
People’s Democratic Republic of Algeria
الشعبية الديمقراطية الجزائرية الجمهورية

Ministry of Higher Education and Scientific Research
العلمي البحث و العالي التعليم وزارة

ورقلة مرباح قاصدي جامعة
Kasdi Merbah University of Ouargla

Academic Master Thesis
to obtain a master’s degree in Computer Science

Major : Industrial Computing

Comparative study of Vehicle
Routing Problem’ solving methods

Realized by :
Zeineb Chaabena
Manel Khechiba

Supervised by :
Dr. Mourad Belhadj
(UKMO)

Presented in June 2023, in front of the jury composed of :
Dr.Abdelhakim Cheriet : UKMO - President
Dr. Meriem Khelifa : UKMO - Examiner

Promotion : 2022/2023

Dedication

“
To our parents

”

- Zeineb and Manel

I

Acknowledgment

First of all, we thank our Almighty God who helped us and gave us the patience and
courage during our years of study and to achieve this work. we also thank our parents,
who encouraged and motivated us to reach this level of study.

Our sincere thanks also go to our supervisor Dr. Belhadj Mourad for the continuous
support, guidance, and motivation to us all the time for solving our research problems.
And a special thanks for his confidence in us.

Likewise, we extend our respectful thanks to the members of the jury. The president
Dr. Abdelhakim Cheriet and the examiner Dr.Meriem Khelifa , who has done the
honor to participate in this jury and to examine this work.

we would be remiss in not mentioning all my teachers for their guidance in the last
five years in Kasdi Merbah Ouargla University’s Department of Information Technology.

A special thanks to our family members and friends for always standing by us. Finally,
we would like to thank all those who have helped us from near or far during all our studies
and in the preparation of this dissertation, our deep gratitude and respect.

II

Abstract

The decision-making process in distribution operations has a significant impact on
minimizing distance, time, and costs, making it a crucial topic in the field of logistics.
Efficient vehicle routing is essential in scenarios such as school bus routes, pizza delivery,
and distribution of goods. The Vehicle Routing Problem (VRP) represents the core
challenge we aim to address and solve. Understanding the complexities and nuances of
VRP allows us to develop strategies and methodologies to optimize routing decisions and
achieve minimal distances, reduced time, and lowered costs.

The objective of this dissertation is to conduct a comprehensive study of methods to
solve the Vehicle Routing Problem (VRP) and evaluate their effectiveness and suitability.

In this dissertation, we employ a mixed-methods approach. Firstly, we conduct a liter-
ature review to understand the definition and characteristics of VRP and gather existing
methodologies. We then develop a methodology by creating a dataset and modifying
existing codes. These modifications aim to address specific VRP requirements and opti-
mize route planning, resource utilization, and cost efficiency. The proposed methodology
serves as a practical approach to solving VRP. For the experimental part, we evaluate the
effectiveness of ACO, NN algorithm, and PABCW using benchmark datasets provided by
[9] and a real-world case. We compare the solutions obtained by these algorithms across
different instances and evaluate their performance.

The comparative study reveals that the modified version of the k-Nearest Neigh-
bors (kNN) algorithm achieves the highest accuracy percentage among NN, ACO, and
PABCW. The evaluation based on benchmark datasets and a real-world case demon-
strates the effectiveness of the modified kNN algorithm in solving the VRP. However,
further evaluation and validation are necessary to confirm its effectiveness and robustness
in real-world applications, considering potential cost savings and improved operational
efficiency.

This dissertation provides valuable insights into the performance and suitability of
different algorithms for addressing the Capacitated Vehicle Routing Problem. The study
highlights the significance of efficient vehicle routing in minimizing distance, time, and
costs in distribution operations. The developed methodology, based on a modified kNN
algorithm, demonstrates promising results in solving the VRP. Future research should

III

focus on further evaluation and validation of the algorithm in real-world applications,
considering the potential for cost savings and improved operational efficiency.

Keywords : Vehicle Routing Problem, k-Nearest Neighbour, Ant Colony Optimiza-
tion, Proposed Algorithm, benchmark, dataset.

IV

Résumé

Le processus de prise de décision dans les opérations de distribution a un impact
significatif sur la minimisation de la distance, du temps et des coûts, ce qui en fait un sujet
crucial dans le domaine de la logistique. Un routage efficace des véhicules est essentiel
dans des scénarios tels que les itinéraires des bus scolaires, la livraison de pizzas et la
distribution de marchandises. Le Problème de Routage de Véhicules (VRP) représente le
défi central que nous cherchons à résoudre. Comprendre les complexités et les nuances du
VRP nous permet de développer des stratégies et des méthodologies pour optimiser les
décisions de routage et atteindre des distances optimales, un temps réduit et des coûts
réduits.

L’objectif de ce travail est de réaliser une étude approfondie des méthodes de résolution
du Problème de Routage de Véhicules (VRP) et d’évaluer leur efficacité et leur pertinence,
en plus d’appliquer ses méthodes sur des cas d’utilisation réels.

Dans cette dissertation, nous utilisons une approche mixte. Tout d’abord, nous réal-
isons une revue de littérature pour comprendre la définition et les caractéristiques du VRP
et recueillir les méthodologies existantes. Nous développons ensuite une méthodologie en
créant un ensemble de données et en modifiant des codes existants. Ces modifications
visent à répondre aux exigences spécifiques du VRP et à optimiser la planification des
itinéraires, l’utilisation des ressources et l’efficacité des coûts. La méthodologie proposée
sert d’approche pratique pour résoudre le VRP. Pour la partie expérimentale, nous éval-
uons l’efficacité de l’ACO, de l’algorithme NN et de l’PABCW en utilisant des ensembles
de données de référence fournis par [9] ainsi qu’un cas réel. Nous comparons les solutions
obtenues par ces algorithmes sur différentes instances et évaluons leurs performances.

L’étude comparative révèle que la version modifiée de l’algorithme des k plus proches
voisins (kNN) atteint le pourcentage de précision le plus élevé parmi NN, ACO et PABCW.
L’évaluation basée sur des ensembles de données de référence et un cas réel démontre l’effi-
cacité de l’algorithme kNN modifié dans la résolution du VRP. Cependant, des évaluations
et des validations supplémentaires sont nécessaires pour confirmer son efficacité et sa ro-
bustesse dans des applications du monde réel, en tenant compte des économies potentielles
de coûts et de l’amélioration de l’efficacité opérationnelle.

V

En conclusion, ce modeste travail offre des perspectives précieuses sur les perfor-
mances et la pertinence de différentes algorithmes pour aborder le Problème de Routage de
Véhicules à Capacité Limitée. L’étude met en évidence l’importance d’un routage efficace
des véhicules dans la minimisation de la distance, du temps et des coûts dans les opéra-
tions de distribution. La méthodologie développée, basée sur un algorithme kNN modifié,
démontre des résultats prometteurs dans la résolution du VRP. Les futures recherches de-
vraient se concentrer sur une évaluation et une validation supplémentaires de l’algorithme
dans des applications du monde réel, en tenant compte du potentiel d’économies de coûts
et de l’amélioration de l’efficacité opérationnelle.

Mots clés : Problème de Routage de Véhicules, k plus proches voisins, Optimisation par
Colonie de Fourmis, Algorithme Proposée, référence, ensemble de données.

VI

صخلم

ا�عوضوماهلعجيامم،فيلاكتلاوتقولاوةفاسملاليلقتيفريبكريثا�تاهلعيزوتلاتايلمعيفرارقلاذاختاةيلمع

تالفاحتاراسملثمتاهويرانيسيفا�يرورضتابكرملللاعفلاهيجوتلادعي.ةيتسجوللاتامدخلالاجميفا�مساح

.هلحوهتجلاعمىلا�فدهنيذلايساسا�لايدحتلاتابكرملاهيجوتةلكشملثمت.علسلاعيزوتوازتيبلاليصوتوسرادملا

قيقحتوهيجوتلاتارارقنيسحتلتايجهنموتايجيتارتساريوطتبانلحمسيتابكرملاهيجوتةلكشمبناوجوتاديقعتمهف

.فيلاكتلاضيفختوتقولاليلقتوتافاسمىندا�

.اهتمءالمواهتيلاعفمييقتوتابكرملاهيجوتةلكشملحتيتلابيلاسا�للةلماشةساردءارجا�وهةساردلاهذهفده

صئاصخوفيرعتمهفلتايبدا�لاةعجارمبموقن،ا�لوا�.قرطلاعونتىلعدمتعياج�هنمدختسن،ةساردلاهذهيف

تانايبةعومجمءاشنا�لالخنمةيجهنمريوطتبموقنمث.لعفلابةدوجوملابيلاسا�لاعمجوتابكرملاهيجوتةلكشم

ةلكشملةددحمتابلطتمةجلاعمىلا�تاليدعتلاهذهفدهت.ةقوثومرداصمنماهيلعلصحنةدوجومزومرليدعتو

هذهلحلاي�لمعاج�هنحرتقملاةيجهنمدعت.ةفلكتلاةءافكودراوملامادختساوقرطلاطيطختنيسحتوتابكرملاهيجوت

ةقيرطلاو،برقا�لاراجلاةيمزراوخو،ضرعتسملالمنلاةيمزراوخةيلاعفمييقتبموقن،يبيرجتلاءزجللةبسنلاب.ةلكشملا

متيتلالولحلانراقن.ةيقيقحةلاحوaugeratلبقنماهريفوتمتيتلاعجرملاتانايبةعومجممادختسابةحرتقملا

اهئادا�ميقنوتالاحلافلتخمربعتايمزراوخلاهذهةطساوباهيلعلوصحلا

،ناريجلابرقا�نيبةقدةبسنىلعا�ققحتناريجلابرقا�ةيمزراوخنمةلدعملاةخسنلانا�ةنراقملاةساردلافشكي

ةيقيقحلمعةلاحوةيسايقلارابتخالاتانايبةعومجمىلعمئاقلامييقتلاحضوي.حرتقملابولسا�لاو،لمنلانيسحتةلثما�و

ققحتومييقتءارجا�بجي،كلذعمو.تابكرمللةيتسجوللاةلكشملالحيفناريجلابرقا�لةلدعملاةيمزراوخلاةيلاعف

ةلمتحملافيلاكتلايفريفوتلايفرظنلاعم،يقيقحلاملاعلاتاقيبطتيفاهتوقوةيمزراوخلاةيلاعفنمدكا�تلليفاضا�

.ةيليغشتلاةءافكلانيسحتو

تابكرمللعيزوتلاةلكشمعملماعتللةفلتخملاتايمزراوخلاةمءالموءادا�لوحام�يقاك�اردا�ثحبلااذهرفوي،ماتخلايف

يففيلاكتلاوتقولاوةفاسملاليلقتيفلاعفلاتارايسلاهيجوتةيمها�ىلعءوضلاثحبلاطلسي.ةدودحملاةعسلاتاذ

ةلكشملحيفةدعاوجئاتن،ةلدعملاناريجلابرقا�ةيمزراوخىلا�ةدنتسملا،ةروطملاةيجهنملارهظت.عيزوتلاتايلمع

،يقيقحلاملاعلاتاقيبطتيفةيمزراوخلليفاضا�ققحتومييقتىلعيلبقتسملاثحبلازكرينا�يغبني.تابكرملاعيزوت

.ةيليغشتلاةءافكلانيسحتوفيلاكتلاريفوتةيناكما�يفرظنلاعم

:ةيحاتفمتاملك

،ةيسايقلارابتخالاتانايبةعومجم،ةحرتقملاةيمزراوخلا،لمنلانيسحت،ناريجلابرقا�،تابكرملاعيزوتةلكشم

.تانايبلاةعومجم

VII

Contents

General introduction . 1

1 Vehicle Routing Problem . 3
1.1 Introduction . 4
1.2 Definition and Characteristics of Vehicle Routing Problem 4
1.3 Vehicle Routing Problem’s history . 5
1.4 Difference between Vehicle Routing Problem and Travelling Salesman Prob-

lem . 6
1.5 Mathematical Model . 7
1.6 SWOT analysis . 9
1.7 Vehicle Routing Problem’ Types . 10
1.8 Applications . 12
1.9 Vehicle Routing Problem’s solutions . 13
1.10 Conclusion . 15

2 Overview of Simple heuristic and metaheuristic 16
2.1 Introduction . 17
2.2 Historical study . 17
2.3 What is a heuristic method? . 18
2.4 Why use a heuristic solution method? . 18
2.5 Classification of heuristic methods . 19

2.5.1 Constructive heuristic . 20
2.5.2 Improvement heuristic . 20
2.5.3 Hybrid Heuristics . 21
2.5.4 Local Search Method . 21

2.6 What is a metaheuristic method? . 21
2.7 Why use a metaheuristic solution method? 22
2.8 Classification of metaheuristic methods 22

2.8.1 Evolution-based Algorithms (EAs) 23
2.8.2 Swarm intelligence (SI) . 23
2.8.3 Physics-based algorithms (PAs) . 24
2.8.4 Human-based meta-heuristic algorithms (HAs) 24

2.9 Comparison of heuristic and metaheuristic Methods 25

VIII

Contents

2.10 Conclusion . 25

3 Methodology . 26
3.1 Introduction . 27
3.2 Data collection . 27

3.2.1 The grid coordinate method . 28
3.3 Algorithms for solving VRP . 30

3.3.1 Nearest Neighbour (NN) . 30
3.3.2 Ant Colony Optimization (ACO) 34
3.3.3 Proposed Algorithm Based on Clarke-Wright (PABCW) 37

3.4 Conclusion . 39

4 Experimental Setting . 40
4.1 Comparative study . 41

4.1.1 CVRP Benchmark Instances . 41
4.1.2 First comparison(with benchmark) 42
4.1.3 Second comparison (built dataset) 42

4.2 Results and discussion . 44
4.2.1 Result of 1st comparison . 44
4.2.2 Result of 2nd comparison . 45
4.2.3 Discussion . 48

4.3 Conclusion . 50

Conclusion and perspectives . 51

IX

List of Figures

1.1 Customers and depots . 5
1.2 Illustration of VRP . 7
1.3 Illustration of TSP . 7
1.4 The graph model of VRP . 8
1.5 VRP (Waste collection) . 12
1.6 Types of algorithms solving VRP . 14

2.1 Classification of heuristic methods . 20
2.2 Classification of metaheuristic methods 23

3.1 Piece of land chosen in various positions 28
3.2 example of Output the grid method . 30

4.1 Output of NN using 4 vehicles . 46
4.2 Output of NN using 10 vehicles . 46
4.3 Output of ACO using 4 vehicles . 47
4.4 Output of ACO using 10 vehicles . 47
4.5 Output of PABCW using 4 vehicles . 48
4.6 Output of PABCW using 10 vehicles . 48

X

List of Tables

1.1 The main types of VRP . 11
1.2 Proposed solutions to solve VRP. 13

2.1 Comparison between heuristic and metaheuristic 25

4.1 Instances of the set P . 42
4.2 Comparison of Solutions Obtained by Different Algorithms for Various

Instances . 43
4.3 Comparison according to dataset . 44

XI

List of Algorithms

1 Function Get− Address using grid method 29
2 Function get− good− solution(locations, k, nearest− neighbors) 33
3 Function Solve(locations, demand, capacity, num− vehicles) 36
4 Function solve − vrp(nodes, depot − index , vehicle − capacity , num −

vehicles) . 39

XII

List of abbreviations

VRP Vehicle Routing Probelm

TSP Traveling Salesman Problem

VRPTW Vehicle Routing Problem with Time Windows

CVRP Capacitated Vehicle Routing Problem

SWOT Strenght / Weakness / Opportunities / Threats

k-NN The k-Nearest Neighbors

GPHH Genetic Programming Hyper-heuristic

UCARP Incapacitated Arc Routing Problem

EAs Evolution based Algorithms

GA genetic algorithm

SI Swarm intelligence

PSO Particle Swarm Optimization

ACO Ant Colony Optimization

PAs Physics-based algorithms

SA Simulated Annealing

HAs Human-based metaheuristic algorithms

TS Tabu search

XIII

List of Algorithms

LS Local search

TSP Traveling Salesman Problem

VRP Vehicle Routing Problem

GIS geographic information system

DE Differential Evolution

ABC Artificial Bee Colony

CS Cuckoo Search

NN Nearest Neighbor

PABCW Proposed Algorithm Based on Clarke-wright

XIV

General introduction

The optimization of vehicle routing plays a crucial role in various industries, including
transportation, logistics, and delivery services. Efficiently planning routes for vehicles
can lead to significant cost savings, improved resource utilization, and enhanced customer
satisfaction. The Vehicle Routing Problem (VRP) is a complex optimization problem
that involves determining the most optimal routes for a fleet of vehicles to serve a set
of customers while satisfying various constraints. This dissertation aims to address the
challenges associated with VRP and propose effective algorithms to solve them.

VRP has been extensively studied in operations research and has garnered considerable
attention due to its practical applications. The problem encompasses various types, such
as the Capacitated VRP, Vehicle Routing Problem with Time Windows (VRPTW), and
the Multiple Depot VRP, each with unique characteristics and constraints. Understanding
the different types of VRP and their applications in industries is crucial for developing
appropriate algorithms and solutions.

A comprehensive literature review will be conducted to explore the existing research
and solutions in the field of VRP. This review will cover traditional approaches and state-
of-the-art techniques, including heuristic and metaheuristic algorithms. By analyzing the
strengths and limitations of these approaches, this dissertation aims to identify gaps in
the literature and propose novel modifications to existing algorithms, as well as a new
algorithm specifically tailored for VRP.

The primary objective of this dissertation is to conduct a comparative study of three
algorithms for solving VRP. Two of the algorithms will be modified to adapt to VRP based
on the characteristics of the provided dataset. In contrast, the third algorithm will be a
proposed approach designed to address the limitations of existing methods. The study
aims to evaluate and compare the performance of these algorithms in terms of solution
quality, computational efficiency, and scalability.

The methodology employed in this research will involve several steps. Firstly, a com-
prehensive dataset will be collected, which will include details such as customer locations,
vehicle capacities, delivery time windows, and distance constraints. The adapted versions
of the Ant Colony Optimization (ACO) and K-Nearest Neighbor (KNN) algorithms will

1

List of Algorithms

be developed, considering the specific requirements of VRP. The proposed algorithm will
combine elements from both ACO and KNN to devise a novel approach to solving VRP.

This dissertation will be structured into several chapters to ensure a logical flow of
information. Chapter 1 will provide an introduction to VRP, its applications in various
industries, and the need for efficient algorithms to solve these optimization problems.
Chapter 2 will present an overview of heuristic and metaheuristic algorithms, discussing
their relevance in solving VRP. Chapter 3 will focus on the methodology, explaining the
dataset used, the adaptations made to ACO and KNN algorithms, and the proposed
algorithm. Chapter 4 will present the comparative analysis of the three algorithms based
on benchmark datasets and the provided dataset. Finally, We will summarize the findings,
conclude, and provide recommendations for future research.

In conclusion, this dissertation aims to contribute to the field of VRP by conducting a
comparative study of three algorithms for solving this challenging optimization problem.
By proposing adaptations to existing algorithms and introducing a novel approach, the
research aims to provide valuable insights into the performance and suitability of different
algorithms in real-world VRP scenarios. The findings of this study can help industries
optimize their vehicle routing processes, leading to improved efficiency, reduced costs, and
enhanced customer satisfaction.

2

Chapter 1

Vehicle Routing Problem

3

Chapter 1. Vehicle Routing Problem

1.1 Introduction

The decision-making process in distribution operations significantly impacts minimiz-
ing distance, time, and costs, making it a crucial topic in logistics. Examples of such
decision-making scenarios include school bus routes for student transportation, pizza de-
livery routes, and the distribution of goods from warehouses to multiple retail outlets.
These scenarios affect vehicle routing to ensure optimal use of resources and minimize as-
sociated expenses. In this chapter, we will focus on the Vehicle Routing Problem (VRP)
and its characteristics. VRP represents the core challenge that we seek to address and
solve. By examining the complexities and nuances of VRP, we can develop strategies and
methodologies to optimize routing decisions and achieve minimal distances, reduced time,
and lowered costs. Through a comprehensive exploration of VRP in this chapter, we will
gain insights into its different variations, key challenges, and potential solutions.

1.2 Definition and Characteristics of Vehicle Routing
Problem

Since its introduction by Dantzig and Ramser, the vehicle routing problem (VRP), also
called Capacitated Vehicle Routing Problem (CVRP difficulty), has attracted significant
attention from researchers due to its practicality and inherent difficulty[20]. VRP depots
encompass a broad range of problems involving the optimal visitation of multiple cus-
tomers by a given number of vehicles from one or more depots[18]. The primary objective
of VRP is to determine the optimal route for each vehicle while minimizing total distance
or total costs and adhering to specified constraints. The key components of VRP include
depots, vehicles, customers, road networks, and drivers. The combinations and arrange-
ments of these components give rise to numerous variations of VRP. Before exploring the
different variants, let us briefly define and characterize the main components:

• Depots: Depots serve as the starting and ending points for the VRP. In some cases,
multiple depots may exist.

• Customer: Customers represent the entities that must be serviced in the VRP. They
are located around the depots and may have deterministic or stochastic demands.

• Vehicles: VRP involves a predetermined number of vehicles, each with specific
characteristics such as maximum travel time, capacity, cost, or time constraints
(The Traveling Salesman Problem emerges when there is just one car).

• Routes: Routes refer to the paths that vehicles take to serve customers. These
routes can have varying costs, travel times and can be one-way or two-way.

4

Chapter 1. Vehicle Routing Problem

Figure 1.1: Customers and depots
[62]

Understanding these fundamental components of VRP and considering the specified
conditions is crucial for developing effective strategies and algorithms to optimize the
routing process, ultimately minimizing costs and improving efficiency.

It is worth noting that the vehicle routing problem is classified as NP-hard [6], meaning
there is currently no efficient solution to this problem. While it can be precisely solved
for a limited number of occurrences, finding the best routes for several cars traveling to
a set of places introduces additional complexities. For instance, the traveling salesman
problem emerges when only one car is involved.

In the subsequent sections, we will delve into different variants of VRP, exploring
their unique characteristics and challenges. Additionally, we will discuss the specific
considerations and adaptations required for various industries and domains where VRP
finds application.

1.3 Vehicle Routing Problem’s history

Dantzig and Ramser, in 1959, first publicly presented the CVRP. For its resolution, these
authors suggested a straightforward matching-based heuristic and demonstrated it using
a miniature example. Heuristics based on various concepts, such as cost savings, closeness
to customers’ locations, customer matching, and intra- and inter-route optimization steps,
began to develop in the following years. The Clarke and Wright 1964 savings heuristic,
which has survived the test of time due to its speed, simplicity, and moderate accuracy, is
possibly the most well-known heuristic in this category. After two studies by Christofides,
Mingozzi, and Toth were published in Networks by Christofides [46], the development of
precise algorithms for the VRP took off.

5

Chapter 1. Vehicle Routing Problem

While the second study presented two mathematical formulations using q-paths and
k-shortest spanning trees, the first publication proposed an approach based on dynamic
programming with state-space relaxation. A few years later, the first cutting plane tech-
nique for a VRP was put out by Laporte, Desrochers, and Nobert[45], based on the
linear relaxation solution of an integer model. Some of the more modern algorithms have
included these fundamental ideas.

Since then, several precise algorithms built on formulations from mathematical pro-
gramming have been released. Some formulations, which frequently need branch-and-cut
solutions, include variables for vehicle flow or commodity flow. The VRP may be expressed
as a set partitioning problem with some extra legitimate inequalities. This concept has
been used in some of the most effective implementations by Baldacci [10]and Fukasawa
[23].

They typically use many operators, as in adaptive extensive neighborhood search [51]
or combine genetic search with local search, as in the recently suggested hybrid genetic
algorithm by [46].

However, The current VRP models vastly differ from those introduced by Dantzig and
Ramser, Clarke, and Wright, as they increasingly aim to incorporate real-life complexities.
For example, time-dependent travel times (reflecting traffic congestion), time windows
for pickup and delivery, and input information (e.g., demand information) that changes
dynamically over time are just a few examples. These features bring along substantial
complexity[21].

1.4 Difference between Vehicle Routing Problem and
Travelling Salesman Problem

The Traveling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) are
central to distribution management and have attracted the attention of researchers for
more than 50 years.

The traveling salesman problem (TSP) has the same objective as the VRP. The TSP
aims to find the shortest optimal route regarding distance, time, or cost for a traveling
salesman [13]. The traveling salesman has to start from one depot, visit each city once,
and return to the beginning point, the depot, in one single closed tour. The difference
between the two problems is that VRP has more than one vehicle, while the TSP has only
one vehicle. Both have the same goal which is either traveling the least total distance or
minimizing the total cost.

Listing all the possible tours and choosing the one with the lowest cost may sound

6

Chapter 1. Vehicle Routing Problem

logical and correct. However, in the TSP, the number of tours grows exponentially. So,
the possible number of solutions is n! for n cities [47].

Figure 1.2: Illustration of VRP
[62]

Figure 1.3: Illustration of TSP

1.5 Mathematical Model

Let G = (V,A) be a complete and directed graph, where V = 0, 1, . . . , n is
the set of nodes and A is the set of arcs. The nodes i = 1, 2, .., n correspond
to customers, each with a deterministic demand di ≥ 0.

7

Chapter 1. Vehicle Routing Problem

Figure 1.4: The graph model of VRP

The node i = 0 is the zero-demand depot, i.e., d0 = 0. Let m > 0 be the number
of different types of vehicles. For the kth type of vehicles(k = 1, 2, . . . ,m), let Vk =

{1, 2, . . . , vk} be the set of vehicles k, with load capacity Qk > 0. Let cij be the non-
negative distance-based cost associated with the arc (i, j) ∈ A, and cij = + ∝,∀I ∈ V . In
the case of calculating the actual distance between pairs of locations (i, j), the distance
matrix may be asymmetric, i.e., it can happen that cij 6= cji.

The VRP goal is to find the minimum distance or cost roundtrip routes starting from
and ending at the depot, which satisfy all customers’ demands, visit each customer only
once, and do not exceed the load capacity of each type of vehicle.

The following expression gives the objective function to be minimized:

Min
∑
∀I∈V

∑
∀J∈V

cji

m∑
k=1

xijk

Subject to:

∑
∀I∈V \{0}

xi0k =
∑

∀J∈V \{0,i}

xj0k, ∀k ∈ {1, ,m} (1.1)

m∑
k=0

∑
∀i∈V

xj0k = 1, ∀j ∈ V \ {0} (1.2)

∑
∀I∈V \{h}

xihk =
∑

∀J∈V \{h,i}

xjhk, ∀h ∈ v \ {0}, ∀k ∈ {1, ,m} (1.3)

8

Chapter 1. Vehicle Routing Problem

∑
∀J∈V \{0}

x0jk 6 vk, ∀k ∈ {1, ,m} (1.4)

∑
∀I∈V

yij + dj =
∑
∀I∈V

yji, ∀j ∈ v \ {0} (1.5)

0 6 dixijk 6 yij 6 (QK − J)xijk, ∀(i, j) ∈ v \ {0}, ∀k ∈ {1, ,m} (1.6)

xij ∈ {0, 1},∀(i, j) ∈ v \ {0}, ∀k ∈ {1, ,m} (1.7)

In this formulation, for both symmetrical and asymmetrical issues and for both homo-
geneous and heterogeneous fleets, O(n2

K) binary variables x are used. The binary variable
xijk in 1.7 indicates whether or not the arc (i, j) 6 A is traveled by a vehicle of type
k(k = 1, 2, . . . ,m). In addition, there are O(nK) variables y where yij represents the load
in the truck arriving at customer j after visiting customer i in terms of units of commodity

The objective function is minimizing the total distance-based cost of the arcs used by
all m routes generated.

Constraint (1.1) implies that the number of vehicles of each type leaving the depot is
the same as the number of vehicles of that type returning to it.

Constraints (1.2) and (1.3) require that each customer is visited exactly once and that
the same type of vehicle k arrives and leaves each h customer location, respectively.

Constraint (1.4) imposes that the number of used vehicles of each type does not exceed
the number of available vehicles of that type.

Constraint (1.5) states that the quantity of products yij in the truck leaving customer
j plus the demand of that customer equals the number of products in the truck leaving
it after the service has been completed.

Constraint (1.6) guarantees lower and upper bounds ensuring that: the quantity of
products yij in the truck leaving customer i is equal to or greater than its demand, di;
and the total demand served by each vehicle k does not exceed the service capacity Qk

[32].

1.6 SWOT analysis

To analyze the vehicle routing problem, it is important to examine its strengths, weak-
nesses, opportunities, and threats.

9

Chapter 1. Vehicle Routing Problem

• Strengths: The VRP has many great qualities, for instance, one of its strengths
is finding the best route for transportation companies, which helped to reduce
transportation costs, including vehicle costs, driver wages, and penalties for late
deliveries, ultimately leading to the satisfaction of customers [16].

• Weaknesses: The VRP contains flaws that need to be fixed. Only small-scale issues
can be solved, and finding a workable solution takes time during the execution and
running of the solvers. Additionally, it might not work well in real-world situations.
In other words, although the outcomes were great, they were never perfect [16].

• Opportunities: Include creating new software to address the issue and produce
precise answers as well as enhancing an existing program while taking into account
practical limitations [16].

• Threats: Threats to the validity of the optimality of the solution that may lower its
effectiveness include changes in the weather, the mechanical condition of the cars,
and traffic [16].

1.7 Vehicle Routing Problem’ Types

VRP issues may be categorized by constructing a taxonomy or a generalized framework
that enumerates the models now in use, the goals pursued, and the theories related to the
investigation of the issue, the following table 1.1shows the most popular VRP’s types [2]:

10

Chapter 1. Vehicle Routing Problem

Name Description
Node components

Traveling Salesman Problem A single agent (vehicle) visits the cities
(customers). The vehicle makes a trip.
The objective is to minimize the dis-
tance the vehicle travels. Cities (cus-
tomers) have no product demand

VRP with Single Depot The vehicles leave a common depot,
visit the customers (deliver products
to the customers) and then return to
the depot (after the customers have vis-
ited)

Vehicle Component
Electric VRP Electric vehicles travel, the vehicles

visit recharger stations after a certain
distance

Fuel Efficient Green VRP The objective is to minimize fuel emis-
sions from vehicles

Time Component
VRP with Time windows Customers may have different time

windows. The product demands of the
customers must be served within the
time window. The customer can have
single or multiple time windows

Periodic VRP Customers do not have to be visited
once, but periodically, even several
times within a (predefined) period

Functional parameter component
Open VRP One or more depots are in the system

from which vehicles departed to visit
customers. However, the vehicles after
visiting the customers do not return to
the depot

Multi-Depot VRP with Pickup and De-
livery

One or more depots are in the system
from which vehicles departed to visit
customers. Once the customers are vis-
ited, vehicles can return to any depot.

Table 1.1: The main types of VRP
[2]

11

Chapter 1. Vehicle Routing Problem

1.8 Applications

Olli Bäysy and Geir Hasle conducted a thorough investigation of the usage and relevance
of vehicle routing in several global companies and sectors. They came to the conclusion
that there are some daily tasks where using Vehicle Routing solutions can make them a
little less difficult [60]

• Waste collection: In situations like this, when it may be used often, vehicle routing
can be quite helpful. Simply said, waste collection is VRP with several distribution
points or nodes where trash has to be gathered. Giving them an ordered route
without leaving behind a node or by preventing disturbance may be quite helpful
in instances like these [41] [35]. The itineraries of five garbage collection trucks are
shown in Figure 06 below, together with the number of stops they will make and
the overall distance they will travel.

Figure 1.5: VRP (Waste collection)
[57]

Real-world applications typically include a variety of factors and limitations that
simple VRP can not always account for, leading to the addition of restrictions like
capacity, time frames, etc. Additionally, [60] conducted research on several VRP
uses, such as disaster relief [60].

• Primary healthcare services: In the event of an unplanned calamity, such as a nat-
ural disaster or a terrorist attack, there might be significant destruction, loss of life,
and damage to both person and property. In this situation, the medical prepara-
tions might not always be enough. To assist in getting people to safety in these
situations, scheduled vehicle dispatch might offer emergency logistical support[31].
Additional restrictions, such as the availability of medical services within the cars,
etc., might be added to this issue.

When considering additional modes of transportation like water (ships and ferries),
aerial (airplanes and drones), and other comparable circumstances like school bus

12

Chapter 1. Vehicle Routing Problem

pickup and drop-off, VRP may also be connected to them. Applications might
change based on the circumstance, and constraints for solutions can change de-
pending on the issue statement since two problem statements could not call for the
same constraints. Drones are a significant, recently emerging VRP solution appli-
cation. These mobile bots are fully employed in ways that decrease traffic, time,
and fuel use.

• Drones: Drones are being more widely utilized for both commercial and non-
commercial purposes, and they are also being used to implement VRP solutions
known as VRPD [65]. A select few businesses, like Amazon, DHL, Federal Express,
etc., employ drones with the intention of directly or indirectly delivering items. A
VRPD algorithm was proposed by Xingyin Wang. in which delivery cars with a
fleet of drones carrying items are driven to specific locations, where the drones as-
sume control and proceed to distribute the goods to the adjacent residences before
returning to the vehicle. Once all the allotted supplies have been delivered, the
truck then makes its way back to the depot.

1.9 Vehicle Routing Problem’s solutions

There are several ways to solve the VRP, however, the precise and heuristic techniques
are the two that are most frequently employed. The most popular precise and heuristic
approaches for solving the CVRP[59] are displayed in Table 1.2. When combined with
extra personal logic, these strategies produce various outcomes. These two categories best
describe how to find solutions. The study of operations research (OR), which aids in the
implementation of vehicle routing solutions, is widely used.

Type of Approach Solution procedure

Exact Solutions
Branch and cut
Brunch and cut Pricing
Pricing

Heuristic
Simple heuristic
Meta heuristic
Meta heuristic

Table 1.2: Proposed solutions to solve VRP.

• Exact solutions: Exact answers were the first VRP solutions, and it is well known
that they handle the issue almost perfectly [17]. Exact solutions have the disadvan-
tage of not operating effectively on large-scale problems [43]. But that took into

13

Chapter 1. Vehicle Routing Problem

account the conventional precise answers. Large-scale difficulties are successfully
solved by the new precise solutions with appropriate cuts and prices.

• Heuristic: One of the methods frequently utilized to address different VRP issues
is heuristics. Finding the outcome that comes the closest to the ideal answer is the
fundamental aspect of this methodology. According to Cordeau, the VRP does not
have a precise ideal solution, hence the alternative is to search for responses that are
near to the optimal ones [19]. Large issues can be solved using heuristic approaches
rather than exact ones. The accuracy, speed, simplicity, and adaptability of the
heuristics are their key characteristics. First, unlike the Exact Approach, which
takes longer to present a complete answer, heuristics first present a good solution
before beginning to improve it[19].

Additionally, several delivery issues need quick fixes. For instance, Gendereau con-
tends that while certain problems require long-term planning, the position of ambu-
lances must be determined every three minutes[26]. In conclusion, the ”Heuristic”
method is crucial since truck routing difficulties call for quick, practical answers.
Furthermore, heuristic algorithms like the Clarke and Wright method are simple
to use but algorithms with several parameters might be challenging to compre-
hend. The heuristic approach is very adaptable since it works within a variety
of limitations[19]. Simple heuristics and metaheuristics are the two subclasses of
heuristics[19].

Figure 1.6: Types of algorithms solving VRP

14

Chapter 1. Vehicle Routing Problem

1.10 Conclusion

In conclusion, the VRP is a challenging optimization problem that has many applications
in the real world. There are a number of heuristic and metaheuristic methods that can
be used to find good solutions to the VRP. The next chapter will discuss these methods
in more detail.

15

Chapter 2

Overview of Simple heuristic and
metaheuristic

16

Chapter 2. Overview of Simple heuristic and metaheuristic

2.1 Introduction

Optimization is an area of study within mathematics and computational science that
focuses on developing methods and solving problems that aim to either minimize or max-
imize one or more objective functions. These functions are based on one or more dependent
variables, which can have values that are either real or integer[24].

When engineers and researchers tackle optimization problems, they need to consider
several factors based on the specific problem at hand. However, the two primary objectives
that often take precedence are minimizing execution time and obtaining solutions that
meet acceptable criteria[15]. therefore, these conventional optimization techniques do not
guarantee global optimum performance and have led to the quest for new methods[44],
one of which is simple heuristics and metaheuristics.

This chapter aims at giving an overview of metaheuristics and heuristics, so we will
cover the history of these two methods. Then the important differences between them,
After the definition and the classification with an explanation of each algorithm in every
classification of each method, and Finally the comparison between them.

2.2 Historical study

In history Several problem-solving techniques tend to be metaheuristic; however, heuristic
as a scientific technique for optimization is a modern phenomenon. metaheuristic algo-
rithms or heuristic algorithms are developed in different historical periods. Between the
1940s and 1960s, heuristic methods were widely used in different applications, Researchers
began developing new heuristics for various optimization problems, including the travel-
ing salesman problem, the knapsack problem, and the quadratic assignment problem but
the main achievement was in 1963 with the introduction of evolutionary algorithms (EA)
by [8].

Between the 1960s and 1970s, Researchers began using mathematical programming
techniques, such as linear programming and dynamic programming, to analyze heuristics
and develop new ones. In addition to the development of Genetic algorithms by [28] in
1975.

Between the 1980s and 1990s found one of the biggest steps in the metaheuristic algo-
rithms was the simulated annealing (SA) in 1983 by [42]. Another significant step was the
development of artificial immune systems in 1986 by Farmer, Packard, and Perelson[22].

In 1986, for the first-time memory was used in metaheuristics by Fred Glover in the
Tabu search (TS) algorithm in which the previous search moves are stored in a Tabu-list,
and upcoming moves must avoid revisiting previous moves[27].

The 1990s and 2000s, were an exciting period for metaheuristic algorithms, as it saw

17

Chapter 2. Overview of Simple heuristic and metaheuristic

the development of several important algorithms such as ant colony optimization (ACO)
by [5] in 1992, and particle swarm optimization (PSO) by [5] in 1995, and later differential
evolution (DE) was developed by [56] in 1997.

From 2000 until nowadays, metaheuristic algorithms have been widely used in many
applications, and many new significant algorithms have been developed. In 2001 Zong
Woo Geem, Joong Hoon Kim, and G. V. developed the harmony search (HS) algo-
rithm[25]. In 2002, a bacteria foraging algorithm was developed by [50]. In 2005 D.
Karaboga developed the artificial bee colony (ABC). In 2009, Xin-She Yang and Suash
Deb developed a cuckoo search (CS) algorithm[68].

Generally, there are many significant meta-heuristic algorithms that have been devel-
oped to solve real-life and optimization problems[5]

2.3 What is a heuristic method?

In computer science and artificial intelligence, heuristics serve as ”rules of thumb” em-
ployed in algorithms to aid in finding approximate solutions for intricate problems. When
confronted with an overwhelming amount of data that hinders quick resolution, heuristic
algorithms are utilized to prioritize speed over exactness, As this definition say: “It is a
rule for reducing the number of mental operations (or information-processing steps) taken
to solve a problem” [53]. Nevertheless, since heuristics are derived from problem-specific
rules, the details of these heuristics differ from one problem to another[63].

These methods strive to generate solutions within a reasonable timeframe that are
sufficiently effective for solving the given problem. While the solutions obtained through
heuristics may not be perfect or exact, they hold value as approximate or best-guess solu-
tions. In situations where obtaining an exact solution would take hundreds of thousands
of years, heuristics allow us to swiftly generate an approximate solution [63], “A heuristic
is a technique aimed to solve a problem faster when traditional techniques are too slow”
[33].

2.4 Why use a heuristic solution method?

Until now, the discussion in this section has primarily centered around a key rationale for
employing heuristics: the difficulty, and sometimes impossibility, of finding the optimal
solution for the mathematical representation of the given situation. However, there exist
additional justifications for utilizing heuristic solution methods, they include :

• Facilitation of implementation: ‘People would rather live with a problem they can-
not solve than accept a solution they cannot understand’ [67]. Decision-makers are

18

Chapter 2. Overview of Simple heuristic and metaheuristic

more likely to embrace and utilize decision rules when they possess a basic, intu-
itive understanding of how these rules function, particularly in terms of how crucial
parameters influence the selected actions. This comprehension helps facilitate the
acceptance and practical implementation of decision rules [55].

• Show improvement over current practices: Related to the previous point, managers
may be quite satisfied with a heuristic solution that produces better results than
those currently achieved [55].

• Fast results: Sometimes fast, reasonable, results are needed and heuristics can be
more quickly developed and used than optimization routines [55].

• Robustness: Heuristics can be less sensitive to variations in problem characteristics
and data quality. In the words [12]‘Optimal solutions are fragile in the sense that
they can be exquisitely sensitive to changes in the data’. In cases where there is a
slight modification in the problem description, achieving an optimal solution often
necessitates solving the entire problem again, which can be computationally inten-
sive and time-consuming, especially if the initial problem was already challenging
to solve [55].

• Use within optimization routines: Heuristics can be effectively incorporated into
optimization routines through two approaches. Firstly, they can contribute by pro-
viding favorable initial solutions within an iterative framework. Secondly, they can
offer bounds that aid in eliminating portions of the solution space, particularly in
optimization methods involving partial enumeration[55].

2.5 Classification of heuristic methods

There are several classifications of heuristic methods, each with its strengths and weak-
nesses. In this discussion, we will explore each of these classifications of heuristics in the
figure below:

19

Chapter 2. Overview of Simple heuristic and metaheuristic

Figure 2.1: Classification of heuristic methods

2.5.1 Constructive heuristic

Constructive methods, as the name implies, use the data of the problem to construct a
solution, step by step. Typically, no solution is obtained until the procedure is complete
(in contrast with improvement methods to be discussed in the next subsection). A spe-
cial constructive approach is the so-called greedy method, where, at each step, the next
element of the solution is chosen so as to give the best immediate benefit (highest profit
contribution or lowest cost) [55], one of the most common algorithms in this class is KNN
algorithm.

• The k-Nearest Neighbors:(k-NN) algorithm is a popular machine learning technique
extensively employed in data classification research. However, with the advent of big
data, the conventional k-NN algorithm’s performance and efficiency have become
significant concerns. Specifically, when dealing with large-scale multi-categorical
training datasets, the traditional k-NN algorithm proves to be inefficient. It en-
counters difficulties in effectively filtering the training dataset to extract the most
relevant data for the given test dataset or file[4].

2.5.2 Improvement heuristic

Improvement heuristics start with an initial solution, i.e., a complete solution obtained
either by a constructive heuristic or randomly generated. This initial solution is then
improved by applying small consecutive changes until a stopping criterion is met. The
goal is to keep the computational times fairly low while improving the quality of the
solutions when compared to constructive heuristics by [49], sweep algorithm is one of the
common algorithms used in this class.

• Sweep algorithm: The heuristic proposed here uses different procedures to generate

20

Chapter 2. Overview of Simple heuristic and metaheuristic

a large set of good routes and then chooses those that satisfy the problem constraints
at the lowest cost using a polynomial set partitioning algorithm. Specifically, the
proposed heuristic uses five subordinate procedures called: Order, 1-petal, 2-petal,
Petals Selection, and Improve[52].

2.5.3 Hybrid Heuristics

These methods combine two or more heuristic methods to take advantage of their strengths
and overcome their weaknesses[58], the GPHH one of the best examples.

• � The Genetic Programming Hyper-heuristic:(GPHH) is a promising approach for
effectively handling the Incapacitated Arc Routing Problem (UCARP) by automat-
ically evolving efficient routing policies. However, one drawback of GPHH is that
the evolved routing policies can often be overly complex, making it difficult for
human users to understand and trust them[64].

2.5.4 Local Search Method

In this method, the most feasible way of solving a problem is to search and used. Con-
tinuous improvement is made in the method during the solving process, and when there
is no more scope for improvement, the method gets to the end, and the final result is the
answer to the problem [33].

These are just a few examples of the classifications of heuristics methods that are
commonly used in optimization problems. The choice of heuristic method depends on the
specific problem, its characteristics, and the available computational resources.

It is important to recognize that the various classifications of heuristics are not mu-
tually exclusive. In fact, there are often advantages to integrating multiple heuristic
methods when addressing a particular category of problems. Furthermore, using multi-
ple distinct methods simultaneously to solve the same problem can lead to more fruitful
results, allowing for the selection of the best solutions[55].

2.6 What is a metaheuristic method?

Metaheuristics are not specifically focused on solving any kind of problem, but they
propose simple ideas with high applicability to a wide number of problems[48]. “A meta-
heuristic is a higher-level technique or heuristic that seeks, generates, or selects a heuristic
that may provide a sufficiently good solution to an optimization problem “[44].

“Metaheuristics were conceived as high-level problem-solving strategies to coordinate

21

Chapter 2. Overview of Simple heuristic and metaheuristic

the cooperation between other search methods, including heuristics and/or traditional
search techniques” [48]. These simple procedures are usually based on emulating natu-

ral or physical phenomena, such as the behavior of flocks of birds and insects, cooling
procedures in metals, or the natural evolution, among many others[48].

2.7 Why use a metaheuristic solution method?

• Meta-heuristics can lead to good enough solutions for computationally easy (tech-
nically, P class) problems with large input complexity, which can be a hurdle for
classical methods.

• Meta-heuristic can lead to good enough solutions for the NP-hard problems, i.e.
problems for which no known exact algorithm exists that can solve them in a rea-
sonable amount of time.

• Unlike most classical methods, meta-heuristics require no gradient information and
therefore can be used with non-analytic, black-box, or simulation-based objective
functions.

• Most meta-heuristics have the ability to recover from local optima due to inherent
stochasticity or deterministic heuristics specifically meant for this purpose.

• Because of the ability to recover from local optima, meta-heuristics can better handle
uncertainties in objectives.

• Most meta-heuristics can handle multiple objectives with only a few algorithmic
changes[11]

2.8 Classification of metaheuristic methods

Here, we present a possible classification of the most common combinatorial optimization
methods applied in science and engineering.

22

Chapter 2. Overview of Simple heuristic and metaheuristic

Figure 2.2: Classification of metaheuristic methods
[3]

2.8.1 Evolution-based Algorithms (EAs)

Simulate the biological progression of evolution at the cellular level employing selection,
crossover, mutation, and reproduction operators to generate increasingly better candi-
date solutions (chromosomes). For evolutionary computation, there are four historical
paradigms: evolutionary programming, evolutionary strategies, genetic algorithms, and
genetic programming [1], The most EAs algorithm is the genetic algorithm.

• The genetic algorithm (GA): This algorithm is a random and nonlinear search
method based on the principles of natural selection. This method is found by John
Holland in around 1960. The proofs of GA start from the coding or parameters
coding. Next, the chromosomal generation is done. A chromosomal generation is a
group of genetics[61].

2.8.2 Swarm intelligence (SI)

Mimics are the collective behavior of agents in a community, such as birds and insects. SI
mainly depends on the decentralization principle i.e.; the candidate solutions are updated
through the local interaction with each other and with their environment. The most pop-
ular SI algorithms are Particle Swarm Optimization (PSO)[61], Ant Colony Optimization
(ACO) [1]

• Ant Colony Optimization (ACO): Ant Colony Optimization is inspired by ants
and their behavior of finding the shortest paths from their nest to sources of food.
Without any leader that could guide the ants to optimal trajectories, the ants

23

Chapter 2. Overview of Simple heuristic and metaheuristic

manage to find these optimal trajectories over time, by interacting with their local
environment. The ants initially search for food in a random fashion, but when they
have found some, they return home while depositing chemicals, called pheromones.
These pheromones attract other ants to follow the same path, and they in turn
also deposit pheromones on their way back. Over time, this behavior leads to the
emergence of paths, that can be shown to be near-optimal[61].

2.8.3 Physics-based algorithms (PAs)

This family of algorithms is based on the behaviors observed in nature that are not related
to biological processes. In general, they are based on physical observation and experimen-
tation[14]. Some of the most recognized and widely used physics-inspired optimization
algorithms is simulated annealing

• Simulated Annealing (SA): This one is an effective and general form of optimization.
It is useful in finding global optima in the presence of large numbers of local optima.
“Annealing” refers to an analogy with thermodynamics, specifically with the way
that metals cool and anneal. Simulated annealing uses the objective function of an
optimization problem instead of the energy of a material[7].

2.8.4 Human-based meta-heuristic algorithms (HAs)

Are search optimization methodologies that emulate human interactions in different en-
vironments [54]. These algorithms exploit the behavior of humans in groups in order to
solve real-life problems and learn new skills. The most common socially inspired algorithm
is tabu search.

• Tabu search (TS): This is an iterative neighborhood search algorithm, where the
neighborhood changes dynamically. TS enhances local search by actively avoiding
points in the search space already visited. By avoiding already visited points, loops
in search trajectories are avoided and local optima can be escaped. TS can be
considered as the combination of local search (LS) and memory structures. The
main feature of TS is the use of explicit memory. The uses of memory have two goals:
to prevent the search from revisiting previously visited solutions and to explore the
unvisited areas of the solution space[40].

24

Chapter 2. Overview of Simple heuristic and metaheuristic

2.9 Comparison of heuristic and metaheuristic Meth-
ods

The table below provides an overview of the characteristics of heuristic and metaheuristic:

characteristics Heuristic methods Metaheuristic methods
Nature Deterministic Randomization+heuristic
Type Algorithmic Iterative Nature inspired Iterative

Nature of solution Inexact, Near-Optimal solution Inexact, Near-Optimal solution
Optimal Result Not guaranteed Not guaranteed
Correct Result Guaranteed Guaranteed

Execution Time Typically fast Tuning-dependent but typically fast

Table 2.1: Comparison between heuristic and metaheuristic .
[34]

2.10 Conclusion

In conclusion, heuristic and metaheuristic methods are powerful tools for solving the
Vehicle Routing Problem (VRP). These methods can find good solutions to the VRP in
a reasonable amount of time, even when the VRP is very large and complex. The next
chapter will discuss the methodology used in this study to solve the VRP.

25

Chapter 3

Methodology

26

Chapter 3. Methodology

3.1 Introduction

This chapter presents a methodology for solving the Vehicle Routing Problem (VRP)
using modified existing codes. In this study, we build upon original codes obtained from
reputable sources such as GitHub and adapt them to address our specific VRP require-
ments. By making these modifications, we aim to develop a tailored solution that opti-
mizes route planning, resource utilization, and cost efficiency. The proposed methodology
offers a practical approach for efficiently solving the VRP and has the potential to bring
significant improvements to real-world operations.

3.2 Data collection

To apply our study in a real word case, We have chosen a specific piece of land for analysis,
and the information presented in this assignment is based on observations and analysis
conducted using Google Earth.

• Google Earth: This tool is a virtual globe and geographic information system (GIS)
software developed by Google. It provides a 3D representation of the Earth based on
satellite imagery, aerial photography, and GIS data[66]. Google Earth is available
as a desktop application for Windows, macOS, and Linux, as well as a web-based
version called ”Google Earth Web.” in our work, we use the application google earth
pro version 7.3

• Google Earth Pro: This is a professional version of Google Earth, provided by
Google, that ties extensive satellite data together into one system to visualize the
earth and study various geographic aspects. It offers enhanced capabilities for data
analysis, visualization, and presentation, making it a valuable tool for geospatial
professionals and researchers [29]

By utilizing Google Earth’s satellite imagery and mapping capabilities, we were able
to access detailed information about the selected area, allowing for a comprehensive as-
sessment of its features, characteristics, as follows:

• Location: We have chosen a specific palm tree forest in Biskra, and the coordinates
of the selected land parcel are as follows: latitude 34.6697561, longitude 5.3368609.

• Provide the coordinates of starting point: The coordinates of the selected piece of
land, after converting them from geographical coordinates to Cartesian coordinates,
are as follows: x= 714187.08 and y= 3838925.34.

• Describe the geographical location: The number of trees in length is 13, and in
width, it is 12. The perimeter of the zone is 0.37 km, which is equivalent to 374.26
m, the area of the zone is 8675.45 m².

27

Chapter 3. Methodology

(a) (b)

Figure 3.1: Piece of land chosen in various positions

Figure 3.1 is a captivating photo, taken from Google Earth, that showcases our forest
study area. To obtain the dataset, we employ the grid coordinate method and we adapted
this method to our work:

3.2.1 The grid coordinate method

Is a surveying technique used to establish coordinates for specific points on a piece of
land. It involves dividing the land into a grid-like pattern of squares or rectangles and
assigning coordinates to the corners of these squares to calculate the coordinates of the
grid squares[30], a reference point is established. By moving eastward or northward from
this reference point, the coordinates of each grid point can be determined based on the
chosen side length. To adapt this method to our specific situation, we developed the
following steps:

• Selecting a reference point: The first step is to choose a reference point or start point
within the study area. This point typically has coordinates (714187.08, 3838925.34).

• Establishing grid dimensions: Determine the size of the grid squares or rectangles
based on the desired accuracy and the characteristics of the terrain depending on
the application. in this situation, we determine the number of trees in length and
latitude to get a matrix of points

• Assigning coordinates: if the grid dimension is 10 meters, the second point may
have coordinates (714187.08, 3838935.34), the third point (714187.08, 3838935.34).

For applied this method we create the following algorithm:

28

Chapter 3. Methodology

Algorithm 1 Function Get− Address using grid method
Input: x0,y0,m,n
Output: X,Y
function Get− Address (x0,y0,m,n) : table

x← [x0]
y← [y0]
for <i from 1 to m > do

a ← y[i-1]+10.0
b ← x[1]
y ← y+[a]
x ← x+[b]

for <i from 1 to n-1 > do
a ← X[j]+10.0
b ← Y[1]
x ← X+[a]
y ← Y+[b]

end
end
df ← Empty DataFrame
df[x] ← x
df[y] ← y

return X,Y
end

We obtained 157 sets of coordinates as the output, which were saved in a CSV file.
The figure below illustrates little bit of the output

29

Chapter 3. Methodology

Figure 3.2: example of Output the grid method

3.3 Algorithms for solving VRP

3.3.1 Nearest Neighbour (NN)

NN works by finding the k most similar instances (neighbors) to a new instance and then
predicting the label of the new instance based on the labels of the k neighbors. The value
of k is a hyperparameter that must be chosen by the user.

To find the k most similar instances, KNN calculates the distance between the new
instance and all of the instances in the training dataset. The distance can be calculated
using any distance metric, such as the Euclidean distance, the Manhattan distance, or
the Chebyshev distance.

Once the distances have been calculated, the k instances with the smallest distances
are considered to be the k nearest neighbors. The label of the new instance is then
predicted by a majority vote. For classification tasks, the label of the new instance is the
most common label among the k nearest neighbors. For regression tasks, the label of the
new instance is the average of the values of the k nearest neighbors.

Original code

We obtained the original code from GitHub [38], which was written by an author identified
as “Vivek Kulkarni“ [36]. The original code focuses on implementing the K Nearest

30

Chapter 3. Methodology

Neighbors (KNN) algorithm for classification in Python using the scikit− learnlibrary.
It begins by importing necessary libraries such as pandas, seaborn, matplotlib. pyplot,
and numpy. The code loads a dataset using pandas from a CSV file named ”Classified
Data” and performs some preprocessing steps. It standardizes the variables using the
StandardScaler from the scikit− learn library to ensure that variables on different scales
do not affect the KNN classifier disproportionately. Then, it splits the data into training
and testing sets using the train− test− splitfunction.

Next, the code trains a KNN classifier with k = 1 (n − neighbors = 1) using the
KNeighbors − Classifierfrom scikit − learn. It fits the classifier to the training data
and predicts the testing data. The code also calculates and prints the confusion matrix
and classification report, which provide insights into the performance of the KNN model.

Furthermore, the code applies the elbow method to determine a suitable value of k.
It iterates over a range of k values and calculates the error rate for each value. The error
rates are then plotted against the k values to visualize the elbow point, which indicates
the optimal k value where the error rate stabilizes. The code then retrains the KNN
model with k = 1 and k = 23, printing the confusion matrix and classification report for
both cases.

Modified code

1 The modified code introduces a different approach for solving a different problem. It
defines several functions to calculate the distance between two points, find the k nearest
neighbors of each location, and obtain routes for multiple vehicles. It also includes a local
search algorithm to improve the obtained solution. The main part of the code initializes
the number of vehicles, and the coordinates of locations, and obtains the nearest neighbors.
It then executes the algorithm to find a good solution using the nearest neighbors and local
search. The code calculates the total distance of the best solution, prints the distance,
and measures the runtime. Finally, it visualizes the solution by plotting the locations and
routes of the vehicles using matplotlib.

The modification involves a complete change in the problem being solved and the
approach used. The original code dealt with classification using the KNN algorithm on
a dataset, while the modified code focuses on solving a vehicle routing problem using a
different algorithmic approach.

As for the difference between functions and parameters, functions are blocks of reusable
code that perform a specific task when called, while parameters are variables that are used
to pass information to functions. In the original code, functions such as fit, transform,
predict, and various functions from scikit − learn libraries are used. Parameters are
passed to these functions to specify their behavior, such as the number of neighbors (k)

1The modified code is in QR code

31

https://github.com/Zeineb0208/Knn/tree/94408c855b4982e65b3d00698f7aa77e142093a5?fbclid=IwAR1xLRvFyWkBEdtGAwCQXwExcIkqAeB3zR9Ghxxj0so53Pe0qxfC9KFWz9Y

Chapter 3. Methodology

in theKNeighbors− Classifier.

The modification introduces custom functions, including get−distance, get−nearest−
neighbors, and get − routes. These functions take specific parameters, such as coordi-
nates of points, the number of nearest neighbors, and the list of locations, to perform
computations and return results.

It should be noted that the time complexity of both the original and modified code
is O(k ∗ n2), where k is the number of vehicles and n is the number of locations. This is
because both algorithms involve iterating over all locations for each vehicle, which results
in quadratic time complexity.

32

Chapter 3. Methodology

Algorithm 2 Function get− good− solution(locations, k, nearest− neighbors)
Input: locations , k , nearest− neighbors

Output: list of routes for each vehicle
function get− good− solution (locations, k,nearest− neighbors) : list

routes ← an empty list
unvisited locations ← set of locations excluding the depot (location 0)
location− per − vehicle ← integer division of total locations by k

remaining − locations ← total locations excluding the depot
for <i from 0 to k-1 > do

while (unvisited− locations and remaining − capacity0) do
distances ← [(get − distance(location[0], location[1], route[-
1][0], route[-1][1]), location)
nearest − location ← location with minimum distance to the last
location in the route
for location in unvisited− locations do

nearest − location ← location with minimum distance to the last
location in the route

route.append(nearest− location)

unvisited− locations.remove(nearest− location)

remaining − capacity ← remaining − capacity − 1

end
end

route.append(depot location)

routes.append(route)

remaining − locations← remaining − locations− locations− per − vehicle

end
if there are remaining locations then

for i from 0 to remaining − locations− 1 do
location← unvisited− locations.pop()

routes[i%k].insert(-1, location)
end

end

return routes
end

Overall, the original code focused on classification using the KNN algorithm, while
the modified code tackles a vehicle routing problem using a different algorithmic approach
which is a combination of NN and local search.

33

Chapter 3. Methodology

3.3.2 Ant Colony Optimization (ACO)

The ACO algorithm works by simulating the behavior of ants. A population of ants is
created, and each ant starts at the depot. The ants then randomly visit locations, and the
cost of traveling between locations is calculated using the distance between the locations.
After visiting a location, an ant deposits pheromones on the path it took. The more
ants that travel along a path, the stronger the pheromone trail becomes. This encourages
other ants to follow the same path.

The ACO algorithm repeats this process for a number of iterations. After each itera-
tion, the pheromone trails are updated. The stronger the pheromone trail, the more likely
an ant is to travel along that path.The algorithm terminates when a termination criterion
is met, such as a maximum number of iterations or a certain level of improvement in the
solution

Original code

We obtained the original code from GitHub [39], which was written by an author identified
as “Kirill Temlyakov“ [37], and focuses on implementing the Ant Colony Optimization
(ACO) algorithm for solving a specific problem. It defines the “AntColony class”, which
initializes various parameters and data structures, including the distances matrix and the
pheromone matrix.

The algorithm runs for a specified number of iterations and performs key operations
such as generating all possible paths, depositing pheromones on the best paths, and
updating the best solution found so far. It uses techniques like path generation, pheromone
spreading, and path selection based on pheromone levels and distances. The code also
tracks and prints the shortest path found during each iteration and maintains an overall
best path. However, it lacks certain features, such as runtime calculation and result
visualization.

Modified code

In the modified code, several changes and additions are made to solve a different prob-
lem using the ACO algorithm. The code starts by importing necessary libraries such as
numpy, random,time, and matplotlib.pyplot. It defines a new class called ACO, which
encapsulates the ACO algorithm’s implementation. The ACO class includes various pa-
rameters such as the number of ants, number of iterations, evaporation rate, and weights
for pheromone and distance calculations. It also introduces a calculatedistance() method
using numpy′slinalg.norm() function to compute the distance between two points.

To solve the Vehicle Routing Problem (VRP), the code further extends the ACO
class by adding a solve() method. This method takes inputs such as locations, demand,

34

https://github.com/Zeineb0208/ACO-VRP/tree/905183467c9fa09b7ac6d46070b4171326100777?fbclid=IwAR18Sgwk79Vh_a9GN45h8AHcpbZ2XQrAtbiuc8NpXX-iFlLjqUnXxWdk85k

Chapter 3. Methodology

capacity, and the number of vehicles. It initializes a distance matrix by calculating the
distances between each pair of locations. It then initializes variables for tracking the best
solution and its corresponding distance. The code proceeds to solve the VRP by applying
the ACO algorithm, and modifying the original code to fit the VRP context. The modified
code iteratively generates solutions, spreads pheromones, and updates the best solution
based on the distances and pheromone levels. It utilizes techniques like path generation,
pheromone spreading, and path selection using probabilities based on pheromone levels
and distances.

Additionally, the modified code introduces new functionalities to enhance the overall
analysis. It calculates the runtime of the ACO algorithm by measuring the execution
time between start and end timestamps using the time module. Furthermore, the code
includes result visualization using matplotlib.pyplot, allowing the plotted visualization
of the obtained routes on a 2D coordinate system. This provides a clear representation
of the VRP solution and allows for the visual inspection of the routes and their spatial
distribution.

It should be noted that both the original and modified code have a time complexity
of O(k ∗ n2), where n is the number of locations, depending on the problem being solved.
This is because both algorithms involve iterating through all locations.

35

Chapter 3. Methodology

Algorithm 3 Function Solve(locations, demand, capacity, num− vehicles)
Input: locations, demand, capacity, num− vehicles

Output: bestsolution, bestdistance
function Solve (locations, demand, capacity, num− vehicles): list

num_cities← number of cities

distance−matrix← a matrix of size num− citiesnum− cities filled with zeros
for location in unvisited− locations do

for location in unvisited− locations do
distance−matrix[i][j]← calculate− distance(locations[i], locations[j])

end

best− distance← infinity

best− solution← an empty list

best− solution← a list of num− vehicles empty lists

visited− locations← a list of num− vehicles empty lists
for i from 0 to num− cities− 2 do

assigned← false
while assigned is false do

vehicle← choose a vehicle randomly between 0 and num− vehicles− 1

if i is not in visited− locations[vehicle] then
best− solution[vehicle].append(i)

visited− locations[vehicle].append(i)

assigned← true
end

end
end
for vehicle from 0 to num− vehicles− 1 do

best− solution[vehicle]← [0] + best− solution[vehicle] + [0]

end
end

best− distance← sum of all elements in distance−matrix

return best− solution and best− distance
end

In summary, the original code implements the ACO algorithm for a specific problem,
while the modified code adapts it to solve the VRP. The modifications introduce addi-
tional functionalities, such as runtime calculation and result visualization, to enhance the
analysis and understanding of the VRP solution.

36

Chapter 3. Methodology

3.3.3 Proposed Algorithm Based on Clarke-Wright (PABCW)

Proposed Algorithm code

The proposed algorithm to solve VRP is based on the Clarke-Wright Algorithm. It is an
algorithm that iteratively constructs routes by adding nodes to existing routes in a way
that minimizes the total distance traveled. The algorithm works as follows:
1. Start with a single route that includes the depot.

2. For each node that is not yet assigned to a route:

- Calculate the distance from the node to each existing route.

- Assign the node to the route with the shortest distance.

3. Repeat steps 2 and 3 until all nodes are assigned to a route.

The algorithm has a complexity of O(nlogn + n), where n is the number of nodes in
the VRP problem.

It begins by importing necessary libraries such as math, random, time, and matplotlib−
pyplot. These libraries provide functions for mathematical calculations, random number
generation, timing, and plotting, respectively.

Next, the code defines a Node class to represent a node in the VRP. Each node is
defined by its x and y coordinates, as well as its demand (the number of goods to be
delivered or collected at that node).

The calculate−distance function calculates the Euclidean distance between two nodes
based on their coordinates. This distance calculation is used to determine the distance
traveled between nodes in the VRP. The get−anglefunction calculates the angle between
a given node and the depot (the starting and ending point of the routes). This angle is
used to sort the nodes in a clockwise manner around the depot.

The get − sortednodes function takes a list of nodes and the depot as input and
returns the nodes sorted in a clockwise order around the depot. This sorting is based on
the calculated angles using the get− anglefunction.

The create− route function takes a list of nodes, the depot, and the vehicle capacity
as input and creates a route by adding nodes to the route until the vehicle capacity is
reached. The remaining capacity is updated accordingly, and the depot is added as the
last node in the route.

The main function solve − vrp takes a list of nodes, the depot index, the vehicle
capacity, and the number of vehicles as input. It first removes the depot from the list of

37

https://github.com/Zeineb0208/Proposed-algorithm-solvin-B/tree/6cbeb170eaf287f83c4f7d1c7126c4d84de13390

Chapter 3. Methodology

nodes. Then, it sorts the remaining nodes based on their angles around the depot using
the get− sorted− nodes function.

Next, it initializes an empty list called routes to store separate routes for each vehicle.
It iterates through the sorted nodes and assigns them to vehicles in a round-robin fashion
based on their capacity constraints. If a node can be added to a vehicle’s route without
exceeding the vehicle’s capacity, it is added to that route.

After assigning the nodes to the vehicles, the depot is added as the first and last node
in each route using the insert function. Finally, the function returns the routes.

The calculate − total − distance function calculates the total distance traveled in a
given route by summing up the distances between consecutive nodes using the calculate−
distance function.

The code then defines the locations and demand for the VRP instance. The locations
are represented as x and y coordinates, and the demand represents the number of goods
to be delivered or collected at each location. Next, the code initializes variables for the
vehicle capacity, depot index, and number of vehicles. It creates a list of Node objects
based on the provided locations and demand.

The code measures the runtime of the algorithm by recording the start time using
time.time(), running the solve− vrp function, and then calculating the elapsed time. A
delay of 1 second is introduced using time.sleep() to simulate a longer runtime. After
that, the code extracts the coordinates of the routes for plotting purposes. It creates a
separate list for each vehicle’s route and appends the (x, y) coordinates of each node in
the corresponding route.

Finally, the code plots the routes using matplotlib.pyplot, labels each route with the
corresponding vehicle number and displays the runtime on the plot. The plotted routes
are shown in a 2D coordinate system, with the x− coordinaterepresenting the horizontal
position and the y − coordinaterepresenting the vertical position. Additionally, the code
prints the routes and calculates the total distance traveled for each route. It keeps track
of the best route with the lowest total distance. The code also performs additional calcu-
lations such as the average distance per vehicle, maximum distance per vehicle, average
locations per vehicle, standard deviation of locations per vehicle, and standard deviation
of the solution (stability).

The code displays the runtime and additional statistics, including the average distance
per vehicle, maximum distance per vehicle, average locations per vehicle, the standard
deviation of locations per vehicle, the standard deviation of the solution, and the best
distance achieved.

38

Chapter 3. Methodology

Algorithm 4 Function solve − vrp(nodes, depot − index , vehicle − capacity , num −
vehicles)
Input: nodes, depot− index,vehicle− capacity, num− vehicles)
Output: routes
function solve− vrp(nodes, depot− index,vehicle− capacity, num− vehicles) : list

depot← node at depot− index

Remove depot from the nodes list

nodes← nodes sorted by distance from depot

routes← a list of empty lists for each vehicle
for i from 0 to len(nodes)− 1 do

route− index← i%num-vehicles

current− route← route for the current vehicle

current− capacity ← sum of demand of nodes in the current route
if current-capacity + node.demand ≤ vehicle-capacity then

current_route.append(node)
end

end
for each route in routes do

route.insert(0, depot)

route.append(depot)

return routes
end

end

Once the data has been collected, the dataset created, and the methods adapted to
address our specific VRP problem, the subsequent chapter will commence the comparative
analysis.

3.4 Conclusion

In conclusion, we adapted the K-nearest neighbors (KNN) and Ant Colony Optimization
(ACO) methods to solve the Vehicle Routing Problem (VRP). We also proposed a new
algorithm for solving the VRP. The experimental results will be discussed in the next
chapter.

39

Chapter 4

Experimental Setting

40

Chapter 4. Experimental Setting

In addition to the benchmark datasets provided by [9], this chapter extends the eval-
uation by incorporating a real-world case dataset. By including a real-world case, the
study aims to provide a more realistic assessment of the Ant Colony Algorithm (ACO),
Nearest Neighbors (NN) algorithm, and a proposed algorithm (PABCW).

The comparison entails analyzing and comparing the solutions obtained by the bench-
mark dataset, NN algorithm, Ant Colony algorithm, and the proposed algorithm across
multiple instances. Various criteria, such as runtime and complexity, are employed to
assess the performance of these algorithms thoroughly.

The overarching objective of this chapter is to offer valuable insights into the effective-
ness and applicability of different algorithms in addressing the Capacitated Vehicle Rout-
ing Problem (CVRP). To achieve this, the analysis leverages both benchmark datasets
and a real-world case dataset, providing a robust foundation for conducting a compre-
hensive comparison. By considering real-world scenarios, the study aims to enhance the
practical relevance of the findings and facilitate informed decision-making in real-world
routing problems.

4.1 Comparative study

To test the effectiveness of our approach based on ACO, NN, and the PABCW, we compare
our results where to apply the dataset of benchmark in this algorithm with the optimal
solutions of benchmark by augerat[9], then according to our dataset.

4.1.1 CVRP Benchmark Instances

The benchmark consists of problem instances designed to represent different CVRP sce-
narios. These instances vary regarding the number of customers, vehicle capacities, and
distances between locations, providing diverse problem instances for evaluating CVRP
algorithms. The CVRP. benchmark typically includes the following components:

• Problem Instance Format: Problem instances are represented using text files or sets
of files containing essential information such as the number of customers(n), number
of vehicles (k), vehicle capacity, coordinates of the depot and customers, and the
specific demand associated with each customer.

• Customer Demand: Each customer within the benchmark has an individual de-
mand, indicating the quantity of goods or services to be delivered to that customer.
The demands can vary across different problem instances, reflecting diverse delivery
requirements.

41

Chapter 4. Experimental Setting

• Vehicle Capacity: The benchmark encompasses instances with varying vehicle ca-
pacities, enabling the evaluation of algorithms under different constraints related to
the maximum load each vehicle can carry.

• Solution Quality Measures: The benchmark may provide known optimal or best-
known solutions for the given problem instances. These solutions serve as bench-
marks to measure the quality of solutions produced by algorithms, facilitating per-
formance evaluation and comparison between different algorithmic approaches.

In the table below 4.1 we present the instances chosen of augerat benchmark dataset
(While n is nodes’ number, k is vehicles’ number, and Q is vehicles’ capacity).

Instance Q Tightness Opt
P-n20-k2 160 0.97 216
P-n21-k2 160 0.93 211
P-n22-k2 160 0.96 216
P-n101-k4 400 0.91 681

Table 4.1: Instances of the set P
[9]

4.1.2 First comparison(with benchmark)

In this section, we compare Augerat benchmark solutions with the outcomes of the NN
algorithm, ACO, and the PABCW. Through this comparison, we aim to evaluate the
performance and accuracy of the algorithms. The result of this comparison is shown in
the table 4.2 :

4.1.3 Second comparison (built dataset)

In this section, we will compare the performance of the previous methods on our dataset
based on two criteria: runtime and complexity. By evaluating these factors, we can better
understand how each method performs on our specific dataset and determine which best
suits our needs; the result is shown in table 4.3.

42

Chapter 4. Experimental Setting

Instance Best solution NN ACO PABCW
P-n20-k2 Route 1: 19 5 14

16 9 7 2 10 1
Route 1: 19 5 7
2 13 9 16 14 18

Route 1: 0 1 3 7
8 10 15

Route 1: 14 5 7
6 2 17 3 1

Route 2: 6 13 8
17 18 3 12 15 11
4

Route 2: 1 10 12
15 4 11 3 8 17

Route 2: 2 4 5 6
9 11 12 13 14 16
17 18

Route 2:19 16 9
13 8 18 10 12 15
4 11

p-n21-k2
Route 1: 20 5 14
17 9 13 2 7 6

Route 1: 6 20 5
7 2 13 9 17 14 19

Route 1: 4 5 6 7
11 12 17 18

Route 1:14 5 7 6
2 18 19 10 12

Route 2: 16 1 10
8 18 19 3 12 15
11 4

Route 2: 16 1 10
12 15 4 11 3 8 18

Route 2: 0 1 2 3
8 9 10 13 14 15
16 19

Route 2:20 17 9
13 8 16 3 1 15 4
11

P-n22-k2
Route 1: 6 2 13
9 7 21 17 14 5 20

Route 1: 6 20 5
21 7 2 13 9 17 14

Route 1: 0 2 3 5
6 7 9 13 14 15 17
19 20

Route 1: 14 5 21
9 13 8 16 3 1 15
4 11

Route 2: 16 1 10
8 18 19 3 12 15
11 4

Route 2: 16 1 10
12 15 4 11 3 8 18
19

Route 2: 1 4 8 10
11 12 16 18

Route 2: 20 17 6
2 18 19 10 12

P-n101-
k4

Route 1: 6 96 99
59 92 93 98 37
100 91 85 61 16
86 38 44 14 42 43
15 57 2 87 97 95
94

Route 1: 89 6 94
95 97 92 59 99 96
93 85 98 37 100
91 16 61 86 44 12
42 87 2 57 15

Route 1: 2 6 9 15
16 18 21 23 29 33
38 39 40 42 44 49
50 52 55 58 61 63
64 65 73 81 92 96
97

Route 1: 5 16 85
98 92 79 43 58 40
75 25 12 29 76 33
9 1 69 64 19 47
46 83

Route 2: 53 26
12 80 68 29 24 54
4 55 25 39 67 23
56 75 22 41 74 72
73 21 40 58 13

Route 2:13 21 73
72 74 22 75 56 39
23 67 25 54 4 24
29 32 63 64 7 56
38 43 41

Route 2: 12 13
20 22 24 27 28 30
37 43 51 53 54 59
60 72 78 79 80 83
85 86 87 89 90 91
94 95 98

Route 2: 84 6 96
91 38 95 57 22 74
23 21 39 55 80 77
78 50 65 20 32 31
11 52 36 8

Route 3: 28 76
77 3 79 78 34 35
71 65 66 20 32 90
63 64 49 36 47 46
8 45 17 84 5 60
83 18 89

Route 3: 27 28
76 50 1 69 52 18
83 60 5 84 17 45
8 82 48 47 36 49
19 11 62 10 90

Route 3: 1 5 8 10
11 17 19 25 32 35
36 41 46 47 66 67
68 69 74 77 84 88
99

Route 3: 60 61
99 59 94 100 13
15 41 73 72 67 26
24 28 79 81 71 66
70 10 62 49 48 18
89

Route 4: 27 69 1
50 33 81 9 51 30
70 10 62 11 19 48
82 7 88 31 52

Route 4: 53 58
40 26 12 80 68 77
3 7 9 78 34 81 33
51 9 71 35 65 66
20 30 70 31 88

Route 4: 0 3 4 7
14 26 31 34 45 48
56 57 62 70 71 75
76 82 93

Route 4: 17 86
93 44 37 14 87 2
53 56 4 54 3 34
35 51 30 27 63 88
7 82 45

Table 4.2: Comparison of Solutions Obtained by Different Algorithms for Various In-
stances

43

Chapter 4. Experimental Setting

Criteria Vehicles number NN ACO PABCW
Complexity ∀ O(k ∗ n2) O(k ∗ n2) O(nlogn+ n)

Runtime
(s)

4 0.0080 0.0868 1.002
10 0.0081 0.0987 1.013

Best
Distence

4 2417.5233 1611446.6124 1309.1702
10 4157.0434 1611446.6124 619.9003

Table 4.3: Comparison according to dataset

4.2 Results and discussion

The NN method works by finding the nearest neighbors of each customer and then creating
a route for each vehicle by visiting the nearest neighbors of each customer. The optimal
solution is the solution that minimizes the total distance traveled by all of the vehicles
while satisfying all of the constraints. It is a simple algorithm, but it is not very efficient.

ACO is a metaheuristic algorithm, meaning it is not guaranteed to find the optimal
solution. However, the ACO algorithm can often find good solutions to problems that
are difficult to solve using other methods. In the case of the VRP, the ACO algorithm
works by creating a population of ants. Each ant starts at the depot and randomly visits
locations. The cost of traveling between locations is calculated using the distance between
the locations. The ants then deposit pheromones on the paths they take. The more ants
travel along a path, the stronger the pheromone trail. This encourages other ants to follow
the same path. The ACO algorithm repeats this process for a number of iterations. After
each iteration, the pheromone trails are updated. The stronger the pheromone trail, the
more likely an ant will travel along that path.

A PABCW algorithm is a simple algorithm that makes the locally optimal choice at
each step, hoping to arrive at a globally optimal solution. In the case of the VRP, the
locally optimal choice is to assign the next location to the vehicle that will minimize the
total distance traveled.

4.2.1 Result of 1st comparison

The provided4.2 table presents the comparison results of three algorithms, where two have
been modified, while the other is a proposed algorithm. The analysis indicates that the
modified version of k-Nearest Neighbors (kNN) achieves a higher percentage of accuracy

44

Chapter 4. Experimental Setting

compared to the other algorithms in all cases where the number of vehicles is fixed at
2 and the number of coordinates is increasing (n20 − k2), (n21 − k2), and (n22 − k2).
Furthermore, the modified kNN algorithm also outperforms the other algorithms in a case
where the number of vehicles exceeds four and the number of coordinates is more than 100
(n101− k4). These conclusions are derived from the comparison against the benchmark
instance, demonstrating that the modified kNN algorithm is closer to the optimal solution
with an estimated percentage of 80.75%.

On the other hand, the proposed algorithm based on clark and wright, although ranked
second, demonstrates an overall accuracy of 76%. It performs well in the instances n20−k2
and n21−k2 with percentages of 63% and 90%, respectively. However, in certain instances
of the proposed algorithm, the results were not as favorable compared to the Ant Colony
Optimization (ACO) algorithm, which approximated the optimal solution by 54.5%. For
example, in the cases of n22−k2 and n101−k4, the PABCW achieved percentages of 50%
and 25%, respectively, while ACO achieved percentages of 77% and 37%, respectively.

Considering these results, it can be concluded that the PABCW provides a good solu-
tion. However, the modified k-Nearest Neighbors algorithm (NN) achieves more accurate
results closer to the optimal solution in our specific case.

4.2.2 Result of 2nd comparison

NN

As you can see in the table 4.3, The complexity is O(k ∗ n2) where k represents the
number of vehicles and n is the number of nodes, the runtime is very fast, taking only
0.0080 seconds for 4 vehicles and 0.0081 seconds for 10 vehicles. This is because the NN
algorithm is able to learn the optimal routes from a training set of data. The algorithm
uses a neural network to learn the relationships between the locations and the distances
between them. The best distance found by the NN algorithm is also very good. For 4
vehicles, the best distance is 2417.5233, and for 10 vehicles, the best distance is 4157.0434.
The reason for this improvement is that the NN algorithm is able to learn the optimal
routes from a training set of data. The algorithm uses a neural network to learn the
relationships between the locations and the distances between them. This allows the al-
gorithm to find better solutions than a greedy algorithm, which only considers the locally
optimal choice at each step.

45

Chapter 4. Experimental Setting

Figure 4.1: Output of NN using 4 vehicles

Figure 4.2: Output of NN using 10 vehicles

ACO

As you can see, its complexity is O(k ∗ n2) where n is the number of nodes. The runtime
increases slightly from 0.0868 seconds to 0.0987 seconds when the number of vehicles in-
creases from 4 to 10. This is because the algorithm has to visit more customers when
there are more vehicles. However, the best distance does not change significantly. This
is because the ACO algorithm is able to find good solutions to the VRP, even for large
problems. Still, it cannot find significantly better solutions as vehicles increase.
The reason for this is that the ACO algorithm is probabilistic. This means that it does
not guarantee to find the optimal solution. Instead, it finds a solution that is likely to
be good. The probability of finding a good solution depends on a number of factors, in-
cluding the number of iterations, the number of ants, and the pheromone evaporation rate.

46

Chapter 4. Experimental Setting

Figure 4.3: Output of ACO using 4 vehicles

Figure 4.4: Output of ACO using 10 vehicles

PABCW

As we can see, its complexity is O(nlogn + n) where n is a number of nodes, and the
runtime increases slightly from 1.002 seconds to 1.013 seconds when the number of vehicles
increases from 4 to 10. This is because the algorithm has to visit more customers when
there are more vehicles. However, the best distance decreases significantly from 1309.1702
to 619.9003. This is because the algorithm is able to find better solutions even for large
problems when the number of vehicles is increased.
The reason for this improvement is that the algorithm is able to divide the problem into
smaller subproblems when there are more vehicles. This allows the algorithm to find
better solutions for each subproblem, which in turn leads to a better solution for the
overall problem.

47

Chapter 4. Experimental Setting

Figure 4.5: Output of PABCW using 4 vehicles

Figure 4.6: Output of PABCW using 10 vehicles

4.2.3 Discussion

Based on previous results of the 1st the 2nd comparison, the best method for solving VRP
depends on a number of factors, including the size of the problem, the accuracy of the
solution required, and the time available to solve the problem.

1. The NN algorithm has the fastest runtime, taking only 0.0080 seconds for 4 vehicles
and 0.0081 seconds for 10 vehicles. It also produces significantly better distances than
the greedy and ACO algorithms. Therefore, regarding runtime and solution quality, the
NN algorithm seems to be the best choice for solving the VRP. Additionally, the NN
algorithm has a solution quality of 80.75%, which is considered good quality. This means
that the NN algorithm is able to find solutions that are within 80.75% of the optimal
solution.
The NN algorithm is a good choice for solving VRP problems when the following condi-

48

Chapter 4. Experimental Setting

tions are met:

• The problem is not too large.

• The optimal solution is not required.

• A fast solution is required.

The NN algorithm is not a good choice for solving VRP problems when the following
conditions are met:

• The problem is large.

• The optimal solution is required.

• A slow solution is acceptable

Overall, the results show that the NN algorithm is able to find good solutions to the
VRP even for large problems. The algorithm can also scale to larger problems as vehicles
increase. The NN algorithm is a good choice for solving the VRP when the accuracy of
the solution is essential. The algorithm is able to find good solutions to large problems,
and it is very fast.
2. The ACO algorithm’s runtime increases slightly as the number of vehicles increases,

but the best distance does not change significantly. While the ACO algorithm can find
good solutions for the VRP, it doesn’t appear to find significantly better solutions as the
number of vehicles increases. Therefore, the ACO algorithm can be considered if runtime
is not a major concern and finding good solutions is sufficient. Additionally, the ACO
algorithm has a solution quality of 54.5%, considered an average quality. This means that
the ACO algorithm is able to find solutions that are within 54.5% of the optimal solution.

The ACO algorithm is a good choice for solving the VRP:

• When the problem is large and complex.

• When the problem is difficult to solve using other methods.

• When a good solution is required quickly.

The ACO algorithm is a bad choice for solving the VRP:

• When the problem is small and simple.

• When the problem can be solved using other methods quickly and easily.

• When an optimal solution is required.

49

Chapter 4. Experimental Setting

Overall, the results show that the ACO algorithm is able to find good solutions to the
VRP even for large problems. The algorithm can also scale to larger problems as vehicles
increase. However, the algorithm cannot find significantly better solutions as vehicles
increase.

3. The PABCW runtime increases slightly with more vehicles but significantly im-
proves the best distance. This algorithm is able to find better solutions for larger prob-
lems when the number of vehicles is increased. However, the best distance achieved by
the greedy algorithm is still not as good as the NN algorithm. So, if solution quality is a
priority, the NN algorithm is still the better choice. Additionally, the PABCW algorithm
has a solution quality of 76%, which is considered good quality. This means that the
PABCW algorithm is able to find solutions that are within 76% of the optimal solution.
The PABCW is a good choice for solving the VRP when the following conditions are met:

• The problem is small.

• The problem is not time-critical.

• The accuracy of the solution is not critical.

The PABCW is a bad choice for solving the VRP when the following conditions are
met:

• The problem is large.

• The problem is time-critical.

• The accuracy of the solution is critical.

Overall, the results show that the PABCW is able to find good solutions to the VRP,
even for large problems. The algorithm can also scale to larger problems as vehicles
increase.

In conclusion, based on the given results, the NN algorithm appears to be the best
method for solving the VRP due to its fast runtime and significantly better solution
quality compared to the other two algorithms.

4.3 Conclusion

In conclusion, the comparative study between the Nearest Neighbor (NN), Ant Colony
Optimization (ACO), and the proposed Algorithm (PABCW) for solving the Vehicle Rout-
ing Problem (VRP) reveals that the modified version of the k-Nearest Neighbors (kNN)
algorithm achieves the highest accuracy percentage. Further evaluation and validation are
required to confirm its effectiveness and robustness in real-world applications, considering
cost savings and improved operational efficiency.

50

Conclusion and perspectives

51

Conclusion and perspectives

General Conclusion

In this thesis, we introduce a review of VRP. Then, the characteristic of heuristic and
metaheuristic methods to solving this problem, we chose one of the algorithms in each
method, and we proposed an algorithm too It looks to be a straightforward application of
a constructive heuristic strategy. The nodes are subsequently assigned to different routes
based on their demands and vehicle capacity after being sorted according to their angle
with regard to the depot. We compare these three algorithms, The primary objective of
this study is to offer valuable insights into the performance and suitability of different
algorithms in addressing the Capacitated Vehicle Routing Problem (CVRP). This anal-
ysis is carried out by leveraging benchmark datasets as a foundation for conducting a
comprehensive comparison.

These results allow us to conclude that, while the Nearest Neighbor algorithm may be
appropriate for smaller VRP instances, the proposed Algorithm offers a viable option for
bigger issue sizes. Given that it can obtain considerably higher best distances, it may be
able to deliver more efficient routes, which could result in financial savings and increased
operational effectiveness in real- world VRP applications. To establish the efficacy and
robustness of the suggested strategy, additional testing and validation on a variety of
datasets and problem scenarios would be beneficial.
In conclusion, the best method for solving VRP depends on a number of factors, including
the size of the problem, the accuracy of the solution required, and the time available to
solve the problem.

perspectives

Considering temperature and wind as criteria in solving CVRP is crucial for achieving
optimal vehicle performance. Integrating weather data and real-time updates into the
algorithms can enable dynamic routing adjustments based on temperature variations and
wind conditions. By doing so, the algorithms can adapt and generate routes that minimize
the impact of adverse weather conditions, resulting in improved vehicle performance and
more efficient delivery operations.

Accounting for criteria such as temperature and wind in algorithms for solving CVRP
is essential for optimizing vehicle performance. By considering these factors and incor-
porating them into route planning and optimization, the algorithms can reduce fuel con-
sumption, enhance efficiency, and ensure successful and timely deliveries even in varying
weather conditions.

One perspective is to explore advanced optimization techniques and metaheuristic al-
gorithms to enhance the algorithm’s performance and address the issue of finding the

52

Conclusion and perspectives

optimal solution. Another perspective is investigating the impact of different parameter
settings on the algorithm’s performance. Additionally, advancements in computing power
and algorithms can help alleviate the computational burden of the algorithm for large-
scale problems. Furthermore, incorporating real-time data and dynamic elements into the
algorithm can make it more adaptable and responsive to changing conditions. In conclu-
sion, the proposed algorithm offers opportunities for future research and improvement.

53

Bibliographie

[1] Mohamed Abdel-Basset, Laila Abdel-Fatah, and Arun Kumar Sangaiah. “Meta-
heuristic algorithms: A comprehensive review.” In: Computational intelligence for
multimedia big data on the cloud with engineering applications (2018), pp. 185–231.

[2] Anita Agárdi, László Kovács, and Tamás Bányai. “Mathematical Model for the
Generalized VRP Model.” In: Sustainability 14.18 (2022), p. 11639.

[3] Prachi Agrawal et al. “Metaheuristic algorithms on feature selection: A survey of
one decade of research (2009-2019).” In: Ieee Access 9 (2021), pp. 26766–26791.

[4] Munwar Ali et al. “Semantic-k-NN algorithm: An enhanced version of traditional
k-NN algorithm.” In: Expert Systems with Applications 151 (2020), p. 113374.

[5] Saman M Almufti and Awaz A Shaban. “U-turning ant colony algorithm for solving
symmetric traveling salesman problem.” In: Academic Journal of Nawroz University
7.4 (2018), pp. 45–49.

[8] Anne Auger. “Convergence results for the (1, λ)-SA-ES using the theory of φ-
irreducible Markov chains.” In: Theoretical Computer Science 334.1-3 (2005), pp. 35–
69.

[9] Philippe Augerat et al. “Computational results with a branch and cut code for the
capacitated vehicle routing problem.” In: (1995).

[10] Emanuele Baldacci et al. “Social spending, human capital, and growth in developing
countries.” In: World development 36.8 (2008), pp. 1317–1341.

[11] Sunith Bandaru and Kalyanmoy Deb. “Metaheuristic techniques.” In: Decision sci-
ences (2016), pp. 693–750.

[12] John J Bartholdi III and Loren K Platzman. “Heuristics based on spacefilling
curves for combinatorial problems in Euclidean space.” In: Management Science
34.3 (1988), pp. 291–305.

[13] Tolga Bektas. “The multiple traveling salesman problem: an overview of formula-
tions and solution procedures.” In: omega 34.3 (2006), pp. 209–219.

[14] Anupam Biswas et al. “Physics-inspired optimization algorithms: a survey.” In: Jour-
nal of Optimization 2013 (2013).

54

Bibliographie

[15] Christian Blum and Andrea Roli. “Hybrid metaheuristics: an introduction.” In: Hy-
brid metaheuristics: an emerging approach to optimization (2008), pp. 1–30.

[16] Fatima-Ezzahra Boughazroun. SOLVING VEHICLE ROUTING PROBLEM US-
ING OPTIMIZATION TOOLS. 2022.

[17] Der-San Chen, Robert G Batson, and Yu Dang. Applied integer programming: mod-
eling and solution. John Wiley & Sons, 2011.

[18] Nicos Christofides. “The vehicle routing problem.” In: Revue française d’automa-
tique, informatique, recherche opérationnelle. Recherche opérationnelle 10.V1 (1976),
pp. 55–70.

[19] Jean-Francois Cordeau et al. “A guide to vehicle routing heuristics.” In: Journal of
the Operational Research society 53.5 (2002), pp. 512–522.

[20] Farzaneh Daneshzand. “The vehicle-routing problem.” In: Logistics Operations and
Management 8 (2011), pp. 127–153.

[21] Nathalie De Jaegere, Mieke Defraeye, and Inneke Van Nieuwenhuyse. “The vehicle
routing problem: state of the art classification and review.” In: FEB Research Report
KBI_1415 (2014).

[22] J Doyne Farmer, Norman H Packard, and Alan S Perelson. “The immune system,
adaptation, and machine learning.” In: Physica D: Nonlinear Phenomena 22.1-3
(1986), pp. 187–204.

[23] Ricardo Fukasawa et al. “Robust branch-and-cut-and-price for the capacitated ve-
hicle routing problem.” In: Mathematical programming 106 (2006), pp. 491–511.

[24] Mihai Gavrilas. “Heuristic and metaheuristic optimization techniques with applica-
tion to power systems.” In: Proceedings of the 12th WSEAS international conference
on Mathematical methods and computational techniques in electrical engineering.
2010, p. 9.

[25] Zong Woo Geem, Joong Hoon Kim, and Gobichettipalayam Vasudevan Loganathan.
“A new heuristic optimization algorithm: harmony search.” In: simulation 76.2
(2001), pp. 60–68.

[26] Michel Gendreau, Gilbert Laporte, and Frédéric Semet. “A dynamic model and
parallel tabu search heuristic for real-time ambulance relocation.” In: Parallel com-
puting 27.12 (2001), pp. 1641–1653.

[27] Fred Glover. “Future paths for integer programming and links to artificial intelli-
gence.” In: Computers & operations research 13.5 (1986), pp. 533–549.

[28] David E Golberg. “Genetic algorithms in search, optimization, and machine learn-
ing.” In: Addion wesley 1989.102 (1989), p. 36.

55

Bibliographie

[31] Çağlar Utku Güler and Murat Ermiş. “OR/MS studies on post-disaster stage re-
lief item logistics: Complementary review.” In: Journal of Aeronautics and Space
Technologies 10.1 (2017), pp. 1–20.

[32] Rosa Herrero et al. “Solving vehicle routing problems with asymmetric costs and
heterogeneous fleets.” In: International Journal of Advanced Operations Manage-
ment 6.1 (2014), pp. 58–80.

[35] Maaike Hoogeboom et al. “Erratum—Exact Algorithms for the Clustered Vehicle
Routing Problem.” In: Operations Research 64.2 (2016), pp. 456–457.

[41] Byung-In Kim, Seongbae Kim, and Surya Sahoo. “Waste collection vehicle routing
problem with time windows.” In: Computers & Operations Research 33.12 (2006),
pp. 3624–3642.

[42] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. “Optimization by sim-
ulated annealing.” In: science 220.4598 (1983), pp. 671–680.

[43] Lamiaa Korayem, M Khorsid, and SS Kassem. “Using grey wolf algorithm to solve
the capacitated vehicle routing problem.” In: IOP conference series: materials sci-
ence and engineering. Vol. 83. 1. IOP Publishing. 2015, p. 012014.

[44] Vijendra Kumar and SM Yadav. “A state-of-the-Art review of heuristic and meta-
heuristic optimization techniques for the management of water resources.” In: Water
Supply 22.4 (2022), pp. 3702–3728.

[45] Gilbert Laporte, Martin Desrochers, and Yves Nobert. “Two exact algorithms for the
distance-constrained vehicle routing problem.” In: Networks 14.1 (1984), pp. 161–
172.

[46] Gilbert Laporte, Paolo Toth, and Daniele Vigo. “Vehicle routing: historical perspec-
tive and recent contributions.” In: EURO Journal on Transportation and Logistics
2 (2013), pp. 1–4.

[47] Pedro Larranaga et al. “Genetic algorithms for the travelling salesman problem: A
review of representations and operators.” In: Artificial intelligence review 13 (1999),
pp. 129–170.

[48] Sergio Nesmachnow. “An overview of metaheuristics: accurate and efficient methods
for optimisation.” In: International Journal of Metaheuristics 3.4 (2014), pp. 320–
347.

[49] José Fernando Oliveira et al. “A survey on heuristics for the two-dimensional rect-
angular strip packing problem.” In: Pesquisa Operacional 36 (2016), pp. 197–226.

[50] Kevin M Passino. “Biomimicry of bacterial foraging for distributed optimization
and control.” In: IEEE control systems magazine 22.3 (2002), pp. 52–67.

[51] David Pisinger and Stefan Ropke. “A general heuristic for vehicle routing problems.”
In: Computers & operations research 34.8 (2007), pp. 2403–2435.

56

Bibliographie

[52] Jacques Renaud and Fayez F Boctor. “A sweep-based algorithm for the fleet size
and mix vehicle routing problem.” In: European Journal of Operational Research
140.3 (2002), pp. 618–628.

[54] Sinan Q Salih and AbdulRahman A Alsewari. “A new algorithm for normal and
large-scale optimization problems: Nomadic People Optimizer.” In: Neural Comput-
ing and Applications 32 (2020), pp. 10359–10386.

[55] Edward Allen Silver. “An overview of heuristic solution methods.” In: Journal of
the operational research society 55 (2004), pp. 936–956.

[56] Rainer Storn and Kenneth Price. “Differential evolution-a simple and efficient heuris-
tic for global optimization over continuous spaces.” In: Journal of global optimization
11.4 (1997), p. 341.

[58] TO Ting et al. “Hybrid metaheuristic algorithms: past, present, and future.” In:
Recent advances in swarm intelligence and evolutionary computation (2015), pp. 71–
83.

[59] Paolo Toth and Daniele Vigo. “An overview of vehicle routing problems.” In: The
vehicle routing problem (2002), pp. 1–26.

[60] Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications.
SIAM, 2014.

[61] Jelmer Van Ast, Robert Babuska, and Bart De Schutter. “Fuzzy ant colony opti-
mization for optimal control.” In: 2009 American Control Conference. IEEE. 2009,
pp. 1003–1008.

[64] Shaolin Wang, Yi Mei, and Mengjie Zhang. “A multi-objective genetic programming
hyper-heuristic approach to uncertain capacitated arc routing problems.” In: 2020
IEEE Congress on Evolutionary Computation (CEC). IEEE. 2020, pp. 1–8.

[65] Xingyin Wang, Stefan Poikonen, and Bruce Golden. “The vehicle routing problem
with drones: several worst-case results.” In: Optimization Letters 11 (2017), pp. 679–
697.

[67] RED Woolsey and HS Swanson. “MOST PEOPLE WOULD RATHER LIVE WITH
A PROBLEM THEY CAN’T SOLVE, THAN ACCEPT A SOLUTION THEY
CAN’T UNDERSTAND.” In: ().

[68] Xin-She Yang and Suash Deb. “Cuckoo search via Lévy flights.” In: 2009 World
congress on nature & biologically inspired computing (NaBIC). Ieee. 2009, pp. 210–
214.

57

Webographie

[6] Opex Analytics. Vehicle Routing Problems 101. http:https://medium.com/opex-
analytics / opex - 101 - vehicle - routing - problems - 262a173f4214. Accessed:
2023-06-02. (Visited on 05/08/2019).

[7] Brigham Anderson. Simulated Annealing. http:https://www.cs.cmu.edu/afs/
cs.cmu.edu/project/learn-43/lib/photoz/.g/web/glossary/anneal.html.
Accessed: 2023-05-16.

[29] google earth pro. http:https://www.androidpolice.com/google-earth-pro-
explainer/. Accessed: 2023-05-16. (Visited on 02/22/2023).

[30] Grid Survey - Calflora. http:https://www.calflora.org/entry/help/gridsurvey.
html. Accessed: 2023-05-29.

[33] Heuristic Method. http : https : / / www . javatpoint . com / heuristic - method.
Accessed: 2023-05-02.

[34] Heuristics vs. Meta-Heuristics vs. Probabilistic Algorithms. http:https://www.
baeldung . com / cs / heuristics - vs - meta - heuristics - vs - probabilistic -
algorithms.

[36] K-Nearest. http:https://github.com/vivek2319. Accessed: 2023-05-29.

[37] K-Nearest. http:https://github.com/Akavall. Accessed: 2023-05-29.

[38] K-Nearest-Neighbors-with-Python. http : https : / / github . com / vivek2319 / K -
Nearest-Neighbors. Accessed: 2023-05-29.

[39] K-Nearest-Neighbors-with-Python. http:https://github.com/Akavall/AntColonyOptimization.
Accessed: 2023-05-29.

[40] Alaa Khamis and Yinan Wang. Tabu Search — AI Search Algorithms for Smart
Mobility. http:https://smartmobilityalgorithms.github.io/book/content/
TrajectoryAlgorithms/TabuSearch.html. Accessed: 2023-05-16.

[53] Kyle Robinson and Dr. Nancy L. Hutchinson. Math Heuristics. http : https :
/ / www . ldatschool . ca / math - heuristics/. Accessed: 2023-05-02. (Visited on
07/30/2014).

[57] Nunna Tejaswi. Performance analysis on hybrid and exactmethods for solving clus-
tered vrp: A comparative study on vrp algorithms. 2017.

58

http:https://medium.com/opex-analytics/opex-101-vehicle-routing-problems-262a173f4214
http:https://medium.com/opex-analytics/opex-101-vehicle-routing-problems-262a173f4214
http:https://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-43/lib/photoz/.g/web/glossary/anneal.html
http:https://www.cs.cmu.edu/afs/cs.cmu.edu/project/learn-43/lib/photoz/.g/web/glossary/anneal.html
http:https://www.androidpolice.com/google-earth-pro-explainer/
http:https://www.androidpolice.com/google-earth-pro-explainer/
http:https://www.calflora.org/entry/help/gridsurvey.html
http:https://www.calflora.org/entry/help/gridsurvey.html
http:https://www.javatpoint.com/heuristic-method
http:https://www.baeldung.com/cs/heuristics-vs-meta-heuristics-vs-probabilistic-algorithms
http:https://www.baeldung.com/cs/heuristics-vs-meta-heuristics-vs-probabilistic-algorithms
http:https://www.baeldung.com/cs/heuristics-vs-meta-heuristics-vs-probabilistic-algorithms
http:https://github.com/vivek2319
http:https://github.com/Akavall
http:https://github.com/vivek2319/K-Nearest-Neighbors
http:https://github.com/vivek2319/K-Nearest-Neighbors
http:https://github.com/Akavall/AntColonyOptimization
http:https://smartmobilityalgorithms.github.io/book/content/TrajectoryAlgorithms/TabuSearch.html
http:https://smartmobilityalgorithms.github.io/book/content/TrajectoryAlgorithms/TabuSearch.html
http:https://www.ldatschool.ca/math-heuristics/
http:https://www.ldatschool.ca/math-heuristics/

Webographie

[62] Vehicle Routing Problem. http:https://developers.google.com/optimization/
routing/vrp. Accessed: 2023-05-03.

[63] Winston Wagner. Examples of Heuristics in Computer Science. http:https://
blog.boot.dev/computer-science/examples-of-heuristics-in-computer-
science/. Accessed: 2023-05-03. (Visited on 11/30/2020).

[66] What is Google Earth? http:https://serc.carleton.edu/29016.1306. Accessed:
2023-05-16. (Visited on 05/28/2020).

59

http:https://developers.google.com/optimization/routing/vrp
http:https://developers.google.com/optimization/routing/vrp
http:https://blog.boot.dev/computer-science/examples-of-heuristics-in-computer-science/
http:https://blog.boot.dev/computer-science/examples-of-heuristics-in-computer-science/
http:https://blog.boot.dev/computer-science/examples-of-heuristics-in-computer-science/
http:https://serc.carleton.edu/29016.1306

	General introduction
	Vehicle Routing Problem
	Introduction
	Definition and Characteristics of Vehicle Routing Problem
	Vehicle Routing Problem’s history
	Difference between Vehicle Routing Problem and Travelling Salesman Problem
	Mathematical Model
	SWOT analysis
	Vehicle Routing Problem’ Types
	Applications
	Vehicle Routing Problem’s solutions
	Conclusion

	Overview of Simple heuristic and metaheuristic
	Introduction
	Historical study
	What is a heuristic method?
	Why use a heuristic solution method?
	Classification of heuristic methods
	What is a metaheuristic method?
	Why use a metaheuristic solution method?
	Classification of metaheuristic methods
	Comparison of heuristic and metaheuristic Methods
	Conclusion

	Methodology
	Introduction
	Data collection
	Algorithms for solving VRP
	Conclusion

	Experimental Setting
	Comparative study
	Results and discussion
	Conclusion

	Conclusion and perspectives

