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ABSTRACT

In this work, we study the finite element approximation of a prestressed shell model for
the hybrid formulation. The unknowns in this model, namely the displacements and the
rotations,are described using Cartesian and local covariant bases, respectively. However,
due to the constraints in the solution space, we cannot directly use the finite element
method. Therefore, we employ a mixed formulation instead.
We study the existence and uniqueness of its solution the convergence properties both a

priori and a posteriori for this formulation.

key worde: flexural prestressed model,a hybrid formulation,a mixed formulation, finit

element methode,a priori and a posteriori analusi.

Résumé

Dans ce travail, nous étudions 'approximation par éléments finis d’'un modéle de coque
précontrainte pour la formulation hybride. Les inconnues de ce modéle, a savoir les
déplacements et les rotations,sont décrites a I'aide de bases covariantes cartésiennes et

locales,respectivement. Cependant,en raison des contraintes dans I'espace des solutions,

il



nous ne pouvons pas utiliser directement la méthode des éléments finis. Par conséquent,
nous utilisons plutét une formulation mixte. Nous étudions 'existence et I'unicité de sa
solution les propriétés de convergence a la fois a priori et a posteriori pour cette

formulation et établissons .

les mots clés:modéle précontraint en flexion,une formulation hybride,une formulation

mixte, méthode des éléments finis,analyse a priori et a posteriori.

uai.h
Mgl dnlu ddiall >3 gall 52 giaall paliall Cu 30 Al jo Liad o Jaall 130 8
(Ol sdl s dal W) clilee ol ezl pall 108 8 Jogadl Caiag al Anagll daall
83 g2 gall 3 gall 15085 62l aa g (I il (o edudadll 40 jlSaall ) sef 6 alaaiuls
data aadiu o2l 5l 80 ganall paliall 43 yh alaadu) WiSe Y ool dalua &

sdgd BaWl g Grwall o 8l ailiad g Jall duilas g g dga g
Asvall

o

Bl Gaadl Jalaill 30 gasall

v



CONTENTS

Dedication

Thanks and gratitude

Notations and Conventions

1 A Prestressed shell model
1.1 A flexural prestressed shell model . . . . . . . ... .. ... ... .....
1.2 A hybrid formulation . . . .. ..o oo

1.3 A mixed formulation for a hybrid formulation . . .. ... ... ... ...

2 Approximation by finit element method
2.1 Approximation by finit element method . . . . . . . .. ... 000
2.2 Apriorianalysis. . . . . ..

2.3 The strong formulation . . . . .. ... 0oL

3 A posteriori error analysis for a hybrid formulation
3.1 A posteriori analysis . . . . .. ...

3.2 Upper and lower bounds . . . . . . . . ... ... ... ... ... ...

iv



CONTENTS CONTENTS

4 Conclusion 36

Bibliography 37

vi



NOTATIONS

» Greek indices a, 3, p take their values in the set 1,2.
» Latin indicest, 7, ...and exponents take their values in the set 1,2, 3.
» - v The inner product of v and v in R3 .

» u x v, The vector product of v and v .

> [, A:Bdenote » > [ AagBagdr.

a=1,2 g=1,2""Y

» A < B Denote A < CB.

»w: Be a domain of R? .

» S:a midsurface of the shell.

> Fgﬁ : The Christoffel symbols of the surface .

» [G].:Denotes the jump of G across e .

» )\ i : The Lame moduli of the homogeneous and isotropic material that constitutes
the shell.

» v, Denote respectively the poisson modulus and coefficient the Young of the
material.

» tr(A): Trace of the matrix A,(tr(A) = Ay + Ag).

» H™(w):Sobolev space of order m

» A(T) Is the union of triangles of 7, that intersect T .

» A(e) Is union of triangles of 7, that intersect e



INTRODUCTION

The prestressed shell structure is a crucial component in both mechanical
engineering and civil engineering. It finds wide-ranging applications in various
fields such as satellites, offshore structures, aircraft, towers, and high-rise buil-
dings. However, analyzing and designing prestressed shells pose significant
challenges due to their complex elastic and inelastic behavior.

To address these challenges, several mathematical models have been develo-
ped. These models fall into three categories: force-based models, displacement-
based models, and hybrid models. Hybrid models utilize mathematical tech-
niques to integrate force, displacement, equilibrium, and deformation into a
single formulation. This enables an accurate representation of both membrane
and bending effects in prestressed shells.

In this work we are then performing some error analysis of a prestressed
(two dimensional) shell model which was introduced for the first time in [10].
This model is the same as the one of a parametrized shell up to the addition of a
prestressed energy term. This term (as well as the flexural one) is derived from
the Kirchhoff model of the bending of the nonlinear elastic plate (obtained as a
limit of three dimensional nonlinear elasticity). The unknown of the problem is

the couple (u,r), where u is the displacement from the reference configuration
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and r is the infinitesimal rotation of the cross section of the shell. In [10] both
uw and r are described in Cartesian coordinates and they are sought in the
Sobolev space H' (each one is a vector field with three components). However,
the bilinear form describing the model involves the first order derivative of
the components u;,7 = 1,2,3 and r,,a = 1,2, whereas, it does not use any
derivative for the component r3. This causes a loss of coercivity of the bilinear
form on the space H'. In order to solve this issue, a larger Hilbert space was
considered in [11], where the third component r3 is sought in the L? space.

A hybrid formulation is considered here, i.e., the unknowns (the displace-
ment and the rotation to the shell midsurface) are described respectively in
Cartesian and local covariant basis. The use of a hybrid formulation in a simi-
lar spirit of the present paper was used in Blouza [1] for Naghdi’s shell model.
The aim of using hybrid formulation in [1] was to reduce the number of the
unknowns (from six to five because s - ag = 0) and to get rid of the tangency
constraint for the rotation which was presented by Blouza and al [2|. Hybrid
formulation allows to use conforming finite element methods on unconstrained
functional space with a smaller number of degrees of freedom. Another hybrid
formulation of general shell element involving three incremental displacements
corresponding to the stationary global coordinate directions and two rotations
described in a local coordinates system was used in [9)].

The purpose of this work is to provide a robust a priori error analysis and
a posteriori error estimator of mixed formulation of the hybrid formulation.
The objective of this work is to provide robust a priori error analysis and a
posteriori error estimators for the mixed formulation of the hybrid formulation.
These estimators yield global upper bounds and local lower bounds for the
error, measured as the energy norm distance between the exact solution and
its approximation. . In this study, we perform a posteriori analysis of the
residual type for the mixed formulation and prove upper and lower bounds

for the error, explicitly dependent on the mixed parameter. These estimators
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can be used to construct adapted meshes, enabling the computation of an
approximated solution with a given accuracy.

For plates and shell models, there already exist several a posteriori error
estimation approaches. We refer to [[7], [8], [14], [15]] for the pioneering works
concerning plate models. Up to our knowledge, the first a posteriori estimate
concerning shell models formulated in global coordinate system was done in
[6] for Naghdis shell model. This work is divided into
» In chapter 1, We define the flexural prestressed shell model and a hybrid
formulation
»In Chapter 2, In this chapter, we are going to study the approximation
using the finite element method and the a poriori analysis .

» In Chapter 3, In this chapter we derive also a posteriori estimates and we

prove the reliability and efficiency of our a posteriori error estimator.




CHAPTER 1

A PRESTRESSED SHELL MODEL

INTRODUCTION

In this chapter we present the characteristics and geometrical notion re-
lated to shell ,espicially notation ,definitions and fundamentals required for
analysis of mathimatical shell models. The aim of this chapter In the first sec-
tion,we define the problem of the prestressed flexural shell model.In the second
and third section,we present the hybrid formula and the mixed formula of the

hybrid formula with proof of existence and uniqueness of the solution.

Let(ey, €a, e3) be the canonical orthogonal basis of R* and let U and V' be
to vector of R3.and UxV the vector product of U and V for a given
domain W of R? with a lipshitz boundary we assume that the boundary & W
is divided into two part mpand 7 we thus consider a shell with a midsurface
(denoted byS ) defined by a chart ¢ which is an injective mapping from the
closuve of a bounded open subset of R?

S = p(@) where ¢ € WZ>)(w, R?) such that
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p=0— Rz = (21,20) — ¢(x).

We define two tangentail vectors to the surface S by :

o(z) = 228 o =1 2.

in each point P = ¢(x) of S.

The unit normal vector as is then efined by

a1 Xag

a3 = |CL1 Xag

The two vectors (a1, as) defined the tangent plan TpS on every point of S
and the triple (aq, az, ag)the covariant basis on each point P of the surface S.
The contravarient basis a’ are denoted by the relation a;a’ = 6/ with as = a®

and &} beiging the Kronecher symbol(d; =1 ifi=j and 0).

The restriction of the metric tensor to the tangent plane also called the

first fundamontal form of the surface is given by component

Aop = Qo X ApB

The contravariant components of the metricare given by

« « — 1 a —a
@ = % % = (agp) 1= 2 (_;; af) (L1)

2 indeed,the infinitesimal area corre-

with a = det(ang) = a1 X aga — (a12)
sponding to the differential (dxy, dz)
the coordinates can be expressed as dS = \/adridx,

We have this relation

ay X ag = —/aa* and ay x a3 = /aa' (1.2)
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a' x a® = det(a®)v/aas (1.3)
a' x a® = —det(a®®)\/aay (1.4)
a® x a® = det(a®®)v/aa, . (1.5)

The components of the second fundamental form of the surface are defined

by
bap = a3 - Ogan = —an0sa3

The proof can be found in[4] .

The second fundamental form is calle the curvature bensor and the mised

components are defined by

b = a"? X by,

the christoffel symebols of the surfacergﬁ take the forme
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1.1 A FLEXURAL PRESTRESSED SHELL MODEL

The concept of prestressing involves intentionally applying permanent stresses to strengthen
structures. In [4], Marohnic and TambaCa developed a flexural model for prestressed
shells. The objective of their study was to determine the unknowns of the problem, namely
the displacement (u) from the reference configuration and the infinitesimal rotation(r) of

the shell’s cross section. They formulated the following variational problem:

AU, V)+A,(r,s) = L(v,s)VV = (v,5) € V

It has been demonstrated that the bilinear form A(.,.) defines a norm on the space V.

{ Find U = (u,r) € Vsuchthat

However, it should be noted that this space is not complete with respect to this norm .
To address this limitation, we introduce a larger Hilbert space V, which is the completion
of the spaceVwith respect to the norm |jv]| = A(v,v)z. Consequently, the existence and
uniqueness of the solution can be inferred from the Lax-Milgram Lemma in this new
space. In this chapter, we present a prestressed shell model proposed in [11], where a
global coordinate system is utilized instead of the local coordinate system.

We assume that the shell is fixed on a partlyof the bondary ofw then function space

for the lineairized flexural probleme is

V={(v,s) € H(w,R?) x L*(w,R*) : s - aq € H'(w,R), s - a3 = F12(v), v|[ro = 0} . (1.6)

with
1
Fi2(v) = 5(8121 “ag — Qv - ay) (1.7)

the norm of V is defined by

[N

(v, 8)llx = <HUH?{1(W,R3) + > lls - aallfng, + Hs-aslliz@)) : (1.8)

a=1,2

Lemma 1 The V equipped with the norml|(v, s)||x is a Hilbert space

8
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Proof. Let us introduce the Hilbert space

X= {(”’5) € H'(w,R?) x L*(w,R) | so € H'(w),v[ro = salro = 0}

equipped with the natural norm (1.8) and the linear and continuous operator ¢ : X —

L3(w) : (v,8) — s.aq — F12(v).Then V is a closed subspace of X, becauseV is simply the

kernel of ¢ see[13]. m

the variational problem reads as follows

Find U = (u,r) € Vsuchthat
AU, V) +A,(r,s) = L(v,s)VV = (v,5) € V

let U= (u,r)and V = (v,s),we introduce the following bilineair forms

3
AU V) = eAp(u,v) + eAU, V) + 5 Ap(r.s)

The flexural term is equal to

Ap(r, s) = 2u / T(r) - TI(s) dar + —2 / trl1(r) - trll(s) da.

w 2+ A

denote II(r) by a symmetrized linearized second fundamental form

1
0.ay 5(528@2 — 018.aq)
5(523-@ — 015.a1) —0hs.aq

The prestressed bilinear form (corresponding to the prestressed energy) reads

A(r,s) = 2u / (Lo + T17)7(r, 5)) da 4 —2 / te(ITr(r, s)) da.

w 2+ A

Where
. 1 —817‘.(11 %(81@ - 827‘.(11)
7'(7'7 5) - 5 <%(ala2 . aQT‘al) aQT‘.CLQ (S.ag)

(1.9)

(1.10)

9



1.1. A FLEXURAL PRESTRESSED SHELL MODEL CHAPTER 1.

1 —81S.CL1 %(813.0@ — ags.al)
+§ (%(818.&2 — 828.611) (925.612 (T.CLg)

and

]Ig _ VQOTV(Ig _ (01<,0.81a3 6130.62663) '

8290.81@3 32g0.82a3

The bilinear form A,(.,.) is symmetric but not necessarily positive. The linear form (the
force) L(V') equals

L(V) = / fvdx
with f € L*(w,R?) that represents a given reswultant force dencity.

The membrane term is equal to

A (u,v) :4u/7(u) -y(v)dx + ijA/trv(u)try(u)dx (1.11)

w

Where v(v) is a liearized strain tensor.this is a standard membrane term in the theory
of shells for st.Venant-Kirchhoff material.In global coordinates,Blouza and le dret showed

that this term is equale |3]

Yap(t) = (Oau - ag + Opu - ay) (1.12)

A(UV) = ,u/ a3 (Vu —r x V). a (Vo — s x V)dr (1.13)

w

This term is a standard term in the theory of naghdi shells|4] but in the case that ois
isometric . The rotation in this model is different than the rotation of the Naghdi shell.
e being the thickness of the shell assumed to be constant and positive.

ans

63

AP<T7 S) = E

A,(r,s) (1.14)

Theorem 1 For ||Vag| p~) small enourgh problem(1,9) admits a unique solution.

Moreover,this solution satisfies
1Ullx < C|IL]].

Proof. see [13] =

10
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1.2 A HYBRID FORMULATION

Let us introduce the space W such that the displacement and the rotation are describd

in cartesian and local covariant or contravariant basis respectively .

3
W= {(v, s) = Zsiai) € H'(w,R?) x (L*(w))3|sq € H'(w), 53 = F12(v), a.e.inw, v|rg = S4lro = 0}

i=1

(1.15)
such that §(v) is defined by (1.7).
equipped with the norm.
1
(v, 8)[lx = (HUH%I(W,R«%) + Z HSaH?{l(w) + ||S3H%2(w)>2 (1.16)

a=1,2

The difference between the definition of W and V is that the regularity of the rotation
variable 7 and the constraint is expressed in curvilinear variables instead of cartesian
ones.Let us now show that the definition are equivalent. Indeed ifr = (r{®, r$% r5*)is the

expression of the rotation in cartesian coordinates,then it can also be written as

3

r=>Y_ra;
i=1
where r;,7 = 1,2, 3 are its curvilinear coordinates.then we get

ry = Tr.a;.

This simple means that W coincides whith V,and therefore the bilinear form A and A,

are well on W .

before going,we want to amphasize that from now on for(u,r) € W, r;

always mean the curvilinear coordinates of r .

Lemma 2 The space W equipped with the norme (1.16) is a Hilbert space .

11
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Proof. We remark that Wis a closed subspace of
3
X = {(v, s=Y sa;) € H'(w,R%) x (L*(w))’[s0 € H' (), v|ro = Salro = o}
i=1
equipped with the norm (1.15) because W is simply the kernel of the linear and continuous

operator () defined by

Q: X — L*(w) : (v,8) —> 53 — 12(v)

Then,the new variational formulation reads

{ Find U ,17) € W suchthat (1.17)

= (u
A(ULV) + AU V) = L(V)

The bilineare forme A(.,.) and A,(.,.) are defined by (1.9)
we can write the bilinear forms A,,(.,.), Af(.,.)and A;(.,.) respectively corresponding to

the membrane, flexural,and the transverse shear energies by

Ap(u,v) = )\4_?/;“ /wtr’y(u)tm(v)dx +4u/wv(u) :y(v)de, (1.18)
As(r,s) = Az—i\g,u /wtrH(r)trH(s)dx—l— 2/1/&} I(r) : I(s)dx, (1.19)
Ai((u,r), (v,8)) = ,u/ as (Vi —1r x V)lag (Vv — s x V)] " da, (1.20)

Theorem 2 If ||Vag| po () is small enourgh problem hybride formulation admits a uniques
solution .

Moreover, this solution satisfies

1Ulx < NIL-

12



1.2. A HYBRID FORMULATION CHAPTER 1.

Proof. Since the bilinear formA + A, and the form L are clearly continuous on W, the
well-posedness of problem (1.17) will be guaranteed if A 4+ A, is coercive on W. For that

purpose, we need the following lemma.

Lemma 3 Suppose that o € H*(w,R?)and that (Ty) is not included into a straight line.
LetV = (v,s) € W. Then A(V,V) =0 if and only ifVV = 0.

Lemma 4 Under the assumptions of lemma3d,the bilinear form A(.,.) is coercive on W.

The proofs are fully similar to those given in Lemma 2 and 3 from [11] and are then
omitted. and if ||Vag| g is small enough,the bilinear form A(.,.) + A,(.,.) remains

coerciv on W.Hence,the well-posedness of(1,17)follows the Lax-Milgram lemma m

13
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1.3 A MIXED FORMULATION FOR A HYBRID FORMULATION

In this subsection,we present a mixed formulation for problem (1.17)

Let us consider the functional space
X={(v,s) € H(w,R%) x (L*(w))® | 50 € H'(w),v|ro = salro =0} (1.21)

equipped with the norm

=

2
H(U7 S)HX = (HU||H(1w,R3)+Za—1,2 [Pk )+||33H2 ) (122)

Hl(w L2(w)
and we set

M = L*(w). (1.23)

for all p > 0 we consider the following variational problem

find(U, ¢) = (u,r,1) € X x M sush that
AU V) + A (U, V) + pb(U, V) + b(V, ) = L(V),VV € X (1.24)

b(U,$) = 0,Yp € M
for V = (v,s) € X and ¢ € M the bilinear form b(.,.) is defined by
B(V,9) = [ (52 = o)) (1.25)

and where the bilinear form b(.,.) is defined by

W V) = [ QuviQ) (1.20

such that
Q(V) = s3 — Y12(v)For anyV = (v,s) € X

Moreover ,the fllowing characterization holds:
W = {(v,5) € X,Y6 € M, b(0, ¢) = 0) (1.27)

Lemma 5 There exists a constant C > 0 such that

b
vo € Msup 20 > G, (1.28)

vex [[Vllx

14
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Proof. We prove that b(.,.)satisfie the inf-sup condition see [12]. We prove that b(.,.)
satisfie the inf — sup condition . Let ¢ € M and let V = (v,5) € X such that v = 0,5-a, =

0,5 - az = ¢ therefore

b b(V
o M20) BV, 0)
vex |[V]x V%

- ||¢HL2<QJ)
= ||#ll 22 (w)

Theorem 3 [f||Vas||L~ is sufficiently small, the problem (1.24) has a unique solution
(U,1),such that U is the solution of the problem (1.17).

Proof. combining the ellipticity property for A(.,.) + pb(.,.) + A,(.,.) and the condition

inf-sup .lemma(2)

Let us now check that U is the solution to the problem (1.17)this solution satisfies

IUlx < CIIL]

this we apply the Lax-miligram lemma.

taking

¢ =1; — Y2(u)

In the second equation of (1.24),obtain U € W then taking V' € W cancels the term b in

the first equation of (1.24),then we have the result. =

15



CHAPTER 2

APPROXIMATION BY FINIT ELEMENT
METHOD

Finite element method are used to numerically and approximating the solution of the
mathematical models. In this chapter we use the approximation by finite element method
for the mixed problem which are presented in the previous chapter.with the study of the

a priori analysis of it.

2.1 APPROXIMATION BY FINIT ELEMENT METHOD

As we have mentioned, the constrained problem (1.17) cannot be approximated by robust
conforming methods for a general shell, hence we purpose the approximation of a mexed
formulation . Note that in this section we need not to assume that the bilinear form of
the right hand side is coercive, we only suppose that both problem the contrained and the

relaxed one has a unique solution which supposed to be sufficiently regular. we introduce

16



2.1. APPROXIMATION BY FINIT ELEMENT METHOD CHAPTER 2.

the finite dimensionel space

=1

Xp = {Vh = (U, S = i:sihai) € X|vpor € Pr(T)?, 850 € Pi(T),VT € Tp, k > 1}
(2.1)
My = {n € C°@)/unr € Pr(T),VT € T }
and consider the following discrete probleme:for all p > 0,

Find (Un,¥n) = (un,ra,¢n) € Xp such that
A(Us, Vi) + Ay(Un, Vi) + pb(U. V) + b(Vi, tn) = L(Va), ¥Vi € X, (2.2)
b(Un, dn) =0 Vo € My,

Proposition 4 The discrete probleme(2.2)has a unique solution
Proof. the existence and uniqueness of a inf —sup condition given in lemma(4) m

Lemma 6 for all yu, € My, V), = (0, Rp(up))such that Ry, (up) = mn(pnas) (mpdonote the
vector valued Py lagronge interpolation operator). Then,there exists a constantC' > 0 such

that

b(Vi, ) > Cllpnlia

Proof. We note that u; is a scalar piecewise Py function, pp.3 is vector-valued, and
Ry (up) is a vector-valued piecewise P1 function. Let us set d, = Ry(up) - a3 — pp and

Vh = (0, Rh(,uh)). Then,

Z(Vhaluh) = /(Rh(:uh) : a3)luh dr = Hﬂhuiﬂ(w) + / 5hﬂ'h dl’,

w

with

| [ Susn ol < linllzcllnlsoco

Now, let us estimate ||d5||z2(). By Lagrange interpolation, we get

pn(x) =Y ()00 (),

Sj

17



2.1. APPROXIMATION BY FINIT ELEMENT METHOD CHAPTER 2.

such that 6 (z) is the shape function associated with the vertex s;, and

Ru(pn)(x) = pun(s7)00 (x)as(s,).

Then,

on(@) =D pn(sy)las(s;) — as(@)as ()6} (),

where a3(x) is a unit vector. It holds that

C
10n ()20 ) < Bllpanll oo ) max max{-[(as(s;) — as(2)) - as(@)]],

where T stands for the set of triangles sharing the vertex s;. Then, using a lamma 4,

we have

16n(2) || ooy < Ch||pan]| oo ()

By classical discrete Sobolev estimate , we deduce that

160()l 2 < Clon(@) | < Chllanllzeiy < ChO(R)Y )| nll -

Taking h small enough so that Ch(In(h))Y/? < 1/2.

Lemma 7 there existe B, > Odependent of h such that
b
inf sup (Vh7 /“Lh)

> By,
uneMn vyex, || Vallx |l inll 22 w)

Proof. Let

- b(V;
B, = inf sup Vi, 1)
uneM v, ex, | Vallx sl 22 w)

see that Vj, = (0, Rp(ur)) € Xpthen by lemma(3)b(Vi, un) > C||pn||%; then

Vallz, = lonllzn + Y lisnaallin + llsn-asllz:
a=1,2

< llsnllzn

18
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we have

WVallxn < llsnllan

then ||V4]

Xp < HRh(Mh)HHl we get

B > C'inf Il en ]I
n=C Hr €M TRy, ()1

we put Ry, (un) = Rp(pn) — pras + pras we have

| R (n) | < | Rupn) — pnas|| g + ||pnas] g

< a1l V(pnas)| L2 @) + || nas]|
< ci|lpnas|lar + ||pnas|| g

< ChY|pnl| 2

then we obtain

| R ()l < cnllpn| 22

which completes the proof
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2.2 A PRIORI ANALYSIS

In this subsection we derive a non robust a priori error analysis of the mexed formulation

Theorem 5 Let (U,v)be a solution of the problem (1,16) and (Up, 1) be a solution of
the problem (1,23) then this following estimate is hold

U = Unllx < cin Vl}flefx U = Villx + @3215% 1% — énllm (2.3)
|1 — Unllx < can Vihnefx |U = Vallx + can ¢>321£ﬂh % — onllm (2.4)

such that cip, can, and ¢y, dependent on 1/ By, and cy independent on h

Proof. Firstly,we prove (2,3) ,because of X, C X we have

AUn = Wiy yn) + pb(Un = Wi, yn) + Ap(Un — W,
C1||Un — Wh|lx < sup (U hy Yn) + pb(Un hy Un) + Ap(Un hs Un)

yn€Xp Hth

then

lN) o +AU—W7 +bU—W, —|—AU—W’
ClHUh _ Wh“X < Sug (yh o @b) ( h yh) Hy,ﬂh( h yh) ( h Z/h)
YhEAp

implaying
¢1 Co
[Un = Whllx < = IU = Wallx + =-llv — énllm
Gy Cy
by the triangle inequality we have

Ci c:
1U = Ol < (14 G0NV = Walls + 211 = nllu (2.5)
1 1

the Inf-Sup condition (Lemma 5)is satisfied , there existe r;, € X, and let V}, € X, such
that
Vo € M, b(rp, @) = b(U — Vi, ¢p)andBy||ry||x < C|U — Upllx, C > 0,

then we estimat the term ||U — W} ||x,we have

U = Whlx < U = Whllx + [rnllx (2.6)

C
§Q+§)W—Wk (2.7)
h
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2.2. A PRIORI ANALYSIS CHAPTER 2.

Now we prove the estimat (2,4)subtracting the first equation of (2,2)from the first equa-
tion(1,24),then we obtain

AU = Un, Vi) + pb(U — Uy, Vi) + A(U = Uy, Vi) + b(Viy, ¥ — 1by,) = Ofor allVj, € X,
then for ¢, € M, we have
A(U = Un, Vi) + pb(U = Un, Vi) + Ap(U = Un, Vi) +b(Viy o = ) + (Vi 6) = b(Vis 1) = 0
then to obtain
b(Vi, & — ) = AUy, — U, Vi) + pb(Uy, — U, Vi) + Ay(Up — U, Vi) + b(Viy, 5 — 0)

By the Inf-Sup condition

1 b(Vi, b1 — n)
- < — sup L2t Th
LR R A AP
_ 1 sup b(Vi, o — ¥n) = A(Un — U, Vi) + pb(U — U, Vi) + Ay(Uy — U, Vi) + b(Vi, 1 — 1)
Bh ViheXy HVhHX

One obtain therefore

C C
l6n — tullue < 51U = Ul + (1 + B—Q) 1% = dnlln
h h

Then we use the triangle inequality , hence the result. m
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2.3 THE STRONG FORMULATION

Usually, a posteriori estimator is computed by element-wise integration by parts starting
from the classical formulation . Hence in this section we give the strong formulation of
problem (1.24), We find the working steps in detail in[4].

using the definition of the bilinear form A,,(.,.) we have

eAn(u,r)=— / Div(T(u)A) — vdz +/F nT(u)A.vdo(x) (2.8)

=(40)

S(u,r) == eu((Vu) ag + J7)

Hence if we set

with

we get

Div(S(u,r)ag).vdx+/ nS(u,r)ag.vda(x)—l—/JTS(u,T).édx

eAi((u,r), (v,8)) = —/ i
1 ) (2.9)

w

considernig the bilinear form A(r;s). Due to the definition of the tonsor II and the

definition of the tensor A ,Hence if we set

M(r) = £ ATI(r)

(402 o5 i

—As(u,r) = —/wDiv(M(r))édx—i—/F J' M(r)n .§d0(m)—/ M(r) : P2 o

1 w

Now we give the contribution of the prestressed term A,(.,.). First as 11y and 7(r, s)are

symmetric,we get

A(r,s) = — / 5 Div(P(r) s + /F LIP(n Sdo(x) + / (k(r) + 3 B - P(r)) s
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for the bilinear form b(.,.) as J12(v

[0
(v

):
) = 3(01v.0sp — Bov.01¢) if Q(U) is suffisiently

regular we find

pb(U, V) = %P/ QU)(s3 — Y2(v))dz

- —p/Dw U)JA) vdw—%p 1Q( VAT In " wdo(z /Q )ssdx (2.12)
and
B(U, 6) / (r-as)odz (2.13)

using the indentities (2,8)(2,9)(2,10)(2,11)(2,12)(2,13) we see the solution U = (u,r) € X
of problem (1,24) satisfies

( —Div(T(u)A)—Div(S(U)ﬁl 3) + 1pDiv(Q (U) JA) N = f
T Div M () — ( %Eg o ) LTS (U) — L Div(P(r) + L ( igz; g ) —0
—(B:M () +k(r)+1B:P(r)+pQ V) :8
u'zgr, ;O

nT (u) A+nS (U)as — 5pQ (U) ATJnT =0

( 3JP(r)n’ +JTM( yn' - 1:4)0

Remark 6 For more details on how to find both ( 2,8) (2,9),(2,10),(2,11)and ( 2,12) see
[13]
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CHAPTER 3

A POSTERIORI ERROR ANALYSIS FOR A
HYBRID FORMULATION

In this chapter, we stady the a posteriori analysis with proof of its reliability through the

upper and lower bounds

3.1 A POSTERIORI ANALYSIS

We introduce the approximation space I\\NAIS) with ¢+ € N and Z;, as follows
MY = {X, € LX(w)VT € Ty, X € Bi(T) }

Zy, = {jn € L*(w)*; VT € Ty, jnr € Po(T)* }

we consider an approximation f; of f in Z;, and an approximation bgﬁ of the coefficient
bop in Mg) similarly , we consider approximations aj of the vectors aj, and df!; ofd,ag
in (Mf))?’ respectively.Obviously we assume that these approximation coefficients are

uniformly bounded in h. We introduce the approximations Ax(.,.), A(.,.)and by(.,.) of
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3.1. A POSTERIORI ANALYSIS CHAPTER 3.

the bilinear forms A(.,.), A,(.,.)and b(.,.)respectively where a;,0,a3,and b, are replaced

by their approximations. More precisely, forU = (u, ), 7;a;) € X we set

Ves(u) = = (Dau.aly + Ogu.al)

T NN

:ny(u) = 5(81u.ag — @u.a?)

M (s) = (l ( 015.a9 % (Ogs.a9 — 813.a1)
2

823.612 — (913.a1 —828.611

#0=5(Gte e)

11y = (V)" Vag = <8190'81a3 01g002a3>

82@.81(13 8290.@2@3
Q"(U) = 55— 312(U)

Not that ]y is symmetric and therefore in A,(.,.) the factor Iy + II} may by 2I1.

h _ Wi\ . Ah H h h
A” (u,v) —4;1,/w7 (u) : " (v)dx + 2M+)\/wt7‘7 (w)tr~y"(v)dx
A;‘(r, s) = ZM/th(r) 7 (s)dx + 2/;:_ 3 /wtth(r)tth(s)daj

A((u,1), (v, 5)) = [(a)T (Vo — 5 x V)] Tdap / (@) (Vu— 1 x V)

w

4
Al(r,s) = <)\ f/;,u / tr I I tr7"(r, s)dx + (QM/tT((IISL + 117" (r, 5))dx)

w

where
"(r,s) = 0"(r)(s.a3) + 0"(s)(r, as)
we also introduce the approximation Lj of the linear form L namely

Lh(V,S):/fh.vdac

withe
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3.1. A POSTERIORI ANALYSIS CHAPTER 3.

e L?(w,R3)
Then for any V € XV}, € Xj,and V¢ € M,‘v’gthﬁL we may write the residuale as
Ruy = LV = Vi) = A(Un, V = Vi) = Ap(Un, V = Vi) = pbl(Un, V = Vi) = b(Vi, & = )

= (L=Lp)(V=Vi) = (A=A) (Un, V=Vi) = (Ay=AL) (Up, V=V3) = p(b—b) (Un, V = Vi) = (b=bp) (Up, —
—A(Un, V = Vi) = Ap(Un, V = Vi) = pbu(Un, V = Vi) = b(Vi, 00 — 9b3) + L (V — V)
b(U — Un, ¢) = —b(Un, ¢ — 1) (3.1)

We first observe that the bilinear forms A(.,.),A,(.,.) andb(.,.)have variable coefhi-
cients. In such a case, in order to construct error indicators we need to approximate the

data and the coefficients by piecewise polynomials, see [6] we again recall the propeties of

the clement operator C), for0 < m <[ <1

VhT € 7, Yw € H' (w) ||w — Chwll ey S By ™ lwllmam) (3.2)
I-m—1%
Vh,Vn S Eh,vw € Hl(w) ||w — ChWHHm(n) 5 hn 2 ||w||Hl(A(n))7 (33)

where A(T) = Upic, v qrzo T7(xesp . A(n) = Upier,ncrpzoT’) is the patch associated
with the element T (resp . the edge n) andey, is the set of edges of the triangulation

Lemma 8 let V = (v,),; s;a;)and Vi, = (vp, sp) = (Chv, Y. (Chsi)a;),then we have the

following estimate
[(L=Ly)(V=Vi) = (A=Ap) (Un, V=V3) = (A= AL) (Un, V—Vi)—p(b—b3) (Un, V—Vi)— (b—bp) (Vir, v —1),)

S (e +elVix

where
_ h h h
en = (e Jmax, lar — agllLeew) + Jnax, |0aas — dogllLoew) + Jnax, 1600 — bpol Loo())II L]

eb = hrl|f — fallr2ery

and
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Proof. First one estimates the term (L — Ly,)(V — V},).As we have

(L—Lp)(V-=V,) = / f.(v—Chv)dx — / frn-(v = Cpv)dx = /(f — fn).(v — Cyv)dz

> [ = o~ Cuods

TeETy

cauchy-schwartz’s inequality and the property (2,9)of C), yield
(L= La)(V = Vi)l < VI
secondly we estimate
(A= A (Un, Vi) + (A = ALY (U, V = Vi) + p(b = by) (Un, Virn) + (b — by) (Vi ¥ — )
we only give an abridged proof of this tecnical rfsult,we first estimate
(A=A, (Un, V=V3) = e(Apn—Ap) (un, v—vp) +e(A—AY) (Un, V—Vh)f—;(Af—A’})(Th, $—5n)

to estimate the term (A, — A" )(U,,V — V},),we typically have to estimate a term like

4N
Ao = on) =g [ s ma(o = wds + 22 [ el nernly o = o)

that we tranform as

A\p

mtmﬁ (un)trony (v — vp)da

Ap(up, v —vp) = /

w

Apyin (up)y11 (v — vp) + /

= [, 4y (up) v (v — va) + Qﬁﬂtwﬁ(uhﬁmﬁ (v —vp)dzx

= Jl, At 3285 [ (un) (a1 (0 = 0n) -ty (0 =) )+ (v (un) =ty (wn byl (0 —op)) | de
for the first term we use the identity v11(u) —try% (u) = (81u.a; —dyua’) and apply cauch-

schwarz’s inequality and ||U,||x < ||L] to get

| /%1(%)(%1(@ —vn) = tryy (v — on))dzx| S LII0: (v = va)-(a — a1)l| 2wy

101 (v = vn)-(a1 = a)l| 2wy < llar — a3 ||z () 101 (v = va) | 22wy
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3.1. A POSTERIORI ANALYSIS CHAPTER 3.

101(v — vp).a1 — B1(v — vp).a1]| < ||ay — @} || Loe ) [|01 (v — VR L2(w)

the second term is estimated in the same manner ,which leads to
| An(un, v —vn)| S e[| LIV I x
the last p(b — by) requires a more specifie attention firste it is split up as follows
pb =BTV = Vi) = [ QUIQY = 1) ~ Q' WIQMY = Vi)da

=p [, QUN)QV = Vi) = QMV = Vi))dx +p [, Q"(V = Vi) (Q(Uy) — Q"(Uy))da

hence using cauchy-schwarz’s inequality and the property
1
Q(uv T) - Qh(u7 T) - _é(allL(aQ — ag) — 82u(a1 — alf))

pIO=b)(Un V= Vi)l S p_sup llai = afll o IUnllxllV = Villx

using the bound(||Uy||x < ||L||)and the estimate (3,2) we find

pl(b = ba)(UnV = Vi)l S 0 sup i = a1 1V

The previous estimates yield the conclusion

m Now we need to estimate the term
Liy(V = Vi) = Au(Un, V = Vi) = AU, V = Vi) = pbi(Un, V = Vi) — b(Vi, ¥ — )
in order to define appropriately the indicators,we introduce
Ty (u) = Ay (u),
Ap = (af,a3) ",
Sp(u,r) = eu((Vu)az + J7) |

Mi(r) = 5AI(r),

24
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3.1. A POSTERIORI ANALYSIS CHAPTER 3.

Pu(r) = SALIrs,
Ki(r) = S (11} : AG"(r))
Now for allT’ € Ty, we can define the following indicators (compare with problem (2,14))

. : 1 ]
%) = || fr + Div(Th(up) Ap) + Div(Sy(Uy)ah) — §pD1V<Qh(Uh)JAh)HL2

(T,R3)

1.1 1
+ Z e [T (un) An + nSu(Un)az — §ﬂQ(Uh)ATJnT]eHLg7R3
ece), 0T

1 1
+ D, hElInTu(un) Ay + nSu(Un)as — SpQU)ATIn |2

eceb N1 NOT

77512) = hTH%jDiV(ph(rh)) B % (i:gzzg ZC:%) T JTDiU(M(T)) + (Mh(rh) ]ji)

1] -
—T SO |2y + Y h§|][§JPh(rh)nT—JTMh(rh)nT]eHLz(e)z
ecel NOT

L1~
Y RGTRGRT + T M) ey
eceb NI NOT

1~ _
Y = | = pQ"(U,) — 5B Pr(rn) — Kin(rn) — Br : My(rs)| 22 (1)

N = herllrn-aslicz, .

Where €8 the set of adges of the triangulation included into the boundary of w ,while

82 =5\ gl,’l we forther introduce local indicator

1 2 3 4
e =0+ + 0+l

and the global one
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Proposition 7 Let V = (v,) . s;a;) € X and let Vj, = (Cpv, Y _.(Crs;)a;) be the clement
interpolant of V' then

AL (Un, V = Vi) + AL(Un, V = Vi) + pbu(Un, V = Vi) = L (V = Vi) + b(Vi, ¥ — ¥n)| S ma|V ||
0(Un, & — én)| <

(3.4)

Proof.

L(V = Vi) = Ap(Un, V = Vi) = AL(U,, V = Vi) — pbip(Un, V = Vi) = b(Vir, ¥ — )

Ay (Un,V = Vi) + Ao(Up, V = Vi) + A3 (Un, V = Vi)bo(Un, dgn) = As(Un, & — ¢1)

where

Al(Uh, V — Vh) = Lh(v — C’hv) — ap(Uh, (U — ChU, 0)) — pbh(Uh, (U — ChU, O))

—b((ChU, Za(chsa)aa)v Y — @bh)

A (Un, V = Vi) = =An(Un, (0, (S0 = Chsa)aa)) = AL(UL, (0, (sa — Chsa)aa))

(e e

—pb(Up, (0, Za(sa — Chsa)aa)) — b((Cho, Za(0h5a>aa)v Y —y)

As(Un,V = Vi) = =Au(Un, (0, (s3 — Css)as)) — Al(Up, (0, (s3 — Chs3)as))

—pbu(Un, (0, (s3 — Chss)az)) — b((Ch, (Chss)as), v — ¥n)

Ay(Un, & — én) = /(Th-a3)¢hd$

w

We have by green’s formula

Al(U;“ V—Vh> == Z (fh—l—DlV(T(Uh)Ah)—f—DlV(Sh(Uh>a§>—%p DiV(Qh(Uh)JTAh).(U—ChU)dZL’

TeT, /T
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3.1. A POSTERIORI ANALYSIS CHAPTER 3.

2 ren, + 2eervor J(3pQ"(Un) AL InT =0Ty (Un) Ap—n.S,(Up)a).(v—Cyv)do(x)(3.5)
Cauchy-Schwarz’ inequality and the properties of the Clément interpolant Cj, yield

AL (U, V = Vi)l S O )2 VI
TeT

In a fully similar manner, we have

Ao (U, V = Vi) S O )2V 1

TeT,

we directly check that

A3(Up, V = V) = Z/T(Bh s My (rn) — K () — %Bh t Pu(rn) — pQn(Un)) (3 — Chss)da

(3.6)
we get

[As(Un, V = Vi) S O )2V 1

TeT,

finally we get
AU, V = Vi) S O )2V 1

TeT,

then ,combining

= 50) (Ve = )| S sup [l = alllimio Vil = vl

and the above inegualities leads to the global upper bound (3.7) [5].
The estimates on |A;(Uy, V — V4)| directly yield the conclusion m
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3.2 UPPER AND LOWER BOUNDS

Athis point we can demonstrate the following

Theorem 8 the solution U of problem (1,24 )and the solution Uyof problem (2,2) satisfy

the following aposteriori error estimate
IU = Unllx + 14 — ¢ullx S mn + €ft + <5, (3.7)

Proof. The estimate (3,6) can be derived from the coercivity of the founctionalA(.,.) +
A, (., )+pb(.,.)+b(.,.) which has acoercivity constant equivalent to 1,this result is obtained
by applying the identity (3,1),lemma(8)and proposition(7)

m Let us go with the lower bond

Theorem 9 Let U repressent the solution toproblem (1,24) and Uyrepresent the solution

to problem (2,2)consequently we can establish the following constraint
0 < U = Unllsor) + 10 — @nllsor) + 8, + 25, 1 =1,2,3,4 (3.8)

The subscript wr in the index indicates that the quantity is considered exclusively within
the domainwr, while the norm X(wr) refers to the norm ofX calculated using integrals

limited towr.

)7 as the proof for the case ofng)

is essentially the same. To simplify the notation,we express n(Tl ) in a

Proof. We will focus on proving inequality (3.8) for n(Tl

) )

and 77&? and ngl

compact form as follows
1 1
np) = hrllFallaams + Y +hiaem + NG+ Y hE|IGhllrzems)
ecel NOT eceb NOT

First of all, let us fix the standard bubble function ¥+ associated with7 and set

. Fh‘IJTiHT
"7\ Oinw\T

According to the definition of W7 we can observe that v € H}(w,R?) thus implying that
(v,0) belongs to X this can be deduced from equtions (3,4)with V;, = 0 that
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3.2. UPPER AND LOWER BOUNDS CHAPTER 3.

Liy(v,0) — Ap(Uy, (v,0)) — pby,(Up, (v,0)) = b((v, 0), )
_ /T (fu + Div(Th(Un) An) + Div(Sp(Up)al) — %p Div(Q(U)) T Ay))vdz

1
= | Fatz |

Using the identity (3,1) we may write
AU = Uy, (0,0)) + pb(U — Uy, (v,0)) + b((v,0), ¥)

=(L-La) ((0,0)) = (A = Ap) (Uns (0,0)) = p(b = b) (U, (0, 0)) = (b= bp)((v,0), ¥n) —

'AP(Uh’ (U7 0)) - pbh(Uha (U7 0)) - Bh((vv O)a wh) + Lh((va O))

Hence

Ly(v,0) — Ap(Un, (v,0)) = pbp(Un, (v,0)) — by((v, 0), ¥y)

:A(u'u/w (Ua O)) + pb(U — Uh, (Ua O)) - (L - Lh)((U7 O)) - (A - Ah)(Uh> (’U, O))

-p(b = by)(Un, (v,0)) — (b — by)((v,0), ¥y

By the previous identities we get

1
1w 217 (rys = alU = Un, (v,0)) = +pb(U = Us, (v,0)) = (L — Ly)(v, 0)

+(A - Ah)(Uh7 (Ua 0)) - p(b - bh)(Uhv (U, O)) - (B - l;h)((va O)? wh)

Applying the cauchy-schwarz inequality and leveraging the arguments of lemma (8)we

can deduce that

1
IER 222z me) S (IU = Unllxery + 19 = Ynllxr) + €7 + eo)llvllm iz, (3.9)
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Utilizing the inverse inequality provided, we can conclude that

ol ey S ht vl 2errs), (3.10)

By utilizing the fact that the function ¥ takes values between 0 and 1, we can deduce

that
0]l sy S bt 1Fl 22, rm9), (3.11)
Additionally ,we have

1
1Fhll 2z < CUFRYE L2 ps). (3.12)

combining (3,9)(3,11)and (3,12)we get
hollPrl2aesy S pIlU = Unllxery + 19 = ¥nllxa) + €5 + €57

The second step involves bounding the second term of n(Tl Jfor all edges eofT'with the

element 7"in this case we select fonction v in equation (3,5)as follows

v = { Me,k([Gh]e)\Defork = [Tv TI] (313)

0 inw\(T'UT")
where W, is the standard edge bubble function associated with e and M., is an
extension operator that maps apolynomial gin the edge coordinate of e to a polynomial

in cartesian coordinates in k As before we see that
H [Gh}SHO\PSH%%e,R:”) = Ah<Uh7 (U7 0,0, O))_'_pbh(Uhv (Ua 0,0, 0)>_Lh(v7 0,0, 0)+Bh((va 0,0, 0)7 \Ijh)

+L/‘A(e)<<fh + DlV(Th(Uh)Ah) + DlV(Sh(Uh)agL) — %p DlV(Qh(Uh)JAh))UdJT)
By employing the identity (3.1) and leveraging the arguments presented in Lemma 5, we

can conclude that

GhlelloPelliaezsy < AIU—Unllxaen+vllxaen+Eae+eilvllaers +1Full 2@ n lvllxae

using a standard inverse inequality we can reach the conclusion that

1
RE[GHeTellioersy Sp Y U = Unllxaey + 1Y — Unllxiae) + €he + &5
ke{T,T"}
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the third and fourth term is bounded in a similar manner to the second term ,similarly
we bound the remaining n¥,i = 2,3, 4
Hence the proof is now complete.
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CHAPTER 4

CONCLUSION

In conclusion, it can be inferred that utilizing the mixed formulation and a posteriori
error analysis represents a strong and effective approach for modeling prestressed shell
structures. The mixed formulation allows for an accurate estimation of the mixed vari-
ables and other variables in the model, contributing to improved accuracy and numerical

efficiency in the analysis.
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