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Abstract
This thesis is devoted to proving Dixon’s theorem:Almost all pairs of permutations in the
symmetric group of degree n generates either the symmetric group or its alternating subgroup.

Résumé
Le but de cette thése est d’exposer le théoréme de Dixon: Un couple aléatoire de permu-
tations dans le groupe symétrique de dégré n engendre soit le groupe symétrique ou bien le
groupe alterné de degré n, avec un probabilité qui tend vers 1 lorsque n crois.
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Introduction

The aim of this thesis is to give an (almost) self contained proof of Dixon’s theorem: Almost
every pair of permutations in the alternating group An generate An.

To make the last statement precise, let us define for an arbitrary finite group G the ingre-
dient:

P2(G) = |{(x, y) ∈ G2 | 〈x, y〉 = G}|
|G|2

.

Of course the latter represents the probability (the uniform one) that a randomly chosen pair
of elements of G generates it. Observe that P2(G) > 0 if and only if G can be generated by
two elements. The latter fact is well-known for G = An since the beginning of the theory of
substitutions. Dixon’s theorem can be restated now as: P2(An)→ 1 as n→∞. We shall prove
in fact that P2(An) ≥ 1− 2/(log log n)2.

A noteworthy is that the An, for n ≥ 5, form an infinite family of finite simple groups. It
was natural then that Dixon conjectures the following:

Conjecture. [J. Dixon, 1969] For every simple group G,

P2(G)→ 1, as |G| → ∞.

At that time, this was a bold conjecture since we didn’t know even all the finite simple
groups. The situation changed after the announcement by D. Gorenstein that the classification
of finite simple groups (CFSG) is complete (∼ 1980). Roughly speaking, the latter asserts that
every (non-abelian) simple group belongs to one of the following families:

• The alternating groups An for n ≥ 5.

• The groups of Lie type. These are divided into two classes: the classical (PSLn(q),
PSp2n(q), etc), and exceptional (e.g. G2(q), F4(q), and their twisted forms).

• 26 sporadic groups (the largest among them is called the Monster).

Dixon’s conjecture was confirmed later (1990) by Kantor and Lubotzky for the classical groups,
and by Liebeck and Shalev for the remaining cases (the exceptional groups) in 1995. About the
proof, note that in any finite group G, a pair (x, y) does not generate G if, and only if, there
exists a maximal subgroup M of G which contains x and y. It follows that

1− P2(G) ≤
∑
M

|M |2

|G|2
,
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where M runs over the maximal subgroups of G. Now, if one defines

ζG(s) =
∑
M

|G : M |−s ( for s ∈ R)

then it is enough to show that ζG(2)→ 0 as |G| → ∞ (G simple) to settle Dixon’s conjecture.
The CFSG gives enormous information about the maximal subgroups of G, and so about the
behavior of ζG(2), which allows us to complete the proof (although, checking these needs clever
ideas to deal with each family).

For the proof of Dixon’s theorem, one just needs elementary results (avoiding the CFSG),
although they are complicated and difficult to follow in general. A key ingredient here is the
classic result of C. Jordan on primitive permutation groups, namely, if a primitive (permutation)
group contain a p-cycle, for some prime p ≤ n−3, then this group is An or Sn. The basic results
on permutation groups, and a proof of Jordan’s theorem will be given in the first chapter. The
second chapter is of combinatorial nature. Statistical results on permutations, mainly due to
Erdos and Turan, are needed to complete the proof.
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Chapter 1

Permutation groups

Throughout, Ω denotes a finite set, the cardinality of which will be denoted by n.

1.1 The symmetric group
Definition 1.1.1. A permutation of Ω is a bijective map from Ω to itself. The set SΩ of these
permutations form a group under the usual composition of maps which we call the symmetric
group on Ω. A permutation group on Ω means a subgroup of SΩ.

The symmetric group on Ω = {1, . . . , n} will be denoted by Sn.
For u ∈ SΩ, and α ∈ Ω, we write αu for the image of α under u. Sometimes, it is convenient

to use the notation
u =

(
α1 α2 . . . αn
αu1 αu2 . . . αun

)
.

For instance, u =
(

1 2 3 4
2 4 1 3

)
denotes the permutation in S4 such that 1u = 2, 2u = 4,

3u = 1, and 4u = 3. If one considers moreover v =
(

1 2 3 4
4 2 3 1

)
, then

uv =
(

1 2 3 4
3 4 1 2

)
.

Note here that we are using the opposite law of the usual composition ’◦’, which is more
convenient to the exponential notation αu.

The notation (α1 α2 . . . αr) refers to the permutation that sends αi to αi+1 for i < t, sends
αr to α1, and fixes the remaining elements of Ω. A permutation of this form is called a cycle
of length r, or an r-cycle. A 2-cycle is also called a transposition.

Recall that the order of a permutation u ∈ SΩ is the smallest positive integer d such that
ud = 1, that is to say αud = α for all α ∈ Ω. It is readily seen that the order of r-cycle is equal
to r.

For u ∈ SΩ, we write fix(σ) for the set of elements of Ω fixed by u, that is

fix(u) = {α ∈ Ω | αu = α}.
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1.1. THE SYMMETRIC GROUP

We write supp(u) for Ω \ fix(u), and call it the support of u. Two permutations u and v in SΩ
are said to be disjoint if their supports are, that is to say supp(σ) ∩ supp(σ′) = ∅.

The following result is straightforward.

Lemma 1.1.1. Let u, u′ ∈ SΩ with supports S and S ′ respectively. If u and u′ are disjoint,
then

(i) αuu′ = αu
′u = αu, for α ∈ S;

(ii) αuu′ = αu
′u = αu

′, for α ∈ S ′;

(iii) αuu′ = αu
′u = α α /∈ S ∪ S ′.

In particular, u and u′ commute.

More generally, if (ui)i∈I is a finite family of disjoint permutations in SΩ, then one can form
the permutation u = ∏

i∈I ui (u is well defined since the σi ’s commute, that is the order in
which the u’s are taken is unimportant). If we denote by Si the support of σi, the preceding
lemma shows at once that αu = αui for α ∈ Si, and αu = α for α /∈ ⋃i∈I Si.

Let us define on Ω the relation:

α ∼ β ⇐⇒ there exists m ∈ N such that αum = β.

The latter is readily seen to be an equivalence relation on Ω. Clearly, the orbit of α ∈ Ω
under this relation is

Oα = {α, αu, αu2
, . . .}.

Plainly, the set of all such orbits Oα1 , . . .Oαs form a partition of Ω. Moreover, if for every
i = 1, . . . , s, we denote by ui the permutation defined by:

αui = αu for α ∈ Oαi
, and αui = α otherwise,

then it follows from the preceding paragraph that u = ∏
i∈I ui; and obviously each ui is a cycle

of length |Oαi
|. This proves the following:

Theorem 1.1.1. Every permutation can be uniquely written as a product of disjoint cycles.

Using the fact that disjoint cycles commute, it follows that:

Corollary 1.1.1. If r1, . . . , rs are the sizes of the orbits of a permutation u ∈ Ω, then the order
of u is the least common multiple of the ri’s.

Next, note that every cycle c = (α1 α2 . . . αr) can be expressed as:

c = (α1 α2)(α2 α3) · (αs−1 αs).

Combining that with the above theorem yields the following.

Corollary 1.1.2. Every permutation can be written as a product of tranpositions (not neces-
sarily disjoint).
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1.2. EVEN PERMUTATIONS

1.2 Even permutations
Definition 1.2.1. Fix an order α1, α2, . . . , αn on Ω. Let u ∈ SΩ, and for each index i, let ki
be the integer such that αui = αki

. The signature ε(u) of u is defined by:

ε(u) =
∏
i<j

kj − ki
j − i

.

Plainly, ε(u) = ±1. It is readily seen that ε : SΩ → {1,−1} is a group homomorphism.

Definition 1.2.2. The alternating group AΩ is the kernel of the signature map ε : SΩ →
{1,−1}.

Obviously, the signature of a transposition is equal to −1; therefore, if we write u ∈ AΩ as
a product of transpositions u = t1 · · · ts, then ε(u) = (−1)s = 1. Thus, for any expression of u
as a product of transpositions, the number of the latter is even. For this reason, the elements
of AΩ are called the even permutations.

Note also that the signature of an r-cycle is equal to (−1)r−1. In particular, all the 3-cycles
are even.

Theorem 1.2.1. The alternating group AΩ is generated by 3-transpositions.

To see that we need only to prove that the product of two transpositions lies in the group
generated by 3-cycles. In fact, we have:

(αβ)(β γ) = (αβ γ) (for α 6= γ);

and for disjoint transpositions (αβ) and (γ δ), we have:

(αβ)(γ δ) = a product of two 3-cycles,

which completes the proof.

1.3 Transitivity
Let G be a permutation group on Ω. We say that G is transitive if for all α, β ∈ Ω, there exists
g ∈ G such that αg = β.

Recall that the stabilizer Gα of an element α ∈ Ω in G is defined by:

Gα = {g ∈ G | αg = α}.

Note that there is a natural bijective map from the orbit Oα of α onto the set G/Gα of right
cosets of Gα given by:

ḡ 7→ αg.

It follows in particular that |Oα| = |G : Gα|.
If G is transitive, then Oα = Ω. The map G/Gα → Ω defined above gives in fact an

isomorphism of G-sets, where G acts on G/Gα in the obvious way: x̄g = xg, for all x̄ ∈ G/Gα

and g ∈ G.
More generally, we can speak about highly transitive groups
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1.4. PRIMITIVE PERMUTATION GROUPS

Definition 1.3.1. Let G be a permutation group on Ω, and k a non-negative integer. We say
that G is k-transitive if for all α1, . . . , αk and β1, . . . , βk in Ω, with αi 6= αj and βi 6= βj for
i 6= j, there exists g ∈ G such that αgi = βi for all i = 1, . . . , k.

For instance, G = SΩ is n-transitive, and G = AΩ is (n − 2)-transitive. Note that G is
transitive if and only if it is 1-transitive.

Note that one has a natural action of G on the set

Ω(k) =
{

(α1, ..., αk) ∈ Ωk | αi 6= αj for i 6= j
}
,

with (α1, ..., αk)g = (αg1, ..., αgk), for g ∈ G and (α1, ..., αk) ∈ Ω(k).
Plainly, saying that G is k-transitive on Ω amounts to saying that the action of G on Ω(k)

is transitive.
As

|Ω(k)| = n(n− 1)......(n− k + 1) = n!
(n− k)! ,

it follows that if G is k-transitive, the order of G is divisible by n!
(n−k)! . Indeed, we have

|G : Gα| = |Ω(k)|, for α = (α0, ..., αk) ∈ Ω(k).
The following result is immediate from the definition.

Lemma 1.3.1. Let G be a transitive group on Ω, and α ∈ Ω. For G to be k-transitive (k ≥ 2),
it is necessary and sufficient that the stabilizer Gα be (k − 1)-transitive on G \ {α}.

1.4 Primitive permutation groups
For a subset Ψ ⊆ Ω, we write Ψg for the set of the element of the form αg, where α runs over
Ψ.

Definition 1.4.1. A subset Ψ ⊆ Ω is called a block of G if for every g ∈ G, we have either
Ψg=Ψ or Ψg ∩Ψ = φ.

For instance, Ψ = Ω and Ψ = {α} are blocks of G (for every α ∈ Ω). The previous subsets
are called the trivial blocks of G.

Definition 1.4.2. We say that G is primitive, if it is transitive and all its blocks are trivial.

Note that if Ψ is a block of G, then the set {Ψ,Ω − Ψ} is a partition of Ω. Conversely, if
we have a partition {P1, . . . , Ps} preserved by G, that is, P g

i = Pi for every index i and every
g ∈ G, then every Pi is a block of G. It follows then that G (supposed transitive) is primitive
if G preserves only the trivial partitions {Ω} and {{α} | α ∈ Ω}.

The following is a criterion to recognize the primitivity of G internally.

Proposition 1.4.1. Let α ∈ Ω, and assume that G is transitive on Ω. For G to be primitive,
it is necessary and sufficient that the stabilizer Gα be a maximal subgroup of G.
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1.4. PRIMITIVE PERMUTATION GROUPS

Proof. Suppose G is primitive. If Gα is not maximal in G, then there exists H ≤ G such that
Gα < H < G. Set

Ψ = {αh | h ∈ H}.

Let g ∈ G so that Ψ ∩ Ψg 6= φ; then there exist h, h′ ∈ H such that αh = αh
′g. It follows that

h
′
gh−1 ∈ Gα ≤ H, so g ∈ H, in particular Ψg = Ψ, which proves that Ψ is a block of G.
Now, as Gα < H, every element H \Gα satisfies αh 6= α, so Ψ 6= {α} (as αh ∈ Ψ). Also, for

g ∈ G \ H, we have Ψg 6= Ψ (otherwise g would lie in H as we have shown above); therefore
Ψ 6= Ω. This shows that Ψ is a non-trivial block of G, a contradiction (G is primitive).

Conversely, assume Gα is maximal in G. If G has a non-trivial block Ψ, define

H = {g ∈ G | Ψg = Ψ},

so, H < G, and H is proper in G since Ψ 6= Ω (here we are using the fact that G is transitive
on Ω). Pick an element α ∈ Ψ. Obviously, Gα ≤ H, and if Gα = H then Ψ = {α} which
contradicts the fact that Ψ is not trivial. It follows that Gα < H, contradicting the assumption
Gα is maximal in G. The result follows.

The following result will be useful later. Below, for Π ⊆ Ω, GΠ denotes the intersection⋂
α∈ΠGα.

Lemma 1.4.1. Assume G is k-transitive on Ω, and let Π ⊆ Ω with |Π| = k. Suppose U ≤ GΠ
is conjugate in GΠ to every V ≤ GΠ which is conjugate to U in G (that is if U = V g for some
g ∈ G, then U = V h for some h ∈ GΠ). Then NG(U) is k-transitive on the set

Ω′ = {α ∈ Ω | αu = α for all u ∈ U}.

Proof. Set N = NG(U). For g ∈ N , α ∈ Ω and u ∈ U , we have (αg)u = α(gu) = αgug
−1g = αg (

hence Notics on Ω′ , Now let α1, ..., αk ∈ Ω′ with αi 6= αj for i 6= j.

Assume G is a permutation group on Ω and ∆ ⊆ Ω, with |∆| > 1. We say that ∆ is a
Jordan set if there exists a subgroup of G which fixes Ω�∆ element-wise and acts transitively
on ∆.

For instance, if G is k-transitive, then every ∆ which |G|
|∆| < k is a Jordan set.

Theorem 1.4.1. If G is primitive and has a Jordan set, then G is 2-transitive.
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1.4. PRIMITIVE PERMUTATION GROUPS

Proof. First, observe that for every ∆ ⊆ Ω such that 1 < |∆| < |Ω|, and for all α, β ∈ Ω with
α 6= β, there exists g ∈ G such that α ∈ ∆g and β /∈ ∆g. Indeed, the relation:

α ∼ β ⇐⇒ α, β ∈ ∆g for all g ∈ G,

is an equivalence relation for hich every class form a block of G. As G is primitive, it follows
that each class contains exactly one element, and our claim follows.

Now, set |Ω| = n, and choose a maximal Jordan set ∆ ⊆ G, and write k = |∆|. By the
preceding observation we have Ω \ {α} = ∪∆g,more over as ∆ ho turce of these sets. Cover
Ω, so they form a partition of Ω/{α}. Thus k divides n− 1(n− 1 = |Ω/{α}|).

As G is transitive,every α is outside exactly n/k − 1 translates of ∆ (n/k−1 is the number
of orbits in Ω/{α}). It fellows that the number of the translates ∆g of ∆ is equal to n(n−1)

k(n−k) .
Now, since k divides n− 1, k as well as n− k are coprime to n.

So k(n− k)divides n− 1 (Euclide-Gauss). then k = 1 or k = n− 1 The case k = 1 contradicts
the definition of Jordan set. Hence, k = n− 1. So G is 2- transitive.

The following result is crucial in proving Dixon’s theorem.

Theorem 1.4.2 (Jordan). If a primitive subgroup G ≤ SΩ contains a p-cycle, with p prime
and p ≤ n− 3, then G contains AΩ (in other words, G is either AΩ or SΩ).
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Chapter 2

Generation of the symmetric and the
alternating groups

2.1 The main result
Netto conjectured and Dixon (1969) proved that Almost every pair of permutations in the
symmetric group Sn generate either Sn or the alternating group An.

To make the last statement precise, let us define for an arbitrary finite group G the ingre-
dient:

P2(G) = |{(x, y) ∈ G2 | 〈x, y〉 = G}|
|G|2

.

Of course, the latter represents the probability (the uniform one) that a randomly chosen pair
of elements of G generates G.

Observe that P2(G) > 0 if, and only if, G can be generated by two elements. The latter fact
is well-known for G = An since the beginning of the theory of substitutions. Dixon’s theorem
can be restated now as:

Theorem 2.1.1. We have P2(An)→ 1 and P2(Sn)→ 3
4 , as n→∞.

The group generated by a pair (x, y) is in An if and only if both x and y are even permuta-
tions. Since half of the permutation in Sn are odd (as An has index 2 in Sn), the above theorem
follows from the more refined result:

Theorem 2.1.2. The proportion of ordered pairs (x, y), with x, y ∈ Sn, which generate either
An or Sn is greater than 1− 2/(log log n)2 for all sufficiently large n.

2.2 Some remarks
Let G be a finite group, and n a positive integer. Define

Pn(G) = |{(x1, . . . , xn) ∈ Gn | 〈x1, . . . , xn〉 = G}|
|G|n

.

Lemma 2.2.1. For any finite group G, we have:

Pn(G) ≤
∑
M

|G : M |−n,
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2.3. GENERATING TRANSITIVE AND PRIMITIVE GROUPS

where M runs over the set of maximal subgroups of G.

Proof. First observe that some elements g1g2, ..., gn ∈ G don’t generate G if, and only if, one
has

〈g1, g2, ..., gn〉 < G,

or equivalently, if (and only if) there exists a maximal subgroup M of G such that that

〈g1, g2, ..., gn〉 ≤M,

that is (g1, g2, ..., gn) ∈Mn.
It follows that {(g1, g2, ..., gn) ∈ Gn |< g1, g2, ..., gn >6= G} is contained in ∪MMn. Hence

1− P2(G) ≤ | ∪M Mn|
|Gn|

≤
∑
M

|Mn|
|Gn|

=
∑
M

|G : M |−n,

as claimed.

It is useful to define the function

ζG(s) =
∑
M

|G : M |−s,

withM runs over the maximal subgroups of G. The latter is known as the Witten Zeta function
(in honor of the physician Edouard Witten who introduced similar functions when dealing with
Lie groups)

To prove Dixon’s theorem, we have to show that ζAn(2)→ 0 as |G| → ∞.
Let Xn = {(x, y) ∈ S2

n | An ≤ 〈x, y〉}; in other words, Xn = {(x, y) ∈ S2
n/<x,y>=

An ou <x,y>= Sn}

that is Xn = X
′
n

⋃
X
′′
n

where X ′n = {(x, y) ∈ S2
n/<x,y>= An}

and X ′′n = {(x, y) ∈ S2
n/<x,y>= Sn}

2.3 Generating transitive and primitive groups
Let tn be the proportion of the (n!)2 pairs (x, y), x, y ∈ Sn which generate a transitive subgroup
of Sn, and let pn be the corresponding proportion which generate a primitive subgoup of Sn.
Obviously, tn and pn represent the probability that a random pair of elements in Sn will generate
a transitive subgroup and a primitive subgroup, respectively.

Theorem 2.3.1. We have
tn = 1− 1

n
+O(n−2)

as n→∞.
The same asymptotic estimate holds for the proportion of pairs which generate a primitive

subgroup roughly n− 1 times out of n.
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2.3. GENERATING TRANSITIVE AND PRIMITIVE GROUPS

Proof. Put Ω = {1, 2, ..., n} for each partition Ω = Ω1 ∪Ω2...∪Ωk of Ω into nutually disjoint
subsets ,the number of pairs (x, y)(x, y ∈ Sn) such that the group < x, y > generated has
precisely Ω1,Ω2...Ωk as its orbits is equal to πki=1(ni!)2tni

; where ni = |Ωi|(i = 1, 2, ...k)
Indeed we can choose the paire of restrictions (x/Ωi, y/Ωi) independently for different i and
subject only to the cendition that (x/Ωi, y/Ωi) should generate a transitive group Ωi.
Now it is well known that the number of ways of partitioning Ω such that there are ki classes
of order i(so∑i=1 niki = n) equals Vk1,k2,...,kn=n!/{πni=1(i!)2ti}k

i = n!∑πni=1(i!ti)ki /ki!
where both sums are over all n-tuples(k1, k2, ..., kn) for which each ki is in an integer ≥ 0and∑
iki = n

we get a formal power series identity:∑∞
n=0 n!Xn = π∞i=0exp(i!tiX i) = exp(∑∞n=0 i!tiX i)

Formal differentiation then gives ∑∞n=0 n!nXn−1 = ∑∞
n=1 i!itiX i−1∑∞

n=0 n!Xn

Hence by equating coefficients of Xn−1 we get n = 1
n!
∑∞
n=1 i!(n− 1)!iti = ∑n

n=1

(
n
i

)
iti

(i = 1, 2, ...)
Where

(
n
i

)
= n!

i!(n−i)! ,we can use (1) to calculate the values of tn recursively.The first few values
are:t1 = 1, t2 = 3

4 , t3 = 13
18 = 0.722..., t4 = 71

96 = 0.738...
We shall now use Eq(1) to prove the following lemma which gives the first half of the main
theorem

Lemma 2.3.1. tn = 1− 1
n

+O(n−2)as n→∞

Proof. Put rn = n(1− tn), and not that rn ≥ 0
because tn ≤ 1.We have to show that rn−1 = 0( 1

n
);from (1) we have rn = cn−

∑n−1
i=1

(
n
i

)
ri ...(2)

Where Cn = ∑n−1
i=1

(
n
i

)−1
i.Because

(
n
i

)−1
=
(
n
n−i

)−i
for all i

where Cn =
n−1∑
i=1

(ni )−1.Because(ni )−1 = (nn−i)−1

for all is
Cn = 1

2n
n−1∑
i=1

(ni )−1 = 1 + 2
n− 1 + 1

2n
n−3∑
i=3

(ni )−1 , forall n ≥ 6.

By the well known monotonicity property of the binomial cafficients,
(n3 ) ≤ (ni ) for 3 ≤ i ≤ n− 3
There fore the last sum in this expression for Cn is at most
1
2n(n3 )−1(n− 4) = 0(1

4)
Thus we conclude that
Cn = 1 + 0( 1

n
)as n −→∞

Finally, since ri ≥ 0 for all i, (2) shows that rn ≤ Cn.Therefore applying (2) again we get

rn = Cn −
n−1∑
i=1

(in)−10(1) = Cn + 2Cn
n

0(1) = 1 + 0( 1
n

).

as required.

Lemma 2.3.2. Let Tn = ⋃
q Cqn, where the union is over all primes q with (log n)2 ≤ q ≤ n−3.

Then the proportion Un of elements of Sn which lie in Tn is at least
1− 4

(3 log logn) for all sufficiently large n.
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2.3. GENERATING TRANSITIVE AND PRIMITIVE GROUPS

Proof. we need two results from the paper [1]of Erdos and Turan. Theorem VI of that paper
shows that for any integers ai ;with 1 ≤ a1 ≤ a2 ≤ ... ≤ ak ≤ n, the proportion of permutation
in Sn whose cycle de compositions contain no cycles of lengths a1, a2, ..or ak is at most
k∑
i=1

( 1
ai

)−1

Lemma 2.1.5 of that paper shows that the proportion of elements in Sn−q with order relatively
prime to q (for a given prime q) is Πi

qi−1
qi

where the product is over all i, 1 ≤ i ≤ n−q
q
.

Now elementary estimtes show that

Π qi−1
qi

= exp( logn−log q+0(1)
q

)

Therefore in our case the product is greater then exp( logn
q

) ≥ exp(− 1
logn) for all Sufficiently

large n.
A permutation is of order relatively prime to g if and only if all cycles in its cycle de composition
have lengths relatively prime to q Thus form the two results just- quoted and the definition of
Cnq we conclude that
Un ≥ (1− (∑q

1
q
)−1) exp(− 1

logn)
for all sufficiently large n.
Here q rums over all primes,(log n)2 ≤ q ≤ n− 3
on∑
q

1
q

= log log n+ 0(1)as n −→∞
where p runs over all primes, 1 ≤ p ≤ n. Thus ∑q

1
q

= log log(n− 3)− log log(log n)2 + 0(1) >
4
5 log log n.
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