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Notations

➤ ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
:The gradient of a vector .

➤ ∆ =
(

∂2

∂x2
1
+ . . .+ ∂2

∂2xn

)
:Laplace operator .

➤ (., .):The scalar product and ⟨., .⟩:The duality product.

➤ Hm(Ω) = {v ∈ L2(Ω)/∀α ∈ N : |α| ≤ m, ∂αv ∈ L2(Ω)}. Sobolev space of order m.

➤ H1
0 (Ω) = {v ∈ H1/v = 0 dans ∂Ω}.

➤ H−1 : dual of spaceH1
0 (Ω).

➤ Ck(Ω) : the space of continuous, di�erentiable k-times functions on Ω.

➤ C∞(Ω): Space of in�nitely di�erentiable functions on Ω.

➤ Lp(Ω): Space of p-th integrable functions on Ω with respect to the Lebesgue measure
dx, for p ∈ [1,+∞[.

➤Lp(0, T ;X) : Bochner Spaces of vector-valued functions.
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Introduction

The behavior of materials that exhibit both elastic and viscous responses when subjected
to time-varying loads or deformations is referred to as dynamic viscoelasticity. These
materials have the ability to store and dissipate energy over time. A common approach to
modeling dynamic viscoelasticity is through a Volterra-type integro-di�erential equation
[11], where the material response is described in terms of convolution integrals involving
a kernel function.

In many cases, the kernel function used to describe the time-dependent behavior of
viscoelastic materials follows an exponential decay model. This type of kernel is particu-
larly suitable for materials that exhibit relaxation behavior, where the material response
gradually decreases over time after the application of a load or deformation. The expo-
nential decay re�ects the decay of stress or strain in the material due to internal processes
such as molecular rearrangement or di�usion. The use of an exponential decay kernel
in dynamic viscoelasticity models allows for the incorporation of time-dependent e�ects
and accurate capture of the transient behavior of the material. This type of kernel is
commonly used to model viscoelastic relaxation in many materials.

The relaxation decay can be described using an exponential decay kernel. Mathemat-
ically, the viscoelastic relaxation behavior of the material can be modeled by an integral
equation with an exponential kernel. For example, let's assume that the deformation of
the material at a given time depends on its previous deformation and is given by the
following equation: δ(t) =

∫ t

0
G(t − s)u(s)ds ,[12] in this equation, δ(t) represents the

stress at time t, u(s) denotes the displacement at time s, and G(t− s) is an exponential
decay kernel that represents the viscoelastic behavior of the material.The integral in this
equation represents the convolution of the displacement history u(s) with the exponential
kernel G(t−s). It describes how past displacement contribute to the stress at the present
moment t, with the kernel G(t− s) capturing the temporal decay of these contributions.

When waves propagate through a viscoelastic material, they undergo phenomena of
dispersion, attenuation ,and shape deformation due to the viscoelastic properties of the

2
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material. The presence of an exponential decay kernel in the models allows for the consid-
eration of these time-dependent e�ects and provides a more realistic description of wave
propagation.

Wave equations with memory terms or integral equations are used to model wave
propagation in viscoelastic materials. These equations take into account the viscoelastic
behavior of the material by including memory terms that describe the relaxation or de-
lay in the material's response. The exponential decay kernel is incorporated into these
memory terms to capture the exponential decay of relaxation over time.

In this study, our objective is to investigate the wave equation with memory terms,
which takes into account the viscoelastic e�ects and the in�uence of the past on wave
behavior. The wave equation with memory terms can be formulated as follows [12]:

d2u

dt2
− c2∆u+

∫ t

0

G(t− s)
du

ds
ds = 0,

In our study, we focus on the exponential decay kernel, which can be expressed in the
form G(t− s) = e−α(t−s), For the study of existence and uniqueness, we used the spectral
approach (see [4]), which is a powerful mathematical technique that represents solutions
using a series expansion in terms of orthogonal basis functions, such as Fourier series or
Chebyshev polynomials. This approach allows us to approximate the solution with high
precision and capture the essential characteristics of the problem.

In our study, we employed numerical approaches based on �nite element methods to
solve the wave equation with memory terms. Speci�cally, we explored continuous Galerkin
�nite element methods to spatially discretize our problem as described in references [7,9].
We used the Crank-Nicolson and Newmark schemes to discretize our problem in the
temporal domain. These approaches allowed us to obtain accurate and stable numerical
solutions to investigate the properties of the wave equation with memory terms (e.g. see
[8]).

A plan for this thesis is organised as follows:

• In the �rst chapter, we introduced preliminaries in terms of notations, general de�-
nitions, and theorems in functional analysis. Additionally, we studied the existence,
uniqueness, and stability of solutions under certain conditions for the wave equation
without memory term.

• In the second chapter, we investigated the existence, uniqueness, and stability of solu-
tions under certain conditions for the wave equation with a memory term.

• In the third chapter, we numerically solved the wave equation without and with a
memory term using the continuous Galerkin �nite element method and, Crank-Nicolson
and Newmark schemes.
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Chapter 1

The wave equation without memory

term
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1.1. WAVE EQUATION CHAPTER 1.

In this chapter, our objective is to establish a weak formulation of the problem at hand
within a well-de�ned functional framework. The weak formulation allows us to relax the
notion of classical solutions and consider solutions in a broader sense, which can be more
suitable for certain problems.

To achieve this, we will utilize a spectral approach, which involves approximating the
solution using a series of basis functions, such as orthogonal polynomials or trigonometric
functions.

1.1 Wave equation

Wave propagation in a nonhomogeneous and anisotropic medium can be described by
second-order hyperbolic equations, which are a generalization of the classical wave equa-
tion.These equations serve as fundamental models for describing various oscillatory phe-
nomena in dimensions n ≥ 1.

The classical wave equation given by :

utt − c2∆u = f.

Here u = u(x, t)is a displacement x ∈ Rn and, c is the speed of propagation, and f an
external force. Let us examine some relevant solutions, more precisely, we can pose the
following problems, determine a displacement u = u(x, t) such that :

(P)


utt − c2∆u = f, in QT

u(x, 0) = u0(x), in Ω

ut(x, 0) = u1(x) in Ω

u(σ, t) = 0 on ST

(1.1)

Remark 1.1.1 Since we are in the context of an evolution problem in a bounded open
set Ω ⊂ Rn over a �nite time interval (0, T ), it is convenient to de�ne the space-time
cylinder QT and the lateral part ST as follows :

The space-time cylinder QT is the set of all points in space and time within the given
domain :

QT = Ω× (0, T )

Here, Ω represents the spatial domain and (0, T ) represents the time interval. The space-
time cylinder QT includes all possible combinations of points in Ω and times within (0, T ).
It allows us to consider the behavior and evolution of the problem throughout the entire
domain and time range.

The lateral part ST corresponds to the boundary of the space-time cylinder QT at a
given time t :

ST = Γ× (0, T )

Here, Γ represents the boundary of the spatial domain Ω, and (0, T ) represents the time
interval. The lateral part ST captures the boundary of the space-time cylinder QT at each

5



1.2. THE VARIATIONAL PROBLEM CHAPTER 1.

time t within the interval (0, T ). It speci�cally includes all points on the spatial boundary
Γ at di�erent times.

By de�ning the space-time cylinder QT and the lateral part ST , we establish a suitable
framework for analyzing the evolution problem over the given spatial domain and time
interval. This framework allows us to consider the solution's behavior and properties
throughout the entire space and time range, including the spatial boundary at di�erent
time instances.

1.2 The Variational Problem

In this section, our objective is to determine an appropriate weak formulation to our
problem. In our way to that, we will give some preliminaries and de�ne some spaces
needed to carry on our study. The preliminaries given here are not exclusively dedicated
to this chapter but to the other chapters too.

1.2.1 Preliminaries

Let Ω be open bounded set in Rn. Consider the spaces H = L2(Ω) and V = H1
0 (Ω),

equipped with the following norms respectively

∥u∥L2(Ω) =

(∫
Ω

|u(x)|2dx
) 1

2

(1.2)

∥u∥H1(Ω) =

(∫
Ω

(
|u(x)|2 + |∇u(x)|2

)
dx

) 1
2

Lemma 1.2.1 (Gronwall's Inequality)
Let Ψ, G be continuous in [0, T ], with G nondecreasing and γ > 0. If

Ψ(t) ≤ G(t) + γ

∫ t

0

Ψ(s)ds, for all t ∈ [0, T ]

then

Ψ(t) ≤ G(t)eγt, for all t ∈ [0, T ]

Proof. See([1] , P.587)

Theorem 1.2.1 (Young's Inequality)
Let a and b be two non negative real numbers. if p,q ∈]1,∞[ with 1

p
+ 1

q
= 1then

ab ≤ ap

p
+

aq

q

6



1.2. THE VARIATIONAL PROBLEM CHAPTER 1.

Proof. See( [6];P.49)

Theorem 1.2.2 (Young's Inequaliy With a Parameter)
Let a and b be two non negative real numbers.
For all α ≤ 0

ab ≤ 1

2α
a2 +

α

2
b2

Theorem 1.2.3 (Poincaré's Inequality)
Let Ω be a bounded Lipschitz domain. Then, there exists a constant CP such that

∥u∥L2(Ω) ≤ CP∥∇u∥L2(Ω) ,∀u ∈ H1
0 (Ω)

Proof. See ([1]; P486)

Lemma 1.2.2 The space V is separable, that is: V admits a countably dense subset

Proof. See ( [2] ; P6)

Theorem 1.2.4 (the weak compactness theorem)
Every bounded sequence in a Hilbert space H contains a sub sequence which is weakly
convergent to an element x ∈ H.

Proof. See ( [1] , p. 393)

Theorem 1.2.5 (Green's Integration by Parts Formula)
Let Ω be a bounded open domain in R3 with a su�ciently smooth boundary Γ and n is the
outward normal. Then for all u, v ∈ C1(Ω̄)∫

Ω

∂iu(x)v(x)dx = −
∫
Ω

u(x)∂iv(x)dx+

∫
Γ

u(x)v(x)nidΓ.

De�nition 1.2.1 (Cauchy sequence)
Let (X, d) be a metric space and (xn)n a sequence of elements of X. We say that the
sequence (xn)n is a Cauchy sequence in (X, d) if:

∀ε ∈ R∗
+ ∃Nε ∈ N ∀(m,n) ∈ N2 (n ⩾ m ⩾ Nε ⇒ d (xn, xm) ⩽ ε) .

Theorem 1.2.6 Let (X, d) be a metric space and (xn)n a sequence of elements of X. If
the sequence (xn)n converges in (X, d) then it is a Cauchy sequence in (X, d).

Proof. See( [13],P.400)

Theorem 1.2.7 Let V and H be two Hilbert spaces such that V ⊂ H with compact
injection and V is dense in H. Let a(·, ·) be a continuous and coercive symmetric bilinear
form in V . Then the eigenvalues {λk}k≥1, which satisfy

∃wk ̸= 0, wk ∈ V, a(wk, v) = λk ⟨wk, v⟩ , ∀v ∈ V (1.3)

form an increasing sequence of positive real numbers tends to in�nity and the sequence
{wk}k≥1 is a Hilbert basis of H. What's more the sequence { wk√

λk
}k≥1 is a Hilbert basis of

V .

Proof. See([4] p.219)
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1.2. THE VARIATIONAL PROBLEM CHAPTER 1.

1.2.2 Spectral approach

The spectral approach is a mathematical method used to solve di�erential equations by
representing the solutions as a sum of basis functions or eigenfunctions. This approach
involves approximating the solution using a series of basis functions, such as orthogonal
polynomials or trigonometric functions. These basis functions form a complete set in the
chosen function space, allowing us to express the solution as a linear combination of these
functions.

By applying the concept of weak solutions and utilizing the chosen basis functions,
we can transform the original problem into an equivalent variational problem. This vari-
ational problem involves �nding a solution that minimizes a suitable functional, which
represents the energy or some other relevant quantity associated with the problem.

The advantage of this approach is that it allows us to work with in�nite-dimensional
function spaces and utilize the powerful tools of functional analysis. Moreover, by choosing
an appropriate basis, we can accurately capture the behavior of the solution and obtain
convergence properties.

By formulating the problem in this manner, we can establish existence and uniqueness
results, analyze stability, and explore various numerical approximation techniques. This
approach provides a solid mathematical foundation for studying the wave equation and
the wave equation with a memory term and paves the way for further investigations and
applications in the �eld.

1.2.3 Functional Framework

First of all, since we are dealing with evolution equations, it is convenient to adopting the
following point of view of the space involving time. Assume that t ∈ [0, T ] and that for
every t, or at least for a.e. t, the function u(., t) belongs to a separable Hilbert space V
Then, we may consider u as a function of the real variable t with values into V :

u : [0, T ] → V. (1.4)

When we adopt this convention, we write u(t) and u̇(t) instead of u(x, t) and ut(x, t).
Following this, Let 1 ≤ p < ∞ and X a Banach space, if p is �nite we de�ne Lp(0, T ;X)
the space of measurable functions on ]0, T [ with respect to the measure dt :

Lp(0, T ;X) =

{
u : [0, T ] → X measurable such that

∫ T

0

∥u∥pXdt < ∞
}

where [0, T ] is an interval of R. We endow this space with the norm :

∥u∥Lp(0,T ;X) =

(∫ T

0

∥u∥pXdt
) 1

p

.

8



1.2. THE VARIATIONAL PROBLEM CHAPTER 1.

And scalar products :

(u, v) =

∫
Ω

u (x) v (x) dx, ∀u, v ∈ L2 (Ω) ,

Now, we introduce the following Hilbert spaces
V = L2(0, T ;V ) with V = H1

0 (Ω)

H = L2(0, T ;H) with H = L2(Ω)

V∗ = L2(0, T ;V ∗) with V ∗ = H−1(Ω)

The extension to in�nite dimensional spaces requires some care. In particular, before
setting, to avoid confusion. The problem involves two Hilbert spaces : V , the space
where we seek the solution, and V ∗, the dual space of V . Let us introduce a third space
H intermediate between V and V ∗ which the data f belongs to. For better clarity, it is
convenient to use the symbol <,>∗ to denote the duality between V ∗ and V and while V
is a Sobolev space. In practice one often encounters a pair of Hilbert spaces V ,H with
the following properties:

1. V ↪→ H, i.e. V is continuously embedded in H Recall that this simply means that
the embedding operator IV ↪→ H, from V into H, is continuous or, equivalently
that there exists C such that.

∥u∥H ≤ C∥v∥V ∀u ∈ V (1.5)

2. V is dense in H, Using Rieszs Representation Theorem we may identify H with
H∗. Also, we may continuously embed H into V ∗ , so that any element in H can
be thought as an element of V ∗. To see it, observe that, for any �xed u ∈ H, the
functional Tu : V → R, de�ned by :

⟨Tu, v⟩∗ = (u, v)H v ∈ V (1.6)

is continuous in V . In fact, the Schwarz inequality and (1.5) give

|(u, v)H | ≤ ∥u∥H∥v∥H ≤ C∥u∥H∥v∥V (1.7)

Thus, the map u → Tu is continuous from H into V ∗, with ∥Tu∥V ∗ ≤ C∥u∥H . Moreover,
if Tu = 0, then

0 = ⟨Tu, v⟩∗ = (u, v)H , ∀v ∈ V

which forces u = 0, by the density of V in H. Thus, the map u → Tu is one to one and
de�nes the continuous embedding IH→V ∗ of H into V ∗. This allows the identi�cation of
u ∈ H with Tu ∈ V . In particular, instead of (1.6), we can write

⟨Tu, v⟩∗ = ⟨u, v⟩∗ = (u, v)H , ∀v ∈ V

Finally, V (and therefore also H) is dense in V ∗. Summarizing, we have

V ↪→ H ↪→ V ∗ (1.8)

with dense embedding. We call V,H, V ∗ a Hilbert triplet.

9



1.3. THE WELL-POSEDNESS OF THE PROBLEM CHAPTER 1.

1.2.4 Weak Formulations

As usual, to �nd a weak formulation, we proceed formally and multiply the wave equation
by a smooth function v, vanishing at the boundary. Integrating over QT , we �nd∫

QT

utt(x, t)v(x, t)dxdt− c2
∫
QT

∆u(x, t)v(x, t)dxdt =

∫
QT

f(x, t)v(x, t)dxdt

by applying Green's formula in the equation (1.1),and using the appropriate boundary
condition, we get:∫

QT

utt(x, t)v(x, t)dxdt+ c2
∫
QT

∇u(x, t) · ∇v(x, t)dxdt =

∫
QT

f(x, t)v(x, t)dxdt (1.9)

∫ T

0

(ü(t), v)0dt+ c2
∫ T

0

(∇u(t),∇v)0dt =

∫ T

0

(f(t), v)0dt

The variational formulation deduced from (1.1) is, therefore:
�nd a solution u in C = C ([0, T ];H1

0 (Ω)) ∩ C1 ([0, T ];L2(Ω)) such that:


d2

dt2
⟨u(t), v⟩H + c2a(u(t), v) = ⟨f(t), v⟩H ∀v ∈ V, 0 < t < T

u(t = 0) = u0,

du

dt
(t = 0) = u1

(1.10)

where the symmetric bilinear form a(., .) is de�ned by

a(u, v) = (∇u(t),∇v)0

1.3 The Well-Posedness of the Problem

Our purpose, in this section is to show that problem (1.1) has a unique solution, which
continuously depends on the data, in appropriate norms. Once more, we are going to use
here a spectral approach.

1.3.1 Existence, Uniqueness and stability of Solution

The fallowing theorem assure the existence uniqueness and stability of solution

10



1.3. THE WELL-POSEDNESS OF THE PROBLEM CHAPTER 1.

Theorem 1.3.1 Let V and H be two Hilbert spaces such that V ⊂ H with a compact
injection, and V is dense in H. Let a(·, ·) be a continuous and coercive symmetric bi-
linear form on V . Let T > 0 be the �nal time, u0 ∈ V, u1 ∈ H be the initial data, and
f ∈ L2(]0, T [;H) . So, the problem (1.10) has a unique solution satisfying the following
regularities u ∈ C = C ([0, T ];H1

0 (Ω)) ∩ C1 ([0, T ];L2(Ω)) Moreover, there is a constant
C > 0 (which only depends on Ω and T ) such that

∥u∥C([0,T ];V ) + c2∥u∥C1([0,T ];H) ≤ C
(
∥u0∥V + ∥u1∥H + ∥f∥L2(]0,T [;H)

)
. (1.11)

Remark 1.3.1 We can weaken the assumption of Theorem 1.3.1 regarding the coercivity
of the symmetric bilinear form a(u, v). We can obtain the same conclusions by assuming
only the existence of two positive constants ν > 0 and η > 0 such that

a(v, v) + η|v|2H ≥ ν|v|2V for all v ∈ V.

Proof. To obtain the existence and uniqueness of solutions for hyperbolic problems, we
employ a spectral approach.

Step 1. Let us introduce the Hilbertian basis (uk)k≥1 of H composed of the eigen-
functions

wk ∈ V, such as a (wk, v) = λk ⟨wk, v⟩H ∀v ∈ V.

We write

u(t) =
+∞∑
k=1

αk(t)wk with αk(t) = ⟨u(t), wk⟩H . (1.12)

Choosing v = wk in (1.10), and noting

βk(t) = ⟨f(t), wk⟩H , α0
k = ⟨u0, wk⟩H , et α1

k = ⟨w1, wk⟩H

we obtain 
d2αk

dt2
+ c2λkαk = βk in ]0, T [

αk(t = 0) = α0
k,

dαk

dt
(t = 0) = α1

k

(1.13)

Lemma 1.3.1 The general solution is written:

αk(t) = C1 cos(µkt) + C2 sin(µkt) + αp
k(t)

with µk =
√
λk.

11



1.3. THE WELL-POSEDNESS OF THE PROBLEM CHAPTER 1.

Proof. To determine αp
k(t), we use the method of variation of parameters .{

C ′
1 cos(µkt) + C ′

2 sin(µkt) = 0

− µkC
′
1 sin(µkt) + C ′

2 sin(µkt) = βk

(1.14)

So

C1(t) = −
∫ t

0

βk(s)

µk

sin(µks)ds

C2(t) =

∫ t

0

βk(s)

µk

cos(µks)ds

By applying this method, we �nd that the unique solution of (1.10) is given by:

αk(t) = α0
k cos (µkt) +

α1
k

µk

sin (µkt) +
1

µk

∫ t

0

βk(s) sin (µk(t− s)) ds (1.15)

which gives an explicit formula for u. If u is a solution of (1.10) (this is what we will
demonstrate in the next step) then it is unique. Indeed, if there are two solutions u
and ũ the di�erence between αk − α̃k is the unique solution of (1.13) with zero data so
αk(t) = α̃k(t).
Step 2 To show that the series

+∞∑
j=1

(
α0
k cos (ωjt) +

α1
k

ωj

sin (ωjt) +
1

ωj

∫ t

0

βk(s) sin (ωj(t− s)) ds

)
uj (1.16)

converges in C ,we will show that the sequence zm is Cauchy inC de�ned by:

zm =


0 if m = 0
m∑
j=1

αk(t)wk if m ≥ 1
(1.17)

In V we consider the scalar product a(u, v) for which the family {wk}k≥1 is, orthogonal,
we obtain, for m > n, and for any time t

c2a (zm − zn, zm − zn) +

∥∥∥∥ d

dt
(zm − zn)

∥∥∥∥2
H

=
m∑

k=n+1

(
c2λk |αk(t)|2 +

∣∣∣∣dαk

dt
(t)

∣∣∣∣2
)
. (1.18)

However, by multiplying (1.13) by dαk

dt
and integrating in time, we obtain∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + c2λk |αk(t)|2 =
∣∣α1

k

∣∣2 + c2λk

∣∣α0
k

∣∣2 + 2

∫ t

0

βk(s)
dαk

dt
(s)ds. (1.19)

From the formula (1.15) we infer that∣∣∣∣dαk

dt
(t)

∣∣∣∣ ≤ c2µj

∣∣α0
k

∣∣+ ∣∣α1
k

∣∣+ ∫ t

0

|βk(s)| ds. (1.20)
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1.3. THE WELL-POSEDNESS OF THE PROBLEM CHAPTER 1.

Combining these two results, we deduce∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + c2λk |αk(t)|2 ≤ 2
∣∣α1

k

∣∣2 + c22λk

∣∣α0
k

∣∣2 + 2t

∫ t

0

|βk(s)|2 ds (1.21)

As u0 ∈ V, u1 ∈ H and f ∈ L2(]0, T [;H), we have

∥u0∥2V = a (u0, u0) =
+∞∑
j=1

λk

∣∣α0
k

∣∣2 < +∞,

∥u1∥2H =
+∞∑
k=1

∣∣α1
k

∣∣2 < +∞,

∥f∥2L2(]0,T [;H) =
+∞∑
k=1

∫ t

0

|βk(s)|2 ds < +∞,

This implies that the series, with the general term being the left-hand side of (1.21), is
convergent. In other words, the sequence zm satis�es:

lim
n,m→+∞

max
0≤t≤T

(
c2 ∥zm(t)− zn(t)∥2V +

∥∥∥∥ d

dt
(zm(t)− zn(t))

∥∥∥∥2
H

)
= 0,

In other words, the sequence zm is Cauchy in C1([0, T ];H) and in C([0, T ];V ). Since
these spaces are complete, the Cauchy sequence zm converges, and we can de�ne its limit
as u. In particular, since

(
zm(0), dz

m

dt
(0)
)
converges to (u0, u1) in V × H, we obtain the

desired initial conditions. Moreover, it is clear that u(t), as the sum of the series (1.12),
satis�es the variational formulation (1.10) for each test function v = wk. Since

(
wk/

√
λk

)
forms an orthonormal basis of V , u(t) satis�es the variational formulation (1.10) for any
v ∈ V . Therefore, u(t) is indeed the desired solution of (1.10).

Furthermore, we have actually shown that:

c2a (zm − zn, zm − zn) +

∥∥∥∥ d

dt
(zm − zn)

∥∥∥∥2
H

≤ C
(
c2 ∥u0∥2V + ∥u1∥2H + ∥f∥2L2(]0,T [;H)

)
,

and the energy estimate (1.11) is then easily obtained by taking n = 0 and letting m tend
to in�nity.

Proposition 1.3.1 with f = 0, the solution of the wave equation (1.1) satis�es, for all
t ∈ [0, T ], the equality of conservation of energy.

E(t) :=
1

2

∫
Ω

(∣∣∣∣∂u∂t (x, t)
∣∣∣∣2 + c2|∇u(x, t)|2

)
dx =

1

2

∫
Ω

(
|u1(x)|2 + c2 |∇u0(x)|2

)
dx =: E(0)

(1.22)
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1.3. THE WELL-POSEDNESS OF THE PROBLEM CHAPTER 1.

Proof. By resuming the proof of Theorem ?? with f = 0, i.e. βk = 0, we deduce directly
from (1.13) that the energy of the harmonic oscillator is conserved, i.e.∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + c2λk |αk(t)|2 =
∣∣α1

k

∣∣2 + c2λk

∣∣α0
k

∣∣2
which gives the equality

c2a (zm − zn, zm − zn) +

∥∥∥∥ d

dt
(zm − zn)

∥∥∥∥2
H

=
l∑

k=n+1

(∣∣α1
k

∣∣2 + c2λk

∣∣α0
k

∣∣2)
And (1.22) is obtained by taking n = 0 and letting m tend to in�nity. If the solution u is
regular, we can demonstrate (1.22) more directly by multiplying the wave equation (1.1)
by ∂u

∂t
and integrating by parts.
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2.1. WAVE EQUATION WITH MEMORY TERM CHAPTER 2.

In this chapter, we will follow the same steps as in the previous chapter to study
the existence ,uniqueness and stability of solutions for the wave equation with a memory
term. Our objective is to analyze the properties of solutions and investigate under which
conditions the problem has a unique solution. By considering appropriate mathematical
techniques and analysis, we aim to establish the existence and uniqueness of solutions
for the wave equation with a memory term. This analysis will contribute to a better
understanding of the dynamics and behavior of waves with memory e�ects.

2.1 Wave Equation with Memory Term

The wave equation with a memory term incorporates an additional memory term that
represents the in�uence of the past on the current state of the wave. This form of the
wave equation with a memory term can be written as:

ü(x, t)−∆u(x, t) +

∫ t

0

g(t− s)∆u(x, s)ds = f(x, t),

where g is a function that represents the memory term, and the integral takes into account
the contributions of the wave's past history on its present behavior. In our study, we are
speci�cally interested in the particular cases where g(t − s) = e−(t−s). Therefore, we are
interested in solving the problem of �nding the displacement u such that:

(P)


ü(x, t)−∆u(x, t) +

∫ t

0

e−(t−s)∆u(x, s)ds = f(x, t), in, QT

u(0) = u0(x), u̇(0) = u1(x) for x ∈ Ω,

u(t, x) = 0, on ST

(2.1)

Consider a bounded open set Ω in Rn, where n is the dimension. The time interval [0, T ]
is �nite and u0 , u1 are the initial conditions.

The �rst equation in (2.1) can be classi�ed as an integro-di�erential partial equation
of the hyperbolic type.

2.2 The Variational Problem

we introduce the operator A de�ned by:

A(t)u = −∆u(t) +

∫ t

0

e−(t−s)∆u(s)ds

of problem (2.1) :

(P)

{
ü(t) +A(t)u = f(x; t), for x ∈ Ω, ∀t > 0

u(0) = u0(x), u̇(0) = u1(x) for x ∈ Ω,
(2.2)

16



2.2. THE VARIATIONAL PROBLEM CHAPTER 2.

Lemma 2.2.1 the operator A(t) is an elliptic operator on V

Proof. For all v ∈ V there exist α such that :∫ t

0

e−(t−s)ds = e−t[et]t0 = 1− e−t

So,

at(v, v) = e−t∥v∥2V
so for t ∈ [0, T ] then

at(v, v) ≥ e−t∥v∥2V , ∀v ∈ V (2.3)

2.2.1 Weak formulation

Lemma 2.2.2 the problem (2.2) is formally equivalent to the following variational prob-
lem :

(Pv)


Find u ∈ C = C ([0, T ];V ) ∩ C1

(
[0, T ];L2(Ω)

)
.

(ü(t), v) + at(u, v) = f(x; v)

u(0) = u0(x), u̇(0) = u1(x)

(2.4)

where the symmetric bilinear form a(.; .) is de�ned by

at(w, v) = (∇w,∇v)− (∇w(s),∇v)

∫ t

0

e−(t−s)ds, ∀w, v ∈ H1
0 (Ω)

Proof. To �nd a weak formulation, we multiply the �rst equation of (2.1) by a test-
function v = v(x, t) ∈ L2(0, T ;H1

0 ), vanishing at the boundary of Ω. and integrate over
Ω : ∫

Ω

ü(x, t)v(x, t) dx +

∫
Ω

∆u(x, t)v(x, t) dx +

∫
Γ

∫ t

0

e−(t−s)∆u(x, s)dsv(x, t)dx

=

∫
Ω

f(x, t)v(x, t) dx (2.5)

By applying Green's on the integral equation (2.5), and using the appropriate bound-
ary condition , we get:∫

Ω

ü(x, t)v(x, t) dx +

∫
Ω

∇u(x, t)∇v(x, t) dx −
∫
Ω

(

∫ t

0

e−(t−s)∇u(x, s)) ds∇v(x, t) dx

=

∫
Ω

f(x, t)v(x, t) dx (2.6)

so we get the variational problem (2.4)

17



2.2. THE VARIATIONAL PROBLEM CHAPTER 2.

2.2.2 Existence, uniqueness and stability of solutions

In this section under the assumptions the existence and uniqueness of the weak solution
will be obtained according to the same steps of the previous chapter.

2.2.3 A new variational formulation

In the context of existence and uniqueness of solution, we introduce a new variable for the
problem (2.1). This approach allows us to formulate the problem in an equivalent form
that is more suitable to the method used.

Lemma 2.2.3 For u ∈ C we introduce a new variable

p(t) =

∫ t

0

e−(t−s)u(s)ds

. Then
ṗ(t) + p(t) = u(t)

Proof. The proof depends on the statement:∫ t

0

g(t− s)u′(s) ds =
d

dt

∫ t

0

g(t− s)(u(s)− u(0))ds (2.7)

For

p(t) =

∫ t

0

e−(t−s)u(s) ds

=

∫ t

0

e−(t−s)(u(s)− u(0)) ds+

∫ t

0

e−(t−s)u(0) ds

then we have,

ṗ(t) =
d

dt

∫ t

0

e−(t−s)(u(s)− u(0)) ds+
d

dt

∫ t

0

e−(t−s)u(0) ds

=

∫ t

0

e−(t−s)u′(s) ds+ e−tu(0)

On the other hand,

p(t) =

∫ t

0

e−(t−s)u(s) ds =
[
e−(t−s)u(s)

]t
0
−
∫ t

0

e−(t−s)u′(s) ds

= u(t)− e−tu(0)−
∫ t

0

e−(t−s)u′(s) ds

18



2.2. THE VARIATIONAL PROBLEM CHAPTER 2.

hence,
ṗ(t) + p(t) = u(t)

The resulting system of equations can be written as follows:
ü(x, t)−∆u(x, t) + ∆p(x, t) = f(t, v), for x ∈ Ω, ∀t > 0

u(t, x)− p(x, t)− ṗ(x, t) = 0 for x ∈ Ω, ∀t > 0

u(0) = u0(x), u̇(0) = u1(x), p(0) = 0 for x ∈ Ω, ∀t > 0

u(t, x) = 0, for x ∈ Γ,

(2.8)

and the variational formulation becomes :
Find (u, p) ∈ C such that

(ü(t), v)L2(Ω) + a(u(t), v)− a (p(t), v) = f(x; v) ∀v ∈ V

a (ṗ(t), v) + a (p(t), v) = a(u(t), v), ∀v ∈ V

(2.9)

where
a(u, v) = (∇u,∇v)L2(Ω)

with the initial conditions

u(0) = u0, u̇(0) = u1 and p(0) = 0,

. The fallowing theorem assure the existence uniqueness and stability of solution

Theorem 2.2.1 Let V and H be two Hilbert spaces such that V ⊂ H with a compact
injection, and V is dense in H. Let a(·, ·) be a continuous and coercive symmetric bi-
linear form on V . Let T > 0 be the �nal time, u0 ∈ H, u1 ∈ V be the initial data, and
f ∈ L2(]0, T [;H).

So, the problem (2.9) has a unique solution satisfying the following regularities

(u, p) ∈ C = C ([0, T ];V ) ∩ C1
(
[0, T ];L2(Ω)

)
Proof. To obtain the existence and uniqueness of solutions for problem (2.9), we introduce
the same steps from the previous chapter.

Step 1. Let us introduce the Hilbertian basis (wk)k≥1 of V composed of the eigen-
functions

wk ∈ V, such as a (wk, v) = λk ⟨wk, v⟩H ∀v ∈ V.

where λk are the eigenvalues corresponding to the eigenfunctions wk(x).
We write

u(t, x) =
+∞∑
k=1

αk(t)wk(x) with αk(t) = ⟨u(t), wk⟩H . (2.10)

p(t, x) =
∞∑
k=1

γk(t)wk(x) with γk(t) = ⟨p(t), wk⟩H . (2.11)
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2.2. THE VARIATIONAL PROBLEM CHAPTER 2.

where αk(t) and γk(t) are the time-dependent coe�cients and wk are the eigenfunctions
satisfying appropriate boundary conditions.
Choosing v = wk in (2.9), and noting

βk(t) = ⟨f(t), wk⟩H wk ∈ V.

α0
k = ⟨u0, wk⟩H , et α1

k = ⟨u1, wk⟩H
we obtain



d2αk

dt2
+ λkαk − λkγk = βk in ]0, T [

dγk
dt

+ λkγk = λkαk

αk(t = 0) = α0
k,

dαk

dt
(t = 0) = α1

k

γk(t = 0) = 0

(2.12)

Step 2 we will show that the sequences zm and Pm are Cauchy sequences in C

zm =

{
0 if m = 0∑m

j=1 αk(t)wk if m ≥ 1
Pm =

{
0 if m = 0∑m

j=1 γk(t)wk if m ≥ 1.
(2.13)

In V we consider the scalar product a(u, v) for which the family {wk}k≥1 is, orthogonal,
we obtain, for m > n, and for any time t

a (zm − zn, zm − zn) +

∥∥∥∥ d

dt
(zm − zn)

∥∥∥∥2
H

+ a(Pm − P n, Pm − P n) +

∫ t

0

a(Ṗm − Ṗ n, Ṗm − Ṗ n)ds

=
m∑

k=n+1

(∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + |αk(t)|2 − λk|γk(s)|2 +
∫ t

0

λk|γ̇k|2ds

)
. (2.14)

by multiplying the �rst equitation of (2.12) by dαk

dt
, we obtain , we obtain{

α̈kα̇k + λkαkα̇k − λkγkα̇ = βkα̇k

λkγ̇
2
k + λkγkγ̇k = λkαkγ̇k

(2.15)

By summing up, we obtain :

d

dt
α̇2
k + λk

d

dt
α2
k − 2λk

d

dt
(αkγk) + 2λkγ̇

2
k + 2λkγkγ̇k = 2βkα̇k

Thus, from integration with respect to time from 0 to t where t ∈ [0;T ],∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + λk|αk(t)|2+2

∫ t

0

λkγk(s)
2 ds+ λkγk(t)

2 = |α1
k|2 + λk|α0

k|2 + 2λkαk(t)γk(t)

+ 2

∫ t

0

βk(s)α̇k(s) ds.
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2.2. THE VARIATIONAL PROBLEM CHAPTER 2.

We use Young's inequality∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + λk|αk(t)|2+2

∫ t

0

λkγ̇k(s)
2 ds+ λkγk(t)

2 ≤ |α1
k|2 + λk|α0

k|2 + 2

∫ t

0

(
1

2ε
|βk(s)|2

+
ε

2
|α̇k(s)|2) ds+

λk

ε
|αk(t)|2 + λkε|γk(t)|2.

∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + (λk −
λk

ε
)|αk(t)|2+2λk

∫ t

0

|γ̇k(s)|2 ds+ (λk − λkε)|γk(t)|2 ≤ |α1
k|2 + λk|α0

k|2

+

∫ t

0

1

ε
|βk(s)|2ds+

∫ t

0

ε|α̇k(s)|2 ds (2.16)

Finally, Gronwall's inequality implies∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + (λk −
λk

ε
)|αk(t)|2+2

∫ t

0

λk|γ̇k(s)|2 ds+ (λk − λkε)γk(t)|2 ≤ C(|α1
k|2 + λk|α0

k|2

+

∫ t

0

|βk(s)|2ds) (2.17)

∣∣∣∣dαk

dt
(t)

∣∣∣∣2 + |αk(t)|2 +
∫ t

0

λk|γ̇k(s)|2 ds+ |γk(t)|2 ≤ C(|α1
k|2 + λk|α0

k|2 +
∫ t

0

|βk(s)|2ds)

(2.18)

If u and p are solutions of (2.9) then it is unique. Indeed, if there are two solutions u and
ũ, p and p̃ according to the formula (2.18) the di�erence between αk − α̃k and γk − γ̃ are
the unique solution of (2.12) with zero data so αk(t) = α̃k(t) and γk = γ̃.
In V we consider the scalar product a(u, v) for which the family {wk}k≥1 is, orthogonal,
as u0 ∈ V, u1 ∈ H and f ∈ L2(]0, T [;H), we have

∥u0∥2V = a (u0, u0) =
+∞∑
j=1

λk

∣∣α0
k

∣∣2 < +∞,

∥u1∥2H =
+∞∑
k=1

∣∣α1
k

∣∣2 < +∞,

∥f∥2L2(]0,T [;H) =
+∞∑
k=1

∫ T

0

|βk(s)|2 ds < +∞,

This implies that the series, with the general term being the left-hand side of (2.18), is
convergent. In other words, the sequence zm and Pm satis�es:
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2.2. THE VARIATIONAL PROBLEM CHAPTER 2.

lim
n,m→+∞

max
0≤t≤T

(
a (zm − zn, zm − zn) +

∥∥∥∥ d

dt
(zm − zn)

∥∥∥∥2
H

+a(Pm − P n, Pm − P n) +

∫ t

0

a(Ṗm − Ṗ n, Ṗm − Ṗ n)ds

)
= 0

In other words, the sequences zm and Pm are Cauchy in C1([0, T ];H) and in C([0, T ];V ).
Since these spaces are complete, the Cauchy sequences zm and Pm converge, and we can
de�ne there limit as u and p respectively. In particular, since

(
zm(0), dz

m

dt
(0)
)
converges

to (u0, u1) in V × H, we get the initial conditions. Moreover, it is clear that u(t) and
p(t), as the sum of the series (2.13), satisfy the variational formulation (2.9) for each test
function v = wk. As (wk) is a hilbertian basis of V, therefore, u(t) and p(t) are indeed the
desired solution of (2.9).

2.2.4 Energy of the System

We recall that the energy at time t and the initial energy are de�ned by:

E(t) :=
1

2

∫
Ω

(∣∣∣∣∂u∂t (x, t)
∣∣∣∣2 + |∇u(x, t)|2

)
dx

E(0) :=
1

2

∫
Ω

(
|u1(x)|2 + |∇u0(x)|2

)
dx

Lemma 2.2.4 Suppose the weak solution u ∈ H2 (0, T ;L2(Ω)) ∩ H1(0, T ;V ). Then for
any 0 ≤ t ≤ T

E(t) = E(0) +

∫ t

0

(f(s), u̇(s)) ds+

∫ t

0

a(p(s), u̇(s)) ds (2.19)

Proof. Choosing v = u̇ ∈ V in (2.9) gives

(ü(t), u̇)L2(Ω) + a(u(t), u̇)− a (p(t), u̇) = (f(t), u̇)

Note that by Leibniz's integral rule, for any di�erentiable u we have

1

2

d

dt
∥u (t)∥2L2(Ω) =

1

2

d

dt

∫
Ω

u2 (t) dΩ,

=
1

2

∫
Ω

∂

∂t

(
u2 (t)

)
dΩ,

=

∫
Ω

u̇ (t)u (t) dΩ = (u̇ (t) , u (t))L2(Ω) .

22



2.2. THE VARIATIONAL PROBLEM CHAPTER 2.

and similarly,
1

2

d

dt
∥u (t)∥2V = a (u̇ (t) , u (t)) . Hence it yields

1

2

d

dt
∥u̇ (t)∥2L2(Ω) +

1

2

d

dt
∥u (t)∥2V − a (p(t), u̇) = (f(t), u̇)

Thus, from integration with respect to time from 0 to t where t ∈ [0;T ],

1

2
∥u̇ (t)∥2L2(Ω) +

1

2
∥u (t)∥2V =

1

2
∥u0 (t)∥2L2(Ω) +

1

2
∥u1 (t)∥2V +

∫ t

0

a (p(s), u̇) ds

+

∫ t

0

(f(s), u̇)ds (2.20)

Lemma 2.2.5 Assume that p ∈ H1(0, T, V ). Then for any 0 ≤ t ≤ T ,∫ t

0

a(p(s), u̇(s)) ds = a(u, p)− 1

2
∥p∥2V −

∫ t

0

∥ṗ∥2V ds

Proof. Set v = ṗ then 2.9 yields

a (ṗ(t), ṗ) + a (p(t), ṗ) = a(u(t), ṗ)

∥ṗ∥2V +
1

2

d

dt
∥p∥2V = a(u(t), ṗ)

Integration by parts yields∫ t

0

∥ṗ (s)∥2V ds+
1

2
(∥p(t)∥2V − ∥p(0)∥2V ) = a (u(t), p(t))− a (u(0), p(0))

−
∫ t

0

a (u̇ (s) , p (s)) ds

Since p(0) = 0, we have

∫ t

0

∥ṗ (s)∥2V ds+
1

2
∥p(t)∥2V = a (u(t), p(t))−

∫ t

0

a (u̇ (s) , p (s)) ds

and therefore,

∫ t

0

a (p (s) , u̇ (s)) ds = a (u(t), p(t))− 1

2
∥p(t)∥2V −

∫ t

0

∥ṗ (s)∥2V ds. (2.21)

We replace the expression (2.21) in (2.20) we obtain (2.19)
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Theorem 2.2.2 If u ∈ H2 (0, T ;L2(Ω)) ∩ H1(0, T ;V ), then we have the following sta-
bility bound: for any t ∈ [0;T ]

∥u̇∥20 + ∥∇u∥20 + ∥∇p∥20 + 2

∫ t

0

∥∇ṗ∥20 ≤ C

(∥∥u1
∥∥
0
+ ∥u∥20 +

∫ t

0

∥f∥20
)

(2.22)

Proof. According to the lemma (2.20)and (2.21) we have

∥u̇ (t)∥2L2(Ω) + ∥u (t)∥2V = ∥u0 (t)∥2L2(Ω) + ∥u1 (t)∥2V + 2a(u, p)− ∥p∥2V − 2

∫ t

0

∥ṗ∥2V ds

+ 2

∫ t

0

(f(t), u̇)ds

By applying Cauchy-Schwarz inequality and Young's inequality we obtain

∥u̇ (t)∥2L2(Ω) + ∥u (t)∥2V +∥p∥2V + 2

∫ t

0

∥ṗ∥2V ds ≤ ∥u0 (t)∥2L2(Ω) + ∥u1 (t)∥2V + 2a(u, p)

+
1

ε

∫ t

0

∥f(s)∥2ds+ ε

∫ t

0

∥u̇∥2ds

On the other hand, in the same sense, Cauchy-Schwarz inequality and Young's inequality
allow us to have

a(u, p) ≤ ∥u∥V ∥p∥V ≤ 1

2ε
∥u∥2V +

ε

2
∥p∥2V

∥u̇ (t)∥2L2(Ω) + (1− 1

ε
) ∥u (t)∥2V + (1−ε)∥p∥2V + 2

∫ t

0

∥ṗ∥2V ds ≤ ∥u0 (t)∥2L2(Ω) + ∥u1 (t)∥2V

+
1

ε

∫ t

0

∥f(s)∥2ds+ ε

∫ t

0

∥u̇∥2ds

∥u̇ (t)∥2L2(Ω) + c1 ∥u (t)∥2V + c2∥p∥2V + 2

∫ t

0

∥ṗ∥2V ds ≤ ∥u0 (t)∥2L2(Ω) + ∥u1 (t)∥2V

+
1

ε

∫ t

0

∥f(s)∥2ds+ ε

∫ t

0

∥u̇∥2ds

Gronwall's inequality implies :

∥u̇ (t)∥2L2(Ω) + ∥u (t)∥2V + ∥p∥2V +

∫ t

0

∥ṗ∥2V ds ≤ C(∥u0 (t)∥2L2(Ω) + ∥u1 (t)∥2V

+

∫ t

0

∥f(s)∥2ds) (2.23)

Theorem 2.2.3 Then the energy of (2.1) decays to zero exponentially, that is, there exist
positive constants C and φ such that

E(t) ⩽ Ce−φt, t ∈ [0, T ] (2.24)

Proof. see [14] theorem 2.
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Chapter 3

Finite element approximation
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3.1. DISCRETIZATION CHAPTER 3.

In this chapter, our focus is on solving problems (1.1) and (2.1) using the approxima-
tion method. We aim to employ the �nite element approach to approximate the solutions
to these problems.

3.1 Discretization

There are two commonly used approaches to discretize an evolution problem:
The �rst approach involves a semi-discretization in space using methods such as the

�nite element method. In this approach, only the spatial domain is discretized, meaning
that the solution of the problem is approximated on a spatial mesh. This transforms
the continuous problem into a system of ordinary di�erential equations (ODEs) in time.
Then, a time discretization method such as the Newmark method or the Crank-Nicolson
method can be applied to numerically solve the obtained ODEs.

The second approach involves a semi-discretization in time using methods like the
Newmark method or the Crank-Nicolson method. In this approach, only the time domain
is discretized, meaning that the solution of the problem is approximated at discrete time
instances. This leads to a system of partial di�erential equations (PDEs) in space. Then,
a spatial discretization method such as the �nite element method can be applied to nu-
merically solve the obtained PDEs.
This diagram summarizes what has been previously mentioned.

Figure 3.1: discretization diagram
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3.2 Finite element approximation to wave equation

3.2.1 Semi-discretization in space

Let us de�ne Vh such that consists of continuous local basis functions with respect to
Lagrange �nite elements. Hence we can de�ne Vh ⊂ V with its global basis functions
(ϕi)1≤i≤nh

(which does not depend on time) by

Vh = ⟨{ϕ1, ϕ2, . . . , ϕk}⟩
We discretize in space the variational formulation (1.10) of the wave equation. The semi-
discretization of (1.10) is, therefore, the following variational approximation:
�nd uh(t) function of ]0, T [ with values in Vh such that:

d2

dt2
⟨uh(t), vh⟩L2(Ω) + a (uh(t), vh) = ⟨f(t), vh⟩L2(Ω) ∀vh ∈ Vh, 0 < t < T,

uh(t = 0) = u0,h,

∂uh

∂t
(t = 0) = u1,h

(3.1)

where u0,h ∈ Vh and u1,h ∈ Vh are approximations of the initial data u0 and u1.
To show that (3.1) admits a unique solution and to calculate it in a practical way, we
introduce a basis (ϕi)1≤i≤nh

of Vh , and we seek uh(t) in the form

uh(t) =

nh∑
i=1

Uh
i (t)ϕi

with Uh =
(
Uh
i

)
1≤i≤nh

the coordinate vector of uh. Letting

u0,h =

nh∑
i=1

U0,h
i ϕi, u1,h =

nh∑
i=1

U1,h
i ϕi, bhi (t) = ⟨f(t), ϕi⟩L2(Ω) , 1 ≤ i ≤ nh,

the variational approximation problem (3.1) is equivalent to the linear system of ordinary
di�erential equations of second-order with constant coe�cients

Mh
d2Uh

dt2
(t) +KhU

h(t) = bh(t), 0 < t < T

Uh(t = 0) = U0,h,
dUh

dt
(t = 0) = U1,h

(3.2)

where we �nd the matrices of mass Mh and sti�ness Kh as

(Mh)ij = ⟨ϕi, ϕj⟩L2(Ω) , (Kh)ij = a (ϕi, ϕj) 1 ≤ i, j ≤ nh.

The existence and uniqueness, as well as an explicit formula, of the solution of (3.2) are
easily obtained by simple simultaneous diagonalization of the matrices Mh and Kh. As
it is di�cult and expensive to diagonalize (3.2), in practice we solve numerically (3.2) by
discretization and walking in time.
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Theorem 3.2.1 The mass matrix M and the sti�ness matrix K are symmetric positive
de�nite. Thus, they are invertible.

Proof. Note that L2 inner product and the bilinear form a(·, ·) are symmetric hence
M and K are symmetric. Let v ∈ Rnh

. Then

v⊤Mv =

nh∑
i,j=1

vjMijvi =

nh∑
i,j=1

vj (ϕj, ϕi)L2(Ω) vi =

n
V h∑

i,j=1

(vjϕj, viϕi)L2(Ω) = ∥v∥2L2(Ω) ≥ 0

where v =
∑nh

i=1 viϕi ∈ V h. By the norm axiom, v⊤Mv = 0 if and only if v = 0. Thus
M is symmetric positive de�nite and hence M is invertible. On the other hand, a(·, ·) is
coercive, so

v⊤Kv =

nh∑
i,j=1

vjKijvi =

nh∑
i,j=1

vja (ϕj, ϕi) vi =

nh∑
i,j=1

a (vjϕj, viϕi) = a(v, v) ≥ κ∥v∥2H1(Ω) ≥ 0

for some positive constant κ. It implies that also v⊤Kv = 0 if and only if v = 0, therefore
K is symmetric positive de�nite and so invertible.

3.2.2 Fully Discrete Formulation in time

We use a �nite time di�erence method to solve the system of ordinary di�erential equations
(3.2). To simplify the notations, we rewrite the system (3.2) without mentioning the
spatial dependence in h 

Md2U

dt2
(t) +K U(t) = b(t)

U(t = 0) = U0,

dU

dt
(t = 0) = U1,

(3.3)

where we assume that b(t) is continuous on [0, T ]. We divide the time interval [0, T ]
into n0 time steps τ = T/n0, we set tn = nτ 0 ≤ n ≤ n0, and we denote by Un the
approximation of U (tn) calculated by a scheme. For 0 ≤ θ ≤ 1/2 we propose the θ-scheme

MUn+1 − 2Un + Un−1

τ 2
+K

(
θUn+1 + (1− 2θ)Un + θUn−1

)
= θb (tn+1) + (1− 2θ)b (tn) + θb (tn−1) .

(3.4)

When θ = 0, we call (3.4) an explicit scheme (it is in fact really explicit only if the mass
matrix M is diagonalisable). To start the scheme, we need to know U0 and U1, which we
nà get thanks to the initial conditions

U0 = U0 et
U1 − U0

τ
= U1.
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A more frequently used scheme because it is more general is the Newmark scheme. To
solve the system

Md2U

dt2
(t) +KU(t) = b(t)

we approach U(t), dU/dt(t), d2U/dt2(t) by three sequence Un, U̇n, Ün
MÜn+1 +KUn+1 = b (tn+1)

U̇n+1 = U̇n + τ
(
δÜn+1 + (1− δ)Ün

)
Un+1 = Un + τU̇n +

τ 2

2

(
2θÜn+1 + (1− 2θ)Ün

) (3.5)

with 0 ≤ δ ≤ 1 and 0 ≤ θ ≤ 1/2.
(3.5) is equivalent to

MUn+1 − 2Un + Un−1

τ 2
+K

(
θUn+1 +

(
1

2
+ δ − 2θ

)
Un +

(
1

2
− δ + θ

)
Un−1

)
= θb (tn+1) +

(
1

2
+ δ − 2θ

)
b (tn) +

(
1

2
− δ + θ

)
b (tn−1) .

(3.6)

The following lemma studies the stability of these schemes.

Lemma 3.2.1 We consider the Newnmark scheme (3.6). If δ < 1/2 is still unstable.
Suppose now that δ ≥ 1/2. The necessary condition of Von Neumann stability is always
veri�ed if δ ≤ 2θ ≤ 1, while, if 0 ≤ 2θ < δ it is satis�ed only under the CFL (Courant-
Friedrichs-Lewy) condition

max
i

λiτ
2 <

2

δ − 2θ
(3.7)

where the λi are the eigenvalues of KU = λMU

Proof. We decompose Un and the second member of (3.6) in the orthonormal basis for
M and orthogonal for K. Therefore, (3.6) is equivalent, component by component, to

Un+1
i − 2Un

i + Un−1
i

τ 2
+ λi

(
θUn+1

i +

(
1

2
+ δ − 2θ

)
Un
i +

(
1

2
− δ + θ

)
Un−1
i

)
= bni ,

(3.8)

with obvious notations (the λi are the eigenvalues of the matrix system KVi = λiMVi).
As the schema (3.8) is three level we introduce an iteration matrix Ai such that(

Un+1
i

Un
i

)
= Ai

(
Un
i

Un−1
i

)
+

τ 2

1 + θλiτ 2

(
bni
0

)
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The necessary Von Neumann stability condition is ρ (Ai) ≤ 1. We therefore calculate the
eigenvalues of Ai which are the roots of the polynomial in µ following

µ2 − a11µ− a12 = 0

whose discriminant is

∆ =
−4λiτ

2 + λ2
i τ

4
((

1
2
+ δ
)2 − 4θ

)
(1 + θλiτ 2)

2

We easily check that the roots of this polynomial have a modulus less than or equal to 1
if and only if we are in one of the two following cases:

1. either ∆ ≤ 0 and a12 ≥ −1,

2. either ∆ > 0 and 1− a12 ≥ |a11|.

A tedious but simple calculation in principle then leads to the condition (3.7).
Finally, we can state a convergence result of this discretization method.

Proposition 3.2.1 Let u be the "su�ciently regular" solution of the wave equation (1.1).
Let (Th)h>0 be a sequence of regular triangular meshes of Ω. Let Vh be the subspace of
H1

0 (Ω), de�ned by the �nite element method Pk. Let τ be a sequence of time steps tending
to zero. Let un

h ∈ Vh be the function whose coordinates Un in the �nite element base of
Vh are calculated by the Newmark scheme. If limh→0 u

0
h = u0 in L2(Ω), limh→0 u

1
h = u1 in

L2(Ω), and if h and τ tend to 0 respecting the stability condition (3.7), then we have

lim
h→0,τ→0

max
0≤n≤n0

∥u (tn)− un
h∥L2(Ω) = 0.

Proof. (see Theorme 8.7.2 [4].)
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3.3 Finite element approximation to wave equation whit

memory term

3.3.1 Semi-discretization in space

Let's de�ne a �nite-dimensional subspace Vh that consists of continuous local basis func-
tions with respect to Lagrange �nite elements. This means that Vh is constructed using a
set of basis functions (ϕi)1≤i≤nh

that are continuous piecewise polynomials .Hence we can
de�nde the subspace Vh ⊂ V as follows:

Vh = ⟨{ϕ1, ϕ2, . . . , ϕk}⟩

We discretize in space the variational formulation (2.9) of the wave equation withe a
memory term. The semi-discretization of (2.9) is, therefore, the following variational
approximation:
Find uh(t) and ph functions of ]0, T [, with values in Vh such that: So the approximate
solution are given as

uh(t) =

nh∑
i=1

Uh
i (t)ϕi (3.9)

ph(t) =

nh∑
i=1

phi (t)ϕi (3.10)

Then we de�ne the discrete variational problem:
(üh(t), vh)L2(Ω) + a(uh(t), vh)− a (ph(t), vh) = (f(t), vh)

a (ṗh(t), qh) + a (ph(t), qh) = a(uh(t), qh)

uh(0) = u0
h, u̇h(0) = u1

h

ph(0) = 0

(3.11)

where
a(uh, vh) = (∇uh,∇vh)L2(Ω)

where u0,h ∈ Vh and u1,h ∈ Vh are approximations of the initial data u0 and u1 .
de�ned by:

u0,h =

nh∑
i=1

U0,h
i ϕi, u1,h =

nh∑
i=1

U1,h
i ϕi
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
MhÜ

h(t) +KhU
h(t)−KhP

h = bh(t), 0 < t < T

KhṖ
h(t) +KhP

h = MhU
h(t)

Uh(t = 0) = U0,h, U̇h(t = 0) = U1,h

P h(t = 0) = 0

(3.12)

where the mass matrix Mh and the sti�ness matrix Kh are de�ned by

(Mh)ij = ⟨ϕi, ϕj⟩L2(Ω) , (Kh)ij = a (ϕi, ϕj) 1 ≤ i, j ≤ nh.

Considering the semidiscrete formulation, we can express the second equation of (3.11) as
follows:

ṗh(t) + ph(t) = uh(t)

with invertible K with the initial condition

Ku(0) = U0 Mu̇(0) = U1

where
U0 = a(u0, ϕ) and U1 = (u̇1, ϕ)

Lemma 3.3.1 According to the theorem (3.2.1), the mass matrix M and the sti�ness
matrix K are symmetric positive de�nite. Thus, they are invertible.

3.3.2 Fully discretization in space-time

for tn = nτ , where τ ≥ 0 such that τ = T/N,N ∈ N, for n = 0, . . . , N. With this in
mind, the fully discrete formulation is determined by Crank-Nicolson method. SupposeU̇n

h

denotes the approximation to �rst derivative in time at t = tn with the relation

U̇n+1
h (x) + U̇n

h (x)

2
=

Un+1
h (x)− Un

h (x)

τ
for n = 0, . . . , N − 1. (3.13)

With applying Crank-Nicolson method, the fully discrete formulation for (3.11) can
de�ned as follows:
Find Un

h (x), U̇
n
h (x) and P n

h (x) ∈ Vh, for n = 0, . . . , N such that
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(
U̇n+1
h − U̇n

h

τ
, vh

)
+ a

(
Un+1
h + Un

h

2
, vh

)
−a

(
P n+1
h + P n

h

2
, vh

)
= (fn, vh) (3.14)

a

(
P n+1
h − P n

h

τ
, vh

)
+ a

(
P n+1
h + P n

h

2
, vh

)
= a

(
Un+1
h + Un

h

2
, vh

)
(3.15)

a
(
U0
h , vh

)
= a (u0, vh) (3.16)(

U̇0
h , vh

)
= (u1, vh) (3.17)

P 0
h = 0 (3.18)

Using a similar approach to the semidiscrete formulation,We obtain

u0
h = K−1U0

with
µ1
h = M−1U1

K is an invertabel matrix and p0h(0) = 0 for n = 0, (3.15) provides(
1

τ
+

1

2

)
p1h =

u0
h + u1

h

2
(3.19)

and (3.14) implies

1

τ
M(u1

1 − u1
0) +

1

2
K(u0

1 − u0
0)−

1

2
p1hK =

1

2
(f 1 + f 0) (3.20)

from the relation (3.13)

u1
1 =

2

τ
(u0

1 − u0
0)− u1

0 (3.21)

and so (3.19) yields

1

τ
M
(
2

τ
(u0

1 − u0
0)− 2u1

0

)
+

1

2
K
(
u0
1 − u0

0

)
−
(
1

τ
+

1

2

)−1
1

2
K
(
u0
1 − u0

0

)
= (f 0 + f 1)

(3.22)

(
2

τ 2
M+

1

2

(
1− 1

2

(
1

τ
+

1

2

)−1
)
K

)
u1
0

=
2

τ
Mu1

0 +

(
2

τ 2
M− 1

2

(
1− 1

2

(
1

τ
+

1

2

)−1
)
K

)
u0
0 +

1

2

(
f 1 + f 0

)
.

(3.23)
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So the matrix A is de�ned by

A =

(
1− 1

2

(
1

τ
+

1

2

)−1
)
K

if the matrix 2
τ2
M+A is invertible, and since u0 , u1 and fn are known ,we can obtain u1

Eventually, we can also derive u1
0 and p1; by (3.21) and (3.19). In this manner, we can

solve the following system for n = 0, . . . , N − 1.



un+1 =

(
2

τ 2
M+A

)−1 [
2

τ
Mu̇n +

(
2

τ 2
M −A

)
un +

2

2 + τ
Kpnh +

1

2

(
fn+1 + fn

)]
u̇n+1 =

2

τ

(
un+1 − un

)
− u̇n,

pn+1 =
2

2 + τ

(
2− τ

2τ
pn +

1

2

(
un+1 + un

))
.
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3.3.3 Numerical Tests

In this section, we will discuss the numerical results obtained for problems (1.1) and
(2.1) using the FreeFem++ software. We conducted numerical simulations to solve these
problems and analyze their behavior.

Numerical Tests for wave equation

so we get the results

Figure 3.2: Numerical Tests for wave equation
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(a) displacement graph in the initial moment (b) displacement graph in the �nal instant

Figure 3.3: The displacement graph

Figures (3.3a) and (3.3b) provide visual con�rmation of the validity of formula (1.22),
which expresses energy conservation in the context of the wave equation. These �gures
present the results of our numerical simulations where we studied the evolution of the
total energy of our system over time.

By analyzing the results, we can observe that the total energy remains constant over
time, which is in agreement with formula (1.22). This means that the initial energy
injected into the system is conserved over time, without signi�cant loss or gain. This
conservation of energy is an important property of the wave equation and serves as further
validation of our numerical results.
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Numerical Tests for wave equation with memory term

(a) (b)

(c) (d)

Figure 3.4: wave equation with memory term
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Figure 3.5: Energy function for the Exponential decay

Observing the results obtained from Figure(3.5), it can be concluded that the energy of
the wave problem with memory term decreases exponentially. This decrease is in�uenced
by the presence of the memory term in the equation, which contributes to dissipating the
energy of the system.
Subsequently, vibrations or oscillations are observed in the energy, which is also attributed
to these results con�rm the validity of the theorem (2.2.3) of decrease exponentially. This
observation of the rapid exponential decrease of energy demonstrates the importance of
the term memory in the problem of waves and its in�uence on the evolution of energy.
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Conclusion

In the conclusion, this thesis explored in the problems of wave equations with memory
term , focusing on the existence, uniqueness and stability of solutions. Using a spectral
approach, we were able to demonstrate the existence and uniqueness of solutions and
analyze their behavior. Our numerical results con�rmed the signi�cant in�uence of the
memory term on the properties of the solutions. We observed an exponential decrease in

the energy of the system over time, which testi�es to the stability and the
dissipativeness of the studied model. This research opens the way to new perspectives in

the �eld of modeling viscoelastic dynamic systems.

• we can changing the operator to another operator like the bi-laplacien operator.

• we can change the memory function by another function g which satis�es well-pressed
conditions.

• In the discritization we can take the ultra weak formulation so we can take the initial
data u0 ∈ H and u1 ∈ V ∗.
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Résumé :
Dans ce mémoire, notre objectif est d’étudier l’existence, l’unicité et la stabilité des so-
lutions des problèmes d’équations des ondes sans et avec terme mémoire. Nous adoptons
une approche spectrale pour analyser ces problèmes et démontrer l’existence et l’unicité
des solutions. Nous examinons également la stabilité des solutions. Pour résoudre ces
problèmes numériquement, nous utilisons la méthode des éléments finis. Nous mettons
en œuvre les schémas de Crank-Nicolson et Newmark pour discrétiser les équations dans
le domaine temporel.
mots clés: équations des ondes, terme mémoire, approche spectrale,
décroissance de l’énergie, schémas de Crank-Nicolson et Newmark.

Summary:
In this thesis, our objective is to study the existence, the uniqueness and the stability
of the solutions of the problems of wave equations without and with memory term. We
adopt a spectral approach to analyze these problems and demonstrate the existence and
uniqueness of the solutions. We also examine the stability of the solutions. To solve
these problems numerically, we use the finite element method. We implement the Crank-
Nicolson and Newmark schemes to discretize the equations in the time domain.
Key words: wave equations, memory term, spectral approach, energy decay, Crank-
Nicolson and Newmark schemes.
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