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Abstract

In this study, we used Gaussian process regression (GPR) to predict the elastic moduli

and glass transition temperature of metallic glasses based on their atomic composition.

The results show that GPR is an effective method for predicting these properties, with high

accuracy and low error compared to experimental data. We also analyze the contributions

of individual elements to the properties of metallic glasses, providing insight into their

underlying physical mechanisms. This study demonstrates the potential of GPR for

predicting the properties of complex materials, and highlights the importance of understanding

the relationships between composition and properties in metallic glasses.

keywords: Glass, Gaussian process regression (GPR) , Young’s modulus (E) , glass

transition temperature (Tg) . Machine Learning .
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Résumé

Dans cette étude, nous avons utilisé la Régression par Processus Gaussien (RPG) pour

prédire les modules élastiques et la dilatation thermique coefficients des verres métalliques

en fonction de leur composition atomique. Les résultats montrent que GPR est une

méthode efficace pour prédire ces propriétés, avec une grande précision et une faible erreur

par rapport aux données expérimentales. Nous avons également analysé les contributions

des éléments individuels aux propriétés des verres métalliques, donnant un aperçu de

leurs mécanismes physiques. Cette étude démontre le potentiel du GPR pour prédire la

propriétés des matériaux complexes, et souligne l’importance de comprendre les relations

entre composition et propriétés dans les verres métalliques.

Mots-clés: Verre, régression du processus gaussien (GPR) , module de Young (E) ,

verre température de transition (Tg) . Apprentissage automatique
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General Introduction

1 Introduction

Glass is one of the important materials that are used in many daily applications, as it is

used in the manufacture of insulating glass for buildings, cars, electronic devices, medical

instruments, and many other applications. Glass has its own distinctive properties such

as its transparency, hardness, strength, and resistance to wear and corrosion.

The glass transition temperature and Young’s modulus are important information about

glass, as they reflect the mechanical properties of the material and are used in the design

of structures and devices that use glass. In order to obtain this information, various

methods are used, including the GPR Gauss regression method.

Using the GPR Gauss regression method to determine the Young’s modulus and glass

transition temperature is the latest, most accurate, rapid and efficient measurement

method, which can be used in many industrial and scientific applications. It is also

considered a safe and easy-to-use method, as it does not require any destructive interventions

in the material to be measured.

In addition, the use of the GPR Gauss regression method is characterized by the ability

to perform measurements in real time, allowing users to obtain the necessary data quickly

and with high accuracy. Thanks to these features, the GPR Gaussian Regression method

can be used in many industrial and scientific applications, such as the manufacture of

glass, plastics, metals, electronic materials, medical and others.

In general, GPR is used in the glass industry to determine the Young’s modulus and glass

transition temperature, as this information helps in glass design, quality inspection, and

corrosion and fracture resistance testing. By using the GPR gauss regression method,

industrialists and engineers can obtain the necessary data quickly and accurately, helping

them to make important decisions about the design of structures and devices that use

glass. Thus, the GPR gradient method is an important tool in the glass and other

12



materials industry, contributing to improving product quality and reducing costs and

production time.

2 Thesis scope

In this note, we have studied the effectiveness of the GPR (Gaussian regression method) in

measuring Young’s modulus and the glass transition temperature, using multiple analytical

and applied methods. This research aims to understand the capabilities of the GPR

Gaussian regression method in predicting Young’s modulus and glass transition temperature,

and to determine the accuracy and reliability of this method in measurement. This

study will be implemented by conducting practical experiments on different samples of

glass using the Gaussian regression method (GPR), and analyzing the data extracted

from these experiments using multiple analytical tools, including descriptive statistics,

statistical analysis, and quantitative analysis of the data. Different models of glass will

also be used in this study.This is to determine the extent to which different glass properties

affect the ability of the GPR Gaussian Regression method to measure Young’s modulus

and glass transition temperature.

In general, this research aims to improve our understanding of the GPR method and its

capabilities in measuring Young’s modulus and glass transition temperature, and to apply

these capabilities in many industrial and scientific applications. This research will also

help improve the quality of glass products, develop new device designs and structures that

use glass, and can contribute to improving efficiency and reducing costs in production and

design processes. Thus, the scope of this note includes an in-depth study of the capabilities

of the GPR Gauss regression method in predicting Young’s modulus and glass transition

temperature, and applying this method to improve our understanding of the properties

of glass and to develop its applications in industry and science.

13



3 Thesis structure

In addition to this general introduction, this thesis is organized as followed:

Chapter 1: We begin with a brief overview of glass and the glass transition temperature,

then we discuss the elastic coefficients and explain how to define them.

Chapter 2: In this chapter we will introduce a concept about machine learning and

mention some of its techniques and introduce the machine learning method GPR Gaussian

process regression that we used to predict Young’s modulus and glass transition temperature

from glasses combinations.

Chapter 3: We will present the results obtained from the technique used to predict

the properties of Young’s modulus and the glass transition temperature and we found a

relationship between them.

A general conclusion summarizing all of our findings is provided at the end of this

manuscript.

14



Chapter 1

Theory of elasticity

1 Introduction

In this chapter, we will introduce a short basic concepts about glass as well as briefly

address the theory of elasticity in glass and experimental methods for determining its

elastic coefficients.

2 The Glassy State

2.1 Definition of glass

Glass is annealed and amorphous without long-term arrangement although it is short-term.It

is characterized by the phenomenon of glass transitions, obtained by rapid cooling of a

supercooled liquid [1]. The glass state is characterized by the presence of a vitreous

transition and is a characteristic transformation observed when cooling, when moving

from a supercooled liquid phase to a glass phase or, conversely, when heating the glass to

a supercooled liquid [2].

2.2 The vitreous state

This case is characterized by the occurrence of the phenomenon of glass transitions, in

which the transition from the viscous liquid phase to the glass phase. When we rapidly

and continuously cool a viscous viscous liquid, It shrinks in volume with a decrease in

temperature until it becomes less than the melting temperature .the lower the temperature,

the higher the viscosity ratio and the liquid begins to solidify until it turns into a

crystal. By continuing the cooling process and decreasing the temperature, the volume

15



Figure 1.1: the glass transition phenomenon[4]

is stabilized, and then the temperature is called the glass transition temperature [3]. In

equilibrium, thermodynamically stable liquids (L) exist only above the melting point or

temperature of the liquid, Tm.They never crystallize. Supercooled liquids exist between

Tm and the glass transition temperature (Tg). They eventually crystallize after a certain

time. Glasses exist below the glass transition temperature, (Tg). They are thermodynamically

unstable and spontaneously relax toward the supercooled liquid state at any nonzero

temperature. Glass transition occurs at (Tg) (figure 1.1) [4].

3 Theory of elasticity

3.1 The characterization of elastic properties of solids

The mechanics of solids, regarded as continuous media, forms the content of the theory of

elasticity. The macroscopic behavior of a solid is described by a continuum field theory,

the theory of elasticity, which describes the way a solid deforms when external stresses

are applied . Under the action of applied stress, solid body exhibits shape and volume

changes to some extent, and every point in the solid body is in general displaced. Let

the position vector before the deformation be r and after the deformation has a value r′

with component xi. The displacement of this point due to deformation then given by the

displacement vector u = r − r
′
or ui = x

′
i − xi. If uij (x1, x2, x3) is the jth component of

the displacement at point (x1, x2, x3), the strain tensor for small deformations is [5].

16



uij =
1

2
(
∂ui

∂uj

+
∂uj

∂ui

) (1.1)

When a deformation happens, the body ceases to be in its original state of equilibrium,

and the forces, which are called internal stresses, therefore arise which tend to return the

body to its equilibrium state. If the deformation of the body is fairly small, it returns to

its original undeformed state when the external forces cease to act. Such deformations

are elastic. For large deformations, the removal of the external forces does not result in

the fully recovery of the deformation. Such deformations are plastic . There are different

types of moduli, where the type of modulus depends on the type of deformation that

the material is subjected to, such as elongation, bending, and others. All coefficients are

represented by finding the stress-strain ratio within the limits of elasticity [5].

Stress is a quantity that describes the magnitude of forces that cause deformation. Stress

is generally defined as force per unit area. And stress types of them [6].

• Tensile stress: Produced by a change in length , when forces pull on an object

and cause its elongation, like the stretching of an elastic band.

• Compressive stress: Affect body size, when forces cause a compression of an

object.

• Shear stress (tangential stress): It results in a change in shape, when the

forces of deformation affect the surface of the body.

the relation between strain and stress does not need to be linear. Only when stress is

sufficiently low is the deformation it causes in direct proportion to the stress value. The

proportionality constant in this relation is called the elastic modulus. In the linear limit

of low stress values, the general relation between stress and strain is

(Stress = (elastic modulus) × strain).

As we can see from dimensional analysis of this relation, the elastic modulus has the same

physical unit as stress because strain is dimensionless.

We can also see from Equation that when an object is characterized by a large value of

elastic modulus, the effect of stress is small. On the other hand, a small elastic modulus

means that stress produces large strain and noticeable deformation. For example, a stress

on a rubber band produces larger strain (deformation) than the same stress on a steel

17



band of the same dimensions because the elastic modulus for rubber is two orders of

magnitude smaller than the elastic modulus for steel.

The elastic modulus for tensile stress is called Young’s modulus; that for the bulk stress is

called the bulk modulus; and that for shear stress is called the shear modulus. Note that

the relation between stress and strain is an observed relation, measured in the laboratory

[6].

3.2 Elastic moduli

Glass is a flexible solid, which means that when subjected to mechanical stress, it reflects

completely.this theory is defined by the details to the response of materials to the stresses

applied to them,as it uses defferent coefficients known as elastic coefficients: E young’s

modulus, K physical modulus, G tranverse modulus, L longitudinal modulus, in addition

to poisson’s ratio ν [7].

The elastic moduli give a macroscopic view of the hardness of materials and reflect an

idea of both the nature of atomic bonds and cohesion [7].

3.2.1 Longitudinal Modulus

The longitudinal modulus L expresses the elongation of the sample under the influence

of longitudinal stress, expansion occurs in a direction perpendicular to the transverse

contraction elongation [7].

L = ρv2L (1.2)

Where:

vL is longitudinal sound velocity

3.2.2 Somatic Modulus

The physical coefficient describes the response of the body’s strain to the hydrostatic

pressure,which works to change the size without changing the shape and applies stress on

all sides, and this leads to a pressure that determines the physical coefficient K and its

expression is given [7].

K = ρ(v2L − 4

3
v2s) (1.3)

Where:

vL is longitudinal sound velocity

18



vs is transverse sound velocity

3.2.3 Shear modulus:

The shear modulus is related to the response of the body’s strain to the shear stress,

which works to the shape without changing the size, and the shear stress leads to the shear

process,the corresponding modulusG carries many names,namely shear modulus,transverse

modulus and torsion modulus , and is expressed [7].

G = ρv2s (1.4)

Where:

vs is transverse sound velocity

3.2.4 Young’s Modulus:

Young’s modulus know as tensile modulus is measure of the stiffress of an isotropic

material. It is defined as the ratio of unixial stress over unixial strain in an elastic

system.this can be determined empirically from the stress strain curve created during

tensile or compression tests performed on the material.incorrectly, young’s modulus is

called the modulus of elasticity because young’s modulus E is the most famous elastic

constant, which is most commonly used in engineering design [7].

E = ρv2s(
3v2L − 4v2s
v2L − v2s

) (1.5)

Where:

vL is longitudinal sound velocity

vs is transverse sound velocity

3.2.5 Poisson ratio:

Named after simeon poisson ,it is an important physical property used in the analysis of

elasticityof materials,when a material is compressed in one direction, it ususlly tendsto

expand in the other two directions of perpendicular to the direction of compression.this

phenomenon is called the poisson effect, and it is a ratio between trasverse shrinkage and

relative elongation and is given by the expression [7].
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ν =
v2L − 2v2s
2(v2L − v2s)

(1.6)

Where:

vL is longitudinal sound velocity

vs is transverse sound velocity

3.3 Experimental methods for determining elastic moduli of

glasses:

The elastic moduli of a matter are determined by its interatomic forces, the structure and

its vibrational properties. And hence the values of the elastic constants K, G, and E and

Poisson’s ratio ν can be experimentally measured by many methods such as mechanical

deformation or ultrasonic-wave propagation. For liquids, instantaneous elastic constants

can be obtained from velocity measurements of high-frequency sound waves in order to

avoid contributions of fast structural relaxations. In solids, basically, the methods for

determining the elastic moduli are divided into static and dynamic methods.

The static and dynamic methods can be regarded as isothermal and adiabatic measuring

conditions, respectively. The basic theory for static method is to measure the stress–strain

curve in the elastic deformation limit, and then calculate the elastic moduli based on the

curves. While the experimental conditions such as loading as well as the loading rate

significantly affect the measuring accuracy of the elastic moduli. The static method is

also difficult to be applied to brittle materials such as glassy materials. The dynamic

methods have relative high accuracy. According to the applied frequency range, the

dynamic methods are classified as: acoustic method (the frequency is below 104 Hz) and

ultrasonic method (the frequency is between 104 and 108 Hz). The dynamic methods are

widely applied to study the elastic properties and determine the elastic moduli of glasses

and glass-forming liquids. Therefore, in the following we focus on the introduction of one

of the dynamic methods -the ultrasonic method and the related theory(figure 1.2) [8].
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Figure 1.2: The schematic illustrations for ultrasonic method.[8]

3.4 Ultrasonic methods:

3.4.1 theory for ultrasonic measurements:

The propagation velocity of the ultrasonic waves such as longitudinal and shear waves

depends on the nature of the materials. However, in a given material, the propagation

velocity of the ultrasonic wave is independent of its frequency and the dimension of the

material. In isotropic and homogeneous solids such as glassy materials, the one-dimensional

acoustic wave equations are expressed as [5].

(Longitudinal mode or compressional wave)

∂2u

∂t2
=

L∂2u

ρ∂x2
(1.7)

(Shear mode or transverse mode)

∂2u

∂t2
=

G∂2u

ρ∂x2
(1.8)
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where u is displacement, L is longitudinal modulus. From above equations, one obtains:

G = ρv2s (1.9)

L = ρv2L (1.10)

where vL and vs are longitudinal and transverse sound velocities, respectively. It can be

approximately generalized that the vs is half of the vl in homogenous metallic materials,

that is vl = 2vs. the E,K, and m of the isotropic solids such as glasses can be given in

terms of vl , vs and density as :

K = ρ(v2L − 4

3
v2s) (1.11)

ν =
v2L − 2v2s
2(v2L − v2s)

(1.12)

E = ρv2s(
3v2L − 4v2s
v2L − v2s

) (1.13)

Therefore, ultrasonic velocity measurement and density measurement enable easy access

to elastic coefficients.

3.4.2 The information provided from ultrasonic study:

Comparing with other elastic moduli measuremental methods, the ultrasonic measurements

can conveniently obtain the longitudinal and shear acoustic velocities in the glassy materials.

From the technological perspective, knowledge of the elastic constants is necessary to

design structural components. From the scientific perspective, the magnitude of the elastic

constants provides information about the strength of the interatomic forces and nature

of the glasses. Since acoustic property is particularly sensitive to the microstructure as

well as its change, the studies of the acoustic and elastic properties of glasses can provide

important information about their structural and vibrational characteristics which are

quite difficult for other methods to accessible [5].
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4 conclusion

In this chapter we have explained the theory of elasticity and we have also shown the

elastic coefficients, which are the longitudinal and Somatic , shear, Young’s modulus and

Poisson’s ratio, and we mentioned experimental methods for determining these coefficients,

and among these methods we explained the ultrasound method.
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Chapter 2

Machine learning

1 Introduction

Machine learning gives computers the ability to learn without being explicitly programmed

for the task at hand. The learning happens when data is combined with mathematical

models [9].

In recent decades, the world has experienced a real explosion in the volume of data which is

the main reason that made scientists use data to infer and obtain information about many

unexplained phenomena therefore a smart data analysis leads to a significant scientific

progress, one of the domains that deals with data is machine learning.

Machine learning is a sub-domain of intelligence artificial focuses on the development of

models capable of representing certain characteristics, learn and detect some statistical

pattern from data in order to accomplish various tasks, the term intelligence stands for

the ability of these models to generalize, i.e. to extract information from the studied data

during an updating process called training, and use these information to automatically

infer another information from new data [10].

There are many predictive techniques in machine learning, herein we will use supervised

regression namely Gaussian process regression (GPR).

2 Unsupervised learning

Unsupervised Learning (UL) is an elusive branch of Machine Learning (ML), including

problems such as clustering and manifold learning, which seeks to identify structure among

unlabeled data.
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UL is notoriously hard to evaluate and inherently indefinable(Figure 2.1). Unsupervised

learning is where you only have input data (X) and no corresponding output variables.

The term “unsupervised learning” is generically associated with the idea of using a

collection of observationX1..., Xn sampled from a distribution p(X)to describe properties

of p(X) [11].

Figure 2.1: unsupervised.[11]

3 Supervised learning

Supervised learning refers to the problem where the data is on the form {xi, yi}ni=1 where

xidenotes inputs and yi denotes outputs. In other words, in supervised learning we have

labeled data in the sense that each data point has an inputxi and an output yi which

explicitly explains “what we see in the data”

Depending on whether the output of the problem is quantitative or qualitative, we can

classify supervised learning into either regression or classification(figure 2.2). Regression

means the output is quantitative, and classification means the output is qualitative [9].

This means that whether a problem is about regression or classification depends only on

its output.

But in our study we will focus on regression only.
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Figure 2.2: Difference between classification and regression [12]

3.1 Regression

Regression is to map an input data to a numerical value. In another words for an input

Xi ∈ Rdthat represents d dimensional features vector and a continues output space y ⊂ R,

the learning algorithm is asked to produce a function f: Rd → Rn that maps any given

input Xi to a corresponding value y ∈ Y . Examples Neural Networks, Support Vector

Regression, Linear Regression, Polynomial Regression . . .[10].

3.1.1 Linear regression

Linear regression is one of the methods of multivariate analysis that deals with quantitative

data. It is a way of investigating data from observations, or experiments, where The main

goal is to search for a linear link between the quantum Y variable and One or more X

variables are also quantity( Figure 2.3)[13].

Figure 2.3: Line for a Linear Regression Model.
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The simple linear regression model for n observations can be written as:

yi = β0 + β1xi + ϵi (2.1)

The designation simple indicates that there is only one predictor variable x, and linear

means that the model is linear β0 and β1. The intercept β0 and the slope β1. Are

unknown constants, they are both called regression coefficients; ϵi’sare random errors. To

estimateβ0 and β1. We use the method of least squares, it consists of calculating the

difference between the observations yi and the regression line and minimize the following

expression(figure 2.4)[14].

n∑
i=1

(yi − β0 + β1xi)
2 (2.2)

And the solution is:

β1 =

n∑
i=1

xiyi +
1
n

n∑
i=1

xi

n∑
i=1

yi

n∑
i=1

x2
i − 1

n
(
m∑
i=1

xi)2
(2.3)

β0 = y − β1x (2.4)

Figure 2.4: Three possible projections of the point (Xi, Yi) [13]
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Figure 2.5: A linear regression problem, with a training set consisting of ten data points
[14].

3.1.2 Nonlinear regression

The basic idea of nonlinear regression is the same as that of linear regression, namely

to relate a response Y to a vector of predictor variables X = (x1, ..., xk)
T (see Linear

models). Nonlinear regression is characterized by the fact that the prediction equation

depends nonlinearly on one or more unknown parameters. nonlinear regression usually

arises when there are physical reasons for believing that the relationship between the

response and the predictors follows a particular functional form. A nonlinear regression

model has the form:

Yi = f(Xi, θ) + ϵi, i = 1, .., n

where the Yi responses, f is known function of the covariate vector Xi = (xi1, ...xik)
T

and the parameter vector θ = (θ1, ...θp)
p , and ϵi are random errors. The ϵi are usually

assumed to be uncorrelated with mean zero and constant variance.

The unknown parameter vector θ in the nonlinear regression model is estimated from

the data by minimizing a suitable goodness-of-fit expression with respect to θ. The most

popular criterion is the sum of squared residuals

n∑
i=1

[yi − f(Xi, θ)]
2 (2.5)

and estimation based on this criterion is known as nonlinear least squares [15].

28



4 Gaussian processes

The Gaussian processes model is a probabilistic supervised machine learning framework

that has been widely used for regression and classification tasks [16].The Gaussian process

is a set of continuous random variables with limited dimensions, each of which is subject to

a normal distribution, and all distributions are normal, The Gaussian process is one of the

most important machine learning techniques [17].A Gaussian processes model describes a

probability distribution over possible functions that fit a set of points. Because we have

the probability distribution over all possible functions, we can calculate the means as the

function, and the variances to indicate how confident the predictions are (Figure 2.6) [16].

We have the most important main points:

The function (posteriors) updates with new observations.

A Gaussian process model is a probability distribution over possible functions, and any

finite samples of functions are jointly Gaussian distributed.

The mean function calculated by the posterior distribution of possible functions is the

function used for regression predictions.

Probability density function is:

PX(x) =
1√
2πσ

exp(−(x− µ)2

2σ2
) (2.6)

X=Random variables.

x= the real argument.

σ=Variance.

µ=The independent mean
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Figure 2.6: Plotting the probability density function in terms of the entereddata points

5 Gaussian processes regression

GPR is one of the nonparametric kernel-based learning algorithms developed from the

Bayesian linear regression model. The kernel function is a crucial component of GPR,

because it represents the assumptions on the object (e.g., systematic prediction error)

that we wish to learn. Specifically, the kernel function defines the closeness and similarity

among the samples, under the assumption that ‘close’ input data will probably result in

‘close’ output data Therefore, kernel function determines GPR’s performance in handling

systematic prediction error.

The squared exponential (SE) function is the most widely-used kernel function in GPR

(Figure 2.7) [18].

The Gaussian process regression model is a non-parametric model, which means that it

does not assume a specific form for the studied function, but the form of the relationship

between the inputs and the objectives is completely determined by the data that may

include an unlimited number of functions, and the basic function that produces the data

is unknown, but predictions are generated Through a group of functions that are subject

to a Gaussian distribution in the function space, the Gaussian process regression model

is one of the most recent prediction methods[17].

The Gaussian process regression model is:
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yi = f(xi) + ϵi ; i = 1, ..., n ; ϵi ∼ N(0, σ2) (2.7)

We have a Gaussian process regression function:

f(x) = GP (µ(x), K(x, x
′
)) (2.8)


f1(x)

:

fn(x)

 ∼ N(


µ1(x)

:

µn(x)

 ,


k1(x, x

′
)

:

kn(x, x
′
)

) (2.9)

Where:

µ(x) Represents the mean function andK(x, x
′
) kernel function and (σ2)represents random

noise variance.

Figure 2.7: Gaussian process regression
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6 Kernel Functions

The value of the kernel function k(z, z
′
) is an indicator of the interaction of two states(z, z

′
).

Thus, an essential part of GPR is the selection of the kernel function and the estimation

of its free parameters ϕ1, ϕ2, . . . ϕnϕ, called hyperparameters[19].

6.0.1 linear kernel

The equation for the linear kernel is given by

k(z, z
′
) = zT z

′
(2.10)

The linear kernel is a dot-product kernel and thus, non-stationary. The kernel can be

obtained from Bayesian linear regression. The linear kernel is often used in combination

with the constant kernel k(z, z
′
) = ϕ2

1 to include a bias [19].

6.0.2 Polynomial Kernel

The equation for the polynomial kernel is given by

k(z, z
′
) = (zT z

′
+ ϕ2

1) ; p ∈ N (2.11)

The polynomial kernel has an additional parameter, p ∈ N , that determines the degree of

the polynomial. Since a dot product is contained, the kernel is also non-stationary. The

prior variance grows rapidly for ∥z∥ ≻ 1 such that the usage for some regression problems

is limited. It depends on a single hyperparameter ϕ1 ∈ R ≻ 0 [19].

6.0.3 RBF kernels

The equation for radial basis function kernel is given by

k(z, z
′
) = ϕ2

1(−
∥∥z − z

′∥∥2

2ϕ2
1

) (2.12)

Probably the most widely used kernel function for GPR is radial basis function kernel.

The hyperparameter ϕ1describes the signal variance which determines the average distance

of the data-generating function from its mean. The lengthscale ϕ2 defines how far it is

needed to move along a particular axis in input space for the function values to become
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uncorrelated. Formally, the lengthscale determines the number of expected upcrossings

of the level zero in a unit interval by a zero-meanGP [19]

6.0.4 Rational Quadratic Kernel

The equation for the rational quadratic kernel is given by

k(z, z
′
) = ϕ2

1(1 +

∥∥z − z
′∥∥2

2pϕ2
2

) (2.13)

This kernel is equivalent to summing over infinitely many squared exponential kernels with

different lengthscales. Hence, GP priors with this kernel are expected to see functions

which vary smoothly across many lengthscales. The parameter p determines the relative

weighting of large-scale and small-scale variations [19]

k(x1, x2) = exp(−∥x1 − x2∥2

2σ2
) (2.14)

Where

σ Is the variance and our hyperparameter.

∥x1 − x2∥ Is the Distance between two points x1 and x2.

7 Hyperparameters Optimization

Most machine learning algorithms have hyperparameters, settings that we can use to

control the algorithm’s behavior [20]. Hyperparameters optimization is essential. Here we

will use the most widely used kernel,RBF, as an example to explain the hyperparameters

optimization. The general RBF function is given by.

k(xi, xj) = σ2
fexp(−

1

2l
(xi − xj)

T (xi − xj)) (2.15)

Where σf and l are hyperparameters. The vertical scaleσf describes how much vertically

the function can span. The horizontal scale l indicates how quickly the correlation

relationship between two points drops as their distance increases. The effect of l was

shown in (Figure2.8). A higher l provided a smoother function and a smaller l gave a

wigglier function [16].
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Figure 2.8: The function smoothness affected by the horizontal scale l of
Hyperparameters.

The optimal hyperparameters θ∗ are determined by the log marginal likelihood as.

θ∗ = argmalogxp(y|x, θ) (2.16)

Thus, considering hyperparameters, a more general equation of predictions at the new

testing points is.

f∗|X, y,X∗, θ ∼ N(f∗, cov(f∗)) (2.17)

Note that after learning/tuning the hyperparameters, the predictive variance cov(f∗)

depends on not only the inputs X and X∗ but also the outputsy [16].

8 Training process

The central challenge in machine learning is that we must perform well on new, previously

unseen inputs, not just those on which our model was trained. The ability to perform

well on previously unobserved inputs is called generalization. Typically, when training

a machine learning model, we have access to a training set, we can compute some error

measure on the training set called the training error, and we reduce this training error

[14].
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For example in a linear model we train the model by minimizing the following error

1

m(train)

∥∥x(train)ω − y(train)
∥∥2

2
(2.18)

• Underfitting: Is when a machine learning model can not properly learn from the

training data (have low accuracy). Some of the reasons why underfitting happens

in neural networks is to have a small model or using a linear model with none linear

dataset (features in the dataset are complex). Another reason is the noisy data

(containing wrong labels) (Figure 2.9) [10].

• Over-fitting: is when a machine learning model gives a high prediction accuracy

on the training data, but the prediction accuracy gets low if the model tested on

previously unseen data (a data that was not present during the training),another

term for describing overfitting is “high generalization error”. Overfitting occurs

when the model gets closely fit to the training data, this is because the training

data is not all the possibilities of input data. A good model should have a good

accuracy on the training data and the other. In other word, (it should be able to

generalize) (Figure 2.9)[10].

Figure 2.9: The difference between overfitting, underfitting [10]
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Chapter 3

Results and discussion

1 Introduction

In this chapter we will begin by presenting the data set and pre-data that we embarked

on next, we will present GPR model that we created to predict the Young’s modulus and

the glass transition temperature (E, Tg), finally we will discuss the obtained result .

1.1 Method:

We used data from articale of Bulat N. Galimzyanov, Maria A. Doronina , Anatolii V.

Mokshin (Machine learning-based prediction of elastic properties of amorphous metal

alloys)[21].

In our work, we will focus on predicting Young’s modulus and the glass transition temperature

using Gaussian processes regression.

1.2 Data analysis:

In this particular study, the Young’s modulus of amorphous metal alloys with various

compositions and mechanical properties is determined using machine learning techniques

based on Gaussian process regression (GPR). The calculation relies on a dataset comprising

experimental information gathered from metal alloys containing Al, Au, Ca, Co, Cu,

Fe, La, Hf, Mg, Ni, Pd, Pt, Re, Sr, Ti, W, Zr,and rare earth elements [21]. To train

the GPR model, specific physical characteristics are selected as input parameters.These

characteristics include the total molar mass (M) of the alloy components, the number

of components (n), the yield stress (σy), and the glass transition temperature (Tg). By
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feeding these parameters into the GPR, the model can predict the Young’s modulus of

the amorphous metal alloy under investigation.

Figure 3.1: Dataset head

we examined the correlation between the Young’s modulus (E) and several key parameters

in amorphous metal alloys,namely the total molar mass (M), the number of components

(n), the yield stress (σy), and the glass transition temperature (Tg).

Figure 3.2: Correlation matrix

Our analysis revealed interesting relationships between these variables. We found a

moderate negative correlation between the total molar mass and the Young’s modulus,

suggesting that higher molar mass is associated with lower stiffness or rigidity in the

material. Conversely, the number of components showed a moderate positive correlation

with the Young’s modulus, indicating that an increase in the number of components leads

to higher stiffness. Furthermore, we observed a strong positive correlation between the

yield stress and the Young’s modulus, indicating that materials with higher yield stress

exhibit greater stiffness. Similarly, the glass transition temperature showed a strong
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positive correlation with the Young’s modulus, suggesting that materials with higher

glass transition temperatures tend to have increased stiffness.

2 Gaussian process regression

GPR is a non-parametric kernel-based model that aims to build a probability distribution

of a set of non-parametric functions to describe the relationship between the inputs and

targets following the Bayesian inference paradigm.Gaussian process (GP ) is a set of

normally distributed random variables f(xi) which are defined by prior mean function

m(x) and covariance function (kernel function) k(x, x
′
), thus the GP is denoted as:

f(x) ∼ GP (m(x), K(x, x
′
)) (3.1)

In which m(x) represents the expected value of f(x) and it is generally set to be zero.

The kernel function measures the confidence level of m(x). Furthermore, the regression

response yi can be calculated using the following probability distribution:

p(yi|f(xi), xi) ∼ N(yi|h(xi)
Tβ + f(xi), σ

2) (3.2)

where h(xi) is a non-linear basis function that transforms the vector feature from Rd to

a new feature vector in Rp,β is p× 1 vector of basis function coefficients. GPR was also

conducted using Sklearn package, with the combination of three kernel functions, RBF

(Eq. (2.12)), rational quadratic (Eq. (3.13)) to smooth the regression fit, and white noise

kernel to reduce overfitting :

k(x
′
, x)RQ = σ2(1 +

(x− x
′
)2

2αl
)−α (3.3)

where σ2 is the total variance, l is the length scale and α is the scale mixture.[22]

3 Model evaluation

The performance of ML models was evaluated using leave one out cross validation (LOOCV ),

this cross-validation procedure is a special case of k-fold cross-validation where the number

of the testing instance is equal to the number of the training data, thus the models have

been repeatedly fitted using n− 1 of the total number of samples (n) and tested for the
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remaining single item testing set, the chosen cross-validation method is very useful in the

case of small dataset since the computation cost will be high for largerdatasets, moreover,

it provides unbiased measures and enables the learning algorithms to better learn data

representation.The coefficient of determination R2 and root mean squared error (RMSE)

were used as metrics to quantify the models’ fitness and accuracy, which can be defined

as follows:

R2 = 1−

n∑
i=1

(y
′
i − yi)

2

n∑
i=1

(y
′
i − ŷi)2

(3.4)

RMSE =

√√√√ 1

N

N∑
i=1

(y
′
i − ŷi)2 (3.5)

where N is the number of samples, y
′
i, ŷi and yi are the model predicted value, actual

value, and an average of the actual values respectively. Further, R2 is a non-negative

metric variate from 0 to 1 and it measures the model robustness in fitting the real data,the

closer its value to 1 the better the model, whereas the accuracy of the model is good when

the RMSE tends to 0 [22].
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4 Result and discussion:

Based on the results obtained, our study shows that the model has a strong predictive

capability for predicting the glass transition temperature and Young’s modulus of the

material.The R-squared values of 0.93 and 0.98 indicate that a high proportion of the

variation in the output variables can be explained by the input variables. Additionally,the

root mean squared error (RMSE) values of 28.67 and 4.83 suggest that the average

difference between the predicted and actual values is relatively low.

RMSE = Root mean squared error

R2 score = coefficient of determination

Figure 3.3: Predicted Young modulus of metallic glasses compared to the measured
values.

R2 score RMSE
Glass transition température 0.93 28.67
Young modulus 0.98 4.83

Table 3.1: Prediction performance in term of R2 score and RMSE (Root mean squared
error)
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Figure 3.4: Predicted glasses transition temperature of metallic glasses compared to the
measured values.

5 Conclusion

In this work, we investigated the predictive performance of machine learning Algorithm,

GPR, for Young’s modulus and glass transition temperature Tg, using different mechanical

combinations and properties. For this, the calculation is based on a data set that includes

experimental information collected from metal alloys containing Al, Au, Ca, Co, Cu,

Fe,La, Hf, Mg, Ni, Pd, Pt, Re, Sr, Ti, W, Zr, and rare earth elements.

We also concluded in this work that. there is a strong positive correlation between Young’s

modulus and the glass transition temperature, as this correlation indicates that materials

with a higher glass transition temperature tend to increase the hardness. There is a

hardness positive relationship between yield stress and Young’s modulus, which indicates

that the materials with higher yield stress show greater toughness.
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Chapter 4

General Conclusion

Glass is one of the important materials that are used in many daily applications, as we

find that glass is an amorphous body, and we also found that different types of glass

lead to a difference in composition, and glass has its distinctive characteristics such as its

transparency, hardness, strength, and resistance to corrosion and corrosion.

The glass transition temperature and Young’s modulus are important information about

Glass, because it reflects the mechanical properties of the material. We also examined the

relationship between Young’s modulus and several key parameters in amorphous alloys,

namely total molar mass, number of components, yield pressure, and glass transition

temperature. We here found the direct relationship between the number of components

and Young’s modulus, which is that the higher the number of components, the greater the

hardness.And we noticed a strong positive relationship between yield stress and Young’s

modulus, which shows that materials with higher yield stress show greater hardness, and

the results also showed that the glass transition temperature and Young’s modulus have

a positive correlation strength, which indicates that materials with higher glass transition

temperatures tend to increase the hardness.

In this study, we explored the use of a machine learning model to predict two important

material properties: the glass transition temperature and Young’s modulus. Our results

show that the model has a strong predictive capability, with high R-squared values and

relatively low RMSE values for both properties. Specifically, we obtained an R-squared

value of 0.93 and an RMSE value of 28.67 for the glass transition temperature, and an

R-squared value of 0.98 and an RMSE value of 4.83 for Young’s modulus. These results

suggest that the model has the potential to be a valuable tool for predicting material

properties, with implications for a wide range of industries and applications.However,
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it is important to note that the performance of the model may vary depending on the

specific context and requirements of the problem at hand. Further research is needed to

evaluate the model’s performance in different settings and to explore its limitations.
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