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Abstract

Biometrics is the measurement and analysis of unique biological, physical, or behav-
ioral traits (modalities) of individuals and turning them into a digital print that can be
used as an identification or verification method. Furthermore, for a trait to be considered
a modality, it must be universal, unique, permanent, collectible, and acceptable. Some
modalities are better than others in some criteria, making some suitable for a particular
task yet invalid in another. Biometrics are utilized in systems that can perform three main
tasks: enrolling, identifying, and verifying. They also grant us the ability to use them in a
direct, straightforward manner (unimodality) or by fusing several elements on several lev-
els (multimodality) to achieve more accurate results. We can measure its accuracy through
well-defined error metrics and performance curves.

While we have established some decent knowledge concerning biometrics, we have
yet to define how to use them. One of the ways to use biometrics is through deep learn-
ing. In order for a machine to use biometric data, we are not only required to have an
enhanced image that is focused on the region of interest. We must extract the features
that differentiate one individual from another, which is a task done through the use of
deep neural networks. The concept of deep learning is inspired by the cognitive ability
of humans, which makes deep learning very capable of detecting objects. And from that
comes the concept of Convolutional Neural Networks (CNN), which are special deep neu-
ral networks that mimic animals’ visual systems. CNNs can be pre-trained in order to
reduce actual training time and improve performance by producing a transfer-learning
model. In our work, we used a database that contains palmprint hyperspectral images of
190 people. Each person has twelve pictures from both their left and right hands. Then, we
performed band selection to select the most discriminating bands. After that, we trained
and tested four transfer-learning networks for the purpose of performing feature extrac-
tion, and then used a classifier in unimodal and two multimodal approaches. We finally
evaluated their performances and recorded their results.

Keywords: Biometrics, Palmprint, Unimodality, Multimodality, Identification, Hyper-
spectral images, Band selection, Deep learning, Transfer learning, Feature extraction.
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Résumé

La biométrie est la mesure et l’analyse de traits uniques (modalités) d’individus et
leur transformation en une empreinte numérique pouvant être utilisée comme méthode
d’identification ou de vérification. De plus, pour qu’un trait soit considéré comme une
modalité, il doit être universel, unique, permanent, et collectable. Certains sont meilleurs
que d’autres dans certains critères, ce qui rend certains adaptés et d’autre invalides pour
une tâche particulière. La biométrie est utilisée dans des systèmes qui peuvent effectuer
trois tâches principales, l’inscription, l’identification et la vérification. Ils nous donnent
également la possibilité de les utiliser de manière directe (unimodalité) ou en fusionnant
plusieurs éléments à plusieurs niveaux (multimodalité) pour obtenir des résultats plus
précis. Nous pouvons mesurer sa précision grâce à des métriques d’erreur et des courbes
de performances bien définies.

Bien que nous ayons établi une connaissance décente concernant la biométrie, nous de-
vons encore définir comment les utiliser. L’une des méthodes les plus récentes et avancées
dans le domaine est l’utilisation de réseaux de neurones. Pour qu’une machine utilise des
données biométriques, nous devons extraire les caractéristiques qui différencient un indi-
vidu d’un autre, ce qui est une tâche effectuée grâce à l’utilisation de réseaux de neurones
profonds. Le concept d’apprentissage profond s’inspire de la capacité cognitive des hu-
mains, ce qui rend l’apprentissage profond très capable de détecter des objets. Réseau de
neurones convolutifs ou réseau de neurones à convolution, qui sont des réseaux neuronaux
profonds spéciaux qui imitent les systèmes visuels des animaux. Les CNN peuvent être
pré-formés afin de réduire le temps de formation réel et d’améliorer les performances en
produisant un modèle d’apprentissage par transfert. Dans notre travail, nous avons utilisé
une base de données qui contient des images hyperspectrales de l’empreinte palmaire de
190 personnes. Ensuite, nous avons effectué une sélection de bandes pour sélectionner les
bandes les plus discriminantes. Après cela, nous avons entraı̂né et testé quatre réseaux
d’apprentissage par transfert à des fins d’extraction de caractéristiques, puis utilisé un
classifieur dans des approches unimodales et deux multimodales. Nous avons finalement
évalué leurs performances et enregistré leurs résultats.

Mots-clés : Biométrie, Empreinte palmaire, Unimodalité, Multimodalité, Identification,
Images hyperspectrales, Sélection de bande, Apprentissage profond, Apprentissage par
transfert, Extraction de caractéristiques.
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General Introduction

Our civilization is built on our ability to live in a society and maintain our individuality,
which makes accumulating wealth, knowledge, and achievements to gain a legacy and
provide a heritage a very desirable outcome. Hence, the birth of the naming concept: a
concept that grants individuality. We tend to associate people’s appearances with labels
or names for ease of communication and data organization [1]. Recently, the amount of
data being processed has been increasing drastically, causing complications in identifying
individuals manually and also in combatting all potential identity theft, resulting in a rise
in security concerns and transaction fraud. Therefore, we resorted to machines. Machines
are capable of processing massive amounts of data with great accuracy. We rely on that
fact while collecting descriptive data called biometric data (DNA, fingerprint, face,…) and
linking that data to its owner’s identity, enabling our machines to identify an individual
using the thing that can never be separated from them, namely their bodies. This action
will not only make our lives easier but more accessible and secure [2].

In the following pages, we will discuss and explore biometric systems in general and
emphasize palmprint recognition systems. For that reason, since palmprint is a highly ac-
cessible modality, it is as effective as many other modalities for recognition, and for that
reason, it has gained much traction. In our study, we will utilize hyperspectral imaging to
provide an abundance of information about the palmprint, conveying all the details per-
fectly and ultimately producing a system with a high recognition rate. This outcome will
be supported by the use of outstanding transfer learning algorithms as feature extractors.
The points that will be discussed in each chapter are as follows:

First chapter: This chapter will define biometrics and introduce its modalities, systems,
and evaluation.

Second chapter: This chapter will aim to provide a brief introduction to deep learning al-
gorithms, compare them to machine learning, and explain some core concepts surrounding
them.

Thrid chapter:In this chapter, we will demonstrate our approach to achieving our desired
results.

1
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1.1 Introduction

In the time we live in, with enormous amounts of data flowing everywhere at every
second, the efficiency of the manipulation of said data has become crucial. The way we
access our private data plays a significant role in how efficiently we perform different
tasks, which is not provided by the current more traditional access methods since they are
quite an inconvenience and do not provide much security. Entering a piece of data to grant
access to other data suffers from many drawbacks. As it is evident in passwords, which the
user can forget easily, leading to complications or even complete data loss, which is very
common. Another drawback to passwords is that they are weak identification methods.
Commonly, we notice that data strings are used as ID numbers that trigger access to other
pieces of data (confirmation/rejection or a larger pool of data). Furthermore, the latter
weakness drags on to similar triggers such as names, emails, and others. Due to all these
issues, it has become apparent that we need to find a better access method, a method that
is permanent, secure, easy to use, reliable, and unique to every potential user. The best fit
for those conditions is biometrics.

This chapter covers the fundamental principles of biometrics. First, we introduce the
concepts and diverse modalities of biometrics. Following that, we explain the general
architecture as well as the different functionalities of a biometric system. After that, we
present the drawbacks of these systems. To overcome these issues, we present the concept
of multimodal biometric and its different types. Finally, methodologies for evaluating the
biometric system are provided.

1.2 Biometrics

1.2.1 Biometrics Definition

The term biometrics is derived from the Greek words bios and metron, which mean
”life” and ”measure,” respectively. The combination of those two words yields the meaning
”measurement of life,” or as we know it, biometrics [3]. More specifically, biometrics is the
measurement and analysis of unique biological, physical, or behavioral traits of individuals
and turning them into a digital print that can be used as an identification or verification
method. What makes biometrics very valid and viable is that it is irreplicable and very
precise. Examples include, but are not limited to, fingerprint, face, DNA, palmprint, hand
geometry, iris, voice, and signature [4]. Examples are listed in the following figure 1.1.
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Figure 1.1: Examples of different biometric traits

1.2.2 A Brief History of Biometrics

Biometrics usage has a very long history. For example, fingerprint recognition dates
back to at least 6000 B.C., making it the oldest known biometric identification method [5].

The Assyrians, Babylonians, Japanese, and Chinese utilized fingerprints to sign official
documents and conduct economic transactions on clay tablets. According to an explorer
Joao de Barros, Chinese merchants used ink to stamp the palm prints and footprints of
children on paper to distinguish them from one another [5].

In the 1890s, Alphonse Bertillon was an anthropologist and police desk clerk in Paris,
France. set out to solve the problem of identifying serial criminals who used fake names
each time they were arrested. He came up with the concept of Bertillonage, which is a
system of various body measurements to identify a person. However, this system was
quickly considered unreliable as a consequence of many people sharing the same body
dimensions [5].

In the 19th century, Sir Francis Galton conducted a detailed study concerning finger-
prints and published it, where he claimed that the likelihood of two fingerprints being
identical is one in 64 billion. Galton’s identification relied on minutiae of the fingerprint,
which are certain small details in fingerprints. The latter is still in use to this day [5].
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In 1974, in the dorm of the University of Georgia, hand geometry was used to facilitate
the food service. Consequently, in the 20th century, many biometric technologies were
employed by humans in their daily lives [5].

1.3 Choice of Biometric Modalities

Biometric modalities are biometric traits that can be used to verify an individual’s iden-
tity. There are many modalities of many classes with different uses.

1.3.1 Classification of Biometric Modalities

Biometrics are classified into three categories [6]:

1. Morphological biometrics: Based on specific physical characteristics that are perma-
nent and unique to every individual, for example, fingerprints, faces, palmprints, iris,
hand geometry.

Figure 1.2: Examples of morphological biometrics

2. Biological biometrics: A class of biometrics that analyzes biological data about an
individual (saliva, DNA, blood).

Figure 1.3: Example of biological biometrics

3. Behavioral biometrics: It consists of studying the behavior of an individual (gait,
keystroke dynamics, signature, voice recognition).
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Figure 1.4: Examples of bihavioral biometrics

1.3.2 Biometric Modalities Criteria

In practice, any morphological, biological or behavioural trait that satisfies the following
criteria can be called a biometric modality [7]:

1. Universality: It must be carried by everyone who needs to be identified.

2. Uniqueness: It must vary among people.

3. Permanence: It must be permanent and unchanged throughout a person’s life.

4. Collectability: It must be collectable and measurable.

5. Acceptability: It must not trouble the users during the accusation process of the trait.

Some application cases might require a trait that is more unique yet can compromise
on acceptability (high-security areas). In other application cases, we can sacrifice a bit
of uniqueness to gain more universality and acceptability (low-security areas). In short,
during the selection of the modality, the use case must be considered, and the benefits and
compromises must be weighed down. A few examples of biometric modalities evaluated
according to the previously mentioned criteria are listed in the table 1.1.

1.3.3 Comparative Study of Different Biometric Modalties

There are many modalities that can be used for acquiring one’s identity. Therefore, as
described in table 1.2, it is expected to find advantages and disadvantages in the most
commonly used biometric modalities. Comprehending these advantages and disadvan-
tages can aid in selecting the most fitting trait for a specific application [9].

1.4 Biometric Systems

A biometric system’s structure is made up of main modules. This section will explore
these modules and the issues involved in their design, implementation, and evaluation [4].



Chapter 1 – Biometric Technology’s General Concepts 7

Table 1.1: Properties of biometric modalities according to the following properties: (U)
Universality, (N) Uniqueness, (P) Permanence, (C) Collectability, (A) Acceptability, (E)

Performance (the number of stars in the performance column is related to the obtained
value of Equal Error Rate (EER) (extracted from [8]).

Biometric U N P C A E
DNA Yes Yes Yes poor poor *****
Blood Yes No Yes poor no *
Gait Yes No poor Yes Yes ***

Keystroke Yes Yes poor Yes Yes ****
Voice Yes Yes poor Yes Yes ****
Iris Yes Yes Yes Yes poor *****

Retina Yes Yes Yes Yes poor *****
Face Yes No poor Yes Yes ****

Hand Geometry Yes No Yes Yes Yes ****
Hand veins Yes Yes Yes Yes Yes *****

Ear Yes Yes Yes Yes Yes *****
Fingerprint Yes Yes Yes Yes Medium ****

Table 1.2: Advantage and disadvantage of biometric modalities (extracted from [9]).

Method Advantages Advantages

Fingerprint
- Reliable
- Distinctive
- Accurate

- Susceptible to injury
- Susceptible to Dry skin

Hand geometry - Small template
- Unaffected by skin condition

- Susceptible to injury
- Large scanner size
- Low distinctiveness

Face - Efficient process
- High acceptance

- Altered with time
- Altered by surgery
- Ineffective among twins

Iris - Unique and robust
- Distinctive

- Complex and expensive
- Very intrusive

Voice - High acceptance
- Low training requirement

- Altered with time
- Low accuracy
- Susceptible to illnesses

Signature - High acceptance
- Low training requirement

- Varies every time
- Low distinctiveness

DNA - High distinctiveness
- Unaltered with time

- Expensive
- Low acceptance
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Figure 1.5: Generic biometric system architecture.

1.4.1 Biometric System Components

1. Sensor Module: A user interface incorporating the biometric sensor is necessary to
measure or collect the user’s raw biometric data. For example, an optical fingerprint
sensor could be used to scan the friction ridge pattern at the tip of the finger. A good
user interface is essential for a biometric system’s effective implementation [4].

Figure 1.6: Effect of the sensor’s PPI on clarity of fingerprint scans.

2. Feature ExtractionModule: Using an image captured by the sensor is not an efficient
way to identify an individual because not all the information captured by the sensors
is discriminative. Therefore, feature extraction is required. Its purpose is to extract
feature values of a biometric trait by applying the feature extraction algorithm, which
carries only the necessary information to recognize a person. Those feature values are
called ”template”. For example, we do not use the entire fingerprint scan captured by
the sensor. Instead, we use feature extraction to obtain the minutiae (locations where
the friction ridges exhibit some anomalies) [4].

3. Database Module: The biometric system database acts as a repository for biometric
data. During the registration process, the feature set extracted from the raw biomet-
ric sample (i.e., the template) is registered in the database along with specific personal
identifying information (such as name, PIN, address, and others) [4].
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Figure 1.7: Commonly extracted features from fingerprints, iris, and face.

4. Matching Module: A biometric matcher generates match scores by comparing query
features to stored templates. The match score determines how similar the template and
query are. As a result, a higher match score implies a more accurate match between the
template and the query. A distance score is calculated when a matcher considers the
dissimilarity between two feature sets. Thus, a lower distance score indicates a more
significant similarity. For example, the degree of similarity in a fingerprint-based bio-
metric system can be determined by the quantity of matching minutiae between the
input and template feature sets (match score) [4].

5. Decision Module: After receiving the match score from the matching module, the de-
cision module compares that match score to a threshold that the system administrator
predefines. After that, according to the comparison result, the decision module will
decide whether an individual is genuine if the matching score exceeds the threshold or
an imposter if the threshold exceeds the matching score. [9].

1.5 Biometric System Conception

In general, a biometric system is divided into two phases: enrolment and recognition.
The first phase is intended to register users, while the second phase can conduct both
verification and identification modes. These phases are covered in more detail below [4].

1.5.1 Enrolment

Both verification and identification techniques need enrollment. It is the preliminary
phase in which a user’s biometric data is recorded for the first time in the system. During
this step, one or more biometric modalities are taken and saved in the database as tem-
plates. This stage is critical since it has a real impact. [10].

Figure 1.8: Enrolment phase of a biometric system.
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1.5.2 Verification

In verification, the user claims an identity, and the system attempts to confirm or deny
that claim. In this situation, the query is only compared to the template associated with the
claimed identity (a one-to-one match). If the user’s input and the template of the claimed
identity have a high degree of similarity, the claim is considered ”genuine”. Otherwise, the
claim would be denied, and the person would be labeled as an ”impostor”. Verification is
frequently used in the prevention of unauthorized users from gaining access to services
or information [4], and the decision rule is given by:

(I, xA) =

genuine, if s ≥ η

impostor, if s ≤ η
(1.1)

I is claimed identity, xA is a query feature set, s is a match score, Where η is a pre-defined
threshold.

Figure 1.9: Verification function of a biometric system.

1.5.3 Identification

Identification means that the system recognizes a user by looking for matches in all user
templates recorded in the database. The system performs a one-to-many comparison to
create a user’s identity (or fails if a user is not registered in the system database) without
the requirement to claim their identity [10]. The decision rule can be defined as follows:

xAϵ

In0, n0=arg max
n

sn and sn0 ≥ η

IN+1, otherwise
(1.2)

xA is a query feature set corresponding to the identity of the user I , where I ϵ {I1,
I2, · · · , IN , IN + 1}. Here, I1, I2, · · · , IN correspond to the identities of the N users
enrolled in the system and IN + 1 indicates the case where no suitable identity can be
determined for the given query. Sn is the match score, η is the decision threshold [4].
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Figure 1.10: Identification function of a biometric system.

1.6 Multimodal Biometric Systems

1.6.1 Multimodal and Unimodal Systems

The main difference between multimodal and unimodal systems is the fact that uni-
modal systems use one trait for recognition. In contrast, multimodal systems use the fu-
sion of multiple traits for the same function [11]. The reason why multimodal systems are
considered more effective than unimodal systems is that the latter have a few drawbacks,
which are [12]:

1. Noisy data: The susceptibility of biometric sensors to noise, such as fog or dust, which
leads to the wrong rejection.

2. Intra class variation: The biometric data obtained during the recognition phase will
not be similar to the data collected during enrollment to create a template. This is re-
ferred to as intra-class variation. Large intra-class variation raises a biometric system’s
False Rejection Rate (FRR).

3. Interclass similarities: Different individuals can always have very similar traits.
These similarities can cause an increase in the False Acceptance Rate (FAR) of a bio-
metric system.

4. Non universality: Due to medical circumstances, a few individuals are incapable of
providing the required trait, which, in turn, makes them incapable of using the biomet-
ric system.

5. Spoofing: Spoofing is possible with unimodal biometrics, as the data can be imitated
or fabricated.
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1.6.2 Different Multimodal Types

There are five types of multimodal biometric systems, which are as follows [13]:

Figure 1.11: Different types of multimodal biometric system [14]

1. Multi-sensor systems: Combination of several sensors to acquire the same modality.
For example, both optical sensors and multispectral sensors may be used for fingerprint
acquisition.

2. Multi-sample systems: Association of several images of the same biometric trait. For
example, the collection of many images of a face in various positions, expressions, or
lighting.

3. Multi-algorithm systems: The use of several algorithms to process the same acquired
image. For example, a hand biometric that can be represented by its shape and texture
features.

4. Multi-instance systems: Combination of several instances of the same modality. For
example, the left and right index fingers can be used to confirm a person’s identity.
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5. Multi-biometric systems: The use of several different biometric traits, such as iris and
palmprint.

1.6.3 Multimodal Biometric Systems Fusion Levels

According to the literature, several modalities can be combined to improve the accuracy
of biometric systems. As illustrated in figure 1.1, the fusion strategy can be used at four
different levels: sensor level, feature level, matching score level, and decision level [10].

1. Sensor-level Fusion In the field of image processing, this approach is known as image
fusion. This type of fusion is rarely employed because it requires homogenous data.
Therefore, sensor-level fusion may be achieved by employing multiple compatible cap-
tures of instances generated by the same biometric trait, or multiple instances of the
same biometric trait detected by a single sensor. But it is not feasible if the data in-
stances are incompatible.

2. Feature-level Fusion: After the feature vectors are extracted separately from the modals,
they get fused to form a single feature vector. The goal of this type of fusion is to get ro-
bust features if the data are homogeneous (made from the same modality and extracted
using the same method) or more information if the data are heterogeneous (made from
different modalities or extracted using different methods).

3. Score-level Fusion: This is the most frequently utilized sort of fusion since it can be
applied to all types of systems. This method merges the resultant scores provided by
the different systems to get a single matching score.

4. Decision-level Fusion: when each system produces a binary result in the form of
YES or NO and the decision system makes a final decision based on a collection of
those results, This is referred to as “Decision-level Fusion”. The most commonly used
strategy is majority voting, which generates the final decision based on the number of
votes provided by each system.

1.7 Biometric Systems Evaluation

The performance evaluation of a biometric system is a critical phase in developing a bio-
metric verification/identification system. This section examines the various performance
data and charts used in exhibiting and discussing testing strategies for a biometric system.
As previously mentioned, biometric applications are classified into two types, which are
verification and identification. It is critical to distinguish between them here since they
will influence the sort of performance evaluation utilized. [9].
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Figure 1.12: Fusion levels in multimodal biometric systems.

1.7.1 Error Rate Metrics

In the context of biometric system design and assessment, various metrics are employed.
Some are used in the verification application, while others are used in the identification
application (open-set / closed-set). The most commonly used metrics are listed below [9].

1. False Acceptance Rate (FAR): It is the probability of a biometric system wrongly ap-
proving unauthorized individuals.

FAR =
number of people is falsely accepted (FA)

the total numberof the impostor
(1.3)

2. False Rejection Rate (FRR): It is the probability of a biometric system incorrectly
denying access to an authorized individual.

FRR =
number of people is falsely rejected (FR)

the total number of genuine user
(1.4)

3. Equal Error Rate (EER): The point when the FAR is equal to the FRR. The theoretical
distribution of probability ratios of genuine users and impostors is shown in figure 1.13.

4. Genuine Accept Rate (GAR): It indicates the percentage of genuine individuals whom
the system has approved. The formula is as follows:

GAR(%) = 100− FRR (%) (1.5)

5. Rank One Recognition (ROR): The percentage of individuals who are recognized by a
biometric system based on a rank variable known as ROR. The ROR rate is determined
when rank is equal to one.
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Figure 1.13: Score distributions for genuine users and imposter users [9].

6. Rank of Perfect Recognition (RPR): This rate is defined as the rank in which the
identification rate achieves 100% accuracy, or at least attempts to. When RPR rises, the
corresponding identification rate falls, implying a lower level of security.

It should be noted that the previously mentioned performance assessment metrics may
be utilized for both biometric functionalities (identification/verification). The FAR and FRR
are commonly employed in verification and open-set identification modes. For the closed-
set, the ROR and RPR metrics are often used [9].

1.7.2 Performance Curves

Using specific curves, the performance of a biometric system for different parameters
is graphically represented. The logarithmic scale is sometimes used to make graphs more
accessible and understandable, especially when comparing biometric systems with similar
data. These curves are [9]:

1. Receiver operating Characteristic curve (ROC): It is a common way for representing
the technical performance of a biometric system in a specific application (usually in
verification and open-set tasks). The ROC curve is a graph that shows the relationship
between FAR and FRR (alternatively GAR against FAR).figure1.14 is an illustration of
the ROC curve.

2. Cumulativematch characteristic curve (CMC): It is a graphical representation used
to evaluate the performance of a closed-set biometric identification system. The identi-
fication rate is plotted against the rank on a CMC curve. figure 1.15 shows an example
of this curve.
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Figure 1.14: Receiver Operating Characteristic (ROC): (a) GAR against FAR when the
decision threshold varies, (b) FRR Variation according to the FAR when the decision

threshold varies [9]

Figure 1.15: Cumulative match characteristic curve (CMC) [9]



Chapter 1 – Biometric Technology’s General Concepts 17

1.8 Conclusion

This chapter was a well-rounded introduction to biometric technology. Within it, we
provided many definitions and numerous concepts. Moreover, we provided some biomet-
ric techniques and the structure of a biometric system. In addition, we discussed unimodal-
ity, multimodality, and fusion levels and how these concepts contribute to a more desirable
result. Finally, we concluded this chapter by going over the evaluation of a biometric sys-
tem and how it helps us decide if a biometric needs enhancement and how urgent that
enhancement is.
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2.1 Introduction

Building a biometric identification system requires the most optimal methods and tech-
niques to be performed in perfect order to grant the most accurate results. There are vari-
ous techniques and methods that can perform various tasks in each approach of biometric
identification systems. The choice of those variables can affect the accuracy of the system
to a high degree. Therefore, we must be meticulous in our choices to ensure a favorable
outcome.

2.1.1 Deep Learning and Machine Learning

Learning is the process of the acquisition and accumulation of knowledge or skills
through study, experience, or being taught. Humans learn countless concepts, solely
to perform various tasks independently. We can say that machines have independently
learned when they possess the ability to modify the structure, program, or data according
to a pre-defined input. Now that an idea of what learning is for machines is established,
we can define both machine learning and deep learning as modern techniques of image
processing and data analysis, with great potential, which greatly assisted the field in grow-
ing incredibly popular among the IT community due to the doors they unlocked through
their capabilities of classification and detection. Yet, deep learning is different to machine
learning because it is a specialized subset that is a sophisticated and mathematically com-
plex evolution of machine learning [15]. For example, in an image classification task, deep
learning can select the best feature among all the features you offer. But traditional ma-
chine learning techniques don’t have this capability.

Figure 2.1: Difference between Machine learning and deep learning.
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2.2 Artificial Neural Networks (ANN)

2.2.1 Artificial and Biological Neural Networks

The introduction of the concept of an ANN was first established through the paper un-
der the name “A Logical Calculus of Ideas Immanent in Nervous Activity,” written by the
neurophysiologist Warren McCulloch and the mathematician Walter Pitts as early as 1943.
McCulloch and Pitts demonstrate a computational model of how biological neurons enable
more evolved species to perform tasks with high complexity. This was the first architec-
ture for an ANN [16].

Biologically, the building stone of a nervous system is the neuron. Which is a cell
composed of a cell body housing the nucleus and other complex components, one very
long extension called the axon, many branching extensions called dendrites which serve
as inputs receiving information from other neurons, and the terminals which serves as
outputs giving the information to other neurons. The information traverses the neuron
from the dendrites to the cell body to the terminals, using chemical electrolytes through
a phenomenon known as action potential (as evident in figure 2.2) [16].

Figure 2.2: Structure of a biological neuron.

Computer engineers admired this magnificent product of nature, and the summit was
to produce a system that mimics the functions of the human brain. Hence the birth of
artificial neural networks (ANN).

ANNs are composed of neurons. The neurons have inputs that can be either the input
data of the neural network or the output of the previous neurons, and neurons also have
outputs that can be either the inputs of the following neurons or a portion of the net-
work’s output. Neurons have weighted connections to other neurons, which means that
the connections have weights that resemble the relative importance of the input. Initially,
the values of the weights are established randomly. After that, these values get adjusted
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through the training process [17].

2.3 Convolutional Neural Networks (CNN)

A Convolutional Neural Network (CNN) is a special type of deep learning architecture
derived from animals’ visual systems. A CNN’s generalizing ability is significantly more
efficient than other architectures. It possesses the ability to identify highly abstracted fea-
tures of objects and identify them more efficiently, which makes it very powerful in image
processing. However, it is effective in other fields, such as voice and natural language
processing [18].

Since the 1980s, convolutional neural networks (CNNs) have been employed in image
recognition, inspired by research into the visual cortex of the brain. CNNs have achieved
phenomenal performance on several challenging visual tasks in recent years due to in-
creases in computational power and the quantity of accessible training data, which was a
progress-preventing factor for a long time. Examples of the employment of CNNs in mod-
ern technologies are self-driving vehicles, automatic video categorization systems, and
others [16].

2.3.1 Types of Layers in a CNN

1. Convolutional Layers (CONV layers): A CONV layer contains a set of convolutional
filters. A filter (or a kernel) is a matrix of numerical values. Each value is referred to
as the “weight of the filter.” As in an ANN, the weights of filters are assigned random
numbers at the beginning of the training phase. After that, the weights will be tuned
and adjusted with each training cycle to ensure better feature detection [18].

As it is evident in figure 2.6, the bright pixels on the results are the edges that the
filter has detected. Also, we notice that different filters detect different types of edges,
as the first filter detected the top edges, the second filter detected the left-side edges,
the third filter detected the bottom edges, and lastly, the fourth filter detected the edges
on the right.

2. The Rectified Linear Units (ReLU): The ReLUs are considered activation functions.
They follow CONV layers to generate non-linearity in the network. The ReLu helps
the network achieve decision functions and reduce overfitting [19].
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Figure 2.3: edge detection using a CNN on a hand written number 7.

3. Pooling Layers: The pooling layers, or down-sampling layers, are applied to reduce
the spatial size of feature maps in a manner that prioritizes saving the most relevant
information from the feature maps, subsequently reducing the number of parameters
and computation in a CNN and controlling overfitting. There are three operations in a
pooling layer’s filter, which are: maximum (Max), minimum (Min), and average (Avg).
The most commonly used operation in these operations is the Max operation. These
filters slide over the input data and apply the previously mentioned operations [19].

4. Fully Connected Layers (FC): As in ordinary Neural Networks, neuron in an FC layer
have connections to all neurons in the previous layers. And that is where we distin-
guish between FC and CONV layers, since CONV layers’ neurons are only connected
in a local region [19].

2.4 ProposedHyperspectral Palmprint Identification Sys-
tem

To create a robust and reliable biometric system that performs identification on hy-
perspectral images of palmprints, we utilize multiple components or stages starting with
band selection to eliminate redundancy and noisy data from the hyperspectral images,
ultimately reducing the size of its extensive dimensional data. Band selection results in
selecting the most representative bands from which we extract their region of interest.
After that, we perform feature extraction, employing CNN models. This is known as “off-
the-shelf Pre-trained Models as Feature Extractors”, which is one of the transfer learning
strategies. Following that, we use a DRB classifier to obtain the scores. At this stage, we
can either use a unimodal system by using each band separately or a multimodal system
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where we fuse the scores (score-level fusion) we obtain for more accurate results. All com-
ponents used to compose this system are listed in the few following titles.

Figure 2.4: Proposed hyperspectral palmprint identification system.

2.4.1 Hyperspectral Image (HSI)

A hyperspectral image is a data cube that contains hundreds of 2-dimensional images.
Conveying an abundance of information that is unique and undetectable by the usual RGB
images or even multispectral imaging [20]. Both multispectral and hyperspectral imaging
capture objects in a series of spectral windows. Both of them are efficient methods for
collecting a multitude of spectra. Where we draw the distinction between them is that hy-
perspectral imaging consists of substantially more finely divided spectral channels than
multispectral imaging [21].

Figure 2.5: Hyperspectral Image Data Cube .

2.4.2 Region of Interest (ROI) Extraction

The images of the same palmprint obtained at various times will have different degrees
of rotation and translation, and also, the size of the palmprint might differ, which makes it
necessary that before we proceed with feature extraction and recognition of palmprints,
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we must extract the effective palmprint’s region of interest that contains the main defini-
tive features. Region of interest extraction is a critical stage that facilitates image align-
ment, enhances the efficiency of feature matching, and finally has a beneficial impact on
recognition results [22].

Figure 2.6: palmprint ROI.
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2.4.3 Feature Extraction

Feature extraction is a crucial task in any pattern recognition application. The chosen
feature extraction method determines the quality of the system’s performance due to its
selection of the most distinctive and discriminant features. In other words, the job of a
feature extraction module is to extract only the distinctive features out of the raw data,
forming a new representation that is unique and irreplicable [9]. One of the ways we can
perform feature extraction is through transfer learning.

2.4.4 Transfer Learning

Figure 2.7: Transfer learning-achieving fast training times with limited dataset

Transfer learning is the process of training a network to perform a task (source task)
in a certain domain (source domain) using a large database. And then use the same net-
work to perform another task (target task) in a similar domain (target domain) using less
training data [23]. Humans’ capability to utilize knowledge learned in one domain across
many other domains was the inspiration for transfer learning. For instance, employers re-
quire their applicants to have a certain amount of experience, owing to the fact that their
experience, although gained on a different task, is still useful in their new job [24].

2.4.5 Transfer Learning Advantages

Transfer learning improves performance in many ways, of which we mention three
common ones, starting with enhancing the beginning performance of the transfer learn-
ing’s target task in comparison to an ignorant counterpart’s performance. In addition, it
substantially reduces the time the network takes to learn the target task using transferred
knowledge. Finally, improve the final performance level achieved in the target task [25].
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Figure 2.8: Comparing traditional deep learning and transfer learning [25]

2.4.6 Few Groundbreaking CNN Architectures

1. alexNet (2012): alexNet was created by Alex Krizhevsky, Ilya Sutskever, and Geoffery
E. Hinton. Wining them the 2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) competition with top 5 test error rate of 15.3% [26]. alexNet is a CNN with
eight layers. Five of them are CONV layers, and three are FC layers. As it utilizes ReLU
as an activation function.[27].

2. VGG(2014): VGG or the Visual Geometry Group was submitted by Simonyan et al.,
awarding him second place in the ILSVRC 2014. Its layers pattern is modular, and it
was made 19 layers deeper than AlexNet with the aim of demonstrating the relation
of depth with the representational capacity of the network. What made VGG simple
at that time was the fact that it decreased the size of the kernels from the usual 11x11
or 5x5 down to a stack of 3x3 kernels. This concept was proved through experiments
that concurrent placement of small-sized kernels leads to results that are indifferent to
those of bigger-sized kernels. In addition, the small size kernels provide the benefit of
decreasing the computational complexity by reducing the number of parameters. As a
consequence, a new trend of using smaller sized kernels arose widely [27].

3. GoogleNet (2014): GoogleNet won the ILSVRC 2014 competition. GoogleNet architec-
ture’s primary goal was to achieve great accuracy at a low computing cost (Szegedy
et al. 2015) [27]. It proposed the new concept of inception block in CNN, which uses
the split, transform, and merge ideas to incorporate multi-scale convolutional trans-
formations. GoogLeNet’s standard convolutional layer is replaced with small blocks
employing the same networking-network (NIN) architecture concept, which replaces
each layer with a micro-neural network. And also, GoogleNet used sparse connec-
tions. To get around the problem of redundant data, the purpose of GoogLeNet was to
increase the learning capacity and improve the efficiency of CNN parameters [28].

4. ResNet (2015): Residual Network, commonly referred to as ResNet. Developed by
Kaiming He and awarded the ILSVRC 2015. With the notion of residual learning in
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CNNs and devising an efficient approach for deep network training, ResNet revolution-
ized the CNN architectural industry. It offered a 152-layer deep CNN. It was 20 times
deeper than AlexNet and eight times deeper than VGG, with less computational com-
plexity. ResNet is an excellent example of how the performance of image identification
and localization tasks are greatly affected by representational depth and how crucial
it is for visual recognition tasks. We see that in the fact that ResNet with 50/101/152
layers performs better image classification tasks than ordinary architectures with 34
layers [27].

2.4.7 Deep Rule Based Classifier (DRB)

CNNs falls short in many aspects, such as the required database size, its non-comprehensible
internal structure, and its weakness while dealing with uncertainty. On the other hand,
traditional fuzzy rule-based (FRB) systems cover those shortcomings, yet they are unable
to achieve the high-level performance of deep learning classifiers. A combination of both
approaches created the DRB classifier. DRB is a multilayer rule-based classifier used in
image classification problems. It is data-driven and fully automatic. In short, this classi-
fier is a set of IF…THEN…FUZZY rules that are fully comprehensible and self-organized.
The classifier can updated constantly without fully retraining it, due to its non-parametric
nature. Although, its training process is non-iterative and efficient, it can achieve remark-
able classification accuracy [29]. The general architecture of a DRB classifier is presented
in the figure 2.9 below.

Figure 2.9: General architecture of DRB classifiers [29].
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2.5 Conclusion

The few previous titles aimed to summarize and review core concepts surrounding deep
learning algorithms, expand the readers’ horizons beyond basic notions, and give a more
in-depth overview. As a start, we provided a definition of deep learning and tied it to
its more familiar inspiration, the biological brain and its neurons. Following that, we
discussed ANNs and CNNs to a certain depth. After that, we explored an example of a
biometric system that performs hyperspectral palmprint identification. In this section,
we briefly mentioned a few stages that work together to ensure robustness and accuracy.
The first step was to choose the bands, then to get the ROI, then to get the features using
transfer learning, and finally to get the DRB.
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3.1 Introduction

This chapter is dedicated to displaying and discussing the experimental results obtained
through applying our identification system to a palmprint hyperspectral image database
using transfer learning algorithms. We acquired the previously mentioned results by uti-
lizing band selection. Moreover, we further improved the results by tinkering with and
implementing the concepts of unimodality and multimodality.

3.1.1 Palmprint Advantages

Palmprints cover the shortcomings of many other biometric modalities. For instance,
iris recognition has an expensive input device. Also, it is very intrusive to the extent
that people might fear its damaging effects on their eyes. Another example would be
fingerprint identification, because it requires high-resolution capturing devices. In con-
trast, low-resolution devices can capture palmprints without losing distinctive informa-
tion. Likewise, it is not intrusive at all [30]. Palmprint recognition is suitable for appli-
cations with a larger targeted demographic. With that and all its advantages, it gained
popularity among research academics [22].

Figure 3.1: Different features of palm.

3.2 Database Description

The database used to conduct this experiment contains 314,640 hyperspectral images
of palmprints collected from 190 people. Each person has 12 images of his left hand and
another 12 images of his right hand. The hyperspectral images contain 69 spectra with
wavelengths ranging from violet to near-infrared spectrum with a window between bands
of 10nm (420nm-430nm-…-1100nm). Our database is organized through ranking, from the
band with the shortest wavelength to the one with the longest. Therefore, 420nm is the
first band, 430nm is the second band, and so on until we reach 1100nm, which is the 69th
and last band.
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3.3 Our Proposed Identification System

We propose a system in which we use band selection in order to eliminate redundancy
and noisy data. The band selection method we used is OCF along with information entropy
to select the most discriminant bands. The selected bands are 610nm, 690nm, 850nm, and
940nm for the left palmprint. 610nm, 760nm, 850nm, and 940nm for the right palmprint.
After that stage, we utilized four transfer learning models as feature extractors, namely
GoogleNet, AlexNet, VGG16, and Resnet50. The networks resulted in feature vectors that
we fed into a DRB classifier to calculate the score vectors. After that, we fused our score
vectors in three manners: unimodal system, multimodal system with four bands fusion,
and multimodal system with fusion between all bands (four from the left and four from
the right palmprints).

3.4 Assessment Protocol

3.4.1 Databases Separation

As we mentioned earlier, the palmprint image database contains 190 persons. Each
person has 12 images of the left palmprint and 12 images of the right palmprint, which
were taken in 4 bands. We chose six images from 12 images for training [1 3 5 7 9 11] and
the other six [2 4 6 8 10 12] for the test (this applies to both the left and right palmprint
images).

3.4.2 Work Environment

Physical environment: Due to the amount of time that it takes to conduct our experi-
ments and their branching nature, we knew that in order to be efficient, we must use a
high-end machine. We acquired a workstation with high computational capabilities with
the following specifications:

• Computer: HP Z8 G4 Workstation.

• Memory (RAM): 96. 00 Go.

• Processor: Intel(R) Xeon(R) Silver 4108 CPU @ 1. 80 GHz 1. 80 GHz.

• System type: 64-bit operating system, processor x64.

Software environments: In recent years, with the advancements and achievements made
in deep learning, MathWorks Inc. paid much attention to this aspect throughout the de-
velopment of their renowned product, Matlab. It provides many features that help ease
the experiments. Hence, we were prompted to use it. The environmental conditions used
to conduct our experiment are:
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• The software tool used by our system is: Matlab R2021a.

• The operating system used to run our software is: windows 10.

3.5 Experiments and Results

Our experiments aimed to compare different approaches with the same goal in mind:
optimizing our identification system. We have experimented with various band selection
approaches. We then tested four feature extractors in a unimodal system and two multi-
modal systems. The results are displayed in the following pages.

The following section aims to test and evaluate the unimodal and multimodal systems.
To achieve that, we used our data set to train and test multiple transfer-learning archi-
tectures. In order to compare and contrast our different approaches and architectures, we
chose the following criteria:

In open set identification: The Equal Error Rate (EER), and the T0 (Threshold).

In closed set identification: The Rank one recognition(ROR), and the Rank of Perfect
Recognition (RPR).

3.5.1 Unimodal Systems Test Results

With the aim of assessing the performance of the Unimodal system by utilizing our data
set. We trained and tested our transfer-learning architecture with a single band at a time
and recorded the following results:
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Table 3.1: The unimodal identification system performance using the pre-trained
networks GooglNet, AlexNet, ResNet50, and VGG16 as features extractors.

Feature extractor Modality Band(nm) EER (%) T0 ROR (%) RPR

GoogleNet

Left

610 (20) 2.1863 0.8260 89.2982 98

690 (28) 0.5282 0.8230 97.7193 77

850 (44) 0.1056 0.8480 99.4737 99

940 (53) 0.0870 0.8470 99.5614 73

Right

610 (20) 4.3389 0.7860 86.1404 185

760 (35) 0.5263 0.8332 98.2456 65

850 (44) 0.2587 0.7758 99.2105 46

940 (53) 0.1764 0.8180 99.2105 111

AlexNet

Left

610 (20) 1.9368 0.7390 93.8596 126

690 (28) 0.7008 0.7600 97.5439 156

850 (44) 0.0880 0.7270 99.9123 57

940 (53) 0.0880 0.7400 99.7368 54

Right

610 (20) 3.2537 0.7420 90.4386 138

760 (35) 0.2634 0.7812 99.1228 111

850 (44) 0.0097 0.8530 99.9123 6

940 (53) 0.0810 0.8140 99.8246 6

ResNet50

Left

610 (20) 1.3174 0.6470 94.9123 118

690 (28) 0.0880 0.7937 99.5614 25

850 (44) 0.0880 0.5559 99.8246 33

940 (53) 0.0782 0.5716 99.9123 45

Right

610 (20) 2.2127 0.6311 93.2456 112

760 (35) 0.0135 0.7381 99.9123 16

850 (44) 0.0005 0.9843 99.8246 3

940 (53) 0 0.7947 100 1

VGG16

Left

610 (20) 1.1401 0.5845 95.3509 151

690 (28) 0 0.9812 100 1

850 (44) 0.0088 0.6006 99.8246 9

940 (53) 0.0125 0.5304 99.9123 19

Right

610 (20) 2.2798 0.5688 93.5088 118

760 (35) 0.0824 0.5918 99.4737 7

850 (44) 0.0139 0.6122 99.7368 4

940 (53) 0.0685 0.5907 99.7368 9
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Figure 3.2: Histograms of EER(%) for the left palmprint (the left histogram) and the right
palmprint (the right histogram).

Figure 3.3: Histograms of ROR(%) for the left palmprint (the left histogram) and the right
palmprint (the right histogram).

Figure 3.4: Histograms of GAR(%) for the left palmprint (the left histogram) and the right
palmprint (the right histogram).
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According to the results shown in table 3.1 and figures (fig.3.2 , fig.3.3 and fig.3.4) we
notice:

In open set identification: What stands out in the table 3.1 is that some feature extractors
gave perfect results in certain bands. As we see, the use of VGG16 as a feature extractor
in the left palmprint using the 690nm band results in EER of 0% and threshold of 0.9812.
And also, ResNet50 achieved a similar feat with the band 940nm, giving EER of 0% and
threshold of 0.7947. From the histograms, we notice that ResNet50 and VGG16 show
relatively low levels of EER compared to GoogleNet and AlexNet. As for the bands per-
formance, we see the band 610nm in each palmprint sample for all the feature extractors
gives the worst results in terms of EER. In contrast, the 850nm and 940nm bands gave the
best results in terms of EER.

In closed set identification: We observe from the table 3.1 that the previous observa-
tions on the open set still apply to the closed set. We notice that we achieve an ROR of
100% and RPR of 1, using both ResNet50 and VGG16 with the right hand 940nm band and
left hand 690nm band, respectively. Similar to the open set, the worst-performing band
was 610nm, while the rest of the bands gave an ROR above 99%. Finally, we noticed that
VGG16 achieved the lowest RPR levels among all feature extractors.

3.5.2 Multimodal Systems Test Results

This stage of experiments aims to improve the results given by the unimodal biometric
identification system by using information from various bands and instances (left and right
palmprint). Firstly, we present the performance of multimodal biometric systems based
on fusion at a score level between four bands in each palmprint instance, which can be
viewed in table 3.2 and the graphs below. After that, we demonstrate the performance
of the same biometric systems but this time we fuse all bands as shown in table 3.3 and
the following graphs. Also, it is worth mentioning that we experimented with four fusion
rules: the simple sum rule (sum), the weighted sum rule (wsum), the product rule (prod),
and the weighted product rule (wprod).
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Table 3.2: The multimodal identification system performance using Fusion at score level
between 4 bands.

Feature extractor Modality Method EER (%) T0 ROR (%) RPR

GoogleNet

Left Bands

Sum 0.0880 0.7680 99.9123 14

WSum 0.0880 0.7806 99.9123 61

Prod 0.0880 0.4049 99.9123 19

WProd 0.0880 0.7937 99.9123 64

Right Bands

Sum 0.0880 0.7974 99.5614 42

WSum 0.0880 0.7913 99.4737 53

Prod 0.0880 0.4561 99.5614 45

WProd 0.0880 0.7971 99.4737 55

AlexNet

Left Bands

Sum 0.0051 0.8342 99.8246 7

WSum 0.0880 0.6806 99.9123 39

Prod 0.0084 0.4606 99.8246 9

WProd 0.0880 0.6883 99.9123 40

Right Bands

Sum 0 0.9556 100 1

WSum 0.0042 0.8821 99.8246 5

Prod 0 0.9447 100 1

WProd 0.0042 0.8824 99.8246 5

ResNet50

Left Bands

Sum 0.0014 0.8327 99.9123 5

WSum 0.0014 0.7753 99.9123 8

Prod 0.0028 0.5001 99.9123 8

WProd 0.0037 0.7663 99.9123 14

Right Bands

Sum 0 0.8325 100 1

WSum 0 0.7947 100 1

Prod 0 0.4990 100 1

WProd 0 0.7947 100 1

VGG16

Left Bands

Sum 0.0005 0.9445 99.9123 2

WSum 0 0.9812 100 1

Prod 0.0009 0.7502 99.9123 3

WProd 0 0.9812 100 1

Right Bands

Sum 0.0056 0.6954 99.8246 3

WSum 0.0102 0.6258 99.7368 4

Prod 0.0051 0.2287 99.8246 3

WProd 0.0107 0.6256 99.7368 4
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Figure 3.5: Histograms of EER(%) using fusion between four bands for the left palmprint
(the left histogram) and the right palmprint (the right histogram).

Figure 3.6: Histograms of ROR(%) using fusion between four bands for the left palmprint
(the left histogram) and the right palmprint (the right histogram).

Figure 3.7: Histograms of GAR(%) using fusion between four bands for the left palmprint
(the left histogram) and the right palmprint (the right histogram).
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According to the results of table 3.2 and figures (fig.3.5 , fig.3.6 and fig.3.7), we notice
that multimodal systems outperform unimodal systems:

In open set identification: The table 3.2 supports the notion that using fusion methods
can reduce the EER significantly. We notice as we use GoogleNet that the EER is de-
creased to 0.088%. Moreover, we achieved EER of 0% in both cases of AlexNet on the right
palmprint and VGG 16 left palmprint bands fusion with sum and prod fusion methods. As
for ResNet50, we achieved 0% EER across all fusion methods in the right palmprint bands.

In closed set identification: The results reveal a very significant improvement of ROR
compared to the unimodal system. As it is apparent with the use GoogleNet, all the ROR
levels of both right and left palmprints are higher than 99%, which is a notable feat com-
pared to ROR of unimodal systems. Whereas the 610nm bands achieved the lowest ROR,
wherein both left and right palmprints, we recorded 89% and 86% respectively, which is
still an improvement of 10% and 13% compared to the unimodal system. As a final note,
we notice 100% achievement of ROR in cases of using AlexNet on right bands using sum
and prod fusion methods, ResNet50 on right bands in all fusion methods, and VGG16 on
left bands using wsum and wprod fusion methods.

Table 3.3: The multimodal identification system performance using Fusion at score level
between all 8 bands (left and right).

Feature extractor Method EER (%) T0 ROR (%) RPR

Sum 0 0.8099 100 1

WSum 0.0005 0.9739 99.9123 2

Prod 0 0.2649 100 1
GoogleNet

WProd 0 0.9792 100 1

Sum 0 0.7583 100 1

WSum 0.0005 0.9629 99.9123 2

Prod 0 0.1373 100 1
AlexNet

WProd 0.0005 0.9753 99.9123 2

Sum 0 0.5750 100 1

WSum 0 0.7947 100 1

Prod 0 0.0201 100 1
ResNet50

WProd 0 0.7947 100 1

Sum 0 0.6469 100 1

WSum 0 0.9812 100 1

Prod 0 0.0294 100 1
VGG16

WProd 0 0.9812 100 1
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Figure 3.8: Histograms of EER(%) (the left histogram) and ROR(%) (the right histogram)
using fusion between all bands.

Figure 3.9: histogram of GAR(%) using fusion between all bands.

According to the results of table 3.3 and figures (3.8 and 3.9), we notice that in mul-
timodal systems using fusion between all bands of both the left and the right palmprints
results in a noticeable improvement.

In open set identification: We derive from the table 3.3 the fact that all feature extrac-
tors in all fusion methods resulted in a null ERR. Excluding the two feature extractors,
AlexNet with the (wsum and wprod) fusion methods and GoogleNet with the (wsum fu-
sion method (in all three situations, the ERR recorded was equal to 0.0005%). Even though
the two exceptions did not perform like the others, they are still remarkably better than
the previous fusion between four bands.

In closed set identification: As per usual, the open set results were similar to the closed
set. Using all the fusion methods, we have achieved 100% ROR in the two feature ex-
tractors, ResNet50 and VGG16. But, for the AlexNet, the two fusion methods (Wsum
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and Wprod) both gave ROR of 99.9123%. And, with GoogleNet, we recorded a ROR of
99.9123% using the (wprod) fusion method.

3.6 Conclusion

In this chapter, we constructed a personal identification system based on hyperspectral
palmprint images in three approaches: one unimodal and two multimodal. We started
by reducing the volume of the HSIs in the dataset by performing band selection, which
highlighted the most representative and discriminative bands using OCF for the represen-
tation task, and with information entropy, which is a ranking method that is used for the
discrimination task. After acquiring the most representative bands, we used a well-known
transfer-learning architecture to perform feature extraction. Specifically, ResNet50, VGG16,
GoogleNet, and AlexNet. Therefore, according to the results, we concluded that the two
former architectures performed better than the two latter architectures. Besides that, for
the approaches we used, we affirmed that multimodal systems outperform unimodal sys-
tems. Furthermore, we can even achieve continual progress if we collect multiple biomet-
ric instances, as in the previously mentioned proposal of fusing right and left palmprints
with different specters.



General Conclusion

Through our advancements in technology, we are becoming more and more dependent
on data, data that is growing in size and becoming very crucial and impactful in our lives.
Consequently, managing that data has become a very daunting and sensitive task. And
with that, people become very concerned about their safety and very paranoid about po-
tential fraud and identity theft. Biometrics is a viable and secure option. Using a part of
an individual’s body to determine their identity is as secure as possible. Other than that,
acknowledging that some biometrics are more effective in some situations than others, we
decided on using palmprint identification. On the grounds that it suits tasks that need to
be processed quickly without interfering much with the user’s daily life due to its accept-
ability, it is also secure due to its acceptable distinctiveness.

We used a unimodal system and further improved the obtained results by using a mul-
timodal system. The system’s input was a hyperspectral image database, which we used
to train and test multiple transfer-learning architectures, which functioned as feature ex-
tractors that fed into a classifier. Our first goal was to reduce the immense amount of data
stored in each image of our database by using band selection to eliminate redundancy and
reduce calculation time. After that, we established the results for the unimodal system,
which yielded decent results, yet, there was room for improvement. We then used a mul-
timodal system in which we fused the score vectors of four bands in multiple methods,
which increased the accuracy of our system by a considerable amount. At this stage, our
results were near-perfect, prompting us to take the fusion one more step by fusing all
the bands from the left and right hands. This gave us our desired result of 100% accuracy
across the board, apart from a few methods, which gave a very small error of 0.0005%. This
result confirmed to us the claim that the palmprints and transfer learning algorithms are
capable of resolving a lot of issues with traditional identification methods.

As we approach the end of this journey, we look forth to what can be done in this field
and how to further improve. The options that can vary to produce different results that
can better suit different circumstances to cover the shortcomings of the approach we took.
An assumption can be made concerning improving our work by experimenting with more
transfer learning architectures such as DenseNet or NASNet, or by using other transfer
learning strategies such as model architecture extraction or partial fine-tuning.
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