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Abstract

In this work, we study the �nite element approximation of a prestressed shell model for

the hybrid formulation. The unknowns in this model, namely the displacements and the

rotations,are described using Cartesian and local covariant bases, respectively. However,

due to the constraints in the solution space, we cannot directly use the �nite element

method. Therefore, we employ a mixed formulation instead.

We study the existence and uniqueness of its solution the convergence properties both a

priori and a posteriori for this formulation.

key worde: �exural prestressed model,a hybrid formulation,a mixed formulation, �nit

element methode,a priori and a posteriori analusi.

Résumé

Dans ce travail, nous étudions l'approximation par éléments �nis d'un modèle de coque

précontrainte pour la formulation hybride. Les inconnues de ce modèle, à savoir les

déplacements et les rotations,sont décrites à l'aide de bases covariantes cartésiennes et

locales,respectivement. Cependant,en raison des contraintes dans l'espace des solutions,
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nous ne pouvons pas utiliser directement la méthode des éléments �nis. Par conséquent,

nous utilisons plutôt une formulation mixte. Nous étudions l'existence et l'unicité de sa

solution les propriétés de convergence à la fois a priori et a posteriori pour cette

formulation et établissons .

les mots clés:modèle précontraint en �exion,une formulation hybride,une formulation

mixte, méthode des éléments �nis,analyse a priori et a posteriori.
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Notations

➤ Greek indices α, β, ρ take their values in the set 1,2.

➤ Latin indicesi, j, ...and exponents take their values in the set 1, 2, 3.

➤ u · v The inner product of u and v in R3 .

➤ u × v , The vector product of u and v .

➤
∫
w
A : B denote

∑
α=1,2

∑
β=1,2

∫
w

Aα,βBα,βdx.

➤ A ≲ B Denote A ≤ CB.

➤w: Be a domain of R2 .

➤ S:a midsurface of the shell.

➤ Γ ρ
αβ : The Christo�el symbols of the surface .

➤[G]e:Denotes the jump of G across e .

➤ λ ,µ : The Lame moduli of the homogeneous and isotropic material that constitutes

the shell.

➤ v,E Denote respectively the poisson modulus and coe�cient the Young of the

material.

➤ tr(A): Trace of the matrix A,(tr(A) = A11 + A22).

➤ Hm(ω):Sobolev space of order m 


➤ ∆(T ) Is the union of triangles of τh that intersect T .

➤ ∆(e) Is union of triangles of τh that intersect e
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Introduction

The prestressed shell structure is a crucial component in both mechanical

engineering and civil engineering. It �nds wide-ranging applications in various

�elds such as satellites, o�shore structures, aircraft, towers, and high-rise buil-

dings. However, analyzing and designing prestressed shells pose signi�cant

challenges due to their complex elastic and inelastic behavior.

To address these challenges, several mathematical models have been develo-

ped. These models fall into three categories: force-based models, displacement-

based models, and hybrid models. Hybrid models utilize mathematical tech-

niques to integrate force, displacement, equilibrium, and deformation into a

single formulation. This enables an accurate representation of both membrane

and bending e�ects in prestressed shells.

In this work we are then performing some error analysis of a prestressed

(two dimensional) shell model which was introduced for the �rst time in [10].

This model is the same as the one of a parametrized shell up to the addition of a

prestressed energy term. This term (as well as the �exural one) is derived from

the Kirchho� model of the bending of the nonlinear elastic plate (obtained as a

limit of three dimensional nonlinear elasticity). The unknown of the problem is

the couple (u, r), where u is the displacement from the reference con�guration

2



CONTENTS CONTENTS

and r is the in�nitesimal rotation of the cross section of the shell. In [10] both

u and r are described in Cartesian coordinates and they are sought in the

Sobolev space H1 (each one is a vector �eld with three components). However,

the bilinear form describing the model involves the �rst order derivative of

the components ui, i = 1, 2, 3 and rα, α = 1, 2, whereas, it does not use any

derivative for the component r3. This causes a loss of coercivity of the bilinear

form on the space H1. In order to solve this issue, a larger Hilbert space was

considered in [11], where the third component r3 is sought in the L2 space.

A hybrid formulation is considered here, i.e., the unknowns (the displace-

ment and the rotation to the shell midsurface) are described respectively in

Cartesian and local covariant basis. The use of a hybrid formulation in a simi-

lar spirit of the present paper was used in Blouza [1] for Naghdi's shell model.

The aim of using hybrid formulation in [1] was to reduce the number of the

unknowns (from six to �ve because s · a3 = 0) and to get rid of the tangency

constraint for the rotation which was presented by Blouza and al [2]. Hybrid

formulation allows to use conforming �nite element methods on unconstrained

functional space with a smaller number of degrees of freedom. Another hybrid

formulation of general shell element involving three incremental displacements

corresponding to the stationary global coordinate directions and two rotations

described in a local coordinates system was used in [9].

The purpose of this work is to provide a robust a priori error analysis and

a posteriori error estimator of mixed formulation of the hybrid formulation.

The objective of this work is to provide robust a priori error analysis and a

posteriori error estimators for the mixed formulation of the hybrid formulation.

These estimators yield global upper bounds and local lower bounds for the

error, measured as the energy norm distance between the exact solution and

its approximation. . In this study, we perform a posteriori analysis of the

residual type for the mixed formulation and prove upper and lower bounds

for the error, explicitly dependent on the mixed parameter. These estimators
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CHAPTER 0.

can be used to construct adapted meshes, enabling the computation of an

approximated solution with a given accuracy.

For plates and shell models, there already exist several a posteriori error

estimation approaches. We refer to [[7], [8], [14], [15]] for the pioneering works

concerning plate models. Up to our knowledge, the �rst a posteriori estimate

concerning shell models formulated in global coordinate system was done in

[6] for Naghdis shell model. This work is divided into

▶ In chapter 1, We de�ne the �exural prestressed shell model and a hybrid

formulation

▶In Chapter 2, In this chapter, we are going to study the approximation

using the �nite element method and the a poriori analysis .

▶ In Chapter 3, In this chapter we derive also a posteriori estimates and we

prove the reliability and e�ciency of our a posteriori error estimator.
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Chapter 1

A Prestressed shell model

introduction

In this chapter we present the characteristics and geometrical notion re-

lated to shell ,espicially notation ,de�nitions and fundamentals required for

analysis of mathimatical shell models. The aim of this chapter In the �rst sec-

tion,we de�ne the problem of the prestressed �exural shell model.In the second

and third section,we present the hybrid formula and the mixed formula of the

hybrid formula with proof of existence and uniqueness of the solution.

Let(e1, e2, e3) be the canonical orthogonal basis of R3 and let U and V be

to vector of R3.and U×V the vector product of U and V for a given

domain W of R2 with a lipshitz boundary we assume that the boundary ∂ W

is divided into two part τ0and τ1 we thus consider a shell with a midsurface

(denoted byS ) de�ned by a chart φ which is an injective mapping from the

closuve of a bounded open subset of R2

S = φ(ω̄) where φ ∈ W (2,∞)(ω,R3) such that
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CHAPTER 1.

φ = ω̄ −→ R3 x = (x1, x2) 7−→ φ(x).

We de�ne two tangentail vectors to the surface S by :

aα(x) =
∂φ(x)
∂xα

;α = 1, 2.

in each point P = φ(x) of S.

The unit normal vector a3 is then e�ned by

a3 =
a1×a3
|a1×a2|

The two vectors (a1, a2) de�ned the tangent plan TpS on every point of S

and the triple (a1, a2, a3)the covariant basis on each point P of the surface S.

The contravarient basis ai are denoted by the relation aia
j = δji with a3 = a3

and δij beiging the Kronecher symbol(δij = 1 if i = j and 0 ).

The restriction of the metric tensor to the tangent plane also called the

�rst fundamontal form of the surface is given by component

aαβ = aα × aβ

The contravariant components of the metricare given by

aαβ = aα × aβ = (aαβ)
−1 =

1

a
×
(
a22 −a12
−a12 a11

)
(1.1)

with a = det(aαβ) = a11 × a22 − (a12)
2 indeed,the in�nitesimal area corre-

sponding to the di�erential (dx1, dx2)

the coordinates can be expressed as dS =
√
adx1dx2

We have this relation

a1 × a3 = −
√
aa2 and a2 × a3 =

√
aa1 (1.2)

6
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a1 × a2 = det(aαβ)
√
aa3 (1.3)

a1 × a3 = −det(aαβ)
√
aa2 (1.4)

a2 × a3 = det(aαβ)
√
aa1. (1.5)

The components of the second fundamental form of the surface are de�ned

by

bαβ = a3 · ∂βaα = −aα∂βa3

The proof can be found in[4] .

The second fundamental form is calle the curvature bensor and the mised

components are de�ned by

bβα = aβp × bpα

the christo�el symebols of the surfaceτ pαβ take the forme

τ pαβ = τ pβα = ap · ∂βaα = −∂βap · aα.
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1.1. A FLEXURAL PRESTRESSED SHELL MODEL CHAPTER 1.

1.1 A flexural prestressed shell model

The concept of prestressing involves intentionally applying permanent stresses to strengthen

structures. In [4], Marohnic and TambaCa developed a �exural model for prestressed

shells. The objective of their study was to determine the unknowns of the problem, namely

the displacement (u) from the reference con�guration and the in�nitesimal rotation(r) of

the shell's cross section. They formulated the following variational problem:

{
Find U = (u, r) ∈ Vsuchthat

A(U, V ) + Ap(r, s) = L(v, s)∀V = (v, s) ∈ V

It has been demonstrated that the bilinear form A(., .) de�nes a norm on the space V.

However, it should be noted that this space is not complete with respect to this norm .

To address this limitation, we introduce a larger Hilbert space V, which is the completion

of the spaceVwith respect to the norm ∥v∥ = A(v, v)
1
2 . Consequently, the existence and

uniqueness of the solution can be inferred from the Lax-Milgram Lemma in this new

space. In this chapter, we present a prestressed shell model proposed in [11], where a

global coordinate system is utilized instead of the local coordinate system.

We assume that the shell is �xed on a partΓ0of the bondary ofω then function space

for the lineairized �exural probleme is

V =
{
(v, s) ∈ H1(ω,R3)× L2(ω,R3) : s · aα ∈ H1(ω,R), s · a3 = γ̃12(v), v|Γ0 = 0

}
. (1.6)

with

γ̃12(v) =
1

2
(∂1v · a2 − ∂2v · a1) (1.7)

the norm of V is de�ned by

∥(v, s)∥X̄ =

(
∥v∥2H1(ω,R3) +

∑
α=1,2

∥s · aα∥2H1(ω) + ∥s · a3∥2L2(ω)

) 1
2

, (1.8)

Lemma 1 The V equipped with the norm∥(v, s)∥X̄ is a Hilbert space

8



1.1. A FLEXURAL PRESTRESSED SHELL MODEL CHAPTER 1.

Proof. Let us introduce the Hilbert space

X̄ =
{
(v, s) ∈ H1(ω,R3)× L2(ω,R) | sα ∈ H1(ω), v|Γ0 = sα|Γ0 = 0

}
equipped with the natural norm (1.8) and the linear and continuous operator q : X̄ −→

L2(ω) : (v, s) 7−→ s.aα − γ̃12(v).Then V is a closed subspace of X̄, becauseV is simply the

kernel of q see[13].

the variational problem reads as follows

{
Find U = (u, r) ∈ Vsuchthat

A(U, V ) + Ap(r, s) = L(v, s)∀V = (v, s) ∈ V (1.9)

let U = (u, r) and V = (v, s),we introduce the following bilineair forms

A(U, V ) = eAm(u, v) + eAt(U, V ) +
e3

12
Af (r, s) (1.10)

The �exural term is equal to

Af (r, s) = 2µ

∫
ω

Π(r) · Π(s) dx+ 2λµ

2µ+ λ

∫
ω

trΠ(r) · trΠ(s) dx.

denote Π(r) by a symmetrized linearized second fundamental form

Π(s) =

 ∂1.a2
1

2
(∂2s.a2 − ∂1s.a1)

1

2
(∂2s.a2 − ∂1s.a1) −∂2s.a1


The prestressed bilinear form (corresponding to the prestressed energy) reads

Ap(r, s) = 2µ

∫
ω

tr((II0 + IIT )τ(r, s)) dx+
4λµ

2µ+ λ

∫
ω

tr(IIτ(r, s)) dx.

Where

τ(r, s) =
1

2

(
−∂1r.a1 1

2
(∂1a2 − ∂2r.a1)

1
2
(∂1a2 − ∂2r.a1) ∂2r.a2

)
(s.a3)

9



1.1. A FLEXURAL PRESTRESSED SHELL MODEL CHAPTER 1.

+
1

2

(
−∂1s.a1 1

2
(∂1s.a2 − ∂2s.a1)

1
2
(∂1s.a2 − ∂2s.a1) ∂2s.a2

)
(r.a3)

and

II0 = ∇φ⊤∇a3 =
(
∂1φ.∂1a3 ∂1φ.∂2a3
∂2φ.∂1a3 ∂2φ.∂2a3

)
.

The bilinear form Ap(., .) is symmetric but not necessarily positive. The linear form (the

force)L(V ) equals

L(V ) =

∫
ω

f.vdx

with f ∈ L2(ω,R3) that represents a given resultant force dencity.

The membrane term is equal to

Am(u, v) = 4µ

∫
ω

γ(u) · γ(v)dx+ 4λµ

2µ+ λ

∫
w

trγ(u)trγ(u)dx (1.11)

Where γ(v) is a liearized strain tensor.this is a standard membrane term in the theory

of shells for st.Venant-Kirchho� material.In global coordinates,Blouza and le dret showed

that this term is equale [3]

γαβ(u) = (∂αu · aβ + ∂βu · aα) (1.12)

At(U, V ) = µ

∫
ω

aT3 (∇u− r ×∇φ). aT3 (∇v − s×∇φ)dx (1.13)

This term is a standard term in the theory of naghdi shells[4] but in the case that φis

isometric . The rotation in this model is di�erent than the rotation of the Naghdi shell.

e being the thickness of the shell assumed to be constant and positive.

ans

AP (r, s) =
e3

12
Ap(r, s) (1.14)

Theorem 1 For ∥∇a3∥L∞(ω) small enourgh problem(1,9) admits a unique solution.

Moreover,this solution satis�es

∥U∥X̄ ≤ C∥L∥.

Proof. see [13]

10



1.2. A HYBRID FORMULATION CHAPTER 1.

1.2 A hybrid formulation

Let us introduce the space W such that the displacement and the rotation are describd

in cartesian and local covariant or contravariant basis respectively .

W =

{
(v, s) =

3∑
i=1

siai) ∈ H1(ω,R3)× (L2(ω))3|sα ∈ H1(ω), s3 = γ̃12(v), a.e.inω, v|Γ0 = sα|Γ0 = 0

}
(1.15)

such that γ̃(v) is de�ned by (1.7).

equipped with the norm.

∥(v, s)∥X = (∥v∥2H1(ω,R3) +
∑
α=1,2

∥sα∥2H1(ω) + ∥s3∥2L2(ω))
1
2 (1.16)

The di�erence between the de�nition of W and V is that the regularity of the rotation

variable r and the constraint is expressed in curvilinear variables instead of cartesian

ones.Let us now show that the de�nition are equivalent. Indeed ifr = (rca1 , r
ca
2 , r

ca
3 )is the

expression of the rotation in cartesian coordinates,then it can also be written as

r =
3∑

i=1

riai,

where ri, i = 1, 2, 3 are its curvilinear coordinates.then we get

ri = r.ai.

This simple means that W coincides whith V,and therefore the bilinear form A and Ap

are well on W .

before going,we want to amphasize that from now on for(u, r) ∈ W, ri

always mean the curvilinear coordinates of r .

Lemma 2 The space W equipped with the norme (1.16) is a Hilbert space .

11



1.2. A HYBRID FORMULATION CHAPTER 1.

Proof. We remark that Wis a closed subspace of

X =

{
(v, s =

3∑
i=1

siai) ∈ H1(ω,R3)× (L2(ω))3|sα ∈ H1(ω), v|Γ0 = sα|Γ0 = 0

}

equipped with the norm (1.15) becauseW is simply the kernel of the linear and continuous

operator Q de�ned by

Q : X −→ L2(ω) : (v, s) −→ s3 − γ̃12(v)

Then,the new variational formulation reads

{
Find U = (u, r) ∈ W suchthat
A(U, V ) + Ap(U, V ) = L(V )

(1.17)

The bilineare forme A(., .) and Ap(., .) are de�ned by (1.9)

we can write the bilinear forms Am(., .), Af (., .)and At(., .) respectively corresponding to

the membrane,�exural,and the transverse shear energies by

Am(u, v) =
4λµ

λ+ 2µ

∫
w

trγ(u)trγ(v)dx+ 4µ

∫
w

γ(u) : γ(v)dx, (1.18)

Af (r, s) =
2λµ

λ+ 2µ

∫
ω

trΠ(r)trΠ(s)dx+ 2µ

∫
ω

Π(r) : Π(s)dx, (1.19)

At((u, r), (v, s)) = µ

∫
w

a⊤3 (∇µ− r ×∇φ)[a⊤3 (∇v − s×∇φ)]⊤dx, (1.20)

Theorem 2 If ∥∇a3∥L∞(ω) is small enourgh problem hybride formulation admits a uniques

solution .

Moreover, this solution satis�es

∥U∥X ≲ ∥L∥.

12



1.2. A HYBRID FORMULATION CHAPTER 1.

Proof. Since the bilinear formA + Ap and the form L are clearly continuous on W, the

well-posedness of problem (1.17) will be guaranteed if A+ Ap is coercive on W. For that

purpose, we need the following lemma.

Lemma 3 Suppose that φ ∈ H2(ω,R3)and that φ(Γ0) is not included into a straight line.

LetV = (v, s) ∈ W. Then A(V, V ) = 0 if and only ifV = 0.

Lemma 4 Under the assumptions of lemma3,the bilinear form A(., .) is coercive on W.

The proofs are fully similar to those given in Lemma 2 and 3 from [11] and are then

omitted. and if ∥∇a3∥L∞(ω) is small enough,the bilinear form A(., .) + Ap(., .) remains

coerciv on W.Hence,the well-posedness of(1,17)follows the Lax-Milgram lemma

13



1.3. A MIXED FORMULATION FOR A HYBRID FORMULATION CHAPTER 1.

1.3 A mixed formulation for a hybrid formulation

In this subsection,we present a mixed formulation for problem (1.17)

Let us consider the functional space

X =
{
(v, s) ∈ H1(ω,R3)× (L2(ω))3 | sα ∈ H1(ω), v|Γ0 = sα|Γ0 = 0

}
(1.21)

equipped with the norm

∥(v, s)∥X =

(
∥v∥2H1

(ω,R3)
+
∑

α=1,2 ∥sα∥2H1(ω)
+∥s3∥2

L2(ω)

) 1
2

(1.22)

and we set

M = L2(ω). (1.23)

for all ρ > 0 we consider the following variational problem
�nd(U, ψ) = (u, r, ψ) ∈ X×M sush that

A(U, V ) + Ap(U, V ) + ρb(U, V ) + b̃(V, ψ) = L(V ),∀V ∈ X
b̃(U, ϕ) = 0,∀ϕ ∈ M

(1.24)

for V = (v, s) ∈ X and ϕ ∈ M the bilinear form b̃(. , . ) is de�ned by

b̃(V, ϕ) =

∫
ω

(s3 − γ̄12(v))ϕdx (1.25)

and where the bilinear form b(., .) is de�ned by

b(U, V ) =

∫
ω

Q(W )Q(V ) (1.26)

such that

Q(V ) = s3 − γ̄12(v)For anyV = (v, s) ∈ X

Moreover ,the �lowing characterization holds:

W =
{
(v, s) ∈ X,∀ϕ ∈ M, b̃(v, ϕ) = 0

)
(1.27)

Lemma 5 There exists a constant C > 0 such that

∀ϕ ∈ M sup
v∈X

b̃(V, ϕ)

∥V ∥X
≥ C∥ϕ∥L2(ω) (1.28)

14



CHAPTER 1.

Proof. We prove that b(., .)satis�e the inf-sup condition see [12]. We prove that b(., .)

satis�e the inf − sup condition . Let ϕ ∈ M and let V̄ = (v̄, s̄) ∈ X such that v̄ = 0, s̄·aα =

0, s̄ · a3 = ϕ therefore

sup
V ∈X

b̃(V, ϕ)

∥V ∥X
≥ b̃(V̄ , ϕ)

∥V̄ ∥X

=
∥ϕ∥2

L2(ω)

∥ϕ∥L2(ω)

= ∥ϕ∥L2(ω)

Theorem 3 If∥∇a3∥L∞ is su�ciently small, the problem (1.24) has a unique solution

(U, ψ),such that U is the solution of the problem (1.17).

Proof. combining the ellipticity property for A(., .) + ρb(., .) + Ap(., .) and the condition

inf-sup .lemma(2)

Let us now check that U is the solution to the problem (1.17)this solution satis�es

∥U∥X ≤ C∥L∥

this we apply the Lax-miligram lemma.

taking

ϕ = ri − γ̃12(u)

In the second equation of (1.24),obtain U ∈ W then taking V ∈ W cancels the term b in

the �rst equation of (1.24),then we have the result.

15



Chapter 2

Approximation by finit element

method

Finite element method are used to numerically and approximating the solution of the

mathematical models. In this chapter we use the approximation by �nite element method

for the mixed problem which are presented in the previous chapter.with the study of the

a priori analysis of it.

2.1 Approximation by finit element method

As we have mentioned, the constrained problem (1.17) cannot be approximated by robust

conforming methods for a general shell, hence we purpose the approximation of a mexed

formulation . Note that in this section we need not to assume that the bilinear form of

the right hand side is coercive, we only suppose that both problem the contrained and the

relaxed one has a unique solution which supposed to be su�ciently regular. we introduce

16



2.1. APPROXIMATION BY FINIT ELEMENT METHOD CHAPTER 2.

the �nite dimensionel space

Xh =

{
Vh = (vh, sh =

3∑
i=1

sihai) ∈ X|vh∖T ∈ Pk(T )
3, sih ∈ Pk(T ),∇T ∈ Th, k ≥ 1

}
(2.1)

M̃h =
{
µh ∈ C0(ω̄)/µh|T ∈ P1(T ),∀T ∈ Th

}
and consider the following discrete probleme:for all ρ > 0,

Find (Uh, ψh) = (uh, rh, ψh) ∈ Xh such that

A(Uh, Vh) + Ap(Uh, Vh) + ρb(U, V ) + b̃(Vh, ψh) = L(Vh),∀Vh ∈ Xh

b̃(Uh, ϕh) = 0 ∀ϕ ∈ M̃h

(2.2)

Proposition 4 The discrete probleme(2.2)has a unique solution

Proof. the existence and uniqueness of a inf − sup condition given in lemma(4)

Lemma 6 for all µh ∈ M̃h, Vh = (0, Rh(µh))such that Rh(µh) = πh(µha3)(πhdonote the

vector valued P1 lagronge interpolation operator).Then,there exists a constantC > 0 such

that

b̃(Vh, µh) ≥ C∥µh∥2M

Proof. We note that µh is a scalar piecewise P1 function, µha3 is vector-valued, and

Rh(µh) is a vector-valued piecewise P1 function. Let us set δh = Rh(µh) · a3 − µh and

Vh = (0, Rh(µh)). Then,

b̃(Vh, µh) =

∫
ω

(Rh(µh) · a3)µh dx = ∥µh∥2L2(ω) +

∫
ω

δhµh dx,

with

|
∫
ω

δhµh dx| ≤ ∥µh∥L2(ω)∥δh∥L2(ω).

Now, let us estimate ∥δh∥L2(ω). By Lagrange interpolation, we get

µh(x) =
∑
sj

sjµh(sj)θ
h
j (x),

17
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such that θhj (x) is the shape function associated with the vertex sj, and

Rh(µh)(x) =
∑
sj

µh(sj)θ
h
j (x)a3(sj).

Then,

δh(x) =
∑
sj

µh(sj)[a3(sj)− a3(x)]a3(x)θ
j
h(x),

where a3(x) is a unit vector. It holds that

∥δh(x)∥L∞(ω) ≤ 3∥µh∥L∞(ω) max
j

max
Tj

[
C

h
|(a3(sj)− a3(x)) · a3(x)|],

where Tj stands for the set of triangles sharing the vertex sj. Then, using a lamma 4,

we have

∥δh(x)∥L∞(ω) ≤ Ch∥µh∥L∞(ω),

By classical discrete Sobolev estimate , we deduce that

∥δh(x)∥L2(ω) ≤ C∥δh(x)∥L∞(ω) ≤ Ch∥µh∥L∞(ω) ≤ Ch(ln(h)1/2)∥µh∥L2(ω).

Taking h small enough so that Ch(ln(h))1/2 ≤ 1/2.

Lemma 7 there existe Bh > 0dependent of h such that

inf
µh∈Mh

sup
Vh∈Xh

b̃(Vh, µh)

∥Vh∥X∥µh∥L2(ω)

≥ Bh

Proof. Let

B̃h = inf
µh∈Mh

sup
Vh∈Xh

b̃(Vh, µh)

∥Vh∥X∥µh∥L2(ω)

see that Vh = (0, Rh(µh)) ∈ Xhthen by lemma(3)b(Vh, µh) ≥ C∥µh∥2M then

∥Vh∥Xh
= ∥vh∥2H1 +

∑
α=1,2

∥sh.aα∥2H1 + ∥sh.a3∥2L2

≤ ∥sh∥2H1

18
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we have

∥Vh∥Xh
≤ ∥sh∥H1

then ∥Vh∥Xh
≤ ∥Rh(µh)∥H1 we get

B̃h ≥ C infµh∈Mh

∥µh∥M
∥Rh(µh)∥H1

we put Rh(µh) = Rh(µh)− µha3 + µha3 we have

∥Rh(µh)∥H1 ≤ ∥Rh(µh)− µha3∥H1 + ∥µha3∥H1

≤ c1∥∇(µha3)∥L2(ω,M) + ∥µha3∥H1

≤ c1∥µha3∥H1 + ∥µha3∥H1

≤ Ch−1∥µh∥L2

then we obtain

∥Rh(µh)∥H1 ≤ ch∥µh∥L2

which completes the proof
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2.2 A priori analysis

In this subsection we derive a non robust a priori error analysis of the mexed formulation

Theorem 5 Let (U, ψ)be a solution of the problem (1,16) and (Uh, ψh) be a solution of

the problem (1,23) then this following estimate is hold

∥U − Uh∥X ≤ c1h inf
Vh∈X

∥U − Vh∥X + c2 inf
ϕh∈Mh

∥ψ − ϕh∥M (2.3)

∥ψ − ψh∥X ≤ c3h inf
Vh∈X

∥U − Vh∥X + c4h inf
ϕh∈Mh

∥ψ − ϕh∥M (2.4)

such that c1h, c3h and c4h dependent on 1/Bh and c2 independent on h

Proof. Firstly,we prove (2,3) ,because of Xh ⊂ X we have

C1∥Uh −Wh∥X ≤ sup
yh∈Xh

A(Uh −Wh, yh) + ρb(Uh −Wh, yh) + Ap(Uh −Wh, yh)

∥yh∥
then

C1∥Uh −Wh∥X ≤ sup
yh∈Xh

b̃(yh, ϕ− ψ) + A(U −Wh, yh) + ρb(U −Wh, yh) + A(U −Wh, yh)

∥y∥h
implaying

∥Uh −Wh∥X ≤ c̃1
C1

∥U −Wh∥X +
c̃2
C1

∥ψ − ϕh∥M

by the triangle inequality we have

∥U − Uh∥ ≤ (1 +
c̃1
C1

)∥U −Wh∥X +
c̃2
C1

∥ψ − ϕh∥M (2.5)

the Inf-Sup condition (Lemma 5)is satis�ed , there existe rh ∈ Xh and let Vh ∈ Xh such

that

∀ϕ ∈ Mh b̃(rh, ϕ) = b(U − Vh, ϕh)andBh∥rh∥X ≤ C∥U − Uh∥X, C > 0,

then we estimat the term ∥U −Wh∥X,we have

∥U −Wh∥X ≤ ∥U −Wh∥X + ∥rh∥X (2.6)

≤
(
1 +

c

Bh

)
∥U − Vh∥X (2.7)
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Now we prove the estimat (2,4)subtracting the �rst equation of (2,2)from the �rst equa-

tion(1,24),then we obtain

A(U − Uh, Vh) + ρb(U − Uh, Vh) + Ap(U − Uh, Vh) + b̃(Vh, ψ − ψh) = 0for allVh ∈ Xh

then for ϕh ∈ Mh we have

A(U −Uh, Vh)+ ρb(U −Uh, Vh)+Ap(U −Uh, Vh)+ b̃(Vh, ψ−ψh)+ b̃(Vh, ϕ)− b̃(Vh, ϕh) = 0

then to obtain

b̃(Vh, ϕh − ψh) = A(Uh − U, Vh) + ρb(Uh − U, Vh) + Ap(Uh − U, Vh) + b̃(Vh, ϕh − ψ)

By the Inf-Sup condition

∥ϕ− ψh∥M ≤ 1

Bh

sup
Vh∈Xh

b̃(Vh, ϕh − ψh)

∥Vh∥X

=
1

Bh

sup
Vh∈Xh

b̃(Vh, ϕh − ψh) = A(Uh − U, Vh) + ρb(Uh − U, Vh) + Ap(Uh − U, Vh) + b̃(Vh, ϕh − ψ)

∥Vh∥X
One obtain therefore

∥ϕh − ψh∥M ≤ C1

Bh

∥U − Uh∥X +

(
1 +

C2

Bh

)
∥ψ − ϕh∥M

Then we use the triangle inequality , hence the result.
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2.3. THE STRONG FORMULATION CHAPTER 2.

2.3 The strong formulation

Usually, a posteriori estimator is computed by element-wise integration by parts starting

from the classical formulation . Hence in this section we give the strong formulation of

problem (1.24), We �nd the working steps in detail in[4].

using the de�nition of the bilinear form Am(., .) we have

eAm(u, r) = −
∫
ω

Div(T (u)A)− vdx+

∫
Γ1

nT (u)A.vdσ(x) (2.8)

Hence if we set

J =

(
0 1
−1 0

)
with

S(u, r) := eµ((∇u)⊤a3 + Jr̂)

we get

eAt((u, r), (v, s)) = −
∫
ω

Div(S(u, r)a3).vdx+

∫
Γ1

nS(u, r)a3.vdσ(x) +

∫
ω

J⊤S(u, r).ŝdx

(2.9)

considernig the bilinear form Af (r; s). Due to the de�nition of the tonsor Π and the

de�nition of the tensor A,Hence if we set

M(r) = e3

24
AΠ(r)

we get

e3

12
Af (u, r) = −

∫
ω

Div(M(r)).ŝdx+

∫
Γ1

J⊤M(r)n⊤.ŝdσ(x)−
∫
ω

(
M(r) : Γ̄ 1

M(r) : Γ̄ 2

)
.ŝ+(B̄ :M(r)s3)dx

(2.10)

Now we give the contribution of the prestressed term Ap(., .). First as II0 and τ(r, s)are

symmetric,we get

Ap(r, s) = −
∫
ω

1

2
J̃ Div(P (r)).ŝdx+

∫
Γ1

1

2
J̃P (r)n⊤.ŝdσ(x) +

∫
ω

(k(r) +
1

2
B̃ : P (r))s3dx
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CHAPTER 2.

+

∫
ω

1

2

(
P (u) : Γ̃ 1

P (u) : Γ̃ 2

)
.ŝdx (2.11)

for the bilinear form b(., .) as γ̃12(v) = 1
2
(∂1v.∂2φ − ∂2v.∂1φ) if Q(U) is su�siently

regular we �nd

ρb(U, V ) =
1

2
ρ

∫
ω

Q(U)(s3 − γ̃12(v))dx

=
1

2
ρ

∫
ω

Div(Q(U)JA).vdx− 1

2
ρ

∫
Γ1

Q(U)A⊤Jn⊤.vdσ(x) +

∫
ω

Q(U)s3dx (2.12)

and

b̃(U, ϕ) =

∫
ω

(r.a3)ϕdx (2.13)

using the indentities (2,8)(2,9)(2,10)(2,11)(2,12)(2,13) we see the solution U = (u, r) ∈ X

of problem (1,24) satis�es



−Div (T (u)A)−Div (S (U) a3) +
1
2
ρDiv (Q (U) JA) = f in ω,

−J⊤DivM (r)−
(
M (r) : Γ̄1

M (r) : Γ̄2

)
+ J⊤S (U)− 1

2
J̃ Div (P (r)) + 1

2

(
P (u) : Γ̃1

P (u) : Γ̃2

)
= 0 in ω,

−
(
B̄ :M (r)

)
+ κ (r) + 1

2
B̃ : P (r) + ρQ (U) = 0 in ω,

r.a3 = 0 inω
u = r, = 0 on Γ0

nT (u)A+ nS (U) a3 − 1
2
ρQ (U)A⊤Jn⊤ = 0 on Γ1,

1
2
J̄P (r)n⊤ + J⊤M (r)n⊤ = 0 on Γ1.

(2.14)

Remark 6 For more details on how to �nd both ( 2,8) (2,9),(2,10),(2,11)and ( 2,12) see

[13]
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Chapter 3

A posteriori error analysis for a

hybrid formulation

In this chapter, we stady the a posteriori analysis with proof of its reliability through the

upper and lower bounds

3.1 A posteriori analysis

We introduce the approximation space M̃(i)
h with i ∈ N and Zh as follows

M̃(i)
h =

{
Xh ∈ L2(ω)∀T ∈ Th,Xh|T ∈ Pi(T ) }

Zh =
{
jh ∈ L2(ω)3;∀T ∈ Th, jh|T ∈ P0(T )

3 }

we consider an approximation fh of f in Zh and an approximation bhαβ of the coe�cient

bαβ in M̃(1)
h .similarly , we consider approximations ahk of the vectors ak and dhαβ of∂αaβ

in (M̃(2)
h )3 respectively.Obviously we assume that these approximation coe�cients are

uniformly bounded in h. We introduce the approximations Ah(., .),A
h
p(., .)and bh(., .) of
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the bilinear forms A(., .),Ap(., .)and b(., .)respectively where ai,∂αaβ,and bαβ are replaced

by their approximations. More precisely, forU = (u,
∑

i riai) ∈ X we set

γhαβ(u) =
1

2

(
∂αu.a

h
β + ∂βu.a

h
α

)
γ̃h12(u) =

1

2
(∂1u.a

h
2 − ∂2u.a

h
1)

Πh(s) =

(
∂1s.a2

1
2
(∂2s.a2 − ∂1s.a1

1
2
(∂2s.a2 − ∂1s.a1 −∂2s.a1

)
θh(s) =

1

2

(
−γ11(s) γ̃12(s)
γ̃12(s) γ22(s)

)
II0 = (∇φ)T .∇a3 =

(
∂1φ.∂1a3 ∂1φ.∂2a3
∂2φ.∂1a3 ∂2φ.∂2a3

)
Qh(U) = s3 − γ̃h12(U)

Not that II0 is symmetric and therefore in Ap(., .) the factor II0 + II t0 may by 2II0.

Ah
m(u, v) = 4µ

∫
ω

γh(u) : γh(v)dx+
4λµ

2µ+ λ

∫
ω

trγh(u)trγh(v)dx

Ah
f (r, s) = 2µ

∫
ω

Πh(r) : Πh(s)dx+
2µλ

2µ+ λ

∫
ω

trΠh(r)trΠh(s)dx

Ah
t ((u, r), (v, s)) = [(ah3)

T (∇v − s×∇φ)]Tdxµ
∫
ω

(ah3)
T (∇u− r ×∇φ)

Ah
p(r, s) = (

4µλ

λ+ 2µ

∫
ω

trIIh0 trτ
h(r, s)dx+ (2µ

∫
ω

tr((IIh0 + IIh0 )τ
h(r, s))dx)

where

τh(r, s) = θh(r)(s.a3) + θh(s)(r, a3)

we also introduce the approximation Lh of the linear form L namely

Lh(V, S) =

∫
ω

fh.vdx

withe
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3.1. A POSTERIORI ANALYSIS CHAPTER 3.

f ∈ L2(ω,R3)

Then for any V ∈ X, Vh ∈ Xh,and ∀ϕ ∈ M,∀ϕhM̃i
h we may write the residuale as

Ruh
= L(V − Vh)− A(Uh, V − Vh)− Ap(Uh, V − Vh)− ρb(Uh, V − Vh)− b̃(Vh, ψ − ψh)

= (L−Lh)(V−Vh)−(A−Ah)(Uh, V−Vh)−(Ap−Ah
p)(Uh, V−Vh)−ρ(b−bh)(Uh, V−Vh)−(b̃−b̃h)(Uh, ψ−ψh)

−Ah(Uh, V − Vh)− Ap(Uh, V − Vh)− ρbh(Uh, V − Vh)− b̃(Vh, ψ − ψh) + Lh(V − Vh)

b̃(U − Uh, ϕ) = −b̃(Uh, ϕ− ϕh) (3.1)

We �rst observe that the bilinear forms A(., .),Ap(., .) andb(., .)have variable coe�-

cients. In such a case, in order to construct error indicators we need to approximate the

data and the coe�cients by piecewise polynomials, see [6] we again recall the propeties of

the clement operator Ch for0 ≤ m ≤ l ≤ 1

∀h,∀T ∈ τh,∀ω ∈ H1(ω) ∥ω − Chω∥Hω(T ) ≲ hl−m
T ∥ω∥H1(∆(T )) (3.2)

∀h,∀n ∈ εh, ∀ω ∈ H l(ω) ∥ω − Chω∥Hm(n) ≲ h
l−m− 1

2
n ∥ω∥Hl(∆(n)), (3.3)

where ∆(T ) =
⋃

T ′∈τh:T ′ ⋂T ̸=0 T
′(resp . ∆(n) =

⋃
T ′∈τh:n⊂T ′ ̸=0 T

′) is the patch associated

with the element T (resp . the edge n) andεh is the set of edges of the triangulation

Lemma 8 let V = (v,
∑

i siai)and Vh = (vh, sh) = (Chv,
∑

i(Chsi)ai),then we have the

following estimate

|(L−Lh)(V−Vh)−(A−Ah)(Uh, V−Vh)−(Ap−Ah
p)(Uh, V−Vh)−ρ(b−bh)(Uh, V−Vh)−(b̃−b̃h)(Vh, ψ−ψh)|

≲ (εdh + εch)∥V ∥X
where

εch = (ε max
k=1,2,3

∥ak − ahk∥L∞(ω) + max
α,β=1,2

∥∂αaβ − dhαβ∥L∞(ω) + max
ρ,σ=1,2

∥bρσ − bhρσ∥L∞(ω))∥L∥,

εdT = hT∥f − fh∥L2(T )3

and

εdh = (
∑
T

(εdT )
2)

1
2
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Proof. First one estimates the term (L− Lh)(V − Vh).As we have

(L− Lh)(V − Vh) =

∫
ω

f.(v − Chv)dx−
∫
ω

fh.(v − Chv)dx =

∫
ω

(f − fh).(v − Chv)dx

∑
T∈τh

∫
T

(f − fh)(v − Chv)dx

cauchy-schwartz's inequality and the property (2,9)of Ch yield

|(L− Lh)(V − Vh)| ≤ εdh∥V ∥X

secondly we estimate

(A− Ah)(Uh, VV h) + (Ap − Ah
p)(Uh, V − Vh) + ρ(b− bh)(Uh, VV h) + (b̃− b̃h)(Vh, ψ − ψh)

we only give an abridged proof of this tecnical rfsult,we �rst estimate

(A−Ap)(Uh, V−Vh) = e(Am−Ah
m)(uh, v−vh)+e(At−Ah

t )(Uh, V−Vh)
e3

12
(Af−Ah

f )(rh, s−sh)

to estimate the term (Am − Ah
m)(Uh, V − Vh),we typically have to estimate a term like

Ah(uh, v − vh) = 4µ

∫
ω

γ11(uh)γ11(v − vh)dx+
4λµ

2µ+ λ

∫
ω

trγh11(uh)trγ
h
11(v − vh)dx

that we tranform as

Ah(uh, v − vh) =

∫
ω

4µγ11(uh)γ11(v − vh) +

∫
ω

4λµ

2µ+ λ
trγh11(uh)trγ

h
11(v − vh)dx

=
∫
ω
4µγ11(uh)γ11(v − vh) +

4λµ
2µ+λ

trγh11(uh)trγ
h
11(v − vh)dx

=
∫
ω
4µ+ 4λµ

2µ+λ
[γ11(uh)(γ11(v−vh)+trγh11(v−vh))+(γ11(uh)−trγh11(uh)trγh11(v−vh))]dx

for the �rst term we use the identity γ11(u)−trγh11(u) = (∂1u.a1−∂1uah1) and apply cauch-

schwarz's inequality and ∥Uh∥X ≲ ∥L∥ to get

|
∫
ω

γ11(uh)(γ11(v − vh)− trγh11(v − vh))dx| ≲ ∥L∥∥∂1(v − vh).(a− ah1)∥L2(w)

As

∥∂1(v − vh).(a1 − ah1)∥L2(w) ≤ ∥a1 − ah1∥L∞(w)∥∂1(v − vh)∥L2(w)
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∥∂1(v − vh).a1 − ∂1(v − vh).a1∥ ≤ ∥a1 − ah1∥L∞(w)∥∂1(v − vh)∥L2(w)

the second term is estimated in the same manner ,which leads to

|Ah(uh, v − vh)| ≲ εch∥L∥∥V ∥X

the last ρ(b− bh) requires a more speci�e attention �rste it is split up as follows

ρ(b− bh)(Uh, V − Vh) = ρ

∫
ω

Q(Uh)Q(V − Vh)−Qh(Uh)Q
h(V − Vh)dx

=ρ
∫
ω
Q(Uh)(Q(V − Vh)−Qh(V − Vh))dx+ ρ

∫
ω
Qh(V − Vh)(Q(Uh)−Qh(Uh))dx

hence using cauchy-schwarz's inequality and the property

Q(u, r)−Qh(u, r) = −1

2
(∂1u(a2 − ah2)− ∂2u(a1 − ah1))

ρ|(b− bh)(Uh, V − Vh)| ≲ ρ sup
K=1,2,3

∥ai − ahi ∥L∞(ω)∥Uh∥X∥V − Vh∥X

using the bound(∥Uh∥X ≲ ∥L∥)and the estimate (3,2) we �nd

ρ|(b− bh)(Uh, V − Vh)| ≲ ρ sup
K=1,2,3

∥ai − ahi ∥L∞(w)∥f∥X∥V ∥X

The previous estimates yield the conclusion

Now we need to estimate the term

Lh(V − Vh)− Ah(Uh, V − Vh)− Ah
p(Uh, V − Vh)− ρbh(Uh, V − Vh)− b̃(Vh, ψ − ψh)

in order to de�ne appropriately the indicators,we introduce

Th(u) = eAγh(u),

Ah = (ah1 , a
h
2)

⊤,

Sh(u, r) = eµ((∇u)⊤a3 + Jr̂) ,

Mh(r) =
e3

24
AΠh(r),
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Ph(r) =
e3

12
AIIh0 r3,

Kh(r) =
e3

12
(IIh0 : Aθh(r))

Now for allT ∈ Th, we can de�ne the following indicators (compare with problem (2,14))

η
(1)
T = hT∥fh +Div(Th(uh)Ah) + Div(Sh(Uh)a

h
3)−

1

2
ρDiv(Qh(Uh)JAh)∥L2

(T,R3)

+
∑

e∈εih
⋂

∂T

1

2
h

1
2
e ∥[nTh(uh)Ah + nSh(Uh)a

h
3 −

1

2
ρQ(Uh)A

⊤Jn⊤]e∥L2
e,R3

+
∑

e∈εbh
⋂

Γ̄1
⋂

∂T

h
1
2
e ∥nTh(uh)Ah + nSh(Uh)a

h
3 −

1

2
ρQ(Uh)A

⊤Jn⊤]e∥L2
e,R3

η
(2)
T = hT∥

1

2
J̃ Div(Ph(rh))−

1

2

(
Ph(uh) : Γ̃

1
h

Ph(uh) : Γ̃
2
h

)
+ J⊤Div(M(r)) +

(
Mh(rh) : Γ̄

1
h

Mh(rh) : Γ̄
2
h

)

−J⊤Sh(Uh)∥L2(T )2 +
∑

e∈εih
⋂

∂T

h
1
2
e ∥[

1

2
J̃Ph(rh)n

⊤ − J⊤Mh(rh)n
⊤]e∥L2(e)2

+
∑

e∈εbh
⋂

Γ̄1
⋂

∂T

h
1
2
e ∥

1

2
J̃Ph(rh)n

⊤ + J⊤Mh(rh)n
⊤∥L2(e)2

η
(3)
T = ∥ − ρQh(Uh)−

1

2
B̃h : Ph(rh)−Kh(rh)− B̄h :Mh(rh)∥L2(T )

η4T = hT∥rh.a3∥L2
(T,R3)

Where εbh the set of adges of the triangulation included into the boundary of ω ,while

εih = εh ∖ εbh we forther introduce local indicator

ηT = η
(1)
T + η

(2)
T + η

(3)
T + η

(4)
T

and the global one

ηh = (
∑
T∈Th

η2T )
1
2
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Proposition 7 Let V = (v,
∑

i siai) ∈ X and let Vh = (Chv,
∑

i(Chsi)ai) be the clement

interpolant of V then

|Ah(Uh, V − Vh) + Ah
p(Uh, V − Vh) + ρbh(Uh, V − Vh)− Lh(V − Vh) + b̃(Vh, ψ − ψh)| ≲ ηh∥V ∥X

|b̃(Uh, ϕ− ϕh)| ≲ ηh

(3.4)

Proof.

Lh(V − Vh)− Ah(Uh, V − Vh)− Ap
h(Uh, V − Vh)− ρbh(Uh, V − Vh)− b̃(Vh, ψ − ψh)

=A1(Uh, V − Vh) + A2(Uh, V − Vh) + A3(Uh, V − Vh)b̃(Uh, ϕϕh) = A4(Uh, ϕ− ϕh)

where

A1(Uh, V − Vh) = Lh(v − Chv)− ap(Uh, (v − Chv, 0))− ρbh(Uh, (v − Chv, 0))

−b̃((Chv,
∑

α(Chsα)aα), ψ − ψh)

A2(Uh, V − Vh) = −Ah(Uh, (0,
∑
α

(sα − Chsα)aα))− Ah
p(Uh, (0,

∑
α

(sα − Chsα)aα))

−ρb(Uh, (0,
∑

α(sα − Chsα)aα))− b̃((Chv,
∑

α(Chsα)aα), ψ − ψh)

A3(Uh, V − Vh) = −Ah(Uh, (0, (s3 − Chs3)a3))− Ah
p(Uh, (0, (s3 − Chs3)a3))

−ρbh(Uh, (0, (s3 − Chs3)a3))− b̃((Chv, (Chs3)a3), ψ − ψh)

A4(Uh, ϕ− ϕh) =

∫
ω

(rh.a3)ϕhdx

We have by green's formula

A1(Uh, V−Vh) =
∑
T∈Th

∫
T

(fh+Div(T (Uh)Ah)+Div(Sh(Uh)a
h
3)−

1

2
ρDiv(Qh(Uh)J

⊤Ah).(v−Chv)dx
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+
∑

T∈Th +
∑

e∈Γ̃1∂T

∫
e
(1
2
ρQh(Uh)A

T
hJn

⊤−nTh(Uh)Ah−nSh(Uh)a
h
3).(v−Chv)dσ(x)(3.5)

Cauchy-Schwarz' inequality and the properties of the Clément interpolant Ch yield

|A1(Uh, V − Vh)| ≲ (
∑
T∈Th

(η
(1)
T )2)

1
2∥V ∥X

In a fully similar manner, we have

|A2(Uh, V − Vh)| ≲ (
∑
T∈Th

(η
(2)
T )2)

1
2∥V ∥X

we directly check that

A3(Uh, V − Vh) =
∑
T

∫
T

(B̄h :Mh(rh)−K(rh)−
1

2
B̃h : Ph(rh)− ρQh(Uh))(s3 − Chs3)dx

(3.6)

we get

|A3(Uh, V − Vh)| ≲ (
∑
T∈Th

(η
(3)
T )2)

1
2∥V ∥X

�nally we get

|A4(Uh, V − Vh)| ≲ (
∑
T∈Th

(η
(4)
T )2)

1
2∥V ∥X

then ,combining

|(b̃− b̃h)(Vh, ψ − ψh)| ≲ sup
K=1,2,3

∥ai − ahi ∥L∞(ω)∥Vh∥X∥ψ − ψh∥X

and the above inegualities leads to the global upper bound (3.7) [5].

The estimates on |Ai(Uh, V − Vh)| directly yield the conclusion
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3.2 Upper and lower bounds

Athis point we can demonstrate the following

Theorem 8 the solution U of problem (1,24)and the solution Uhof problem (2,2) satisfy

the following aposteriori error estimate

∥U − Uh∥X + ∥ψ − ψh∥X ≲ ηh + εdh + εch (3.7)

Proof. The estimate (3,6) can be derived from the coercivity of the founctionalA(., .) +

Ap(., .)+ρb(., .)+b̃(., .) which has acoercivity constant equivalent to 1,this result is obtained

by applying the identity (3,1),lemma(8)and proposition(7)

Let us go with the lower bond

Theorem 9 Let U repressent the solution toproblem (1,24) and Uhrepresent the solution

to problem (2,2)consequently we can establish the following constraint

η
(i)
T ≤ ρ∥U − Uh∥X(ωT ) + ∥ψ − ψh∥X(ωT ) + εdωT

+ εcωT
i = 1, 2, 3, 4 (3.8)

The subscript ωT in the index indicates that the quantity is considered exclusively within

the domainωT , while the norm X(ωT ) refers to the norm ofX calculated using integrals

limited toωT .

Proof. We will focus on proving inequality (3.8) for η
(1)
T , as the proof for the case ofη

(2)
T

and η
(3)
T and η

(4)
T is essentially the same. To simplify the notation,we express η

(1)
T in a

compact form as follows

η
(1)
T = hT∥Fh∥L2(T,R3) +

∑
e∈εih

⋂
∂T

+h
1
2

L2(e,R) + ∥[Gh]e∥e +
∑

e∈εbh
⋂

∂T

h
1
2
e ∥Gh∥L2(2,R3)

First of all, let us �x the standard bubble function ΨT associated withT and set

v =

{
FhΨT inT
0inω\T

According to the de�nition of ΨT we can observe that v ∈ H1
0 (ω,R3) thus implying that

(v, 0) belongs to X this can be deduced from equtions (3,4)with Vh = 0 that
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Lh(v, 0)− Ah(Uh, (v, 0))− ρbh(Uh, (v, 0))− b̃((v, 0), ψh)

=

∫
T

(fh +Div(Th(Uh)Ah) + Div(Sh(Uh)a
h
3)−

1

2
ρDiv(Qh(Uh)JAh)).vdx

= ∥Fhψ
1
2

T ∥

Using the identity (3,1) we may write

A(U − Uh, (v, 0)) + ρb(U − Uh, (v, 0)) + b̃((v, 0), ψh)

=(L-Lh)((v, 0))− (A− Ah)(Uh, (v, 0))− ρ(b− bh)(Uh, (v, 0))− (b̃− b̃h)((v, 0), ψh)−

-Ap(Uh, (v, 0))− ρbh(Uh, (v, 0))− b̃h((v, 0), ψh) + Lh((v, 0))

Hence

Lh(v, 0)− Ah(Uh, (v, 0))− ρbh(Uh, (v, 0))− b̃h((v, 0), ψh)

=A(u-uh, (v, 0)) + ρb(U − Uh, (v, 0))− (L− Lh)((v, 0))− (A− Ah)(Uh, (v, 0))

-ρ(b− bh)(Uh, (v, 0))− (b̃− b̃h)((v, 0), ψh)

By the previous identities we get

∥FhΨ
1
2
T∥

2
L2(T )3 = a(U − Uh, (v, 0))−+ρb(U − Uh, (v, 0))− (L− Lh)(v, 0)

+(A− Ah)(Uh, (v, 0))− ρ(b− bh)(Uh, (v, 0))− (b̃− b̃h)((v, 0), ψh)

Applying the cauchy-schwarz inequality and leveraging the arguments of lemma (8)we

can deduce that

∥FhΨ
1
2
T∥

2
L2(T,R3) ≲ (ρ∥U − Uh∥X(T ) + ∥ψ − ψh∥X(T ) + εdT + εhc )∥v∥H1(T,R3), (3.9)
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Utilizing the inverse inequality provided, we can conclude that

∥v∥H1(T,R3) ≲ h−1
T ∥v∥L2(T,R3), (3.10)

By utilizing the fact that the function ψT takes values between 0 and 1, we can deduce

that

∥v∥H1(T,R3) ≲ h−1
T ∥Fh∥L2,(T,R3), (3.11)

Additionally ,we have

∥Fh∥L2(T,R3) ≤ C∥FhΨ
1
2
T∥

2
L2(T,R3), (3.12)

combining (3,9)(3,11)and (3,12)we get

hT∥FT∥L2(T,R3) ≲ ρ∥U − Uh∥X(T ) + ∥ψ − ψh∥X(T ) + εdT + εcT

The second step involves bounding the second term of η
(1)
T for all edges eofTwith the

element T ′in this case we select fonction v in equation (3,5)as follows

v =

{
Me,k([Gh]e)Ψefork = [T, T ′]

0 inω\(T
⋃
T ′)

(3.13)

where Ψe is the standard edge bubble function associated with e and Me,k(q) is an

extension operator that maps apolynomial qin the edge coordinate of e to a polynomial

in cartesian coordinates in k As before we see that

∥[Gh]e∥0Ψe∥2L2(e,R3) = Ah(Uh, (v, 0, 0, 0))+ρbh(Uh, (v, 0, 0, 0))−Lh(v, 0, 0, 0)+b̃h((v, 0, 0, 0),Ψh)

+
∫
∆(e)

((fh +Div(Th(Uh)Ah) + Div(Sh(Uh)a
h
3)− 1

2
ρDiv(Qh(Uh)JAh)).vdx)

By employing the identity (3.1) and leveraging the arguments presented in Lemma 5, we

can conclude that

∥[Gh]e∥0Ψe∥2L2(e,R3) ≤ ρ∥U−Uh∥X(∆(e))+∥v∥X(∆(e))+(εd∆(e)+ε
c
h)∥v∥L2(e,R3)+∥Fh∥L2(∆(e),R3)∥v∥X(∆(e))

using a standard inverse inequality we can reach the conclusion that

h
1
2
e ∥[Gh]eΨe∥2L2(e,R3) ≲ ρ

∑
k∈{T,T ′}

∥U − Uh∥X(∆(e)) + ∥ψ − ψh∥X(∆(e)) + εd∆(e) + εch
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the third and fourth term is bounded in a similar manner to the second term ,similarly

we bound the remaining η(i), i = 2, 3, 4

Hence the proof is now complete.
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Chapter 4

Conclusion

In conclusion, it can be inferred that utilizing the mixed formulation and a posteriori

error analysis represents a strong and e�ective approach for modeling prestressed shell

structures. The mixed formulation allows for an accurate estimation of the mixed vari-

ables and other variables in the model, contributing to improved accuracy and numerical

e�ciency in the analysis.
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