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Abstract 

Economic dispatch (ED) is a crucial component of every power system. Lambda-Iterative, 

Newton-Raphson, quadratic programming (QP), etc., are the conventional techniques for 

solving ED. However, non-quadratic functions cannot be solved by conventional methods, 

the input-output characteristics of a generator are significantly non-linear, which poses a 

challenging non-convex and non-smooth optimization problem which is non quadratic input 

functions for economic dispatch, In this study, the adaptive gain-sharing knowledge 

algorithm has been applied and implemented to function and solve the electrical dispatch for 

multi-systems and variation of unit numbers to solve power demand with the lowest possible 

cost of fuel and even emission, the AGSK optimization is updated from the original GSK 

(gaining and sharing knowledge) to solve the non-convex problem and be able to resolve it. 

The presented algorithm (AGSK) showed superior performance in terms of The total cost of 

power generated has been the lowest considering variables such as transmission losses, VPE, 

MFO, and system emission compared with the other four state-of-the-art algorithms. 
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Résumé 

Le Dispatching économique (ED) est une composante cruciale de tout système électrique. 

Lambda-Iterative, Newton-Raphson, la programmation quadratique (QP), etc., sont les 

techniques conventionnelles pour résoudre ED. Cependant, les fonctions non quadratiques 

ne peuvent pas être résolues par les méthodes conventionnelles, les caractéristiques d'entrée-

sortie d'un générateur sont significativement non linéaires, ce qui pose un problème 

d'optimisation non convexe et non lisse qui sont des fonctions d'entrée non quadratiques 

pour la répartition économique. Dans cet mémoire, l'algorithme "adaptive gain-sharing 

knowledge"a été appliqué et mis en œuvre pour fonctionner et résoudre la répartition 

électrique pour les multi-systèmes et la variation des nombres d'unités pour résoudre la 

demande d'énergie avec le coût le plus bas possible du carburant et même des émissions, 

l'optimisation AGSK est mise à jour à partir du GSK original (gain et partage des 

connaissances) pour résoudre le problème non convexe et être en mesure de le résoud 

L'algorithme présenté (AGSK) a montré des performances supérieures en termes du. Le coût 

total de l'énergie générée a été une des variables les plus faibles en considération telles que 

les pertes de transmission, Effets de points de valves, Options Multi-Combustibles, et les 

émissions du système par rapport aux  autres algorithmes. 



       

 

 

 

 

 

 الكلمات المفتاحية

(،  AGSKم، خيارات الوقود المتعدد، الانبعاثات، معرفة تقاسم المكاسب التكيفية ) . البرمجة التربيعية،، تأ ثيرات نقاط الصما لتوزيع الكهربائ ا

 . التكلفة الإجمالية، خسائر النقل

  

 الملخص 
، البرمجة التربيعية  Lambda-Iterative  ،Newton-Raphson( هو عنصر حاسم في أ ي نظام كهربائ.  EDلتوزيع الكهربائ ) ا

(QP  اإلخ، هي التقنيات التقليدية لحل ،)ED  ومع ذلك، ل يمكن حل الوظائف غير التربيعية بالطرق التقليدية، وخصائص المدخلات .

تربيعية  غير  حسين غير المحدب وغير السلس والتي هي وظائف مدخلات  والخرج للمولد غير خطية بشكل كبير، مما يطرح مشكلة الت 

، تم تطبيق الخوارزمية »معرفة مشاركة الكسب التكيفية« وتنفيذها لتشغيل وحل التوزيع الكهربائ لل نظمة  ذكرة للتوزيع. في هذه الم

من    AGSKوحتى الانبعاثات، يتم تحديث    المتعددة والاختلاف في عدد الوحدات لحل الطلب على الطاقة بأ قل تكلفة ممكنة للوقود 

GSK   تم تطبيق وتنفيذ "خوارزمية" معرفة تقاسم المكاسب التكيفية    ال صلي )اكتساب المعرفة وتبادلها( لحل المشكلة غير المحدب

نظمة المتعددة وتغيير عدد الوحدات لحل الطلب على الطاقة بأ قل تكلفة ممكنة   للوقود وحتى  "لتشغيل وحل التوزيع الكهربائ لل 

ال صلي )اكتساب المعرفة وتقاسمها( لحل المشكلة غير المحدبة والقدرة على حلها.    GSKمن    AGSKالانبعاثات، ويتم تحديث تحسين  

كانت التكلفة الإجمالية للطاقة المولدة واحدة من أ قل المتغيرات في الاعتبار مثل خسائر النقل وتأ ثيرات نقاط الصمام وخيارات الوقود  

 تعدد وانبعاثات النظام مقارنة بالخوارزميات ال خرى. الم 

 

 الملخص 
، البرمجة  Lambda-Iterative  ،Newton-Raphson( هو عنصر حاسم في أ ي نظام كهربائ.  EDلتوزيع الكهربائ ) ا

. ومع ذلك، ل يمكن حل الوظائف غير التربيعية بالطرق التقليدية،  ED(، اإلخ، هي التقنيات التقليدية لحل  QPالتربيعية ) 

وخصائص المدخلات والخرج للمولد غير خطية بشكل كبير، مما يطرح مشكلة التحسين غير المحدب وغير السلس والتي هي  

يفية« وتنفيذها لتشغيل وحل  وظائف مدخلات تربيعية للتوزيع. في هذه المقالة، تم تطبيق الخوارزمية »معرفة مشاركة الكسب التك 

التوزيع الكهربائ لل نظمة المتعددة والاختلاف في عدد الوحدات لحل الطلب على الطاقة بأ قل تكلفة ممكنة للوقود وحتى  

تم تطبيق وتنفيذ    ال صلي )اكتساب المعرفة وتبادلها( لحل المشكلة غير المحدب  GSKمن   AGSKالانبعاثات، يتم تحديث  

فة تقاسم المكاسب التكيفية "لتشغيل وحل التوزيع الكهربائ لل نظمة المتعددة وتغيير عدد الوحدات لحل الطلب  "خوارزمية" معر 

ال صلي )اكتساب المعرفة    GSKمن    AGSKعلى الطاقة بأ قل تكلفة ممكنة للوقود وحتى الانبعاثات، ويتم تحديث تحسين  
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General Introduction 

In today's rapidly evolving Energy landscape, effective management of electrical dispatching 

is becoming increasingly important, Electrical dispatching involves the real-time optimization 

of power generation and distribution to meet changing energy demands while maintaining grid 

stability, To achieve this goal, it is necessary to have a comprehensive understanding of the 

complex interactions between various components of the electrical system, including 

generation sources, transmission lines, and distribution on the industry, Dispatchers are 

responsible for ensuring that the electricity grid operates smoothly and efficiently, and they 

must be able to react swiftly to fluctuations in demand or supply, Electric dispatching involves 

dispatching each generator based on its individual characteristics and performance, taking into 

account all previous equations noted in chapters such as fuel cost, valve point effect and even 

emision in order to arrive at the optimal solution, this limitation is surmounted by the AGSK 

algorithm, which allows generators to share their knowledge and experience, This algorithm 

employs machine learning and artificial intelligence techniques to analyze data from various 

generators and identify patterns and trends in their behavior, as well as the optimal procedure 

they can attempt on the power grid, As generators exchange knowledge and experience, the 

algorithm adapts and modifies its dispatch decisions to increase the grid's overall efficiency, 

This enables generators to minimizing waste and minimizing the risk of blackouts and 

enhancing the power grid's efficiency and sustainability, By optimizing the use of available 

resources, for new infrastructure and the environmental impact of power generation by taking 

into account emissions produced by the same generators at power generation centers, Overall, 

AGSK is a thrilling advancement in the potential to revolutionize the way we manage and 

operate power grids best results in terms of power quality, production cost, and environmental 

impact. 
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Chapter Ⅰ 

Economic Emission Dispatch Considering Valve-Point Effect 

and Multi-Fuel Option 
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Introduction: 

The cost of producing energy, primarily in fossil fuel plants, is generally high due to the 

daily development in electricity consumption To minimize cost of fuel and sustain the 

steady functioning of the electrical grid, it has become increasing essential that we 

distribute the electricity economically, Energy must be distributed economically to save 

fuel costs and ensure the power network performs properly., The need to conduct 

production in the most cost-effective and efficient manner is also driven by the 

progressively increasing costs of coal, salaries, and other supplies[1].  

Since certain installed generator-turbine units are more economical over others, those 

who should contribute more to the electricity generated, Also because of the non - linear 

nature of the cost curves, load distribution is not simple, Power Economic Load dispatch 

(PELD) tries to allocate a part of total load on each generator to optimally minimize the 

overall cost of operation, while meeting all the constraints[2] Thus, PELD is formulated 

as a problem of allocating generation among committed unit such that the total generation 

cost can be minimized satisfying all inequality and equality constraints. The basic equality 

constraint is that total output power of generating units must be equal to total demand and 

losses in the power system, Losses can be found by using Kron’s formula, load flow 

analysis. Inequality constraints in economic load dispatch problem are ramp rate 

constraint valve point effect (VLP) , multifuel options (MFO) & prohibited operating 

zone (POZ)[3], security constraints, emission constraint etc, the committed power of each 

generator unit must be within prescribed limits. 
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Ⅰ.1 Economic Load Dispatch problem  

Economic Load Dispatch (ELD) is a key issue in the management and operation of the 

power system. Determining the best probable power generation schedule that matches the 

power units' generating limitations while using the lowest possible quantity of fuel is the 

aim of ELD [3]. The fuel expenses of power units are represented as quadratic functions 

in the canonical formulation of ELD. Quadratic functions are convex and are simple to 

solve using mathematical programming techniques. In the past few decades, a variety of 

conventional strategies have been utilized for dealing with ELD. 

power system operating constraints, in- clouding power unit and load balancing 

constraints. the formulation described in the problem is formulated on one-hour time 

spans. 

Ⅰ.1.1. Objective function 

The objective function of ELD [3] is defined as follows: 

                               ∑𝐹𝑖
𝑐

𝑛

𝑖=1

(𝑃𝑖)                           (1) 

where 𝑛 is the total number of power units, 𝐹𝑖
𝑐 (𝑃𝑖) is the fuel cost function, for the 𝑖  

power units, and 𝑃𝑖 is the power generation, for the 𝑖 the power units according to the 

power generation schedule. 
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Ⅰ.2. Economic and Emission Dispatches 

Ⅰ.2.1. Economic Dispatch 

The proposed approach can accommodate non-quadratic (higher order) fuel cost and 

multiple emissions of differentiable nature objective function, The classical economic 

dispatch problem of finding the optimal combination of power generation, Which 

minimizes the total fuel cost while satisfying the total demand [5], Can be mathematically 

stated as follows: 

𝐹𝑇 =∑(𝑎𝑖 𝑃𝐺𝑖
2

𝑛

𝑖=1

+ 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖)   
$

ℎ
                  (2)     

(𝐹𝑇): Total fuel cost ($/h) ( 𝑃𝐺𝑖): Generation of unit In (MW) 

(𝑎𝑖 , 𝑏𝑖, 𝑐𝑖): Fuel Cost Coefficients Of Unit  

(𝑖 ,𝑛): Number Of Generating Unit 

The economic dispatch problem is optimized by Serval Elements  

Ⅰ.2.1.1. Power balance constraint 

The total power generated must supply total load demand and transmission losses [6].  

 ∑𝑃𝐺𝑖

𝑛

𝑖=1

= 𝑃𝐷 + 𝑃𝐿   𝑀𝑊                          (3) 

𝑃𝐷: total load demand (MW) and 𝑃𝐿: total transmission losses (MW) 

Ⅰ.2.1.2. Transmission constraints  

The transmission Power Losses (𝑃𝐿𝑜𝑠𝑠) can be computed through a power flow 

computation (DC or AC approach), However, a common solve is to estimate the total 

transmission losses as a quadratic function of the power output of generating units in 

order to increase the clarity and splitting of the problem (known as Kron’s loss formula) 

or through a simplified linear formula [3] 

𝑃𝐿 =∑∑𝑃𝑖

𝑛

𝑖=1

𝑛

𝑖=1

𝐵𝑖𝑗𝑃𝑗 +∑𝐵0𝑖𝑃𝑖 + 𝐵00

𝑛

𝑖=1

   (4) 
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Ⅰ-2-1-3 Unit capacity constraint  

Each generator's power output, 𝑃𝐺𝑖, is limited to the range between its minimum and 

maximum values [3]. 

                           𝑃𝐺𝑖 𝑀𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖 𝑀𝑎𝑥                    (5) 

𝑃𝐺𝑖 𝑀𝑖𝑛: minimum generation limit (MW) 

𝑃𝐺𝑖 𝑀𝑎𝑥: maximum generation limit (MW) 

 

Ⅰ-2-1-4 Ramp rate limits: 

Due to each unit's physical constraints, changing the output production of each unit is 

limited to a certain amount of power over a certain period of time, the generator ramp rate 

limits change the effective real power operating limits [5] as follows:  

𝑀𝑎𝑥(𝑃𝑖
𝑀𝑖𝑛, 𝑃𝑖(𝑡 − 1) − 𝐷𝑅 ≤ 𝑃𝑖(𝑡)           (6) 

𝑃𝑖 ≤ (𝑀𝑖𝑛(𝑃𝑖
𝑀𝑎𝑥, 𝑃𝑖(𝑡 − 1) + 𝑈𝑅𝐼) 

Where 𝑃𝑖(𝑡 − 1) is the output power of generator in the previous dispatch. 

 

 

Figure 1: flexibility attributes of generators. 
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Ⅰ.2.1.5 Prohibited Operating Zone (POZ) 

The operating range of all generating units is practically restricted by their ramp rate 

limits to operate continually between the two closest specific operating zones 

𝑃𝑖
𝑀𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,1

𝐿𝑜𝑤: 𝑃𝑖,𝑘−1
𝑈𝑝 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑘

𝐿𝑜𝑤: 𝑃𝑖,𝑛𝑖
𝑈𝑝 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥      (7) 

Ⅰ.2.2. Emission Dispatches  

The emission function can be expressed as the sum of all types of emission [7] 

considered, such as NOx, SO2, CO2, particles thermal emissions, with appropriate 

weighting of prices for each pollutant released A variety of mathematical representations 

of the Thermal generating systems emission function.  

The following emission function (8) will be taken into aspect in this study to model the 

total emission levels of all producing units. 

𝐸𝑖(𝑃𝐺𝑖) =∑(

𝑛

𝑖=1

𝛼𝑖 𝑃𝐺𝑖
2 + 𝛽𝑖𝑃𝐺𝑖 + 𝛿𝑖)   (𝐾𝑔/ℎ)       (8) 

𝐸𝑖: total emission (𝐾𝑔/ℎ); 𝑃𝐺𝑖: generation of unit (MW) 

𝛼𝑖 , 𝛽𝑖, 𝛿𝑖: emission coefficients of unit 

 𝑛: number of generating units. 

Ⅰ.3. Combined Economic and Emission Dispatch  

Ⅰ.3.1 Definition 

Redressing the economic load dispatch (ELD) challenges has a substantial emphasis on 

the power system’s operation, planning, economic scheduling, and security. 

The nonlinear constrained ELD problem is targeted to decrease the electric power 

generating cost with the optimal setting of concerned generating unit outputs, meeting the 

demands of whole unit and system limitations.  

Generally, harmful emissions of fossil fuels are not handled properly by the 

conventional ELD, to resolve this issue, the combined effect of economic and emission 

dispatch CEED [8] has been emerged. 

 

 

Ⅰ.3.2. CEED Formulation 
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The key concern is to simultaneously reduce fuel costs and emissions while committing 

to equality and inequality limits. The CEED problem is dual-objective due to the 

independence of the cost and emission functions [8]. 

By combining two objective functions into one, it is possible to solve bi-objective 

problems (8). 

The Emission Dispatch Problem can be mathematically represented as: 

                       𝑀𝑖𝑛 {𝐸 =  ∑E𝑖(𝑃𝐺𝑖)

𝑛𝑔

𝑖=1

}                              (9)  

E𝑖 =∑(

𝑛

𝑖=1

𝛼𝑖 𝑃𝐺𝑖
2 + 𝛽𝑖𝑃𝐺𝑖 + 𝛿𝑖) + 𝜂𝑖 exp(𝛾𝑖𝑃𝐺𝑖)   (𝐾𝑔/ℎ)         

(𝛼 , 𝛽 , 𝛾 , 𝜂, 𝛿) are the emission coefficients of the 𝑖  units  

𝑃𝑇𝐶 = 𝐹𝑇 + 𝑃𝑓 × E𝑖      (10) 

𝑃𝑇𝐶 is the pure total cost of the system,𝑃𝑓is the penalty factor, E𝑖is total emmison  

 

Ⅰ.4. The problem formulation considering VPE & MFO  

Figure 2 : solution for combined economic and emission dispatch problem. 
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Ⅰ.4.1 Dispatch Formulation with Valve Point Effects 

Another well-known model for cost function in PED problems is fuel cost function with 

Valve-Point Effect (VPE) (10), The generator cost function is obtained from data points 

taken during “heat run” tests, when input and output data is measured as the unit is slowly 

varied through its operating region.  

Modern steam turbines with multi-valve exhibit larger variation in its fuel cost function, 

The valve opening process of multi-valve steam turbines produces a ripple-like effect in 

the heat rate curve of the generators.  

therefore, “valve-point effect” are illustrated in “Figure 3”, The significance of this 

effect is that the actual cost curve function of a large steam plant is not continuous but 

more important it is non-linear, The valve-point effects are taken into consideration in the 

ED problem by superimposing the basic quadratic fuel cost (2) and characteristics with 

the rectified sinusoidal component  as follows: 

𝐹𝑖(𝑃) =∑(𝑎𝑖

𝑛

𝑖=1

𝑃𝐺𝑖
2 + 𝑏𝑖𝑃𝐺𝑖 + 𝑐𝑖)  + |𝑒𝑖 × sin(𝑓𝑖(𝑃𝐺𝑖𝑀𝑖𝑛 −𝑃𝐺𝑖))|   (11) 

(𝑎𝑖 , 𝑏𝑖, 𝑐𝑖, ): Are the cost coefficients of unit i. 

(𝑓𝑖 , 𝑒𝑖): are the coefficients of VPE 

Consequently, adjusting these parameters is an essential part to further increase the 

economic dispatch factors final accuracy. 

 

  
A Primary valve 

B Secondary valve 

C Tertiary valve 

D Quaternary valve 

E Primary valve 

Figure 3 : fuel cost curve for PED with 

valve point effects (VPE). 
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Ⅰ.4.2. Dispatch formulation with Multi Fuels Options 

As real-world generation units are supplied with such multi-fuel sources as oil, naturel 

gas and coal, the input-output curve turns out to be represented by a piecewise quadratic 

cost function, Whereby, each segment should convey certain information [8] regarding 

the fuel type being used. In such a case, the optimizer must refer to the optimum power 

amount likely to be produced for each unit and so, the most economic fuel type that has. 

fuel must have to be burnt to Enhance the objective function appears to be a hybrid 

function made up of several quadratic functions. 

The fuel cost equation for a PED problem with only MFOs is as under in Equation (12). 

𝐹𝑖(𝑃) =

{
 
 

 
 
𝑎𝑖1 + 𝑏𝑖1𝑃𝐺𝑖 + 𝑐𝑖1𝑃𝐺𝑖

2 + , 𝐹𝑢𝑒𝑙 1 , 𝑃𝐺𝑖
𝑀𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝑖1 

𝑎𝑖1 + 𝑏𝑖1𝑃𝐺𝑖 + 𝑐𝑖1𝑃𝐺𝑖
2  , 𝐹𝑢𝑒𝑙 2    , 𝑃𝐺𝑖

𝑀𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝑖1,
,
,

𝑎𝑖𝑘 + 𝑏𝑖𝑘𝑃𝐺𝑘 + 𝑐𝑖𝑘𝑃𝐺𝑖
2  , 𝐹𝑢𝑒𝑙 𝑘, 𝑃𝑖𝑘−1 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑀𝑎𝑥

   (12)  

(𝑃𝑖𝑘
𝑀𝑖𝑛, 𝑃𝑖𝑘

𝑀𝑎𝑥) minimum & maximum power generations from units (𝑎𝑖𝑘, 𝑏𝑖𝑘 , 𝑐𝑖𝑘)cost 

coefficients of the generating unit consuming 𝐾𝑡ℎfuel. 

“Figure 4” Represents the fuel cost characteristics of a PED problem that considers 

only MFOs for generating units. 

 

Figure 4 : fuel cost curve for PED problem with multiple fuel options (MFO). 
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Ⅰ.4.3. Dispatch formulation with VPE and MFO 

Optimizing economic dispatch with valve-point effects (11) and multi-fuels (12) 

requires advanced optimization techniques, considering factors like fuel availability, cost, 

plant efficiency, and emissions regulations. 

By addressing these complexities, power generation systems can achieve improved 

efficiency and cost-effectiveness, while minimizing environmental impact. 

The fuel cost equation for a PED problem modeling both [10] MFOs and VPE is as 

under in Equation (13) 

 

𝐹𝑖(𝑃)

=

{
 
 
 

 
 
 
𝑎𝑖1 + 𝑏𝑖1𝑃𝐺𝑖 + 𝑐𝑖1𝑃𝐺𝑖

2 + |𝑒𝑖1 × sin(𝑓𝑖1(𝑃𝐺𝑖𝑀𝑖𝑛 −𝑃𝐺𝑖))| , 𝐹𝑢𝑒𝑙 1 , 𝑃𝐺𝑖
𝑀𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖1 

𝑎𝑖2 + 𝑏𝑖2𝑃𝐺𝑖 + 𝑐𝑖2𝑃𝐺𝑖
2 + |𝑒𝑖2 × sin(𝑓𝑖2(𝑃𝐺𝑖𝑀𝑖𝑛 −𝑃𝐺𝑖))| , 𝐹𝑢𝑒𝑙 2 , 𝑃𝐺𝑖

𝑀𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖2,
,

𝑎𝑖𝑘 + 𝑏𝑖𝑘𝑃𝐺𝑖 + 𝑐𝑖𝑘𝑃𝐺𝑖
2 + |𝑒𝑖𝑘 × sin(𝑓𝑖𝑘(𝑃𝐺𝑖𝑀𝑖𝑛 −𝑃𝐺𝑖))| , 𝐹𝑢𝑒𝑙 𝑘 , 𝑃𝐺𝑖

𝑘−𝑘 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖𝑀𝑎𝑥
.
.

(13)

 

This project proposed an incorporated cost model, which combines the valve-points and 

the fuel changes into one “Figure 5”. 

 

 

 

 

 

 

 

. 

 

 

Figure 5 : fuel cost curve with VPL and MFO impacts. 
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Conclusion 

Economic emission dispatch (EED) With valve-point effects (VPE) and multi-fuel 

options (MFO) is an optimization problem that aims to minimize the total operating cost 

of a power system while meeting the load demand and satisfying the emission constraints, 

considering the non-smooth and discontinuous cost functions of the generators due to 

valve-point effects and the ability of generators to use different types of fuels. 

Solutions that require these factors are necessary for optimizing power generation 

systems and ensuring reliable and cost-effective electricity supply, the performance of the 

power system can be enhanced by considering valve-point effects and multi-fuel options 

in economical emission dispatch. A comprehensive approach to EED that combines 

accurate mathematical models [11], advanced optimization algorithms, and real-world 

constraints can lead to better dispatch results by minimizing both fuel cost and 

environmental impact, while accommodating the complexities introduced by valve-point 

effects and multi-fuel options. 
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Introduction 

The nature of gaining and sharing knowledge in algorithms can be characterized as a 

multifaceted, dynamic process that involves the acquisition, development, dissemination, 

and application of information within various domains. It encompasses a range of 

cognitive and social processes, including learning, teaching, collaboration, and 

innovation, this intricate interplay between individual minds and collective intelligence 

forms the foundation for advancing human understanding and refining algorithmic 

solutions [19], gaining knowledge in algorithms typically begins with learning 

fundamental principles, data structures, and computational techniques. This process often 

entails studying existing algorithms, analyzing their strengths and weaknesses, the 

gaining sharing knowledge-based optimization algorithm is a technique used to optimize 

complex systems, It involves sharing knowledge among various parts of the system to 

improve overall efficiency[20], The algorithm works by using a hybrid approach that 

incorporates elements of both genetic algorithms and swarm intelligence, The process 

involves creating a population of potential solutions, evaluating each of these solutions, 

and then using knowledge from the best solutions to improve the rest of the population, 

This process is repeated until a satisfactory solution is found, Adaptive Gaining-Sharing 

Knowledge Based Algorithms lie in their complexity, maturity, capability, 

interdisciplinary integration, and ability to handle ambiguity and uncertainty. The 

presented algorithm (APGSK)[22] is tested on a very recent benchmark testbed on bound 

constrained numerical optimization that composed of distinct challenging optimization 

problems with different dimensions  
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Ⅱ.1. Optimization Techniques  

optimization techniques for economic dispatch strive to find the most cost-effective 

power distribution among generating units while meeting system constraints. Numerous 

approaches exist, each with its strengths and weaknesses. The choice of optimization 

technique depends on factors such as system size, nonlinearity, constraint types, and 

required accuracy. 

The objective of optimization is to identify the optimal solution from a multitude of 

solutions that exist within the problem space. Various techniques have been developed to 

attain this objective, which can be broadly categorized into traditional and advanced 

techniques [18]. 

Traditional techniques : Deterministic optimization algorithms comprise of specific 

rules for transitioning between solutions as an example of these 

algorithms:(Linear/Nonlinear/Integer/Dynamic/Quadratic) program-Ing Calculus of 

variation, Calculus methods. 

Advanced techniques : stochastic optimization algorithms consist of rules with 

probabilistic transition, as an example of these algorithms: 

Particle Swarm Optimization (PSO), Bat Optimization Algorithm (BOA), Whale 

optimization algorithm (WOA) elephant herding optimization (EHO), Gaining Sharing 

Knowledge Base Algorithm (GSK), and many others algorithms. 

The traditional techniques are missing several aspects that can be found in the advanced 

techniques, and the advanced techniques also have some restrictions a comparison of the 

many techniques for optimization. 
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Ⅱ.2. Tree of optimization techniques  

Evolutionary-based techniques, programming-based techniques, and intelligent-based 

techniques are all distinctive approaches to solve complex optimization and search 

problems (fig 3).  

• Evolutionary-based optimization techniques : techniques that produce optimal 

individuals based on the process of gradual improvement and change, the better 

generation affected based on the natural select, mutation and crossover operators, 

examples of these techniques are genetic algorithm (GA), Quantum evolutionary 

algorithm (QEA), and Backtracking optimization algorithm (BOA) and others. 

• Programming based optimization techniques : optimizations that represent the 

population as a decision tree and Each individual(program) is evaluated according 

to its capacity to tackle the optimization problem from these techniques are 

Genetic Programming (GP)Cartesian Genetic Programming (CGP) and others. 

• Intelligent based optimization techniques : techniques that are molded by the 

natural behavior of swarms of intelligent animals, where each individual has its 

own intelligence ability, and a combination of all individuals constructs a 

powerful tool to solve complex problems. these techniques may likewise imitate 

human behavior in its physical and non-physical activities. These techniques treat 

a population as randomly generated groups of solutions, with each group having 

a leader (agent) that guides it through successive generations until the optimal 

global solution is found. examples of these techniques are Particle Swarm 

Optimization (PSO), Bat Optimization Algorithm (BOA), Whale optimization 

algorithm (WOA) elephant herding optimization (EHO), Gaining Sharing 

Knowledge Base Algorithm(GSK), and many others algorithms. 
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Due to interacting with larger networks each person has their own knowledge in 

different fields that can be significantly enhanced by gaining it from others. last few 

decades there has been an improvement in the development of human-based algorithm 

optimization, which has a good structure and techniques in many fields of engineering. 
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Figure 6 : percentage share for each category in the overall meta-heuristic algorithms. 

Figure 7 : percentage share for each category in the overall meta-heuristic algorithms. 
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ⅠⅠ.3 Gaining Sharing Knowledge Algorithm  

Gaining and sharing knowledge is a crucial aspect of optimization. This procedure 

includes the collection, analysis, and dissemination of data Population Users to enhance 

the efficacy and efficiency of decision-making processes. In this context "gaining 

knowledge" refers to acquiring new information or insights which is data collected from 

previous practices can be used to enhance performance. In contrast, sharing knowledge 

involves disseminating this information to others in order to facilitate collaboration and 

problem-solving. 

 

 

 

 

 

 

 

 

Figure 8 : classification of optimization techniques. 
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ⅠⅠ.4 GSK Algorithm Construction 

GSK is a metaheuristic technique proposed by Mohamed et al. [20] that based on 

population and a nature inspired and it considered the behavior of human life spin. this 

algorithm characterized by its robustness, the overall performance is stable(robust) even 

the dimension increase, good convergence speed, the high-quality problem solution even 

with high dimension problems, complex problems and real time optimization problems, 

like others optimization algorithm [21]. 

Constrained optimization problem [22] could be formulated (12) as:  

𝑀𝑖𝑛 𝑓 (𝑋) ; 𝑋 = [𝑥1, 𝑥2, ……… , 𝑥𝐷𝑖𝑚] 

                   𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜. 𝑔𝑖 (𝑋) ≤ 0; 𝑖 = 1,2, … ,𝑚          (12)   

𝑋 ∈ [𝛼𝑝, 𝛽𝑝];    𝑝 = 1,2, …… ,𝐷𝑖𝑚 

where, 𝑓 represents the objective function; 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝐷𝑖𝑚] represents the 

decision variables; 𝑔𝑖 (𝑋) represents the inequality constraints and 𝛼𝑝, 𝛽𝑝 represent the 

lower and upper boundaries of the decision variables, respectively. 𝐷𝑖𝑚 is the number of 

dimensions of an individual, In case the problem is to maximize the objective function, 

then we can consider minimization as (−1 × Maximization). 

The structure of gaining-sharing knowledge optimization involves It is based on two 

vital stages. 

1. Junior (beginners) Gaining and Sharing stage. 

2. Senior (experts) Gaining and Sharing stage. 

All people gain knowledge and share it with others throughout their lifetime. Early 

middle-aged individuals gain knowledge from their small connections, such as family 

members and relatives, and wish to share their views and opinions with others who may 

or may not be members of their group. Similarly, people in their middle and later years 

gain knowledge through interaction with their colleagues, friends, etc. [20] They have the 

experience necessary to assess and categorize individuals as good or bad. In addition, 

they share their views or opinions with knowledgeable or appropriate individuals so that 

their knowledge can be expanded. 

The process, as mentioned above, can be mathematically formulated in the following 

steps [22]: 
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Step 1: For the optimization procedure to begin, an initial population (solutions) is 

required. A random population is generated considering the following boundary 

constraints: 

𝑥𝑡𝑝
0 = 𝛼𝑝 + 𝑟𝑎𝑛𝑑𝑝(𝛽𝑝 − 𝛼𝑝)    (13) 

where t represents the number of people in the population; 𝑟𝑎𝑛𝑑𝑝represents a random 

number generated from a uniform distribution between [0,1]; 𝛽𝑝 is the upperbound of the 

decision variable, and 𝛼𝑝 is the lower bound. 

Step 2 : At the beginning of the search, the number of dimensions for the junior and 

senior stage should be computed. The number of dimensions that should be changed or 

updated during both the stages must set on, and it is calculated by a non-linear decreasing 

and increasing equation (14) & (15). 

𝐷𝑖𝑚𝑗 = 𝐷𝑖𝑚 × (
𝐺𝑒𝑛𝑀𝑎𝑥 − 𝐺

𝐺𝑒𝑛𝑀𝑎𝑥
)

𝑘

  (14) 

      𝐷𝑖𝑚𝑠 = 𝐷𝑖𝑚 − 𝐷𝑗                       (15) 

k is a positive integer greater than zero that represents the learning rate, which monitors 

the experience rate. 𝐷𝑖𝑚𝑗𝑢𝑛𝑖𝑜𝑟 is the dimension of the junior phase, while 𝐷𝑖𝑚𝑠 is the 

dimension of the senior phase, 𝐺 is a counter for generations, while 𝐺𝑒𝑛𝑀𝑎𝑥 is the highest 

number of generations. 
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Step 3: Junior Sharing Knowledge Stage: In this stage, early-middle aged individuals 

gain knowledge from their small networks, They share their opinions or skills with 

individuals who may or may not be a part of their group out of a desire to learn about 

them Consequently, individuals are informed as follows:  

1. According to objective function values, the individuals are arranged in ascending 

order as  𝑋𝑖, ... , 𝑋𝑖−1, 𝑋𝑖, 𝑋𝑖+1, ... , 𝑋𝑤𝑜𝑟𝑠𝑡. 

2. For every 𝑋𝑖 (𝑖 = 1, 2,…… 𝑁𝑝), select the nearest best (𝑋𝑖−1) and worst 𝑋𝑖+1 to gain 

the knowledge, also select randomly (𝑋𝑟) to share the knowledge. Therefore, the updated 

new individual is as (16). 

𝑋𝑖𝑗
𝑁𝑒𝑤 = {

𝑋𝑖 + 𝐾𝑓[(𝑋𝑖−1 − 𝑋𝑖+1) + (𝑋𝑟 − 𝑋𝑖)], 𝐼𝑓 𝑓(𝑋𝑟) < 𝑓(𝑋𝑖)
𝑋𝑖 + 𝐾𝑓[(𝑋𝑖−1 − 𝑋𝑖+1) + (𝑋𝑖 − 𝑋𝑟)], 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (16) 

Where, 𝐾𝑓 > 0 is the knowledge factor.  

the pseudo-code is presented in Below Code  

 

Pseudo - code 1 : for junior gaining-sharing-knowledge phase. 

 

1.   For  𝑖=1:NP 

2.    For j=1: Dimj 

3.      𝑖𝑓 𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑘𝑟 (𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑟𝑎𝑡𝑖𝑜) 

4.        𝑖𝑓 𝑓(𝑋𝑟) < 𝑓(𝑋𝑖) 

5.        𝑋𝑖𝑗
𝑁𝑒𝑤 = 𝑋𝑖 + 𝐾𝑓[(𝑋𝑖−1 − 𝑋𝑖+1) + (𝑋𝑟 − 𝑋𝑖)]  

6.        𝑒𝑙𝑠𝑒  

7.        𝑋𝑖𝑗
𝑁𝑒𝑤=𝑋𝑖 + 𝐾𝑓[(𝑋𝑖−1 − 𝑋𝑖+1) + (𝑋𝑖 − 𝑋𝑟)] 

8.       𝐸𝑛𝑑(𝑖𝑓) 

9.        𝐸𝑙𝑠𝑒 𝑋𝑖𝑗
𝑁𝑒𝑤=𝑋𝑖𝑗

𝑜𝑙𝑑 

10.   𝐸𝑛𝑑(𝑖𝑓) 

11.  𝐸𝑛𝑑(𝑓𝑜𝑟 𝑗) 

12. 𝐸𝑛𝑑(𝑓𝑜𝑟 𝑖) 

13.  
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Step 4: Senior Sharing Knowledge Stage: The influence of other individuals (suitable 

or inappropriate) on the relevant individual is implicated, improving individuals could 

be determined as follows: 

The candidates of the population are divided into three categories. 

(Best individuals, Middle individuals, and Worse individuals). 

after sorting individuals in ascending order (based on the objective function values). 

• Best individual = 100𝑃%(𝑋𝑝−𝑏𝑒𝑠𝑡),  

• Middle individual = (𝑁𝑃 − 2) × 100𝑃%(𝑋𝑚𝑖𝑑𝑑𝑙𝑒 ),  

• Worst individual = 100𝑃%(𝑋𝑝−𝑤𝑜𝑟𝑠𝑡),  

Best individual Middle individual Worst individual 

100𝑃%(𝑋𝑝−𝑏𝑒𝑠𝑡) (𝑁𝑃 − 2) × 100𝑃%(𝑋𝑚𝑖𝑑𝑑𝑙𝑒 ) 100𝑃%(𝑋𝑝−𝑤𝑜𝑟𝑠𝑡) 

 

2. For every individual 𝑋𝑖, choose two random vectors of the top and bottom 100𝑃% 

individual for gaining part and the third one (middle individual) is chosen for the 

sharing part.  

Therefore, the new individual is as : 

𝑋𝑖𝑗
𝑁𝑒𝑤

= {
𝑋𝑖 + 𝐾𝑓 [(𝑋𝑝−𝑏𝑒𝑠𝑡 −𝑋𝑝−𝑤𝑜𝑟𝑠𝑡) + (𝑋𝑚𝑖𝑑𝑑𝑙𝑒 − 𝑋𝑖)], 𝐼𝑓 𝐹(𝑋𝑚𝑖𝑑𝑑𝑙𝑒 )

< 𝐹(𝑋𝑖)

𝑋𝑖 + 𝐾𝑓[(𝑋𝑝−𝑏𝑒𝑠𝑡 −𝑋𝑝−𝑤𝑜𝑟𝑠𝑡) + (𝑋𝑖 −𝑋𝑚𝑖𝑑𝑑𝑙𝑒 )], 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (17) 

where, 𝑝 ∈ [0, 1] and 𝑝 =0.1, 10% of 𝑁𝑃 is suitable 
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Pseudo - code 2 : for senior gaining-sharing-knowledge phase. 

 

 

 

 

 

 

 

 

 

 

1. For  𝑖=1:NP 

2.    For j=1: DimS 

3.      𝑖𝑓 𝑓 𝑟𝑎𝑛𝑑 ≤ 𝑘𝑟 (𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑟𝑎𝑡𝑖𝑜) 

4.        𝑖𝑓 𝑓(𝑋𝑖) < 𝑓(𝑋𝑚) 

5.        𝑋𝑖𝑗
𝑁𝑒𝑤 = 𝑋𝑖 + 𝐾𝑓[(𝑋𝑝−𝑏𝑒𝑠𝑡 − 𝑋𝑝−𝑤𝑜𝑟𝑠𝑡) + (𝑋𝑚𝑖𝑑𝑑𝑙𝑒 − 𝑋𝑖)]  

6.        𝑒𝑙𝑠𝑒  

7.        𝑋𝑖𝑗
𝑁𝑒𝑤=𝑋𝑖 + 𝐾𝑓[(𝑋𝑝−𝑏𝑒𝑠𝑡 − 𝑋𝑝−𝑤𝑜𝑟𝑠𝑡) + (𝑋𝑖 − 𝑋𝑚𝑖𝑑𝑑𝑙𝑒 )] 

8.       𝐸𝑛𝑑(𝑖𝑓) 

9.        𝐸𝑙𝑠𝑒 𝑋𝑖𝑗
𝑁𝑒𝑤=𝑋𝑖𝑗

𝑜𝑙𝑑 

10.   𝐸𝑛𝑑(𝑖𝑓) 

11.  𝐸𝑛𝑑(𝑓𝑜𝑟 𝑗) 

12. 𝐸𝑛𝑑(𝑓𝑜𝑟 𝑖) 
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ⅠⅠ.5 GSK algorithm code  

The Code of Gaining and Sharing Knowledge algorithm is an efficient tool that aims 

to optimize the entire process of accumulating knowledge and sharing it with others, 

This algorithm is built upon the principles of machine learning, language processing, 

which enables it to determine patterns and insights that can help users learn more 

efficiently[22].  

   

1.   Begin 

2.    G=0, initialize parameters: N,kf,kr,k and p 

3.      𝐶𝑟𝑒𝑎𝑡 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑥𝑖 , 𝑖 = 1,2, ……𝑁 

4.       𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓(𝑥𝑖), ∀𝑖, 𝑖 = 1,2, ……𝑁 

5.        𝐹𝑜𝑟 𝐺 = 1 𝑡𝑜 𝐺𝐸𝑁𝑚𝑎𝑥 

6.        𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 

            (𝐺𝑎𝑖𝑛𝑑𝑒𝑑 𝑎𝑛𝑑 𝑠ℎ𝑎𝑟𝑒𝑑 𝑑𝑖𝑚𝑠, 𝑜𝑓 𝑏𝑜𝑡ℎ 𝑝ℎ𝑎𝑠𝑒𝑠) 

            𝑢𝑠𝑖𝑛𝑔 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑒𝑞𝑠, (2), (3); 

7.        //𝑗𝑢𝑛𝑖𝑜𝑟 𝑔𝑎𝑖𝑛𝑖𝑛𝑔 − 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑝ℎ𝑎𝑠𝑒// 

8.      //𝑠𝑒𝑛𝑖𝑜𝑟 𝑔𝑎𝑖𝑛𝑖𝑛𝑔 − 𝑠ℎ𝑎𝑟𝑖𝑛𝑔 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑝ℎ𝑎𝑠𝑒// 

9.               𝐼𝑓 (𝑥𝑖𝑗
𝑁𝑒𝑤 ≤ 𝑥𝑖𝑗

𝑜𝑙𝑑), 

                   𝑥𝑖
𝑜𝑙𝑑=𝑥𝑖

𝑁𝑒𝑤, 𝑓(𝑥𝑖
𝑜𝑙𝑑) = 𝑓(𝑥𝑖

𝑁𝑒𝑤) 

                  𝑒𝑛𝑑 // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑣𝑒𝑐𝑡𝑜𝑟 

10.    𝐸𝑛𝑑 𝐹𝑜𝑟 ……𝑁 

11.   𝐸𝑛𝑑 𝐹𝑜𝑟 ……𝐺 

12. 𝑬𝒏𝒅 𝐹𝑜𝑟……𝐵𝑒𝑔𝑖𝑛 

                 𝑒𝑛𝑑 // 𝑢𝑝𝑑𝑎𝑡𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 

13.    𝐸𝑛𝑑 𝐹𝑜𝑟 ……𝑁 

14.   𝐸𝑛𝑑 𝐹𝑜𝑟 ……𝐺 

15. 𝑬𝒏𝒅 𝐹𝑜𝑟……𝐵𝑒𝑔𝑖𝑛 

 

Pseudo - code 3 : for gsk algorithm 
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Figure 9 : flowchart of gsk algorithm 
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Ⅱ.6 Adaptive GSK settings 

The values of Knowledge [k,kf,kr,N] Factor k, Knowledge Ratio kr, Knowledge Rate kr  

and number Of population N are important parameters that can be adjusted to optimize 

the performance of the algorithm[22], choose the values of its control parameters, the 

Gaining and Sharing Knowledge algorithm can use a simple trial-and-error approach. 

The algorithm starts with an initial set of control parameters and then tests them to see if 

they lead to better results than other possible sets of control parameters, Otherwise the 

algorithm tries a different set of control parameters until it finds a set that leads to better 

results.  

   

 

Pseudo - code 4 : code for the adaptation process. 

 

 

 

1. Begin 

2.    G=0, initialize parameters Setting Pool,Initialize Kw_p 

3.       𝑤ℎ𝑖𝑙𝑒 𝑛𝑓𝑒𝑠 < max _𝑛𝑓𝑒𝑠 

4.            𝐼𝑓(𝑛𝑓𝑒𝑠 > 0.1 × max _𝑛𝑓𝑒𝑠) 

5.                𝑈𝑝𝑑𝑎𝑡𝑒 𝐾𝑤_𝑝 

6.              𝐸𝑛𝑑 𝑖𝑓 

            𝐴𝑠𝑠𝑖𝑔𝑛 𝑜𝑛𝑒 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐾𝑤_𝑝 

7.                    𝑥𝑖
𝑛𝑒𝑤 = 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑛𝑒𝑤 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑢𝑠𝑖𝑛𝑔 𝐺𝑆𝐾 

                                𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑠𝑒𝑡𝑡𝑖𝑛𝑔 

8.            𝐸𝑛𝑑 𝑊ℎ𝑖𝑙𝑒 

9. 𝑬𝒏𝒅 𝐵𝑒𝑔𝑖𝑛 
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ⅠⅠ.6.1 Control adaptive settings (𝒌𝒇 & 𝒌𝒓) 

Initially, the two parameters and the probability parameter Kw_p  are selected from a 

pool of candidates to be adapted. The pool used to determine optimal values (𝑘𝑓 ,  𝑘𝑟): 

[(0.1, 0.2), (1.0, 0.1), (0.5, 0.9), and (1.0, 0.9)] applied during first 50% of MAXNFE  

while the another pairs: [(−0.15, 0.2), (−0.05, 0.1), (−0.05, 0.9), and (−0.15, 0.9)] will 

be activated after 50% of MAXNFE  with a probability of less than (0.3) for increasing 

the population's genetic diversity to assure escape from the local optimal state, and reduce 

the odds of inactivity, The probability parameter Kw_p  contains the probabilistic 

parameter p for each of the noted sets of settings. Thus, each population member will 

receive one setting based on its probability parameter p.  

The probability parameter adaptation Kw_p  begins after 10% of function evaluations. 

The probability parameter's adjustment varies with each setting's performance by the 

following formula: 

𝜔𝑝𝑠 =∑𝑓

𝑛

𝑖=1

(𝑥𝑖
𝑛𝑒𝑤) − 𝑓(𝑥𝑖

𝑜𝑙𝑑)      (18)  

where 𝜔𝑝 represents the sum of the differences between old fitness value and the new 

fitness value for every individual belonging to parameter setting (𝑝𝑠), (𝑓) represents the 

fitness function, (𝑥𝑖𝑛𝑒𝑤)is the new solution, (𝑥𝑖
𝑜𝑙𝑑) is the old solution, and (𝑛) represents 

the number of solutions that belong to the parameter setting (𝑝𝑠)[22], After that, the 

improvement rate,(Δ𝑝𝑠) could be calculated for each parameter setting by: 

Δ𝑝𝑠 = 𝑚𝑎𝑥 (0.05, 𝜔𝑝𝑠/𝑠𝑢𝑚(𝜔𝑝𝑠))     (19)  

To ensure that each parameter setting has a chance of being chosen, 0.05 is used to 

convey the minimum probability that could be assigned to each parameter setting, the 

improvement rate (Δ𝑝𝑠) for each parameter setting is used for updating Kw_p due to 

the following formula: 

𝐾𝑤_𝑃𝑔+1 = (1 − 𝑐)𝐾𝑤𝑃𝑔 + 𝑐 ∙  Δ𝑝𝑠     (20)  

where 𝑐 represents the rate of learning. Utilizing a constant learning rate, cumulative 

knowledge related to the performance of every factor setting is leveraged.  
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ⅠⅠ.6.2 Population Size Reduction 

In order to improve AGSK overall performance Non-Linear Population Size Reduction 

(NLPSR)[22], uses the number of errors and the average magnitude of the errors to 

determine how many problems an agent should try to solve in order to obtain a certain 

level of error reduction, The algorithm works by iteratively selecting agents with high 

population size and dividing them into smaller subpopulations. These smaller 

subpopulations then repeat the same process until they have reduced their error rates 

below a certain threshold, This approach allows for more efficient use of computational 

resources and can be used to generate problem instances with larger error magnitudes 

than others, Non-linear function in APGSK below: 

𝑁𝐺+1 = 𝑟𝑜𝑢𝑛𝑑[(𝑁𝑚𝑖𝑛 − 𝑁𝑖𝑛𝑖𝑡) × ((𝑁𝐹𝐸/𝑀𝐴𝑋𝑁𝐹𝐸))
(1−𝑁𝐹𝐸/𝑀𝐴𝑋𝑁𝐹𝐸)) + 𝑁𝑖𝑛𝑖𝑡   (21) 

𝑁𝐹𝐸 Current number of functions evals 

𝑀𝐴𝑋𝑁𝐹𝐸 Max allowable number of functions evals 

𝑁𝑖𝑛𝑖𝑡 Size of the population initially generated 
 

𝑁𝑚𝑖𝑛 = 12  is the minimum number of candidates required for APGSK to ensure that 

both the best and worst partitions contain multiple individuals. 

ⅠⅠ.6.3 Settings of knowledge Rate 𝑲 

In fact, the diversity of a population must be considered when simulating the process 

of acquiring and exchanging knowledge during the human life span for a specific 

population, Therefore, the knowledge rate k must take into consideration both scenarios, 

the first scenario when 𝐾 ∈ (0, 1), and the second scenario when,   

𝐾 ≥ 1 with probability of 𝑁𝐹𝐸/𝑀𝐴𝑋𝑁𝐹𝐸 . So, for each individual in the population, 

if 𝑟𝑎𝑛𝑑 > (𝑁𝐹𝐸/𝑀𝐴𝑋𝑁𝐹𝐸 ), 𝐾 = 0.5 𝑒𝑙𝑠𝑒 𝐾 = 2. 
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Conclusion 

In order to solve the Economic Load Dispatch (ELD) problem, which aims to minimize 

the total cost of power generation while meeting the power demand and system 

constraints of units, using the Adaptive Gaining-Sharing Knowledge Based Algorithm, 

multiple phases must be taken. Based on the principles of machine learning and 

optimization, these steps involve collecting data, training the computation, and 

implementing it in the power system, beginning with defining the power boundaries based 

on the capacity and operating characteristics of the power system and continuing with the 

collection of historical data on power generation. This information is used to train the 

machine learning algorithm and make predictions, as well as to integrate the algorithm 

into the control system of the power grid and configure it to receive data on power demand 

and generator output. Once the algorithm is operational, it can be monitored and modified 

to enhance its performance as required. 
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Introduction  

In this chapter of simulation the AGSK has been implanted to fit our problem which is 

a electrical dispatching for several system cases with changes of one to another 

considering on the total of all cases study system with power demande, to valve point 

effects, transmission losses and emission all the 4 system cases, the cost fuel quadratic 

function is a function that takes into account the cost of fuel and the efficiency of the 

system, and uses this information to determine the optimal fuel consumption rate.to 

implement the cost fuel quadratic function using adaptive gaining sharing knowledge, it 

is necessary to first gather data on the system's fuel consumption and efficiency from 

articles. once the model has been created, adaptive gaining sharing knowledge can be 

used to optimize the system's fuel consumption. this involves adjusting the fuel 

consumption rate based on the system's current operating conditions, such as the load on 

the system which relay to transmission losses  if it was considerate ,furthermore the 

AGSK preform on good stability by compiling the problem constraint and boundaries on 

random but on scale that get the best solution .  
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Ⅲ.1 Implementing AGSK for solving ed problem: 

The AGSK algorithm is used to distribute demand among generators in a power system, 

the algorithm is designed to balance the extraction of electricity from each generator with 

the demand from other generators and transmission lines while also accounting for the 

availability of resources. 
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To implement the AGSK algorithm, it would be necessary to collect data on the available 

energy sources, such as petroleum and gas, as well as consumer demand for electricity. 

One effective approach to solving this problem is to use algorithm optimization 

techniques, algorithm optimization involves choosing an appropriate algorithm and 

implementing it using software tools such as MATLAB. The algorithm takes the 

mathematical model of the problem as input and provides a solution that minimizes the 

cost of generating power while satisfying the demand for electricity. 

Ⅲ.2 Parameters selection of AGSK: 

The parameters of the suggested AGSK algorithm are chosen by executing different 

trials for each test system. population size is between 50 to 140 with five Run Number To 

optimize the solutions as far best and with less time. 

Ⅲ.3 Data systems: 

The proposed AGSK method is utilized to address ELD problems in four separate test 

cases and compared to various types of other heuristic optimization techniques. 

AGSK algorithm has been implemented using the MATLAB software Version 9.10 b 

on a personal computer (Processor: intel Core i5-7200U 2.7Ghz, memory: 8GB Storage: 

1TB) with population size(NP) changes from 50 to 140 & 5 runs number & MAXNFES 

200000 to optimize the solutions for System cases. 

Ⅲ.3.1 Test system 1: 

In this test system, there are six generating units with a total power demand of 1263 

MW, This test system considers ramp rate limits, and POZ effects and transmission loss 

[23], The system data is given in ”Table 1” & “Table 2” taken from [24]. 

 

 

 

 

 

 

 

Unit 𝑃𝑖
𝑀𝑖𝑛  𝑃𝑖

𝑀𝑎𝑥  𝑎𝑖 ($) 𝑏𝑖($/𝑀𝑊) 𝑐𝑖($/𝑀𝑊
2) 

1 100  500 240 7.0 0.0070 

2 50  200 200 10.0 0.0095 

3 80  300 220 8.5 0.0090 

4 50  150 200 11.0 0.0090 

5 50  200 220 10.5 0.0080 

6 50  120 190 12.0 0.0075 

Table 1 : generating unit capacity and coefficients case 1 
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Table 2 : ramp rate limits and prohibited zones of generating units case 1. 

 

 

 

 

 

 

transmission loss coefficients. 

𝑩𝒊𝒋 = 𝟏𝟎
−𝟐 ×

[
 
 
 
 
 
𝟎. 𝟎𝟎𝟏𝟕 𝟎. 𝟎𝟎𝟏𝟐 𝟎. 𝟎𝟎𝟎𝟕 −𝟎. 𝟎𝟎𝟎𝟏 −𝟎. 𝟎𝟎𝟎𝟓 −𝟎. 𝟎𝟎𝟎𝟐
𝟎. 𝟎𝟎𝟏𝟐 𝟎. 𝟎𝟎𝟏𝟒 𝟎. 𝟎𝟎𝟎𝟗 𝟎. 𝟎𝟎𝟎𝟏 −𝟎. 𝟎𝟎𝟎𝟔 −𝟎. 𝟎𝟎𝟎𝟏
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𝑩𝒐𝒊 = 𝟏𝟎
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𝑩𝒐𝒐 = 𝟏𝟎
−𝟐 × 𝟎.𝟎𝟎𝟓𝟔 

 

For the power demand of 1263 MW, the comparison of the proposed AGSK with various 

optimization techniques in literature been performed in “Table 3” and “Table 4”, It is 

evident from “Table 3”  compares the minimum, mean, and maximum fuel costs, 

standard deviation  obtained by the AGSK approach with the others techniques, 

“Table 4” show The optimal generation schedule, fuel cost, and transmission loss 

obtained by the AGSK and other heuristic approaches 

 

 

 

 

 

 

Unit 𝑃𝑖
0 𝑈𝑅𝑖 (𝑀𝑊/ℎ) 𝐷𝑅𝑖 (𝑀𝑊/ℎ) 𝑃𝑟𝑜𝑑ℎ𝑖𝑏𝑡𝑒𝑑 𝑧𝑜𝑛𝑒𝑠(𝑀𝑊) 

1 440 80 120 [350 380] [350 380] 

2 170 50 90 [140 160] [140 160] 

3 200 65 100 [210 21] [210 240] 

4 150 50 90 [110 120] [110 120] 

5 190 50 90 [140 14] [140 150] 

6 110 50 90 [100 105] [100 105] 
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Table 3 : Comparison of results in the 6-unit system. 

 

Techniques Minimum ($) Average ($) Maximum ($) Std.dev 

GA 15459 15469 15469.00 NA 

MTS 15450.06 15451.17 15453.64 0.93 

PSO-LRS[24] 15450 15454 15454 NA 

PSO[24] 15450 15465.83 15492.00 6.82 

BSA[40] 15449.898 15449.90 15449.91 0.0010 

TSA[46] 15451.63 15462.26 15506.451 5.98 

CBA[41] 15450.23 15454.76 15518.66 2.965 

FA[27] 15450.51 15452.53 15458.44 2.048 

CMFA[27] 15449.887 15449.89 15450.48 0.083 

AGSK 15444.19 15444.21 15444.583 0.05473 

 

 

 

For the 6 Units test system, it can be noticed that the proposed AGSK algorithm has 

done the best solution so far decreasing the total fuel cost of the total system compared to 

other optimization techniques [27], considering prohibited operating zones, ramp rate 

limits, transmission losses AGSK did find the lowest cost of fuel with 15444,19 $ among 

all others compared techniques which they was higher then AGSK those other Costs 

proves the superiority performance of the proposed algorithm shows that the AGSK 

Pg (MW) GA MTS 
PSO-

LRS 
PSO TSA CBA FA CMFA AGSK 

Pg 1 474.8066 448.1277 446.96 447.444 447.497 447.4902 449.3651 447.4187 446.7151 

Pg 2 178.6363 172.8082 173.3944 173.343 173.3221 173.3308 182.252 172.8255 173.1493 

Pg 3 262.2089 263 262.3436 263.3646 263.4745 263.4559 254.2904 264.0759 262.7692 

Pg 4 134.2826 136.9605 139.512 139.1279 139.0594 139.0602 143.4506 139.2469 143.5576 

Pg 5 151.9039 168.2031 164.7089 165.5076 165.4761 165.4804 161.9682 165.6526 163.8216 

Pg 6 74.1812 87.3304 89.0162 87.1698 87.128 87.1409 86.0185 86.7652 85.3544 

Total power 

(MW) 
1276.03 1276.023 1275.94 1275.95 1276.01 1275.958 1277.345 1275.9848 1275.419 

PLoss(MW) 13.0217 13.0205 12.9361 12.9571 12.9584 12.9583 14.3449 12.9848 12.419 

Minimum cost  

($/h) 
15459 15450.06 15450 15450 15450 15449.89 15451.63 15450.23 15444.19 

Table 4 : the system units power in case 1. 
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approach obtains better quality solutions than the compared algorithms and has good 

stability . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 : Dissemination of fuel costs of the AGSK technique for system 1. 

262,

9229 

 

262,

9229 

 

262,

9229 

 

262,

9229 

173,

1914 

 

173,

1914 

 

173,

1914 

 

173,

1914 

143,

5576 

 

143,

5576 

 

143,

5576 

 

143,

5576 

163,

8216 

 

163,

8216 

 

163,

8216 

 

163,

8216 

Figure 10 : power genereated from each unit for system 1 
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Figure 12 : convergence characteristic of the AGSK for system 1. 
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Ⅲ.3.2 Test system 2  

The test system is comprised of 13 generators featuring VPL effects without 

transmission losses. The power demand is 1800 MW in terms of solution quality, 

robustness, and various indices including minimum, mean, and maximum costs, and 

standard deviations of fuel cost values, the algorithm's results are compared with those 

of other reported algorithms, system data obtained from [25], the system data are below 

in “Table 5”, Results are in “Table 6” & “Table 7”. 

 

Table 5 : data system for 13-unit with valve-point loading. 

 

 

This case study consisted of 13 thermal units of generation with the effects of valve-

point loading compared to other approaches optimization, Furthermore, the low standard 

deviation value indicated a good convergence of AGSK method in the 20 runs it has been 

given more stability and low cost within others techniques As indicated in “Table 6”. 

 

 

 

Unit 𝑃𝑖
𝑀𝑖𝑛 𝑃𝑖

𝑀𝑎𝑥  
FUEL-COST COEFFICIENTS 

FUEL-COST 
COEFFICIENTS WITH 

VPE 

𝑎𝑖 ($) 𝑏𝑖($/𝑀𝑊) 𝑐𝑖($/𝑀𝑊
2) 𝑒𝑖 𝑓𝑖  

1 0 680 0.00028 8.10 550 300 0.035 

2 0 360 0.00056 8.10 309 200 0.042 

3 0 360 0.00056 8.10 307 200 0.042 

4 60 180 0.00324 7.74 240 150 0.063 

5 60 180 0.00324 7.74 240 150 0.063 

6 60 180 0.00324 7.74 240 150 0.063 

7 60 180 0.00324 7.74 240 150 0.063 

8 60 180 0.00324 7.74 240 150 0.063 

9 60 180 0.00324 7.74 240 150 0.063 

10 40 120 0.00284 8.6 126 100 0.084 

11 40 120 0.00284 8.6 126 100 0.084 

12 55 120 0.00284 8.6 126 100 0.084 

13 55 120 0.00284 8.6 126 100 0.084 
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Table 6 : Comparaison of results in the 13-unit system. 

 

 

 

 

 

 

 

 

 

Table 7 : the system units power in case 2. 

 

 

 

Techniques Minimum Average Maximum Std.dev 

TLBO[12] 18141.6 NA NA NA 

NN-EPSO[12] 18442.59 NA NA NA 

C-GRASP[13] 18394.07 18550.105 18699.339 65.7290 

SA[13] 18950.174 19393.114 19782.516 181.9200 

MFEP[14] 122647.57 123489.74 124365.47 NA 

CEP[15] 18048.21 18190.32 18404.04 NA 

PSO[15] 18030.72 18205.78 NA NA 

CGA[15] 18671.64 18791.31 18935.83 NA 

DEC-SQP[16] 18172.20 18301.08 18440.74 95.2699 

MSL[29] 18158.68 NA NA NA 

AGSK 18022.190 18107.64 18198.34 62.0000 

Power output (MW) TLBO[12] NN-EPSO[12] MSL[29] AGSK 

Pg 1 448.80 490.00 628.3 448.80 

Pg 2 224.60 189.00 310.85 224.40 

Pg 3 149.61 214.00 310.85 152.93 

Pg 4 109.87 160.00 60 109.87 

Pg 5 109.87 90.00 60 109.87 

Pg 6 109.89 120.00 60 109.87 

Pg 7 109.86 103.00 60 109.87 

Pg 8 109.90 88.00 60 109.87 

Pg 9 109.90 104.00 60 159.73 

Pg 10 77.40 13.00 40 77.40 

Pg 11 77.40 58.00 40 77.40 

Pg 12 92.42 66.00 55 55.00 

Pg 13 70.49 55.00 55 55.00 

Total power (MW) 1800 1800 1800 1800 

PLoss(MW) 115 442.590 158.680 22.190 

Minimum cost  ($/h) 18115.000 18442.590 18158.680 18022.190 



Chapter Ⅲ : Simulation Results and Discussions 

 

56 | P a g e  

The optimal generation scheduling of all 13 generators obtained by the proposed AGSK 

for 18022,190 $ compared to TLBO for 18115 $ and MSL for 18158,680 $ approach 

along with those obtained by other optimization techniques as mention above on “Table 

6”, Considering VPL the AGSK has got the best results among others techniques in terms 

of all indices that has been already compared to. 

Figure 13 & Figure 14 & Figure 15 Show all ASGK obtained constraints results. 

 

 

Figure 13 : power genereated from each unit for system 2. 
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Iteration 

Number of trial Runs 

Figure 14 : dissemination of fuel costs of the AGSK technique for system 2. 

Figure 15 : convergence characteristic of the AGSK for system 2. 
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Ⅲ.3.3 Test system 3 

This system consists of 40 units with VPL effects. The system data are adopted from 

[25], For this test system, the transmission loss not taken despite a power demand of 

10500 MW, the system data are below in “Table 8”. The obtained results by the proposed 

AGSK technique with the other state-of-the-art optimization techniques are showed on 

“Table 9”. 

 

Table 8 : data system for 40-unit with valve-point loading. 

Unit 𝑃𝑖
𝑀𝑖𝑛 𝑃𝑖

𝑀𝑎𝑥  
FUEL-COST COEFFICIENTS 

FUEL-COST 
COEFFICIENTS 
WITH VPE 

𝑎𝑖 ($) 𝑏𝑖($/𝑀𝑊) 𝑐𝑖($/𝑀𝑊
2) 𝑒𝑖 𝑓𝑖  

1 36 114 0.0069 6.7 94.705 100 0.08 

2 36 114 0.0069 6.7 94.705 100 0.08 

3 60 120 0.02028 7.1 309.54 100 0.08 

4 80 190 0.00942 8.2 369.03 150 0.06 

5 47 97 0.0114 5.4 148.89 120 0.08 

6 68 140 0.01142 8.1 222.33 100 0.08 

7 110 300 0.00357 8 287.71 200 0.04 

8 135 300 0.00492 7 391.98 200 0.04 

9 135 300 0.00573 6.6 455.76 200 0.04 

10 130 300 0.00605 13 722.82 200 0.04 

11 94 375 0.00515 13 635.2 200 0.04 

12 94 375 0.00569 13 654.69 200 0.04 

13 125 500 0.00421 13 913.4 300 0.04 

14 125 500 0.00752 8.8 1760.4 300 0.04 

15 125 500 0.00708 9.2 1728.3 300 0.04 

16 125 500 0.00708 9.2 1728.3 300 0.04 

17 220 500 0.00313 8 647.85 300 0.04 

18 220 500 0.00313 8 649.69 300 0.04 

19 242 550 0.00313 8 647.83 300 0.04 

20 242 550 0.00313 8 647.81 300 0.04 

21 254 550 0.00298 6.6 785.96 300 0.04 

22 254 550 0.00298 6.6 785.96 300 0.04 

23 254 550 0.00284 6.7 794.53 300 0.04 

24 254 550 0.00284 6.7 794.53 300 0.04 
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This last case is considered for the aim to further demonstrate the effectiveness of the 

AGSK for large scale ELD problems in power systems, This test system consists of 40-

generating units with valve point loading effects with no transmission losses for 

10500MW, The results obtained by adopting the proposed AGSK algorithm are compared 

to those appeared in “Table 9” While considering the minimum of fuel cost average and 

maximum and also standard deviation and  

 

 

 

 

 

 

 

25 254 550 0.00277 7.1 801.32 300 0.04 

26 254 550 0.00277 7.1 801.32 300 0.04 

27 10 150 0.52124 3.3 1055.1 120 0.08 

28 10 150 0.52124 3.3 1055.1 120 0.08 

29 10 150 0.52124 3.3 1055.1 120 0.08 

30 47 97 0.0114 5.4 148.89 120 0.08 

31 60 190 0.0016 6.4 222.92 150 0.06 

32 60 190 0.0016 6.4 222.92 150 0.06 

33 60 190 0.0016 6.4 222.92 150 0.06 

34 90 200 0.0001 9 107.87 200 0.04 

35 90 200 0.0001 8.6 116.58 200 0.04 

36 90 200 0.0001 8.6 116.58 200 0.04 

37 25 110 0.0161 5.9 307.45 80 0.1 

38 25 110 0.0161 5.9 307.45 80 0.1 

39 25 110 0.0161 5.9 307.45 80 0.1 

40 242 550 0.00313 8 647.83 300 0.04 
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Table 9 : Comparison of results in the 40-unit system. 

 

 

 

 

 

 

 

 

Units 
Power (MW) 

PSO[34] SA[33] AGSK 

Unit 1 113,116 112.410 110.851 

Unit 2 113.010 110.730 111.311 

Unit 3 119.702 119.980 96.851 

Unit 4 89.847 144.620 178.370 

Unit 5 95.062 94.680 87.879 

Unit 6 139.209 68.810 139.749 

Unit 7 299.927 261.450 295.824 

Unit 8 287.491 285.580 283.566 

Unit 9 292.316 297.050 284.804 

Unit 10 292.273 130.210 270.108 

Unit 11 169.766 94.330 167.874 

Unit 12 94.344 95.570 234.691 

Unit 13 216.871 304.610 394.078 

Unit 14 304.790 485.580 393.517 

Unit 15 304.563 326.720 393.511 

Unit 16 304.302 303.420 303.435 

Unit 17 489.173 491.020 400.255 

Unit 18 491.336 489.120 489.290 

Unit 19 510.880 513.500 420.988 

Unit 20 511.474 508.880 509.263 

Unit 21 524.814 524.690 521.752 

Unit 22 524.775 529.880 523.502 

Unit 23 525.563 529.350 524.021 

Unit 24 522.712 524.390 522.582 

Unit 25 503.211 526.840 522.458 

Unit 26 524.199 517.790 433.293 

Unit 27 10.082 10.020 11.526 

Techniques Minimum ($) Average ($) Maximum ($) Std,dev 

C-GRASP[13] 128883.2 130268.98 132839.22 972757 

GA[13] 163402 163534.98 163623.34 640606 

CEP[25] 123488.29 124793.48 126902.89 NA 

FEP[25] 122679.71 124119.37 127245.59 NA 

SCA[31] 122713.68 125235.13 130918.39 NA 

CEP-PSO[30] 123670 124145.6 124900 NA 

GAAPI[32] 125770.85 NA NA NA 

SA[33] 122946.77 123180.7 124183.72 611900 

PSO[34] 123323.97 123690.62 125103.28 NA 

AGSK 122652.8 123198 123948.2 504511 

Table 10 : Comparison of results in the 40-unit system. 
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Unit 28 10.663 10.050 11.759 

Unit 29 10.418 10.050 12.683 

Unit 30 94.244 96.060 89.152 

Unit 31 190.377 189.160 160.298 

Unit 32 189.796 189.410 167.494 

Unit 33 189.813 172.230 161.835 

Unit 34 199.797 199.200 164.024 

Unit 35 199.284 198.420 164.354 

Unit 36 199.165 199.550 164.627 

Unit 37 109.291 109.930 89.733 

Unit 38 109.087 90.480 90.996 

Unit 39 109.909 109.930 87.913 

Unit 40 513.348 524.300 509.782 

Minimum Cost ($) 123323.97 122946.77 122652.80 

Total Power 
(MW) 

10500 10500 10500 

 

 

Figure 16 : power genereated from each unit for system 3. 
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Figure 18 : convergence characteristic of the AGSK for system 3. 

Figure 17 : dissemination of fuel costs of the AGSK technique for system 3. 
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Figure 16 : power genereated from each unit for system 3., Figure 17 : dissemination 

of fuel costs of the AGSK technique for system 3., Figure 18 : convergence characteristic 

of the AGSK for system 3. 

In Table 9 : Comparison of results in the 40-unit system.” results obtained from the 

AGSK are for a power demand of 10,500 MW and VPE, In the literature, the optimization 

outcomes are contrasted to other optimization techniques. It is observed that in order to 

reduce the unit's fuel costs which start with best minimum  cost for AGSK 122652,80 $, 

then FEP 122679,71 $ & SCA 122713,68 $ , and also AGSK has the lowest standard 

deviation among others techniques , with such as characteristic for minimum cost that’s 

give the AGSK the best effect to solve this system case with the correspondent constraints. 

  

 

 

Ⅲ.3.4 Test system 4  

This test system consists of 10 generating units with VPL effect and has a power demand 

of 2000 MW, consisting a non-smooth fuel cost and emission level functions, Unit data 

in ”Table 12” & ” Table 13 ”  and loss coefficients have been given. 

 

 

Unit 𝑃𝑖
𝑀𝑖𝑛  𝑃𝑖

𝑀𝑎𝑥  𝑎𝑖 ($/ℎ) 𝑏𝑖($/𝑀𝑊ℎ) 𝑐𝑖($/𝑀𝑊
2ℎ) 𝑒𝑖($/ℎ) 𝑓𝑖(𝑟𝑎𝑑/𝑀𝑊) 

1 10 55 0.1295 40.5407 1000.403 33 0.0174 

2 20 80 0.1091 39.5804 950.606 25 0.0178 

3 47 120 0.1251 36.5104 900.705 32 0.0162 

4 20 130 0.1211 39.5104 800.705 30 0.0168 

5 50 160 0.1525 38.5390 756.799 30 0.0148 

6 70 240 0.1059 46.1592 451.325 20 0.0163 

7 60 300 0.0355 38.3055 1243.531 20 0.0152 

8 70 340 0.0280 40.3965 1049.998 30 0.0128 

9 135 470 0.0211 36.3278 1658.569 60 0.0136 

10 150 470 0.0180 38.2704 1356.659 40 0.0141 
 

Table 12 : data system of fuel for 10 unit with valve-point loading. 
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transmission loss coefficients for 10 Units . 

𝑩𝒊𝒋 = 𝟏𝟎
−𝟒 ×

[
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This case study examines ten generation units with respect to the valve-point effect. The 

cost of petroleum and emission factors, The generation outputs of the most appropriate 

solutions for ELD, ECD problem for 2000 MW, A comparison between the ELD solutions 

discovered by AGSK and other algorithms in “Table 14” 

 

 

 

 Unit 𝛼𝑖 (𝑖𝑏/ℎ) 𝛽𝑖(𝑖𝑏/𝑀𝑊ℎ) 𝛿𝑖(𝑖𝑏/𝑀𝑊
2ℎ) 𝜂𝑖(𝑖𝑏/ℎ) 𝛾𝑖(1/𝑀𝑊) 

1 4.702 -398.64 36000.12 0.25475 0.01234 

2 4.652 -395.24 35000.56 0.25475 0.01234 

3 4.652 -390.23 33000.56 0.25163 0.01215 

4 4.652 -390.23 33000.56 0.25163 0.01215 

5 0.420 32.77 1385.93 0.24970 0.01200 

6 0.420 32.77 1385.93 0.24970 0.01200 

7 0.680 -54.55 4026.69 0.24800 0.01290 

8 0.680 -54.55 4026.69 0.24990 0.01203 

9 0.460 -51.12 4289.55 0.25470 0.01234 

10 0.460 -51.12 4289.55 0.25470 0.01234 

Table 13 : data system of emission for 10 unit. 
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Unit 
ELD 

AGSK DE[35] CIHSA[36] 

pg1 55 55.0000 55 

pg2 80 79.8063 80 

pg3 106.9055 106.8253 106.93473 

pg4 100.5794 102.8307 100.60032 

pg5 81.4990 82.2418 81.47679 

pg6 83.0548 80.4352 83.02687 

pg7 300 300.0000 300 

pg8 340 340.0000 340 

pg9 470 470.0000 470 

pg10 470 469.8975 470 

Total Load 
(MW) 

2087.038 2087.037 2087.039 

Power (MW) 2000 2000 2000 

Power 
Loss(MW) 

87.03831 87.03680 87.03871 

Fuel Cost ($/h) 111497.629 111500 111497.631 

Emission (Lb/h) 5687.088 4581 4572.2763 

Total Cost ($/h) / / / 

 

 

“Table 15” shows the solutions of ECD problem for 2000 MW load demand using 

AGSK and other algorithms. According to this table, the best emission found by proposed 

algorithm and other techniques. 

 

 

 

 

 

 

 

Table 14 : solutions by AGSK and others techniques for system 4 ELD. 
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Unit 
ECD 

AGSK DE[35] CIHSA[36] 

pg1 55.0000 55 55.000 

pg2 80.0000 80 80.000 

pg3 106.9055 80.5924 81.150 

pg4 100.5794 81.0233 81.360 

pg5 81.4990 160 160.000 

pg6 83.0548 240 240.000 

pg7 299.9999 292.7434 294.508 

pg8 339.9999 299.1214 297.269 

pg9 470.0000 394.5147 396.720 

pg10 470.0000 398.6383 395.588 

Total Load (MW) 2087.038 2081.634 2081.595 

Power (MW) 2000 2000 2000 

Power Loss(MW) 87.03831 81.63350 81.59465 

Fuel Cost ($/h) 144946.903 111640 116412.5655 

Emission (Lb) 3832.487 3923.400 3932.243 

Total Cost ($/h) / / / 

 

A comparison between the solutions found by AGSK and the results obtained by other 

algorithms for ELD and ECD is provided in Table 14 for ELD & for ECD “Table 15”, 

According to the previous tables, the AGSK method achieves the lowest minimum fuel 

cost in ELD for 111497.629 $ Compared to 111500 $ for DE [35] and 111497.631 $ for CIHSA 

[36] , and the most minimal emission level in ECD is for AGSK by 3832.487 lb which is 

the best among others emission such as DE [35] how has 3923.400 lb and CIHSA [36] 

for 3932.243 lb, its obvious that the AGSK Algorithm achieved the best results for the 2 

types of the system case on Power Load Dispatching total cost and Emission which prove 

the efficiency and robustness of the proposed AGSK among the other optimization. 

 

 

 

 

 

Table 15 : solutions by AGSK and others techniques for system 4 ECD. 
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General Conclusion 

In this paper, a newly developed metaheuristic Adaptive Gaing Sharing Knowledge 

(AGSK) algorithm is presented and used to solve the multiobjective 

environmental/economic dispatch problem in the presence of generators with nonsmooth 

and nonconvex fuel cost functions. AGSK, which is one of the recent heuristic algorithms 

improved from the original GSK by Ali Wagdy Mahmoud for solving optimization 

problems, has a number of benefits, such as its few control variables, local searching 

capability, quick results, simple structure, and easy application. 

 For the purpose of demonstrating the application of the proposed algorithm, it has been 

investigated and tested on four distinct test systems. First, six generators with quadratic 

cost functions and economic load dispatch problems are utilized to test AGSK. The 

proposed algorithm is then applied to 13 generators with a nonsmooth cost function and 

valve point effect, followed by 40 units with VPE. And lastly, a system with ten units for 

ELD and ECD The implementation results of this proposed algorithm demonstrated the 

efficacy of the AGSK in resolving the ELD and ECD problems on various test systems. 

 In addition, the results of the proposed algorithm have been compared to those of the 

techniques described in the literature, demonstrating that the proposed method confirms 

an effective, high-quality solution for CEED problems. Nevertheless, based on the 

simulation results, it appears that the appropriate selection of the knowledge factor and 

run numbers and setting a high value for Maxnfes are of the highest priority for the 

algorithm's convergence. Since AGSK is a relatively new algorithm, it should be extended 

to include more objective functions or constraints for more realistic problems, as well as 

other data sets and standard test problems. In addition, future studies comparing the 

current metaheuristic algorithm to other methodologies are required to determine its 

strengths and limitations. 

 

 

 



 

68 | P a g e  

Bibliography 

1 Sakthivel, V. P., Goh, H. H., Srikrishna, S., Sathya, P. D., & Abdul Rahim, S. K. 

(2021). Multi-objective squirrel search algorithm for multi-area economic 

environmental dispatch with multiple fuels and valve point effects. IEEE Access: 

Practical Innovations, Open Solutions, 9, 3988–4007. 

https://doi.org/10.1109/access.2020.3046257 

 

2 Wood, A. J., & Wollenberg, B. F. (2013). Power Generation, Operation and 

Control. Wiley-Interscience. 

 

3 Yu, J. J. Q., & Li, V. O. K. (2016). A social spider algorithm for solving the non-

convex economic load dispatch problem. Neurocomputing, 171, 955–965. 

https://doi.org/10.1016/j.neucom.2015.07.037 

 

4 Júnior, J. de A. B., Nunes, M. V. A., Nascimento, M. H. R., Leite, J. C., 

Rodriguez, J. L. M., Freitas, C. A. O. de, Júnior, M. F., Oliveira, E. F. de, Alencar, D. B. 

de, Moraes, N. M., Carvajal, T. L. R., & Oliveira, H. M. de. (2018). Multi-objective 

optimization techniques to solve the economic emission load dispatch problem using 

various heuristic and metaheuristic algorithms. In Optimization and Control of 

Electrical Machines. InTech. 

 

5 Yang, Y., Wei, B., Liu, H., Zhang, Y., Zhao, J., & Manla, E. (2018). Chaos firefly 

algorithm with self-adaptation mutation mechanism for solving large-scale economic 

dispatch with valve-point effects and multiple fuel options. IEEE Access: Practical 

Innovations, Open Solutions, 6, 45907–45922. 

https://doi.org/10.1109/access.2018.2865960 

 

6 "Wati, T., Wibowo, R. S., & Penangsang, O. (2017). Hybrid QP-PSO for solving 

economic dispatch with valve point effect. 2017 International Seminar on Intelligent 

Technology and Its Applications (ISITIA). 

 https://doi.org/10.1109/isitia.2017.8124056 

" 

 

https://doi.org/10.1109/access.2020.3046257
https://doi.org/10.1016/j.neucom.2015.07.037
https://doi.org/10.1109/access.2018.2865960
https://doi.org/10.1109/isitia.2017.8124056


 

69 | P a g e  

7 Meziane, M. A., Mouloudi, Y., & Draoui, A. (2020). Comparative study of the 

price penalty factors approaches for Bi-objective dispatch problem via 

PSO. International Journal of Electrical and Computer Engineering (IJECE), 10(4), 

3343.  

https://doi.org/10.11591/ijece.v10i4.pp3343-3349 

8 Sakthivel, V. P., Suman, M., & Sathya, P. D. (2021). Combined economic and 

emission power dispatch problems through multi-objective squirrel search 

algorithm. Applied Soft Computing, 100(106950), 106950. 

https://doi.org/10.1016/j.asoc.2020.106950 

 

9 Wu, Y., Zhao, B., & Liu, L. (2017). Solving economic load dispatch problem 

with valve point effect using mean guiding differential evolution. IECON 2017 - 43rd 

Annual Conference of the IEEE Industrial Electronics Society. 

 

10 Naila, Haroon, S., Hassan, S., Amin, S., Sajjad, I., Waqar, A., Aamir, M., 

Yaqoob, M., & Alam, I. (2018). Multiple fuel machines power economic dispatch using 

stud differential evolution. Energies, 11(6), 1393. 

 https://doi.org/10.3390/en11061393 

 

11 Benasla, L., Belmadani, A., & Rahli, M. (2014). Spiral optimization algorithm 

for solving combined economic and emission dispatch. International Journal of 

Electrical Power & Energy Systems, 62, 163–174. 

https://doi.org/10.1016/j.ijepes.2014.04.037 

 

12 Banerjee, S., Maity, D., & Chanda, C. K. (2015). Teaching learning based 

optimization for economic load dispatch problem considering valve point loading 

effect. International Journal of Electrical Power & Energy Systems, 73, 456–464. 

https://doi.org/10.1016/j.ijepes.2015.05.036 

 

13 Radziukyniene, I. (n.d.). C-grasp application to the economic dispatch problem. 

Ufl.edu, 

http://ufdcimages.uflib.ufl.edu/uf/e0/04/18/93/00001/radziukyniene_i.pdf 

 

  

https://doi.org/10.11591/ijece.v10i4.pp3343-3349
https://doi.org/10.1016/j.asoc.2020.106950
https://doi.org/10.3390/en11061393
https://doi.org/10.1016/j.ijepes.2014.04.037
https://doi.org/10.1016/j.ijepes.2015.05.036
http://ufdcimages.uflib.ufl.edu/uf/e0/04/18/93/00001/radziukyniene_i.pdf


 

70 | P a g e  

14 Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003). Evolutionary 

programming techniques for economic load dispatch. IEEE Transactions on 

Evolutionary Computation : A Publication of the IEEE Neural Networks Council, 7(1), 

83–94. 

 https://doi.org/10.1109/tevc.2002.806788 

 

15 Hemamalini, S., & Simon, S. P. (2010). Artificial bee colony algorithm for 

economic load dispatch problem with non-smooth cost functions. Electric Power 

Components & Systems, 38(7), 786–803.  

https://doi.org/10.1080/15325000903489710 

 

16 Coelho, L. S., & Mariani, V. C. (2006). Combining of chaotic differential 

evolution and quadratic programming for economic dispatch optimization with valve-

point effect. IEEE Transactions on Power Systems : A Publication of the Power 

Engineering Society, 21(2), 989–996.  

https://doi.org/10.1109/tpwrs.2006.873410 

 

17 Ling, S. H., Lam, H. K., Leung, F. H. F., & Lee, Y. S. (2004). Improved genetic 

algorithm for economic load dispatch with valve-point loadings. IECON’03. 29th 

Annual Conference of the IEEE Industrial Electronics Society (IEEE Cat. 

No.03CH37468). 

18 Mohammed, G. S., & Al-Janabi, S. (2022). An innovative synthesis of 

optmization techniques (FDIRE-GSK) for generation electrical renewable energy from 

natural resources. Results in Engineering, 16(100637), 100637. 

https://doi.org/10.1016/j.rineng.2022.100637 

19 Saha, D., Sallam, K. M., De, S., & Mohamed, A. W. (2022). CHAGSKODE 

algorithm for solving real world constrained optimization problems. In Preprints. 

https://doi.org/10.20944/preprints202208.0314.v1 

20 Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2020). Gaining-sharing 

knowledge based algorithm for solving optimization problems: a novel nature-inspired 

algorithm. International Journal of Machine Learning and Cybernetics, 11(7), 1501–

1529. https://doi.org/10.1007/s13042-019-01053-x 

https://doi.org/10.1109/tevc.2002.806788
https://doi.org/10.1080/15325000903489710
https://doi.org/10.1109/tpwrs.2006.873410
https://doi.org/10.1016/j.rineng.2022.100637
https://doi.org/10.20944/preprints202208.0314.v1
https://doi.org/10.1007/s13042-019-01053-x


 

71 | P a g e  

21 Agrawal, P., Alnowibet, K., & Wagdy Mohamed, A. (2022). Gaining-sharing 

knowledge based algorithm for solving stochastic programming problems. Computers, 

Materials & Continua, 71(2), 2847–2868.  

https://doi.org/10.32604/cmc.2022.023126 

22 Mohamed, A. W., Abutarboush, H. F., Hadi, A. A., & Mohamed, A. K. (2021). 

Gaining-sharing knowledge based algorithm with adaptive parameters for engineering 

optimization. IEEE Access: Practical Innovations, Open Solutions, 9, 65934–65946. 

https://doi.org/10.1109/access.2021.3076091 

23 Sakthivel, V. P., Suman, M., & Sathya, P. D. (2020). Squirrel search algorithm 

for economic dispatch with valve-point effects and multiple fuels. Energy Sources Part 

B: Economics, Planning and Policy, 15(6), 351–382. 

https://doi.org/10.1080/15567249.2020.1803451 

24 Gaing, Z.-L. (2003). Particle swarm optimization to solving the economic 

dispatch considering the generator constraints. IEEE Transactions on Power Systems : A 

Publication of the Power Engineering Society, 18(3), 1187–1195. 

https://doi.org/10.1109/tpwrs.2003.814889 

25 Sinha, N., Chakrabarti, R., & Chattopadhyay, P. K. (2003). Evolutionary 

programming techniques for economic load dispatch. IEEE Transactions on 

Evolutionary Computation : A Publication of the IEEE Neural Networks Council, 7(1), 

83–94.  

https://doi.org/10.1109/tevc.2002.806788 

26 Bulbul, S. M. A., Pradhan, M., Roy, P. K., & Pal, T. (2018). Opposition-based 

krill herd algorithm applied to economic load dispatch problem. Ain Shams Engineering 

Journal, 9(3), 423–440. 

 https://doi.org/10.1016/j.asej.2016.02.003 

27 Yang, Y., Wei, B., Liu, H., Zhang, Y., Zhao, J., & Manla, E. (2018). Chaos firefly 

algorithm with self-adaptation mutation mechanism for solving large-scale economic 

dispatch with valve-point effects and multiple fuel options. IEEE Access: Practical 

Innovations, Open Solutions, 6, 45907–45922. 

https://doi.org/10.1109/access.2018.2865960 

28 Bulbul, S. M. A., Pradhan, M., Roy, P. K., & Pal, T. (2018). Opposition-based 

krill herd algorithm applied to economic load dispatch problem. Ain Shams Engineering 

Journal, 9(3), 423–440. 

 https://doi.org/10.1016/j.asej.2016.02.003 

https://doi.org/10.32604/cmc.2022.023126
https://doi.org/10.1109/access.2021.3076091
https://doi.org/10.1080/15567249.2020.1803451
https://doi.org/10.1109/tpwrs.2003.814889
https://doi.org/10.1109/tevc.2002.806788
https://doi.org/10.1016/j.asej.2016.02.003
https://doi.org/10.1109/access.2018.2865960
https://doi.org/10.1016/j.asej.2016.02.003


 

72 | P a g e  

29 Hemamalini, S., & Simon, S. P. (2009). Maclaurin series-based Lagrangian 

method for economic dispatch with valve-point effect. IET Generation, Transmission 

and Distribution, 3(9), 859–871. 

 https://doi.org/10.1049/iet-gtd.2008.0499 

30 Sinha, N., & Purkayastha, B. (2005). PSO embedded evolutionary programming 

technique for non-convex economic load dispatch. IEEE PES Power Systems 

Conference and Exposition, 2004. 

 https://doi.org/10.1109/psce.2004.1397447 

 

31 Selvakumar, A. I., & Thanushkodi, K. (2009). Optimization using civilized 

swarm: Solution to economic dispatch with multiple minima. Electric Power Systems 

Research, 79(1), 8–16. 

 https://doi.org/10.1016/j.epsr.2008.05.001 

32 Ciornei, Irina, & Kyriakides, E. (2007). A multi-agent genetic algorithm for the 

solution of the economic dispatch problem. Pub.Ro. 

http://ciem.energ.pub.ro/2007/files/s2/plenar/S2_01.pdf 

33 Sa-ngiamvibool, W., Pothiya, S., & Ngamroo, I. (2011). Multiple tabu search 

algorithm for economic dispatch problem considering valve-point effects. International 

Journal of Electrical Power & Energy Systems, 33(4), 846–854. 

https://doi.org/10.1016/j.ijepes.2010.11.011 

34 Chen, C., & Yeh, S. (2006). Particle swarm optimization for economic power 

dispatch with valve-point effects. 2006 IEEE/PES Transmission & Distribution 

Conference and Exposition: Latin America. 

 https://doi.org/10.1109/tdcla.2006.311397 

35 Basu, M. (2011). Economic environmental dispatch using multi-objective 

differential evolution. Applied Soft Computing, 11(2), 2845–2853. 

https://doi.org/10.1016/j.asoc.2010.11.014 

36 Rezaie, H., Kazemi-Rahbar, M. H., Vahidi, B., & Rastegar, H. (2019). Solution 

of combined economic and emission dispatch problem using a novel chaotic improved 

harmony search algorithm. Journal of Computational Design and Engineering, 6(3), 

447–467.  

https://doi.org/10.1016/j.jcde.2018.08.001 

 

https://doi.org/10.1049/iet-gtd.2008.0499
https://doi.org/10.1109/psce.2004.1397447
https://doi.org/10.1016/j.epsr.2008.05.001
http://ciem.energ.pub.ro/2007/files/s2/plenar/S2_01.pdf
https://doi.org/10.1016/j.ijepes.2010.11.011
https://doi.org/10.1109/tdcla.2006.311397
https://doi.org/10.1016/j.asoc.2010.11.014
https://doi.org/10.1016/j.jcde.2018.08.001


 

73 | P a g e  

 

 

 

 

 

 

 

 



 

 

 


