion is satisfied. Before explaining in
detail the functioning of a genetic algorithm, we will present some vocabulary words
relating to genetics. These words are often used to describe a genetic algorithm.

1. Gene
:is a set of symbols representing the value of a variable. In most cases, a gene
is represented by a single symbol (a bit, an integer, a real or a character).
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2. Chromosome
: is a set of genes, presented in a given order in a way that takes into considera-
tion the constraints of the problem to be treated. For example, in the traveling
salesman problem, the size of the chromosome equals the number of cities to
travel. Its content represents the running order of different cities. In addition,
care must be taken that a city (represented by a number or a character for
example) must not appear in the chromosome more than once.

3. Individual
:is composed of one or more chromosomes. It represents a possible solution to
the problem addressed.

4. Population
:is represented by a set of individuals (i.e. the set of solutions to the problem).

5. Generation
is a succession of iterations composed of a set of operations allowing the tran-
sition from one population to another.[8]

1 Start
2 Generate a random population of n chromosomes.
3 Evaluate the fitness of the chromosomes with the function f (x)
4 Repeat
5 Calculate the fitness function f (x), for any chromosome x
6 Apply the selection operation
7 Apply the crossover operation with a probability PC
8 Apply the mutation operation with probability PM
9 Add the new chromosomes to the new population

10 Calculate the fitness function f(x), for any chromosome x
11 Apply the replacement operation
12 Until satisfaction of termination conditions
13 End

Listing 1.3: Basic Genetic Algorithm[3]

B.3.2) Biogeography-based Optimization (BBO) Biogeography-based Optimization
(BBO) is one of the new metaheuristics method inspired by the natural phenomenon,
biogeography. Biogeography is science learning about the distribution of some spe-
cific species depends on the geographic condition . The BBO method was intro-
duced by Simon to solve some continuous functions. Moreover, this method was
made based on some principals that are how the species migrate from one island
to another, how new species arise, and how the species become extinct. These are
some concepts of BBO

1. Biogeography
Based on the biogeography principals, island with the higher suitability have
a large number of species, while the island with a low suitability have smaller
number of species. Therefore, the solutions of the problems are analogous to
those islands. The suitable island would have high Habitat Suitability Index
(HSI). In other populationbased optimization algorithms (Genetic Algorithm,
for example), HSI is usually called “fitness”. The variables that characterize
the HSI are called Suitability Index Variable (SIV). SIV can be considered the
independent variable of habitat, and the HSI can be considered the dependent
variable .

18



Chapter 1 The Optimization

2. Migration
The habitats or islands that have high HSI or many species in it would have high
emigration level and also low immigration level. Hence, the habitat with higher
HSI would tend to be static. The species would tend to move to the nearest
habitats since they have high emigration level, vice versa. Nevertheless, the
species immigrating to another island would not completely disappear from
their origins. Those species would appear in both islands at the same time.
In general, the migration process would make the bad solution accept some
features from the better solutions . The higher the emigration level of an island
means the lower its immigration level, vice versa. Nevertheless, the emigration
level of the island depend on the number of species lived in it. An island with
high emigration level would have more species than the others that have lowest
emigration level. Figure 1.6 shows the connection between emigration level,
immigration level, and the number of species, also the comparison between two
different solutions.

Figure 1.6: Illustration of two candidate solutions to some problem

3. Mutation and Elitism
Besides the migration process, the mutation and elitism are also happen in
the BBO method. Mutation is a cataclysmic event that happens on the habi-
tat. The probability of mutation on some habitats are called mutation rate.
Mutation rate of some habitats depend on the number of species lived in the
habitats. Habitat with high HSI values would more likely have lower mutation
rate compared to those that have low HSI values. Therefore, the good solution
is rarely selected to be mutated so that it could last until the next generation.
This mutation would bring new habitat to replace the old one that have low
HSI values. If there is no mutation, the solutions with low HSI would be more
dominant so that they could be trapped on the local optima. The mutation
rate of every habitat could be formulated as:

mk = mmax

(1 − Pk

Pmax

)
where mk is the mutation rate, mmax is the maximum mutation rate that is the
user-defined parameter, Pk is the probability of the number of the species in the
habitat, and Pmax is the maximum probability might be happened. The new
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habitat from the mutation would replace the old habitat. And with the elitism,
the best solutions found before would remain. The mutation could happen on
all of the solutions except for the best solutions with the highest probability
Pk. The mechanism of the mutation used in BBO could be varied just like the
mechanism of the mutation that has been used on the Genetic Algorithm.

B.4) Ant colonies The Theory of Ant Algorithm The Ant Colony Optimization
techniques has emerged recently as a relatively novel meta-heuristic for hard combi-
national optimization problems. It is designed to simulate the ability of ant colonies
to determine shortest paths to food. Although individual ants posses few capabil-
ities, their operation as a colony is capable of complex behavior. Real ants can
indirectly communicate by pheromone information without using visual cues and
are capable of finding the shortest path between food sources and their nests. The
ant deposits pheromone on the trail while walking, and the other ants follow the
pheromone trails with some probability which are proportioned to the density of
the pheromone. The more ants walk on a trail, the more pheromone is deposited
on it and more and more ants follow the trail. Through this mechanism, ants will
eventually find the shortest path. Artificial ants imitate the behavior of real ants
how they forage the food, but can solve much more complicated problems than real
ants can. A search algorithm with such concept is called Ant Colony Optimization.
Figure 1.7 shows how the ants find the shortest path [9].

Figure 1.7: Sketch map of the ant theory

B.5 Local search In local search, we only keep track of present state. That is, current
state is the single state we bother about, and we ignore keeping track of paths.
That is why local search is very memory efficient. It is capable of finding reasonable
solution in very large or even infinte state space. While we are in a current state, we
can move only to a neighboring state - that is, we search in local neighborhood. So,
given states and neighborhoods of the states, and given an objective function that
evaluates a state, local search algorithms find a state that has optimum (maximum
or minimum) value of objective function. In local search, every state is a solution -
bad or good. A solution is good where higher number of constraints are statisifed,
and bad where lower number of constraints are satisfied.[7]

1 Step 1 (initialization)
2 a) choose an initial solution s ∈ S.
3 b) s*← s (i.e. s* memorizes the best solution found)
4 Step 2 (choice and termination)
5 a) choose s’ ∈ N(s)
6 b) s ← s’ (i.e. replace s by s’)
7 c) end if the stopping condition is verified
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8 Step 3 (update)
9 a) s* ← s if f(s) < f(s*)

10 b) go to Step 2

Listing 1.4: Simple local search algorithm [3]

B.6) Hill Climbing Algorithm As the name Hill Climbing suggests, it’s concept is
associated with climbing to the hill top. Following figure 1.8 shows a sample hill.
When monuntaineers go for expeditions such as climbing the Mount Everest, how
does one realize if she has rached at the summit or peak of the Mount Everest. They
keep a GPS tracker or altitude meter that guides them in this regard. However, there
can be many other peaks with little bit smaller height in the surroundings of summit
which can mislead monuntaineers to believe that they have reached at the peak in
the absense of such GPS tracker.

Figure 1.8: A Hill

Such things can also happen when we search for solution in the search space,
where there are many local optimums and one global maximum. While doing the
local search using hill climbing we may reach a local maximum, and we believe we
have reached at the global maximum. In hill climbin algorithm, since an objective
function is associated with every state, so given a current state, all it’s neighborhoods
are evaluated with the objective function. If a neighborhood state is found with value
higher than the current state and it’s the maximum value amongst the neighborhood,
then this neighbor becomes the new current state. This is repeated. If none of the
neighbor has higher value than the current state then terminating condition has
been reached and the hill climbing algorithm returns the local maximum and then
terminates. So, we can say that hill climbing algo. is the greedy local search.
Current state may have many alternative for next state.[7]
Choose the next state which seems the best. Following algorithm 1.5 gives the
maximum version of Hill Climbing algorithm

1 Start
2 Generate and evaluate an initial solution s
3 While The stopping condition is not verified do
4 Modify s to obtain s’ and evaluate s’
5 If(s’ is better than s) then
6 Replace s by s’
7 End if
8 End while
9 return s
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10 End

Listing 1.5: General scheme of Hill-Climbing

B.7) Tabou searsh In hill climbing if the search gets suck in a local optimum, there
is no way to come out of that. One solution is to take steps back from local optimum
and go down to reach at the bottom. Once the bottom is reached then the search is
resumed afresh with the hope that better solution will be visited. This is continued.
However, a limit on possible number of sideway moves to be placed to prevent infinte
looping. This is the concept of tabu search. In tabu search we keep track of last
node and this node is not repeated.[7]

1 function TabuSearch(problem)
2 Input : problem
3 Output: returns a state that is possibly global maximum
4 local variables: current_node,best_node
5 current_node ← Random(InitialState(problem))
6 best_node ← current_node
7 Tabu_List ← current_node
8 while (!Empty(Tabu_List))
9 current_node ← Non_Tabu_SuccessorHighest(current)

10 Tabu_List ← current_node
11 if(Value(current_node)≤ Value(best_node))
12 best_node ← current_node
13 end of while loop
14 return State(current_node)
15 end TabuSearch

Listing 1.6: Tabu Search Algorithm [3]

1.4 Computational Complexity
Sometimes, there are more than one way to solve a problem. We need to learn
how to compare the performance of different algorithms and choose the best one
to solve a particular problem. While analyzing an algorithm, we mostly consider
the computational complexity which is divided into: Time complexity and Space
complexity.The computational complexity of an algorithm is the amount of time
and memory required to run it. [2]

1.4.1 Problem Classes
An algorithm to be polynomial “P” ( polynomial running time) if for k>0 its running
time on input of size n can be described at the worst with the formula O(nk), this
includes to be : linear or quadratic, cubic and more. Algorithms with exponential
running time are not polynomial. This classification includes the fundamental well-
known classes:

• P (polynomial time) class of problems that are solvable in polynomial time
with a deterministic Turing machine.

• NP (non-deterministic polynomial time) class of problems that can only
be verified in polynomial time with a deterministic Turing machine.

• NP-completeproblem that can be solved in P (but in a large polynomial time)
and can be verified in NP and all problems of NP class can be reduced to it.
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• NP-hardproblem that have not a solution in P but can be verified in NP and
all pbs of NP class can be reduced to it.

Figure 1.9: There are two possibilities depending whether P=NP Or P̸= NP [2]
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1.4.2 Time Complexity
Time complexity is the number of operations an algorithm performs to accomplish
its task, we assume each operation takes the same time. The algorithm that performs
the task in the smallest number of operations is considered to be the most efficient
regardless the kind of machine it runs on. In time complexity, it is necessary to decide
what is an operation? the choice depends on the problem. We have to choose some
small operations that the algorithm often does, and that you want to use as basic
operations to measure complexity.When we compute the time complexity T(n) of an
algorithm we rarely get an exact result, but just an estimate, that’s why, in computer
science we use ASYMPTOTIC notations, it means that is an approximation of the
number of elementary operations. There are mainly three asymptotic notations:
Big Ω notation for best case;
Big Θ notation for average case;
Big O notation for worst case.[10]

Figure 1.10: Comparison of complexity between functions
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1.5 Some optimization problems

1.5.1 Traveling salesman problem (TSP)
Perhaps the most popular combinatorial optimization problem is the traveling sales-
man problem (TSP)

• Given a number of cities and the costs (distances) of traveling from any city to
any other city. . .

• What is the least-cost round-trip route that visits each city exactly once and
then returns to the starting city?[2]

1.5.2 Knapsack problem
We have n objects each having a weight pj and a value or utility vj with j = 1 ···
n it is a question of making a selection of these objects to put in the bag (choose
a subset of objects) ; whose total weight is less than or equal to a certain value B
so as to maximize the total utility of the bag. Defining for each object j, a decision
variable xj such that

if object j is chosen else xj =
{1

0

1.5.3 8-queen problems
In 8-queen problem, we need to place 8 queens in an 8×8 board such thatnot-
woqueensattackeachother: thatis,thereshouldnotbetwoqueens in the same row or
same column or same diagonal. The figure 1.11 shows a solution to the 8-queen
problem.[7]

Figure 1.11: A Solution to 8-Queen Problem
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1.6 Conclusion
In this chapter, we talked about the optimization problem , the combinatorial opti-
mization and The Resolution Methods to these problems ,Exact Methods where we
get a Exact solution in a long time perhaps, or the Approximate methods To find the
search space in a less time , the time complexity and we presented some examples
of optimization problems, Among these problems is the ttp problem, which we will
talk about in the next chapter.
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The Traveling Tournament Problem
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2.1 Introduction
In recent years, sports and computer technologies have witnessed a great develop-
ment in terms of planning and organizing sports competitions, Many sports leagues
( soccer, hockey, basketball) must deal with scheduling problems for tournaments he
problem of scheduling , Traveling Tournament Problem (TTP) originated in Major
League Baseball in the United States proposed by Kelly Stone Gorgo and Michael, it
is one of the most complex problems classified as a Nb Heard problems, as broadcast
and television networks are willing to pay a lot of dollars for sports leaks, in this
Chapter you will learn about the Sports Scheduling Problem, the TTP its history,
its variant.

2.2 The Sports Scheduling Problem
Sports Scheduling in general deals with the design of tournaments. A single round-
robin tournament on n teams, where n is an even number, consists of (n 1) rounds
(also called slots). In each round n/2 games, which are themselves ordered pairs
of teams, take place. Every team has to participate in one game per round and
must meet every other team exactly once. It is standard to assume n to be even
since in sports leagues with n being odd, usually, a dummy team is introduced,
and whoever plays it has a day off, which is called a bye. For scheduling single
round-robin tournaments a rather general and useful scheme called the canonical
schedule has been known in sports scheduling literature for at least 30 years . It
is based on the polygon/circle method, which was first suggested by Kirkman in
1847 . One can think of Kirkman’s method as a long table at which n players sit
such that n/2 players on one side face the other players seated on the other side
of the table. Every player plays a match against the person seated directly across
the table. The next round of the schedule is obtained when everyone moves one
chair to the right with the crucial exception that there exists one person at the end
of the table who never moves and always maintains the seat from his or her first
round. Note that this method only specifies who plays whom when and not where.
The canonical schedule introduced by deWerra defines for each of the encounters
specified by the method described above, at whose side they take place such that
the number of successive home or away games is minimized . A double round-robin
tournament on n teams consists of 2(n1) rounds and every team must meet every
other team twice: once at its home venue (home game) and once at the other team’s
venue (away game). A popular policy in practice is to obtain a double round-robin
tournament from a single round-robin tournament by mirroring, that is repeating
the matches of round k for k = 1,...,n1 in round k + n1 with changed home field
advantage. Consecutive home games are called a home stand and consecutive away
games form a road trip. The length of a home stand or road trip is the number of
opponents played (and not the distance traveled).
Tournaments may be represented by graphs, which offer a good model for scheduling
formulations and algorithms, see e.g. de Werra (1980; 1981; 1988). The complete
graph Kn may be used to represent a single round robin tournament or any of the
phases of a compact double round robin tournament. Each of its nodes represents
a team. Each game is represented by an edge, whose extremities are associated
with the two opponent teams. Figure 2.1 displays an example illustrating the graph
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representation of a single round robin tournament with n = 4 teams.[11] The problem

Figure 2.1: Example of a single round robin tournament with n = 4 teams represented by a
complete graph

of scheduling a round robin tournament is often divided into two subproblems. The
construction of the timetable consists in determining the round in which each game
will be played. The home-away pattern (HAP) set determines in which condition
(home or away) each team plays in each round. The HAP set for the previous
example can be represented by a matrix as in Table 1, in which the cell corresponding
to row k and column j indicates the playing condition of team j in round k. Together,
the timetable and the home-away pattern set determine the tournament schedule
[11]

2.3 A History of the Traveling Tournament Problem
The Traveling Tournament Problem In early 1999, Trick decided to write up some of
his work on the MLB schedule. Work up to then has always been on solving the full
MLB problem. But certain aspects of that work were confidential (team preferences
most particularly), so Trick could not simply describe the whole problem. Instead,
he decided to start with the simplest set of constraints: simply find a minimum
travel schedule with limits on the length of home stands and road trips and no
other constraints. Once this was solved, additional constraints could be added until
the reason for the difficulty in solving could be identified. Presumably, those could
eventually be overcome and the MLB problem could be solved. To Trick’s enormous
surprise, his methods, based on the stronger home-stand/road trip formulation were
not sufficient to solve even the base model. Taking 30 teams and finding a minimum
travel distance schedule did not seem doable. Even taking 16 or 14 teams (at
the time MLB had two leagues with only weak interactions between them) seemed
difficult. Trick looked at smaller and smaller instances of this simplified problem
before realizing the only size instance he could solve had just 4 teams. It may have
been small, but on May 1, 1999, the first instance of what would be the Traveling
Tournament Problem was solved.

Trick sent the problem definition and data to Easton who had more computing
power and more advanced methods, including constraint programming approaches.
She was quickly able to confirm the optimality of Trick’s four-team solution and
provide the optimal solution to the six team instances. But the 8 team instances
could not be solved to optimality with the methods of the time. It was not until
2002 that Easton finally found what was to be the optimal solution to the 8 team
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Figure 2.2: Timetable of a single round robin tournament with n = 4 reams represented one of its
1-factorizations: (a) 1-factor F1 associated with the first round, (b) 1-factor F2 associated with
the second round, and (c) 1-factor F3 associated with the third round.

instance, and not until 2008 that it was confirmed optimal by the lower bounding
method of Irnich and Schrempp. At this point, the problem did not have a name.
Trick suggested something like “The minimum travel for a sports league problem”.
He was wisely overruled by his coauthors and the Traveling Tournament Problem
was born.[12]

2.4 The Traveling Tournament Problem

Given n teams, n even, a double round robin tournament (DRRT) is a set of games in
which each team plays each other team once at home and once away. A schedule for
a DRRT is a mapping of games to slots, or time periods, such that each team plays
exactly once in each slot. A DRRT schedule covers exactly 2(n1) slots. The distances
between the team venues are given by an n by n matrix D. For the distance calcula-
tions, it is important to note that each team starts and finishes the tournament at its
home venue. Aroadtrip,ortrip,isdefinedasaseriesofconsecutiveawaygames.Similarly,
a home stand is defined as a series of consecutive home games. The length of a road
trip or home stand is the number of games in the series (not the travel distance).
The TTP is defined as follows: [12]

• Input : n , the number of teams ; D an n by n integer distance matrix ; L , U
integer parameters

• Output : A double round robin tournament on the n teams such that

– The length of every home stand and road trip is between L and U inclusive
– - The total distance traveled by the teams is minimized

In addition to the basic constraints , there may be additional requirements .
on the solution . These include :

– Mirrored Mirrored :The double round robin tournament must have a
round robin tournament in the first n − 1 slots and then have the same
tournament with venues reversed in the second n − 1 slots .
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– No Repeaters There are no teams i , j such that i plays at j and then j
plays at i in the next slot

2.5 TTP Complexity:
Despite its simplicity, TTP is a difficult problem to solve, and it is known to be a
strongly NP-hard problem . Until now there is no research could solve instance with
more than ten teams optimally . The first NP-completeness proof has been given by
Bhattacharyya for a variant of the original TTP, where the constraint on consecutive
home-games and away-games is left out, which allows a reduction from TSP. The
second attempt on TTPs complexity proof is made by Thielen and Westphal using
a reduction from 3- satisfiability (3-SAT). They showed that the TTP is strongly
NP-complete when the upper-bound of consecutive home games and away-games is
fixed to 3. It still doesnt prove the original TTP, where u and l can be arbitrary
integer numbers, but nonetheless, it is a big contribution in the analysis of the TTPs
complexity. Furthermore, the authors also pointed out that with further refinement,
their proof can be probably generalized for the original TTP.

2.6 the TTP and its variants

The Unconstrained Traveling Tournament Problem (UTTP) [77] is a variant of TTP
in which constraints 1 and 2 are eliminated. The objective in UTTP is the same of
TTP, find a schedule with minimum cost travel where the constraints 1 and 2 are
not necessarily needed: UTTP is TTP without any constraint on the consecutive
home and away matche. UTTP is a suitable model for some practical scheduling
problem. Furthermore, eliminating the breaks constraints (1 and 2) reduces the
budget constraint.
Thus a solution of the UTTP is an appropriate model for overseeing sports league
with a small budget. mTTP is the mirrored version of TTP. mTTP requires that the
games played in round R are exactly the same as those played in round R+n1, for
R=1,2,....n1 with reversed venues (Table5.1). We called this additional constraint
mirrored constraint. mTTP is then the problem of finding a schedule for a double
round robin tournament with minimum cost satisfying the same constraints plus an
additional constraint” the mirrored constraint.

The Bipartite Traveling Tournament Problem (BTTP): let there be 2n teams,
with n teams in each league. Let X and Y be the two leagues, with X = x1,
x2, x3..., x2n and Y = y1, y2, y3..., yn. Let D be the 2n × 2n distance matrix,
where entry Dp,q is the distance between the home stadiums of teams p and q. By
definition, Dp,q = Dq,p for all p, q X Y , and all diagonal entries Dp,p are zero.
Similar to the original TTP, we require the following conditions: that each team
play one game per day; that no team has a home stand or road trip lasting more
than three games; that no team play against the same opponent in two consecutive
games; and that for all i n, j n, teams xi and yj play twice, once in each others
home venue. To illustrate, Table 2.1 provides two examples of a feasible tournament
satisfying all of the above conditions for the case n = 3. In this table, as in all other
schedules that will be subsequently presented, home games are marked in bold.
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Teams 1 2 3 4 5 6
x1 y1 y2 y3 Y1 Y2 Y3
x2 y2 y3 y1 Y2 Y3 Y1
x3 y3 y2 y1 Y3 Y2 Y1
y1 X1 X3 X2 x1 x3 x2
y2 X2 X1 X3 x2 x1 x3
y3 X3 X2 X1 x3 x2 x1

Table 2.1: A feasible inter league tournament for n=3

The Traveling Tournament Problem with Predefined Venues(TTPPV) is a single
round robin variant of the TTP, in which the venue of each game to be played is
known beforehand (i.e., the venue where each game takes place is known before-
hand) while the total distance traveled by the teams is minimized. In three integer
programming formulations for the Traveling Tournament Problem with Predefined
Venues are proposed. These formulations are compared with respect to the bounds
provided by their linear relaxations. Let Q be a set of games, represented by ordered
pairs of teams determined by the predefined HAA. The game between teams i and
j is represented either by the ordered pair (i, j) or by the ordered pair (j, i). In the
first case, the game between i and j takes place at the venue of team i; otherwise,
at that of team j. For every two teams i and j, either (i, j) Q or (j, i) Q. TTPPV
consists in finding a compact single round robin schedule compatible with Q, such
that the total distance traveled by the teams is minimized and no team plays more
than three consecutive home games or three consecutive away games.

2.7 Conclusion
In this chapter, we have provided a general explanation of The Sports Scheduling
Problem and The Traveling Tournament , its variants, its inputs and outputs. Our
main goal in this work is to find a solution that is closer to the optimal. In the next
chapter, we will discuss how to apply the proposed approach to reach this solution.
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Chapter 3 The Traveling Tournament Problem

3.1 Introduction :
In the previous chapter, we got acquainted with the The Sports Scheduling Prob-
lem , The Traveling Tournament Problem, its constraint and its variants. In this
chapter, we applied the proposed heuristics approach to solve the problem of the
The Traveling Tournament (TTP). First, we applied the local search method , then
the genetic algorithm . We also applied the Neighborhood Structures and applied
different swaps to the two approaches.

3.2 the proposed approach:

In order to solve the problem of scheduling The Traveling Tournament (TTP)., we
applied the proposed approach, first we started by defining the inputs and outputs,
then the algorithms apply the local search and the genetic algorithm as shown in
these steps

• Input :

1. The number of teams n ; in this example we chose the number of teams
n = 4

2. Integer distance matrix between each team and the other team :

Teams Team 1 Team 2 Team 3 Team 4
Team 1 0 10 15 34
Team 2 10 0 22 32
Team 3 15 22 0 47
Team 4 34 32 47 0

Table 3.1: The distance between the teams cities

• Output:

– A double round robin tournament on the n teams
– The total distance traveled by the teams is minimized .

• the number of rounds = 2 (number of teams -1) , In this example the number
of rounds= 6 rounds

• 1 schedule for( n *r): The negation sign means that the team plays away.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6
Team 1 4 2 3 - 4 -2 -3
Team 2 3 -1 4 -3 1 -4
Team 3 -2 4 -1 2 -4 1
Team 4 -1 –3 –3 1 3 3

Table 3.2: Schedule for n = 4 teams
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3.3 Genetic algorithm for TTP
A genetic algorithm is a type of searching algorithm. It searches a solution space for
an optimal solution to a problem. The key characteristic of the genetic algorithm
is how the searching is done. The algorithm creates a “population” of possible
solutions to the problem and lets them “evolve” over multiple generations to find
better and better solutions.

3.3.1 Population
is the collection of candidate solutions that we are considering during the course
of the algorithm. Over the generations of the algorithm, new members are “born”
into the population, while others “die” out of the population. A single solution in
the population is referred to as an individual. The fitness of an individual is a
measure of how “good” the solution represented by the individual is. The better the
solution, the higher the fitness – obviously, this is dependent on the problem to be
solved.

3.3.1.1 Application of proposed approach Local search

The Initial Configuration The search method starts with an initial configuration
verifying the DRRT constraint. We create this configuration based on graph-theory
modelling as follows: We have n/2 games per round and 2·(n1) rounds. We number
the vertices of the graph from 1 to n, where n is the number of teams. We put the
top n in the center and the other vertices in a circle around the top n.[13]
Local Search Method for Feasible Schedules

Figure 3.1: Local Search Method for Feasible Schedules

Round 1 (4,1) (3,2)
Round 2 (2,1) (3,4)
Round 3 (3,1) (4,2)
Round 4 (1,4) (2,3)
Round 5 (1 ,2) (4,3)
Round 6 (1 ,3) (2,4)

Table 3.3: Local Search Method for Feasible Schedules
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the Neighborhood Structures We use three neighborhood structures which are de-
tailed in the following:

• N1: Swap Home. This move swaps the home/away roles of teams. For
instance, when we take two teams ti and tj, the move Swap Home(S,ti,tj)
swaps the home/away roles of a game involving the teams ti and tj. If team ti
plays home against team tj at Round k and away against team tj at Round l
then the move Swap Home (S,ti,tj) gives the same schedule as S, except that
team ti plays away against team tj at Round k, and home against tj at Round
l.

Round 1 (4,1) (3,2)
Round 2 (2,1) (3,4)
Round 3 (3,1) (4,2)
Round 4 (1,4) (2,3)
Round 5 (1 ,2) (4,3)
Round 6 (1 ,3) (2,4)

The application of the move Swap home away: N1 (S,t4,t1):

Round 1 (1,4) (3,2)
Round 2 (2,1) (3,4)
Round 3 (3,1) (4,2)
Round 4 (4,1) (2,3)
Round 5 (1 ,2) (4,3)
Round 6 (1 ,3) (2,4)

• N2: Swap Round. This move consists of swapping all games of a given pair
of rounds. For example the move Swap Round (S,Roundk,Roundl) swaps two
given rounds (Roundk and Roundl).

Round 1 (4,1) (3,2)
Round 2 (2,1) (3,4)
Round 3 (3,1) (4,2)
Round 4 (1,4) (2,3)
Round 5 (1 ,2) (4,3)
Round 6 (1 ,3) (2,4)

After applying the move Swap Round: N2 (S,Round1,Round3):

Round 1 (3,1) (4,2)
Round 2 (2,1) (3,4)
Round 3 (4,1) (3,2)
Round 4 (1,4) (2,3)
Round 5 (1 ,2) (4,3)
Round 6 (1 ,3) (2,4)
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• N3 Swap Team. This move corresponds to swapping all opponents of a
given pair of teams over all rounds, For example the move Swap Team (S,ti,tj)
corresponds to swapping all opponents of teams ti and tj over all rounds.
After the application of the move Swap Team: N3 (S,(t2,t4))

Round 1 (4 ,1) (3, 2)
Round 2 (2 ,1) (3, 4)
Round 3 (3 ,1) (4, 2)
Round 4 (1 ,4) (2, 3)
Round 5 (1 ,2) (4, 3)
Round 6 (1 ,3) (2, 4)

Round 1 (3,1) (4,2)
Round 2 (2,1) (3,4)
Round 3 (4,1) (3,2)
Round 4 (1,4) (2,3)
Round 5 (1 ,2) (4,3)
Round 6 (1 ,3) (2,4)

Aspiration Technique to Select the Best Neighbor We propose a new technique
which we called aspiration technique to filter the search space and keep only the
feasible configurations. The aspiration technique permits to memorize information
on moves leading to feasible neighbor configurations, starting from a current con-
figuration. First, we explore the search space to locate feasible configurations with
zero-cost according to the cost function. Then among them, we take the best one
having the minimum traveled distance.

Figure 3.2: The proposed approch local search
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3.3.2 The selection
The selection process is analogous to the survival of the fittest in the natural world.
Individuals are selected for “breeding” (or cross-over) based upon their fitness values
–the fitter the individual, the more likely that individual will be able to reproduce.
The cross-over occurs by mingling the two solutions together to produce two new
individuals. During each generation, there is a small chance for each individual to
mutate, which will change the individual in some small way.

3.3.2.1 The Cost Function:

The cost function consists of penalize configurations not satisfying the DRRT con-
straint. First, it is important to he following useful notations in Table 4 to represent
the constraints.

Ti is the team number i where i [1,n].
(ti,tj) is the game ti, vs. tj in the home of ti.
Roundl is the round number l where 1 l |Round|.

Ri,j

means that the match (ti,tj) is scheduled in a round Ri, j where 1 ≤ Ri, j|Round|,
∀i, j ∈ |T |, i6 = j. For example in Table 3, the match (t5,t1) is scheduled in
Round8 at home of t5, R5,1 = 8, while the match (t1,t5) is scheduled in Round3,
R1,5 = 3.

S is a DRRT schedule

Table 3.4: Some useful notations and definitions

The Objective Function

Min
n∑
i,j

Distance +
n∑
i,j

no satisfate DDRT Constraint ∗ 100

3.3.3 The Crossover
Cross over It is the process in which two chromosomes combine their genetic ma-
terial to produce a new offspring which possesses both their characteristics. Two
strings are picked from the mating pool at random to crossover .T he method cho-
sen depends on the Encoding Method. The most widely used cross over methods are

1. Single Point Crossover :Single point crossover is the most commonly used
crossover . A crossover site is selected randomly along the length of the mated
strings and bits next to the cross-sites are exchanged. If appropriate site is cho-
sen, better children can be obtained by combining good parents else it severely
hampers string quality. In one point crossover the head and tail of one chro-
mosome separates and if both head and tail contains the good genetic material
then none of the offspring will obtained the both good features directly.

2. N-Point Crossover The N-point crossover was first implemented by De Jong
in 1975 . It consists of more than one cross over sites but principle used is same
as that of single point crossover . In 2-point crossover value of crossover sites is
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2. Adding of the more crossover sites causes more disruptions of building blocks
that sometimes reduce the performance of genetic algorithm. But it allows the
head and tail portion of a chromosome to be passed together in the offspring.

3. Uniform Crossover : Uniform crossover do not fragments the chromosomes
for recombination. Each gene in offspring is created by copying it from the
parent chosen according to the corresponding bit in the binary crossover mask
of same length as the length of the parent chromosomes . If the bit in crossover
mask is 1, then he corresponding gene is copied from the first parent and if
the bit in crossover mask is 1, then the corresponding gene is copied from the
second parent. A new crossover mask is generated randomly for each pair of
parent chromosomes. The number of crossover point is not fixed initially. So,
the offspring contains a mixture of genes from both the parents.

4. Partially mapped Crossover:Partially Matched or Mapped Crossover (PMX)
is the most commonly used crossover operator in permutation encoded chro-
mosomes. It was proposed by Goldberg and Lingle for Travelling Salesman
Problem. In Partially Matched Crossover, two chromosomes are aligned and
two crossover sites are chosen randomly. The portion of chromosomes between
the two crossover points gives a matching selection that undergoes the crossover
process through position-by-position exchange operations . PMX tends to re-
spect the absolute positions.

5. Cycle Crossover (CX):Cycle crossover is used for chromosomes with permu-
tation encoding. During recombination in cyclic crossover there is a constraint
that each gene either comes from the one parent or the other . The basic prin-
ciple behind cycle crossover is that each allele comes from one parent together
with its position. To make a cycle of alleles from parent1, start with the first
allele of parent1. Then look at the allele at the same position in parent2 and
go to the position with the same allele in Parent1.Add this allele to the cycle
and repeat step the above until you arrive at the first allele of parent1. Put the
alleles of the cycle in the first child on the positions they have in the first parent
and the remaining alleles of first child come from the second parent along with
their position. Generate next cycle from parent2

6. TrajectoryCrossover:This crossover produces children by exploring the tra-
jectory that connects both parents. The procedure begins with one of the
parents, called the initial solution. Then a random position is chosen for both
parents. The elements located at this position are permuted which builds two
other solutions. The fitness values of these two solutions are calculated and the
bad solution is eliminated, to consider only the initial solution and the winning
solution. The previous procedure is then repeated on the element of the fol-
lowing position until all the positions have been considered to obtain child 1.
This crossing will be well illustrated in the following We applied the crossover
to our work.

This crossing is envisaged with two parents and only one child. The child is produced
by swapping alleles between the two parents starting at a random locus, the example
shows the method .We chose a position randomly, in our example, we chose position
12 on the parents and then we crossing between them, then we change each team i
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to team j and each team j to team i.

Round1 Round2 Round3 Round4 Round5 Round6
Parent 1 (4 ,1) (3,2) (2,1) (3,4) (3,1) (4,2) (1,4) (2,3) (1 ,2) (4,3) (1 ,3) (2,4)
Parent 2 (3 ,1) (2,4) (2,1) (4,3) (4,1) (2,3) (1,3) (4,2) (1 ,2) (3,4) (1 ,4) (3,2)

Chase position 12 :

Round1 Round2 Round3 Round4 Round5 Round6
Parent 1 (4 ,1) (3,2) (2,1) (3,4) (3,1) (4,2) (1,4) (2,3) (1 ,2) (4,3) (1 ,3) (2,4)
Parent 2 (3 ,1) (2,4) (2,1) (4,3) (4,1) (2,3) (1,3) (4,2) (1 ,2) (3,4) (1 ,4) (3,2)

Round1 Round2 Round3 Round4 Round5 Round6
child 1 (4 ,1) (2,3) (3,1) (2,4) (2,1) (4,3) (1,4) (3,2) (1,3) (4,2) (1,2) (3,4)
child 2 (2 ,1) (3,4) (3,1) (4,2) (4,1) (3,2) (1,2) (4,3) (1,3) (2,4) (1 ,4) (2,3)

The fitness values of these two solutions Child 1 and Child 2 are calculated after we
choose the best Child and we get rid of the worst solution, we repeat the crossover
between parent 1 or 2 whit the best Child, in this example we chase the Child
2. Then the previous action is repeated on the next element (position 13). ) the
Parents 1and 2 are swapped to get solutions 3 and 4, after calculated The fitness
values of these two solutions for rid of the worst solutions, etc

If the elements located at a selected position are identical in both solutions, the
next position is considered. This procedure is repeated until all positions have been
considered to obtain Child 1.
Child:
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Round1 Round2 Round3 Round4 Round5 Round6
Parent 1 (4 ,1) (3,2) (2,1) (3,4) (3,1) (4,2) (1,4) (2,3) (1 ,2) (4,3) (1 ,3) (2,4)
Parent 2 (4 ,1) (2,3) (3,1) (2,4) (2,1) (4, 3) (1,4) (3,2) (1 ,3) (4,2) (1 ,2) (3,4)

Round1 Round2 Round3 Round4 Round5 Round6
Child 1 (4 ,1) (2,3) (3,1) (2,4) (2,1) (4,3) (1,4) (3,2) (1 ,3) (4,2) (1 ,2) (3,4)
Child 2 (4 ,1) (3,2) (2,1) (3,4) (3,1) (4, 2) (1,4) (2,3) (1 ,2) (4,3) (1 ,3) (2,4)

(4 ,1) (2,3) (3,1) (2,4) (2,1) (4,3) (1,4) (3,2) (1 ,3) (4,2) (1 ,2) (3,4)

Figure 3.3: Trajectory Crossover

3.3.4 Mutation
After cross over, the chromosomes are subjected to mutation. It is the process by
which a string is deliberately changed so as to maintain diversity in the population
set. Mutation of a bit involves flipping it, changing 0 to 1 and vice-versa with a small
mutation probability Pm. Mutation Probability determines how often the parts of
a chromosome will be mutated. Types:

1. Flipping

2. Interchanging

3. Reversing Mutation Hence

mutation causes movement in the search space (local or global) and restores lost
information to the population.
We applied the mutation to the new children by applying swaps and this using the
local search algorithm, as we explained in the previous part (population part) with
the use of the Aspiration Technique.
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Figure 3.4: The proposed approch genetic algorithm

3.4 Conclusion
In this chapter we presented a detailed description of our method to solve the TTP by
combining two approaches GA + LOCAL SEARCH with the application Aspiration
Technique to Select the Best Neighbor. In the next chapter we will present the results
and compare them with the previous results
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Numerical Results
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4.1 Introduction
Finally in this last chapter we present the numerical results found by the proposed
approach based on a approximate method and Evolutionary algorithms Genetic al-
gorithm (GA) and Local search Our application was created to contribute to the
solution of the Traveling Tournament problem (TTP) and then we analyze the re-
sults and compare the results with previous results .

4.2 the programing language using
PYTHON In our work we use the python language is a programming language

created by Guido van Rossum , It has many advantages compared to other methods
or languages

• It is used to build websites and software and perform data analysis.

• It facilitates the implementation and testing of algorithms.

• It is allowed to draw graphs and develop applications with a graphical user
interface.

4.3 Choosing the best Values for population
Choosing the best Values for population the parents in order to apply the genetic
algorithm :
We have fixed the selection values in 0,7, and we implemented the algorithms with
100 iterations The results represented in the following curve:

Figure 4.1: Curve population change with respect to cost on the number of teams 6
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4.4 Choosing the best Values for select the parents in order
to apply the genetic algorithm

We have fixed the selection population in 100, and we implemented the algorithms
with 100 iterations The results represented in the following curve:

Figure 4.2: Curve population change with respect to cost on the number of teams 6
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4.5 Results and analysis
The corresponding matrix and curve represent one of the best solutions we have
obtained with the best population number and the best selection number and iter-
ation=100 , it’s minimize the distance to 21400

team 1 [[-6 -2 5 3 4 -3 -4 2 6 -5]
team 2 [-3 1 4 -5 6 5 -6 -1 3 4]
team 3 [ 2 4 6 -1 -5 1 5 -4 -2 6]
team 4 [ 5 -3 -2 -6 -1 6 1 3 5 -4]
team 5 [-4 -6 -1 2 3 -2 -3 -6 -4 1]
team 6 [ 1 5 -3 4 -2 -4 2 5 -1 -6]]

Table 4.1: Matrix represent one of the best solutions on the number of teams 6

Figure 4.3: the best solutions we have obtained on the number of teams 6
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4.6 Numerical Results
Table gives the numerical results found by the overall approach. We give the CPU
time (Time) in seconds (the reported time is the time needed to find the best so-
lution), the best (Best) and the average solution (AVERAGE) of twenty executions
found by our method. We give the best known solutions (Feasible Solution) for
each instance and the gap between Best and Best-known.The best results are in
bold font. The proposed method SLS is compared with the best-known solutions
Feasible Best-known for TTP in order to show its Best-known TTP [14]

Gap% = ( Best-known - Best/ Best-known)*100

Instance Best-known Best Worst Average CPU times Gap %
NL4 —— 8492 10433 9201 8492
NL6 19900 21856 28800 25570 105.67 -0,000097
NL8 30700 32901 40568 36432 284.53 -7,169
NL10 45309 48324 55543 51432 395.33 -6,654
NL12 79623 80979 90982 86750 722.88 -1,703
NL14 125734 136398 206784 176891 1471.43 -8,481
NL16 154623 167484 218484 3316.34 186753 -8,316

Table 4.2: Numerical results found by the overall approach

4.7 Discussion:
After we chose the best value for population, the best value for choosing the new
generation and mutation, we analyzed the results as shown in the curve graph Figure
4.3, after applying both the genetic algorithm and the local search, we found that the
genetic algorithm contributed to Determine the minimum distance ,the local search
contributed to building a schedule satisfies the double round robin tournament In
the various Benchmarks.

4.8 Conclusion

In this chapter we applied the proposed model (GA+LOCAL SEARCH), then we
compared our results with the Previous results. From the experimental results
we conclude We conclude that this duality helps to achieve the best fitness while
maintaining the health of the schedule
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GENERAL CONCLUSION

The well-known NP-Hard TTP problem is difficult to solve optimally due to the
problem formulation containing both optimization goal and integer feasibility con-
straints. This work proposes a novel hybrid approach of Genetic algorithm and It-
erated local search heuristics to generate schedules for TTP. The proposed method
starts with an initial population generated by using the polygon method. Then, the
population of solutions is modified to a new population by applying three operators
selection, crossover and mutation. Further, we apply the local search heuristic as
an improvement strategy to enhance the solution quality. The results show that
our approach could build interesting results comparable to other state-of-the-art
approaches
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