LA RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE EST POPULAIRE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR UNIVERSITE KASDI MERBAH OUARGLA Faculté des sciences appliquées Département de génie civil et hydraulique

Mémoire

MASTER ACADEMIQUE

Domaine : sciences appliquées

Filière : Génie civil

Présenté par :

M^{lle} Saidani Nourhene.

M^{lle} Benderradji Soundous.

Thème :

ETUDE D'UNE SALLE DE SPORT ET PROGRAMMATION DES SOLLICITATIONS PAR MATHCAD ET MODELISATION PAR

CYPECAD

Soutenu le : 15/6/2023

Devant le jury composé de :

BELFERRAG	Allaoua	Président
ZENKHRI	Abderrezak	Examinateur
AKCHICHE	Hamida	Encadreur
BENDERRADJI	abdelaziz	Co-encadreur

Année Universitaire : 2022/2023

Remerciement

Nous tenons à exprimer nos sincères remerciements pour la rédaction de notre mémoire, tout d'abord à Allah SWT qui nous donne l'énergie et la puissance pour terminer ce modeste travail.

Nous remercions nos encadreurs Mr Benderradji Abdelaziz ingénieur CTC, et Mme Akchiche Hamida enseignante à l'université de Kasdi Merbah Ouargla qu'ils ont été d'une grande valeur pour nous, et nous sommes extrêmement reconnaissantes de votre contribution.

Votre générosité a eu un impact significatif sur notre projet, et nous sommes profondément touchées par votre soutien constant. Vos conseils nous ont permis d'atteindre nos objectifs et d'améliorer notre progressé, et nous ne pourrions jamais assez-vous remercier.

Vos mentorats ont été une source d'inspiration pour nous, et nous sommes honorées d'avoir pu bénéficier de vos expertises.

Nous voulions vous exprimer ma profonde gratitude pour tout ce que vous avez fait pour nous, en particulièrement les enseignements du département de génie civil.

Merci encore une fois pour vos amicales et aimables présences, et j'espère pouvoir un jour vous rendre la pareille.

Avec nos plus sincères remerciements.

Nourhene et Soundous

Dédicace 1

À celui dont les yeux se sont fermés avant que je ne puisse l'honorer en un jour où il a pavé pour moi le chemin à travers sa vie, à celui qui a fait fleurir la terre de mon âme avec confiance et amour, à la moitié de mon cœur, à celui pour qui il n'y a plus d'amour pour personne après lui, je suis désolée car te n'es plus là,

À Baba ... Ahmed.

Pour l'affection de la vie, sa tranquillité et les couleurs de l'arc-en-ciel qui l'entourent,

À ma chère mère Habiba.

À mes frères, la joie de vivre et leurs esprits enjoués,

À Oussama Manel et Radoi

À celui qui a parcouru le chemin avec moi et a veillé tard les nuits pour accomplir ce travail, à ma collègue Soundous.

Aux étudiants après nous.

À moi-même.

Nourhene.

Dédicace 2

Je dédie cet événement marquant de ma vie à :

Mon très cher père Athmane Benderradji et ma très chère mère Fadila tant pour leur soutien moral que matériel, sans qui l'aboutissement de cette thèse aurait été compromise et que dieu les récompenses pour tous leurs bienfaits

À mon cher fiancé Raouf pour son soutien et aide durant toute ma période d'études

À tous les membres de ma famille plus particulièrement à mes frères et sœurs sur tout Kaouthar pour leurs aides à réaliser ce travail.

Mon oncle Abdelaziz Benderradji et sa merveilleuse femme ainsi toute sa famille.

Mon binôme qui a contribué à la réalisation de ce modeste travail et sa famille.

Mes cousins et Mes cousines, en générale toute la famille Benderradji.

Mes chers amis surtout Karima et Ratiba et tous ceux qui m'ont aidé.

Ainsi qu'à toutes les personnes qui me sont chères, que ça soit mes copines, les étudiants de ma promotion.

À tous mes enseignants.

Soundous

Résumé

Notre projet de fin d'études consiste en une étude comparative d'un hangar métallique non réalise encore entre les calculs manuels, le logiciel Mathcad Prime et Cypecad. Le hangar est situé dans la wilaya de Blida, commune de Blida, dans une zone sismique III. Il est destiné à être utilisé comme une salle de sport et se compose de 6 portiques, assurant la stabilité grâce à des contreventements sur la toiture et le bardage. Notre étude était divisée en plusieurs étapes : nous avons commencé par l'élaboration des charges climatiques selon le règlement algérien RNV99. Ensuite, nous avons procédé au dimensionnement des éléments secondaires et porteurs constituant le hangar selon l'Eurocode 3. Par la suite, nous avons réalisé l'étude d'assemblage sismique conformément au RPA99/03, ainsi que des fondations selon le BAEL91. Ces études ont été réalisées simultanément avec les calculs effectués à l'aide de Mathcad Prime. Ensuite, nous avons utilisé le logiciel Cypecad pour compléter notre étude. Enfin, nous avons conclu notre travail par une conclusion qui présente les résultats de la comparaison.

Mots clés : charpente métallique – contreventement – neige – dimensionnement – hangar – vent.

Abstract

Our end-of-study project represents a comparative study of a metal hangar not yet realized using manual calculations, Mathcad Prime software, and Cypecad. The hangar is located in the Blida province, Blida municipality, in seismic zone III. It is intended for use as a sports hall and consists of 6 frames, ensuring stability through the roof and cladding by cross bracing.

Our study was divided into several stages: we began by assessing the climatic loads according to the Algerian regulation RNV99, followed by the dimensioning of the secondary and supporting elements of the hangar according to Eurocode 03. Then, we conducted the seismic assembly study according to RPA99/03 and the foundation study according to BAEL91. These studies were carried out simultaneously with the calculations using Mathcad Prime. Furthermore, we conducted the analysis using Cypecad software. Finally, we concluded our work with a summary that includes the results of the comparison.

Keywords: metal frame – bracing – snow – dimensioning – hangar – wind.

ملخص

مشروعنا لنهاية الدراسة يمثل دراسة مقارنة لمستودع معدني لم يتحقق بعد باستخدام الحسابات اليدوية، برنامج Mathcad Primeوبرنامج cypecad. يقع المستودع في ولاية البليدة، بلدية البليدة، في منطقة زلز الية من المستوى الثالث. وهو مخصص للاستخدام كقاعة رياضية ويتكون من 6 أنظمة، ويضمن الاستقرار من خلال مضادات الرياح في السقف وعلى الجدران تتقسم دراستنا لعدة أجزاء: حيث بدأنا بتقييم الاحمال الجوية وفق النظام الجزائري RNV99، تباعا قمنا بتحديد ابعاد العناصر الثانوية والداعمة المتشكل منها المستودع وفق المعيار 3 وليم المواتي الرياح في السقف وفق RPA99/03، ثم دراسة الاساسات حسب BAEL91، تمت هذه الدراسات تزامنا مع حسابات البرنامج Mathcad Prime، ثم أجرينا الحساب باستعمال برنامج Cypecad، أخيرا اختتمنا عملنا بخاتمة تحتوي على نتيجة المقارنة.

الكلمات المفتاحية: هياكل معدنية – مضادات الرياح – ثلج – ريح – تحديد الابعاد – مستودع.

SOMMAIRE

CHAPITRE I : Présentation général

Error! Bookmark not defined.
Introduction générale1
I.1. Présentation du projet :
I.2. Données géométriques :
I.3. Ossature et stabilité de la structure :
I.4. La toiture :
I.5. Façade :
I.6. Bardage :
I.7 Contreventement :
I.8. Règlements techniques :
I.9. Logiciels utilises :
I.10. Les matériaux utilisent :
Acier :
Béton :5
1.11. Les assemblages
I-11-1. Assemblage boulonné :6
I-11-2. Assemblage soudé :6
II- Introduction
II.1 Dimensionnement du l'ouvrage :
II.2 Les données relatives au site :
II.3 Etude de neige :
II-3-1. Objet et domaine d'application :
II-3-2. la charge de neige :
II.3.2.1. La charge de la neige sur le sol Sk :9
II.3.2.2. Coefficient de forme de la toiture :9
Valeur de charge de la neige S9

II.4 Etude de vent :	9
II.4.1 Détermination des différents paramètres et coefficients de calcul :	9
II.4.1.1 Effet de la région :	9
II.4.1.2 Catégorie du terrain :	9
II.4.2 La pression due au vent :	10
II.4.2.1 Coefficient dynamique <i>Cd</i> :	10
II.4.2.2 Détermination du $W(zj)$:	10
II.4.2.3 Coefficient de pression extérieure <i>Cpe</i> :	12
II.4.2.4. Coefficient de pression intérieure <i>cpi</i> :	
II.4.2.4.3 Calcul de la pression aérodynamique :	19
II.4.2.4.3.1 Vent perpendiculaire au pignon sens (V1) :	19
II.4.2.4.3.2 Vent perpendiculaire au long-pan sens (V2) :	20
II .5 Action d'ensemble	20
II.5.1 Cas de vent perpendiculaire au pignon (V1)	20
II.5.1.1 Détermination de la force extérieure <i>Fw</i> , <i>e</i> :	20
II.5.1.2. Détermination de la force intérieure Fw , i : $Wi = qp(zi) \times Cpi$	21
II.5.1.3. Détermination de la force de frottement <i>Ffr</i> :	22
II.5.1.3. Calcul de la stabilité d'ensemble	23
II.5.2. Cas de vent perpendiculaire au long pan (V2)	24
II.5.2.1. Détermination de la force extérieure <i>Fw</i> , <i>e</i> :	24
II.5.2.2. Détermination de la force intérieure <i>Fw</i> , <i>i</i> :	25
II.5.2.3. Détermination de la force de frottement <i>Ffr</i> :	25
II.5.2.3. Calcul de la stabilité d'ensemble :	26
Conclusion :	27
INTRODUCTION	29
III.1. LES PANNES :	29
III.1.1 DIMENSIONNEMENT DES PANNES :	29
III.1.1.1. Détermination de la section de la panne :	

III.1.1.2. Evaluation des charges et surcharges :	
III.1.1.3. Combinaison des charges (ELS) :	31
III.1.1.4. Pré dimensionnement des pannes :	31
III.1.1.5. Les combinaisons de charge les plus défavorables :	32
III-1-2 LES VERIFICATIONS	32
III.1.2.1. Vérification à la résistance en section :	32
III.1.2.2. Vérification à la flèche :	34
III-1-3 Les pannes calculées au logiciel de Mathcad Prime :	35
<i>III-2</i> LES LISSES DE BARDAGE	37
III-2-1 Dimensionnement des lisses :	37
III.2.1.1. Pré dimensionnement des lisses :	37
III-2-2 Vérification à la résistance en section :	
III.2.2.1. Vérification à la flexion :	
III.2.2.2 Vérification au cisaillement :	
III.2.2.3. Vérification de la flèche :	
III.2.2.4. Vérification au déversement :	40
III-2-3 le calcul par logiciel Mathcad prime :	40
III-3 LES POTELETS	41
III-3-1 DIMENSIONNEMENT DES POTELETS	41
III.3.1.1. Action et sollicitations	41
III.3.1.2. Calcul les Surcharges climatiques V revenants au potelet le plus chargé (potelet
du milieu)	41
III.3.1.3. Détermination de la section de potelet :	41
III.3.1.4. Calcul de la charge permanent G :	42
III-3-2 vérification de la section a la résistance :	42
III-3-3 vérification de l'élément aux instabilités	43
III.3.3.1 Flexion compose avec risque de flambement	44
III.3.3.2. Flexion compose avec risque de déversement	44
CONCLUSION GENERALE :	46

Introduction :
IV.1. Caractéristiques du portique étudié :
IV.2. Efforts sollicitant le portique :
IV.2.1 Charges permanentes :
IV.2.2. Effet de neige :
IV.2.3. Effet de vent :
IV.3 Les efforts internes :
IV.3.1 Les charges verticales vers le bas (charges permanentes et surcharge de neige) :51
IV.3.2 Les charges verticales vers le haut (vent de soulèvement) :
IV.3.3. Le vent horizontal (pression) :
IV.3.4 Le vent horizontal (dépressions) :
IV.4 Tableaux récapitulatifs :
IV.5 Calcul de l'imperfection géométrique globale (défaut d'aplomb):
IV.5.1 Modélisation avec les imperfections :
IV.5.2 Calcul des efforts internes additionnels :
IV.5.2.1. Effort horizontal en tête du poteau :
IV.5.3 Combinaisons à l'ELU avec prise en compte de <i>Heq</i> :
IV.6 Choix de la méthode d'analyse :
IV.6.1 Détermination du facteur d'éloignement critique αcr :
IV.7.1 Prédimensionnement de la traverse
IV.7.1.1 Moments sous la combinaison : $1.35G + 1.5N$
IV.7.1.2 Moments sous la charge équivalente totale <i>Heq</i> :
IV.7.1.3 Moments maximaux sollicitant la traverse
IV.7.1.4 Calcul préliminaire60
IV.7.2 Vérification de la traverse à l'ELS60
IV.7.2.1. Vérification de la flèche60
IV.7.3 Vérification de la traverse à l'ELU60
Bilan des efforts :60

Classe de la section	61
IV.7.3.1 Incidence de l'effort tranchant	61
IV.7.3.2 incidence de la section à l'effort normale :	62
IV.7.3.3 Vérification de la section à la résistance :	62
IV.7.4 Vérification de l'élément aux instabilités :	62
ACTION VERS LE BAS	62
IV.7.4.1 Vérification vis-à-vis du flambement	62
IV.7.4.2 Vérification vis-à-vis du déversement	63
ACTIONS VERS LE HAUT :	64
Bilan des efforts pour les charges ascendantes :	64
IX) Vérification au déversement :	64
IV.8 Au logiciel de Mathcad Prime :	65
IV.9 Les poteaux :	69
IV.9.1 Prédimensionnement du poteau	69
IV.9.2 Vérification de l'élément aux instabilités	69
IV.9.2.1 Vérification vis-à-vis du flambement	69
IX) Vérification vis-à-vis du déversement	70
IV.10 LE CALCUL PAR LOGICIEL DE MATHCAD PRIME	70
CONCLUSION	72
Introduction	74
V.1Dispositions des contreventements :	74
V.2Calcul de la poutre au vent en pignon :	74
V.2.1 Effort du vent sur les pignons	74
V.2.2 Evaluation des efforts horizontaux en tête des potelets	74
V.2.2.1 Les efforts appliqués sur la poutre au vent sont :	75
V.2.2.2 Effort de traction dans les diagonales	75
V.2.3 Vérification à la résistance ultime de la section nette :	76
Conclusion	77

V.2.4 Vérification des pannes (montants de la poutre au vent) à la résistance	.77
V.2.4.1 Vérification de la section à la résistance :	.77
V.2.4.2 Incidence de l'effort normal	78
V.2.5 Vérification des pannes (montants de la poutre au vent) aux instabilités	79
V.2.5.1 Flexion déviée composée avec risque de flambement	80
V.2.5.2. Flexion déviée composée avec risque de déversement	83
Conclusion	83
V.3 Calcul de la palée de stabilité en long pan	83
V.3.1 Effort de traction dans la diagonale tendue	84
V.3.2. Section de la diagonale :	84
V.3.3 Vérification à la résistance ultime de la section nette :	84
V.4 le calcul par logiciel de Mathcad prime :	85
CONCLUSION	89
Introduction	91
VI.1 assemblage dans le portique :	.91
VI.2 Assemblage de rive (Poteau-Traverse) :	.91
VI.2.1 La disposition constructive des boulons :	.91
VI.2.2 Efforts de calcul :	.91
VI.2.3 Les composants d'assemblage :	92
VI.2.4 Disposition constructives	92
VI.2.4.1 Pince longitudinale : $1.2d0 \le e1 \le 12 t$	92
VI.2.4.2 Pince transversale : $1.5d0 \le e2 \le 12 t$	92
VI.2.5 Calcul de la hauteur de la partie comprimée :	92
VI.2.6 Calcul du moment résistant :	93
VI.2.6.1 L'effort de calcul de précontrainte autorisé dans les boulons :	93
VI.2.6.2 Vérification à la résistance de l'assemblage :	93
VI.2.7 Résistance de l'assemblage sous l'effort tranchant :	94
VI.2.8 Résistance de l'assemblage sous l'effort normale :	94

VI.2.9 Vérification à la résistance de l'âme du poteau :	95
VI.2.9.1 La zone tendue :	95
VI.2.9.2 La zone comprimée :	96
VI.2.9.3 La zone cisaillée :	97
VI.2.10 calculs au logiciel Mathcad Prime :	97
Conclusion :	99
VI.3 Assemblage du Faitage (Traverse-Traverse) :	99
VI.3.1 La disposition constructive des boulons :	99
VI.3.2 Efforts de calcul :	
VI.3.3 Vérification à la résistance de l'assemblage :	
VI.3.3.1 L'effort de calcul de précontrainte autorisé dans les boulons :	
VI.3.3.2 Vérification à la résistance de l'assemblage :	
VI.3.4 Résistance de l'assemblage sous l'effort tranchant	
VI.3.5 calculs au Mathcad Prime :	
VI .4 Calcul des bases des poteaux	
VI.4.1 Définition :	
VI.4.2 Données de base :	
VI.4.3 Résistance du béton à la compression :	
VI.4.4 Résistance de calcul à l'écrasement du matériau de scellement :	
VI.4.5 Estimation de l'air de la plaque d'assise :	
VI.4.6 Choix du type de la plaque d'assise :	
VI.4.7 Vérification de la résistance de calcul de la plaque d'assise :	
VI.4.7.1 Calcul de la Largeur d'appuis additionnelle c :	
VI.4.7.2 Calcul de la section efficace <i>Aeff</i> :	104
VI.4.7.3 Calcul de la résistance à l'effort axial <i>Nsd</i> :	104
VI.4.8 Calcul de la résistance de la plaque d'assise au moment fléchissant	104
VI.4.8.1 Calcul du moment résistant <i>Mrd</i> :	104
VI.4.8.2 Calcul du moment de flexion <i>Msd</i> :	104

VI.4.9 Vérification de la résistance au cisaillement du scellement de la plaque	d'assise : 105
VI.4.10 calculs les pieds des poteaux au Mathcad Prime :	
VI.4.11 Les tiges d'ancrage :	106
VI.4.11.1 Résistance des tiges d'ancrage au cisaillement :	107
VI.4.11.2 Résistance des tiges d'ancrage à l'effort de soulèvement :	
VI.4.11.3 Vérification des tiges d'ancrage à la résistance :	108
VI.4.11.4 Vérification des tiges d'ancrage à l'adhérence :	108
VI.4.12 calculs les tiges d'ancrage au Mathcad Prime :	110
Conclusion :	110
Introduction	112
VII.1 Choix de la méthode de calcul :	112
VII.2 Caractéristiques du hangar étudié :	112
VII.3 Calcul de la force sismique totale : (art 4.2.3 RPA99/03)	112
VII.3.1. Détermination du coefficient d'accélération de zone A :	112
VII.3.2. Facteur d'amplification dynamique moyen D :	113
VII.3.3Coefficient de comportement global de la structure R :	113
VII.3.4 Facteur de qualité Q :	114
VII.3.5 Calcul de poids de la structure	114
VII.4 Détermination de la force sismique totale :	116
Suivant la direction X :	116
Suivant la direction Y :	116
Conclusion	116
Introduction	118
VIII.1 Les types des fondations	118
VIII.2 Etude des semelles :	118
VIII.2.1. Dimensionnement de la semelle	119
VIII.2.2 Détermination de d et h :	119
VIII.2.3 Calcul du ferraillage :	120

VIII.3. CALCUL DES LONGRINES :	
VIII.3.1. Dimensionnement des longrines :	121
VIII.3.2 Calcul du ferraillage longitudinal en traction simple :	121
VIII.3.3 Vérification de condition de non fragilité	
VIII.3.4. Calcul d'armatures transversales :	
VIII.3.5 Calcul d'espacement des cadres :	
VIII.4. Calcul au Mathcad Prime :	
Introduction	
IX.1 Entrée des données	
IX.1.1 Données générales et options	
IX.1.2 géométrie de la structure	
IX.2. Éléments structuraux analyses	
1) éléments porteurs	
IX.3. Calcul sismique	
IX.4. Analyse des résultats	
IX.5. Autres outils pour l'analyse des résultats	
CONCLUSION GENERALE	143
RÉFÉRENCE BIBLIOGRAPHIQUE	

LISTE DES FIGURES

CHAPITRE I : Présentation général

CHAPITRE II : étude climatique

Figure II.1 : Hauteur de référence Z_eet le profil correspondant de la pression dynamique.

Figure II.2 : La répartition de la pression dynamique de pointe sur la hauteur Ze

Figure II.3 : Vue en plan des zones de pression sur les parois verticales sens V1

Figure II.4 : Les valeurs de C_{pe} qui correspondent à chaque zone des parois verticales sens V₁.

Figure II.5 : La répartition des zones de pression sur la toiture, sens V1.

Figure II.6 : La répartition C_{pe} qui correspond à chaque zone de toiture, cas de vent dans le sens V1.

Figure II.7 : Vue en plan des zones de pression sur les parois verticales sens V2

Figure II.8 : Vue en plan des zones de pression sur la toiture sens V2.

Figure II.9 : coefficient de pression intérieure c_{pi} des bâtiments sans face dominante.

Figure II.10 : stabilité longitudinale

Figure II.11 : stabilité transversale.

CHAPITRE III : étude des éléments secondaires.

Figure III.1 : Disposition de la panne sur la toiture

Figure III-2 : Schéma statique des surcharges d'entretien sur les pannes.

Figure III-3 : Surcharge climatique du vent

CHAPITRE IV : dimensionnement des éléments structuraux.

Figure IV.1 : éléments constituent le portique.

Figure IV.2 : la répartition des charges du vent sur le portique le plus sollicité.

Figure IV.3 : Efforts internes.

Figure IV.4 : Représentation des efforts internes, cas des charges verticales vers le bas.

Figure IV.5 : Représentation des efforts internes, cas des charges verticales vers le haut.

Figure IV.6 : Vent horizontal (pression).

Figure IV.7 : Représentation des efforts internes, cas de vent horizontal (dépression).

Figure IV.8 : Imperfection géométrique.

Figure IV.9 : Effort horizontale en tête du poteau.

Figure IV.10 : Moments sous la combinaison 1.35G + 1.5N.

Figure IV.11 : Moments sous la charge équivalente totale.

Figure IV.12 : Calcul du moment au point quelconque P.

Figure IV.13 : Sollicitations sur la traverse, cas de charges ascendantes.

CHAPITRE V : calcul des contreventements.

Figure V.1 : Dispositions des contreventements

Figure V.2 : Effort du vent sur les pignons

Figure V.3 : Schéma statique de la poutre au vent.

Figure V.5 : Schéma statique de Palée de stabilité en long pan

Figure V.6 : Effort de traction dans la diagonale tendue

CHAPITRE VI : calcul des assemblages.

Figure VI.1 : Assemblage poteau-traverse

Figure VI.2 : détails assemblage.

Figure VI.3 : la hauteur de la zone comprimée.

Figure VI.4 : Les zones dans l'âme de poteau

Figure VI.5 : Représentation de l'assemblage traverse-traverse.

Figure VI.6 : Base des poteaux.

Figure VI.7 : Pied de poteau articulé.

Figure VI.8 : Pieds de poteaux encastrés.

Figure VI.9 : Dimensions de la plaque d'assise

CHAPITRE VII : étude sismique

Figure VIII.1 : Ferraillage des semelles isolées.

Figure VIII.2 : Schéma de ferraillage des longrines

LISTE DES TABLEAUX

CHAPITRE I : Présentation général

CHAPITRE II : étude climatique

Tableau II.1 : Paramètres de la catégorie de terrain

Tableau II.2 : Les valeurs du Coefficient d'exposition Ce en fonction de Z.

Tableau II.3 : Les valeurs de pression dynamique de pointe q_{dyn}

Tableau II.4 : Les surfaces des zones chargées et Les valeurs de C_{pe} qui correspondent à chaque zone des parois verticales sens V_1

Tableau II.5 : Les surfaces des zones chargées pour la toiture sens V1.

Tableau II.6 : Les valeurs de C_{pe} qui correspondent à chaque zone de toiture, le sens V1

Tableau II.7 : Les surfaces des zones chargées et Les valeurs de C_{pe} qui correspondent à chaque zone pour les parois verticales cas de vent dans le sens V2.

Tableau II.8 : Les surfaces des zones de pression sont supérieures à 10 m^2 (S > 10 m^2).

Tableau II.9 : les ouvertures dans le hangar.

Tableau II.10 : Valeurs de la pression aérodynamique sur les parois verticales, sens V1.

Tableau II.11 : Valeurs de la pression aérodynamique sur la toiture, sens V1.

Tableau II.12 : Valeurs de la pression aérodynamique sur les parois verticales, sens V2.

Tableau II.13 : Valeurs de la pression aérodynamique sur la toiture, sens V2.

Tableau II.14 : Les résultats de calcul de la pression extérieure W_{pe} correspondant à chaque zone.

Tableau II.15 : Les résultats de calcul de la force intérieure W_{pi} correspondant à chaque zone

Tableau II.16 : Les résultats de calcul de la pression intérieure Wi correspondant à chaque zone

Tableau II.17 : : les résultats de calcul de la force intérieure F_{W_i} , correspondant à chaque zone

Tableau II.18 : La force F_W résultante, cas V1.

Tableau II.19 : Les résultats de calcul de la pression extérieure W_{pe} , correspondant à chaque zone.

Tableau II.20 : Les résultats de calcul de la force intérieure F_{W_i} correspondant à chaque zone.

Tableau II.21 : Les résultats de calcul de la pression extérieure Wi correspondant à chaque zone

Tableau II.22 : Les résultats de calcul de la force intérieure F_{W_i} correspondant à chaque zone.

Tableau II.23 : La force F_w résultante, cas V2.

CHAPITRE III : étude des éléments secondaires.

Tableau III-1 : les caractéristiques de calcul de profilé IPE160

Tableau III-2 : les caractéristiques de calcul de profilé HEA240

Tableau III.3 : Les données du flambement et déversement

CHAPITRE IV : dimensionnement des éléments structuraux.

Tableau IV.1 : Valeurs de la pression aérodynamique sur les parois verticales.

Tableau IV.2 : Valeurs de la pression aérodynamique sur la toiture.

Tableau IV.3 : Réactions d'appuis et moments sous une charge unitaire.

Tableau IV.4 : Réactions d'appuis et moments sous les charges actuelles.

Tableau IV.5 : Combinaisons a l'ELU pour les réactions d'appuis et les moments.

Tableau IV.6 : Efforts en pieds des poteaux aux l'ELU.

Tableau IV.7 : Efforts en pieds des poteaux avec Prise en compte des défauts d'aplomb.

Tableau IV.8 : Efforts équivalent en tête des poteaux.

Tableau IV.9 : Combinaisons à l'ELU pour les réactions d'appuis et les moments avec prise en compte de H_{eq}

Tableau IV.10 : Caractéristiques géométriques de l'IPE 450.

Tableau IV.11 : les paramètres de flambement.

Tableau IV.12 : les paramètres de déversement.

Tableau IV.13 : les paramètres de déversement.

Tableau IV.14 : les paramètres de flambement et de déversement

CHAPITRE V : calcul des contreventements.

Tableau V.1 : coefficients minorateurs β_1 et β_2

CHAPITRE VI : calcul des assemblages.

CHAPITRE VII : étude sismique

Tableau VII.1 : valeurs des pénalités P_q

Tableau VII.2 : Le poids propre des éléments.

Tableau VIII.1 : tableaux de l'effort normal.

Tableau VIII.2 : les coordonnées de la semelle

Introduction générale

La charpente métallique est apparue à la fin du 18^e siècle, les premières charpentes métalliques étaient utilisées pour des bâtiments industriels tels que des usines, des entrepôts et des gares. Aujourd'hui, elle est couramment utilisée dans la construction de bâtiments industriels commerciaux et résidentiels grâce à ses avantages de sa capacité à supporter des charges élevées sur de grandes portées, pour leur résistance aux intempéries, leur durabilité et leur faible entretien, Faciles à poser, plus légère et aussi pour sa facilité, rapidité d'exécution, cependant, on mentionne ses inconvénients tels que la corrosion et le mal résistance au feu.

Pour terminer notre cours et pour obtenir notre diplôme de master en génie civil spécialité structure à l'Université de Kasdi Merbah Ouargla, nous nous dirigeons vers une étude d'un hangar à usage de salle de sport en charpente métallique à la wilaya de Blida commune Blida.

L'objectif ultime de ce mémoire est d'offrir une compréhension approfondie de la conception et de la construction de hangars métalliques, ainsi que des considérations importantes à prendre en compte pour garantir leur sécurité, leur efficacité et leur durabilité et on examinera les différentes étapes impliquées dans la construction d'un hangar métallique, y compris la conception, la fabrication et l'installation.

CHAPITRE I : PRESENTATIONS DE L'OUVRAGE.

I.1. Présentation du projet :

Notre projet est orienté à l'étude des éléments constructifs d'un bâtiment industriel en charpente métallique destinée à l'usage comme une salle de sport, il est implanté dans la commune Blida wilaya de Blida.

I.2. Données géométriques :

Le hangar est d'une surface S=585.09 m² , caractérisé par ces dimensions :

- Longueur totale : 30.3 m.
- Largeur totale : 20.9 m.
- Hauteur totale : 10.25 m.
- Hauteur des poteaux : 7.95 m.

- Hauteur de la toiture : 2.3 m.
- Angla d'inclinaison de la toiture α =12.41°.

I.3. Ossature et stabilité de la structure :

La structure est constituée de 6 portiques métalliques qui assurent la stabilité transversale de notre ossature, et la stabilité longitudinale est assuré par les palées des stabilités.

I.4. La toiture :

Notre toiture est en charpente métallique à deux versants identiques et elle est constituée de bacs de couverture reposant sur des pannes en IPE160, et sa fonction est d'assurer la répartition des charges (une fonction porteuse), ainsi qu'un rôle protecteur.

I.5. Façade :

Les façades extérieures sont réalisées avec des panneaux sandwichs fixes aux lisses de bardages.

I.6. Bardage :

Il est composé de panneaux sandwichs fixes sur des lisses reliées entre elles avec des liens et fixé sur la structure principale, des potelets de renforcement prévus aux droits des ouvertures.

I.7 Contreventement :

Les efforts horizontaux qui représentent et le séisme effectuant la stabilité de la structure donc pour l'assurée, on utilise des paliers de stabilité prévus sur les deux extrémistes du hangar ainsi qu'une poutre au vent horizontal de toiture installe à même niveau des traverses

I.8. Règlements techniques :

Les documents techniques réglementaires utilisés dans cette étude sont :

- CCM 97 : Règles de calcul des constructions en acier.
- EUROCODE 03 : calcul des structures en acier.
- **RPA99** : Règles parasismiques algériennes, version 2003.
- **RNV99** : Règles définissant les effets de la neige et du vent, version 2013.
- **DTR BC2.2**: document technique règlementaire charges permanentes et charges d'exploitation.
- **BAEL 91** : Béton armé aux états limites.

I.9. Logiciels utilises :

On a utilisé le logiciel Autocad 2013 pour l'élaboration des différents plans et figures, logiciel Mathcad qui nous permet de résoudre et analyser les calculs techniques et logiciel de Cypecad de calcul des structures, spécialement dédié à l'analyse de la résistance et de la stabilité des structures.

I.10. Les matériaux utilisent :

Acier :

Un acier est un alliage métallique constitué principalement de fer et de carbone utilisé dans les domaines de la construction métallique et de la construction mécanique.

L'acier utilisé est de nuance Fe360, dont ces caractéristiques sont :

- La résistance à la traction : $f_u = 360$ MPa.
- La limite élastique : $f_v = 235$ MPa.
- Le module de Young : E = 210000 MPa.
- Le module d'élasticité transversale : G = 84000 MPa.
- Le coefficient de poisson : $\vartheta = 0.3$.
- La masse volumique : $\rho = 7850 \text{ kg/m}^3$.

Béton :

C'est un matériau constitué par le mélange de ciments avec granulats (sable et pierraille) et de l'eau, on utilise ce matériau à cause de sa résistance à la compression mieux qu'à l'effort de traction. Le béton utilisé est dosé a 350 kg/m³,

• Le béton de propreté est dosé à 150 kg/m³.

Ses caractéristiques son :

- La résistance à la compression a 28 jours : $f_{c28} = 25 MPa$
- La résistance à la traction à 28 jours est déduite de celle de compression par la relation

$$f_{t28} = 0.6 + 0.06 f_{c28}$$

$$f_{t28} = 2.1 MPa$$

- Le poids volumique : $\rho = 2500 \ kg/m^3$
- Le module d'élasticité : E = 14000 MPa

I.11. Les assemblages

Un assemblage est un dispositif qui permet de réunir et de solidariser plusieurs pièces entre elles

Les principaux modes d'assemblages sont :

I-11-1. Assemblage boulonné :

Le boulonnage et le moyen d'assemblage le plus utilisé en construction métallique du fait de sa facilité de mise en œuvre et des possibilités de réglage qu'il ménage sur le site

Pour les assemblages rigides des portiques auto stable. Les boulons HR comprennent une tige filetée, une tête hexagonale et un écrou en acier à très haute résistance.

I-11-2. Assemblage soudé :

Le soudage est une opération qui consiste à joindre deux parties d'un même matériau avec un cordon de la soudure constituée d'un métal d'apport, ce dernier sert de liant entre les deux pièces à assembler.

CHAPITRE II : ETUDE CLIMATIQUE.

II-Introduction

L'étude climatique se fait pour sujet essentiel dont les déterminations des surcharges, dès lors le dimensionnement des éléments de la structure. Dans la nature, il y a deux types de charges climatiques qui représentent dans la neige et le vent qu'il considère comme une charge dynamique. On applique le règlement neige et vent "R.N.V 99/2013 " dans notre étude.

II.1 Dimensionnement du l'ouvrage :

- Longueur totale : 30.4 m.
- Largeur totale : 20.9 m.
- Hauteur totale : 10.25 m.
- Hauteur des poteaux : 7.95 m.
- Hauteur de la toiture : 2.3 m.
- Toiture a multi versant avec un angle d'inclinaison α : 12.41°.

II.2 Les données relatives au site :

- Lieu de réalisation : Blida (Blida).
- Altitude géographique 1560 m

II.3 Etude de neige :

II-3-1. Objet et domaine d'application :

Le calcul de la surcharge climatique de la neige est en fonction de la localisation géographique et de l'altitude du lieu qui doit être inférieur à 2000 mètre (Selon RNVA 2013 partie I, Article 2.2), Il se fait conformément à la réglementation « Règlement Neige et Vent » RNV99–version 2013.

II-3-2. la charge de neige :

La charge caractéristique de la neige par unité de surface est donnée par la formule suivante :

$$S = \mu . S_k$$

S : Charge caractéristique de la neige par unité de surface.

 µ : Coefficient d'ajustement des charges, en fonction de la forme de la toiture appelé coefficient de forme.

 S_k : Charge de neige sur le sol.

II.3.2.1. La charge de la neige sur le sol S_k :

On a : Zone B : $S_k = \frac{0.04 \times H + 10}{100}$

 $H = 1560 \text{ m} \Rightarrow S_k = 0.724 \text{ KN}/m^2$

II.3.2.2. Coefficient de forme de la toiture :

La structure est de toitures à deux versants symétriques où :

Notre cas : $\alpha = 12.41^{\circ}$

$$0^{\circ} \leq 12.41^{\circ} \leq 30^{\circ}$$

Donc : $\mu = 0.8$ (Selon le tableau 2, RNVA2013 partie I.6.2.2).

Valeur de charge de la neige S

$$s = 0.58 \, KN/m^2$$

II.4 Etude de vent :

L'effet du vent est plutôt prépondérant sur la stabilité de la structure, de sorte que l'étude est très importante pour évaluer toutes les valeurs dans n'importe quelle direction possible.

Les effets du vent sont étudiés conformément à la réglementation « Règlement neige et Vent » RNV99-version 2013.

II.4.1 Détermination des différents paramètres et coefficients de calcul :

II.4.1.1 Effet de la région :

Notre hangar est situé à Blida, et selon le RNV2013 la wilaya de Blida est classée en zone *II*, et la pression dynamique de référence est donnée comme suit :

 $q_{réf} = 375 \text{ N/m}^2 \dots$ (Tableau 2.2, chapitre II RNVA2013).

II.4.1.2 Catégorie du terrain :

Notre structure est implantée au zone à végétation et selon le règlement RNV2013, le terrain est de catégorie *II* : *Selon (Tableau 2.4, chapitre2 RNV 2013) on a :*

Catégorie de terrain	K_T	$Z_0(m)$	$Z_{min}(m)$	ڋ
Π	0,19	0,05	2.00	0.52

	Tableau I	I.1 :	Paramètres	de la	catégorie	de terrain
--	-----------	--------------	------------	-------	-----------	------------

 K_T : facteur de terrain.

Z₀ : Paramètre de rugosité.

 Z_{min} : hauteur minimale.

 $\boldsymbol{\xi}$: Coefficient dynamique.

II.4.2 La pression due au vent :

D'après le règlement, les pressions q_j (La pression due au vent qui s'exerce sur un élément de surface j) sont calculées par la formule suivante :

$$q_j = C_d \times W_{(Z_j)}$$
 (D'après RNV v2013 Chap. 2, Formule 2.6)

- C_d : le coefficient dynamique de la construction
- W : (en N/m²) est la pression nette (appelée aussi pression) exercée sur l'élément de surface j, calculée à la hauteur Z_j relative à l'élément de surface j.

II.4.2.1 Coefficient dynamique C_d :

Il dépend de la hauteur et la largeur de la structure, ainsi que du matériau de la structure.

La structure du bâtiment étant une structure métallique, dont la hauteur inférieure à 15.00 m (10.25m), on prend : $C_d = 1$ (§ 3.2, chapitre2 RNV 2013).

On a: $C_d < 1,2$ Donc : la construction est peu sensible aux excitations dynamiques.

II.4.2.2 Détermination du W_(zi) :

 $W_{(Z_i)} = q_{dyn}(Z_e) \times (C_{pe} - C_{pi}) N/m^2$ (D'après RNVA 2013 Chap. 2, Formule 2.6)

• q_{dyn} : est la pression dynamique du vent calculée à la hauteur z_j relative à l'élément de surface j.

- *C_{pe}* : est le coefficient de pression extérieure.
- *C*_{pi} : est le coefficient de pression intérieure.

II.4.2.2.1 Détermination de la pression dynamique q_{dyn} :

La pression dynamique $q_{dyn}(Z_e)$ qui s'exerce sur un élément de surface j est donnée par : (Chapitre 2 RNVA 2013, Formule 2.1)

$$q_{dyn}(Z_e) = q_{ref} \times C_e(Z_e) \qquad N/m^2$$

- $q_{ref} = 375 \text{ N/m}^2$
- C_e : coefficient d'exposition au vent
- Z_j : hauteur de référence.

II.4.2.2.1.1 Hauteur de référence z_e :

Figure II.1 : Hauteur de référence Z_e et le profil correspondant de la pression dynamique.

Pour les murs au vent des bâtiments à parois verticales, Z_e est déterminée comme Indiqué par la figure 2.1 du RNV V2013.

- La hauteur de toiture : h = 10.25 m, et largeur b = 20.9 m

h < b Donc $Z_e = h = 10.25 m$

- La hauteur des parois h = 7.95 m et largeur b = 20.9 m

h < b Donc $Z_e = h = 7.95 m$

II.4.2.2.1.2 Coefficient de d'exposition C_e :

On a un site plat $C_T = 1$ et un terrain de catégorie II

Alors les valeurs des coefficients d'expositions C_e sont déterminées par une interpolation linéaire entre les deux valeurs de même signe pour Z=5m et Z=10m et Z=10 et Z=15 tirées du (tableau 2.3, chapitre2, RNVA2013).

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0}(x - x_0)$$

Pour les parois verticales : $f(x) = 1.929 + \frac{2.352 - 1.929}{10 - 5}(7.95 - 5) = 2.179$

Pour la toiture : $f(x) = 2.352 + \frac{2.616 - 2.352}{15 - 10} (10.25 - 10) = 2.365$

Tableau II.2 : Les valeurs du Coefficient d'exposition Ce en fonction de Z.

Niveau	Z(m)	$C_e(z)$
Parois verticales	7.95	2.179
Toiture	10.25	2.365

Donc on trouve la pression dynamique q_{dyn} :

Tableau II.3	: Les	s valeurs	de	pression	dyna	amique	de	pointe	qdym .
	••			pression.	~			Pome	auvn ·

Niveau	$q_{ref} \left(N/m^2 \right)$	$C_e(z)$	$q_{dyn} \left(N/m^2 \right)$
Parois verticales	375	2.179	817.13
Toiture	375	2.365	886.88

Figure II.2 : La répartition de la pression dynamique de pointe sur la hauteur Z_e

II.4.2.3 Coefficient de pression extérieure C_{pe} :

 C_{pe} S'obtient à partir des formules suivantes :

- $C_{pe} = C_{pe1} \rightarrow S \le 1m^2$

$$-C_{pe} = C_{pe1} + (C_{pe10} - C_{pe1}) \log S \rightarrow 1m^2 < S < 10m^2$$

 $-C_{pe} = C_{pe1} \rightarrow S \ge 10m^2$

S : est la surface chargée de la paroi considérée en m^2 .

(Selon RNV v2013 chap5, article 5.1.1).

II.4.2.3.1 Cas de vent perpendiculaire au pignon (sens V1)

II.4.2.3.1.1 Calcul de C_{pe} pour les parois verticales :

D'après la figure 5.1 du RNVA 2013 on divise les parois comme suit

Pour le sens V1 :

 $\begin{cases} d = 30.4m \\ b = 20.9 m \\ h = 10.25 m \end{cases} \Rightarrow e = \min [b, 2h] = \min [20.9; 20.5] = 20.5 m \rightarrow e = 20.5 m$

On $d > e \Rightarrow \frac{e}{5} = 4.1 \ m \Rightarrow e - 4.1 = 16.4 \ m \Rightarrow d - e = 9.9 \ m$

Figure II.3 : Vue en plan des zones de pression sur les parois verticales sens V1

Tableau II.4 : Les surfaces des zones chargées et Les valeurs de C_{pe} qui correspondent àchaque zone des parois verticales sens V_1

ZONE	А	В	С	D	Е
La surface	4.1×7.95	16.4×7.95=	9.9 ×7.95=78.71	20.9×7.95+2.3×10.45	190.2
(<i>m</i> ²)	=32.6	130.4		=190.2	
$C_{pe} = C_{pe10}$	-1	-0.8	-0.5	0.8	-0.3

Nous avons tous les surfaces $S > 10 m^2$ donc $C_{pe} = C_{pe10}$

Figure II.4 : Les valeurs de C_{pe} qui correspondent à chaque zone des parois verticales sens

 V_1 .

II.4.2.3.1.2 Calcul de *C_{pe}* pour la toiture :

La direction du vent est définie par l'angle θ , et dans notre cas :

- Le vent est perpendiculaire au pignon (sens V1) et parallèle aux génératrices donc ; θ = 90° (Selon RNVA 2013 Chap5, article 5.1.5.1).
- La toiture est à deux versants avec une pente de 22% ce qui nous donne un angle de α=12.41° (comme la figure 5.4 du RNV v2013).

Pour θ =90°, on va définir les différentes zones de pression F, G, H et I qui sont représentées sur la figure suivante :

$$\begin{cases} d = 30.4m \\ b = 20.9 m \\ h = 10.25 m \end{cases} \Rightarrow e = \min [b, 2h] = \min [20.9, 20.5] = 20.5 m \rightarrow e = 20.5 m$$

$$\frac{e}{4} = 5.125 m$$
; $\frac{e}{10} = 2.05 m$; $\frac{e}{2} = 10.25 m$

Figure II.5 : La répartition des zones de pression sur la toiture, sens V1.

Calcul des surfaces pour chaque zone :

Zone	F	G	Н	Ι
Surface (m^2)	5.125×	5.325×	$10.45 \times$	10.45 ×
	2.05 =10.51	2.05 =10.92	8.2=85.69	20.15=210.57

Tableau II.5 : Les surfaces des zones chargées pour la toiture sens V1.

On remarque que :

• Les surfaces des zones de pression F et G de la toiture sont entre $1m^2$ et $10m^2$

Donc : $C_{pe} = C_{pe1} + (C_{pe10} - C_{pe1}) \log S$ pour chaque zone.

• Les surfaces des zones de pression H et I sont égale à $10 m^2$ (S $\ge 10 m^2$).

Donc : $C_{pe} = C_{pe10}$ pour chaque zone.

Les valeurs des coefficients d'expositions C_{pe} sont déterminées par une interpolation linéaire entre les deux valeurs de même signe pour $\alpha=5^{\circ}$ et $\alpha=15^{\circ}$ tirées du tableau (tableau 5.4, chapitre2, RNVA2013).

$$f(x) = f(x_0) + \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \dots \dots \dots \dots$$
 La formule d'interpolation

Tableau II.6 : Les valeurs de C_{pe} qui correspondent à chaque zone de toiture, le sens V1

ZONE	F	G	Н	Ι
C _{pe}	-1.38	-1.3	-0.63	-0.53

Figure II.6 : La répartition C_{pe} qui correspond à chaque zone de toiture, cas de vent dans le

sens V1.

II.4.2.3.2 Cas de vent perpendiculaire au long pan (sens V2)

II.4.2.3.2.1 Calcul de C_{pe} pour les parois verticales :

D'après la figure 5.1 de RNV v2013, on divise les parois comme suit :

Pour le sens V2 :

d = 20.90 m

b =

30.40 m
$$e=\min[b; 2h]=\min[30.40; 20.5] = 20.5 m \rightarrow e=20.5 m$$

h = 10.25m

Figure II.7 : Vue en plan des zones de pression sur les parois verticales sens V2

Tableau II.7 : Les surfaces des zones chargées et Les valeurs de C_{pe} qui correspondent àchaque zone pour les parois verticales cas de vent dans le sens V2.

ZONE	А	В	С	D	Е
SURFACE	7.95 ×	7.95 ×	7.95 ×	30.4 ×	241.68
(<i>m</i> ²)	4.1 = 32.6	16.4 =130.38	0.4 = 3.18	7.95 =241.68	
C _{pe}	-1	-0.8	-0.5	0.8	-0.3

On a pour les zones A,B,D,et E :

 $C_{pe} = C_{pe10}$

Et pour C : $C_{pe} = C_{pe,1} + (C_{pe_{10}} - C_{pe,1}) \times log_{10}(S)$

II.4.2.3.2.2 Calcul de C_{pe} pour la toiture :

La direction du vent est définie par l'angle θ , et dans notre cas : 16

Le vent est perpendiculaire au long-pan le (sens V2) et perpendiculaire Aussi aux génératrices donc :

• $\theta = 0^{\circ}$ (Selon RNVA 2013 Chap5, article 5.1.5.1).

(Figure 5.4 de RNVA2013).

Pour θ =0°, on va définir les différentes zones de pression F, G, H, I et J qui sont représentées sur la figure suivante :

d = 20.90 m b = 30.40 m e = min [b, 2h] = min [30.40, 20.5] = 20.5 m \rightarrow e = 20.5m.

h = 10.25 m
$$\frac{e}{4}$$
 = 5.125 m ; $\frac{e}{10}$ = 2.05 m

Calcul des surfaces et des coefficients C_{pe} qui correspondent à chaque zone :

Tableau II.8 :	Les surfaces des zones d	e pression sont su	upérieures à	$10 m^2 (S > $	$10 m^2$).
----------------	--------------------------	--------------------	--------------	----------------	-------------

ZONE	F	G	Н	J	Ι
Surface (m^2)	10.5	40.31	254.52	62.32	254.52
C _{pe}	-1.11	-0.9	-0.37	-0.69	-0.45

Donc : $C_{pe} = C_{pe10}$ pour chaque zone.

Les valeurs des coefficients d'expositions C_{pe} sont déterminées par une interpolation linéaire entre les deux valeurs de même signe pour $\alpha=5^{\circ}$ et $\alpha=15^{\circ}$ tirées du tableau (tableau 5.4, chapitre2, RNVA2013).
II.4.2.4. Coefficient de pression intérieure c_{pi} :

Pour les bâtiments sans face dominante, le coefficient de pression intérieure c_{pi} est déterminé à partir de la figure 5.14 du RNVA 2013. Avec : (h) la hauteur du bâtiment, (d) sa profondeur et μ_p l'indice de perméabilité donné par :

$$\mu_p = \frac{\sum des \ surfaces \ des \ ouvertures \ où \ C_{pe}}{\sum des \ surfaces \ de \ toutes \ les \ ouvertures} \le 0$$

Figure II.9 : coefficient de pression intérieure c_{pi} des bâtiments sans face dominante.

Les ouvertures dans notre hangar :

Tableau II.9 :	les ouvertures dans	le hangar.
----------------	---------------------	------------

	Pignon	Pignon	Long-pan	Long-pan
	principale	postérieure	latéral gauche	latéral droite
Portail $(1.4 \times 2.5) m^2$	1	0	0	1
Ouverture $(0.7 \times 1.2) m^2$	6	6	2	2
Ouverture (2.2×1.2) m^2	2	2	6	6

II.4.2.4.1. Cas de vent perpendiculaire au pignon (sens V1) :

$$\mu_p = \frac{2 \times (1.4 \times 2.5) + 10 \times (0.7 \times 1.2) + 14 \times (2.2 \times 1.2)}{2 \times (1.4 \times 2.5) + 16 \times (0.7 \times 1.2) + 16 \times (2.2 \times 1.2)} = 0.84$$

Le rapport
$$\frac{h}{d} = \frac{10.25}{30.3} = 0.34$$

 $0.25 \le \frac{h}{d} \le 1$: Donc on utilise l'interpolation linéaire pour déterminer les valeurs de C_{pi} , d'après la figure 5.14 de RNV v2013 C_{pi} est compris entre (-0.5) et (-0.3)

$$C_{pi} = -0.24 + \frac{-0.38 + 0.24}{1 - 0.25} (1 - 0.25) = -0.38$$

II.4.2.4.2 Cas de vent perpendiculaire au long pan (sens V2) :

$$\mu_p = \frac{21.02 + 13.82 + 10.32}{17.52 + 21.02 + 13.82 + 10.32} = 0.72$$

Le rapport $\frac{h}{d} = \frac{10.25}{20.90} = 0.49$

$$0.25 \le \frac{h}{d} \le 1$$
 : C_{pi} est entre- 0.23 et -0.1 : $C_{pi} = -0.1 + \frac{-0.23 + 0.1}{1 - 0.25} (1 - 0.25) = -0.2$

II.4.2.4.3 Calcul de la pression aérodynamique :

D'après le règlement RNVA2013 Chap. 2, formule2.6, les pressions q_j sont calculées par la formule suivante : $q_j = q_{dyn} \times (C_{pe} - C_{pi}) \dots N/m^2$

II.4.2.4.3.1 Vent perpendiculaire au pignon sens (V_1) :

a. Parois verticales :

Tableau II.10 : Valeurs de la pression aérodynamique sur les parois verticales, sens V1.

Zone	$q_{dyn} \left(N/m^2 \right)$	C_{pe}	C_{pi}	$C_{pe} - C_{pi}$	$q_j (N/m^2)$
А	817.13	-1	-0,38	-0.62	-506.62
В	817.13	-0,8	-0,38	-0.42	-343.19
С	817.13	-0,5	-0,38	-0.12	-98.06
D	817.13	+0,8	-0,38	1.18	964.21
E	817.13	-0,3	-0,38	0.08	35.37

b. La toiture : Tableau II.11 : Valeurs de la pression aérodynamique sur la toiture, sens
 V1.

Zone	$q_{dyn} \left(N/m^2 \right)$	C_{pe}	C_{pi}	$C_{pe} - C_{pi}$	$q_j (N/m^2)$
F	886.88	-1,38	-0,38	-1	-886.88
G	886.88	-1,3	-0,38	-0.92	-815.93
Н	886.88	-0,63	-0,38	-0.25	-221.72
Ι	886.88	-0,53	-0,38	-0.15	-133.03

II.4.2.4.3.2 Vent perpendiculaire au long-pan sens (V_2) :

a. Parois verticales :

Zone	$q_{dyn} \left(N/m^2 \right)$	C_{pe}	C _{pi}	$C_{pe} - C_{pi}$	$q_j (N/m^2)$
Α	817.13	-1	-0.2	-0.8	-653.7
В	817.13	-0,8	-0.2	-0,6	-490.28
С	817.13	-0,5	-0.2	-0,3	-245.14
D	817.13	+0,8	-0.2	+1	817.13
E	817.13	-0,3	-0.2	-0,1	-81.71

Tableau II.12 : Valeurs de la pression aérodynamique sur les parois verticales, sens V2.

b.la toiture :

Tableau II.13 : Valeurs de la pression aérodynamique sur la toiture, sens V2.

Zone	$q_{dyn} \left(N/m^2 \right)$	C_{pe}	C _{pi}	$C_{pe} - C_{pi}$	$q_j (N/m^2)$
F	886.88	-1,11	-0.2	-0.79	-798.19
G	886.88	-0,9	-0.2	-0,58	-620.82
Н	886.88	-0.37	-0.2	-0,05	-44.34
J	886.88	-0.69	-0.2	-0.37	-328.15
Ι	886.88	-0.45	-0.2	-0,13	-115.29

II .5 Action d'ensemble

La somme des forces vectorielles $F_{W,e}$, $F_{w,i}$, F_{fr} peut être utilisée pour déterminer la force résultante F_W exercée par le vent sur une construction ou un élément de construction, et on a :

- Forces extérieures : $F_{w,e} = C_d \times \sum W_e \times A_{ref}$
- Forces intérieures : $F_{w,i} = \sum W_i \times A_{ref}$
- Forces de frottement : $F_{fr} = C_{fr} \times q_p(z_e) \times A_{fr}$

II.5.1 Cas de vent perpendiculaire au pignon (V1)

II.5.1.1 Détermination de la force extérieure $F_{w,e}$:

Avec: $C_d = 1$ $W_e = q_p(z_e) \times C_{pe}$

II.5.1.1.1. Calcul de la pression extérieure W_p :

Tableau II.14 : Les résultats de calcul de la pression extérieure W_{pe} .

ZONE	$q_p(z_e) N/m^2$	C _{pe}	W_{pe} KN/m^2
D	817.13	+0.8	0.654
E	817.13	-0.3	-0.245
F	886.88	-1.38	-1.224
G	886.88	-1.3	-1.153
Н	886.88	-0.63	-0.559
Ι	886.88	-0.53	-0.47

II.5.1.1.2. Détermination de la force extérieure $F_{w,e}$:

Tableau II.15 : Les résultats de calcul de la force intérieure $F_{w,i}$.

Élément	ZONE	$W_{pe} (KN/m^2)$	$A_{ref}(m^2)$	Composantes	Composantes
				horizontales de	Verticales de
				$F_{W,e}$ (KN)	$F_{W,e}$ (KN)
Parois.V	D	0.654	187.06	122.34	0
Parois.V	E	-0.245	187.06	-45.83	0
Toiture	F	-1.224	10.51	0	-12.9
Toiture	G	-1.153	10.92	0	-12.59
Toiture	Н	-0.559	85.69	0	-47.9
Toiture	Ι	-0.47	209.52	0	-98.47
			F _{w,e} KN	76.51	-171.86

II.5.1.2. Détermination de la force intérieure $F_{w,i}$: $W_i = q_{p(zi)} \times C_{pi}$

II.5.1.2.1. Calcul de la pression intérieure Wi :

Tableau II.16 : Les résultats de calcul de la pression intérieure W_i .

Zone	$q_{p(zi)}$	C _{pi}	$W_i(N/m^2)$
D	817.13	-0,38	-310.51
E	817.13	-0,38	-310.51
F	886.88	-0,38	-337.01
G	886.88	-0,38	-337.01
Н	886.88	-0,38	-337.01
Ι	886.88	-0,38	-337.01

II.5.1.2.2. Calcul de force intérieure $F_{w,i}$:

,				-		
Élément	Zone	Cd	$W_i(KN/m^2)$	$A_{r \neq f}(m^2)$	Composantes	Composantes
				i ej 🔍 🧳	Ĩ	Ĩ
					horizontales de	verticales de
					$F_{w,i}$ (KN)	$F_{w,i}$ (KN)
					,.	,.
Parois.V	D	1	-0.31	187.06	-57.99	0
Parois.V	E	1	-0.31	187.06	-57.99	0
Toiture	F	1	-0.34	10.51	0	-3.57
					_	
Toiture	G	1	-0.34	10.92	0	-3.71
	_				_	
Toiture	Н	1	-0.34	85.69	0	-29.13
					-	
Toiture	Ι	1	-0.34	209.52	0	-71.24
	_	_			*	
					-115.98	-107.65
					1101/0	107100

Tableau II.17 : les résultats de calcul de la force intérieure $F_{w,i}$.

II.5.1.3. Détermination de la force de frottement F_{fr} :

Si (L'aire totale des surfaces parallèles au vent $[N/m2] \le 4 \times 1$ 'aire totale des surfaces perpendiculaires au vent) alors les effets de frottement du vent sur la surface peuvent être négligés. (Selon RNVA 2013, Chapitre 2, Article2.6.3).

Dans ce cas la direction du vent elle est perpendiculaire au pignon :

Calcul des surfaces parallèles au vent : La surface des deux parois verticales (long pan) :

$$S_{paroi} = [(7.95 \times 30.4) \times 2] = 483.36 \, m^2$$

La toiture qui est faiblement inclinée par rapport de la direction du vent :

$$S_{toit} = \frac{10.45}{\cos 12.41} \times 30.4 \times 2 = 638.11 \ m^2$$

Total des surfaces parallèles au vent :

$$S = S_{paroi} + S_{toit} = 483.36 + 638.11 = 1121.47 m^2$$

• Calcul des surfaces perpendiculaires au vent (et sous le vent) :

La surface des deux pignons :

$$S_{pignons} = \left[(7.95 \times 20.9) + (2.3 \times \frac{20.9}{2}) \right] \times 2 = 380.38 \ m^2$$

Vérification de la condition (article 2.6.3 RNVA2013)

1121.47 $m^2 < 380.38 \times 4 = 1521.52 m^2$ Condition vérifiée \checkmark

Donc on doit négliger l'effet de frottement, cas de vent perpendiculaire au pignon.

II.5.1.3. Calcul de la stabilité d'ensemble

Stabilité longitudinale (petite face au vent) :

Les valeurs des forces intérieures, extérieures et celles du frottement correspondant à la direction du vent V1 et les résultantes horizontales et verticales qui s'exercent sur la construction sont données dans le tableau ci -dessous :

	Action horizontale KN	Action verticale KN
F _{we}	76.51	0
F _{we}	0	-171.86
F _{wi}	-115.98	0
F _{wi}	0	-107.65
F _{fr}	0	0
Résultante F _{W,H}	-39.47	0
Résultante F _{W,V}	0	-279.51

Tableau II.18 : La force F_w résultante, cas V1.

Figure II.10 : stabilité longitudinale.

II.5.1.3.1. Calcul du moment de renversement :

$$M_r = \left(F_{W,H} \times \frac{h}{2}\right) + \left(F_{W,V} \times \frac{b}{2}\right) = \left(39.47 \times \frac{10.25}{2}\right) + \left(279.51 \times \frac{30.3}{2}\right) = 4436.86 \text{ KN. } m$$

II.5.1.3.2. Calcul du moment stabilisant

W= 0,5 kN/ m^2 , poids approximatif par m^2 de la surface en plan du bâtiment

$$W = 0.5 \times 20.9 \times 30.3 = 316.64 \, kN$$

$$M_s = w \times \frac{d}{2} = M_s = 316.64 \times \frac{30.3}{2} = 4797.1 \ kN.m$$

Donc : $M_R = 4436.86 \ kN. \ m < M_s = 4797.1 \ kN. \ m$ La stabilité longitudinale est vérifiée

II.5.2. Cas de vent perpendiculaire au long pan (V2)

II.5.2.1. Détermination de la force extérieure $F_{w,e}$:

II.5.2.1.1. Calcul de la pression extérieure W_{pe} :

Tableau II.19 : Les résultats de calcul de la pression extérieure W_{pe} .

ZONE	$q_p(z_e) N/m^2$	C _{pe}	W_{pe} KN/m^2
D	817.13	+0.8	0.654
E	817.13	-0.3	-0.245
F	88688	-1.11	-0.98
G	886.88	-0.9	-0.798
Н	886.88	-0.38	-0.337
Ι	886.88	-0.45	-0.399
J	886.88	-0.69	-0.612

II.5.2.1.2. Calcul de la force extérieure*F*_{w,e} :

Tableau II.20 : Les résultats de calcul de la force intérieure $F_{w,i}$.

Élément	ZONE	W_{pe} KN/m^2	$A_{ref} m^2$	Composantes	C _d	Composantes
				horizontales		Verticales de
				de $F_{W,e}$ KN		F _{W,e} KN
Parois. V	D	0.654	272.08	177.94	1	0
Parois. V	E	-0.245	272.08	-66.66	1	0
Toiture	F	-0.98	10.5	0	1	-10.29
Toiture	G	-0.798	41.31	0	1	-32.97
Toiture	Н	-0.337	255.36	0	1	-94.48
Toiture	Ι	-0.399	255.36	0	1	-101.89
Toiture	J	-0.612	62.32	0	1	-38.14
			F _{w,i} KN	111.28		-277.77
			(Résultante)			

II.5.2.2. Détermination de la force intérieure $F_{w,i}$:

Zone	$q_{p(zi)}$	C_{pi}	$W_i(N/m^2)$
D	817.13	-0,2	-163.426
E	817.13	-0,2	-163.426
F	886.88	-0,2	-177.376
G	886.88	-0,2	-177.376
Н	886.88	-0,2	-177.376
Ι	886.88	-0,2	-177.376
J	886.88	-0.2	-177.376

II.5.2.2.1. Calcul de la pression intérieure Wi:

Tableau II.21 : Les résultats de calcul de la pression extérieure W_i .

II.5.2.2.2. Calcul de force intérieure $F_{w,i}$:

Élément	Zon	Cd	$W_i(N/m^2)$	$A_{r\acute{e}f}(m^2)$	Composantes	Composantes
	e				horizontales de	verticales de
					$F_{w,i}$ (KN)	$F_{w,i}$ (KN)
Parois. V	D	1	-163.426	272.08	-44.46	0
Parois. V	E	1	-163.426	272.08	-44.46	0
Toiture	F	1	-177.376	10.5	0	-1.86
Toiture	G	1	-177.376	41.31	0	-7.33
Toiture	Н	1	-177.376	255.36	0	-45.29
Toiture	Ι	1	-177.376	255.36	0	-45.29
Toiture	j	1	-177.376	62.32	0	-11.05
					-88.92	-110.82

Tableau II.22 : Les résultats de calcul de la force intérieure F_{wi} .

II.5.2.3. Détermination de la force de frottement F_{fr} :

Dans ce cas la direction du vent est perpendiculaire au long-pan :

$$S_{pignons} = \left[(7.95 \times 20.90) + (2.30 \times \frac{20.90}{2}) \right] \times 2 = 380.38 \ m^2$$

La toiture qui est faiblement inclinée par rapport à la direction du vent

Calcul des surfaces parallèles au vent La toiture qui est faiblement inclinée par rapport de la direction du vent : $S_{toit} = \frac{10.25}{\cos 12.41^{\circ}} \times 30.40 \times 2 = 638.11 m^2$

• Calcul des surfaces des deux parois verticales (long-pan) :

$$S_{paroi vertical} = (7.95 \times 30.40) \times 2 = 483.36 m^2$$

Total des surfaces parallèles au vent :

 $S = 638.11 + 483.36 = 1121.47 m^2$ Vérification de la condition (article 2.6.3 RNVA2013) :

 $S = 1121.47 \ m^2 \ < 1521.52 \ m^2$ Condition vérifiée \checkmark

Donc on doit négliger l'effet de frottement, cas de vent perpendiculaire au long pan.

II.5.2.3. Calcul de la stabilité d'ensemble :

Tableau II.23 : La force F_w résultante, cas V2.

	Action horizontale KN	Action verticale KN
F _{we}	111.28	0
F _{we}	0	-277.77
F _{wi}	-88.82	0
F _{wi}	0	-110.82
F _{fr}	0	0
Résultante F _{W,H}	22.46	0
Résultante F _{W,V}	0	-388.59

Figure II.11 : stabilité transversale.

II.5.2.3.1. Calcul du moment de renversement :

$$M_r = \left(F_{W,H} \times \frac{h}{2}\right) + \left(F_{W,V} \times \frac{b}{2}\right)$$
$$M_r = \left(22.46 \times \frac{10.25}{2}\right) + \left(-388.59 \times \frac{20.90}{2}\right)$$
$$M_r = -3945.658 \ KN/m$$

II.5.2.3.2. Calcul du moment stabilisant :

$$M_s = w \times \frac{d}{2} = 316.64 \times \frac{20.9}{2} = 3319.756 \text{ KN. m}$$

 $M_s = 3319.756 \text{ KN}. \text{ } m > M_R = -3945.658 \text{ } \text{ } \text{KN}. \text{ } m \dots$ La stabilité transversale est vérifiée

Conclusion :

L'étude climatique est essentielle dans l'étude du hangar car elle permet de concevoir des structures adaptées aux conditions environnementales, de minimiser l'impact sur l'environnement et d'assurer une utilisation optimale des ressources

CHAPITRE III : ETUDE DES ELEMENTS SECONDAIRES.

INTRODUCTION

Nous procéderons au calcul des éléments de résistance qui représentent dans les pannes, les potelets, les lisses de bardage, qui seront soumis aux différents chargements. Ce calcul nous fournira les profils pouvant assurer la résistance et la stabilité de la structure. D'achever nos calculs, Les formules de vérification utilisées sont tirées de l'Eurocode3

III.1. LES PANNES :

Les pannes sont soumises à la flexion déviée sous l'effet du poids propre de la couverture, des actions climatiques et la surcharge d'entretien. Ils sont disposés parallèles à la ligne du faitage dans le plan de pente, et ils sont posées inclinées et réalisées soit en profile en I en U ou en H.

Figure III.1 : Disposition de la panne sur la toiture

III.1.1 DIMENSIONNEMENT DES PANNES :

• Espacement entre chaque panne e = 1.19 m

On a la longueur de versant de la toiture :

$$L = \frac{b/2}{\cos \alpha} = \frac{10.45}{\cos(12.41)} = 10.7 \text{m} \Rightarrow \frac{10.7}{1.2} = 8.92 \approx 9 \Rightarrow E_{\text{reel}} = \frac{10.7}{9} = 1.19 \text{ m}$$

- Chaque panne repose sur 2 appuis de distance L=6m.
- La pente de chaque versant est $\alpha = 12.41^{\circ}$
- Poids propre de la couverture (panneaux sandwichs) 12kg/m²

- Les pannes sont en acier S235 , fy =235 N/mm² (la limite d'élasticité de l'acier)
- E=21000 daN/ mm² (le module d'élasticité longitudinal de l'acier)

III.1.1.1. Détermination de la section de la panne :

III.1.1.2. Evaluation des charges et surcharges :

- Les charges permanentes (G) : (sauf P_{profilé})

 $G = (P_{couverture} + P_{accessoires}) \times e = (12 + 5 + 5) \times 1.19 = 26.18 \text{ daN/ml}$

- Surcharges d'entretien (E) :

La charge uniformément repartie q_E due aux surcharges d'entretien est obtenue en égalisant les deux flèches des charges uniformément reparties et celles des charges ponctuelles.

Figure III.2 : Schéma statique des surcharges d'entretien sur les pannes.

$$Q = \frac{8P}{3l} = \frac{8 \times 100}{3 \times 6} = 44.44 \ daN/ml$$

- Les charges variables :

Surcharges du vent (V) : La panne la plus sollicitée est celle exposée au vent Dans la zone F.

 $V = -88.69 \text{ daN}/\text{m}^2$ (la charge la plus défavorable).

$$V = -88.69 \times 1.19 = -105.54 \frac{\text{daN}}{\text{m}}$$

Surcharges de la neige (N) : La surcharge de neige est en fonction de site d'implantation de la construction (Région, altitude) et de la forme de toiture.

Figure III.3 : Surcharge climatique du vent

Par la projection horizontale suivant long pan on a :

 $N = 58 \times cos (12.41) = 56.64 \text{ daN/m}^2$

 $N = 56.64 \times 1.19 = 67.4 \text{ daN/ml}$

III.1.1.3. Combinaison des charges (ELS) :

On prend les combinaisons les plus défavorables :

 $q_1 = G + Q = 70.62 \text{ daN/ml}$

 $q_2 = G + V = -79.36 \text{ daN/ml}$

 $q_3 = G + N = 93.58 \text{ daN/ml}$

On prend $P_s = 93.58 \text{ daN/ml}$

Par projection :

$$P_s^z = P_s \times \cos(12.41) = 91.39 \frac{\text{daN}}{\text{ml}}$$

 $P_{s}^{y} = P_{s} \times \sin(12.41) = 20.11 \text{ daN/ml}$

III.1.1.4. Pré dimensionnement des pannes :

Dans notre cas on a Une poutre posée sur 2 appuis simples et une charge uniformément répartie donc la condition de flèche est :

Sens (z,z'):
$$f_z \le f_{adm} \to \frac{5 P_s^2 l^4}{384 E l_y} \le \frac{l}{200}$$

$$I_{y} \geq \frac{1000P_{s}^{z}l^{3}}{384E} \Rightarrow I_{y} \geq \frac{1000 \times 91.39 \times 10^{-2} \times 6000^{3}}{384 \times 2.1 \times 10^{5}} \times 10^{-4} = 244.79 \ cm^{4}$$

Sens (y,y'): $f_y \le f_{adm} \rightarrow \frac{5 P_s^y l^4}{384 E l_z} \le \frac{l}{200}$

$$I_{z} \ge \frac{1000 P_{s}^{y} l^{3}}{384E} \Rightarrow I_{z} \ge \frac{1000 \times 20.11 \times 10^{-2} \times 6000^{3}}{384 \times 2.1 \times 10^{5}} \times 10^{-4} = 53.67 \text{cm}^{4}$$

Donc le profile qui correspond est un IPE 160 dont les caractéristiques sont :

G	h	b	t_w	t _f	А	Iy	I _z	W _{pl,y}	W _{pl,z}
(kg/m)	(mm)	(mm)	(mm)	(mm)	(cm ²)	(cm ⁴)	(cm ⁴)	(cm ³)	(cm ³)
15.8	160	82	5	7.4	20.1	869.3	68.28	123.9	26.1

Tableau III.1 : Caractéristiques géométriques de l'IPE 160.

- Les charges permanentes (G) : (avec P_{profilé})

 $G = (P_{couverture} + P_{accessoires}) \times e + P_{profilé} = (12 + 5 + 5) \times 1.19 + 15.8 = 41.98 \text{ daN/ml}$

III.1.1.5. Les combinaisons de charge les plus défavorables :

A L'ELU :

1. Actions vers le bas \downarrow :

On prend $P_u = 1.35G + 1.5N = 157.77 \text{ daN/ml}$

Par projection :

$$P_u^z = P_u \times \cos(12.41) = 154.08 \frac{\text{daN}}{\text{ml}}$$

 $P_u^y = P_u \times \sin(12.41) = 33.91 \text{ daN/ml}$

2. Actions vers le haut \uparrow :

 $P_u^z = G \cos(12.41) - 1.5V = 41.98\cos(12.41) - 1.5 \times 105.54 = -117.31 \text{ daN/ml}$

$$P_u^y = G \sin (12.41) = 38.45 \sin (12.41) = 9.02 \text{ daN/ml}$$

A L'ELS :

On prend $P_s = G + N = 109.38 \text{ daN/ml}$

Par projection :

$$P_s^z = P_s \times \cos(12.41) = 106.82 \frac{daN}{ml}$$

 $P_s^y = P_s \times sin(12.41) = 23.51 \, daN/ml$

III-1-2 LES VERIFICATIONS

III.1.2.1. Vérification à la résistance en section :

Dans la condition de résistance à l'ELU, il faut faire les vérifications suivantes :

• A la flexion déviée :

$$\left(\frac{M_{sd,y}}{M_{pl,y}}\right)^{\alpha} + \left(\frac{M_{sd,z}}{M_{pl,z}}\right)^{\beta} \leq 1 \text{ ; avec } \alpha = 2 \text{ et } \beta = 1$$

$$M_{sd,y} = \frac{P_u^z \times l^2}{8} = \frac{154.08 \times 6^2}{8} = 693.36 \text{ daN. ml}$$
$$M_{pl,y} = \frac{W_{pl,y} \times f_y}{\gamma_{M_0}} = \frac{123.9 \times 10^3 \times 235}{1.1} = 2646.9 \times 10^4 \text{N. mm} = 2646.9 \text{ daN. ml}$$

$$M_{sd,z} = \frac{P_u^y \times l^2}{8} = \frac{33.91 \times 6^2}{8} = 152.6 \text{ daN. ml}$$

$$M_{pl,z} = \frac{W_{pl,z} \times f_y}{\gamma_{M_0}} = \frac{26.1 \times 10^3 \times 235}{1.1} = 557.6 \times 10^4 \text{ N. mm} = 557.6 \text{ daN. ml}$$

$$\left(\frac{693.36}{2646.9}\right)^2 + \left(\frac{152.6}{557.6}\right)^1 = 0.34 \le 1$$
Condition vérifiée

• À l'effort tranchant :

$$V_{sd,z} = \frac{P_u^z \times l}{2} \le V_{pl,z} = \frac{A_{vz} \times f_y}{\sqrt{3} \times \gamma_{M_0}}$$
$$\frac{154.08 \times 6}{2} \le \frac{9.7 \times 10^1 \times 235}{\sqrt{3} \times 1.1}$$

 $462.24 \le 11964.3$ daN..... Condition vérifiée

$$\begin{split} V_{sd,y} &\leq V_{pl,y} \\ \frac{0.625 \times P_u^y \times l}{2} \leq \frac{A_{vy} \times f_y}{\sqrt{3} \times \gamma_{M_0}} \\ \frac{0.625 \times 33.91 \times 6}{2} \leq \frac{12.8 \times 10^1 \times 235}{\sqrt{3} \times 1.1} \end{split}$$

63.58 ≤ 15787.91 daN.....Condition vérifiée

• Vérification au déversement (moment fléchissant) :

Déversement = flambement latéral + rotation de la section transversale

$$\frac{M_{sd,y}}{M_{dev}} + \frac{M_{sd,z}}{M_{pl,z}} \le 1$$

$$M_{sd,y} = \frac{117.31 \times 6^2}{8} = 528.17 \text{ daN. ml}; M_{sd,z} = \frac{11.15 \times 3^2}{8} = 10.15 \text{ daN. ml}$$

La classe de profile : Classe de l'âme : $\frac{d}{t_w} = \frac{127.2}{5} = 25.44 < 72$

Classe de la semelle :
$$\frac{b/2}{t_f} = \frac{82/2}{7.4} = 5.54 < 10$$

La section IPE 160 est de classe 1.

$$M_{dev} = X_{LT} \times \beta_w \times M_{pl,y} \text{ ; } M_{pl,y} = \frac{w_{pl,y} \times f_y}{\gamma_{M_0}}$$

 $\beta_w = 1$ section de classe 1

$$\lambda_{\rm LT} = \frac{\frac{l}{l_z}}{C_1^{0.5} \left(1 + \frac{1}{20} \left(\frac{l}{l_z}}{\frac{h}{t_f}}\right)^2\right)^{0.25}} = \frac{\frac{600}{1.84}}{1.132^{0.5} \left(1 + \frac{1}{20} \left(\frac{600}{\frac{1.84}{16}}\right)^2\right)^{0.25}} = 163.42$$

Avec : $C_1 = 1.132$

$$\lambda_{1} = 93.9\epsilon = 93.9 \sqrt{\frac{235}{f_{y}}} = 93.9 \sqrt{\frac{235}{235}} = 93.9$$
$$\overline{\lambda_{LT}} = \left(\frac{\lambda_{LT}}{\lambda_{1}}\right) \sqrt{\beta_{W}} = \left(\frac{163.42}{93.9}\right) \sqrt{1} = 1.74$$
$$\chi_{LT} = \frac{1}{\phi_{LT} + \left(\phi_{LT}^{2} - \overline{\lambda_{LT}}^{2}\right)^{0.5}}$$

 $\varphi_{LT} = 0.5 \left(1 + \alpha_{LT} (\overline{\lambda_{LT}} - 0.2) + \overline{\lambda_{LT}}^2 \right); \text{ avec } \alpha_{LT} = 0.21 \text{ pour les profils laminés}$

 $\varphi_{LT} = 0.5(1 + 0.21(1.74 - 0.2) + 1.74^2) = 2.18$

 $\Rightarrow \chi_{LT} = 0.286$

$$M_{dev} = 0.286 \times 1 \times \frac{123.9 \times 10^3 \times 235}{1.1} \times 10^{-4} = 757.03 \text{ daN.m}$$

$$\frac{528.17}{757.03} + \frac{10.15}{557.59} = 0.71 < 1....$$
 Condition vérifiée

III.1.2.2. Vérification à la flèche :

Sens (z,z'): $f_z \le f_{adm} \Rightarrow \frac{5 P_s^{z} l^4}{384 E l_y} \le \frac{l}{200} \Rightarrow \frac{5 \times 106.82 \times 10^{-2} \times 6000^4}{384 \times 2.1 \times 10^5 \times 869.3 \times 10^4} \le \frac{6000}{200}$

 $9.87 \leq 30 \text{ mm}$ Condition vérifiée

Sens (y,y'): $f_y \le f_{adm} \Rightarrow \frac{5 P_s^{y} l^4}{384 E l_z} \le \frac{l}{200}$

 $21.89 \leq 30 \ mm$ Condition vérifiée

Verification des	pannes :			
$e \coloneqq 1.19 \ m$	$f_y \coloneqq 235 \frac{N}{mm^2}$	$E \coloneqq 210000 \frac{N}{mm^2}$	$G \coloneqq 261.8 \frac{N}{m}$	<i>l</i> :=6 <i>m</i>
$Q \coloneqq 444.4 \frac{N}{m}$	$V \coloneqq -1055.4 \frac{N}{m}$	$N \coloneqq 674 \frac{N}{m}$	α:=12.41 °	
les combinaiso	ns des charges:			
ELS :				
$Q_1 := G + Q = 70$	$06.2 \frac{kg}{s^2} \qquad Q_2 := G$	$+V = -793.6 \frac{kg}{s^2}$	$Q_3 := G + N = 935.8$	$3\frac{kg}{s^2}$
$P_s \coloneqq max(Q_1, o)$	$Q_2, Q_3 = 935.8 \frac{kg}{s^2}$			
par projection	:			
$P_{sz} \coloneqq P_s \cdot \cos(\alpha)$	$() = 913.935 \frac{kg}{s^2}$	$P_{sy} \coloneqq P_s \cdot \sin(\alpha) = 2$	$\frac{kg}{s^2}$	
pre-dimensionnen	nent des pannes:			
$I_y \coloneqq \frac{1000 \cdot P_{sz} \cdot l^3}{384 \cdot E}$	$=244.804 \ cm^4 \qquad I_z$	$:=\frac{1000 \cdot P_{sy} \cdot l^3}{384 \cdot E} = 53$.868 cm ⁴	
$e \coloneqq 1.19 \ m \qquad f_y \coloneqq$	$=23.5 \frac{kg}{m^2}$ $E \coloneqq 210$	$000 \frac{kg}{m^2} G \coloneqq 41$	$.98 \frac{kg}{m} \alpha \coloneqq 12.4$	$1 \circ l \coloneqq 6 m$
$Q \coloneqq 44.44 \frac{kg}{m}$	$V = -105.54 \frac{kg}{m}$	$N \approx 67.4 \frac{kg}{m}$	$A \approx 20.1 \ cm^2$	
h=160 mm	$b := 82 \ mm$ $t_w := 5 \ mm$	$mm t_f := 7.4 \ mm$	$I_z = 68.28 \ cm^4$	Iy = 869.3 cm
$W_{ply} = 123.9 \cdot 10^3$	mm^3 $W_{plz} = 26.1 \cdot$	$10^3 mm^3 \qquad A_{vz} = 9$	$0.7 \ cm^2 \qquad A_{vy} = 12$.8 cm ²
$i_z = 1.84 \ cm$	$i_y = 6.58 \ cm$			
les combinaiso	ns des charges:			
A l'ELU :		A l'ELS :		
actions vers le	bas:	$P_{s1} \coloneqq G +$	$Q = 86.42 \frac{kg}{m}$	
$P_{u1} = 1.35 \ G +$	$1.5 \ V = -101.637 \ \frac{kg}{m}$	$P_{s2} \coloneqq G +$	$V = -63.56 \frac{kg}{m}$	#
$P_{u2} = 1.35 \ G +$	$1.5 \ N = 157.773 \ \frac{kg}{m}$	$P_{s3} \coloneqq G +$	$N = 109.38 \frac{kg}{m}$	
par projection :				
$P_{uz} = P_{u2} \cdot \cos($	$\alpha) = 154.087 \frac{kg}{m}$	$P_{sz} \coloneqq P_{s3}$	$\cos(\alpha) = 106.824$	kg m
$P_{uy} \coloneqq P_{u2} \cdot \sin($	$\alpha = 33.906 \frac{kg}{m}$	$P_{sy} \coloneqq P_{s3}$	$\sin(\alpha) = 23.506 \frac{k_{\ell}}{m}$	1

III-1-3 Les pannes calculées au logiciel de Mathcad Prime :

Chapitre III : étude des éléments secondaires.

actions vers le haut :

$$P_{u,2} := G \cdot \cos(\alpha) + 1.5 \cdot V = -117.311 \frac{kg}{m}$$

$$P_{ugc} := G \cdot \sin(\alpha) = 0.022 \frac{kg}{m}$$
verification à l'ELU:
1) A la flexion dévice : $\left(\frac{M_{ugg}}{M_{pgg}}\right)^2 + \frac{M_{ufc}}{M_{pfc}} < 1$

$$M_{ugg} := P_{ug} \cdot \frac{l^2}{s} = 693.39 kg \cdot m$$

$$M_{pfg} := \frac{W_{ug} \cdot f_g}{1.1} = 557.591 kg \cdot m$$

$$M_{ufc} := P_{ug} \cdot \frac{l^2}{s} = 152.578 kg \cdot m$$

$$M_{pfg} := \frac{W_{ug} \cdot f_g}{1.1} = 557.501 kg \cdot m$$

$$Condition verifiée$$
2) a l'effort tranchant : $V_{ufc} \le V_{pfc}$ et $V_{ufg} \le V_{pfg}$

$$V_{ufc} := \frac{P_{ug} \cdot l}{2} = 462.26 kg$$

$$V_{pfc} := \frac{A_{uc} \cdot f_g}{\sqrt{3} \cdot 1.1} = (1.196 \cdot 10^6) kg$$

$$462.26 < 11960$$

$$V_{ugg} := \frac{0.625 \cdot P_{ug} \cdot l}{2} = 63.574 kg \cdot V_{pfg} := \frac{A_{uc} \cdot f_g}{\sqrt{3} \cdot 1.1} = (1.579 \cdot 10^6) kg$$

$$101.719 < 15790$$
3) Verification au deversement (moment flechissant) :

$$\frac{M_{ufg}}{M_{ugg}} + \frac{M_{ufc}}{M_{ufg}} \le 1$$

$$M_{ufg} := -P_{ug2} \cdot \frac{l}{8} = 527.899 kg \cdot m$$

$$M_{ufc} := P_{ug4} \cdot \frac{l}{8} = 10.149 kg \cdot m$$

$$\frac{M_{ufg}}{M_{ufg}} + \frac{M_{ufc}}{M_{ufg}} \le 1$$

$$M_{ufg} := -P_{ug2} \cdot \frac{l}{8} = 527.899 kg \cdot m$$

$$M_{ufc} := P_{ug4} \cdot \frac{l}{8} = 10.149 kg \cdot m$$

$$\frac{M_{ufg}}{M_{ufg}} + \frac{M_{ufc}}{M_{ufg}} = 0.211$$

$$\lambda_{LT} := \frac{l}{20}$$

$$\lambda_1 := 93.9 \cdot \sqrt{\frac{235}{235} = 93.9} \lambda := \left(\frac{\lambda_{LT}}{\lambda_1}\right) \cdot \sqrt{\beta_w} = 1.74$$

$$\phi_{LT} := 0.5 \cdot (1 + \alpha_{LT} \cdot (\lambda - 0.2) + \lambda^2) = 2.176$$

$$\chi_{LT} := \frac{1}{\phi_{LT} + (\phi_{LT}^2 - \lambda^2)^{u_{LG}}} = 0.287$$

$$M_{ufw} := \chi_{LT} \cdot \beta_w \cdot M_{pfg} = 760.077 kg \cdot m$$

$$\frac{M_{ufg}}{M_{ufw}} + \frac{M_{ufc}}{M_{pfg}} = 0.713$$

$$Condition verifiée$$

$$Verification a la flèche : f_{2} \le f_{udm} et$$

$$f_{2} \le f_{udm} = \frac{l}{200} = 0.03 m$$

$$f_{2} \le \frac{5 P_{ug} \cdot l^4}{344 \cdot E_{1} \cdot f_{u}} = 0.01 m$$

$$0.01 < 0.03$$

$$Condition verifiée$$

$$I_{2} = \frac{5 P_{ug} \cdot l^4}{344 \cdot E_{1} \cdot f_{u}} = 0.028 m$$

$$O = 0.028 < 0.03$$

$$Condition verifiée$$

III-2 LES LISSES DE BARDAGE

Les lisses de bardages sont constituées de poutrelles IPE, UPA ou de profiles minces pliés qui ont pour fonction de supporter les couvertures des façades (bardage) et les charges s'appliquant sur ces bardages, ils sont disposés horizontalement à entraxes constants, portant sur les poteaux de portique ou potelets intermédiaires.

Espacement des lisses :

•	h : hauteur	de poteaux	h=7.95 m
---	-------------	------------	----------

- n : nombre des lisses $n = \frac{h}{2} = 4$ lisses
- e : espacement des lisses $e = \frac{h}{n} = 2.00 \text{ m}$

III-2-1 Dimensionnement des lisses :

Pour dimensionner, on tiendra compte de la valeur la plus défavorable entre la pression de vent exercée sur le long-pan et celle sur le pignon.

Les données :

- Poids propre de la couverture (panneaux sandwichs) 12 kg/m2
- Poids propre d'isolants 5 kg/m2
- Poids propre d'accessoires de pose...... 5 kg/m2
- Poids propre de la lisse estimé à déterminer.

III.2.1.1. Pré dimensionnement des lisses :

La condition de flèche est :

Sens (z, z'):
$$f_z \le f_{adm} \Rightarrow \frac{5 P_s^z l^4}{384 E l_y} \le \frac{l}{200}$$

$$\Rightarrow I_y \ge \frac{1000P_s^Z l^3}{384E} = \frac{1000 \times 192.84 \times 10^{-2} \times 6000^3}{384 \times 2.1 \times 10^5} \times 10^{-4} \Rightarrow I_y \ge 516.54 \ cm^4$$

Donc le profile qui correspond est un UPN140 dont les caractéristiques sont : **Tableau III.2 :** Caractéristiques géométriques de l'UPN140.

	G	h	b	t _w	t _f	А	Iy	Iz	W _{pl,y}	W _{pl,z}
	kg m	mm	mm	mm	mm	cm ²	cm ⁴	cm ⁴	cm ³	cm ³
UPN140	16.0	140	60	7.0	10	20.4	605	62.7	103	14.8

- Charges permanentes : (Perpendiculaire à l'âme)

 $P^{y} = (P_{couverture} + P_{isolants} + P_{accesoires}) + P_{lisse} \times e = (12 + 5 + 5) + 16 \times 2 = 54 \text{ daN/ml}$

- Surcharges climatiques du vent : (suivant le plan de l'âme)

 $V = 964.21 \ N/\ m^2 = 96.42 \ daN/\ m^2$

 $P^{z} = V \times e = 96.42 \times 2 = 192.84 \text{ daN/ml}$

Les lisses sont appuyées sur deux poteaux de portée L=6 m, elles sont soumises à la flexion bi axiale.

Figure III.4 : La répartition des charges sur les lisses de long pan.

III-2-2 Vérification à la résistance en section :

Dans la condition de résistance à l'ELU, il faut faire les vérifications suivantes :

III.2.2.1. Vérification à la flexion :

Pour cette vérification on utilise la condition suivante pour les sections de classes 1 et 2 Dans

notre cas :
$$\left(\frac{M_{y,sd}}{M_{ply,sd}}\right)^{\alpha} + \left(\frac{M_{z,sd}}{M_{plz,sd}}\right)^{\beta} \le 1$$

La section est UPN donc $\alpha = 2$ et l'effort normal N_{sd} = 0 donc : $\beta = 1$

$$M_{sdy} = \frac{1.5 \times P_{u}^{z} \times l^{2}}{8} = \frac{1.5 \times 192.84 \times 6^{2}}{8} = 1301.67 \text{ Kg. m}$$

$$M_{sdz} = \frac{1.35 \times P_{u}^{y} \times \frac{l^{2}}{2}}{8} = \frac{1.35 \times 54 \times \frac{6^{2}}{2}}{8} = 82.01 \text{ Kg. m}$$

$$M_{ply} = \frac{W_{ply} \times f_{y}}{\gamma_{M0}} = \frac{103 \times 10^{3} \times 235}{1} = 2420.5 \text{ Kg. m}$$

$$M_{plz} = \frac{W_{plz} \times f_{y}}{\gamma_{M0}} = \frac{14.8 \times 10^{3} \times 235}{1} = 347.8 \text{ Kg. m}$$

$$\left[\frac{1301.67}{2420.5}\right]^{2} + \left[\frac{82.01}{347.8}\right]^{1} = 0.52 < 1 \dots \text{ condition vérifiée}$$

38

III.2.2.2 Vérification au cisaillement :

 $V_{sdy} \leq V_{ply} \qquad V_{sdz} \leq V_{plz}$ $V_{sdy} = 0.625 \times P_{u}^{y} \times \frac{1}{2} = 0.625 \times 1.35 \times 54 \times \frac{6}{2} = 136.69 \text{ daN}$ $V_{sdz} = \frac{P_{u}^{z} \times 1}{2} = \frac{1.5 \times 192.84 \times 6}{2} = 867.78 \text{ daN}$ $V_{ply} = \frac{A_{vy} \times f_{y}}{\sqrt{3} \times \gamma_{M0}} = \frac{12^{2} \times 23.5}{\sqrt{3} \times 1} = 1953.75 \text{ daN}$ $V_{plz} = \frac{A_{vz} \times f_{y}}{\sqrt{3} \times \gamma_{M0}} = \frac{10.41 \times 10^{2} \times 23.5}{\sqrt{3} \times 1} = 14124 \text{ daN}$ $V_{sdy} = 136.69 \text{ daN} < V_{ply} = 1953.75 \text{ daN} \dots \text{Condition vérifiée}$ $V_{sdz} = 867.78 \text{ daN} < V_{plz} = 14124 \text{ daN} \dots \text{Condition vérifiée}$

Dans la condition de résistance à l'ELS, il faut faire les vérifications suivantes :

III.2.2.3. Vérification de la flèche :

Le calcul de la flèche se fait par la combinaison de charge et surcharge de service (non pondérées)

$$f_y \le \overline{f}_y$$
 $f_z \le \overline{f}_z$

 $f_{y} = \frac{5 \times P_{s}^{y} \times l^{4}}{384 \times E \times I_{z}} = \frac{5 \times 54 \times 10^{-2} \times \frac{6000^{4}}{2}}{384 \times 2.1 \times 10^{5} \times 62.7 \times 10^{4}} = 4.33 \text{ mm}$

$$\overline{f}_y = \frac{\frac{1}{2}}{200} = \frac{\frac{6000}{2}}{200} = 15 \text{ mm}$$

<....

 $f_y = 4.33 \text{ mm} < \overline{f}_y = 15 \text{ mm} \dots \text{condition vérifiée}$

$$f_{z} = \frac{5 \times P_{s}^{z} \times l^{4}}{384 \times E \times I_{y}} = \frac{5 \times 192.84 \times 10^{-2} \times 6000^{4}}{384 \times 2.1 \times 10^{5} \times 605 \times 10^{4}} = 25.61 \text{ mm}$$

$$\overline{f}_z = \frac{1}{200} = \frac{6000}{200} = 30 \text{ mm}$$

 f_z = 25.61 mm $\,<\,\overline{f}_z$ = 30 mm condition vérifiée

III.2.2.4. Vérification au déversement :

Il n'y a pas le risque de déversement de la lisse du moment que la semelle comprimée est soutenue latéralement sur toute sa longueur (cas de vent de pression).

CONCLUSION :

Le profilé UPN 140 est vérifiée à la sécurité.

III-2-3 le calcul par logiciel Mathcad prime :

Laws		Watered Diese 12 C	the sectors and the det	gelgene fan og Konside		
and all all and all and all and all and all all and all all and all all and all all all all all all all all all al		ir π Normania Contents	ing in the second	m Geodesia an U	n lag magai Tig na an Bi con-	
2	1000			17755		
les lisses de ba	rdage :	h≔7.95 m		<i>n</i> := 4	e:=2.00 m	
prédimmension	nement :	$P_z := 192.84$	kg m	<i>l</i> :=6.00 <i>m</i>	$E \coloneqq 21000 \frac{k}{m}$	$\frac{g}{n^2}$
5- 384	$\frac{\cdot P_z \cdot l^4}{1 \cdot E \cdot l'_y} \leq \frac{l}{200}$	+	$I'_y \coloneqq \frac{5}{2}$	$\frac{200 \cdot P_z \cdot l^3}{384 \cdot E} = 5$	16.536 <mark>cm⁴</mark>	
lisses UPN 140						
$G \coloneqq 16 \frac{kg}{m}$	h:=140 mm	b := 60 n	ım	t _w :=7.0 mm	$t_f := 10$ r	nm
$I_y \coloneqq 605 \text{ cm}^4$	$I_z := 62.7 \ cm^4$	$W_{ply} \coloneqq 1$	03 cm ³	$W_{plz} := 14.8 \ c$	m^3 $A \coloneqq 20.4$	cm ²
$P_y = 54 \frac{kg}{m}$	$A_{vy} = 12 \ cm^2$	$A_{vz} \coloneqq 10$.41 cm ²	K .		
vérifications de	résistance :	$f_y := 23.5$	$\frac{kg}{mm^2}$	$\gamma_{M0}\coloneqq 1$	$\alpha = 2 \qquad \beta =$	= 1
ELU						
à la flexion :				135.P.(() ²	
$M_{ysd} \coloneqq \frac{1.5 \cdot P_z}{8}$	$\frac{t^2}{2} = (1.302 \cdot 10^3)$	") kg•m	M_{zsd}	$= \frac{1.00 \cdot 1_{y} \cdot \left(\frac{1}{2}\right)}{8}$	$= 82.013 \ kg$	• m
$M_{plysd} \coloneqq \frac{W_{ply} \cdot}{\gamma_{M0}}$	$\frac{f_y}{2} = \langle 2.421 \cdot 10^3 \rangle$)	M_{plz}	$_{sd} := rac{W_{plz} \cdot f_y}{\gamma_{Mo}} =$	347.8 kg • m	
$\left(\frac{M_{ysd}}{M_{plys}} \right.$ au cisaillement	$\left(\frac{u}{d}\right)^{lpha} + \left(\frac{M_{zsd}}{M_{plzsd}}\right)^{eta}$:	=0.525	0.	525<1	condition vérif	iée
$V_{sdy} = 0.625 \cdot 1$	$.35 \cdot P_y \cdot \frac{l}{2} = 136$.688 kg	V_{sdz} :	$=\frac{1.5 \cdot P_z \cdot l}{4} = 8$	367.78 kg	
$V_{ply} \coloneqq \frac{A_{vy} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}}$	$==(1.628 \cdot 10^4)$	kg	V_{plz} :	$=\frac{A_{vz}\cdot f_y}{\sqrt{3}\cdot\gamma_{M0}}=($	1.412•10 ⁴) kg	
ELS	$V_{sdy} {<} V_{ply}$	et	V	$_{sdz} < V_{pdz}$	condition vérif	iée
la fléche		,				
$\frac{5 \cdot P_y \cdot \left(\frac{i}{2}\right)}{384 \cdot E \cdot I_z} = 4$	$.325 mm = \frac{1}{20}$	$\frac{1}{20} = 15 mm$	5.1 384	$\frac{P_z \cdot l^4}{E \cdot I_y} = 25.613$	$3 mm \frac{l}{200} = 30$) 1111
	$1.325 \ mm < 15 \ mm$	nm et	25.613	mm < 30 mm	condition vérif	iée

III-3 LES POTELETS

- La longueur de la lisse L = 5.225 m
- Entre-axe e = 5.225 m
- Les potelets sont en acier S235

III-3-1 DIMENSIONNEMENT DES POTELETS

III.3.1.1. Action et sollicitations

Poids du bardage	12 Kg/m ² .
Poids propre d'isolants	5 kg/m2.
Poids propre d'accessoires de pose	5 kg/m2.
Poids des lisses UPN140	16 Kg/m².
Poids propre du potelet	à déterminer.
Action du vent sur le pignon	96.42 Kg/m².

III.3.1.2. Calcul les Surcharges climatiques V revenants au potelet le plus chargé (potelet du milieu)

 $V = v \times e = 96.42 \times 5.225 = 503.79 \text{ daN/ml}$

III.3.1.3. Détermination de la section de potelet :

• Sous la condition de la flèche

La vérification de la flèche se fait sous les charges non pondérées : V = 503.79 daN/ml

 $f_z \leq \ \overline{f}_z$

$$I_{y} \ge \frac{5 \times 200 \times V \times l^{3}}{384 \times E} = \frac{5 \times 200 \times 503.79 \times 10^{-2} \times 10250^{3}}{384 \times 2.1 \times 10^{5}} \times 10^{-4} = 6727.76 \text{ cm}^{4}$$

Ce qui correspond à un profilé HEA240 ($I_v = 7763.2 \ cm^4$)

Tableau III.3 : Caractéristiques géométriques de HEA 240.
--

h	b	Р	А	I _y	I_z	W_{ply}	W_{plz}	A_{vy}	A_{vz}
(mm)	(mm)	(kg/m)	(<i>cm</i> ²)	(<i>cm</i> ⁴)	(<i>cm</i> ⁴)	(<i>cm</i> ³)	(<i>cm</i> ³)	(<i>cm</i> ²)	(<i>cm</i> ²)
230	240	60.3	76.8	7763.2	2768.9	744.6	351.7	59.7	25.2

III.3.1.4. Calcul de la charge permanent G :

 $G_{bardage} = P_{bardage} \times l \times e = 22 \times 10.25 \times 5.225 = 1178.24 \text{ daN}$

 $G_{lisse} = P_{lisse} \times n_{lisse} \times e = 16 \times 4 \times 5.225 = 334.4 \text{ daN}$

 $G_{potelet} = P_{profilé} \times l_{profilé} = 60.3 \times 10.25 = 618.075 \text{ daN}$

$$G = \sum G_{\text{bardage}} + G_{\text{lisse}} + G_{\text{potelet}} = 1178.24 + 334.4 + 618.075 = 2130.7 \text{ daN}$$

III-3-2 vérification de la section a la résistance :

• Vérification de la flèche à L'ELS : $f_z \le \overline{f}_z$

$$f_{z} = \frac{5 \times V \times l^{4}}{384 \times E \times I_{y}} = \frac{5 \times 503.79 \times 10^{-2} \times 10250^{4}}{384 \times 2.1 \times 10^{5} \times 7763.2 \times 10^{4}} = 44.41 \text{ mm}^{4}$$
$$\overline{f_{z}} = \frac{10250}{200} = 51.25 \text{ mm}^{4}$$

 $f_z=44.41\ mm^4 < \overline{f_z}=51.25\ mm^4$ Condition vérifiée

• Incidence de l'effort tranchant

$$Q_{z,sd} = 1.5V = 1.5 \times 503.79 = 755.685 \text{ daN/ml}$$
$$V_{z,sd} = \frac{Q_{z,sd} \times L}{2} = \frac{755.685 \times 10.25}{2} = 3872.89 \text{ daN}$$
$$V_{pl,z,Rd} = \frac{A_{vz} \times f_y}{\sqrt{3} \times \gamma_{M0}} = \frac{25.2 \times 2350}{\sqrt{3} \times 1.1} = 31082.44 \text{ daN}$$

 $V_{sd} = 3872.89 \ daN < 0.5 \ V_{pl,Rd} = 15541.22 \ daN$ Condition vérifiée

L'incidence de l'effort tranchant sur le moment résistant peut-être négligée

• Incidence de l'effort normal

$$N_{sd} = 1.35 \ G = 1.35 \times 2130.7 = 2876.45 \ daN$$
$$N_{pl,Rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{76.8 \times 2350}{1.1} = 164072.73 \ daN$$
$$0.25 \ N_{pl,Rd} = 0.25 \times 164072.73 = 41018.18 \ daN$$
$$A_w = (A - 2b \ t_f) = 76.8 - 2 \times 24 \times 1.2 = 19.2 \ cm^2$$

Chapitre III : étude des éléments secondaires.

$$0.5 \frac{A_w \times f_y}{\gamma_{M0}} = 0.5 \times \frac{19.2 \times 2350}{1.1} = 20509.09 \, daN$$
$$N_{sd} \le \min\left(0.25 \, N_{pl,Rd} \, , 0.5 \, \frac{A_w \times f_y}{\gamma_{M0}}\right)$$
$$N_{sd} = 2876.45 \, daN \le 0.5 \, \frac{A_w \times f_y}{\gamma_{M0}} = 20509.09 \dots \text{condition vérifiée}$$

L'incidence de l'effort normal sur le moment résistant peut-être négligée

Classe du profilé

Classe de l'âme fléchie :
$$\frac{c}{t_w} = \frac{d}{t_w} = \frac{164}{7.5} = 21.9 < 36\varepsilon$$
 classe 1

Classe de la semelle comprimée : $\frac{c}{t_f} = \frac{b/2}{t_f} = \frac{(240/2)}{12} = 10 = 10$ classe 1

$$M_{c,Rd} = M_{pl,Rd} = \frac{W_{ply} \times f_y}{\gamma_{M0}} = \frac{744.6 \times 23.5}{1.1} = 15907.36 \ daN.m$$
$$M_{y,sd} = \frac{Q_{z,sd} \times l^2}{8} = \frac{755.685 \times 6^2}{8} = 3400.59 \ daN.m$$
$$M_{y,sd} = 3400.59 \ daN.m < M_{ply,Rd} = 15907.36 \ daN.m$$

III-3-3 vérification de l'élément aux instabilités

Tableau III.3 : Les données du flambement et déverse	ement
--	-------

	l (cm)		Elancement	Courbe de	Facteur de		
		λ	réduit $\bar{\lambda}$	flambement	réduction χ		
Suivant y-y 1025		101.99	101.99 1.09		0.5352		
Suivant z-z	200	33.33	0.35	c : $\alpha = 0.49$	0.4842		
	λ_1	λ_{LT}	$\overline{\lambda}_{LT}$	α_{LT}	XLT		
	93.91	30.25	0.32	0.21	0.98		
	$\bar{\lambda}_{LT} > 0.4$ il y'a pas rique de déversement						
μ _y ≤ 0.9	$\mu_z \leq 0.9$	$K_y \leq 1.5$	$K_z \leq 1.5$	$\mu_{LT} \leq 1.5$	$K_{LT} \leq 1$		
-5.78		1.13		0.06	0.99		

43

III.3.3.1 Flexion compose avec risque de flambement

$$\left(\frac{N_{sd}}{\chi_{min} \times N_{pl,Rd}}\right) + \left(\frac{K_y \times M_{y,sd}}{M_{ply,Rd}}\right) \le 1 \Rightarrow \left(\frac{2876.45}{0.4842 \times 164072.73}\right) + \left(\frac{1.13 \times 3400.59}{15907.36}\right) = 0.27 < 1 \ .$$

III.3.3.2. Flexion compose avec risque de déversement

$$\left(\frac{N_{sd}}{\chi_z \times N_{pl,Rd}}\right) + \left(\frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times M_{ply,Rd}}\right) \le 1 \Rightarrow \left(\frac{2876.45}{0.4842 \times 164072.73}\right) + \left(\frac{0.99 \times 3400.59}{0.98 \times 13416.36}\right) = 0.29 < 1000$$

Condition vérifiée

III-3-4 le calcul par logiciel de Mathcad prime :

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	National Section	Entrée/Sonte /	fondsons	Viatr pes/Tables	Tacés	Wise en forme	0.02	Document	Démai	nage.			
$\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \sum_{n=1}^{\infty} \frac{1}$	1001 (73)	the tax occupy.		*	3	if	π	em.	a.	m	Système d'u	nites: 9 -	No Oran
Jame Jame <t< th=""><th>Provefants Secon</th><th>A Zete ce tude</th><th>Supprinter</th><th>Opiniteirs *</th><th>Symbolan +</th><th>Programme los -</th><th>Constantes</th><th>Lbeits</th><th>Indor</th><th>Ureas -</th><th>111 United at the</th><th>60</th><th>Const Const</th></t<>	Provefants Secon	A Zete ce tude	Supprinter	Opiniteirs *	Symbolan +	Programme los -	Constantes	Lbeits	Indor	Ureas -	111 United at the	60	Const Const
1) Pré-dimensionnement des potelets: $H = 10.25 m e = 5.225 m l = 10.25 m V = 503.76 \frac{kg}{m} E = 21000 \frac{kg}{mm^2}$ Ona $f_z \le f_{suden}$ donc $I_y = \frac{5 \cdot 200 \cdot V \cdot l^2}{384 \cdot E} = (6.728 \cdot 10^3) cm^4$ on choisis le profilé HEA240 $h = 230 mm h = 240 mm l_y = 7.5 mm l_f = 12 mm i_y = 10.05 cm i_z = 6.00 cm$ $A = 76.8 cm^2 A_{uz} = 25.2 cm^2 W_{ply} = 744.6 cm^3 W_{plz} = 351.7 cm^3 G = 2130.7 kg$ $W_{ely} = 675.1 cm^3 I_y = 7763.2 cm^4 I_z = 2768.9 cm^4 f_{yz} = 235. \frac{kg}{mm^2} \gamma_{Mm} = 1.1$ 2) vérifications des potelets: $l_z = 200 cm l_y = 1025 cm \alpha_{LT} = 0.21 C_1 = 1.132 \beta_{MT} = 1.3 \beta_{MLT} = 1.3$ $- ELS : la fléche \beta_{A} = 1$ $f_z = \frac{5 \cdot V \cdot l^4}{384 \cdot E \cdot I_y} = 44.414 mm et f_{sudm} = \frac{l}{200} = 51.25 mm$ $- Incidence de l'effort tranchant f_z < f_{sudm} = \frac{Q_{md} \cdot l}{2} = (3.873 \cdot 10^3) kg$ $V_{plzlkl} = \frac{A_{m} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (3.108 \cdot 10^4) kg et 0.5 \cdot V_{plzlkl} = (1.554 \cdot 10^4) kg$ $V_{ud} < 0.5 \cdot V_{plzlkl} = (0.473 \cdot 10^4) kg$ $A_{u} = A - 2 \cdot b \cdot l_f = 19.2 cm^2$ $A_{u} = \frac{L}{10} = 200 cm l_{u} = 100 cm^2$ $A_{u} = \frac{L}{10} = 10.99$ $A_{u} = \frac{L}{4} = \frac{4}{33.33}$		Zanas	me		Colores	n m qyrcholes		Second			124564		Press-sapie
1) Pré-dimensionnement des potelets: $H = 10.25 \text{ m}$ $e = 5.225 \text{ m}$ $l = 10.25 \text{ m}$ $V = 503.79 \frac{kg}{m}$ $E = 21000 \frac{kg}{mm^2}$ Ona $f_z \le f_{zadan}$ donc $I_y = \frac{5 \cdot 200 \cdot V \cdot l^3}{384 \cdot E} = (6.728 \cdot 10^3) \text{ cm}^4$ on choisis le pofilé HEA240 $h = 230 \text{ mm}$ $h = 240 \text{ mm}$ $l_w = 7.5 \text{ mm}$ $l_f = 12 \text{ mm}$ $i_y = 10.05 \text{ cm}$ $i_z = 6.00 \text{ cm}$ $A = 76.8 \text{ cm}^2 A_{wz} = 25.2 \text{ cm}^2$ $W_{pby} = 744.6 \text{ cm}^2$ $W_{pbz} = 351.7 \text{ cm}^3$ $G = 2130.7 \text{ kg}$ $W_{eby} = 675.1 \text{ cm}^3$ $I_y = 7763.2 \text{ cm}^4$ $I_z = 2768.9 \text{ cm}^4$ $f_y = 23.5 \frac{kg}{mm^2}$ $\gamma_{M0} = 1.1$ 2) vérifications des potelets: $l_z = 200 \text{ cm}$ $l_y = 1025 \text{ cm}$ $\alpha_{LT} = 0.21$ $C_1 = 1.132$ $\beta_{MY} = 1.3 \beta_{MLT} = 1.3$ $\cdot \text{ELS}$: la flèche $\beta_{A} = 1$ $f_z = \frac{5 \cdot V \cdot l^4}{384 \cdot E \cdot l_y} = 44.414 \text{ mm}$ et $f_{zadm} = \frac{l}{200} = 51.25 \text{ mm}$ - Incidence de l'effort tranchant $Q_{zad} = 1.5 V = 755.685 \frac{kg}{m}$ et $V_{zad} = \frac{Q_{zad} \cdot l}{2} = (3.873 \cdot 10^3) \text{ kg}$ $V_{pdzBd} = \frac{A_{cr} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (3.108 \cdot 10^3) \text{ kg}$ et $0.5 \cdot V_{pdzBd} = (1.554 \cdot 10^4) \text{ kg}$ $N_{zd} < 0.5 \cdot V_{pdzBd}$ = $(9.473 \cdot 10^4) \text{ kg}$ $A_w = A - 2 \cdot b \cdot l_f = 19.2 \text{ cm}^2$ $A_w = A - 2 \cdot b \cdot l_f = 19.2 \text{ cm}^2$ $0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{AO}} = (2.051 \cdot 10^4) \text{ kg}$ $A_w = A - 2 \cdot b \cdot l_f = 19.2 \text{ cm}^2$ $0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{AO}} = (2.051 \cdot 10^4) \text{ kg}$ $A_w = A - 2 \cdot b \cdot l_f = 19.2 \text{ cm}^2$ $0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{AO}} = (2.051 \cdot 10^4) \text{ kg}$ $A_w = A - 2 \cdot b \cdot l_f = 19.2 \text{ cm}^2$ $0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{AO}} = (2.051 \cdot 10^4) \text{ kg}$ $A_w = A - 2 \cdot b \cdot l_f = 19.2 \text{ cm}^2$ $0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{AO}} = (2.051 \cdot 10^4) \text{ kg}$ $A_w = A - 2 \cdot b \cdot l_f = 19.2 \text{ cm}^2$ $0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{AO}} = (2.051 \cdot 10^4) \text{ kg}$ $A_w = \frac{A_w \cdot f_y}{i_y} = (10.99 $ $\lambda_z = \frac{A_z}{i_z} = \frac{A_z}{3.333}$	elet												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1) Pré-di	mension	inement	des pote	elets:							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$H \approx 10.2$	5 m	e = 5.22	5 m	<i>l</i> := 10.2	5 m	V:= 503.	79 kg	7	E == 210	000 kg mn	22
on choisis le profilé HEA240 h=230 mm b=240 mm t_{W} =7.5 mm t_{f} =12 mm i_{y} =10.05 cm i_{z} =6.00 cm A=76.8 cm ² A_{wz} =25.2 cm ² W_{ply} =744.6 cm ³ W_{plz} =351.7 cm ³ G=2130.7 kg W_{ely} :=675.1 cm ³ I_{y} :=7763.2 cm ⁴ I_{z} :=2768.9 cm ⁴ f_{y} :=23.5 $\frac{kg}{mm^{2}}$ γ_{M0} :=1.1 2) vérifications des potelets: l_{z} :=200 cm l_{y} :=1025 cm α_{LT} :=0.21 C_{1} := 1.132 β_{MT} :=1.3 β_{MLT} :=1.3 -ELS : la fléche β_{A} :=1 f_{z} := $\frac{5 \cdot V \cdot l^{4}}{38 \cdot E \cdot I_{y}}$ =44.414 mm et f_{zadm} := $\frac{l}{200}$ =51.25 mm - Incidence de l'effort tranchant $f_{z} < f_{zadm}$ condition vérifiée Q_{zad} :=1.5 V =755.685 $\frac{kg}{m}$ et V_{zad} := $\frac{Q_{zad} \cdot l}{2}$ =(3.873 \cdot 10^{3}) kg V_{plzhlt} := $\frac{A_{ez} \cdot f_{y}}{\sqrt{3} \cdot \gamma_{M0}}$ =(3.108 \cdot 10^{4}) kg et $0.5 \cdot V_{plzhld}$ =(1.554 \cdot 10^{3}) kg $V_{zad} < 0.5 \cdot V_{plzhd}$ condition vérifiée - Incidence de l'effort normal $N_{zd} < 0.5 \cdot V_{plzhd}$ condition vérifiée - Incidence de l'effort normal $N_{zd} < 0.5 \cdot V_{plzhd}$ condition vérifiée - Incidence de l'effort normal $N_{zd} < 0.5 \cdot V_{plzhd}$ condition vérifiée - Incidence de l'effort normal $N_{zd} < 0.5 \cdot V_{plzhd}$ condition vérifiée - Incidence de l'effort normal $N_{zd} < 0.5 \cdot V_{plzhd}$ condition vérifiée - Incidence de l'effort normal $N_{zd} < 0.5 \cdot N_{plzhd}$ condition vérifiée - Incidence de l'effort normal $N_{zd} < 0.5 \cdot N_{plzhd}$ condition vérifiée - Incidence de l'effort normal $N_{zd} < 0.25 N_{pldd}$ condition vérifiée		Ona	$f_z \leq f$	zadin	doni	c	<i>I</i> _{<i>y</i>} :	5 · 200 384	$\cdot V \cdot t^3$ $\cdot E$	= (6.	728+10	⁵) cm ⁴	
$ \begin{split} h &:= 230 \ mm \ b := 240 \ mm \ t_W := 7.5 \ mm \ t_f := 12 \ mm \ i_y := 10.05 \ cm \ i_z := 6.00 \ cm \\ A &:= 76.8 \ cm^2 \ A_{wz} := 25.2 \ cm^2 \ W_{pby} := 7763.2 \ cm^4 \ I_z := 2768.9 \ cm^4 \ f_y := 23.5 \ \frac{kg}{mm^2} \ \gamma_{M0} := 1.1 \\ 2) \ verifications des potelets: \\ I_z := 200 \ cm \ I_y := 1025 \ cm \ \alpha_{LT} := 0.21 \ C_1 := 1.132 \ \beta_{MT} := 1.3 \ \beta_{MLT} := 1.3 \\ - ELS : la flèche \ \beta_{A^2} := 1 \\ f_z := \frac{5 \cdot V \cdot t^4}{384 \cdot E \cdot I_y} = 44.414 \ mm \ et \ f_{zadm} := \frac{l}{200} = 51.25 \ mm \\ - Incidence de l'effort tranchant \ Q_{zad} := 1.5 \ V = 755.685 \ \frac{kg}{m} \ et \ V_{zad} := \frac{Q_{zad} \cdot l}{2} = (3.873 \cdot 10^3) \ kg \\ V_{ptzhd} := \frac{A_{wz} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (3.108 \cdot 10^4) \ kg \ et \ 0.5 \cdot V_{ptzhd} = (1.554 \cdot 10^4) \ kg \\ - Incidence de l'effort normal \ N_{sd} < 0.5 \cdot V_{ptzhd} \ condition \ verifiée \\ N_{sd} := 1.35 \cdot G = (2.876 \cdot 10^3) \ kg \ N_{zd} < 0.5 \cdot V_{ptzhd} = (0.473 \cdot 10^4) \ kg \\ A_w := A - 2 \cdot b \cdot t_f = 19.2 \ cm^2 \ N_{sd} < 0.25 \ N_{ptHd} \ condition \ verifiée \\ Parameter \ Parapport a l'axe yy \ Par rapport a l'axe zz \\ \lambda_y := \frac{l_y}{l_y} = 101.99 \ \lambda_z = \frac{l_z}{l_z} = 33.333 \\ \end{split}$		on choisi	s le prot	ilé HEA2	40								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$h \approx 230$	nm b=	=240 m	n tw=	=7.5 mm	$t_f := 12$	mm	$i_y := 1$	0.05 c	m i.	:= 6.00	c m
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		A := 76.8	$cm^2 A_{\eta}$	a = 25.2	cm ² V	$V_{ply} = 744$	1.6 cm ³	W _{plz} :	= 351.	7 cm	$G \coloneqq$	2130.7	kg
2) vérifications des potelets: $l_{z} = 200 \text{ cm} \qquad l_{y} = 1025 \text{ cm} \qquad \alpha_{LT} = 0.21 \qquad C_{1} = 1.132 \qquad \beta_{MY} = 1.3 \beta_{MLT} = 1.3$ - ELS : la fléche $f_{z} = \frac{5 \cdot V \cdot l^{4}}{384 \cdot E \cdot I_{y}} = 44.414 \text{ mm} \qquad et \qquad f_{zadm} := \frac{l}{200} = 51.25 \text{ mm}$ - Incidence de l'effort tranchant $Q_{zad} := 1.5 V = 755.685 \frac{kg}{m} \qquad et \qquad V_{zad} := \frac{Q_{zad} \cdot l}{2} = (3.873 \cdot 10^{3}) kg$ $V_{plzRd} := \frac{A_{vz} \cdot f_{y}}{\sqrt{3} \cdot \gamma_{M0}} = (3.108 \cdot 10^{4}) kg \qquad et \qquad 0.5 \cdot V_{plzRd} = (1.554 \cdot 10^{4}) kg$ - Incidence de l'effort normal $N_{sd} := 1.35 \cdot G = (2.876 \cdot 10^{3}) kg$ $N_{plRd} := \frac{A \cdot f_{y}}{\sqrt{3} \cdot \gamma_{M0}} = (9.473 \cdot 10^{4}) kg$ - flambement par rapport a l'axe yy $\lambda_{y} := \frac{l_{y}}{l_{y}} = 101.99$		$W_{ely} = 67$	75.1 cm	³ I _y := 7	763.2 6	am ⁴ I ₂	:= 2768	.9 cm ⁴	f_y	= 23.5	kg mm ²	$\gamma_{M0} :=$	1.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2) vérific	ations d	es potele	ts:								
- ELS : la fléche $\beta_{A} = 1$ $f_z := \frac{5 \cdot V \cdot l^4}{384 \cdot E \cdot I_y} = 44.414 \ mm$ et $f_{zadm} := \frac{l}{200} = 51.25 \ mm$ - Incidence de l'effort tranchant $f_z < f_{zadm}$ condition vérifiée $Q_{zsd} := 1.5 \ V = 755.685 \ \frac{kg}{m}$ et $V_{zsd} := \frac{Q_{zsd} \cdot l}{2} = (3.873 \cdot 10^3) \ kg$ $V_{plzRd} := \frac{A_{vz} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (3.108 \cdot 10^4) \ kg$ et $0.5 \cdot V_{plzRd} = (1.554 \cdot 10^4) \ kg$ - Incidence de l'effort normal $V_{zsd} < 0.5 \cdot V_{plzRd}$ condition vérifiée - Incidence de l'effort normal $N_{sd} := 1.35 \cdot G = (2.876 \cdot 10^3) \ kg$ $N_{plRd} := \frac{A \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (9.473 \cdot 10^4) \ kg$ $A_w := A - 2 \cdot b \cdot t_f = 19.2 \ cm^2$ $0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{M0}} = (2.051 \cdot 10^4) \ kg$ - flambement $N_{sd} < 0.25 \ N_{plRd}$ condition vérifiée par rapport a l'axe yy par rapport a l'axe zz $\lambda_y := \frac{l_y}{i_y} = 101.99$ $\lambda_z := \frac{l_z}{i_z} = 33.333$		$l_z = 200 c$	m	l _y := 1023	5 cm	$\alpha_{LT} := 0$.21 (C₁ == 1,1	32	$\beta_{MY} =$	=1.3 β	MLT := 1.	3
$ \begin{aligned} f_{z} \coloneqq \frac{5 \cdot V \cdot l^{4}}{384 \cdot E \cdot l_{y}} = 44.414 \ \textbf{mm} & et \qquad f_{zadm} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zadm} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zadm} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zadm} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zadm} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zadm} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zadm} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zadm} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zad} \coloneqq \frac{l}{200} = 51.25 \ \textbf{mm} \\ \hline f_{z} < f_{zad} $		- ELS : la	fléche								$\beta_A := 1$		
$ \begin{array}{c c} f_z < f_{zadm} & \text{condition vérifiée} \\ \hline \\ \text{Incidence de l'effort tranchant} & f_z < f_{zadm} & \text{et} & V_{zad} \coloneqq \frac{Q_{zad} \cdot l}{2} = (3.873 \cdot 10^3) \ \textit{kg} \\ \hline \\ Q_{zsd} \coloneqq 1.5 \ V = 755.685 \ \frac{\textit{kg}}{m} & et & V_{zad} \coloneqq \frac{Q_{zad} \cdot l}{2} = (3.873 \cdot 10^3) \ \textit{kg} \\ \hline \\ V_{plzRd} \coloneqq \frac{A_{vz} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (3.108 \cdot 10^4) \ \textit{kg} & et & 0.5 \cdot V_{plzRd} = (1.554 \cdot 10^4) \ \textit{kg} \\ \hline \\ \text{Incidence de l'effort normal} & V_{zad} < 0.5 \cdot V_{plzRd} & \text{condition vérifiée} \\ \hline \\ N_{sd} \coloneqq 1.35 \cdot G = (2.876 \cdot 10^3) \ \textit{kg} & N_{plRd} \coloneqq \frac{A \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (9.473 \cdot 10^4) \ \textit{kg} \\ \hline \\ A_w \coloneqq A - 2 \cdot b \cdot t_f = 19.2 \ \textit{cm}^2 & 0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{M0}} = (2.051 \cdot 10^4) \ \textit{kg} \\ \hline \\ \text{rlambement} & N_{sd} < 0.25 \ N_{plRd} & \text{condition vérifiée} \\ \hline \\ \text{par rapport a l'axe yy} & \text{par rapport a l'axe zz} \\ \hline \\ \lambda_y \coloneqq \frac{l_y}{i_y} = 101.99 & \lambda_z \coloneqq \frac{l_z}{i_z} = 33.333 \\ \hline \end{array}$		$f_z \coloneqq \frac{5 \cdot 1}{384 \cdot 1}$	$\frac{I^4}{E \cdot I_y} =$	44.414 7	nm	et		f_{zadm} :	$=\frac{l}{200}$	=51.	25 mm		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- Inciden	ce de l'e	ffort tran	ichant	$f_z < f$	zadm			cor	ndition v	vérifiée	
$\begin{split} V_{plzRd} \coloneqq & \frac{A_{vz} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (3.108 \cdot 10^4) \ \textit{kg} \qquad et \qquad 0.5 \cdot V_{plzRd} = (1.554 \cdot 10^4) \ \textit{kg} \\ & - \text{Incidence de l'effort normal} \\ N_{sd} \coloneqq 1.35 \cdot G = (2.876 \cdot 10^3) \ \textit{kg} \qquad V_{zod} < 0.5 \cdot V_{plzRd} \qquad \text{condition vérifiée} \\ A_{w} \coloneqq A - 2 \cdot b \cdot t_f = 19.2 \ \textit{cm}^2 \qquad 0.5 \cdot \frac{A_{w} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (9.473 \cdot 10^4) \ \textit{kg} \\ - \text{flambement} \qquad D_{sd} < 0.25 \ N_{plRd} \qquad D_{sd} < 0.5 \cdot \frac{A_{w} \cdot f_y}{\gamma_{M0}} = (2.051 \cdot 10^4) \ \textit{kg} \\ \text{condition vérifiée} \\ \lambda_{w} \coloneqq \frac{l_y}{i_y} = 101.99 \qquad \lambda_z \coloneqq \frac{l_z}{i_z} = 33.333 \end{split}$		$Q_{zsd} \coloneqq 1.5$	<i>V</i> =75	5.685 kg m		et		$V_{zsd} =$	$\frac{Q_{zsd}}{2}$	• <i>1</i> = (3	.873 • 1	0 ³) <i>kg</i>	
Vzsd<0.5 · VplzRdcondition vérifiée- Incidence de l'effort normal $V_{zsd} < 0.5 \cdot V_{plzRd}$ condition vérifiée $N_{sd} \coloneqq 1.35 \cdot G = (2.876 \cdot 10^3) \ kg$ $N_{plRd} \coloneqq \frac{A \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (9.473 \cdot 10^4) \ kg$ $A_w \coloneqq A - 2 \cdot b \cdot t_f = 19.2 \ cm^2$ $0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{M0}} = (2.051 \cdot 10^4) \ kg$ - flambement $N_{sd} < 0.25 \ N_{plRd}$ condition vérifiéepar rapport a l'axe yypar rapport a l'axe zz $\lambda_z \coloneqq \frac{l_z}{i_z} = 33.333$		$V_{plzRd} := -$	$A_{vz} \cdot f_y = \sqrt{3} \cdot \gamma_{M0}$	-= <mark>(</mark> 3.108	8·10 ⁴)	kg et		0.5	$\cdot V_{plz}$	_{Rd} = (1	.554 • 1	0 ⁴) <i>kg</i>	
$\begin{split} N_{sd} &:= 1.35 \cdot G = (2.876 \cdot 10^3) \ \textit{kg} & N_{plRd} := \frac{A \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (9.473 \cdot 10^4) \ \textit{kg} \\ A_w &:= A - 2 \cdot b \cdot t_f = 19.2 \ \textit{cm}^2 & 0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{M0}} = (2.051 \cdot 10^4) \ \textit{kg} \\ - \text{flambement} & \text{condition vérifiée} \\ par rapport a l'axe yy & par rapport a l'axe zz \\ \lambda_y &:= \frac{l_y}{i_y} = 101.99 & \lambda_z := \frac{l_z}{i_z} = 33.333 \end{split}$		- Incident	ce de l'e	ffort nor	mal	$V_{zsd} < 0$	$.5 \cdot V_{plzi}$	ы		cor	ndition N	vérifiée	
$\begin{array}{c} A_w \coloneqq A - 2 \cdot b \cdot t_f = 19.2 \ cm^2 \\ & 0.5 \cdot \frac{A_w \cdot f_y}{\gamma_{M0}} = (2.051 \cdot 10^4) \ kg \\ & \text{condition vérifiée} \\ \end{array}$ $\begin{array}{c} \text{flambement} \\ \text{par rapport a l'axe yy} \\ \lambda_y \coloneqq \frac{l_y}{i_y} = 101.99 \\ \end{array}$ $\begin{array}{c} \text{A}_w \coloneqq f_y \\ \text{condition vérifiée} \\ \text{par rapport a l'axe zz} \\ \lambda_z \coloneqq \frac{l_z}{i_z} = 33.333 \\ \end{array}$		$N_{sd} := 1.33$	$5 \cdot G = (:$	2.876 • 10	³) kg		1	$V_{plRd} := -$	$\frac{A \cdot f}{\sqrt{3} \cdot \gamma}$	<u>у</u> = (мо	9.473•	10 ⁴) kg	
$\begin{array}{c c} & N_{sd} < 0.25 \ N_{plRd} & \text{condition vérifiée} \\ \hline & & \\ \text{par rapport a l'axe yy} & \text{par rapport a l'axe zz} \\ \hline & & \\ \lambda_y \coloneqq \frac{l_y}{i_y} = 101.99 & \lambda_z \coloneqq \frac{l_z}{i_z} = 33.333 \end{array}$		$A_w \coloneqq A - T$	$2 \cdot b \cdot t_f =$	= 19.2 <i>cn</i>	u ²			0.5	$\cdot \frac{A_w}{\gamma_M}$	$\frac{f_y}{to} = ($	2.051 •	104) <i>kg</i>	
par rapport a l'axe yy par rapport a l'axe zz $\lambda_y := \frac{l_y}{i_y} = 101.99$ $\lambda_z := \frac{l_z}{i_z} = 33.333$		- flamben	nent			$N_{sd} < 0.$	$25 N_{plh}$	w.		cor	ndition v	vérifiée	
$\lambda_y \coloneqq \frac{\iota_y}{i_y} = 101.99 \qquad \qquad \lambda_z \coloneqq \frac{\iota_z}{i_z} = 33.333$		par rappo	ort a l'ax	е уу					par ra	apport	a l'axe	zz	
		$\lambda_y \! := \! \frac{l_y}{i_y} \! = \!$	101.99						$\lambda_z := \frac{l}{i}$	$\frac{z}{z} = 33$.333		

CONCLUSION :

L'élément HEA240 convient comme potelet.

CONCLUSION GENERALE :

Après les études, on a choisi les éléments suivants comme des éléments secondaires :

Les pannes : IPE160.

Les lisses de bardages : UPN 140.

Les potelets : HEA 240.

Ils sont vérifiés les conditions de résistance aux différentes sollicitations.

CHAPITRE IV : DIMENSIONNEMENT DES ELEMENTS STRUCTURAUX.

Introduction :

Les profilés laminés en I ou en H sont les plus fréquemment utilisés pour les poteaux du portique, tandis que les traverses sont généralement constituées de profilés laminés en I.

Les portiques peuvent avoir une portée allant de 15 à 60 mètres. Cependant, les portées comprises entre 20 et 30 mètres sont les plus économiques.

1 : Renfort de jarret. 2 : Renfort de faitage. 3 : Traverse. 4 : Poteau

Figure IV.1 : éléments constituent le portique.

IV.1. Caractéristiques du portique étudié :

Le portique de notre projet présente les dimensions suivantes :

- La hauteur des poteaux : h = 7.95 m
- La hauteur de faitage : H = 10.25 m
- La portée entre les poteaux : b = 20.9 m
- La longueur des traverses : s = 10.7 m
- L'entraxe des portiques : L = 6 m

IV.2. Efforts sollicitant le portique :

IV.2.1 Charges permanentes :

Poids propre de la couverture (panneaux sandwichs)	12 kg/m^2
Poids propre d'accessoires de pose	$5 \text{ kg}/m^2$
Poids propre d'isolant	5 kg/ m^2
Poids propre de la panne (IPE 160)	$15.8 \text{ kg}/m^2$

Poids total:

$$G = P_{Couverture} + P_{Accesoires} + P_{Panne} = 12 + 5 + 5 + 15.8 = 37.8 \text{ kg}/m^2$$

Entraxe des portiques est de : L = 6m

 $G=37.8\times 6=226.8\ kg/ml$

IV.2.2. Effet de neige :

Par projection horizontale

N =58 ×cos (12.41) =56.64 daN/ m^2

 $N=56.64 \times 6 = 339.84 \, daN/ml$

IV.2.3. Effet de vent :

Le cas le plus défavorable pour le vent est dans le sens V_1 (perpendiculaire au pignon)

Les parois :

La zone	$Q_j(N/m^2)$	$Q_j(daN/m)$
А	-506.62	-303.97
В	-343.19	-205.91
С	-98.06	-58.84
D	964.21	578.53
E	35.37	21.22

Tableau IV.1 : Valeurs de la pression aérodynamique sur les parois verticales.

La toiture :

Tableau IV.2 : Valeurs de la pression aérodynamique sur la toiture.

La zone	$Q_j(N/m^2)$	$Q_j(daN/m)$
F	-886.88	-532.13
G	-815.93	-489.56
Н	-221.72	-133.03
Ι	-133.03	-79.82

Le portique intermédiaire est le plus chargé vis-à-vis de la charge u vent car la surface tributaire de ce dernier est le double de celle du portique de rive. Pour simplifier les calculs on transforme la charge du vent sur la toiture en une charge équivalente uniformément répartie.

Figure IV.2 : la répartition des charges du vent sur le portique le plus sollicité.

Etant donné que les actions du vent sur les deux versants sont identiques, on retiendra directement la charge agissant sur la zone H comme charge équivalente sur les deux versants

de toiture.

La charge équivalente au vent (V) : $V = -133.03 \ daN/ml$

IV.3 Les efforts internes :

Le calcul des efforts internes de notre portique, se fera avec la méthode des forces et déplacements de la RDM.

4.7

Figure IV.3 : Efforts internes

On assume que $I_1 = I_2$.

$$K = \frac{raideur - rampant}{raideur - bequille} = \frac{h}{s} = \frac{7.95}{10.7} = 0.74$$
$$\varphi = \frac{f}{h} = \frac{2.3}{7.95} = 0.29$$
$$\Delta = K + 3 + 3\varphi + \varphi^2 = 0.74 + 3 + 3(0.29) + 0.29^2 = 50$$

IV.3.1 Les charges verticales vers le bas (charges permanentes et surcharge de neige) :

Figure IV.4 : Représentation des efforts internes, cas des charges verticales vers le bas.

Le calcul est fait sous une charge unitaire : q=1 daN/ml

$$\beta = \frac{8 + 5\varphi}{4\Delta} = \frac{8 + 5 \times 0.29}{4 \times 4.7} = 0.5$$
$$\gamma = 1 - \beta(1 + \varphi) = 1 - 0.5(1 + 0.29) = 0.295$$

Et on trouve les efforts internes suivants :

$$H_A = -H_E = \beta \frac{ql^2}{8h} = 0.5 \times \frac{1 \times 20.9^2}{8 \times 7.95} = 3.43 \ daN$$
$$V_A = V_E = \frac{ql}{2} = \frac{1 \times 20.9}{2} = 10.45 \ daN$$
$$M_B = M_D = -\beta \frac{ql^2}{8} = -0.5 \frac{1 \times 20.9^2}{8} = -27.3 \ daN.m$$
$$M_c = \gamma \frac{q \times l^2}{8} = 0.36 \frac{1 \times 20.9^2}{8} = 19.66 \ daN.m$$

IV.3.2 Les charges verticales vers le haut (vent de soulèvement) :

Figure IV.5 : Représentation des efforts internes, cas des charges verticales vers le haut.

$$H_A = -H_E = \beta \frac{ql^2}{8h} = 3.53 \ daN$$

$$V_A = V_E = \frac{ql}{2} = \frac{1 \times 20.9}{2} = 10.45 \ daN$$

$$M_B = M_D = \beta \frac{ql^2}{8} = 0.5 \frac{1 \times 20.9^2}{8} = 27.3 \ daN.m$$

$$M_c = -\gamma \frac{q \times l^2}{8} = -0.36 \frac{1 \times 20.9^2}{8} = -19.66 \ daN.m$$

IV.3.3. Le vent horizontal (pression):

Figure IV.6 : Vent horizontal (pression).

 $\Delta = \frac{5K + 12 + 6\phi}{8\Delta} = \frac{5(0.74) + 12 + 6(0.29)}{8(4.7)} = 0.46$ $\beta = 1 - \delta = 1 - 0.46 = 0.54$ $\gamma = \delta(1 + \phi) = 0.59$ $H_E = \delta \frac{qh}{2} = 0.46 \frac{1 \times 7.95}{2} = 1.83 \text{ daN}$ $H_A = qh - H_E = 1 \times 7.95 - 1.83 = 6.12 \text{ daN}$ $V_A = -V_E = \frac{qh^2}{2l} = \frac{7.95^2}{2 \times 20.9} = 1.51 \text{ daN}$ $M_B = \beta \frac{qh^2}{2} = 0.54 \frac{1 \times 7.95^2}{2} = 17.06 \text{ daN. ml}$ $M_C = -\gamma \frac{qh^2}{2} = -0.59 \frac{1 \times 7.95^2}{2} = -18.64 \text{ daN. ml}$ $M_D = -\delta \frac{qh^2}{2} = -0.46 \frac{1 \times 7.95^2}{2} = -14.54 \text{ daN. ml}$

52

IV.3.4 Le vent horizontal (dépressions):

Figure IV.7 : Représentation des efforts internes, cas de vent horizontal (dépression).

 $H_A = \delta \frac{qh}{2} = 0.46 \frac{1 \times 7.95}{2} = 1.83 \text{ daN}$ $H_E = qh - H_E = 1 \times 7.95 - 1.83 = 6.12 \text{ daN}$ $V_A = -V_E = -\frac{qh^2}{2l} = -\frac{7.95^2}{2 \times 20.9} = -1.51 \text{ daN}$ $M_B = \delta \frac{qh^2}{2} = 0.46 \frac{1 \times 7.95^2}{2} = 14.54 \text{ daN.ml}$ $M_C = \gamma \frac{qh^2}{2} = 0.59 \frac{1 \times 7.95^2}{2} = 18.64 \text{ daN.ml}$ $M_D = -\beta \frac{qh^2}{2} = -0.54 \frac{1 \times 7.95^2}{2} = -17.06 \text{ daN.ml}$

IV.4 Tableaux récapitulatifs :

- Les charges unitaires :
 - Tableau IV.3 : Réactions d'appuis et moments sous une charge unitaire.

		Les	réactions	d'appuis (o	Les moments (daN.ml)			
Actions	q(daN/ml)	H _A	H_E	V_A	V_E	M _B	M _C	M _D
G	1	3.43	-3.43	10.45	10.45	-27.3	19.66	-27.3
Ν	1	3.43	-3.43	10.45	10.45	-27.3	19.66	-27.3
V_1	1	-1.83	-6.12	1.51	-1.51	14.54	18.64	-17.06
<i>V</i> ₂	1	-3.43	3.43	-10.45	-10.45	27.3	-19.66	27.3
• Les charges réelles :

		Les réactions d'appuis (daN)				Les m	oments (d	aN.ml)
Actions	q(daN/	H_A	H_E	V_A	V_E	M _B	M _C	M _D
	m)							
G	226.8	777.9	-777.9	2370.1	2370.1	-6191.6	4458.9	-6191.6
N	339.84	1165.7	-1165.7	3551.3	3551.3	-9277.6	6681.3	-9277.6
V_1 (horizont	205.91	-376.8	-1260.2	310.9	-310.9	2993.9	3838.2	-3512.8
ale)								
V_2 (souleve	133.03	-456.3	456.3	-1390.2	-1390.2	3631.7	-2615.4	3631.7
ment)								
$V = V_1 -$	$V = V_1 + V_2$		-803.9	-1079.3	-1701.1	6625.6	1222.8	118.9

Tableau IV.4 : Réactions d'appuis et moments sous les charges actuelles.

• Les combinaisons ont l'ELU :

Tableau IV.5 : Combinaisons a l'ELU pour les réactions d'appuis et les moments.

	Les réactions d'appuis (daN)			Les	moments (dal	N.ml)	
Combinaisons	H_A	H_E	V_A	V_E	M _B	M _C	M _D
1.35G+1.5N	2798.7	-2798.7	8526.6	8526.6	-	16041.5	-22275.1
					22275.1		
1.35(G+V+N)	1499.2	-3709.1	6536.8	5697.4	-	16690.1	-20722.9
					11938.9		
G+1.5V	-471.8	-	751.2	-181.6	3746.8	6293.1	-6013.3
		1983.75					

IV.5 Calcul de l'imperfection géométrique globale (défaut d'aplomb):

Elles sont prises en compte lorsque la somme des efforts horizontaux est inférieure à 15% de la somme des efforts verticaux. Elles peuvent être remplacées par un système de forces équivalentes calculées pour chaque poteau

Nous avons :

 $H_{eq} = \emptyset N_{sd}$

 $\emptyset=\emptyset_0 \propto_h \propto_m$

Figure IV.8 : Imperfection géométrique.

- H_{eq} : Effort horizontale équivalent appliqué en tête de chaque poteau.
- N_{sd} : Effort normal de compression dans le poteau.
- ϕ : Défaut initial d'aplomb.
- $Ø_0$: Valeur de base.
- \propto_h : Coefficient de réduction qui tient compte de la hauteur applicable au poteau.
- $\propto_{\rm m}$: Coefficient de réduction qui tient du nombre de poteaux dans une rangée.

Donc on a :
$$\phi_0 = \frac{1}{200} = 0.005$$

$$\propto_h = \frac{2}{\sqrt{h}} = \frac{2}{\sqrt{10.25}} = 0.625 \qquad \qquad ; h = hauteur \ de \ l'ouvrage.$$

 $\propto_m = \sqrt{0.5\left(1+\frac{1}{m}\right)} = \sqrt{0.5\left(1+\frac{1}{2}\right)} = 0.866$; m = nombre de poteaux dans une file.

 $\emptyset = 0.005 \times 0.625 \times 0.866 = 0.0027$

IV.5.1 Modélisation avec les imperfections :

IV.5.1.1 Efforts en pieds de poteaux à l'ELU :

	Poteau 1		Pot	eau 2	La somme	
Combinaisons	H _A	V_A	H_E	V_E	H(KN)	V(KN)
Comb1 : 1.35G+1.5N	27.99	85.27	-27.99	85.27	0	170.54
Comb2 :	14.99	65.37	-37.09	56.97	-22.1	122.34
1.35(G+V+N)						
Comb3 : G+1.5V	-4.72	7.51	-19.84	-1.82	-24.56	5.69

Tableau IV.6 : Efforts en pieds des poteaux aux l'ELU.

Les défauts d'aplomb ne sont pas à considérer si : $|H| \ge 0.15 |V|$

Tableau IV.7 : Efforts en pieds des poteaux avec Prise en compte des défauts d'aplomb.

Combinaisons (ELU)	0,15 V	$ H \ge 0,15 V $
Comb1 : 1.35G+1.5N	25.58	NON
Comb2 : 1.35(G+V+N)	18.35	OUI
Comb3 : G+1.5V	0.85	OUI

Les défauts d'aplomb ne sont pas à considérer pour les combinaisons 02 et 03 car la condition

 $H \ge 0.15 V$ est vérifiée.

IV.5.1.2 Efforts équivalents en tête des poteaux :

Tableau IV.8 : Efforts équivalent en tête des poteau	ux.
--	-----

Combinaisons	Poteau 1		Poteau 2	
	$N_{sd}(\mathrm{KN})$ $H_{eq}(\mathrm{KN})$		N _{sd} (KN)	$H_{eq}(\mathrm{KN})$
Comb1 1.35G+1.5N	85.27	0.23	85.27	0.23

IV.5.2 Calcul des efforts internes additionnels :

IV.5.2.1. Effort horizontal en tête du poteau :

$$P = 2H_{eq} = 2 \times 0.23 = 0.46 \text{ KN}$$

$$\beta = \frac{1}{2} \left(1 + \frac{\varphi(3 + 2\varphi)}{2\Delta} \right) = \frac{1}{2} \left(1 + \frac{0.29(3 + 2 \times 0.29)}{2 \times 4.7} \right) = 0.56$$

$$\delta = \frac{1}{2} \left(1 - \frac{\varphi(3 + 2\varphi)}{2\Delta} \right) = \frac{1}{2} \left(1 - \frac{0.29(3 + 2 \times 0.29)}{2 \times 4.7} \right) = 0.445$$

$$\gamma = \frac{\varphi}{2} \left(1 - \frac{(1 + \varphi)(3 + 2\varphi)}{2\Delta} \right) = \frac{0.29}{2} \left(1 - \frac{(1 + 0.29)(3 + 2 \times 0.29)}{2 \times 4.7} \right) = 0.074$$

56

 $H_A = \beta P = 0.56 \times 0.46 = 0.26 \text{ KN}$ $H_E = P - H_A = 0.46 - 0.26 = 0.2 \text{ KN}$ $V_A = -V_E = -\frac{Ph}{l} = -\frac{0.46 \times 7.95}{20.9} = -0.175 \text{ KN}$ $M_B = \beta Ph = 0.56 \times 0.46 \times 7.95 = 2.05 \text{ KN.m}$ $M_D = -\delta Ph = -0.445 \times 0.46 \times 7.95 = -1.63 \text{ KN.m}$ $M_C = -\gamma Ph = -0.074 \times 0.46 \times 7.95 = -0.27 \text{ KN.m}$

IV.5.3 Combinaisons à l'ELU avec prise en compte de H_{eq} :

Tableau IV.9 : Combinaisons à l'ELU pour les réactions d'appuis et les moments avec

	F	Réactions d'	'appuis (kN	M	oments (kN	l.m)	
Combinaisons	H_A	H_E	V_A	V_E	M _B	M _C	M _D
1.35G+1.5N	27.99	-27.99	85.27	85.27	-222.75	160.42	-222.75
Р	0.26	0.2	-0.175	0.175	2.05	-0.27	-1.63
1.35G+1.5N+P	28.25	-27.79	85.1	85.45	-220.7	160.15	-224.38
1.35(G+N+V)	14.99	-37.09	65.37	56.97	-119.39	166.90	-207.23
G+1.5V	-4.72	-19.84	7.51	-1.82	37.47	62.93	-60.13

•			1	
nrise	en	compte	de	н
prise	un	compte	uc	1 ea

IV.6 Choix de la méthode d'analyse :

Le choix de la méthode d'analyse est conditionné par la valeur du coefficient d'éloignement critique αcr

• Si $\alpha_{cr} \ge 10 \Rightarrow$ Structure rigide : analyse élastique au 1^{er} ordre.

• Si $\alpha_{cr} < 10 \Rightarrow$ Structure souple : analyse élastique avec prise en compte des effets du 2^{ème} ordre.

• Si $\alpha_{cr} \ge 15 \Rightarrow$ Structure rigide : analyse plastique.

IV.6.1 Détermination du facteur d'éloignement critique α_{cr} :

L'importance des effets du second ordre sur une ossature est mesuré par sa déformabilité latérale à travers le coefficient d'amplification critique α_{cr} ; Dans le cas de portique a faible

pente, ce dernier peut être calculé avec la formule approchée suivante pour la combinaison d'action considérée.

$$\frac{1}{\alpha_{cr}} = \frac{V_{sd}}{V_{cr}} = \left(\frac{N_{sd,t}}{N_{cr,t}} + (4 + 3.3R) \times \frac{N_{sd,p}}{N_{cr,p}}\right)$$

Avec :

 $N_{sd,p}$: Effort axial de compression dans le poteau.

 $N_{cr,p}$: Effort critique d'Euler dans le poteau.

 $N_{cr,t}$: Effort axial de compression dans la traverse

 $N_{sd,t}$: Effort critique d'Euler dans la traverse

I : le moment d'inertie de l'IPE 450 suivant l'axe yy (estimé).= 33742.9 cm⁴

$$R = \frac{I_1 S}{I_2 h} = \frac{S}{h} = \frac{10.7}{7.95} = 1.35$$

$$N_{cr,p} = \frac{\pi^2 EI}{h^2} = \frac{\pi^2 \times 2.1 \times 10^4 \times 33742.9}{795^2} \times 10^{-3} = 11065.4 \, KN$$

$$N_{cr,t} = \frac{\pi^2 El}{S^2} = \frac{\pi^2 \times 2.1 \times 10^4 \times 33742.9}{1070^2} \times 10^{-3} = 6108.5 \, KN$$

Sous la combinaison 1.35G + 1.5N :

$$N_{sd,t} = 85.27 \sin 12.41 + 27.99 \cos 12.41 = 45.66 \text{ KN}$$

 $N_{sd,p} = 85.27 \text{ KN}$

$$\frac{1}{\alpha_{cr}} = \frac{V_{sd}}{V_{cr}} = \left(\frac{45.66}{6108.5} + (4 + 3.3 \times 1.35) \times \frac{85.27}{11065.4}\right) = 0.073 \implies \alpha_{cr} = 13.77 > 10$$

Donc on a une structure rigide \Rightarrow On opte pour la méthode élastique au 1^{er} ordre.

IV.7.1 Prédimensionnement de la traverse

IV.7.1.1 Moments sous la combinaison : 1.35*G* + 1.5*N*

Figure IV.10 : Moments sous la combinaison 1.35G + 1.5N.

IV.7.1.2 Moments sous la charge équivalente totale *H_{eq}* :

Figure IV.11 : Moments sous la charge équivalente totale.

IV.7.1.3 Moments maximaux sollicitant la traverse

• Action vers le bas : (charges de gravités)

Sous la combinaison : 1.35G + 1.5N + P

- Aux appuis : MD = -224.38 KN.m
- Au faitage : MC =160.15 KN.m
- Action vers le haut : (vent de soulèvement)

Sous la combinaison : G + 1.5V

- Aux appuis : MB = 37.47 KN.m
- Au faitage : MC = 62.93 KN.m

IV.7.1.4 Calcul préliminaire

$$M_{sd}^{y} \le M_{pl,rd}^{y} \Rightarrow M_{sd}^{y} \le \frac{W_{pl}^{y} \times f_{y}}{\gamma_{M_{0}}} \Rightarrow W_{pl}^{y} \ge \frac{224.38 \times 1.1 \times 10^{3}}{235} \Rightarrow W_{pl}^{y} \ge 1050.29 \ cm^{3}$$

Soit un IPE400 $\rightarrow W_{pl}^{\nu} = 1307.1 \ cm^3$

IV.7.2 Vérification de la traverse à l'ELS

IV.7.2.1. Vérification de la flèche

 Le calcul de la flèche est réalisé au faîtage de la traverse, en C, sous l'action combinée non pondérée de : G + N

- La flèche maximale au faîtage est donnée par la formule suivante :

$$y_{max} = \frac{1}{384EI_y} (5ql^4 - 48M_Bl^2) \le \delta_{max} = \frac{l}{200}$$

- q = G + N = 2.27 + 3.39 = 5.66 KN/ml
- $E = 2.1 \times 10^4 \text{ KN/cm}^2$
- $I_y = 23128.4 \ cm^4$
- l = 20.9 m

•
$$M_B = 61.92 + 92.78 = 154.7 \text{ KN} \cdot ml$$

$$\frac{(5 \times 5.66 \times 10^{-2} \times 2090^4 - 48 \times 154.7 \times 10^2 \times 2090^2)}{384 \times 2.1 \times 10^4 \times 23128.4} \le \frac{2090}{200}$$

$$11.6 \text{ cm} > 10.45 \text{ cm}$$

Donc on choisit IPE 450 : $y_{max} = 7.92 < 10.45 \ cm \dots \dots \dots \dots$ Condition vérifiée

IV.7.3 Vérification de la traverse à l'ELU

Bilan des efforts :

- $M_{y,sd} = 222.75 \text{ KN. m}$
- $N_{sd} = 85.27 \sin 12.41 + 27.99 \cos 12.41 = 45.66 \text{ kN}$
- $V_{z,sd} = 85.27 \cos 12.41 27.99 \sin 12.41 = 77.26 \text{ KN}$

Les caractéristiques du profilé IPE 450

<i>G</i> (<i>Kg/m</i>)	h (mm)	b (mm)	<i>d</i> (<i>mm</i>)	t _w	$t_f(mm)$	A (cm2)
				(mm)		
77.6	450	190	378.8	9.4	14.6	98.8
$I_y (cm^4)$	$I_z (cm^4)$	$W_{pl}^{\gamma}(cm^3)$	$W_{pl}^{z}(cm^{3})$	<i>i_y</i> (<i>cm</i>)	i_z (cm)	$W_{el}^{y}(cm^3)$
33742.9	1675.35	1701.8	276.4	18.48	4.12	1499.7

Tableau IV.10 : Caractéristiques géométriques de l'IPE 450.

Classe de la section

Section sollicitée en flexion composé :

Classe de la semelle comprimée :

$$\frac{c}{t_f} = \frac{b/2}{t_f} \le 10\varepsilon$$
; avec $\varepsilon = \sqrt{\frac{235}{f_y}} \Rightarrow \frac{190/2}{14.6} = 6.5 \le 10$

Semelle de classe 1

Classe de l'âme comprimée :

$$\alpha = \frac{1}{d} \left(\frac{d+d_c}{2} \right) \le 1 \qquad ; avec \ d_c = \frac{N_{sd}}{t_w \times f_y} = \frac{45.66 \times 10^3}{9.4 \times 235} = 20.67 \ mm$$
$$\alpha = \frac{1}{378.8} \left(\frac{378.8 + 20.67}{2} \right) = 0.53 \le 1$$

L'âme de classe 1

IV.7.3.1 Incidence de l'effort tranchant

Si $Vz.sd \leq 0.5$ Vpl. Rd , il n'y a pas d'interaction entre le moment fléchissant et l'effort tranchant

$$Vz.sd \le 0.5 \times \frac{A_{\nu z} \times f_{y}}{\sqrt{3} \times \gamma_{M_{0}}}$$
$$Vz.sd \le 0.5 \times \frac{50.8 \times 10^{2} \times 235}{\sqrt{3} \times 1.1} \times 10^{-3}$$
$$77.26 \le 313.3 \text{ KN} \qquad \text{Condition vérifiée}$$

IV.7.3.2 incidence de la section à l'effort normale :

Si $N_{sd} \leq Min\left(0.25 N_{pl,rd}; 0.5 \frac{A_w \times f_y}{\gamma_{M_0}}\right)$, Il n'y a pas d'interaction entre le moment résistant et l'effort normal.

$$0.25 N_{pl,rd} = 0.25 \frac{A \times f_y}{\gamma_{M_0}} = 0.25 \frac{98.8 \times 10^{-1} \times 235}{1.1} = 527.68 KN$$
$$A_w = A - 2b \times t_f = 98.8 \times 10^2 - 2 \times 190 \times 14.6 = 4332 mm^2$$
$$0.5 \frac{A_w \times f_y}{\gamma_{M_0}} = 0.5 \frac{4332 \times 235}{1.1} \times 10^{-3} = 462.74 KN$$
$$N_{sd} \le Min (527.68; 462.74)$$
$$45.66 \le 462.74 KN \quad \text{Condition vérifiée}$$

IV.7.3.3 Vérification de la section à la résistance :

On doit vérifier que : $M_{sd}^{y} \leq M_{crd}$

Section de classe 1 : $M_{crd} = M_{pl,rd}^{y}$

$$M_{pl,rd}^{y} = \frac{W_{pl}^{y} \times f_{y}}{\gamma_{M_{0}}} = \frac{1701.8 \times 10^{-3} \times 235}{1.1} = 363.57 \, KN. \, m$$

$$222.75 \le 363.57 \text{ KN} \cdot ml$$
 Condition vérifiée

IV.7.4 Vérification de l'élément aux instabilités :

La vérification aux instabilités est donnée par les formules suivantes :

ACTION VERS LE BAS

IV.7.4.1 Vérification vis-à-vis du flambement

$$\varphi = \frac{M_a}{M_b} = -\frac{160.42}{222.75} = -0.72$$

$$\beta_{M\varphi} = 1.8 - 0.7\varphi = 1.8 - 0.7(-0.72) = 2.3$$

$$M_Q = \frac{q \times l^2}{8} = \frac{8.15 \times 10.45^2}{8} = 111.25 \text{ KN. ml}$$

$$\Delta M = M_C - M_B = 160.42 + 222.75 = 383.17 \text{ KN}.\text{ ml}$$

 $\beta_{M\phi} = 1.3$; Cas de charge uniformément répartie.

$$\beta_{My} = \beta_{M\varphi} + \frac{M_Q}{\Delta M} (\beta_{M\varphi} - \beta_{M\varphi}) = 2.3 + \frac{111.25}{383.17} (1.3 - 2.3) = 2.01$$

	l (cm)	Elancement	Elancement	Courbe de	Facteur de	μ_y	Ky
		λ	réduit $\bar{\lambda}$	flambement	réduction χ		
Suivant	1070	57.9	0.62	а	0.8815	0.15	0.997
у-у							
Suivant	614.35	149.11	1.58	b	0.3148	K _L	$T \leq 1$
Z-Z						0.	979

Tableau IV.11 : les paramètres de flambement

 $\overline{\chi_{min}} = min(0.8815; 0.3148) = 0.3148$

 $\frac{N_{sd}}{\chi_{min} \times N_{pl,rd}} + \frac{K_y \times M_{sd}^y}{M_{pl,rd}^y} \le 1 \Rightarrow \frac{45.66}{0.3148 \times 2110.72} + \frac{0.997 \times 222.75}{363.57} = 0.68 \le 1 \quad \text{Condition vérifiée}$

IV.7.4.2 Vérification vis-à-vis du déversement

 $C_1 = 1.88 - 1.4\psi + 0.52\psi^2 \le 2.7$; $-1 \le \psi \le +1$

 $\psi = \frac{M_a}{M_b}$; $M_a < M_b$: Moments aux extrémités du tronçon.

- Calcul du moment au point quelconque P

$$\frac{P}{x} = \frac{2.3}{10.45} \to P = 0.22x$$

 $M_p = 85.27x - 222.75 - 27.99(0.22x) - 8.15 \times \frac{x^2}{2}$ $M_p = -4.08 x^2 + 79.11 x - 222.75$ $l = \frac{S}{2} = \frac{10.7}{2} = 5.35m$ $M_a = M_p(x = 5.35) = 83.71 \text{ KN. ml}$

63

$$\psi = -\frac{83.71}{222.75} = -0.38 \implies C_1 = 2.49 < 2.7$$

λ_1	λ_{LT}	$ar{m{\lambda}}_{LT}$	α_{LT}	XLT	$\mu_{LT} \leq 0.9$	$K_{LT} \leq 1.9$			
93.91	70.21	0.75	0.21	0.8217	0.34	0.979			
	$\bar{\lambda}_{LT} > 0.4 \ il y'a pas \ rique \ de \ déversement$								
$\frac{N_{sd}}{\chi_z \times N_p}$	$\frac{N_{sd}}{\chi_z \times N_{pl,rd}} + \frac{K_{LT} \times M_{sd}^y}{\chi_{LT} \times M_{pl,rd}^y} \le 1 \Rightarrow \frac{45.66}{0.3148 \times 2110.72} + \frac{0.979 \times 222.75}{0.8217 \times 363.57} = 0.797 \le 1$								

Tableau IV.12 : les paramètres de déversement

Elément vérifié au diversement pour les charges descendantes.

ACTIONS VERS LE HAUT :

La semelle inférieure qui est comprimée sous l'action du vent de soulèvement est susceptible de déverser du moment qu'elle est libre sur toute sa longueur.

Bilan des efforts pour les charges ascendantes :

 $M_{sd}^{\mathcal{Y}} = 37.47 \ KN. \ ml$

 $N_{sd} = 7.51sin12.41 + 4.72cos12.41 = 6.22 \ KN$

 $V_{sd}^z = 7.51 scos 12.41 - 4.72 sin 12.41 = 6.32 \ KN$

Figure IV.12 : Sollicitations sur la traverse, cas de charges ascendantes.

IX) Vérification au déversement :

La formule de vérification au déversement devient :

$$\frac{M_{sd}^{y}}{\chi_{LT} \times M_{pl,rd}^{y}} \le 1$$
$$\psi = \frac{37.47}{62.93} = 0.59$$

 $C_1 = 1.88 - 1.4 \times 0.59 + 0.52 \times 0.59^2 = 1.24 \le 2.7$

λ_1	λ_{LT}	$ar{m{\lambda}}_{LT}$	α_{LT}	XLT
93.91	99.49	1.06	0.21	0.6238
	$\bar{\lambda}_{LT} > 0.4$	4 il y'a pas rique	de déversement	
	37.47	-0.165 < 1	andition w	świfića

Tableau IV.13 : les paramètres de déversement

 $\frac{1}{0.6238 \times 363.57} = 0.165 \le 1 \qquad \text{condition vérifiée}$

IV.8 Au logiciel de Mathcad Prime :

data := READEXCEL (".\chap 4.xlsx", "Feuil1!B19:I24") Réactions d'appuis (kN) Moments (kN.m)

"combinaisons" "HA" "HE" "VA" "VE" "MB" "MC" "MD" $data = \begin{bmatrix} "combinations" "HA" "HE" "VA" VE" MB & MD & MD & MD \\ "1.35G+1.5N" & 27.987 & -27.987 & 85.266 & 85.266 & -222.752 & 160.414 & -222.752 \\ "P" & 0.26 & 0.2 & -0.175 & 0.175 & 2.05 & -0.27 & -1.63 \\ "1.35G+1.5N+P" & 28.247 & -27.787 & 85.091 & 85.441 & -220.702 & 160.144 & -224.382 \\ "1.35(G+V+N)" & 14.991 & -37.091 & 65.369 & 56.974 & -119.389 & 166.9 & -207.23 \\ "G+1.5V" & -4.717 & -19.837 & 7.512 & -1.816 & 37.468 & 62.931 & -60.133 \end{bmatrix}$ $q \coloneqq 8.15 \cdot 10^2 \ \frac{kg}{m} \qquad f_y \coloneqq 23.5 \ \frac{kg}{mm^2} \qquad M_C \coloneqq 160.15 \cdot 10^2 \ kg \cdot m \qquad M_D \coloneqq 224.38 \cdot 10^2 \ kg \cdot m$ $\gamma_{M0} = 1.1$ $W_{ply} \coloneqq \frac{M_D \cdot \gamma_{M0}}{f_y} = (1.05 \cdot 10^3) \ cm^3$ • IPE400 W_{ply} = 1307.1 cm³ Vérification de la flèche: $q \coloneqq 5.66 \cdot 10^2 \, \frac{kg}{m} \qquad E \coloneqq 2.1 \cdot 10^6 \, \frac{kg}{cm^2} \quad I_y \coloneqq 23128.4 \, cm^4 \qquad M_B \coloneqq 154.7 \cdot 10^2 \, kg \cdot m^4$

 $l \approx 20.9 m$

 $y_{max} \coloneqq \frac{1}{384 \cdot E \cdot I_y} \left(5 \cdot q \cdot l^4 - 48 \cdot M_B \cdot l^2 \right) = 11.561 \ \mathbf{cm} \qquad \qquad y_{adm} \coloneqq \frac{l}{200} = 10.45 \ \mathbf{cm}$

 $c \coloneqq \mathrm{if} \ y_{max} \! \leq \! y_{adm}$ c = "Condition non vérifiée" return "Condition vérifiée" else return "Condition non vérifiée"

•
$$IPE450$$
 $I_y = 33742.9 \text{ cm}^4$ $y_{max} = \frac{1}{384 \cdot E \cdot I_y} (5 \cdot q \cdot l^4 - 48 \cdot M_1 \cdot l^2) = 7.924 \text{ cm}}{e^{10} \text{ [return "Condition vérifiée"}}}$
 $e^{10} \text{ [return "Condition vérifiée"}}$
 $e^{10} \text{ [return "Condition non vérifiée"}}$
 $e^{10} \text{ Condition vérifiée"}$
 $e^{10} \text{ Condition non vérifiée"}$
 $I_y = 33742.9 \text{ cm}^4$ $W_{edy} = 1499.7 \text{ cm}^3$ $i_y = 18.48 \text{ cm}$ $W_{pdy} = 1701.8 \text{ cm}^3$ $A_{ex} = 50.8 \text{ cm}^2$
 $I_z = 1675.35 \text{ cm}^4$ $W_{edz} = 176.35 \text{ cm}^3$ $i_z = 4.12 \text{ cm}$ $W_{pdz} = 276.4 \text{ cm}^3$ $A_{ey} = 50.8 \text{ cm}^2$
 $I_z = 1675.35 \text{ cm}^4$ $W_{edz} = 176.35 \text{ cm}^3$ $i_z = 4.12 \text{ cm}$ $W_{pdz} = 276.4 \text{ cm}^3$ $A_{ey} = 58.3 \text{ cm}^2$
 $I_z = 1675.35 \text{ cm}^4$ $W_{edz} = 176.35 \text{ cm}^3$ $i_z = 4.12 \text{ cm}$ $W_{pdz} = 20.9 \text{ m}$ $l = 6 \text{ m}$
a) Incidence de l'effort tranchant :
 $V_{pded} = 0.5 \cdot \frac{A_{ex} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = (3.133 \cdot 10^6) \text{ kg}$ condition = if $V_{zed} \leq V_{pted}$
 $\parallel \text{return "Condition non vérifiée"}$
 $else$
 $\parallel \text{return "Condition non vérifiée"}$
 $else$
 $\parallel \text{return "Condition no$

 $\textbf{Calcul du coefficient Ky:} \quad \beta_{M\phi} \coloneqq 1.3 \qquad M_a \coloneqq -160.62 \cdot 10^2 \ \textbf{kg} \cdot \textbf{m} \qquad M_b \coloneqq 222.75 \cdot 10^2 \ \textbf{kg} \cdot \textbf{m}$

$$\begin{split} M_{C} &\coloneqq 16042 \ \textit{kg} \cdot \textit{m} \qquad M_{B} \coloneqq -22275 \ \textit{kg} \cdot \textit{m} \qquad q \coloneqq 8.15 \cdot 10^{2} \ \frac{\textit{kg}}{\textit{m}} \qquad l \coloneqq \frac{\textit{b}_{p}}{2} = 10.45 \ \textit{m} \\ \varphi &\coloneqq \frac{M_{a}}{M_{b}} = -0.721 \\ \beta_{M\varphi} &\coloneqq 1.8 - 0.7 \cdot \varphi = 2.305 \\ M_{Q} &\coloneqq \frac{q \cdot l^{2}}{8} = (1.113 \cdot 10^{4}) \ \textit{kg} \cdot \textit{m} \\ \Delta M &\coloneqq M_{C} - M_{B} = (3.832 \cdot 10^{4}) \ \textit{kg} \cdot \textit{m} \\ \Delta M &\coloneqq M_{C} - M_{B} = (3.832 \cdot 10^{4}) \ \textit{kg} \cdot \textit{m} \\ \beta_{My} &\coloneqq \beta_{M\varphi} + \frac{M_{Q}}{\Delta M} \cdot (\beta_{M\varphi} - \beta_{M\varphi}) = 2.013 \\ \mu_{y} &\coloneqq \lambda \cdot (2 \cdot \beta_{My} - 4) + \frac{W_{piy} - W_{ely}}{W_{ely}} = 0.151 \\ K_{y} &\coloneqq 1 - \frac{\mu_{y} \cdot N_{sd}}{\chi_{y} \cdot A \cdot f_{y}} = 0.997 \\ c &\coloneqq \frac{N_{sd}}{\chi_{min} \cdot \frac{N_{pin1}}{0.25}} + \frac{K_{y} \cdot M_{sdy}}{M_{crd}} = 0.676 \\ condition &\coloneqq \text{if } c \leq 1 \\ &\parallel \text{return "Condition vérifiée"} \\ &\parallel \text{return "Condition non vérifiée"} \end{split}$$

b) Vérification vis-à-vis du déversement $S \coloneqq 10.7 \ m$ $l \coloneqq \frac{S}{2} = 5.35 \ m$ $x \coloneqq l$ $M_p \coloneqq -4.08 \cdot x^2 + 79.11 \cdot x - 222.75 = 83.709$ $M_a \coloneqq 8370.9 \ kg \cdot m$ $\psi \coloneqq \frac{M_a}{M_b} = -0.376$ $C_1 \coloneqq 1.88 - 1.4 \cdot \psi + 0.52 \cdot \psi^2 = 2.48$

IV.9 Les poteaux :

Les profilés laminés en I ou en H les plus utilisés comme poteau de charpente métallique. Ils conviennent particulièrement bien à l'assemblage des poutres dans les deux directions perpendiculaires avec facilité d'assemblage.

IV.9.1 Prédimensionnement du poteau

• Bilan des efforts sous la combinaison 1.35G + 1.5N + P)

$$M_{y,sd} = 222.75 \ KN. m$$

 $N_{sd} = +85.27 \ KN$

 $V_{z.sd} = -27.79 \, KN$

IV.9.2 Vérification de l'élément aux instabilités

$$M_{ply,sd} = \frac{W_{ply} \times f_y}{\gamma_{M0}} = \frac{2088.5 \times 23.5}{1.1} = 44617.95 \text{ daN. m}$$
$$N_{pl,Rd} = \frac{A \times f_y}{\gamma_{M0}} = \frac{142.8 \times 2350}{1.1} = 305072.73 \text{ daN}$$

IV.9.2.1 Vérification vis-à-vis du flambement

$$\left(\frac{N_{sd}}{\chi_{min} \times N_{pl,Rd}}\right) + \left(\frac{K_y \times M_{y,sd}}{M_{ply,Rd}}\right) \le 1$$

69

	l (cm)	Elancement	Elancement	Courbe de	Facteur de			
		λ	réduit $\bar{\lambda}$	flambement	réduction χ			
Suivant y-y	795	52.23	0.56	b : $\alpha = 0.34$	0.8371			
Suivant z-z	200	26.9	0.29	$c: \alpha = 0.49$	0.9491			
	λ ₁	λ_{LT}	$ar{\lambda}_{LT}$	α_{LT}	χ_{LT}			
	93.91	24.86	0.26	0.21				
	$\bar{\lambda}_{LT} < 0.4 \ il \ y'a \ pas \ rique \ de \ déversement$							
$\mu_y \leq 0.9$	$\mu_z \leq 0.9$	$K_y \leq 1.5$	$K_z \leq 1.5$	$\mu_{LT} \leq 1.5$	$K_{LT} \leq 1$			
-0.118		1						

Tableau IV.14 : les paramètres de flambement et de déversement

Vérification au flambement :

 $\left(\frac{85.27}{0.8371 \times 305072.73}\right) + \left(\frac{1 \times 222.75}{44617.95}\right) = 0.534 < 1 \dots$ condition vérifiée

IX) Vérification vis-à-vis du déversement

 $\overline{\lambda}_{LT} = 0.26 < 0.4 \quad \ \ il \ y'a \ pas \ un \ rique \ de \ déversement$

IV.10 LE CALCUL PAR LOGICIEL DE MATHCAD PRIME :

Balantarian Provident	Caracteria Contraction Service	View loss - Dav	Delaneri Dellarsi	*	
Service And	tolasus - secolar -	If T	19. D.	THE MINISTERS	de trans
ness prove that interest	and the second s	er service in ;	Ball	1948.5 g 1	Rug London Protein pagi pro
ates a					7
les poteaux					
sous la combin	aison 1.35G+1.5	N+P			
Mysd = 22275 k	g · m	$N_{sd} :=$	8527 kg	Vzsd	= 2779 kg
vérifications au	x instabilités				
<i>h</i> ≔350 mm	b:=300 mm	$t_f \approx 17.5$	mm .	$\mathbf{A} \coloneqq 142.8 \ \mathbf{cm}^2$	$W_{ply} = 2088.5 \ cm^3$
$l_y \coloneqq 795 \ cm$	$l_z := 200 \ cm$	$i_y \approx 15.23$	2 cm 3	i _z == 7.43 cm	$W_{plz} \coloneqq 802.3 \ cm^3$
$C_1 \coloneqq 1.123$	$\beta_{MZ} = 1.8$	$\beta_{MY} \coloneqq 1.8$	в /	$G_{MLT} := 1.8$	$W_{clz} \coloneqq 525.8~cm^3$
$E \coloneqq 21000 \frac{kg}{mn}$	$f_y = 23.5$	$\frac{kg}{mm^2}$	$\gamma_{MO} := 1.1$	$\beta_A := 1$	W _{cly} := 1890.8 cm ³
flambement :					
par rapport à l'	axe yy			par rapport a	à l'axe zz
$\lambda_y \coloneqq \frac{l_y}{i} = 52.23$	4	Lange Contract		$\lambda_z \coloneqq \frac{l_z}{i} = 26.9$	918
-9		$[E]^{0.5}$	Taxa an	12	
	$\lambda_1 := \pi$		93.913		

$$\begin{split} \lambda'_{y} &:= \frac{\lambda_{y}}{\lambda_{1}} \left[\beta_{A} \right]^{0.5} = 0.556 & \lambda'_{z} := \frac{\lambda_{z}}{\lambda_{1}} \left[\beta_{A} \right]^{0.5} = 0.287 \\ \text{choix la courbe de flambement} \\ \frac{h}{b} &= 1.167 & 1.167 < 1.2 & et & 17.5 & mm < 40 & mm \\ \text{courbe b :} & \text{courbe c :} \\ \alpha &:= 0.34 & \alpha &:= 0.49 \\ \chi_{y} &:= 0.8371 & \chi_{min} := 0.8371 & \chi_{z} := 0.9491 \\ \chi_{min} := 0.8371 & \mu_{y} := \lambda'_{y} \left(2 \cdot \beta_{MY} - 4 \right) + \left(\frac{W_{ply} - W_{ely}}{W_{ely}} \right) = -0.118 & -0.118 < 0.9 & \text{condition vérifiée} \\ K_{y} &:= 1 - \frac{\mu_{y} \cdot N_{sd}}{\chi_{y} \cdot A \cdot f_{y}} = 1.004 & 1.004 < 1.5 & \text{condition vérifiée} \\ \end{split}$$

$$\begin{split} M_{plyBd} &\coloneqq \frac{N \ pyr \ y}{\gamma_{M0}} = (4.462 \cdot 10^4) \ kg \cdot m & N_{plBd} \coloneqq \frac{N \ y}{\gamma_{M0}} = (3.051 \cdot 10^5) \ kg \\ & \text{vérification de flambement :} \\ & \left(\frac{N_{sd}}{\chi_{min} \cdot N_{plBd}}\right) + \left(\frac{K_y \cdot M_{ysd}}{M_{plyBd}}\right) = 0.534 & 0.534 < 1 \quad \text{condition vérifiée} \\ & \lambda_{LT} \coloneqq \frac{l_z}{k_z} \\ & \lambda_{LT} \coloneqq \frac{l_z}{k_z} \\ & \left(1 + \frac{1}{20} \left(\frac{l_z}{k_z}\right)^2\right)^{0.25} = [24.856] \\ & \lambda_{LT} \coloneqq \frac{\lambda_{LT}}{\lambda_1} = 0.265 & 0.27 < 0.4 \quad \text{condition vérifiée} \\ & \alpha_{LT} \coloneqq 0.5 \left[1 + \alpha_{LT} \cdot (\lambda'_{LT} - 0.2) + \lambda'_{LT}^2\right] = [0.542] \end{split}$$

$\chi_{LT} := \frac{1}{\varphi_{LT} \cdot (\varphi_{LT}^2 - \lambda'_{LT}^2)^{0.5}} = 3.904$		
$\mu_{LT} \! \coloneqq \! 0.15 \! \cdot \! \lambda_z' \! \cdot \! \beta_{MLT} \! - \! 0.15 \! = \! -0.073$	-0.073 < 1.5	condition vérifiée
$K_{LT} \coloneqq 1 - \frac{\mu_{LT} \cdot N_{sd}}{\chi_z \cdot A \cdot f_y} = 1.002$		
$\mu_{z} \coloneqq \lambda_{z}^{\prime} \cdot \left(2 \cdot \beta_{MZ} - 4\right) + \left(\frac{W_{plz} - W_{elz}}{W_{elz}}\right) = 0.411$	$0.411 \! < \! 0.9$	condition vérifiée
$K_z \coloneqq 1 - \frac{\mu_z \cdot N_{sd}}{\chi_z \cdot A \cdot f_y} = 0.989$	0.989 < 1.5	condition vérifiée
vérification de déversement :		
$\left(\frac{N_{sd}}{\chi_z \cdot N_{plRd}}\right) + \left(\frac{K_{LT} \cdot M_{ysd}}{\chi_{LT} \cdot M_{plyRd}}\right) = 0.158$	0.158<1	condition vérifiée

CONCLUSION

L'élément choisi IPE 450 est vérifié au flambement et au déversement dans le cas de charges ascendantes et descendantes, on conclut que le profilé laminé est vérifié aux états limites ultimes et de services donc vérifiée à la sécurité et convient comme Traverse du portique, et l'élément choisi HEA 360 est vérifié au flambement et au déversement, on conclut que le profilé laminé est adéquat et convient comme poteau du portique.

CHAPITRE V : CALCUL DES CONTREVENTEMS.

Introduction

Les contreventements sont des pièces qui ont pour objet d'assurer la stabilité de l'ossature en s'opposant à l'action des forces horizontales telles que le vent, séismes, chocs, ... Ils sont alors conçus pour acheminer les charges horizontales jusqu'aux fondations.

V.1Dispositions des contreventements :

Nos contreventements sont disposés suivant les versants de la toiture dans les 2 travées de rives

Figure V.1 : Dispositions des contreventements

V.2Calcul de la poutre au vent en pignon :

Cette poutre sera calculée comme une poutre treillis reposant sur deux appuis (palées de stabilité). Elle sera soumise à des forces horizontales.

V.2.1 Effort du vent sur les pignons

Figure V.2 : Effort du vent sur les pignons

V.2.2 Evaluation des efforts horizontaux en tête des potelets

Comme on l'a vu dans l'étude au vent

- Le coefficient de réduction :

$$\sum C_r = C_{eD} + C_{eE} = 0.8 + 0.3 = 1.1$$

- La pression dynamique q_h :

$$q_h = q_{ref} \times C_{ex} = 37.5 \times 2.179 = 81.71 \, daN/m^2$$

- La pression du vent :

$$V = P_h = C_d \times q_h \times \sum C_r = 1 \times 81.71 \times 1.1 = 89.88 \ daN/m^2$$

- On n'a pas une force de frottement :

$$F_{fr} = 0 \ daN$$

- Les hauteurs h :

$$h_1 = 7.95 m$$
 $h_2 = 9.10m$ $h_3 = 10.25 m$

V.2.2.1 Les efforts appliqués sur la poutre au vent sont :

$$F_{1} = \left(V \times \frac{h_{1}}{2} \times \frac{b}{8}\right) + \frac{F_{fr}}{8} = \left(89.88 \times \frac{7.95}{2} \times \frac{20.90}{8}\right) = 933.38 \ daN$$

$$F_{2} = \left(V \times \frac{h_{2}}{2} \times \frac{b}{4}\right) + \frac{F_{fr}}{4} = \left(89.88 \times \frac{9.10}{2} \times \frac{20.90}{4}\right) = 2136.78 \ daN$$

$$F_{3} = \left(V \times \frac{h_{3}}{2} \times \frac{b}{4}\right) + \frac{F_{fr}}{4} = \left(89.88 \times \frac{10.25}{2} \times \frac{20.90}{4}\right) = 2406.82 \ daN$$

V.2.2.2 Effort de traction dans les diagonales

Par la méthode des coupures

On établit que l'effort F_d dans les diagonales d'extrémité (les plus sollicitées) est donné comme suit :

$$F_d \times \cos\theta \ F_1 = R$$

Avec :

$$R = \frac{\sum F_i}{2} = \frac{2(F_1 + F_2) + F_3}{2} = \frac{2(933.38 + 2136.78) + 2406.82}{2} = 4273.57 \, daN_i$$

$$\tan \theta = \frac{5.225}{6} \Rightarrow \theta = 41.05^{\circ}$$

D'où : $F_d = \frac{R - F_1}{\cos \theta} = \frac{4273.57 - 933.38}{\cos 41.05} = 4429.16 \, daN$

 $N_{sd} = 1.5 \times F_d = 1.5 \times 4429.16 = 6643.74 \, daN = 66.44 \, KN$

Section de la diagonale

Calcul de la section brute A : $N_{sd} \leq N_{pl} = \frac{A \times f_y}{\gamma_{M_0}}$

$$A \ge \frac{N_{sd} \times \gamma_{M0}}{f_y} = \frac{66.44 \times 1.1}{23.5} = 3.11 \, cm$$

Figure V.4 : L'effort F_d dans la diagonale d'extrémité.

On opte pour une cornière isolée de L 45 × 45 × 5 d'une section $A = 4.30 \ cm^2$ avec un boulon de 12 mm et trous de 13 mm

- Section nette :
$$A_{nette} = 4.30 - 0.5 \times 1.3 = 3.65 \ cm^2$$

V.2.3 Vérification à la résistance ultime de la section nette :

Cas de cornières assemblées par une seule aile, pour une attache avec deux boulons ou plus $\beta \times A_{nette} \times f_{u}$

$$N_{u,RD} = \frac{\beta \times A_{nette} \times J_u}{\gamma_{M2}}$$

Où β est le coefficient minorateur donné dans le tableau 1 en fonction de l'entraxe P1 des trous

Tableau 1 – Coefficie	ents minorateurs	$\beta_2 \text{ et } \beta_3$
Entraxe p1	≤2,5 <i>d</i> 0	≥ 5,0 d ₀
(2 boulons) β_2	0,4	0,7
(3 boulons ou plus) β_3	0,5	0,7

Tableau VI	1:	coefficients	minorateurs	β_1 et	β ₂ .
------------	----	--------------	-------------	--------------	------------------

Exemple :

Attache de 3 boulons et plus : P = 100mm; e = 25mm

 $P_1 = 100 \ mm \ > 5.0 \ d_0 = 5 \times 13 = 65 \ mm$

 $avec: d_0 = 13 mm: diamétre des trous$

Donc $\beta = \beta_3 = 0.7$

$$N_{u,Rd} = \frac{\beta \times A_{nette} \times f_u}{\gamma_{M2}} = \frac{0.7 \times 3.65 \times 3600}{1.25} = 7358.4 \ daN > N_{sd} = 6643.74 \ daN \ \dots \dots \ Ok$$

Conclusion

Une cornière isolée $L 45 \times 45 \times 5$ avec boulon de 12 mm et trous de 13 mm convient pour les barres de contreventement de la poutre au vent.

V.2.4 Vérification des pannes (montants de la poutre au vent) à la résistance

Les montants de la poutre au vent sont des pannes qui travaillent à la flexion déviée sous l'action des charges verticales, et en outre à la compression sous (F), on doit donc vérifier la panne à la flexion déviée composée.

V.2.4.1 Vérification de la section à la résistance :

Flexion composée déviée (bi axiale)

$$\left(\frac{M_{y,sd}}{M_{Ny,sd}}\right)^{\alpha} + \left(\frac{M_{z,sd}}{M_{Nz,sd}}\right)^{\beta} \le 1: \alpha = 2 \ ,\beta = 5n \ge 1$$

Charges et surcharges revenant à la panne intermédiaire

Flexion déviée :

 $G = 41.98 \, daN/ml$

$$N = 67.4 \text{ daN/ml}$$

Compression : (calcul des contreventements)

$$V = F_2 = 2136.78 \, daN$$

Combinaison des charges :

1.35 G + 1.35 N + 1.35 V

$$N_{sd} = 1.35V = 1.35 \times 2136.78 = 2884.65 \ daN$$

 $Q_{sd} = 1.35G + 1.35N = 1.35 \times 41.98 + 1.35 \times 67.4 = 147.66 \; daN/ml$

$$Q_{z,sd} = Q_{sd} \times \cos \theta = 147.66 \times \cos 12.41 = 144.21 \, daN/ml$$

 $Q_{v,sd} = Q_{sd} \times \sin \theta = 151.713 \times \sin 12.41 = 30.99 \ daN/ml$

V.2.4.2 Incidence de l'effort normal

Si $N_{sd} \le min\left(0.25 N_{pl,Rd}; 0.5 \frac{A_w.f_y}{\gamma_{M_0}}\right)$ Il n'y a pas d'interaction entre le moment résistant et l'effort normal.

$$\begin{split} N_{sd} &= 2884.65 \ daN \\ N_{pl,Rd} &= \frac{A \cdot f_y}{\gamma_{M0}} = \frac{20.1 \times 2350}{1.1} = 42940.91 \ daN \\ 0.25 \ N_{pl,Rd} &= 0.25 \times 42940.91 = 10735.23 \ daN \\ A_w &= (A - 2b \cdot t_f) = (20.1 - 2 \times 8.2 \times 0.74) = 7.964 \ cm^2 \\ 0.5 \frac{A_w \times f_y}{\gamma_{M0}} &= 0.5 \ \frac{7.964 \times 2350}{1.1} = 8507 \ daN \\ min\left(0.25 \ N_{pl,Rd} = 10735.23 \ daN, 0.5 \ \frac{A_w \times f_y}{\gamma_{M0}} = 8507 \ daN\right) \\ N_{sd} &= 2884.65 \ daN < 8504 \ daN \ \dots \dots \ Condition \ vérifiée \end{split}$$

La condition est vérifiée donc il n'y a pas d'interaction entre le moment résistant et l'effort normal.

- Incidence de l'effort normal sur le moment résistant peut-être négligée
- A mi-travée la valeur de moment fléchissant est maximale et la valeur de l'effort tranchant est nulle, donc il n'y a pas d'interaction entre le moment fléchissant et l'effort tranchant
- Pas de réduction des moments de résistance plastique

$$M_{Ny,Rd} = M_{ply,Rd} \qquad ; \qquad M_{Nz,Rd} = M_{plz,Rd}$$

$$n = \frac{N_{sd}}{N_{pl,Rd}} = \frac{2884.65}{10735.23} = 0.27 \qquad \beta = 5n = 1.34 \approx 1$$

$$M_{ply,Rd} = \frac{W_{pl,y} \times f_y}{\gamma_{M0}} = \frac{123.9 \times 23.5}{1.1} = 2646.95 \ daN.m$$

$$M_{plz,Rd} = \frac{W_{pl,z} \times f_y}{\gamma_{M0}} = \frac{26.1 \times 23.5}{1.1} = 557.59 \ daN.m$$

$$M_{y,sd} = \frac{Q_{z,ds} \times l^2}{8} = \frac{144.21 \times 6^2}{8} = 648.945 \ daN.m$$

$$M_{z,sd} = \frac{Q_{y,ds} \times \frac{l^2}{2}}{8} = \frac{30.99 \times \frac{6^2}{2}}{8} = 34.64 \ daN. m$$
$$\left(\frac{666.765}{2646.95}\right)^2 + \left(\frac{36.675}{557.59}\right)^1 = 0.13 \ \le 1 \quad \dots \dots \text{ Condition vérifiée}$$

V.2.5 Vérification des pannes (montants de la poutre au vent) aux instabilités

déversement = flambement latéral + Rotation de la section transversale

Combinaison à l'ELU :

G - 1.5 V

 $Q_{z,sd} = G \times \cos \alpha - 1.5 V$

 $Q_{y,sd} = 1.35 G \sin \alpha$

 $N_{sd} = 1.5 V$

Avec :

G : la charge permanant G = $41.98 \ daN/ml$

V : vent de soulèvement V = $-105.54 \ daN/ml$

V' : Effort de compression du vent revenant à la panne intermédiaire (montant de la poutre au vent).

 $V' = F_2 = 2136.78 \ daN$

Les formules de vérification aux instabilités sont les suivantes

On a :

 $M_{plz,Rd} = 557.59 \, daN.m$

 $M_{plv,Rd} = 2646.95 \, daN.m$

Charge de flexion :

 $Q_{z,sd} = G \cos \alpha - 1.5 V = 41.98 \cos 12.41 - 1.5 \times 105.54 = -117.31 \, daN/ml$ (soulèvement)

 $Q_{v,sd} = 1.35 \ G \ sin \ \alpha = 1.35 \times 41.98 \ sin \ 12.41 = 12.18 \ daN/ml$

$$M_{y,sd} = \frac{Q_{z,sd} \times l^2}{8} = \frac{117.31 \times 6^2}{8} = 527.895 \ daN. \ ml$$

$$M_{z,sd} = \frac{Q_{y,sd} \times \frac{l^2}{2}}{8} = \frac{12.18 \times \frac{6^2}{2}}{8} = 13.70 \ daN. \ ml$$

Charge de compression : (calcul des contreventements)

$$N_{sd} = 1.5V' = 1.5 \times 2136.78 = 3205.17 \, daN$$

V.2.5.1 Flexion déviée composée avec risque de flambement

$$\left(\frac{N_{sd}}{\chi_{min} \times N_{pl,Rd}}\right) + \left(\frac{K_y \times M_{y,sd}}{M_{ply,Rd}}\right) + \left(\frac{K_z \times M_{z,sd}}{M_{plz,Rd}}\right) \le 1$$

Calcul des coefficients de réduction pour le flambement χ_y et χ_z

$$\chi_{min} = min\left(\chi_y, \chi_z\right)$$

Flambement par rapport à l'axe fort YY (dans le plan du portique) :

Longueur de flambement : $l_y = l = 600 \ cm$

Calcul de l'élancement :

$$\lambda_y = \frac{l_y}{i_y} = \frac{600}{6.58} = 91.19$$

Calcul d'élancement réduit :

$$\lambda_{1} = \pi \left[\frac{E}{f_{y}} \right]^{0.5} = \pi \left[\frac{2.1 \times 10^{6}}{2350} \right]^{0.5} = 93.91$$
$$\overline{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{1}} [\beta_{A}]^{0.5} \quad avec \ \beta_{1} = 1 \ (section \ 1, 2 \ et \ 3)$$
$$\overline{\lambda}_{y} = \frac{\lambda_{y}}{\lambda_{1}} = \frac{91.19}{93.91} = 0.97$$

Choix de la courbe de flambement :

Le tableau 5.5.3 de l'Eurocode 3, partie 1-1 nous donne le choix de la courbe de flambement en fonction du type de la section

$$\frac{h}{b} = \frac{160}{82} = 1.95 > 1.2 \ \ et \ t_f = 7.4 \ mm < 40 \ mm$$

Suivant y-y : courbe a

$$\alpha = 0.21$$

Facteur de réduction :

 $\chi = 0.6656$ (tableau du coefficient de flambement $\chi\chi$ de la courbe a)

Flambement par rapport à l'axe faible ZZ (hors du plan du portique) :

Longueur de flambement :

 $l_z = l = 2.00 m$ (entraxe des lisses).

Calcul de l'élancement :

$$\lambda_z = \frac{l_z}{i_z} = \frac{200}{1.84} = 108.7$$

Calcul d'élancement réduit :

$$\begin{split} \lambda_1 &= \pi \left[\frac{E}{f_y} \right]^{0.5} = \pi \left[\frac{2.1 \times 10^6}{2350} \right]^{0.5} = 93.91\\ \overline{\lambda}_z &= \frac{\lambda_z}{\lambda_1} [\beta_A]^{0.5} \quad avec \ \beta_1 = 1 \ (section \ 1, 2 \ et \ 3)\\ \overline{\lambda}_z &= \frac{\lambda_z}{\lambda_1} = \frac{108.70}{93.91} = 1.16 \end{split}$$

Choix de la courbe de flambement :

Le tableau 5.5.3 de l'Eurocode 3, partie 1-1 nous donne le choix de la courbe de flambement en fonction du type de la section

$$\frac{h}{b} = \frac{160}{82} = 1.95 > 1.2 \quad et \ t_f = 7.4 \ mm < 40 \ mm$$

Suivant z-z : courbe b $\alpha = 0.34$

Facteur de réduction :

 $\chi = 0.4781$ (tableau du coefficient de flambement χ de la courbe b) Donc $\chi_{min} = min$ (0.6656,0.4781) $\chi_{min} = 0.4781$

81

Calcul de l'élancement réduit vis-à-vis du déversement $\overline{\lambda}_{LT}$:

$$\overline{\lambda}_{LT} = rac{\lambda_{LT}}{\lambda_1} [eta_A]^{0.5} \quad avec \ \lambda_1 = 93.91$$

 $\overline{\lambda}_{LT}$: : élancement de l'élément vis-à-vis du déversement pour les profilés laminés I et H

$$\lambda_{LT} = \frac{\frac{l_z}{i_z}}{C_1^{0.5} \left[1 + \frac{1}{20} \left[\frac{l_z/i_z}{h/t_f}\right]^2\right]^{0.25}} = \frac{200/1.48}{1.132^{0.5} \left[1 + \frac{1}{20} \left[\frac{200/1.48}{160/7.4}\right]^2\right]^{0.25}} = 96.89$$

$$\overline{\lambda}_{LT} = \frac{\lambda_{LT}}{\lambda_1} = \frac{96.89}{93.91} = 1.03 > 0.4$$
 il y'a rique de déversement

Courbe $a \Rightarrow \alpha = 0.21$

$$\chi_{LT} = 1.81$$

Calcul du coefficient K_y :

 β_{My} : facteur de moment uniforme équivalent pour le flambement.

Poutre simplement appuyée avec une charge uniformément répartie : $\beta_{My} = 1.3$

$$\mu_{y} = \overline{\lambda}_{y} \times 2(\beta_{My} - 4) + \left(\frac{W_{pl,y} - W_{el,y}}{W_{el,y}}\right) = 0.97 \times 2(1.3 - 4) + \left(\frac{123.9 - 109}{109}\right)$$
$$\mu_{y} = -5.1 < 0.9$$
$$K_{y} = 1 - \frac{\mu_{y} \times N_{sd}}{\chi_{y} \times A \times f_{y}} = 1 - 5.1 \times 3205.17 \ 0.6656 \times 20.1 \times 2350 = 1.5 \le 1.5$$
Calcul du coefficient K_{tT} :

LT

• β_{MLT} est un facteur de moment uniforme équivalent pour le déversement

• Poutre simplement appuyée avec une charge uniformément répartie : $\beta_{MLT} = 1.3$

$$\mu_{LT} = 0.15 \,\overline{\lambda}_Z \times \beta_{MLT} - 0.15 = 0.15 \times 1.16 \,\times 1.3 - 0.15 = 0.076 < 1.5$$

$$K_{LT} = 1 - \frac{\mu_{LT} \times N_{sd}}{\chi_{LT} \times A \times f_y} = 1 - \frac{0.076 \times 3205.17}{0.6306 \times 20.1 \times 2350} = 0.99$$

Calcul du coefficient K_Z :

• Poutre simplement appuyée avec une charge uniformément répartie : $\beta_{MZ} = 1.3$

$$\mu_z = \overline{\lambda}_z (2\beta_{Mz} - 4) + \left(\frac{W_{pl,z} - W_{el,z}}{W_{el,z}}\right) = 1.16(2 \times 1.3 - 4) + \left(\frac{26.1 - 16.7}{16.7}\right) = -1.06$$

 $\mu_z = -1.06 \, < 0.9$

$$K_z = 1 - \frac{\mu_z \times N_{sd}}{\chi_z \times A \times f_y} = 1 - 1.06 \times 3250.17\ 0.4781 \times 20.1 \times 2350 = 1.15 < 1.5$$

Vérification au flambement

$$\left(\frac{3205.17}{0.3734 \times 42940.91}\right) + \left(\frac{1.123 \times 527.895}{2646.95}\right) + \left(\frac{1.2 \times 13.70}{557.59}\right) = 0.45 < 10^{-10}$$

V.2.5.2. Flexion déviée composée avec risque de déversement

$$\left(\frac{N_{sd}}{\chi_z \times N_{pl,Rd}}\right) + \left(\frac{K_{LT} \times M_{y,sd}}{\chi_{LT} \times M_{ply,Rd}}\right) + \left(\frac{K_z \times M_{z,sd}}{M_{plz,Rd}}\right) \le 1$$

$$\left(\frac{3205.17}{0.4781 \times 42940.91}\right) + \left(\frac{0.99 \times 527.895}{1.81 \times 2646.95}\right) + \left(\frac{1.15 \times 13.70}{557.59}\right) = 0.29 < 1$$

Conclusion

Le profilé choisi IPE 160 est adéquat comme panne de toiture.

V.3 Calcul de la palée de stabilité en long pan

On ne fait travailler que les diagonales tendues, comme dans le cas de la poutre au vent.

Figure V.5 : Schéma statique de Palée de stabilité en long pan.

Par la méthode des coupures :

V.3.1 Effort de traction dans la diagonale tendue :

$$N \cos \beta = R - F_1$$

Avec : $R = 5476.98$ daN : $tan \beta = \frac{7.95}{6} \Rightarrow \beta = 52.96^\circ$

D'où :

$$N = \frac{R - F_1}{\cos \beta} = \frac{5476.98 - 933.38}{\cos 52.96} = 7542.84 \, daN$$

Figure V.6 : Effort de traction dans la diagonale tendue

V.3.2. Section de la diagonale :

Calcul de la section brute A

$$N_{sd} = 1.5 N = 1.5 \times 8972.57 = 11314.26 \ daN = 113.14 \ KN$$

$$N_{sd} \le N_{pl,Rd} = \frac{A \cdot f_y}{\gamma_{M0}}$$
$$A \ge \frac{N_{sd} \cdot \gamma_{M0}}{f_y} = \frac{113.14 \times 1.1}{23.5} = 5.3 \ cm^2$$

Pour des raisons pratiques on opte pour une cornière isolée de L 50×50×7 avec un boulon de 12 mm et trous de 13 mm

Soit L50×50×7 (A = 6.56
$$cm^2$$
)

Section nette : $A_{nette} = 6.56 - 0.5 \times 1.3 = 5.91 \ cm^2$

V.3.3 Vérification à la résistance ultime de la section nette :

Cas de cornières assemblées par une seule aile, pour une attache avec deux boulons ou plus

$$N_{u,Rd} = \frac{\beta . A_{nette} . f_u}{\gamma_{M2}} = \frac{0.7 \times 5.91 \times 3600}{1.25} = 11914.56 \ daN = 119.15 \ KN$$
$$N_{sd} = 113.14 \ KN < N_{u,Rd} = 119.15 \ KN \ \dots \dots \ OK$$

V.4 le calcul par logiciel de Mathcad prime :

D I I I I I I		Wall and Property Advance	inter deriveland	et el ega en a De	dag-unine in	and a sale		in 11 8
Addiminiani birmitarin and all ^{an} disates	Forcilors Validate Targe	Norm form Column	Covere 1	Derination	vit discutor	An Average of C		G
Value or house the de la constra-	Trate Superior Calory at a Calory	·	et.e. Ithe S.		and a Distance	r pagar	Ra Same	
Dvm predstate to my of	340	aton ann dalar	3.		0.44		Press confer	
les contre	ventements							
ics condic	rencentes							
$C_r := 1.1$	$q_h = 81.71 \frac{kg}{m^2}$	V:=89.88	$\frac{kg}{m^2}$	F_{fr} :	=0 kg		$\theta \coloneqq 41.05^{\circ}$	$\beta = 0.7$
$h_1 = 7.95 \ m$	$h_2 = 9.10 \ m$	$h_3 = 10.22$	5 m	b := :	20.90 7	n	$cos \theta \coloneqq 0.7!$	54
$\gamma_{M0} := 1.1$	$\gamma_{M2} := 1.25$	$f_{u} := 23.5$	kg	f:=	3600 -	kg	E = 21000	kg
1110		.,	mm ²	• •		cm ²		mm ²
$F_1 \! \coloneqq \! \left(\! V \! \cdot \! \frac{h_1}{2} \! \cdot \! \right)$	$\left(\frac{b}{8}\right) + \frac{F_{fr}}{8} = 933.3$	76 kg						
$F_2 \coloneqq \left(V \cdot \frac{h_2}{2} \cdot \right.$	$\left(\frac{b}{4}\right) + \frac{F_{fr}}{4} = \left(2.13\right)$	$7 \cdot 10^{3} kg$						
$F_3 \coloneqq \left(V \cdot \frac{h_3}{2} \cdot \right)$	$\left(\frac{b}{4}\right) + \frac{F_{fr}}{4} = (2.40)$	7 • 10 ³) <i>kg</i>						
$\Sigma F_i \coloneqq 2 (F_1 +$	$+F_2$ + $F_3 = (8.54)$	7 • 10 ³) kg						
$R \coloneqq \frac{\Sigma F_i}{2} = \left(4\right)$	1.274 • 10 ³) kg							
$F_d\!:=\!\frac{R\!-\!F_1}{cos\theta}\!=\!$	$= (4.43 \cdot 10^3) \ kg$							
$N_{sd} \coloneqq 1.5 \cdot F_d$	$= \langle 6.645 \cdot 10^3 \rangle \ kg$							
$A \coloneqq rac{N_{sd} \cdot \gamma_{M0}}{f_y}$ corniére de Le	=3.11 <i>cm</i> ² 45*45*5 d'une se	ction A=4.3	0cm2					
$A := 4.30 \ cm^2$	$A_{nette} = 3.6$	65 cm ²						
Vérifications à	à la résistance							
$N_{uRd} \coloneqq \beta \cdot A_{ne}$	$tte \cdot \frac{f_u}{\gamma_{M2}} = (7.358)$	• 10 ³) kg	Ν,	d < N	uRd		condition v	érifiée
Vérification de	es pannes (monta	ats de la pou	utre au	vent) à la r	ésista	nce	
flexion compo	osé déviée	4						
$G \coloneqq 41.98 \frac{kg}{m}$	$N \approx 67.4 \frac{kg}{m} V$	= 2136.78	kg co	$s\theta := 0$	0.98	$sin\theta$:	$= 0.21 \alpha$	$=2$ $\beta := 1$
$N_{sd} \coloneqq 1.35 \ V$	$= (2.885 \cdot 10^3) \ kg$		Q_s	d := 1.	.35 <i>G</i> +	-1.35	N = 147.663	$3 \frac{kg}{m}$
$Q_{zsd} \coloneqq Q_{sd} \cdot co$	$\theta = 144.71 \frac{kg}{m}$		Q_1	$_{isd} := 0$	$Q_{sd} \cdot sin$	$\theta = 3$	$1.009 \frac{kg}{m}$	

Incidence de l'effort normal

$$A := 20.1 \ cm^2 \quad b := 8.2 \ cm \quad t_f := 0.74 \ cm \qquad l := 6.00 \ m \quad \alpha := 2$$

$$W_{pt} := 26.1 \ cm^3 \qquad W_{pty} := 123.9 \ cm^3$$

$$N_{pdtd} := \frac{A \cdot f_y}{7_{M0}} = (4.294 \cdot 10^4) \ kg \qquad 0.25 \cdot N_{pdtd} = (1.074 \cdot 10^4) \ kg$$

$$A_w := A - 2 \cdot b \cdot t_f = 7.964 \ cm^2 \qquad 0.5 \cdot \frac{A_w \cdot f_y}{7_{M0}} = (8.507 \cdot 10^3) \ kg$$

$$N_{sd} := 2885 \ kg$$

$$n := \frac{N_{sd}}{0.25 \cdot N_{pdtd}} = 0.269 \qquad \beta := 5 \cdot n \quad \beta := 1$$

$$M_{ptyRd} := \frac{W_{pty} \cdot f_y}{7_{M0}} = (2.647 \cdot 10^3) \ kg \cdot m$$

$$M_{ptzRd} := \frac{W_{pty} \cdot f_y}{7_{M0}} = (2.647 \cdot 10^3) \ kg \cdot m$$

$$M_{ysd} := \frac{Q_{sd} \cdot l^2}{8} = 651.194 \ kg \cdot m$$

$$M_{ysd} := \frac{Q_{sd} \cdot l^2}{8} = 651.194 \ kg \cdot m$$

$$\left(\frac{M_{ysd}}{M_{ptyRd}}\right)^a + \left(\frac{M_{ssd}}{M_{ptzRd}}\right)^\beta = 0.123 \qquad 0.123 < 1 \quad \text{condition vérifiée}$$
Vérification des pannes (montants de la poutre au vent) aux instabilités

$$G := 41.98 \ \frac{kg}{m} \qquad V := 105.54 \ \frac{kg}{m} \qquad V' := F_2 = (2.137 \cdot 10^3) \ kg \cdot m$$

$$M_{ptyRd} = (2.647 \cdot 10^3) \ kg \cdot m$$

$$Q_{zsd} \coloneqq G \cdot cos\theta - 1.5 \cdot V = -117.17 \frac{\kappa g}{m}$$
 soulevement

•

 $Q_{ysd} \coloneqq 1.35 \cdot G \cdot \sin\theta = 11.901 \frac{kg}{m}$

$$\begin{split} N_{sl} &:= 1.5 \ V = 158.31 \ \frac{kg}{m} \\ \text{charge de flexion} \\ Q_{zsd} &:= 117.17 \ \frac{kg}{m} \\ M_{ysd} &:= \frac{Q_{zsd} \cdot l^2}{8} = 527.265 \ kg \cdot m \\ M_{zsd} &:= \frac{Q_{ysd} \cdot \left(\frac{l}{2}\right)^2}{8} = 13.389 \ kg \cdot m \\ \text{charge de compression} \\ N_{sd} &:= 1.5 \cdot V' = (3.205 \cdot 10^3) \ kg \\ \text{risque de flambement et déversement} \ \beta_{MZ} &:= 1.3 \ \beta_{MUT} &:= 1.3 \ \beta_{MY} &:= 1.3 \ \beta_{AY} &:= 1.3 \ \beta_{A} &:= 1 \\ W_{plz} &:= 26.1 \ cm^3 \ W_{clz} &:= 16.7 \ cm^3 \ W_{ply} &:= 123.9 \ cm^3 \ W_{cly} &:= 109 \ cm^3 \\ h &:= 160 \ cm \ b &:= 82 \ cm \ A &:= 20.1 \ cm^2 \ t_f &:= 0.74 \ cm \ C_1 &:= 1.132 \\ \text{par rapport a l'axe yy} \\ par rapport a l'axe yy \\ par rapport a l'axe yy \\ par rapport a l'axe zz \\ l_y &:= 600 \ cm \ i_y &:= 6.58 \ cm \\ \lambda_y &:= \frac{l_y}{l_y} = 91.185 \\ \lambda_1 &:= \pi \left[\frac{E}{f_y}\right]^{0.5} = [93.913] \\ \lambda'_y &:= \frac{\lambda_y}{\lambda_1} \left[\beta_A\right]^{0.5} = 0.971 \\ \lambda_1 &:= \pi \left[\frac{E}{f_y}\right]^{0.5} = [93.913] \\ \lambda'_z &:= \frac{\lambda_z}{\lambda_1} \left[\beta_A\right]^{0.5} = 1.157 \\ \text{courbe de flambement} \\ \frac{h}{b} = 1.951 \ 1.951 > 1.2 \ ct \ 7.4 \ mm < 40 \ mm \\ \text{suivant yy : courbe a} \\ a &:= 0.21 \\ \chi_{min} &:= 0.4781 \\ \end{split}$$

$$\begin{split} \lambda_{LT} \coloneqq \frac{\frac{l_z}{i_z}}{C_1^{-0.5} \cdot \left[1 + \frac{1}{20} \left(\frac{l_z}{i_t}\right)^2\right]^{0.25}} &= [101.842] \\ \lambda_{LT} \coloneqq \frac{\lambda_{LT}}{\lambda_1} &= 1.084 \\ \lambda_{LT} \coloneqq \frac{\lambda_{LT}}{\lambda_1} &= 1.084 \\ \alpha_{LT} \coloneqq 0.21 \\ \chi_{LT} \coloneqq 0.6306 \\ \varphi_{LT} \coloneqq 0.5 \left[1 + \alpha_{LT} \cdot \left(\lambda_{LT}' - 0.2\right) + \lambda_{LT}'^2\right] &= [1.181] \\ \chi_{LT} \coloneqq \frac{1}{\varphi_{LT} \cdot \left(\varphi_{LT}'^2 - \lambda_{LT}'^2\right)^{0.5}} &= 1.812 \\ \mu_y \coloneqq \lambda_y \left(2 \cdot \beta_{MT} - 4\right) + \left(\frac{W_{ply} - W_{ely}}{W_{ely}}\right) &= -1.223 \\ \mu_{LT} \coloneqq 0.076 < 1.5 \\ condition vérifiée \\ K_{y} \coloneqq 1 - \frac{\mu_y \cdot N_{sd}}{\chi_y \cdot A \cdot f_y} &= 1.125 \\ \mu_{LT} \coloneqq 0.15 \cdot \lambda_z' \cdot \beta_{MLT}' - 0.15 = 0.076 \\ \mu_{zz} \coloneqq \lambda_z \cdot \left(2 \cdot \beta_{MZ} - 4\right) + \left(\frac{W_{plz} - W_{elz}}{W_{elz}}\right) &= -1.057 \\ -1.057 < 0.9 \\ condition vérifiée \\ K_z \coloneqq 1 - \frac{\mu_z \cdot N_{sd}}{\chi_x \cdot A \cdot f_y} &= 1.15 \\ 1.15 < 1.15 < 1.5 \\ condition vérifiée \\ M_{plyHd} \coloneqq \frac{W_{plz} \cdot f_y}{\gamma_{M0}} &= (2.647 \cdot 10^3) \\ kg \cdot m \\ M_{yed} < M_{plyHd} \\ condition vérifiée \\ M_{yed} < \frac{Q_{yad} \cdot \left(\frac{l}{2}\right)^2}{8} \\ = 1.3.89 \\ kg \cdot m \\ M_{yed} < M_{plyHd} \\ \end{split}$$

risque de flambement :

$$\begin{aligned}
\left(\frac{N_{sd}}{\chi_{min}\cdot N_{plRd}}\right) + \left(\frac{K_y\cdot M_{ysd}}{M_{plyRd}}\right) + \left(\frac{K_z\cdot M_{zsd}}{M_{plzRd}}\right) = 0.408 & 0.4 < 1 \text{ condition vérifiée} \\
\text{risque de déversement :} \\
\left(\frac{N_{sd}}{\chi_z\cdot N_{plRd}}\right) + \left(\frac{K_{LT}\cdot M_{ysd}}{\chi_{LT}\cdot M_{plyRd}}\right) + \left(\frac{K_z\cdot M_{zsd}}{M_{plzRd}}\right) = 0.292 & 0.29 < 1 \text{ condition vérifiée} \\
\text{palée de stabilité} \\
R := F_1 + F_2 + F_3 = (5.477 \cdot 10^3) \ kg \ tan\beta := \frac{7.95}{6} \ \beta := 52.96^\circ \ cos\beta := 0.6 \\
N := \frac{R - F_1}{cos\beta} = (7.573 \cdot 10^3) \ kg \\
N_{sd} := 1.5 \cdot N = (1.136 \cdot 10^4) \ kg \\
A' := \frac{N_{sd} \cdot \gamma_{M0}}{f_y} = 5.317 \ \text{cm}^2 \\
\text{soit L 50*50*7:} \ A := 6.56 \ \text{cm}^2 \ A_{nette} := 5.91 \ \text{cm}^2 \ \gamma_{M2} := 1.25 \ \beta := 0.7 \\
N_{uRd} := \frac{\beta \cdot A_{nette} \cdot f_u}{\gamma_{M2}} = (1.191 \cdot 10^4) \ kg \\
N_{sd} < N_{uRd} \ \text{ condition vérifiée} \end{aligned}$$

CONCLUSION

Une cornière isolée de L 50×50×7 avec boulon de 12 mm et trous de 13 mm convient pour la Palée de stabilité.
CHAPITRE VI : CALCUL DES ASSEMBLAGE.

Introduction

Un assemblage est un dispositif qui permet de réunir et de solidariser plusieurs pièces entre elles, en assurant la transmission et la répartition des diverses sollicitations entre les pièces, sans générer des sollicitations parasites notamment de torsions.

VI.1 assemblage dans le portique :

Il existe trois types d'assemblages principaux dans le portique qu'ils doivent être étudiés, notamment :

- Assemblage de rive (Poteau-Traverse).
- Assemblage de faitage (Traverse-Traverse).
- Les bases des poteaux.

VI.2 Assemblage de rive (Poteau-Traverse) :

VI.2.1 La disposition constructive des boulons :

On opte pour un assemblage constitué de 12 boulons HR 10.9 de diamètre de 20 mm, La platine a une épaisseur de 20 mm Le coefficient de frottement =0.3 (Surface nettoyée par brossage métallique ou à la flamme avec enlèvement de toutes les plaques de rouilles non adhérentes).

Figure VI.1 : Assemblage Poteau-traverse

VI.2.2 Efforts de calcul : La vérification de l'assemblage à la résistance se fera sous l'effet des sollicitations suivantes :

 $M_{sd} = -224.38 \, KN. \, ml.$

 $V_{sd} = 85.45 \ KN.$

 $N_{sd} = -27.79 \ KN.$

VI.2.3 Les composants d'assemblage :

- Poteau HEA 360.
- Traverse IPE 450.
- Jarret IPE 450.
- Platine $900 \times 210 \times 20$.
- Boulons HR10.9

VI.2.4 Disposition constructives

VI.2.4.1 Pince longitudinale : $1.2d_0 \le e_1 \le 12 t$

Avec :

 $d_0 = \phi + 2 = 20 + 2 = 22 mm$

t = 20 mm

Donc on a :

 $6.4 \le e_1 \le 240 \implies e_1 = 165 \ mm$

VI.2.4.2 Pince transversale :

 $1.5d_0 \le e_2 \le 12 t$

 $33 \leq e_2 \leq 240 \ \Rightarrow \ e_2 = 110 \ mm$

Figure VI.2 : détails assemblage.

VI.2.5 Calcul de la hauteur de la partie comprimée :

$$x = t_{fp} \sqrt{\frac{b_P}{t_{wp}}}$$

Poutre IPE 450 : $x = 14.6\sqrt{\frac{190}{9.4}} = 65.64 \ mm$

 $d_1 = 840 \ mm$; $d_2 = 675 \ mm$; $d_3 = 510 \ mm$; $d_4 = 390 \ mm$; $d_5 = 225 \ mm$; $d_6 = 60 mm$. 210 110 VI.2.6 Calcul du moment résistant : d1 $M_{rd} = N_1 d_1 + N_1 d_2 + N_1 d_3 + \dots = \sum N_i d_i$ Ο θ d2 Ο θ $\frac{N_1}{d_1} = \frac{N_2}{d_2} = \frac{N_3}{d_2} \dots$ d3 Ο θ $M_{rd} = \frac{N_1}{d_1} \left(d_1^2 + d_2^2 + d_3^2 + \cdots \right)$ d4 Ο θ d5 0 θ $M_{rd} = \frac{N_1 \sum d_i^2}{d_1} \quad Ou \ N_1 = \frac{M_{rd} \cdot d_1}{\sum d_i^2}$ d6 0 Θ

 N_1 : L'effort maximal de traction du boulon le plus éloigné du centre de rotation.

 d_1 : Distance des boulons par rapport au centre de rotation.

VI.2.6.1 L'effort de calcul de précontrainte autorisé dans les boulons :

$$F_p = 0.7 \times f_{ub} \times A_s$$

Boulons de diamètre 20 mm :

$$A_s = 245 \ mm^2$$

$$f_{ub} = 1000 N/mm^2$$

 $F_p = 0.7 \times 1000 \times 10^{-3} \times 245 = 171.5 \text{ KN}$ Pour un boulon

VI.2.6.2 Vérification à la résistance de l'assemblage : il faut vérifier :

$$M_{sd} \leq M_{rd}$$

$$\sum d_i^2 = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2 + d_6^2$$

$$\sum d_i^2 = 840^2 + 675^2 + 510^2 + 390^2 + 225^2 = 1624050 \ mm^2$$

$$M_{rd} = \frac{n \cdot F_p \cdot \sum d_i^2}{d_1} = \frac{2 \times 171.5 \times 10^{-3} \times 1624050}{840} = 663.15 \ KN \cdot mb^2$$

$M_{sd} = 224.3 \text{ KN}. \text{ml} \le M_{rd} = 663.15 \text{ KN}. \text{ml}$ Condition vérifiée

VI.2.7 Résistance de l'assemblage sous l'effort tranchant :

On doit vérifier que : $\frac{V_{sd}}{n} \le V_{rd} = k_s \times m \times \mu \times \frac{F_p}{\gamma_{m2}}$

Par boulon on a : $\frac{V_{sd}}{n} = \frac{85.45}{12} = 7.12 \ KN$

 $k_s = 1$: trou normale (Eurocode 3 P6.5.8.1)

m = 1.0: un plan de frottement

 $\mu = 0.3$: Coefficient de frottement (Eurocode 3 P6.5.8.3)

 F_p : Précontrainte de calcul (Eurocode 3 P6.5.8.2)

 $\gamma_{m2} = 1.25$

 $V_{rd} = 1 \times 1 \times 0.3 \times \frac{171.5}{1.25} = 41.16 \, KN$

 $7.12 \ KN < 41.16 \ KN$

Condition vérifiée

VI.2.8 Résistance de l'assemblage sous l'effort normale :

$$N_{sd} \le N_C$$

$$N_i = \frac{M_{sd} \cdot d_i}{\Sigma d_i^{2}}$$

$$N_1 = \frac{224.38 \times 10^{-3} \times 840}{1624050 \times 10^{-6}} = 116.1 \text{ KN}$$

$$N_2 = \frac{224.38 \times 10^{-3} \times 675}{1624050 \times 10^{-6}} = 93.26 \text{ KN}$$

$$N_3 = \frac{224.38 \times 10^{-3} \times 510}{1624050 \times 10^{-6}} = 70.46 \text{ KN}$$

$$N_4 = \frac{224.38 \times 10^{-3} \times 390}{1624050 \times 10^{-6}} = 53.88 \text{ KN}$$

$$N_5 = \frac{224.38 \times 10^{-3} \times 225}{1624050 \times 10^{-6}} = 31.09 \text{ KN}$$

$$N_6 = \frac{224.38 \times 10^{-3} \times 60}{1624050 \times 10^{-6}} = 8.29 \text{ KN}$$

$$N_{sd} = \sum N_i = 373.08 \text{ KN}$$

$$A_c = t_f (b + \sqrt{t_w \times b}) = 14.6(190 + \sqrt{9.4 \times 190}) = 3391.01 \ mm^2$$
$$\Rightarrow N_c = 796.89 \ KN$$

 $N_C = A_c \times f_y$

 $N_{sd} = 373.08 \ KN < N_C = 796.89 \ KN$ condition vérifiée

VI.2.9 Vérification à la résistance de l'âme du poteau :

Figure VI.4 : Les zones dans l'âme de poteau

VI.2.9.1 La zone tendue :

$$F_{v} = \frac{M_{sd}}{h - t_{f}} \le F_{trd} = t_{wc} \times b_{eff} \times \frac{f_{y}}{\gamma_{m_{0}}}$$

 F_{trd} : résistance de l'âme du poteau à la traction

 t_{wc} : épaisseur de l'âme du poteau

 b_{eff} : entre axe des boulons (p=110 mm)

$$F_{trd} = 10 \times 110 \times \frac{235}{1.1} \times 10^{-3} = 235 \ KN$$

$$F_{\nu} = \frac{M_{sd}}{h - t_f} = \frac{224.38 \times 10^3}{450 - 14.6} = 515.34 \, KN$$

515.34 KN > 235 KN Condition non vérifiée

On va ajouter du raidisseur dans la zone tendue égale à la semelle de poutre.

VI.2.9.2 La zone comprimée :

$$\begin{split} N_{sd} &\leq F_{crd} = \frac{K_c \times \rho \times b_{eff} \times t_{wc} \times f_y}{\gamma_{m_0} \times \sqrt{\left(1 + 1.3 \left(\frac{b_{eff}}{h}\right)^2\right)}} \\ b_{eff} &= t_{fb} + 2 \times a_p \times \sqrt{2} + 5(t_{fc} + r_c) + 2 \times t_p \\ &\left\{ \begin{array}{l} \sigma_{c.sd} &\leq 0.7 \times f_y \Rightarrow K_c = 1 \\ \sigma_{c.sd} &> 0.7 \times f_y \Rightarrow K_c = 1.7 - \frac{\sigma_{c.sd}}{f_y} \end{array} \right. \end{split}$$

$$on \ a \ \sigma_{c.sd} &= \frac{V_{sd}}{A} + \frac{M_{sd} \times z_{max}}{I_y} = \frac{85.45}{142.8} + \frac{224.38 \times 10^2 \times 17.5}{33089.8} = 12.47 \ KN/cm^2 \\ &\left(0.7 \times f_y = 0.7 \times 23.5 = 16.45 \frac{KN}{cm} \right) \\ \sigma_{c.sd} &= 12.47 \ KN/cm < 16.45 \frac{KN}{cm} \Rightarrow K_c = 1 \end{split}$$

 $t_p = 20 \ mm$: Épaisseur de la platine d'extrémité

 t_{fb} : épaisseur de la semelle de la poutre

- t_{fc} : épaisseur de la semelle du poteau
- t_p : épaisseur de la platine d'extrémité
- r_c : rayon de raccordement âme/semelle du poteau
- a_p : épaisseur de la gorge de la soudure (estimée à 5.0mm)

$$b_{eff} = 14.6 + 2 \times 5 \times \sqrt{2} + 5(17.5 + 27) + 2 \times 20 = 291.24 mm$$

$$\overline{\lambda_p} = 0.932 \sqrt{\frac{b_{eff} \times d_{wc} \times f_y}{E \times t_{wc}^2}}$$
$$\overline{\lambda_p} = 0.932 \sqrt{\frac{291.24 \times 261 \times 235}{2.1 \times 10^5 \times 10^2}} = 0.86$$
$$\begin{cases} \overline{\lambda_p} \le 0.72 \Rightarrow \rho = 1\\ \overline{\lambda_p} > 0.72 \Rightarrow \rho = \frac{\overline{\lambda_p} - 0.2}{\overline{\lambda_p}^2} \end{cases}$$

96

$$on \ a \ \overline{\lambda_p} = 0.86 > 0.72 \Rightarrow \rho = \frac{0.86 - 0.2}{0.86^2} = 0.89$$
$$F_{crd} = \frac{1 \times 0.89 \times 291.24 \times 10 \times 235}{1.1 \sqrt{\left(1 + 1.3 \left(\frac{291.24}{450}\right)^2\right)}} \times 10^{-3} = 445.57 \ KN$$

 $N_{sd} = 27.79 \le F_{crd} = 445.57 \ KN$ condition vérifiée

VI.2.9.3 La zone cisaillée :

$$F_{v} \le F_{vrd} = 0.58 \times f_{y} \times t_{wc} \times \frac{h_{c}}{\gamma_{M_{0}}}$$

$$F_{vrd} = 0.58 \times 235 \times 10 \times \frac{350 \times 10^{-3}}{1.1} = 433.68 \, KN$$

 $F_v = 515.34 \ KN > F_{vrd} = 433.68 \ KN$ condition non vérifiée

VI.2.10 calculs au logiciel Mathcad Prime :

Les assemblages Assemblage poteau-traverse: $M_{sd} = 22438 \ kg \cdot m$ $V_{sd} = 8545 \ kg$ $N_{sd} = 2779 \ kg$ $a_p = 5 \ mm$ les boulons $f_{ub} \coloneqq 100 \ \frac{kg}{mm^2}$ $A_s \coloneqq 245 \ mm^2$ $f_y \coloneqq 23.5 \ \frac{kg}{mm^2}$ $d_1 = 840 \ mm$ $d_2 = 675 \ mm$ $d_3 = 510 \ mm$ $d_4 = 390 \ mm$ $d_5 = 225 \ mm$ $d_6 \coloneqq 60 \ \textit{mm} \qquad n_h \coloneqq 2 \quad n_v \coloneqq 12 \qquad b_{eff} \coloneqq 110 \ \textit{mm} \qquad k_s \coloneqq 1 \qquad m \coloneqq 1 \qquad \mu \coloneqq 0.3 \quad \gamma_{m2} \coloneqq 1.25$ $t_p = 20 \ mm$ $E = 21000 \ \frac{kg}{mm^2}$ $\gamma_{m0} \coloneqq 1.1$ Traverse IPE 450 $h_p := 450 \ mm$ $b_p := 190 \ mm$ $t_{wp} := 9.4 \ mm$ $t_{fp} := 14.6 \ mm$ poteau HEA 360 $h_c := 350 \ mm$ $b_c := 300 \ mm$ $t_{wc} := 10 \ mm$ $t_{fc} := 17.5 \ mm$ $r_c := 27 \ mm$ + $x \coloneqq t_{fp} \cdot \sqrt{\frac{b_p}{t_{wp}}} = 65.64 \ mm \qquad I_y \coloneqq 33089.8 \ cm^4 \qquad A \coloneqq 142.8 \ cm^2 \qquad d_c \coloneqq 261 \ mm \qquad p_c = 261 \ mm \qquad p$ la resistance de l'ame de poteau zone tendue $F_{v} \coloneqq \frac{M_{sd}}{h_{p} - t_{fp}} = (5.153 \cdot 10^{4}) \ kg \qquad \qquad F_{trd} \coloneqq t_{wc} \cdot b_{eff} \cdot \frac{f_{y}}{\gamma_{m0}} = (2.35 \cdot 10^{4}) \ kg$ Condition := if $F_v \leq F_{trd}$

 return " vérifiée "

 else

 return "non vérifiée "

 Condition="non vérifiée "

 else

In resistance au l'offert transhant	F_p (111C 103) L
	$V_{rd} = \kappa_s \cdot m \cdot \mu \cdot \frac{\gamma_{m2}}{\gamma_{m2}} = (4.116 \cdot 10^{\circ}) \kappa g$
$Condition \coloneqq \text{if } \frac{V_{sd}}{n_v} \leq V_{rd}$	
return " <i>vérifiée</i> " else	Condition = " vérifiée "
return "non vérifié	<i>ie</i> "
la resistance a l'effort normale	
$N_1 \coloneqq \frac{M_{sd} \cdot d_1}{M_{sd}^4} = (1.158 \cdot 10^4) \ kg$	$N_4 \coloneqq \frac{M_{sd} \cdot d_4}{M_{sd}^{d_i} d} = (5.376 \cdot 10^3) \ kg$
$N_2 \coloneqq \frac{M_{sd} \cdot d_2}{d_i} = (9.305 \cdot 10^3) \ kg$	$N_5 \coloneqq \frac{M_{sd} \cdot d_5}{d_i} = (3.102 \cdot 10^3) \ kg$
$N_3 \coloneqq \frac{m_{sa} - 3}{d_i} = (7.031 \cdot 10^3) \ kg$	$N_6 := \frac{-k_{s1} - k_b}{d_i} = 827.131 \ kg$
$N_{sd}\!\coloneqq\!N_1\!+\!N_2\!+\!N_3\!+\!N_4\!+\!N_5\!+\!N_6\!=$	$(3.722 \cdot 10^4) \ kg$
$N_c \coloneqq t_{fp} \cdot \left(b_p + \sqrt{t_{wp} \cdot b_p} \right) \cdot f_y = \left(7.969 \right) \cdot$	••10 ⁴) kg
$Condition \coloneqq \text{if } N_{sd} {\leq} N_c$	
return " vérifiée "	Condition="vérifiée"
else	(p))
$b_{eff} \coloneqq t_{fp} + 2 \cdot a_p \cdot \sqrt{2} + 5 \cdot (t_{fc} + r_c) + b_{fc} = 0$	$+2 \cdot t_p = 291.242 \ mm$
$V_{sd} = \frac{M_{sd} \cdot \frac{n_c}{2}}{2}$	ka ka
$\sigma_{csd} \coloneqq \frac{\sigma_{csd}}{A} + \frac{\sigma_{csd}}{I_y} \equiv (1.247 \cdot 10^{\circ})$	$\frac{-2g}{cm^2}$
$k_c \coloneqq ext{if } \sigma_{csd} \leq 0.7 \cdot f_y$	$k_c = 1$
$ k_c \leftarrow 1$	
else	
$k_c \leftarrow 1.7 - \frac{\sigma_c}{f}$	sd
$\left \frac{1}{b_{eff} \cdot d_{e} \cdot f_{y}} \right $	<i>y</i>
$\lambda_p = 0.932 \cdot \sqrt{\frac{-ig}{E \cdot t_{wc}^2}} = 0.86$	
$\rho \coloneqq \mathrm{if} \ \lambda_p \leq 0.72$	ho = 0.893
$\rho \leftarrow 1$	
else	
$\rho \leftarrow \frac{\lambda_p - 0}{2}$	2
λ_p^2	
$E = k_c \cdot \rho \cdot b_{eff} \cdot t_{wc} \cdot f_y $	460, 10 ⁴) ha
$\Gamma_{crd} = \frac{(b_{crd})^2}{(b_{crd})^2} = (4.5)$	409 · 10 / Kg
$\gamma_{m0} \cdot \sqrt{1 + 1.3 \cdot \left(\frac{e_{jj}}{h_p}\right)}$	

else return " <i>vérifiée</i> " else	Condition = " vérifiée "	

Chapitre VI : calcul des assemblages

la zone cisaillée		
$F_{vrd} \! \coloneqq \! 0.58 \! \cdot \! f_y \! \cdot \! t_y$	$wc \cdot \frac{h_c}{\gamma_{m0}} = \langle 4.337 \cdot 10^4 \rangle \ kg$	
	$Condition \coloneqq \text{if } F_v \leq F_{vrd}$ $\ \text{ return " } v\acute{e}rifi\acute{e} "$ else $\ return "non acception of the second seco$	
	Condition="non vérifiée"	

Conclusion :

On doit ajouter des raidisseurs dans les zones tendue et cisaillée égaux à la semelle de poutre.

VI.3 Assemblage du Faitage (Traverse-Traverse) :

Figure VI.5 : Représentation de l'assemblage traverse-traverse.

VI.3.1 La disposition constructive des boulons :

On opte pour un assemblage constitué de 12 boulons HR 10.9 de diamètre de 20 mm, La platine a une épaisseur de 20 mm. Le coefficient de frottement $\mu = 0.3$.

VI.3.2 Efforts de calcul : La vérification de l'assemblage à la résistance se fera sous l'effet des sollicitations suivantes :

 $M_{sd} = 160.15 \, KN. \, ml.$

 $V_{sd} = 85.45 \, KN.$

 $N_{sd} = 27.79 \ KN.$

VI.3.3 Vérification à la résistance de l'assemblage :

Il faut vérifier que : $M_{sd} \leq M_{rd}$

$$M_{rd} = \frac{N_1 \sum d_i^2}{d_1} = \frac{n \cdot F_p \cdot \sum d_i^2}{d_1}$$

VI.3.3.1 L'effort de calcul de précontrainte autorisé dans les boulons :

$$F_p = 0.7 \times f_{ub} \times A_s$$

Boulons de diamètre 20 mm :

$$A_{s} = 245 \ mm^{2}$$

$$f_{ub} = 1000 \ N/mm^{2}$$

$$F_{p} = 0.7 \times 1000 \times 10^{-3} \times 245 = 171.5 \ KN \ \text{Pour un boulon}$$

$$VI.3.3.2 \ V\acute{erification} \ \grave{a} \ la \ r\acute{esistance} \ de \ l'assemblage :$$

$$\Sigma d_{i}^{\ 2} = d_{1}^{\ 2} + d_{2}^{\ 2} + d_{3}^{\ 2} + d_{4}^{\ 2} + d_{5}^{\ 2} + d_{6}^{\ 2}$$

$$\Sigma d_{i}^{\ 2} = 840^{2} + 675^{2} + 510^{2} + 390^{2} + 225^{2} = 1624050 \ mm^{2}$$

$$M_{rd} = \frac{n.F_{p}.\Sigma d_{i}^{\ 2}}{d_{1}} = \frac{2 \times 171.5 \times 10^{-3} \times 1624050}{840} = 663.15 \ KN.ml$$

$$M_{sd} = 160.15 < M_{rd} = 663.15 \ KN.ml$$

$$condition \ v\acute{erifice}$$

VI.3.4 Résistance de l'assemblage sous l'effort tranchant :

$$\frac{V_{sd}}{n} \le V_{rd} = k_s \times m \times \mu \times \frac{F_p}{\gamma_{m2}}$$

Par boulon on a : $\frac{V_{sd}}{n} = \frac{85.45}{12} = 7.12 \ KN$ $V_{rd} = 1 \times 1 \times 0.3 \times \frac{171.5}{1.25} = 41.16 \ KN$

 $6.1 \ KN < 41.16 \ KN$ Condition vérifiée

VI.3.5 calculs au Mathcad Prime :

la resistance au l'effort tranchant		
$Condition \coloneqq \text{if } \frac{V_{sd}}{n_v} {\leq} V_{rd}$	Condition=" vérifiée "	
return " vérifiée "		
else		
return "non vérifiée "		

VI .4 Calcul des bases des poteaux

VI.4.1 Définition :

La base du poteau est une pièce de construction qui permet de fixer solidement les poteaux du hangar au sol ou à une dalle de béton.

Pour réduire la taille des fondations, l'assemblage de base du poteau est souvent conçu comme une articulation. Néanmoins, lorsque le sol est fiable, il est possible d'utiliser des pieds de poteau encastrés.

Figure VI.6 : Base des poteaux.

Figure VI.7 : Pied de poteau articulé encastrés.

Figure VI.8 : Pieds de poteaux

Dans notre cas on a les poteaux en **HEA360.** Donc on va faire le calcul de dimensionnement de la plaque d'assise sous l'action des charges suivantes :

- Charge axiale de compression $N_{sd} = 85.45 KN$
- Effort tranchant $V_{z,sd} = 27.79 KN$
- Effort de soulèvement $N_{sd} = 7.51$ KN
- Effort tranchant correspondant : $V_{z,sd} = 4.72 \ KN$

VI.4.2 Données de base :

- Plaque d'assise en acier de nuance S235 : f_y =235 N/mm²
- Fondation en béton de classe 25/30 : $f_{ck} = 25N/mm^2$
- Coefficients partiels de sécurité :

Acier : $\gamma_{M_0} = 1.1$; $\gamma_{M_2} = 1.25$

Béton : $\gamma_c = 1.5$

VI.4.3 Résistance du béton à la compression : $f_{cd} = \frac{a_{cc} \times f_{ck}}{\gamma_c}$

La valeur de a_{cc} est de données dans l'annexe nationale.

Sa valeur recommandée est : 1

Donc la résistance de béton est : $f_{cd} = \frac{1 \times 25}{1.5} = 16.7 \frac{N}{mm^2}$

VI.4.4 Résistance de calcul à l'écrasement du matériau de scellement :

La valeur de coefficient du matériau de scellement est : $\beta_i = 2/3$

Les dimensions de la fondation étant inconnues, on prend : $\alpha = \sqrt{\frac{A_{c1}}{A_{c0}}} = 1.5$

La résistance de calcul à l'écrasement du matériau de scellement :

$$f_{jd} = \alpha \times \beta_j \times f_{cd} = 16.7 \ N/mm^2$$

VI.4.5 Estimation de l'air de la plaque d'assise :

Une estimation de l'air requise de la plaque d'assise est donnée par la plus grande des deux valeurs suivantes :

$$A_{c0} = \frac{1}{h_c \times b_{fc}} \left(\frac{N_{sd}}{f_{cd}}\right)^2 = \frac{1}{350 \times 300} \left(\frac{85450}{16.7}\right)^2 = 249.35 \ mm^2$$
$$A_{c0} = \frac{N_{sd}}{f_{cd}} = \frac{85450}{16.7} = 5116.77 \ mm^2$$

VI.4.6 Choix du type de la plaque d'assise :

Comme estimation pour :

$$A_{c0} = 5116.77 \ mm^2 < 0.95 \times 350 \times 300 = 99750 \ mm^2$$

Les dimensions en plans adéquates pour la plaque d'assise à la projection courte sont choisies comme suit :

- $b_p > b_{fc} + 2 \times t_{fc} \rightarrow b_p > 300 + 2 \times 17.5 \rightarrow b_p > 335 mm$
- $h_p > h_c + 2 \times t_{fc} \rightarrow h_p > 350 + 2 \times 17.5 \rightarrow h_p > 385 mm$

Donc on prend : $h_p = 390 \ mm$. ; $b_p = 340 \ mm$.

$$A_{c0} = 390 \times 350 = 136500 > 99750 \ mm^2$$

VI.4.7 Vérification de la résistance de calcul de la plaque d'assise :

VI.4.7.1 Calcul de la Largeur d'appuis additionnelle c :

$$C = \frac{-B - \sqrt{B^2 - 4 \times a \times c}}{2 \times a}$$

Où : a = +2 $B = -(b_{fc} - t_w + h_c) = -(300 - 10 + 350) = -640 mm$ $c = \frac{0.5 \times N_{sd}}{f_{jd}} - (2 \times b_{fc} \times t_{fc} + 4 \times t_{fc}^2 + 0.5 \times h_c \times t_{wc} - t_{fc} \times t_{wc})$ $c = \frac{0.5 \times 85450}{16.7} - (2 \times 300 \times 17.5 + 4 \times 17.5^2 + 0.5 \times 350 \times 10 - 17.5 \times 10)$ = -10741.62 mm

La largeur additionnelle est de : $C = \frac{640 - \sqrt{640^2 - 4 \times 2 \times -10741.62}}{2 \times 2} = -15.98 \, mm$

Calcul de la largeur d'appuis additionnelle c

En posant :t=20 mm comme épaisseur de la plaque d'assise.

$$c = t \left(\frac{f_{yp}}{3 \times f_{jd} \times \gamma_{m_0}}\right)^{0.5} = 20 \left(\frac{235}{3 \times 16.7 \times 1.1}\right)^{0.5} = 41.3 \text{ mm}$$
$$c = 41.3 \text{ mm} < \frac{h_c - 2 \times t_{fc}}{2} = \frac{350 - 2 \times 17.5}{2}$$

 $c = 41.3 \ mm < 157.5 \ mm$

Donc $\beta_c = 20 mm < c = 41.3 mm$

La plaque d'assise est de projection courte.

VI.4.7.2 Calcul de la section efficace A_{eff} :

La plaque d'assise est de projection courte

$$A_{eff} = 2(b_{fc} + 2 \times \beta_c)(c + \beta_c + t_{fc}) + (h_c - 2 \times c - 2 \times t_{fc})(2 \times c + t_{wc})$$
$$A_{eff} = 2(300 + 2 \times 20)(41.3 + 20 + 17.5)$$
$$+ (350 - 2 \times 41.3 - 2 \times 17.5)(2 \times 41.3 + 10)$$

 $A_{eff} = 75104.24 \ mm^2$

VI.4.7.3 Calcul de la résistance à l'effort axial N_{sd} : $N_{sd} \le N_{rd}$; $N_{rd} = A_{eff} \times f_{jd}$

 $N_{rd} = 75104.24 \times 16.7 \times 10^{-3} = 1254.24 \, KN$

 $N_{sd} = 85.45 \text{ KN} \le N_{rd} = 1254.24 \text{ KN}$ condition vérifiée

VI.4.8 Calcul de la résistance de la plaque d'assise au moment fléchissant *VI.4.8.1 Calcul du moment résistant M_{rd} :*

$$M_{rd} = \frac{t^2 \times f_y}{6 \times \gamma_{M_0}} = \frac{20^2 \times 235}{6 \times 1.1} \times 10^{-3} = 14.24 \text{ KN. mm}$$

VI.4.8.2 Calcul du moment de flexion M_{sd} :

$$M_{sd} = \frac{\left(\frac{C^2}{2}\right) \times N_{sd}}{A_{eff}} = \frac{\left(\frac{41.3^2}{2}\right) \times 85.45}{75104.24} = 0.97 \, KN. \, mm$$

 $M_{sd} = 0.97 < M_{rd} = 14.24 \ KN. \ mm$ Condition vérifiée

VI.4.9 Vérification de la résistance au cisaillement du scellement de la plaque d'assise :

$$V_{Sd} \leq F_{v,rd}$$

$$F_{v,rd} = f_{f_{rd}} = C_{fd} \times N_{sd} = 0.2 \times 85.45 = 17.09 \, KN$$

 C_{fd} : coefficient de frottement entre la plaque d'assise et couche de scellement. Une valeur de

0.2 et spécifiée pour le mortier de calage de ciment et de sable.

 N_{sd} : est l'effort de calcul de compression du poteau.

$$V_{Sd} = 27.79 > F_{v,rd} = 17.09 KN$$
 condition non vérifiée

Remarque : les tiges d'ancrage doivent reprendre l'effort de cisaillement qu'il faut vérifier à cause que la résistance au cisaillement du scellement de la plaque d'assise n'est pas vérifiée

VI.4.10 calculs les pieds des poteaux au Mathcad Prime :

Pieds des poteaux:
$$A_s = 245 \text{ mm}^2$$
 $f_{ub} = 40 \frac{kg}{mm^2}$ $f_{yb} = 240$ $a = 2$
 $N_{sd1} = 8545 kg$ $V_{zsd1} = 2779 kg$ $a_{cc} = 1$ $\alpha = 1.5$ $\beta_j = \frac{2}{3}$ $\beta_c = 20 \text{ mm}$
 $f_{ck} = 2.5 \frac{kg}{mm^2}$ $\gamma_c = 1.5$
 $f_{cd} = \frac{a_{cc} \cdot f_{ck}}{\gamma_c} = 1.667 \frac{kg}{mm^2}$ $f_{jd} = \alpha \cdot \beta_j \cdot f_{cd} = 1.667 \frac{kg}{mm^2}$
 $b_p = b_c + 2 \cdot t_{fc} = 335 \text{ mm}$ $b_p = 340 \text{ mm}$
 $h_p = h_c + 2 \cdot t_{fc} = 385 \text{ mm}$ $h_p = 390 \text{ mm}$
 $A_{c0} = b_p \cdot h_p = (1.307 \cdot 10^5) \text{ mm}^2$
 $B = -(b_c - t_{wc} + h_c) = -0.64 \text{ m}$
 $c = \frac{0.5 \cdot N_{sd1}}{f_{jd}} - (2 \cdot b_c \cdot t_{fc} + 4 \cdot t_{fc}^2 + 0.5 \cdot h_c \cdot t_{wc} - t_{fc} \cdot t_{wc}) = -1.074 \cdot 10^4 \text{ mm}^2$
 $C = \frac{-B - \sqrt{B^2 - 4 \cdot a \cdot c}}{2 \cdot a} = -15.978 \text{ mm}$
 $c_1 = t_p \cdot \left(\frac{f_y}{3 \cdot f_{jd} \cdot \gamma_{m0}}\right)^{0.5} = 41.341 \text{ mm}$

VI.4.11 Les tiges d'ancrage :

Il est nécessaire de poser des tiges d'ancrage pour résister aux effets des calculs. Ces tiges doivent être dimensionnées pour supporter efficacement les forces de traction, les forces de soulèvement et les moments de flexion.

VI.4.11.1 Résistance des tiges d'ancrage au cisaillement : $F_{v,rd} = F_{f,rd} + n_b \times F_{vb,rd}$; L'en 1993-1-8 §6.2.2

 $F_{f,rd}$: Résistance de calcul par frottement en présence d'un effort axial de compression N_{Sd} dans le poteau $F_{f,rd} = 0.2 \times N_{sd}$

 $F_{v,rd}$: Résistance de calcul d'une tige d'ancrage au cisaillement $F_{vbrd} = \frac{\alpha_{cb} \times f_{ub} \times A_s}{\gamma_{M_0}}$

$$\alpha_{cb} = 0.44 - 0.0003 \times f_{yb}$$
; $235 \le f_{yb} \le 640 \ mm^2$

n_b : nombre de tiges situées dans l'assemblage.

On vérifie que la condition suivante est satisfaite : $V_{Sd} \leq F_{v,rd}$

• Pour deux tiges M20 en classe 4.6 :

$$\begin{split} A_{s} &= 245 \ mm^{2} \ ; \ f_{ub} = 400 \frac{N}{mm^{2}} \ ; \ f_{yb} = 240 \frac{N}{mm^{2}} \\ F_{f,rd} &= 0.2 \times 85.45 = 17.09 \ KN \\ \alpha_{cb} &= 0.44 - 0.0003 \times 240 = 0.368 \\ F_{vbrd} &= \frac{0.368 \times 400 \times 245}{1.25} \times 10^{-3} = 29 \ KN \\ F_{v,rd} &= 17.09 + 2 \times 29 = 75.09 \\ V_{Sd} &= 18.4 \ KN \le F_{v,rd} = 75.09 \ KN \quad condition \ vérifiée \end{split}$$

Par mesure de sécurité, il est courant de prévoir des bèches de cisaillement pour alléger la charge des tiges d'ancrage en cas de grands efforts de cisaillement, tels que les séismes.

On choisit une bèche ayant des dimensions satisfaisant les conditions suivantes :

Profondeur efficace :60 $mm \le L_{eff(b\hat{e}che)} \le 1.5 \times h_{b\hat{e}che}$

Hauteur de la bêche : $h_{b\hat{e}che} \leq 0.4 \times h_c$

Elancement maximal des ailes : $\frac{b_{b\hat{e}che}}{b_{b\hat{e}che}} \le 20$

Les dimensions d'un profile IPE 100 S235 respectent les deux premières conditions :

- Une bèche en IPE 100 en acier S235 est retenue.
- La profondeur totale : $d_0 = 100$

- La longueur efficace : $L_{ff} = 100 30 = 70 mm$
- L'épaisseur de scellement est de 30 mm.

VI.4.11.2 Résistance des tiges d'ancrage à l'effort de soulèvement :

Dans le cas où l'effort N_{Sd} en pied de poteau est un effort de soulèvement, les tiges d'ancrages doivent transmettre cet effort ainsi que l'effort tranchant concomitant entier V_{Sd} à la fondation. D'après les résultats du chapitre 4 (calcul de portique) : Combinaison G + 1.5V

 $N_{Sd} = 7.51 \, KN$

 $V_{Sd} = 4.72 \ KN$

VI.4.11.3 Vérification des tiges d'ancrage à la résistance :

En se plaçant en sécurité, on vérifie pour une tige d'ancrages que la condition suivante est satisfaite : $\frac{V_{Sd}/n_b}{F_{vb.rd}} + \frac{N_{Sd}/n_b}{N_{t.rd}} \le 1$

Avec: $N_{t.rd} = \frac{0.9 \times f_{ub} \times A_s}{\gamma_{M_0}} = \frac{0.9 \times 400 \times 245}{1.25} = 70.56 \, KN$

$$\frac{\frac{4.72}{2}}{29} + \frac{\frac{7.51}{2}}{70.56} = 0.134 \le 1 \quad condition \ v\acute{e}rifi\acute{e}$$

M20 en classe 4.6 : $A_s = 245 \ mm^2$; $f_{ub} = 400 \frac{N}{mm^2}$; $f_{yb} = 240 \frac{N}{mm^2}$; $d = 20 \ mm$

VI.4.11.4 Vérification des tiges d'ancrage à l'adhérence :

Pour un boulon d'ancrage $\frac{N_{Sd}}{2} \leq F_{anc,Rd}$

La résistance d'ancrage en traction d'une tige d'ancrage est :

$$F_{anc.Rd} = \pi \times d \times f_{bd}(l_1 + 6.4 \times r + 3.5 \times l_2)$$

Les valeurs courantes sont données comme suit :

 $r = 3d = 3 \times 20 = 60 mm$ $l_1 = 20d = 20 \times 20 = 400 mm$ $l_2 = 2d = 2 \times 20 = 40 mm$

La largeur totale de la tige :

$$l_b = l_1 + 6.4 \times r + 3.5 \times l_2 = 400 + 6.4 \times 60 + 3.5 \times 40 = 924 mm$$

En utilisant la formule suivante donnée dans le guide de L'EUROCODE de CTICM (1)

La longueur totale de la tige requise est : $l_{b,rqd} = 0.144 \times d \times \frac{f_{ub}}{f_{bd}}$

 f_{ub} : résistance ultime du boulon d'ancrage

 f_{bd} : contrainte d'adhérence de calcul

d : diamètre du boulon d'ancrage

Calcul la contrainte d'adhérence
$$f_{bd}$$
 : $f_{bd} = \frac{0.36\sqrt{f_{ck}}}{\gamma_c}$

Classe de béton C25/30

 f_{ck} : Résistance a la compression du béton $f_{ck} = 25N/mm^2$

 γ_c : Coefficient partiel de sécurité $\gamma_c = 1.5$

Donc on a : $f_{bd} = \frac{0.36\sqrt{25}}{1.5} = 1.2 N/mm^2$

Ainsi que : $l_{b,rqd} = 0.144 \times 20 \times \frac{400}{1.2} = 960 \text{ mm}$

 $F_{anc,Rd} = \pi \times 20 \times 1.2 \times 924 = 69.67 \ KN$

$$\frac{7.51}{2} = 3.76 \text{ KN} \le F_{anc,Rd} = 69.67 \text{ KN}$$
Condition vérifiée

VI.4.12 calculs les tiges d'ancrage au Mathcad Prime :

os tigos d'angrago		
es uges a anci age		
$F_{frd} = 0.2 \cdot N_{sd1} = (1.709 \cdot 10^3) \ kg$	$n_b = 2$	
$\alpha_{cb}\!\coloneqq\!0.44\!-\!0.0003\!\cdot\!f_{yb}\!=\!0.368$		
$F_{vbrd} \coloneqq \frac{\alpha_{cb} \cdot f_{ub} \cdot A_s}{\gamma_{m2}} = (2.885 \cdot 10^3) \ kg$	$F_{vrd}\!\coloneqq\!F_{frd}\!+\!n_b\!\cdot\!F_{vbrd}\!=$	(7.479 • 10 ³) kg
Condition - if $N \to N$		
return "vérifiée"		
else return " <i>non vérifiée</i> "	$Condition = "v{\acute e}rifi{\acute e}e$	n
les tiges d'ancrage $d = 20$ r	nm	
	0.9 • f. + • A.	N. 12
$N_{sd} = 751 \ kg$ $V_{zsd} = 472 \ kg$ N_t	$trd \coloneqq \frac{\gamma_{uv}}{\gamma_{m2}} = (7.056 \cdot 1)$	10 ³) <i>kg</i>
$N_{sd} = 751 \ kg$ $V_{zsd} = 472 \ kg$ N_t	$rd := \frac{\gamma_{ub}}{\gamma_{m2}} = (7.056 \cdot 1)$	10 ³) <i>kg</i>
$N_{sd} \coloneqq 751 \ kg \qquad V_{zsd} \coloneqq 472 \ kg \qquad N_t$ $Condition \coloneqq \text{if } \frac{V_{zsd}}{n_b} + \frac{N_{sd}}{n_b} \le 1$	$rd := \frac{\gamma_{uv}}{\gamma_{m2}} = (7.056 \cdot 1)$	10 ³) <i>kg</i>
$N_{sd} \coloneqq 751 \ kg \qquad V_{zsd} \coloneqq 472 \ kg \qquad N_t$ $Condition \coloneqq \text{if } \frac{V_{zsd}}{F_{vbrd}} + \frac{N_{sd}}{N_{trd}} \le 1$	$trd \coloneqq \frac{\gamma_{uv}}{\gamma_{m2}} = (7.056 \cdot 1)$	10 ³) <i>kg</i>
$N_{sd} \approx 751 \ kg \qquad V_{zsd} \approx 472 \ kg \qquad N_t$ $Condition \approx \text{if} \ \frac{V_{zsd}}{F_{vbrd}} + \frac{N_{sd}}{N_{trd}} \leq 1$ $\ \text{return "} v\acute{e}rifi\acute{e} \text{"}$	$trd \coloneqq \frac{\gamma_{uv}}{\gamma_{m2}} = (7.056 \cdot 1)$.0 ³) <i>kg</i>
$N_{sd} = 751 \ kg \qquad V_{zsd} = 472 \ kg \qquad N_t$ $Condition = if \frac{\frac{V_{zsd}}{n_b}}{F_{vbrd}} + \frac{\frac{N_{sd}}{n_b}}{N_{trd}} \le 1$ $\ \text{return "vérifiée "} \\ \ \text{return "non vérifiée "} \ $	$trd \coloneqq \frac{\gamma_{uv} s}{\gamma_{m2}} = (7.056 \cdot 1)$ $Condition = "vérifiée"$,0 ³) <i>kg</i>
$N_{sd} \coloneqq 751 \ kg \qquad V_{zsd} \coloneqq 472 \ kg \qquad N_{t}$ $Condition \coloneqq \text{if } \frac{V_{zsd}}{F_{vbrd}} + \frac{N_{sd}}{N_{b}} \leq 1$ $\ \text{return "vérifiée "} \\ \ \text{return "non vérifiée "} \\ \ \text{return "non vérifiée "} \\ 1_1 \coloneqq 20 \cdot d \equiv 0.4 \ m$	$lrd \coloneqq \frac{3 u_0 - s}{\gamma_{m2}} = (7.056 \cdot 1)$ Condition = "vérifiée" $l_2 \coloneqq 2 \cdot d \equiv 0.04 \ m$	$f_{bd} := 0.12 \frac{kg}{mm^2}$
$N_{sd} \coloneqq 751 \ kg \qquad V_{zsd} \coloneqq 472 \ kg \qquad N_1$ $Condition \coloneqq \text{if } \frac{V_{zsd}}{n_b} + \frac{N_{sd}}{n_b} \le 1$ $\ \text{return "vérifiée "} \\ \ \text{return "non vérifiée "} \\ \ \text{return "non vérifiée "} \\ F_{ancrd} \coloneqq \pi \cdot d \cdot f_{bd} \cdot \langle l_1 + 6.4 \cdot r + 3.5 \cdot l_2 \rangle = ($	$Condition = "vérifiée"$ $l_2 := 2 \cdot d = 0.04 m$ $(6.967 \cdot 10^3) kg$	$(10^3) kg$ $f_{bd} = 0.12 \frac{kg}{mm^2}$
$N_{sd} \coloneqq 751 \ kg \qquad V_{zsd} \coloneqq 472 \ kg \qquad N_1$ $Condition \coloneqq \text{if } \frac{V_{zsd}}{n_b} + \frac{N_{sd}}{n_b} \le 1$ $\ \text{return "v\acute{erifice "}} \ $ $\text{return "non v\acute{erifice "}} \ $ $r \coloneqq 3 \cdot d = 0.06 \ \textbf{m} \qquad l_1 \coloneqq 20 \cdot d = 0.4 \ \textbf{m}$ $F_{anerd} \coloneqq \pi \cdot d \cdot f_{bd} \cdot \langle l_1 + 6.4 \cdot r + 3.5 \cdot l_2 \rangle = ($ $Condition \coloneqq \text{if } \frac{N_{sd}}{2} \le F_{anerd} \qquad $	$Condition = "vérifiée"$ $l_2 := 2 \cdot d = 0.04 m$ $(6.967 \cdot 10^3) kg$	$f_{bd} = 0.12 \frac{kg}{mm^2}$
$N_{sd} \coloneqq 751 \ kg \qquad V_{zsd} \coloneqq 472 \ kg \qquad N_1$ $Condition \coloneqq \text{if } \frac{V_{zsd}}{n_b} + \frac{N_{sd}}{n_b} \le 1$ $\ \text{return "vérifiée "} \\ \ \text{return "vérifiée "} \\ \ \text{return "non vérifiée "} \\ \ \text{return "non vérifiée "} \\ r \coloneqq 3 \cdot d = 0.06 \ m \qquad l_1 \coloneqq 20 \cdot d = 0.4 \ m$ $F_{ancrd} \coloneqq \pi \cdot d \cdot f_{bd} \cdot (l_1 + 6.4 \cdot r + 3.5 \cdot l_2) = ($ $Condition \coloneqq \text{if } \frac{N_{sd}}{2} \le F_{ancrd} \\ \ \text{return "vérifiée "} $	$Condition = "vérifiée"$ $l_2 := 2 \cdot d = 0.04 m$ $(6.967 \cdot 10^3) kg$ $Condition = "vérifi$	$f_{bd} = 0.12 \frac{kg}{mm^2}$
$N_{sd} \coloneqq 751 \ kg \qquad V_{zsd} \coloneqq 472 \ kg \qquad N_{t}$ $Condition \coloneqq \text{if } \frac{V_{zsd}}{n_b} + \frac{N_{sd}}{n_b} \le 1$ $\ \text{return "vérifiée "} \\ \ \text{return "vérifiée "} \\ \ \text{return "non vérifiée "} \\ r \coloneqq 3 \cdot d = 0.06 \ m \qquad l_1 \coloneqq 20 \cdot d = 0.4 \ m$ $F_{ancrd} \coloneqq \pi \cdot d \cdot f_{bd} \cdot (l_1 + 6.4 \cdot r + 3.5 \cdot l_2) = ($ $Condition \coloneqq \text{if } \frac{N_{sd}}{2} \le F_{ancrd} \\ \ \text{return "vérifiée "} \\ \text{else} $	$trd := rac{3 \ ub}{\gamma_{m2}}^s = (7.056 \cdot 1)^{s}$ $Condition = "v \acute{e}rifi \acute{e} = 1$ $l_2 := 2 \cdot d = 0.04 \ m$ $(6.967 \cdot 10^3) \ kg$ $Condition = "v \acute{e}rifi$	$(0^{3}) kg$ $f_{bd} = 0.12 \frac{kg}{mm^{2}}$ ée "

Conclusion :

Nous choisissons le pied de poteaux de type articulé avec deux boulons d'ancrage, à l'ensemble des conditions sont vérifiées.

CHAPITRE VII : ETUDE SISMIQUE.

Introduction

L'étude sismique est une analyse technique qui nous permettons à détecter la réponse ou bien le déplacement d'une structure sous des ondes sismiques, qui les a bien renforcées la structure selon l'intensité du séisme ainsi sa résistance.

VII.1 Choix de la méthode de calcul :

Pour notre étude, on a choisi la méthode statique équivalente, Le choix de ce procédé est surtout dicté par la simplicité de l'ouvrage (sensiblement symétrique), sa hauteur (H=10.25m<65m) et sa régularité en plan (30.3/20.9=1.45<4) et en élévation.

De façon générale, la structure satisfait l'intégralité des conditions énumérées dans l'article (4.1.2) du RPA 99 version 2003.

VII.2 Caractéristiques du hangar étudié :

- Wilaya de réalisation : Blida (Blida).
- Zone III : sismicité élevée.
- Groupe d'usage 1B : ouvrages de grande importance.
- Catégorie de site : site 3 (sol meuble).

VII.3 Calcul de la force sismique totale : (art 4.2.3 RPA99/03)

La force sismique totale V appliquée à la base de la structure, doit être calculée successivement dans deux directions horizontales et orthogonales selon la formule :

$$V = \frac{A D Q}{R} W \text{ (Formule (4.1))}$$

- A : Coefficient d'accélération de zone donné par le Tableau 4-1 du RPA.
- D : Facteur d'amplification dynamique moyen donné par la formule 4-2 du RPA.
- **R** : Coefficient de comportement global de la structure donné par le tableau 4-3 du RPA.
- Q : Facteur de qualité donné par la formule 4-4 du RPA.
- W : Poids total de la structure donné par la formule 4-5 du RPA.

VII.3.1. Détermination du coefficient d'accélération de zone A :

A= 0.3 (tableau 4.1 du RPA 99 V2003)

Calcul le facteur de correction d'amortissement η :

$$\eta = \sqrt{\frac{7}{2+\xi}} \ge 0.7$$
 Formule (4.3) du RPA

 ξ : Pourcentage d'amortissement critique dépend du matériau constitutif (remplissage léger structure en acier $\xi = 4\%$) donné par le Tableau 4.2 du RPA.

$$\eta = \sqrt{\frac{7}{2+4}} = 1.08 \ge 0.7$$

VII.3.2. Facteur d'amplification dynamique moyen D :

$$D = \begin{cases} 2.5\eta & 0 \le T \le T_2 \\ 2.5\eta \left(\frac{T_2}{T}\right)^{2/3} & T_2 \le T \le 3s \\ 2.5\eta \left(\frac{T_2}{3}\right)^{2/3} \times \left(\frac{3}{T}\right)^{5/3} & T > 3s \end{cases}$$
formule (4.2)

 T_2 : Période caractéristique associée à la catégorie du site(S03) donné par le Tableau 4.7 Site 3 : $T_2 = 0.5$ s

 η : Facteur de correction d'amortissement donné par la formule 4.3

T: Période fondamentale du bâtiment donné par la formule 4.6

$$T = C_T \times h_n^{3/4}$$
 equation 4.6 art 4.2.4 RPA 99/2003

 h_n : Hauteur mesurée en mètre à partir de la base de la structure, jusqu'au dernier niveau (10.25m)

 C_T : Coefficient qui dépend du système de contreventement et du type de remplissage (Portiques auto stables en acier avec remplissage en maçonnerie $C_T = 0.085$) le Tableau4.6.

$$T = 0.085 \times 10.25^{3/4} = 0.49s$$

On a : $T = 0.49s < T_2 = 0.5s$

Donc : $D = 2.5\eta = 2.5 \times 1.08 = 2.7$

VII.3.3Coefficient de comportement global de la structure R :

R = 4 (Ossature contreventée par palées triangulées en X) le tableau 4.3.

VII.3.4 Facteur de qualité Q :

Critère Q	Sens longitudinal	Sens transversal
Conditions minimales sur les files de	0	0.05
contreventement		
Redondance en plan	0.05	0
Régularité en plan	0	0
Régularité en élévation	0	0
Contrôle de la qualité des matériaux	0	0
Contrôle de la qualité de l'exécution	0.1	0.1
$\sum P_q$	0.15	0.15

$Q_x = Q_y = 1.15$

VII.3.5 Calcul de poids de la structure

 $W = W_{Gi} + \beta W_{Qi}$ (Formule (4.5)

W : poids total de la structure.

 W_{Gi} : poids du aux charges permanentes

 W_{Qi} : charges d'exploitation.

 β : Coefficient de pondération en fonction de la nature et de la durée de la charge d'exploitation.

 $\beta = 0.5$ (Entrepôts, hangars) (Tableau 4.5)

	Trans	Nombre	La longueur	Poids propre	Poids totale
	Гуре	d'élément	(m)	(kg/m)	(KN)
Traverse	IPE 450	12	10.7	77.6	99.6384
Poteau	HEA 360	12	7.95	112.1	106.9434
Potelet au milieu	HEA 240	2	10.25	60.3	12.3615
Potelet 2	HEA 240	4	9.1	60.3	21.9492
Lisse de bardage	UPN 140	8	30.3	16	38.784
Lisse de pignon	UPN 140	8	20.9	16	26.752
Panne	IPE 160	18	30.3	15.8	86.1732
Lierne	10 mm	-	147.9	0.62	0.91698
Palée de stabilité	L50*50*7	-	127.2	5.15	6.5508
Poutre au vent	L45*45*5	-	79.68	3.38	2.69
	Туре	Nombre d'élément	Surface (m^2)	Poids propre (kg/m)	Poids totale(KN)
couverture de long-pan	panneaux sandwichs	2	240.885	12	57.8124
Couverture de pignon	Panneaux sandwichs	2	190.2	12	45.648
Couverture de versant de toiture	Panneaux sandwichs	2	324.21	12	77.8104

 $W_{Gi} = 584.03 \, KN$

$$W_{Qi} = (P_{neige} + P_{vent}) \times S_{toiture} = (0.58 + 0.886) \times 648.42 = 950.58 KN$$

 $\Rightarrow W = 1059.32 \ KN$

VII.4 Détermination de la force sismique totale :

Suivant la direction X :

$$V_x = \frac{A \times D \times Q}{R} = \frac{0.3 \times 2.7 \times 1.15}{4} \times 1059.32 = 246.69 \, KN$$

Cet effort sismique sera repris par deux files porteuses :

$$V_x = \frac{V_x}{2} = 123.34 \text{ KN}$$

Suivant la direction Y :

$$V_y = \frac{A \times D \times Q}{R} = \frac{0.3 \times 2.7 \times 1.15}{4} \times 1059.32 = 246.69 \ KN$$

Cet effort sismique sera repris par six files porteuses :

$$V_y = \frac{V_y}{6} = 41.12 \ KN$$

Les sollicitations dues au vent plus défavorable (sens V_1)

$$V_{vent} = V_{vent} \times S_{toiture} = 0.886 \times 648.42 = 574.5KN$$

 $V_{vent} > V_x$ et $V_{vent} > V_y$

Conclusion

Les contraintes dues au vent sont supérieures à celles dues au séisme, donc nous ne garderons que l'action du vent pour le dimensionnement des portiques et du contreventement de l'ouvrage.

CHAPITRES VII : ETUDE DES FONDATIONS.

Introduction

Les éléments de fondation transmettent les charges au sol soit directement (cas des semelles reposant sur le sol ou cas des radiers) soit par l'intermédiaire d'autres organes (cas des semelles sur pieux par exemple).

VIII.1 Les types des fondations

> Fondation superficielle :

- Semelle isolée sous Poteau ;
- Semelle filante continue sous mur ;
- Semelle filante sous plusieurs poteaux ;
- Radiers généraux ou nervurés ;
 - Fondation profonde (semelle sous pieux).

• Choix des fondations :

-Un certain nombre des problèmes se pose, lorsqu'il s'agit de choisir un type de fondation, qui dépend essentiellement de la contrainte du sol.

-Le choix du type de fondation se fait suivant trois paramètres :

- La nature et le poids de la superstructure.
- La qualité et la quantité des charges appliquées sur la construction
- La qualité du sol de fondation. Donc son calcul ne peut être effectue que lorsqu'on connaît :

- La superstructure et ces charges.

- Les caractéristiques du sol (concernant le projet la contrainte admissible du sol =0.2Mpa)

VIII.2 Etude des semelles :

Charges à prendre en considération :

	Effort	ELU	ELS
Semelle	N _{sd} (KN)	85.27	59.21
$\overline{\sigma}_{sol}$	2 bars = 0.2 N	MPa = 200 KN/ m^2 = 200	$000 \text{ daN} / m^2$

Tableau VIII.1 : tableaux de l'effort normal.

• Sous l'effort vers le bas

VIII.2.1. Dimensionnement de la semelle

- Détermination de A et B :

$$\frac{A}{B} = \frac{a}{b} \longrightarrow \begin{cases} A = \frac{a}{b} \times B \Rightarrow B \ge \sqrt{\frac{b}{a} \times \frac{N_{sd}}{\sigma_{sol}}} \\ B = \frac{b}{a} \times A \Rightarrow A \ge \sqrt{\frac{a}{b} \times \frac{N_{sd}}{\sigma_{sol}}} \end{cases}$$

 $Ona: a \ge 350 + (2 \times 20) = 390 \ mm$

$$b \ge 300 + (2 \times 20) = 340 \ mm$$

$$\frac{b}{a} = \frac{340}{390} = 0.87 \quad ; \quad \frac{a}{b} = \frac{390}{340} = 1.15$$
$$A = \sqrt{1.15 \times \frac{59.21}{200}} = 0.58 \; ; B = \sqrt{0.87 \times \frac{59.21}{200}} = 0.51$$

Donc on prend une semelle de dimensions $(0.8 \times 0.6) \text{ m}^2$.

VIII.2.2 Détermination de d et h :

h = d + 5cm $\frac{B - b}{4} \le d \le A - a$ $\frac{0.6 - 0.34}{4} = 0.065 \ m \le d \le 0.8 - 0.39 = 0.41 \ m$ $6.5 \ cm \le d \le 41 \ cm$

On prend $d = 20 \ cm$

Alors : h = 25 cm

Vérification de la stabilité au renversement :

On doit vérifier que l'excentrement de la résultante des forces verticales gravitaire et des forces sismiques reste à l'intérieur de la moitié centrale de la base de fondation résistant au renversement.

Sous l'effort de soulèvement :

$$\begin{split} N_{sd} &= \ 7.51 \ KN \\ On \ a : \quad \frac{7.51}{200} = \ 0.038 \ m^2 \\ S_2 &= \frac{0.038}{h} = \ 0.15 \\ S_1 &= \ 0.8 \times 06 = \ 0.48 > \ 0.15 \end{split}$$

Donc on prend $S = 1 m^2$ Notre nouvelle semelle a les dimensions suivantes $(1 \times 1) m^2$.

- Détermination de d et h :

$$h = d + 5cm$$
$$\frac{B - b}{4} \le d \le A - a$$
$$\frac{1 - 0.34}{4} = 0.165 \le d \le 1 - 0.39 = 0.61$$
$$16.5 \ cm \le d \le 61 \ cm$$

On prend $d = 30 \ cm$

Alors : h = 35 cm

VIII.2.3 Calcul du ferraillage :

Méthode de bielle

À ELU :
$$A_u = \frac{N_u \times (A-a)}{8 \times d \times \sigma_{st}}$$
; $\sigma_{st} = \frac{f_e}{\gamma_s} = \frac{400}{1.15} = 347.83 MPa$
 $A_u = \frac{85.27 \times 10^3 \times (100 - 39)}{8 \times 30 \times 34782.6} = 0.623 \ cm^2$
À ELS : $A_s = \frac{N_s \times (A-a)}{8 \times d \times \sigma_{st}}$; $\sigma_{sol} = \min\left(\frac{2}{3}f_e, 110\sqrt{n \times f_{c28}}\right) = 201.6$ MPa

$$A_s = \frac{59.21 \times 10^3 \times (1 - 0.39)}{8 \times 0.30 \times 201.6} = 0.746 \ cm^2$$

Nous avons $A_s > A_u$ donc on prend un ferraillage de 4 HA12

Détermination de la hauteur du patin e :

 $e \geq \max(6\emptyset + 6cm, 15cm) \Rightarrow e \geq \max(13.2 \ cm, 15 \ cm) = 16 \ cm$

Calcul des ancrages : $l_s = \frac{\emptyset}{4} \times \frac{F_e}{\overline{\tau_s}}$

 $\tau_s = 0.6(\psi^2 \times f_{tj}) = 2.835 \text{ MPa}$ avec $f_{tj} = 0.6 + 0.06 f_{c28} = 2.1 \text{ MPa}$ et $\psi = 1.5$

Donc $l_s = 21.16 \ cm > \frac{B}{6} = 0.17$

donc on doit prolonger des barres aves des crochets

Espacement : $S_t = \frac{(A-2c)}{N_A-1} = 31 \ cm$

	A×B (m^2)	d (cm)	h (cm)	e (cm)	$S_t(cm)$
Semelle	1×1	30	35	16	31

Tableau VIII.2 : les coordonnées de la semelle.

Figure VIII.1 : Ferraillage des semelles isolées.

VIII.3. CALCUL DES LONGRINES :

Les longrines sont des éléments structurels horizontaux pour rôle de relier les semelles entres elles. Elles sont installées sur des fondations en béton et peuvent être utilisées pour former la base d'un bâtiment. Les longrines sont conçues pour résister aux forces de traction.

VIII.3.1. Dimensionnement des longrines :

Selon le RPA99, pour un sol de type S3 les dimensions minimales de la section transversale des longrines sont : 25 cm x 30 cm.

VIII.3.2 Calcul du ferraillage longitudinal en traction simple :

Les longrines doivent être calculées pour résister à la traction sous l'action d'une force égale à

$$F = \max\left(\frac{N}{\alpha}; 20 \ KN\right)$$

N : Egale à la valeur maximale des charges verticales de gravité apportées par les points d'appui solidarisés.

α : Coefficient fonction de la zone sismique et de la catégorie de site considérée, pour les solsS3. (Tableau RPA P93)

L'ELU:
$$\frac{N_u}{\alpha} = \frac{85.27}{10} = 8.53 \ KN$$

L'ELS : $\frac{N_{ser}}{\alpha} = \frac{59.21}{10} = 5.92 \ KN$

 $\Rightarrow F = \max(8.53; 5.92; 20 \text{ KN}) = 20 \text{ KN}$

$$A_{stu} = \frac{F}{\sigma_{st}} = \frac{F}{\frac{F_e}{\gamma_s}} = \frac{20 \times 10^3}{\frac{400}{1.15}} = 57.5 \ mm^2 = 0.58 \ cm^2$$

$$A_{st} = \frac{F}{\sigma_{sts}} = \frac{20 \times 10^3}{210.6} = 94.97 \ mm^2 = 0.95 \ cm^2$$

Le RPA99/03 exige une section minimale :

 $A_{min} = 0.6\%B = 0.006(30 \times 35) = 6.3 \ cm^2$

Donc $A_{st} = 6T12 = 6.78 \ cm^2$

VIII.3.3 Vérification de condition de non fragilité : $A_{st} \le 0.23 \times b \times d \times \frac{f_{c2B}}{f_e}$

$$\begin{cases} A_{st} = 6.78 \ cm^2 \\ 0.23 \times b \times d \times \frac{f_{c28}}{f_e} = 0.23 \times 30 \times 25 \times \frac{25}{400} = 10.78 \ cm^2 \Rightarrow Condition \ verifiee \end{cases}$$

VIII.3.4. Calcul d'armatures transversales :

$$\phi_t \le \min\left(\frac{h}{35}; \phi \min; \frac{b}{10}\right) \to \phi_t \le \min\left(\frac{300}{35}; 12; \frac{250}{10}\right)$$

$$\phi_t \leq \min(8.57; 12; 25) \rightarrow \text{Alors on prend}: \phi_t = 8mm$$

VIII.3.5 Calcul d'espacement des cadres :

Le RPA99 exige des cadres dont l'espacement ne doit pas dépasser

- $S_t \leq min(20 \ cm; 15\phi_t)$
- $S_t \leq min(20 \ cm; 12 \ cm)$

on adopte un espacement $S_t = 10 \ cm$

Figure VIII.2 Schéma de ferraillage des longrines

VIII.4. Calcul au Mathcad Prime :

Color		Mathe	ed Preme 1.9 Chulsershoound	VDeaktop'um milit	ondefiona medie		- 10 ×
Mathematiques	Cristelicante l'anciene édetions liste	i Tricala Milas en forma	Ceta Document	Démetrapa			1
Verte server	A Lore de texte	β if	TT T	Hay I	All Lorde de Date	- St. Course	
-skiter	Lal maps	Contraction of speciality	(Jutan)* 30	-		Terrer prepiers	
contraventament ton	dereo ta						
les fe	ondations :						
						L-N	-
	N _{sdu} := 85.27 kN		$N_{sds} = 59.2$	21 kN		$\sigma_{sol} = 200$	
						m	
	$a_p = 0.35 \ m$	$b_p := 0.30$) m	a := 0	.39 m	b := 0.34 m	
dimensi	ionnement de sem	elle :					
La	N				Lb N.		
$A \coloneqq \sqrt{\frac{\alpha}{1}}$	$\cdot \frac{1}{3} = 0.583 m$			B := 1		=0.508 m	
V O	σ_{sol}				$\gamma a \sigma_{sol}$		
on pren	id une semelle de	dimensions	B := 0.6	m	et	$A \coloneqq 0.8 \ m$	
détermi	ination de d et h :						
		B	_b				
			$\frac{d}{d} \leq d \leq A$	-a			
	B-b		•				
	= 6.5 cm	n	et		A - a = 41	cm	
	-4						
		6.5 ci	m < d < 41	cm			
on pren	and $d = 20 \ cm$						
$h \coloneqq d + $	5 cm						
20 + 5 =	25 donc	h = 25 cm					
vérificat	ion de la stabilité	au renverse	ment ·				
. Crimeen	aon de la stabilite	da remense	inche i				
sous l'et	ffort de souleveme	ent N	= 7 51 kN	-			
500510	nore de boulerenne	sdstv					
s Ns	$dslv = 0.038 m^2$						
$\sigma_2 = \sigma_1$	= 0.000 m						
11051							
S2 0.1	1 1						
$h^{}=0.1$	15 m						
a .	D 0 10 2	0.10.	0.15				
$S_1 := A \cdot$	$B = 0.48 \ m^{-1}$	0.48>	>0.15				
	d C 1 2						
on pren	$a S \coloneqq 1 m^{-1}$						
0.0000000000000000000000000000000000000				14 -	> 2		
notre no	ouvelle semelle à l	es dimensio	ns suivant	(1.1) m~		
$A \coloneqq 1 m$	B := 1 m						

détermination de d et h :

$$\frac{B-b}{4} = 16.5 \text{ cm} \qquad et \qquad A-a=61 \text{ cm}$$
16.5 cm < d < 61 cm
on prend d = 30 cm et h = 35 cm
ferraillage : méthode de bielle
ELU $F_{e}:=400 \text{ MPa} \qquad \gamma_{s}:=1.15 \qquad n = 1.6 \qquad f_{ij}:=2.1 \text{ MPa} \qquad f_{c2s}:=25 \text{ MPa} \qquad \sigma_{si}:=\frac{F_{e}}{\gamma_{e}}=347.826 \text{ MPa} \qquad q_{s}:=1.15 \qquad n = 1.6 \qquad f_{ij}:=2.1 \text{ MPa} \qquad f_{c2s}:=25 \text{ MPa} \qquad \sigma_{si}:=\frac{F_{e}}{\gamma_{e}}=347.826 \text{ MPa} \qquad q_{s}:=1.0 \qquad q_{si}:=20.1 \text{ MPa} \qquad f_{c2s}:=25 \text{ MPa} \qquad q_{si}:=\frac{N_{sith}\cdot(A-a)}{8\cdot d\cdot\sigma_{si}}=0.623 \text{ cm}^{2}$
 $\sigma_{sit} \qquad \min\left(\frac{2}{3}\cdot F_{e}=266.667 \text{ MPa} \qquad et \qquad 110 \cdot \sqrt{n \cdot f_{ij}}\right)$
donc $\sigma_{si}:=201.6 \text{ MPa}$
 $A_{s}:=\frac{N_{sith}\cdot(A-a)}{8\cdot d\cdot\sigma_{si}}=0.746 \text{ cm}^{2}$
nous avons : $A_{u} < A_{s}$
on prend le feaillage : 4 HA 6 Avec une section $A:=1.13 \text{ cm}^{2}$
détermination de e : max ($6 \cdot \phi + 6 \text{ cm} \text{ ou} \qquad 15 \text{ cm}$)
donc $e:=16 \text{ cm}$
calcul des ancrages : $\psi:=1.5 \qquad \phi:=6 \text{ mm}$
 $\tau_{s}:=0.6 (\psi^{2} \cdot f_{ij})=2.835 \text{ MPa}$
 $l_{s}:=\frac{\phi}{4} \cdot \frac{F_{e}}{\tau_{s}}=21.164 \text{ cm} \qquad et \qquad \frac{B}{4}=0.25 \text{ m}$
 $l_{s} < \frac{B}{4}$ on doit prolonger les barres avec des crochets

les lonarines :	$N_{-} = 8527 \ kg$	$N_{*}=5921 \ kg$	$N = 2000 \ kc$	$f_{-\infty} = 2$	5 kg
	4 5	8		J 628	mm^2
$Fe := 40 - \frac{kg}{kg}$	$\gamma_s \approx 1.15$	$\sigma_{sts} = 21.06 -$	$\frac{kg}{\phi_{mi}}$	$m \coloneqq 12 mm$	
mm	Ĉ.	ท	nm*		
les dimensior	ns de la fondation	$D = 30 \ cm$	$H = 35 \ cm$		
les donees de	e la semelle selon	le type de sol	$d = 30 \ cm$	$b = 25 \ cm$	$\alpha \coloneqq 10$
$F \coloneqq \max\left(\frac{N_u}{lpha}\right)$	$, \frac{N_s}{\alpha}, N = (2 \cdot 10)$	³) kg			
$A_{stu} = \frac{F}{\underline{Fe}} = 0.5$	75 cm^2 $A_{st} \coloneqq -\frac{1}{\sigma}$	$\frac{F}{r_{sts}} = 0.95 \ cm^2$	condition de J	$A_{min} \coloneqq \frac{0.6}{100} \cdot ($	$D \cdot H) = 6.3 \ cm^2$
γ_s					
A	$A_{st} \coloneqq max (A_{stu}, A_s)$	$(A_{min}) = 6.3$ cr	n^2		
La condition	de non fragilite	$c \coloneqq ext{if } A_{st} \leq 0.2$	$23 \cdot b \cdot d \cdot \frac{f_{c28}}{Fe}$		
		return '	Condition veri	fiée"	
		else			
		return '	Condition non	verifiée"	
		c = "Condition	n verifiée"		
Armature tra	nsersale ϕ	$= min\left(rac{d}{35}, \phi_m ight)$	$\left(\frac{b}{10}\right) = 0.857$	cm	
l'espacement	des cadres S	$i_i = min(20 \ cm)$	$, 15 \cdot \phi) = 12.857$	cm	
CHAPITRE IX : CYPECAD.

Introduction

Cypecad est un software destiné aux projets de construction en béton armé et en acier. il permet l'analyse spatiale, le dimensionnement de tous les éléments structuraux, l'édition des armatures et des sections et l'obtention des plans de construction de la structure.

Deux versions sont disponibles :

- Complète. cette version comprend l'ensemble des possibilités du programme. elle ne possède aucune limitation quant au nombre de poteaux, de niveaux, de mètres carrés de planchers, etc.
- Limitée. cette version permet de calculer des structures avec un maximum de 30 poteaux, 4 groupes ou types de niveaux différents, 5 niveaux au total et 100 mètres linéaires de murs.

IX.1 Entrée des données

IX.1.1 Données générales et options

Avec cypecad, l'utilisateur a le contrôle total de toutes les données générales qui conditionnent le calcul et le dimensionnement de la structure à saisir.

- Sélection des normes à utiliser
- Sélection des matériaux
- options de calcul et tables d'armature
- définition des actions
- charges permanentes, charges d'exploitation, vent, séisme, contrôle de la résistance au feu, hypothèses supplémentaires.
- coefficients de flambement des poteaux.
- environnement pour poutres et pieux
- plus d'informations sur données générales et options de calcul et générales

IX.1.2 géométrie de la structure

Plusieurs des modes énumérés ci-après peuvent être combinés selon les besoins pour introduire une structure dans cypecad. le choix du processus dépend des préférences de l'utilisateur, de la façon dont il reçoit les données du projet ou bien de l'élément ou de l'information à saisir :

- Introduction manuelle par coordonnées globales ou relatives : elle peut être combinée à tout moment avec tous les modes de saisie.
- Introduction manuelle à l'aide de fichiers dxf ou dwg utilisés comme fonds de plan : elle peut être combinée à tout moment avec tous les modes de saisie.
- Introduction automatique via l'importation d'une structure cype 3d : elle peut être combinée à tout moment avec tous les modes de saisie.
- Introduction automatique, via l'interprétation des informations de fichiers dxf ou dwg : c'est un processus de départ. il peut être combiné avec le reste des processus, sauf avec l'importation de fichiers au format ifc et la connexion au modèle bim.

- Introduction automatique, via l'importation de fichiers au format ifc générés par des logiciels cao/bim : c'est un processus de départ. il peut être combiné avec le reste des processus, sauf pour l'interprétation des fichiers dxf ou dwg et la connexion au modèle bim.
- importation de données via la connexion à un modèle open bim : c'est un processus de départ. il peut être combiné avec le reste des processus, sauf avec l'importation de fichiers au format ifc et l'interprétation de fichiers dxf ou dwg.

cette polyvalence permet d'introduire la structure de manière rapide, fiable et efficace.

IX.2. Éléments structuraux analyses

1) éléments porteurs

Les éléments porteurs que cypecad analyse et dimensionne sont les suivants :

- > Poteaux :
- Poteaux en béton armé : de section rectangulaire et circulaire ou générique polygonale.
- Poteaux métalliques : laminés, armés et formés à froid.
- Poteaux mixtes en béton et acier : avec un profilé enrobé dans le béton ou des sections de profilés fermées remplies de béton.
- Poteaux en bois : de section rectangulaire et circulaire.
- > Noyaux :
- Rectangulaires
- Toute forme géométrique composée de rectangles

Sector d ruteries Sector d rute	Maldriau					-		_	_
Revenue na reference Province na reference		The second	10				-		
John Hanner John									
Eventure for a refer For case notes in the formation of	Adjustion ()	u materiau							
Reclarum u yurdit Te cu yurdi	1		1	5					
Image: Contract of the state of the sta	all and the set	-							
Are a u solare mana handra da la	-			4		4	1.00	100	
erer als vertetes Processon en la conservation de l		1.	h.	-	~			SEP.	
vie Profile angel Reparting Profile angel Danke en observ Danke ver stere inserte Danke en observ angel Danke en observer angel Danke	ere de prolie	e irt	- 8	1 🖻 🗉					
Nano affan de la contrar a la c	o/le	IPE 16	T						
Produkt analysis Jonalo menanan sanaki Jonalo menanan sanaki Jonalo menananan sanaki Jonalo menananan sanaki Jonalo menananan Jonalo menanananananananananananananananananana	lapsaition								
Javan dala na shakut Dahaka na sakut Dahaka na sakuta na na sakut Dahaka na sakuta na na sakut Daha na sakut Jaka na sakut Jaka na sakut Jaka na sakut Jaka na sakut	Prohilé sa	açılır.							
Debalan erandemen ander hennen hennen Debalan er oberenen er einer seinen Debel annet Ander Ellen talsalen Agenati	Division of the second	en bellen							
) Double workser strang parlague Double workser 2) Alexes Use latandes 2) Aproxi	Double any	cateron seen for	retres de l	labore					
Den prakte Alver Ukla taledar Apust	Double an	calation union per	NUTRE OF						
) Annar Ben Unitarian Japan M) Densi pashk								
) Avec toks	laticulus							
	1994								

- > Murs
- En béton armé
- Murs soumis à des contraintes planes
- Murs en maçonnerie génériques
- Murs en blocs de béton : ils peuvent être dimensionnés avec ou sans armature. l'utilisateur peut indiquer les dimensions des blocs ou utiliser des blocs de fabricants tels que ceux de l'association espagnole normabloc.

> Poutres

Les poutres des planchers peuvent être en béton armé, métalliques (âme pleine ou allégée), mixtes ou en bois. d'autre part, il est possible d'introduire des consoles courtes.

- Poutres en béton
- Poutres métalliques
- Poutres en bois

Deutre actuelle		×
	Largue 60 20 an Hendrar (9) 2007 m Photos can a physical	
Accepter	Capier de postre	Arester

- > Planchers : avec cypecad, il est possible de dimensionner des planchers :
- Unidirectionnels
- De poutrelles en béton préfabriquées armées

préfabriquées précontraintes

coulées sur site

précontraintes par post-tension

- De poutrelles métalliques
- De poutrelles en bois
- De poutrelles joist, treillis métallique
- Planchers-dalles (armées : précontraintes par post-tension).
- Réticulés (armés ; précontraints).
- Dalles alvéolées
- Planchers mixtes (steel deck)

Cypecad permet de réaliser la vérification des états limites d'épuisement par rapport au poinçonnement dans les planchers réticulés, dans les dalles pleines et dans les radiers selon deux méthodes : vérification des contraintes tangentielles ponctuelles et vérification selon des critères normatifs.

 \succ Fondation

La fondation dimensionnée par cypecad peut être fixe (semelles superficielles ou sur pieux) ou flottante (poutres et radiers, avec définition du coefficient de réaction à appliquer dans la théorie de winkler).

Le logiciel permet également de calculer seulement la fondation en introduisant uniquement les amorces des poteaux.

- Semelles superficielles
- Semelles sur pieux
- La typologie des semelles sur pieux est très large :
 - Semelles rectangulaires
 - Semelles triangulaires sur trois pieux
 - Semelles linéaires sur trois à trente pieux
 - Semelles rectangulaires sur plusieurs pieux (distribution maillée de trois à trente pieux par côté)
 - Semelles pentagonales sur cinq et six pieux
 - Semelles hexagonales sur six et sept pieux

- Poutres de redressement et poutres de liaison elles agissent sur les semelles superficielles et les semelles sur pieux.
- Poutres et radiers

 ils sont considérés comme appuyés sur un sol élastique (méthode du coefficient de
 réaction), en accord avec le modèle de winkler, basé sur une constante de
 proportionnalité entre forces et déplacements, dont la valeur est le coefficient de
 réaction.

Cypecad effectue la vérification de cisaillement et de poinçonnement des radiers et des

poutres de fondation.

 Plaques d'ancrage pour toute disposition de poteaux métalliques (profilés simples et composés).

Assemblages soudés et boulonnés

Cypecad et cype 3d disposent de cinq modules pour le calcul et le dimensionnement des assemblages de profilés métalliques.

- Assemblages i. soudés. hangars avec profilés laminés en i
- Assemblages ii. boulonnés. hangars avec profilés laminés en i
- Assemblages iii. soudés. portiques pour bâtiments avec profilés laminés en i
- Assemblages iv. boulonnés. portiques pour bâtiments avec profilés laminés en i
- Assemblages v. treillis plans composés de profilés creux

IX.3. Calcul sismique

Le calcul sismique est fait par une analyse modale spectrale complète qui résout chaque mode comme une hypothèse et réalise l'expansion modale et la combinaison modale pour l'obtention des efforts.

- Effet des éléments non structuraux dans le comportement d'un bâtiment face aux actions sismiques
- Critères de conception sismique par capacité pour poutres et dalles
- Correction par cisaillement de base
- Période fondamentale de la structure avec valeurs utilisateurs
- Spectre sismique spécifié par l'utilisateur.

e :	ECta	Ort # Witnessic # Ort missionities 2010					
	III Officer III Officer III Officer	(a) An other strategy of the second strate					
-	BI Chana	Beremeent				Eanor	- Here
	A Chose B Chose B Chose	Permitten de calical Factor de circas Realicitas Factor de circas de seco	Er Br	Satissimated Service or taken	12 1271	8 Mp.ter	() wyser
	II Choise Sector II Choise II Choise	Ann manager Britfankel Of Marriel Of Manager Office					
	E Organistic E Ora E Organis E Organis E Organis	Tendenti On OI & R. O. Or annual and a set of the set of the set of the set and the set of the set of the set of the set of the OI of the OI of the Set		atter Dave Kor	priper line to a socia	a segurar ar cetter, i	100-10
e la 10		Meret constructions are stated and and a state of the second state			ngris in North stern Crastrin Waters	nani sina fanalysi mihopeck natio av	arox.
). Vonature (auch der ihr or pursonage eine der neuer die sollte Die geschle pur halten nur		2	fourige adaption of a	industria il n.,	
		Man de la magnada aneque vertale E la paramètica (Caseria conflictionalitate)					2
		low think Parce Instrument	1				-

IX.4. Analyse des résultats

- Éditeur de poutres : l'éditeur de poutres affiche les informations d'un portique et les

Actualise automatiquement avec les modifications apportées. il permet une édition graphique rapide et confortable (armatures de

Hidesser COVIA en estretes 540	Content International	
11 T M 11 C D 21 D 21 W 21	N TO	R632558
statute a		
**************************************	TITUE (TITUE)	TERMS OF THE STATE
Titles - Celles Colles - C	U 1 U	
Contraction in the		
Litera de colora de	P _ P	e 12 cp
a second s		A DECEMBER OF STREET
and the second second second	(Acauti	
100 IA	2 attal maria	Lainia-m
312		- Contraction of the second se
	L. marries	international and a second sec
Totorenner.	PROVIDE AND A	Activity start start
Contra a territore		And a second sec
		CONTRACTOR OF A DESCRIPTION OF A
Collins the Collins	ture to the second s	0
-Provine product	and the second s	Active and a second sec
Cherkenten	1828/88	The second
Free or and the second se	5	
(Data independent of American in	Container - Institute	
Distant wome	3	
Take a second se	d X 1903 microsoft microsoft research	Contractory constrainty and and the
te develope excess pressioner in the	A come of the second	And the second sec
China Concession and		
other Local and Advanced	Conference (Server)	
· For determs a south provin	能能通信风心地	
Contractory of the second seco	CONCERNING OF THE REPORT OF TH	
-Differential anti-enclose alter-	The second se	AND AND AND
Accession	No. 1	
of Channel and Cha		- Contract -
1) & Teclan	And the start is	
1 E. Servickey		

renfort, profilés métalliques, remplissages, treillis, connecteurs, etc.)

il permet d'obtenir :

- des récapitulatifs détaillés des vérifications aux états limites ultimes (ELU) et aux états limites de service (ELS) des poutres en béton (avec vérifications d'épuisement par torsion et critère de conception sismique).
- récapitulatifs aux ELU et ELS des poutres métalliques.
- graphiques d'aires d'armature, nécessaire et effective.
- schémas de pliage des armatures et configuration des détails de ferraillage dans les plans de portiques.
- réservations horizontales et verticales dans les poutres en béton.
- poutres rectangulaires en retombée de section variable.
- éditeur de poteaux : cypecad dispose d'un éditeur de poteaux qui :
 - affiche toutes les informations relatives à leur dimensionnement et vérification, y compris la génération de récapitulatifs détaillés des vérifications des états limites ultimes (els).
 - permet d'organiser les regroupements du tableau des poteaux.
 - vérifie toutes les modifications réalisées.
 - redimensionne les poteaux en béton armé et métalliques.

IX.5. Autres outils pour l'analyse des résultats

De nombreux outils sont mis à disposition pour permettre de vérifier tous les résultats graphiques à l'écran.

Après le calcul, il est possible de visualiser la déformée en 3D de la structure (avec une échelle de couleurs), résultant des hypothèses simples ou combinées. Il est également possible d'observer une animation du processus de déformation que produit la combinaison d'hypothèses sélectionnée.

- Les déplacements, efforts, combinaisons d'efforts et ratios de planchers-dalles, radiers et planchers réticulés peuvent être représentés par des diagrammes d'iso valeurs

(graphiques dans lesquels chaque couleur représente une valeur) et par des diagrammes d'isolignes (courbes unissant les points géométriques de même valeur).

- Les graphiques des enveloppes d'efforts, flèches, etc. peuvent également être consultés.
- Les armatures de tous les éléments peuvent être modifiées puis vérifiées dans les semelles superficielles et sur pieux, les poutres, les poteaux et planchers de poutrelles.
- Les armatures supérieures peuvent être égalisées automatiquement dans les planchers de poutrelles, tout en tenant compte des critères de longueurs ou de ratios et longueurs. De cette façon, les armatures obtenues sont plus uniformes, ce qui facilite la construction.
- Les armatures des planchers réticulés et des planchers-dalles sont modifiables au moyen de tableaux visibles. Il est possible de copier le ferraillage d'un niveau à un autre, de modifier la géométrie après le calcul et d'introduire des armatures sans les calculer.
- L'édition des semelles superficielles, des semelles sur pieux, des plaques d'ancrage et des poutres de liaison ou de redressement est un outil performant qui permet de vérifier la géométrie et l'armature définie par l'utilisateur. Elle permet également d'obtenir les récapitulatifs de toutes les vérifications effectuées pour la fondation et de connaître son degré de conformité.

- Il est possible d'égaliser la géométrie, la typologie et les armatures des semelles superficielles et sur pieux, des poutres de liaison et de redressement, et des plaques d'ancrage. Plus d'informations au paragraphe Fondation.

LE CALCUL AVEC CYPECAD

Modélisation avec sypecad

Modélisation avec cypecad 3D

Etude climatique (vent)

les données générales

LI O frence	Coba	O RPA 99 / v 2003				
Agérie	🖴 🔾 Équateur	Règles Parasianiques Algérennes RPA 10 / VE	RSION 2000			
Meros	H O Guitenala	1.0	20000			
I O VE	T O Hondsten	Action semigue action X	Cion siar	nique selo	nT	
O Wethode generale	II O Mexico	Paramètres de calcul	Système sinuctural			
Nerape	⊒ О11севди	Practier de charge d'axploitation0.43	Pourcentage d'anortesement	40	•	
Belgave	O Farans	Father multiplicateur du spectre 1.00 😈	Coefficient de compotement (*)	40.	•	
🚘 🗋 Bulgare	LI O Percu		Coefficient de compotement (r)	40		
- O Cena	E 🔿 Porto Rico		Christer da o alta	1.15		
💳 🔾 Екондле	III O République Dominicaire		Patrice or galaxy			
II 🔿 tale	Salvador 🖸	Importance de l'ouvrage	Contraction of the second s			
💶 💭 Potugai	📷 🔘 Venezuella	Groupe 1A O Groupe 1B Group	e2 (Goupe3			
Rouwarile	🚟 🔿 Altique du Sud	Sasticité (core)			-	
Russie	Canada	() Fable () () Noyenne (Ia) () Noy	onre (Ib) 🖸 Blevée (III)			
C Agentine	50 USA	Type de sel (catilgerie)				
🔚 🔾 Bolvie	🔟 🔾 inde	C Rotheox (51) O Ferme (52) O H	auble (S3) 🕐 Tés mauble (S4)			
D Best		Dépôts de sables et de graviers très denses e	triou d'argle ouronsolitée sur 10.8 2	0n -		
li Oce		d'épasseur avec une vitesse moyenne d'ande conformée «	e de cisalement à 400 m/s à patir de	s 10 m de		
Colombia						
🗃 🖸 Casta Roa		Number de la devide administration	and the location		1	
		O Salan la nome	enter dan canyye			
			2000 0200		- 10	
		Concerning Indian stauga to borcound	e enge de ruese repaides			
		Copécile par lutisateur				

L'étude sismique

Dimensionnements et vérification des éléments secondaires

Description des pannes/lisses	Paramètres de calcul
Type de profilé: UPN 140	Limite de flèche: L / 200
Séparation: 2.00 m	Nombre de travées: Deux travées
Type d'acier: S235 (EN 1993-1-1)	Type de fixation: Fixation rigide

Vérification de résistance
Le profilé sélectionné vérifie toutes les conditions.
Taux de travail: 64.38 %

Dimensionnement des lisses

Barra		VÉRIFICATIONS (EUROCODE 3 NF EN 1993-1-1/NA: 2007-05)													État
Darre	λ	Nt	Nc	Mr	Mz	V ₂	Vr	M ₁ V ₂	M_2V_{γ}	$NM_{\rm r}M_{\rm 2}$	$NM_{\gamma}M_{z}V_{\gamma}V_{z}$	Mt	$M_t V_2$	$M_t V_{\gamma}$	Eldi
Vérifications non réalisées (N.	.V.):														
⁽ⁱ⁾ La vérification n'est pas réalisée car il n'y a pas d'effort normal de traction.															
(3) La vérification n'est pas	⁽²⁾ La vérification n'est pas réalisée car il n'y a pas d'effort normal de compression.														
(3) La vérification n'est pas	s réalisée car il	n'y a pas de moi	ment fléchissant												
10 La vérification n'est pas	s réalisée car il	n'y a pas d'effori	t tranchant.												
(1) If n'y a interaction entr	e le moment fié	chissant et l'effo	irt tranchant pou	r aucune com	binaison. La véril	fication n'est	donc pas réalis	ée.							
(1) Il n'y a pas d'interactio	n entre l'effort i	normal et le mor	nent fléchissant	ni entre les m	oments fléchissai	nts dans les	deux directions,	pour aucune	e des comb	inaisons. L	a vérification n'e	st donc pas effec	tuée.		
⁽⁷⁾ Il n'y a d'interaction en	tre le moment i	fléchissant, l'effo	rt normal et l'ef	ort tranchant	pour aucune com	nbinaison. La	vérification n'e	st donc pas r	éalisée.						
(i) La unification plact par	e challeán car ll	n'y a nac de mo	ment de terrion												

(*) Il n'y a interaction entre le moment de torsion et l'effort tranchant pour aucune combinaison. La vérification ne peut donc pas être lancée.

Barre		VÉRIFICATIONS (EUROCODE 3 NF EN 1993-1-1/NA: 2007-05)													
	λ	Nt	Nc	Mr	Mz	Vz	Vr	$M_{\rm T}V_2$	$M_2 V_{\gamma}$	$NM_{\rm f}M_{\rm 2}$	$NM_{\rm r}M_{\rm z}V_{\rm r}V_{\rm z}$	M	$M_t V_2$	$M_t V_{\gamma}$	Etat
date and a late to date	u i.														

Vérifications non réalisées (N.V.):

Da vérification n'est pas réalisée car il n'y a pas d'effort normal de traction.
 Da vérification n'est pas réalisée car il n'y a pas d'effort normal de compression.
 La vérification n'est pas réalisée car il n'y a pas de moment fléchissant

10 La vérification n'est pas réalisée car il n'y a pas d'effort tranchant.

⁽⁹⁾ If n'y a interaction entre le moment fléchissant et l'effort tranchant pour aucune combinaison. La vérification n'est donc pas réalisée.
⁽⁹⁾ If n'y a pas d'interaction entre l'effort normal et le moment fléchissant ni entre les moments fléchissants dans les deux directions, pour aucune des combinaisons. La vérification n'est donc pas effectuée.
⁽⁹⁾ If n'y a d'interaction entre le moment fléchissant, l'effort normal et l'effort tranchant pour aucune combinaison. La vérification n'est donc pas effectuée.

(11) La vérification n'est pas réalisée car il n'y a pas de moment de torsion.

(* Il n'y a interaction entre le moment de torsion et l'effort tranchant pour aucune combinaison. La vérification ne peut donc pas être lancée.

Les vérifications des lisses

Données des pannes									
Description des pannes/lisses	Paramètres de calcul								
Type de profilé: IPE 160	Limite de flèche: L / 200								
Séparation: 1.19 m	Nombre de travées: Une travée								
Type d'acier: S235 (EN 1993-1-1)	Type de fixation: Fixation rigide								
	The de mation Tradion rigid								

Verification de resistance.

Vérification de résistance									
Le profilé sélectionné vérifie toutes les conditions.									
Taux de travail: 54.68 %									

Dimensionnement des pannes

		VÉRIFICATIONS (EUROCODE 3 NF EN 1993-1-1/NA: 2007-05)													
Barre	λ.	Nc	N,	Mc	Mz	V,	Vx	M _r V _z	M_xV_x	NM,Ma	NM,M ₂ V,V ₂	Mc	$M_tV_{\rm f}$	M _t V _z	Etat
défavorable en couverture	$\begin{array}{c} x: 1 \text{ m} \\ \lambda_u \leq \lambda_{u, nu} \\ \text{Conforme} \end{array}$	N _{tc} = 0.00 N.V. ⁽¹⁾	N ₁₀ = 0.00 N.V. ⁽²⁾	x: 3 m η = 54.7	M _M = 0.00 N.V. ⁽¹⁾	x: 6 m η = 8.2	V _{id} = 0.00 N.V. ⁽⁴⁾	<mark>x:1</mark> m η < 0.1	N.V. ⁰⁾	N.V. ⁽⁸⁾	N.V. ^m	M _{N2} = 0.00 N.V. ⁽¹⁾	N.V. ¹⁰	N.V. ^{et}	CONFORME η = 54.7
A., Vollement de l'Ane engend N., Résistance à la traction N., Résistance à la traction N., Résistance à la teolo suiv M.; Résistance à la feolo suiv V.; Résistance au cisallement N.V.; Résistance au moment fi M.V.; Résistance à la flexin N.M.M.; Résistance à la flexin N.M.M.; Résistance à la flexin N.M.M.; Résistance à la flexin N. Résistance à la flexin N. Résistance à la flexin N.; Résistance à la flexin M.V.; Résistance à la flexin N.; Résistance à la flexin M.V.; Résistance à la flexin N.; Résistance à la flexin M.V.; Résistance à la flexin M.V.; Résistance à la flexin M.V.; Résistance à la flexin M.V.; Résistance à la flexin N.; Résistance à la flexin	né par faile com n ant faxe Y ant faxe Z Z kchissant Z et å kchissant Z et å kchissant Z et a chinar Y et au mo chant Z et au mo rei	primée Feffort tranchan Feffort tranchan na combinés rmai et à Feffort ment de torsion ment de torsion	it Z combinés it Y combinés t tranchant comb r cumbinés i combinés	inės											
Verifications non relativelies (NV.): ¹⁰ La verification n'est pas relatività ¹¹ La verification n'est pas relatività ¹² La verification n'est pas relatività ¹³ La verification n'est pas relatività ¹⁴ Li n'y a pas d'interaction entre le ¹⁵ Li n'y a d'interaction entre le ¹⁵ La verification n'est pas relatività ¹⁵ Li n'y a d'interaction entre le ¹⁵ La verification n'est pas relatività ¹⁵ Li n'y a d'interaction entre le	sde car il n'y a p sde car il n'y a p sde car il n'y a p sde car il n'y a p roment fléchissa moment fléchiss sde car il n'y a p	as d'effort norm las d'effort norm las d'effort norm las d'effort tranc nt et l'effort tranc l et le moment fi las l, l'effort norm as de moment d	nal de traction. nal de compressis Néchissant Juant. nchant pour aucu Néchissant ni ent mai et l'effort tra de torsion.	an. ine combinaise re les moment inchant pour a	n, La vérification s fléchissants da ucune combinais	n n'est donc j ns les deux d an. La vérific	pas réalisée. Irrections, pour a cation n'est donc	ucune des co pas réalisée	umbinaison	s. La vérifi	cation n'est don	c pas effectuée.			

Les vérifications des pannes

	Noe	uds	1	C	aractéristique	es mécaniqu	es
	Initial	Final	(m)	Aire (cm ²)	I _y ⁽¹⁾ (cm4)	I _z ⁽¹⁾ (cm4)	It ⁽²⁾ (cm4)
z	N200	N197	2.000	76.80	7763.00	2769.00	42.14
	⁽²⁾ Inert ⁽²⁾ Mom	ie par rappo. ent d'inertie	rt à l'axe indiqué à la torsion unifo Flambemer	rme	ſ)éversement	
		Plar	1 XY	Plan XZ	Aile su	p. A	ile inf.
	β	1.	00	1.00	0.00		0.00
	L _K	2.0	000	2.000	0.000		0.000
	Cm	1.0	000	1.000	1.000) :	000.1
	Ci					1.000	
	Notation: β: Coef L _k : Lon C _m : Coe	fficient de fla gueur de flai efficient de n	mbement mbement (m) noments pour la p	o mont critica	10		

Dimensionnement des potelets

Dama	-			VÉ	RIFICATIO	NS (EURO	OCODE 3	NF EN 19	93-1-1/N/	A: 2007-05)				Hard .
Barre	λ.,	N,	Nc	My	Mz	V ₂	Vy	M _y V _z	M _z V _y	NM _y M _z	NM,M2V,V2	M,	M _t V _z	M _t V _t	Etat
N 200/N197	$\lambda_w \le \lambda_{w,max}$ Conforme	x: 2 m η = 3.2	x:0 m η = 5.9	x: 0.6 m η = 53.1	x: 2 m η = 14.6	x:2 m η = 4.7	η = 0.3	η < 0.1	η < 0.1	x: 1 m $\eta = 64.9$	η < 0.1	$M_{ec} = 0.00$ N.V. ⁽¹⁾	N.V.(2)	N.V. ⁽²⁾	CONFORME η = 64.9
J.,: Voilemer N.: Résistan N.: Résistan N.: Résistan N.: Résistan N.: Résistan N.V.: Résistan	nt de l'âme eng ce à la traction ce à la compre- ce à la flexion ce à la flexion ce au cisaillem ce au cisaillem ance au momei ance au momei stance à la flex Résistance à la fex stance à la flex ce à la torsion ance à l'effort t à l'origine de la travail (%)	endré par l'a ssion suivant l'axe suivant l'axe ant Y nt fléchissant nt fléchissant nt fléchissant nt fléchissant flexion, à l'e ranchant Z e ranchant Y e barre	ile comprim Y Z Y et à l'effo Z et à l'effo t z' et à l'effo fort normal fort normal t au momen t au momen	ée vrt tranchant 2 vrt tranchant y ombinés et à l'effort tr t de torsion co t de torsion co	? combinés / combinés ranchant comb ombinés ombinés	inés									

Les vérifications des potelets

Dimensionnement et vérification des travers et poteaux

	Noe	uds	1		Caractéri	stiques m	écaniqu	es(1)	
	Initial	Final	(m)	Aire (cm ²)	I _y ⁽²⁾ (cm4)	I ₂ ⁽²⁾ (cm4)	I _t ⁽³⁾ (cm4)	y _g ⁽⁴⁾ (mm)	z _g ⁽⁴⁾ (mm)
Z	N61	N60	1.190	166.10	157699.95	2513.42	98.11	0.00	217.70
			a face of the last of the line of the second s	and the local data and the second					
			Fla	mbemer	nt		Déverse	ement	
-		_	Fla Plan XY	imbemer I	Plan XZ	Aile su	Déverse 1p.	ement Aile	inf.
-	β		Fla Plan XY 0.11	Imbemer I	Plan XZ 1.23	Aile su	Déverse 	ement Aile 1.	inf. 00
-	β		Flan XY 0.11 0.132	Imbemer I	nt Plan XZ 1.23 1.460	Aile su 1.00	Déverse ip.) 0	ement Aile 1. 1.1	inf. 00 190
-	β L _k C _m		Flan XY 0.11 0.132 1.000	Imbemer	nt Plan XZ 1.23 1.460 1.000	Aile su 1.00 1.19 1.00	Déverse ip.) 0 0	ement Aile 1. 1.1 1.1	inf. 00 190 000

Dimensionnement des travers

David	-				VÉRIFIC/	ATIONS (EU	ROCODE 3 N	F EN 1993	3-1-1/NA:	2007-05)					Ann
Barre	λn	Nt	Nc	My	Mz	V ₂	V ₇	M _r V ₂	MzVy	NM ₁ M ₂	NM ₁ M ₂ V ₁ V ₂	Me	M _t V ₂	MtVy	Etat
N61/N60	$\begin{array}{l} \lambda_w \leq \lambda_{w,max} \\ Conforme \end{array}$	x: 1.19 m η = 2.4	x: 0 m η = 1.7	x: 0 m η = 17.8	x: 1.19 m η = 6.3	x: 1.19 m η = 7.6	x: 1.19 m η = 0.3	η < 0.1	η < 0.1	x: 0 m η = 20.2	η < 0.1	η = 3.5	x: 1.19 m η = 7.6	x: 1.19 m η = 0.3	CONFORME η = 20.2
Подайл; λ.;: Volie N.; Résis M.; Résis M.; Résis V.; Résis M.Y.; Ré M.Y.; Ré M	ment de l'âme e tance à la tract tance à la flexi stance à la flexi stance à la flexi tance au cisaill tance au cisaill tance au cisaill tance au mo sistance au mo sistance à la flexi sistance à la flexi sistance à l'effo sistance à l'effo ce à l'origine d de travail (%).	engendré par l'a vression on suivant l'axe ement z ave ement Y ement fiéchissani levion et à l'effic a fexion, à l'e on rt tranchant Z e la barre	ile comprimé Y Z Z et à l'effor z et à l'effor rt normal co ffort normal i t au moment i au moment	ie rt tranchant Z mbinés et à l'effort tra t de torsion coi de torsion coi	combinés combinés nchant combiné nbinés nbinés	ŝ									

Les vérifications des travers

	Noe	uds	Longiumur	C	aractéristique	s mécanique	es
Z	Initial	Final	(m)	Aire (cm²)	I _γ ⁽¹⁾ (cm4)	Iz ⁽¹⁾ (cm4)	It ⁽²⁾ (cm4)
	N190	N189	2.000	142.80	33090.00	7887.00	153.34
	⁽²⁾ Iner ⁽²⁾ Mon	tie par rapp nent d'inerti	ort à l'axe indiqu le à la torsion uni	é forme			
			Flambern	ent	0	Déversemen	t
		Pla	an XY	Plan XZ	Aile su	p. A	ile inf.
	β	C).25	2.26	1.00		1.00
	Lĸ	0	.503	4.518	2.000)	2.000
	C _m	1	.000	1.000	1.000)	1.000
	C ₁		26			1.000	
	Notation: β: Coe L _κ : Lor C _m : Co	fficient de fi ngueur de fi efficient de	lambement ambement (m) moments dification pour le	moment critic	we		

Dimensionnement des poteaux

Sec.	1			VÉ	RIFICATIO	ONS (EUR	OCODE 3	NF EN 19	93-1-1/N	A: 2007-05	5)				hu
Barre	λ,	N,	N _c	My	Mz	V	Vy	M _Y V _Z	M ₂ V _y	NM _Y M _Z	NM _r M _z V _y V _z	M,	MtVz	$M_t V_{\gamma}$	Etat
N190/N189	$\begin{array}{l} \lambda_w \leq \lambda_{w,max} \\ Conforme \end{array}$	x: 2 m η = 1.4	x: 0 m η = 3.8	x: 2 m η = 29.3	x: 1 m η = 3.2	x: 0 m η = 4.0	x:0m η = 0.4	η < 0.1	η < 0.1	x: 2 m η = 32.5	η < 0.1	$M_{Ed} = 0.00$ N.V. ⁽¹⁾	N.V. ⁽⁷⁾	N.V. ⁽²⁾	CONFORME η = 32.5
Notation: λ.: Vollemen N.: Résistanc N.: Résistanc M.: Résistanc V.: Résistanc V.: Résistanc V.: Résistanc N.V.: Résistanc N.M.: Résistanc M.V.: Résistanc M.V.: Résistanc M.V.: Résistanc	t de l'âme eng ce à la traction ce à la compres ce à la fexion s ce à la fexion ce au cisalilem cre au cisalilem cre au cisalilem cre a u cisalilem cre a u cisalilem cre à la flex ce à la flex la flex trace à l'effort t à l'origine de la	endré par l'a sion suivant l'axe suivant l'axe nt Y théchissant théchissant théchissant on et à l'effe flexion, à l'e anchant Z e anchant X e barre	lle comprime Y Z Z et à l'effo X rormal co ffort normal t au moment t au moment	ie rt tranchant Z rt tranchant Y mbinés et à l'effort tra de torsion co de torsion co	combinés combinés nchant com nbinés nbinés	binės									

Les vérifications des poteaux

Les assemblages :

L'assemblage de rive (poteau-poutre)

Détails d'assemblage de rive (poteau-poutre)

				Pro	ofilés				
	3		Géo	ométrie	8		Acier		
Pièce	Descriptio	Schéma	Épaisseur totale (mm)	Largeur de l'aile (mm)	Épaisseur d'aile (mm)	Épaisseur d'âme (mm)	Туре	f _v (MPa)	f. (MPa)
Poteau	HE 360 A		350	300	17.5	10	S235 (EN 1993-1-1)	235.0	360.0
Poutre	HE 220 A		210	220	11	7	S235 (EN 1993-1-1)	23 <mark>5.</mark> 0	<mark>360.0</mark>
Poutre	IPE 450	9.4 057	450	190	14.6	9.4	S235 (EN 1993-1-1)	235.0	360.0

0			Élément	s complén	nentaires	£			
	1	Géomét	rie		Tr	ous	A	cier	
Pièce	Schéma	Largeur (mm)	Hauteur (mm)	Épaisseur (mm)	Quantité	Diamètre (mm)	Туре	f _y (MPa)	f. (MPa)
Raidisseur	₹ 	315	140	15	2	2	S235 (EN 1993-1-1)	235.0	360.0
Plaque latérale: Poutre (c) HE 220 A	20 20 00 00 00 00 00	90	150	8	2	18	S235 (EN 1993-1-1)	235.0	360.0
Plaque latérale: Poutre (b) HE 220 A	8 8 90	90	150	8	2	18	S235 (EN 199 <mark>3</mark> -1-1)	235.0	360.0
Platine frontale: Poutre (a) IPE 450	9/6	220	975	18	12	26	S235 (EN 1993-1-1)	235.0	360.0

		Éléments de	visserie				
	raint	Gé	éométrie			Acier	
Description	Précont	Schéma	Diamètre	Longueur (mm)	Classe	f _y (MPa)	f_ (MPa)
EN 14399-3-M16x45-10.9-HR EN 14399-3-M16-10-HR 2 EN14399-6-16	x		M16	45	10.9	900.0	1000.0
EN 14399-3-M24x75-10.9-HR EN 14399-3-M24-10-HR 2 EN14399-6-24	x		M24	75	10.9	900.0	1000.0

Description des composantes de l'assemblage.

Assemblage de faitage :

Détails d'assemblage

				Pre	ofilés				
	30		Gé	ométrie			Acier		
Pièce	Descriptio	Schéma	Épaisseur totale (mm)	Largeur de l'aile (mm)	Épaisseur d'aile (mm)	Épaisseur d'âme (mm)	Туре	f _x (MPa)	f. (MPa)
Poutre	IPE 450		450	190	14.6	9.4	S235 (EN 1993-1-1)	235.0	360.0

				Élémen	ts complé	mentaire	s			
			Géomét	rie		Tr	ous	A	cier	
Pièce	Sch	néma	Largeur (mm)	Hauteur (mm)	Épaisseur (mm)	Quantité	Diamètre (mm)	Туре	f, (MPa)	f _u (MPa)
Platine frontale	950	· · · · · · · · · · · · · · · · · · ·	220	950	15	12	22	S235 (EN 1993-1-1)	235.0	360.0

	ew.	Éléments de	visserie		10		
	raint	Gé	éométrie			Acier	
Description	Précont	Schéma	Diamètre	Longueur (mm)	Classe	f _y (MPa)	f _u (MPa)
EN 14399-3-M20x65-10.9-HR EN 14399-3-M20-10-HR 2 EN14399-6-20	x		M20	65	10.9	900.0	1000.0

Description des composantes

Les pieds de poteaux :

Détails d'assemblage

						Élémen	ts complé	mentaires					
				Géomét	rie			Tro	us		A	cier	
Pièce	Schéma			Largeur (mm)	Hauteur (mm)	Épaisseur (mm)	Quantité	Diamètre extérieur (mm)	Diamètre intérieur (mm)	Biseau (mm)	Туре	f _y (MPa)	f _u (MPa)
Plaque de base	009	0	¢	550	600	22	2	34	22	7	S235 (EN 1993-1-1)	235.0	36 <mark>0.</mark> 0

Description des composantes

CONCLUSION GENERALE

CONCLUSION GENERALE

Ce projet de fin d'étude, nous a beaucoup aidé à mettre en pratique toutes nos connaissances acquises durant notre cycle de formation de Master, d'approfondir nos connaissances en basant sur les documents techniques et même d'application des règlements tel que : EUROCODE 03 et RPA version 2013 et DTR ...etc. et de certaines méthodes.

En effet, Il nous a permis de voir en détail l'ensemble des étapes à suivre dans le calcul d'un hangar, ainsi que le choix de ces éléments et leur dimensionnement dans la conception d'un ouvrage et d'assimiler les déférents techniques et logiciels de calcul des structures

Notre étude a porté l'utilisation du logiciel cypecad dans les calculs des structures de génie civil, et une étude similaire l'utilisation et la comparaison avec un autre logiciel de modélisation disponible sur le marché, le Mathcad.

Notons que l'utilisation de l'outil informatique pour l'analyse et le calcul des structures est très bénéfique en temps et en effort à condition de maîtriser les notions de bases des sciences de l'ingénieur, ainsi que le logiciel lui-même.

D'un point de vue personnel, le Projet de Fin d'étude a été une étape nécessaire et complémentaire à notre formation master en structure, il a été un véritable tremplin à un future métier d'ingénieur structures. Cela a été l'occasion de développer nos compétences dans le calcul des structures en zone sismique.

RÉFÉRENCES BIBLIOGRAPHIQUES

RÉFÉRENCE BIBLIOGRAPHIQUE

- Le règlement algérien Neige et vent version 2013 (pour l'étude climatique).
- Eurocode03 : les normes Européennes de conception, dimensionnent et de justification des structures de bâtiment et de génie civil.
- JEAN moral. Calcul des structures métalliques : selon l'Eurocode 3,6^{éme}éd,61bd saintgermain 75240 paris cedex 05 : Edition Eyrolles
- DAHMANI Lahlou. Calcul des éléments résistants d'un construction métallique, 1^{ére}éd, place contrôle de ben-aknoun (Alger) : office des publications universitaire.
- DAHMANI Lahlou. Calcul des éléments de constructions métalliques : selon l'Eurocode 3,2^{ére}éd, office des publications universitaire :10-2012
- BARAKA Abdelhak. Cours en charpente métallique I : selon le règlement algérien CCM79 et l'Eurocode 3,2^{éme}éd : office des publications universitaire :10-2012.
- Mr HACHOUR Yacine, Mr FEDAOUI Massinissa, étude d'un hangar a usage industriel, mémoire de master, Tizi-Ouzou, université mouloud Mammeri de tizi-ouzou,2018.
- CHIKHI Khaled, MAZOUZ Sid Ali, étude d'un hangar en charpente métallique avec mezzanine à usage industriel, mémoire de master Tizi-Ouzou, université mouloud Mammeri de tizi-ouzou,2021
- Mr KHLILI Yanis, étude et dimensionnement d'un hangar multiple (mémoire master) Tizi-Ouzou, faculté du génie de construction ,2021.

ANNEXE

Annexe 01

Quelque résultat détaillé de logiciel cypecad

Récapitulatifs COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD Date: 01/06/23

1. DONNÉES DE L'OUVRAGE

1.1. Normes considérées

Aciers laminés et rest. soudés: Eurocodes 3 et 4 Catégorie d'utilisation: A. Habitations et zones résidentielles

1.2. États limites

E.L.U. de rupture. Acier laminé	EC Neige: Altitude inférieure ou égale à 1000 m
Déplacements	Actions caractéristiques

1.2.1. Situations de projet

Pour les différentes situations du projet, les combinaisons des actions se définiront en accord avec les critères suivants:

- Avec coefficients de combinaison

$$\sum_{i \ge 1} \gamma_{G_i} G_{k_i} + \gamma_p P_k + \gamma_{G_i} \Psi_{pi} Q_{ki} + \sum_{i > 1} \gamma_{G_i} \Psi_{ai} Q_{ki}$$

- Sans coefficients de combinaison

$$\sum_{i=1}^{l} \gamma_{G_i} G_{ij} + \gamma_{F} P_{i} + \sum_{i=1}^{l} \gamma_{G_i} Q_{ij}$$

- Situations sismiques

- Avec coefficients de combinaison

$$\sum_{j,it}\gamma_{ij}G_{kj}+\gamma_{it}P_{k}+\gamma_{A_{it}}A_{it}+\sum_{j,it}\gamma_{Gi}\Psi_{ai}Q_{ki}$$

- Sans coefficients de combinaison

$$\label{eq:Gamma-state} \sum_{j \ge 1} \gamma_{0j} G_{b_j} + \gamma_{0} P_b + \gamma_{A_{0j}} A_E + \sum_{i \ge 1} \gamma_{0i} Q_{b_i}$$

- Où;

⁻ Situations durables ou transitoires

Récapitulatifs

COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD

Date: 01/06/23

- G. Action permanente
- P₁ Action de précontrainte
- Q. Action variable
- As Action sismique
- yn Coefficient partiel de sécurité des actions permanentes
- 7. Coefficient partiel de sécurité de l'action de précontrainte
- γ₀₀ Coefficient partiel de sécurité de l'action variable principale
- γ₁₀ Coefficient partiel de sécurité des actions variables d'accompagnement
- yas Coefficient partiel de sécurité de l'action sismique
- qui Coefficient de combinaison de l'action variable principale
- was Coefficient de combinaison des actions variables d'accompagnement

Pour chaque situation de projet et état limite les coefficients à utiliser seront:

E.L.U. de rupture. Acier laminé: Eurocodes 3 et 4

Durable ou transitoire											
	Coefficients par	tiels de sécurité (y)	Coefficients de combinaison (w)								
	Favorable	Défavorable	Principal (v,)	Accompagnement (w.)							
Charge permanente (G)	1.000	1.350		-							
Surcharge (Q)	0.000	1.500	1.000	0.700							
Vent (Q)	0.000	1.500	1.000	0.600							
Neige (Q)	0.000	1.500	1.000	0.500							

Sismique											
	Coefficients par	tiels de sécurité (7)	Coefficients de combinaison (w)								
	Favorable	Défavorable	Principal (w.)	Accompagnement (v,)							
Charge permanente (G)	1.000	1.000		C COSE 1000							
Surcharge (Q)	0.000	1.000	0.300	0.300							
Vent (Q)	0.000	1.000	0.000	0.000							
Neige (Q)	0.000	1.000	0.000	0.000							
Séisme (E)	-1.000	1.000	1.000	0.000							

Déplacements

Ac	tions variables sans séisme	
	Coefficients par	tiels de sécurité (y)
	Favorable	Défavorable
Charge permanente (G)	1.000	1.000
Surcharge (Q)	0.000	1.000
Vent (Q)	0.000	1.000
Neige (Q)	0.000	1.000

Récapitulatifs

COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD

Date: 01/06/23

2			N	ocu	ds .					
George State	C	oordonné	es	L	Ministra	m e	xtè	neu	re l	ALCONTRACTOR OF
Référence	X (m)	Y (m)	Z (m)	4	Δ,	Δ,	θ,	θ,	θ,	Liaison intérieure
N47	24.000	20.324	8.077	-	-		-		+	Encastré
N48	24.000	11.026	10.123					-		Encastré
N49	24.000	9.874	10.123	*	-			-		Encastré
N50	24.000	0.576	8.077	*				-		Encastré
N51	30.000	1.738	8.333				•	-	+	Encastré
N52	30.000	2.901	8.588					4		Encastré
N53	30.000	4.063	8.844		-		•	-	+	Encastré
N54	30.000	6.387	9.356					4		Encastré
N55	30.000	7.549	9.612		-		•	-	+	Encastré
N56	30.000	8.712	9.867					4		Encastré
N57	30.000	12.188	9.867		-		•		+	Encastré
N58	30.000	13.351	9.612					4		Encastré
N59	30.000	14.513	9.356			3	•	-	+	Encastre
N60	30.000	16.837	8.844			4		4	+	Encastré
N61	30.000	17.999	8.588				•	-	+	Encastré
N62	30.000	19.162	8.333			4		4	+	Encastré
N63	24.000	1.738	8.333		\sim					Encastre
N64	24.000	2.901	8.588	-					+	Encastré
N65	24.000	4.063	8.844		\sim					Encastré
N66	24.000	6.387	9.356	-					+	Encastré
N67	24.000	7.549	9.612		\sim				-	Encastré
N68	24.000	8.712	9.867	-					+	Encastré
N69	24.000	12.188	9.867		÷				+	Encastré
N70	24.000	13.351	9.612	4		-			+	Encastré
N71	24.000	14.513	9.356		$^{\circ}$				-	Encastré
N72	24.000	16.837	8.844			-		-	+	Encastré
N73	24.000	17.999	8.588		\sim		-		+	Encastré
N74	24.000	19.162	8.333	-	-	-			+	Encastré

2.1.2. Barres

2.1.2.1. Matériaux utilisés

ý	1000 XX	Matériau	x utilis	és .	25 25		
1	Matériau	E		G	£2	α,	4
Type Désignation		(MPa)	X	(MPa)	(MPa)	(mm°C)	(kN/m ²)
Acier luminé	\$235 (EN 1993-1-1)	210000.00	0.300	81000.00	235.00	0.000012	77.01
E: Module V: Module G: Module f: Limite d a.: Coeffici T: Patile spi	d'élasticaté hongitudinule de Patacon d'élasticaté oranoversale élasticaté élasticaté sont de délanation écolique						

Récapitulatifs

COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD

Date: 01/06/23

1	Matériau	Barre	Pièce	a constants	Longueur		Sa .	Lb	Lb
Туре	Désignation	(Ni/Nf)	(Ni/Nf)	Profile(Serie)	(m)	p.,	р _#	(m)	(m)
	G	N50/N43	N50/N43	IPE 160 (IPE)	6.000	1.00	1.00		1.4
		N63/N51	N63/N51	IPE 160 (IPE)	6.000	1.00	1.00		
		N64/N52	N64/N52	IPE 160 (IPE)	6.000	1.00	1.00		
		N65/N53	N65/N53	IPE 160 (IPE)	6.000	1.00	1.00		
		N66/N54	N66/N54	IPE 160 (IPE)	6.000	1.00	1.00		
		N67/N55	N67/N55	IPE 160 (IPE)	6.000	1.00	1.00		
		N68/N56	N68/N56	IPE 160 (IPE)	6.000	1.00	1.00		
		N69/N57	N69/N57	IPE 160 (IPE)	6.000	1.00	1.00		
		N70/N58	N70/N58	IPE 160 (IPE)	6.000	1.00	1.00		10
		N71/N59	N71/N59	IPE 160 (IPE)	6.000	1.00	1.00		- 4
		N72/N60	N72/N60	IPE 160 (IPE)	6.000	1.00	1.00	÷	. 4
		N73/N61	N73/N61	IPE 160 (IPE)	6.000	1.00	1.00	4	
		N74/N62	N74/N62	IPE 160 (IPE)	6.000	1.00	1.00	· .	. 4
		N22/N33	N22/N33	L 45 x 45 x 5 (L)	8.039	1.00	1.00	1	
		N33/N25	N33/N25	L 45 x 45 x 5 (L)	8.039	1.00	1.00	· •	- 4
		N41/N30	N41-N30	L 45 x 45 x 5 (L)	8.039	1.00	1.00	4	
		N27/N41	N27/N41	L 45 x 45 x 5 (L)	8.039	1.00	1.00	· •	-4
		N24/N35	N24/N35	L 45 x 45 x 5 (L)	8.039	1.00	1.00	24	
		N35/N25	N35/N25	L 45 x 45 x 5 (L)	8.039	1.00	1.00	÷	4
		N42/N30	N42/N30	L 45 x 45 x 5 (L)	8.039	1.00	1.00	1	4
		N29/N42	N29/N42	L45 x 45 x 5 (L)	8.039	1.00	1.00	-	

30: Novaet paul B₁: Conflictore de flamboment dans le plan 'XY' B₂: Conflictore de flamboment dans le plan 'XY' Lh₁₂: Separation entre les éléments de contreventement de l'adle supérioure Lb₂: Séparation entre les éléments de contreventement de l'adle suférieure.

2.1.2.3. Caractéristiques mécaniques

8	Types de pièce										
Réf. Pièces											
1	N1/N2, N3/N4, N6/N7, N8/N9, N11/N12, N13/N14, N16/N17, N18/N19, N21/N22, N23/N24, N26/N27 et N28/N29										
2	N2/N5; N4/N5; N7/N10; N9/N10; N12/N15; N14/N15; N17/N20; N19/N20; N22/N25; N24/N25; N27/N30 et N29/N30										
3	N31/N33, N34/N30, N32/N35, N36/N37, N38/N5 et N39/N40										
4	N24/N29, N19/N24, N14/N19, N9/N14, N4/N9, N22/N27, N17/N22, N12/N17, N7/N12 et N2/N7										
5	N3/N9, N8/N4, N1/N7, N6/N2, N21/N27, N26/N22, N28/N24 et N23/N29										

- N41/N33, N42/N35, N47/N46, N48/N45, N49/N44, N50/N43, N63/N51, N64/N52, N65/N53, N66/N54, N67/N55, N68/N56, N69/N57, N70/N58, N71/N59, N72/N60, N73/N61 et N74/N62 6
- N22/N33, N33/N25, N41/N30, N27/N41, N24/N35, N35/N25, N42/N30 et N29/N42 7

Caractifistiques micaniques											
Matérian		mar	ef. Description		Asy	Avz	hy	ler -	ш		
Type Designation		over.			(cm ²)	(cm ²)	(cm4)	(cm4)	(cm4)		
Acier	\$235 (EN 1993-1-1)	1	HE 360 A, (HEA)	142.80	78.75	28.35	33090.00	7887.00	1,53,34		
	712.565465	2	IPE 450, Simple avec juncts, (IPE) Junct initial inférieur: 2.00 m. Junct final inférieur: 1.00 m.	98.80	41.61	35.60	33740.00	1676.00	66,75		
		3	HE 240 A. (HEA)	76.80	43.20	13.91	7763.00	2769.00	42.14		
		4	HE 220 A, (HEA)	64.30	36.30	11.84	5410.00	1955.00	28.61		

Récapitulatifs COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD

Caractéristiques mécaniques A (cm²) 6.56 20.10 4.30 Materiate Avy (cm²) Avz (cm²) lyy (cm4) lzz (cm4) H (cm4) Réf. Description Type Désignation L 50 x 50 x 7, (L) IPE 160, (IPE) L 45 x 45 x 5, (L) 3.01 9.10 3.01 6.53 2.00 14.61 869.00 7.84 14.61 68.30 7.84 1.06 3.54 0.35 \$ 6 7 2.00 testing: D_{c}^{2} Reference D_{c}^{2} Reference (D_{c}^{2} Reference) D_{c}^{2} Reference (D_{c}^{2} Refere ondere à la section du point médiae de coller-

2.1.2.4. Table de métrés

-		1 able 6	le metres		1	
M	atériau	Pièce	Profile(Série)	Longueur	Volume (m ²)	Poids
Type	Designation	Towney		(m)	(m.)	(*8/
Acier laminé	\$235 (EN 1993-1-1)	N1/N2	HE 360 A (HEA)	7.950	0.114	891.18
		N3/N4	HE 360 A (HEA)	7.950	0.114	891.18
		N2/N5	1PE 450 (IPE)	10.700	0.178	941.75
		N4/N5	IPE 450 (IPE)	10.700	0.178	941.75
		N6/N7	HE 360 A (HEA)	7.950	0.114	891.18
		N8/N9	HE 360 A (HEA)	7.950	0.114	891.15
		N7/N10	1PE 450 (IPE)	10.700	0.178	941.75
		N9/N10	IPE 450 (IPE)	10.700	0.178	941.75
		N11/N12	HE 360 A (HEA)	7.950	0.114	891.18
		N13/N14	HE 360 A (HEA)	7.950	0.114	891.18
		N12/N15	1PE 450 (IPE)	10.700	0.178	941.75
		N14/N15	IPE 450 (IPE)	10,700	0.178	941.75
		N16/N17	HE 360 A (HEA)	7.950	0.114	891.18
		N18/N19	HE 360 A (HEA)	7.950	0.114	891.18
		N17/N20	IPE 450 (IPE)	10.700	0.178	941.75
		N19/N20	IPE 450 (IPE)	10,700	0.178	941.75
		N21/N22	HE 360 A (HEA)	7.950	0.114	891.18
		N23/N24	HE 360 A (HEA)	7.950	0.114	891.18
		N22/N25	IPE 450 (IPE)	10.700	0.178	941.75
		N24/N25	IPE 450 (IPE)	10,700	0.178	941.75
		N26/N27	HE 360 A (HEA)	7.950	0.114	891.18
		N28/N29	HE 360 A (HEA)	7.950	0.114	891.18
		N27/N30	IPE 450 (IPE)	10.700	0.178	941.75
		N29/N30	IPE 450 (IPE)	10.700	0.178	941.75
		N31/N33	HE 240 A (HEA)	9.100	0.070	548.62
		N34/N30	HE 240 A (HEA)	10.250	0.079	617.95
		N32/N35	HE 240 A (HEA)	9.100	0.070	548.62
		N36/N37	HE 240 A (HEA)	9.100	0.070	548.62
		N38/N5	HE 240 A (HEA)	10.250	0.079	617.95
		N39/N40	HE 240 A (HEA)	9.100	0.070	548.62
		N24/N29	HE 220 A (HEA)	6.000	0.039	302.85
		N19/N24	HE 220 A (HEA)	6.000	0.039	302.85
		N14/N19	HE 220 A (HEA)	6.000	0.039	302.85

Page 10

Date: 01/96/23

Récapitulatifs COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD

Date: 01/06/23

6	Hérami des astrós												
Ş	Matérias				Longuan	Lawrence and	Velarue			Poids			
Type	Disignation	Sene	Profile	Protile (m)	Sine imi	Matérian (m)	Profile (m ²)	Série (m ²)	Materiae (at*)	Protile (kg)	Serie (kg)	Matéria (kg)	
<u></u>			HE 360 A	95400			1.362			1069415			
			HE 240 A	56.900			8.437	1		1430.39			
			HE 220 A	+0.000			0.386			1028.53			
		HEA			212.300			2,185			17153.07	1	
			IPE 430, Simple avec jarrets	128,401			2.133			11300.98			
		I	IPE 160	108.000			0.217			1704.08			
		IPE	Calmental Calmen	1000	236.493		10020	2,350		1216.2716.1	11005.06		
		·~~	L 50 x 50 x 7	29.680			0.052	Control of		410.32			
			L 45 x 45 x 5	64311			0.028	1		217.08			
		1			141.991			0.000			627.40		
Azier	\$255 (EN 1993-1-1)					592.693			4.615			30785,53	

2.1.2.6. Métré des surfaces

Acier laminé: Métré des surfaces à peindre								
Série	Profilé	Surface unitaire (m²/m)	Longueur (m)	Surface (m ²)				
8-3	HE 360 A	1.880	95.400	179.352				
HEA	HE 240 A	1.405	56.900	79.945				
	HE 220 A	1.286	60.000	77.160				
inc	IPE 450, Simple avec jarrets	1.871	128.401	240.274				
IPE	IPE 160	0.638	108.000	68.904				
	L 50 x 50 x 7	0.200	79.680	15.936				
-	L 45 x 45 x 5	0.180	64.311	11.576				
	100000000000000000000000000000000000000		Total	673.146				

Liste de portiques

Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD ET MATHCAD

Date: 30/05/23

Données de l'ouvrage Séparation entre portiques: 6.00 m Avec clos et couvert en couverture Poids des éléments: 0.22 kN/m²
 Surcharge d'exploitation: 0.10 kN/m²
 Avec dos et couvert latéral
 Poids des éléments: 0.10 kN/m²

Normes et combinaisons

Profilés formés à froid	EC Neige: Altitude inférieure ou égale à 1000 m
Profilés laminés	EC Neige: Altitude inférieure ou égale à 1000 m
Déplacements	Actions caractéristiques

Données de vent

Norme: RNV 99 (Algérie)

Zone: 1 Catégorie du terrain: Catégorie II Orographie du terrain: Plane Structure permanente (vie utile d'au moins 5 ans) Profondeur halle industrielle: 30.00 m - Aire gauche: 0.00 - Aire droite: 3.50 - Aire frontale: 0.00 - Aire arrière: 0.00 1 - V(0°) H1: Vent à 0°, pression extérieure type 1 sans actions intérieures
2 - V(0°) H2: Vent à 0°, pression extérieure type 1 Succion intérieure
3 - V(0°) H3: Vent à 0°, pression extérieure type 2 sans actions intérieures
4 - V(0°) H4: Vent à 0°, pression extérieure type 2 Succion intérieure
5 - V(90°) H1: Vent à 90°, pression extérieure type 1 Succion intérieure
6 - V(90°) H2: Vent à 90°, pression extérieure type 1 Succion intérieure
7 - V(180°) H2: Vent à 180°, pression extérieure type 1 Sans actions intérieure
8 - V(180°) H2: Vent à 180°, pression extérieure type 1 sans actions intérieure
9 - V(180°) H3: Vent à 180°, pression extérieure type 2 Pression intérieure
9 - V(180°) H4: Vent à 180°, pression extérieure type 2 Pression intérieure
10 - V(180°) H4: Vent à 180°, pression extérieure type 2 sans actions intérieures
11 - V(270°) H1: Vent à 270°, pression extérieure type 1 sans actions intérieures
12 - V(270°) H2: Vent à 270°, pression extérieure type 1 Succion intérieure Données de neige Neige générique

Charge surfacique: 0.58 kN/m²

Hypothèses appliquées: 1 - Neige: Hypothèse de neige générique

Aciers des profilés

Type d'acier	Acier	Lim. élastique MPa	Module d'élasticité longitudinale GPa
Acier laminé	S235 (EN 1993-1-1)	235	210

Page 1

Liste de portiques

Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC Date:30/05/23 LOGICIEL CYPECAD ET MATHCAD

		I at		100	and an	The second	ALL DIRE LAN	Devo-1-1	(NA) 30	07-25	CONTRACTOR OF		L and	1.00	Stat.
Sitavatable en couvertar	E 10 Sechar	R. = 0.05	AL 5.00	c in	PL + E.00	2.5m	x. = 0.00	8:1m	N.V.S	NY."	W.V.*	M. + 500	N.Y."	M.V.W.	CONFORM
A postanti A i foni neg) postanti A i foni n	The second secon		 Constanting Constant	- - - - - - - - - - -	e la relation de la relation de comp	o de la composición de la composición de la c	en obside fendere, par a sette trap des on the base	ocode	:3E	N 199	93-1-5	: 2006,	Art	icle 8)	
oit être respe	cté:														
ioit être respe $rac{\mathbf{h}_{\mathbf{w}}}{\mathbf{t}_{\mathbf{w}}} \leq k rac{E}{f_{pt}}$	ecté: $\sqrt{\frac{A_{n}}{A_{n,d'}}}$											29.0	4≤	293.2	4 1
oit être respe $\frac{\mathbf{h}_w}{\mathbf{t}_w} \leq \mathbf{k} \frac{\mathbf{E}}{\mathbf{f}_{pl}}$ ů: h : Haute	ecté: $\sqrt{\frac{A_{n}}{A_{n,d}}}$ eur de l'a	âme.										29.0	4 ≤	293.2	4 🗸
oit être respe $\frac{\mathbf{h}_w}{\mathbf{t}_w} \leq \mathbf{k} \frac{\mathbf{E}}{\mathbf{f}_{pl}}$ ù: \mathbf{h}_w : Haute \mathbf{t}_w : Épaiss	ecté: $\sqrt{A_{n_{c,d}}}$ eur de l'a eur d'âr	âme. ne.										29.0 h.	4 < : _	293.2 145.2	4 ✓
oit être respe $\frac{h_w}{t_w} \le k \frac{E}{f_{pl}}$ ù: h_w: Haute t_w: Épaiss A_: Aire o	icté: √A _{ncat} eur de l'a eur d'âr	âme. ne.										29.0 h., t.,	4 ≤	293.2 145.2 5.00 7.26	4 √ 0_mn cm
oit être respe $\frac{h_w}{t_w} \le k \frac{E}{f_{\mu}}$ ù: h_w: Haute t_w: Épaiss A_: Aire o A_war: Aire	ur de l'a eur d'ăr eur d'ăr	âme. ne. de l'ail	e comp	rimée								29.0 h., t., A.,	4 ≤	293.2 145.2 5.00 7.26 6.07	4 V
bit être respe $\frac{h_w}{t_w} \le k \frac{E}{f_{pl}}$ h_w : Haute t_w : Épaiss A_c : Aire o A_{mwr} : Aire k: Coeffic	eté: $\sqrt{\frac{A_n}{A_{n,n'}}}$ eur de l'â eur d'âr le l'âme réduite ient dép	âme. ne. de l'ail	e comp	rimée. :lasse	de la se	ection						29.0 h. t. A k	4 ≤	293.2 145.2 5.00 7.26 6.07 0.30	g_mn m cm
oit être respe $\frac{h_w}{t_w} \le k \frac{E}{f_{pl}}$ $\hat{u}:$ $h_w:$ Haute $t_w:$ Épaiss $A_c:$ Aire o $A_{m,w}:$ Aire k: Coeffic E: Moduk	etté: $\sqrt{\frac{A_n}{A_{n,n'}}}$ eur de l'a eur d'ân le l'âme réduite ient dép	âme. ne. de l'ail sendant icité lor	e comp : de la c	rimée Jasse jale.	de la se	ection	Ð					29.0 h., t., A., k E	4 <	293.2 145.2 5.00 7.26 6.07 0.30 21000	
oit être respe $\frac{h_w}{t_w} \le k \frac{E}{f_{pl}}$ $\hat{u}:$ $h_w: Haute t_w: Épaiss A_2: Aire o A_{max}: Aire k: Coeffic E: Moduk f_p: Limite$	teté: $\sqrt{\frac{A_n}{A_{n,ef}}}$ eur de l'â eur d'âr le l'ârme réduite ient dép i d'élastiqu	âme, ne, de l'ail sendant icité lor ue de l'i	e comp de la c Igitudir acier de	rimée dasse jale. 2 l'aile	de la si	ection						29.0 h., t. A., k E.	4 ≤	293.2 145.2 5.00 7.26 6.07 0.30 21000 235.0	

La vérification n'est pas réalisée car il n'y a pas d'effort normal de traction.

Résistance à la compression (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.4)

La vérification n'est pas réalisée car il n'y a pas d'effort normal de compression.

Liste de portiques Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL LOGICIEL CYPECAD ET MATHCAD	AVEC Date:30/05/23
Résistance à la flexion suivant l'axe Y (Eurocode 3 NF EN 1993-1-1/NA: 20	007-05, Article 6.2.5)
Doit être respecté:	
N	
$\eta_{\rm i} = \frac{2 N_{\rm ed}}{M_{\rm gas}} \lesssim 1$	ק : _0.547 ✓
Pour la flexion positive:	
L'effort sollicitant de calcul défavorable se produit en un point situé à une distance 3.000 m du noeud 0.581, 6.000, 8.078, pour la combinaison d'actions 1.35*G1 + 1.35*G2 + 1.05*O + 0.75*Neice + 1.50*V(0°) H4.	
M _M *: Moment fléchissant sollicitant de calcul le plus défavorable.	M., : 15.93 kN-r
Pour la flexion négative:	in altractor
M _N ; Moment fléchissant sollicitant de calcul le plus défavorable. Le moment fléchissant résistant de calcul M _{NM} est donné par:	M _{ss} : <u>0.00</u> kN-r
$\mathbf{M}_{\mathbf{c},\mathbf{R},\mathbf{d}} = \mathbf{W}_{\mathbf{p}_{1},\mathbf{v}} \cdot \mathbf{f}_{\mathbf{v}_{1}}$	Mene: 29.14 kN-1
Qû:	
Classe: Classe de la section, selon la capacité de déformation et de développement de la résistance plastique des éléments plans d'une section à flevion simple	Classe :
W _{my} . Module résistant plastique correspondant à la fibre de plus grande tension, pour les sections de classe 1 et 2.	W _{AY} : <u>124.00</u> cm ³
f _{at} : Résistance de calcul de l'acier.	f, : 235.00 MPa
$\mathbf{f}_{vd} = \mathbf{f}_{v} / \gamma_{M0}$	All and a second second second
Avec:	
f,: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:	
2007-05, Tableau 3.1)	f, : <u>235.00</u> MPa
Yms: Coefficient partiel de securite du materiau.	Yes : 1.00
Résistance au déversement: (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.3.2)	
Non traité car les longueurs de déversement sont nulles.	
Résistance à la flexion suivant l'axe Z (Eurocode 3 NF EN 1993-1-1/NA: 20	07-05, Article 6.2.5)
La vérification n'est pas réalisée car il n'y a pas de moment fléchissant	
Résistance au cisaillement Z (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Art	ticle 6.2.6)
Doit être respecté:	
$\eta = \frac{V_{td}}{V_{c,kd}} \leq 1$	η : <u>0.082</u> √
L'effort sollicitant de calcul défavorable se produit au noeud 0.581, 0.000, 8.078 pour la combinaison d'actions $1.35*G1 + 1.35*G2 + 1.05*Q + 0.75*Neige + 1.50*V(0^{\circ})$ H4.	в,
V _{se} : Effort tranchant sollicitant de calcul le plus défavorable.	Vid : 10.74 kN
	(10) (10)

Page 14

Liste de portiques

Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD ET MATHCAD

 $\bm{V}_{c_s kd} = A_v \cdot \frac{f_{ve}}{\sqrt{3}}$ V.m : 131.15 kN Où: A.: Aire transversale au cisaillement. A, : 9.67 cm² $\boldsymbol{A_v} = \boldsymbol{A} - 2 \cdot \boldsymbol{b} \cdot \boldsymbol{t}_r + (\boldsymbol{t_v} + 2 \cdot \boldsymbol{r}) \cdot \boldsymbol{t}_r$ Avec: A: Aire brute de la section transversale de la barre. A : _20.10 cm² b : <u>82.00</u> mm t. : <u>7.40</u> mm t. : <u>5.00</u> mm r : <u>9.00</u> mm b: Largeur de la section. t,: Épaisseur de l'aile. t.: Épaisseur d'âme. r: Rayon de congé entre aile et âme. fe: Résistance de calcul de l'acier. f_{ra} : 235.00 MPa $\boldsymbol{f}_{yd}=\boldsymbol{f}_y/\gamma_{HD}$ Avec: f,: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1) f, : <u>235.00</u> MPa yes: Coefficient partiel de sécurité du matériau. Yma : 1.00 Voilement par cisaillement de l'âme: (Eurocode 3 NF EN 1993-1-5: 2006/NA: 2007, Article 5) Bien qu'aucun raidisseur transversal n'ait été placé, il n'est pas nécessaire de vérifier la résistance au voilement de l'âme, étant donné qu'est vérifié: $\frac{\mathbf{d}}{\mathbf{t_w}} < \frac{72}{\eta} \cdot \epsilon$ 25.44 < 72.00 Oú: λ_{w} : Élancement de l'âme. λ. : 25.44 $\lambda_w=\frac{d}{t_w}$ λ....: Élancement maximum. λ..... : <u>72.00</u> $\lambda_{max} = \frac{72}{n} \cdot r_{\rm c}$ η η: Coefficient qui permet de prendre en compte la résistance additionnelle en régime plastique due au durcissement par η : <u>1.00</u> ε : <u>1.00</u> déformation du matériau. c: Facteur de réduction. $\epsilon = \sqrt{\frac{f_{ref}}{f_v}}$ Avec: fur: Limite élastique de référence. f.e : 235.00 MPa f.: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1) f, : 235.00 MPa

Date:30/05/23

Liste de portigues Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD ET MATHCAD Date:30/05/23 Résistance au cisaillement Y (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.6) La vérification n'est pas réalisée car il n'y a pas d'effort tranchant. Résistance au moment fléchissant Y et à l'effort tranchant Z combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.8) Il n'est pas nécessaire de réduire la résistance de calcul à la flexion étant donné que le renfort à l'effort tranchant sollicitant de calcul défavorable V_{se} n'est pas supérieur à 50% de la résistance de calcul à l'effort tranchant V_{cne} $V_{Ed} \leq \frac{V_{c,Rd}}{2}$ 7.37 kN ≤ 65.57 kN Les efforts sollicitants de calcul défavorables se produisent en un point situé à une distance 1.000 m du noeud 0.581, 6.000, 8.078, pour la combinaison d'actions 1.35*G1 + 1.35*G2 + 1.05*Q + 0.75*Neige + 1.50*V(0°) H4. V_{sa}: Effort tranchant sollicitant de calcul le plus défavorable. V. : 7.37 KN V_{cN}: Effort tranchant résistant de calcul. V.,... : 131.15 kN Résistance au moment fléchissant Z et à l'effort tranchant Y combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.8) Il n'y a interaction entre le moment fléchissant et l'effort tranchant pour aucune combinaison. La vérification n'est donc pas réalisée. Résistance à la flexion et à l'effort normal combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.9) If n'v a pas d'interaction entre l'effort normal et le moment fléchissant ni entre les moments fléchissants dans les deux directions, pour aucune des combinaisons. La vérification n'est donc pas effectuée. Résistance à la flexion, à l'effort normal et à l'effort tranchant combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.10) Il n'y a d'interaction entre le moment fléchissant, l'effort normal et l'effort tranchant pour aucune combinaison. La vérification n'est donc pas réalisée. Résistance à la torsion (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7) La vérification n'est pas réalisée car il n'y a pas de moment de torsion. Résistance à l'effort tranchant Z et au moment de torsion combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7) Il n'y a interaction entre le moment de torsion et l'effort tranchant pour aucune combinaison. La vérification ne peut donc pas être lancée. Résistance à l'effort tranchant Y et au moment de torsion combinés (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.7)

Il n'y a interaction entre le moment de torsion et l'effort tranchant pour aucune combinaison. La vérification ne peut donc pas être lancée.

Liste de portiques

Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC Date:30/05/23 LOGICIEL CYPECAD ET MATHCAD

Vérifical	tion de flèch	e									
Le profile selectionne	verifie toutes	s les cond	itions.								
Pourcentage d'utilisati	on:										
- Flèche: 8	5.17 %										
Coordonnées du noeud Coordonnées du noeud Le taux de travail défai 1.00*Neige + 1.00*V(l panne/lisse. (Iv = 869 cm4) (Iz = 6	initial: 0.58 final: 0.581 vorable se pr 0°) H4 à une	1, 30.000 , 24.000, roduit pou distance	0, 8.078 . 8.078 ur le cas de : 3.000 m de	charge l'orig	1.00*G ine dans	1 + 1. le pre	00*G2 mière 1	+ 1.0 travée	de la		
	Données	des lisse	s								
Description des pan	nes/lisses	Pa	aramètres d	e calci	al I						
Type de profilé: UPN 1	40	Limite d Nombre	e flèche: L / de travées:	200 Deux	4 . 1						
Separation: 2.00 m		travées			8						
Type d'acier: S235 (El	1993-1-1)	Type de	fixation: Fix	ation	rigide						
Vérification de résistan	ce	- construction									
Vénficatio	n de résista	nce									
Le profilé sélectionné	rérifie toutes	ies cond	itions.								
Taux de travail: 64.38	96										
Barre défavorable en la	itéral										
Profilé: UPN 140											
Matériau: 5235 (EN 1993	1-1)										
	- CO.	Nos	auds	-	Longueur	ALC: N	Caract	éristique +10	is méca	reques	- 11
z	In	tial	Final		(m)	(cm ²)	(cm4)	(cm4)	(cm4)	(mm)	(00
	0.000, 24.	000, 1.000	0.000, 18.000	1.000	6.000	20.40	605.00	62.70	5.68	-12.50	0.00
	** Inertie ** Alores ** Coord	par rapport à l 12 d'inectie à la comilier du certi	face Indiqué torsion uniforme re de gravité								
and the second second		_	Flamb	ement	10 m 10 m	-	1.11	Déve	rsement	-	_
- P Y		-	0.00		1.00		ADE 51	10.	+	Ase 101.	
	4		0.000		6.000		0.00	0	1	0.000	-
	. C,	- 3	1.000		1.000	1	1.00	0	12	1.000	
	C.			*			- Le coltana	1	000		
	p: Coeffi Li: Long C.; Coef C.; Fecti	cient de flambe aeur de flambei Scient de mare sur de modificie	ment (m) nent (m) ente fon pour le moment	antique							
		VERIFICA	1002-000-000-00	N- 17 13	03-1-1/MA-31	10-00			1	- 1	
Bate fe	M N	H	H V	*	NW NO.	NM.H.	IN MARK	м	14/0	MV:	81at
défavorable en tabiral 1, 61,	* 0.00 No. = 0.00 No. = 0.00	30.0 m Hu 1 1 + 54.4 B	v 0.85 ic 5 m V. V." q = 9.5 1	* 0.00 N.V.**	< 0.1 N.Y."	M.V.*	N .V. ⁽¹⁾	Mm = 0.00 N.V. ^m	M.Y.7	NY." CO	S 64.4
Notation: 2. (Direction: An Once argument pairs from one direction of the transmission of the transmission direction of the transmission of the transmission of the direction of the transmission of the transmission of the transmission of the direction of the transmission of the transmission of the transmission of the direction of the transmission of the transmission of the transmission of the direction of the transmission of t	profest inscripted 2 control forfaller beschied 7 control forfaller beschied 7 control for antibiotistic ment of a forfaller manufactur ment die formane cambiotis ment die formane cambiotis	2 									

Page 17

Liste de portiques

Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC Date: 30/05/23 LOGICIEL CYPECAD ET MATHICAD

VERIFICATIONS (SURCCORE 2 NF IN: 5905-5-1,484, 3007-65) R. R. V. V. R. RV. RV. INC. HUCKV. R. RX. NY Stat Barra i d'y a par d'effect constat de inici l'a y a par d'effect constat de inici 2 a 'v a pas d'allast possible Adultanes et failles based lines, processore des continueses. La cécilianite s'est des pas effe a r'art des pas déclaire success production is contrained on part data part that involve Voilement de l'âme engendré par l'aile comprimée (Eurocode 3 EN 1993-1-5: 2006, Article 8) Doit être respecté: $\frac{h_w}{t_w} \leq k \, \frac{\mathsf{E}}{f_{\mathrm{pl}}} \sqrt{\frac{\mathsf{A}_w}{\mathsf{A}_{\mathrm{tc,pl}}}}$ 17.14 - 317.20 🗸 Où: h.: Hauteur de l'âme. h. : 120.00 mm t.: Épaisseur d'âme. t. : <u>7.00</u>mm A.: Aire de l'âme. A. : <u>8.40</u> cm² $\begin{array}{c} \hline \mathbf{A}_{n,\sigma} &: & \underline{6.00} \\ \mathbf{k} &: & \underline{0.30} \\ \mathbf{E} &: & \underline{210000} \\ \mathbf{f}_{\sigma} &: & \underline{235.00} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathbf{MPa} \\ \mathbf{MPa} \end{array}$ Anat: Aire réduite de l'aile comprimée. k: Coefficient dépendant de la classe de la section. E: Module d'élasticité longitudinale. f_e: Limite élastique de l'acier de l'aile comprimée. Avec: $f_{vf} = f_v$ Résistance à la traction (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.3) La vérification n'est pas réalisée car il n'y a pas d'effort normal de traction. Résistance à la compression (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.2.4) La vérification n'est pas réalisée car il n'y a pas d'effort normal de compression.

Liste de portiques
Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC
LOGICIEL CYPECAD ET MATHCAD
Date:30/05/23

Résistance à la flexion suivant l'axe Y (Eurocode 3 NF EN 1993-1-1/NA: 20	07-05, A	rtic	le 6.2.	5)	
Doit être respecté:					
$\eta = \frac{M_{col}}{M_{col}} \leq 1$	η	4	0.64	4	1
Pour la flexion positive: M*. Moment fléchissant sollicitant de calcul le nius défavorable	M.,*	1	0.00		eN-m
Pour la flexion négative:		3	0.00	eneral C	10000
L'effort sollicitant de calcul défavorable se produit au noeud 0.000, 24.000, 1.000, pour la combinaison d'actions 1.35*G1 + 1.35*G2 + 1.50*V(0°) H4.					
M _m : Moment fléchissant sollicitant de calcul le plus défavorable.	Mas	4	15.5	8 1	cN-m
Le moment fléchissant résistant de calcul M _{ene} est donné par:					
$\mathbf{M}_{\mathbf{e},\mathbf{Re}} = \mathbf{W}_{\mathbf{p}C,\mathbf{y}} \cdot \mathbf{f}_{\mathbf{ye}}$	Man	З.	24.2	1	cN·m
Où:					
Classe: Classe de la section, selon la capacité de déformation et de développement de la résistance plastique des éléments plans d'une section à flexion simple.	Classe	a)	1	-	
W _{ev} : Module résistant plastique correspondant à la fibre de plus grande tension, pour les sections de classe 1 et 2.	Way	it.	103.0	00	:m ³
fe: Résistance de calcul de l'acier.	f.,.	i.	235.0	10	мРа
$\mathbf{f}_{\text{ref}} = \mathbf{f}_{r} / \gamma_{\text{MD}}$					
Avec					
f,: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Tableau 3.1)	f,	3	235.0	10	ЧРа
ye: Coefficient partiel de sécurité du matériau.	Ymo	4	1.00	7	
Résistance au déversement: (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article 6.3.2)					
Non traité car les longueurs de déversement sont nulles.					
Résistance à la flexion suivant l'axe Z (Eurocode 3 NF EN 1993-1-1/NA: 20	07-05, A	tic	le 6.2.	5)	
La vérification n'est pas réalisée car il n'y a pas de moment fléchissant					
Résistance au cisaillement Z (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Art	ide 6.2.6)			
Doit être respecté:					
$\eta = \frac{V_{ser}}{V_{c,no}} \leq 1$		ŋ ::	0.0	95	~
L'effort sollicitant de calcul défavorable se produit au noeud 0.000, 24.000, 1.000, pour la combinaison d'actions $1.35^{*}G1 + 1.35^{*}G2 + 1.50^{*}V(0^{\circ})$ H4.					
V _{ad} : Effort tranchant sollicitant de calcul le plus défavorable.	V	ы 1	12.	99	kN
L'effort tranchant résistant de calcul V _{ene} est donné par:			0.78370	100.00	
$\mathbf{V}_{c,\text{ind}} = \mathbf{A}_{v} - \frac{\mathbf{f}_{vo}}{\sqrt{3}}$	Va	64	_137.	03	kN

Page 19
Liste de portiques

Où:	
A.: Aire transversale au cisaillement.	A. : 10.10 cm
$\mathbf{A}_{\mathbf{w}} = \mathbf{A} - 2 \cdot \mathbf{b} \cdot \mathbf{t}_{\mathbf{r}} + (\mathbf{t}_{\mathbf{w}} + \mathbf{r}) \cdot \mathbf{t}_{\mathbf{r}}$	1000
Aver	
A: Aire brute de la section transversale de la barre.	A : 20 40 CM
b: Largeur de la section.	b : 60.00 mm
t,: Épaisseur de l'aile.	t : 10.00 mm
t.: Épaisseur d'âme.	t. : 7.00 mm
r: Rayon de congé entre aile et âme.	r : 10.00 mm
f _{et} : Résistance de calcul de l'acier.	fra : 235.00 MP
$\mathbf{f}_{yd} = \mathbf{f}_{y} / \gamma_{MO}$	
Avec:	
f,: Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:	
2007-05, Tableau 3.1)	Fr : 235.00 MP
Yee: Coencient partiel de securite du materiau.	Ymo - <u>1.00</u>
Voilement par cisaillement de l'âme: (Eurocode 3 NF EN 1993-1-5: 2006/NA: 2007, Article 5)	
Bien qu'aucun raidisseur transversal n'ait été placé, il n'est pas nécessaire (vérifier la résistance au voilement de l'âme, étant donné qu'est vérifié:	de
d 72	17.14 < 72.00
t _w η	v
Qů:	
λ.: Élancement de l'âme.	A. : 17.14
d	
$\lambda_w = \frac{1}{t_w}$	
Ann: Élancement maximum.	λ: 72.00
72	
$\lambda_{max} = \frac{1}{\eta} \cdot c$	
n' Coefficient qui permet de prendre en compte la résistance	
additionnelle en régime plastique due au durcissement par	
déformation du matériau.	n : <u>1.00</u>
c: Facteur de réduction.	s: <u>1.00</u>
$\varepsilon = \sqrt{\frac{f_{ref}}{f_c}}$	
Aver	
f Limite élastique de référence	F. : 235.00 MP
f : Limite d'élasticité. (Eurocode 3 NF EN 1993-1-1/NA:	······································
2007-05, Tableau 3.1)	f, : 235.00 MP

Page 20

Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCU LOGICIEL CYPECAD ET MATHCAD	IL AVEC	Date:30/05/23
Résistance au moment fléchissant Y et à l'effort tranchant Z combin 1993-1-1/NA: 2007-05, Article 6.2.8)	és (Eurocode	3 NF EN
Il n'est pas nécessaire de réduire la résistance de calcul à la flexion étant donné que le renfort à l'effort tranchant sollicitant de calcul défavorable V_{ue} n'est pas supérieur à 50% de la résistance de calcul à l'effort tranchant V		
$V_{Ed} \leq \frac{V_{c,Rd}}{2}$	12.99 kN	s 68.52 kN 🗸
Les efforts sollicitants de calcul défavorables se produisent au noeud 0.000, 24.000, 1.000, pour la combinaison d'actions 1.35*G1 + 1.35*G2 + 1.50*V(0°) H4.		
V _{sa} : Effort tranchant sollicitant de calcul le plus défavorable.	Vne	12.99 kN
V _{cm} : Effort tranchant résistant de calcul.	Vise	: <u>137.03</u> kN
Résistance au moment fléchissant Z et à l'effort tranchant Y combin 1993-1-1/NA: 2007-05, Article 6.2.8)	és (Eurocode	3 NF EN
Article 6.2.9) Il n'y a pas d'interaction entre l'effort normal et le moment fléchissant ni ent	re les momer	its fléchissants
Résistance à la flexion, à l'effort normal et à l'effort tranchant comb	inés (Euroco	de 3 NF EN
Il n'y a d'interaction entre le moment fléchissant, l'effort normal et l'effort tr combinaison. La vérification n'est donc pas réalisée.	anchant pour	aucune
Résistance à la torsion (Eurocode 3 NF EN 1993-1-1/NA: 2007-05, Article	e 6.2.7)	
La vérification n'est pas réalisée car il n'y a pas de moment de torsion.		
Résistance à l'effort tranchant Z et au moment de torsion combinés 1993-1-1/NA: 2007-05, Article 6.2.7)	(Eurocode 3 I	NFEN
Il n'y a interaction entre le moment de torsion et l'effort tranchant pour aucu ne peut donc pas être lancée.	ine combinais	ion. La vérification
Résistance à l'effort tranchant Y et au moment de torsion combinés 1993-1-1/NA: 2007-05, Article 6.2.7)	(Eurocode 3	NF EN
Il n'y a interaction entre le moment de torsion et l'effort tranchant pour aucu ne peut donc pas être lancée.	ine combinais	ion. La vérification

Page 21

Liste de portiques

Nom de l'Ouvrage: COMPARAISON ENTRE LE CALCUL MANUEL ET LE CALCUL AVEC LOGICIEL CYPECAD ET MATHCAD

Date: 30/05/23

Vérification de flèche_

Vérification de flèche Le profilé sélectionné vérifie toutes les conditions. Pourcentage d'utilisation:

- Flèche: 40.89 %

Coordonnées du noeud initial: 0.000, 30.000, 1.000 Coordonnées du noeud final: 0.000, 24.000, 1.000 Le taux de travail défavorable se produit pour le cas de charge 1.00*G1 + 1.00*G2 + 1.00*V(0°) H2 à une distance 3.000 m de l'origine dans le première travée de la panne/lisse. (Iy = 605 cm4) (Iz = 63 cm4)

Métré des pannes/lisses									
Type de pannes/lisses	Nb de pannes/lisses	Poids linéaire kg/m	Poids surfacique kN/m ²						
Pannes	20	315.57	0.15						
Lisses	10	160.14	0.08						

Les vérifications des pieds de poteaux

			Vérifi	cations	géométrique	5			
Réf.		1	Гуре	(1	a l nm) (m	m)	t (mm)	Angle (degrés	2 5)
Soudure de l'âm	e	D'	angle		6 17	5	10.0	90.00)
a: Gorge utile l: Longueur des soud t: Épaisseurs de mai	dures tériau								
			Cont	rôle de	la résistance				
and the second		Cont	rainte de	Von Mi	ses	Contra	inte normale	f _u (N/mm ²)	
Réf.	σ _⊥ (N/mm ²)	τ _⊥ (N/mm²)	T _{II} (N/mm ²)	Valeur (N/mm ²)	Taux de trav.	σ. (N/mm²)	Taux de trav. (%)		βw
Soudure de l'âme	49.5	50.6	20.9	107.0	29.72	50.6	19.52	360.0	0.80
	Vi.		Con	trôle de	la résistance			a 1	
2705		Cont	rainte d	e Von Mi	ses	Contra	ainte normale		-
Réf.	σ. (N/mm²)	TL (N/mm²)	t _{ii} (N/mm²)	Valeur (N/mm ²)	Taux de trav.	σ. (N/mm²)	Taux de trav.	(N/mm²)	β.
Soudure des boulons à la plaque de base	0.0	0.0	106.8	184.9	51.37	0.0	0.00	360.0	0.80

2) Plaque d'ancrage

Virification	Walause	Erst.
Circulture de la companya de	Valeurs 10 mm	Eldi
2 diamètres	Calculé: 371 mm	Conforme
Séparation minimale tiges-bord: 2 diamètres	Minimum: 40 mm Calculé: 90 mm	Conforme
Longueur minimum de la tige d'ancrage: Calcul de la longueur de l'ancrage nécessaire pour l'adhérence.	Minimum: 24 cm Calculé: 50 cm	Conforme
Ancrage tige dans béton:	18 S	
- Traction:	Maximum: 85.48 kN Calculé: 33.54 kN	Conforme
- Effort tranchant:	Maximum: 59.83 kN Calculé: 28.19 kN	Conforme
- Traction + Effort tranchant:	Maximum: 85.48 kN Calculé: 73.81 kN	Conforme
Traction dans la tige des boulons:	Maximum: 100.53 kN Calculé: 33.54 kN	Conforme
Contrainte de Von Mises dans la tige des boulons:	Maximum: 400 MPa Calculé: 169.918 MPa	Conforme
Écrasement tige d'ancrage dans plaque: Limite d'effort tranchant dans une tige d'ancrage travaillant contre une plaque	Maximum: 206.8 kN Calculé: 26.87 kN	Conforme
Contrainte de Von Mises dans les sections globales:	Maximum: 235 MPa	
- Droite:	Calculé: 43.8535 MPa	Conforme
- Gauche:	Calculé: 43.8535 MPa	Conforme
- Haut:	Calculé: 43.8917 MPa	Conforme
- Bas:	Calculé: 43.8917 MPa	Conforme
Flèche globale équivalente: Umitation de la déformabilité des débords	Minimum: 250	
- Droite:	Calculé: 1883.83	Conforme
- Gauche:	Calculé: 1883.83	Conforme
- Haut:	Calculé: 1970.42	Conforme
- Bas:	Calculé: 1970.42	Conforme
Contrainte de Von Mises locale: Contrainte par traction des boulons sur les plaques avec débord	Maximum: 235 MPa Calculé: 0 MPa	Conforme
Toutes les conditions sont vérifié	25	
Informations supplémentaires:		
 Relation de ruoture la plus d éfavorable de la section de b éton: 0 	0518	

	Vérifications géomét	riques		_	
Réf.	Туре	Préparation des bords	1 (mm)	t (mm)	Angle (degnis)
Soudure des boulons à la plaque de base	À pénétration partielle	7	63	20.0	90.00
l: Longueur des soudures t: Épaisseurs de matériau		· .			

Vérifications

1) Poteau HE 360 A

Ame.

Résistance de la zone soudée (NF EN 1993-1-1/NA:2007, 6.2.1)

Doit être respecté:

$$\sqrt{\left(\frac{F_{\mu}}{A}\right)^{2}+3\left(\frac{F_{\mu}}{A}\right)^{2}+3\left(\frac{F_{\mu}}{A}\right)^{2}}\leq\frac{F_{\mu}}{\gamma_{\text{HE}}}$$

oùt

- F.: Effort sollicitant dans la direction x
- F,: Effort sollicitant dans la direction y
- F,: Effort sollicitant dans la direction z
- A: Surface de la zone soudée
- f,: Limite d'élasticité
- 360: Coefficient partiel pour la résistance des sections transversales

95.59 N/mm³ ≤ 235.00 N/mm³ V

F.: <u>-148.39</u> kN F.: <u>-0.13</u> kN F.: <u>-44.58</u> kN A: <u>1750</u> mm f.: <u>235.00</u> N/mm³ 7m : <u>1.00</u>

Attaches soudées

Généralités (NF EN 1993-1-8/NA:2007, 4.1(1))

Les dispositions données dans ce chapitre s'appliquent aux acters de construction soudables conformes à l'EN 1993-1-1 et aux épaisseurs de matériau de 4 mm et plus.

Généralités (NF EN 1993-1-8/NA:2007, 4.3.2.1(1))

Des soudures d'angle peuvent être utilisées pour l'assemblage de pièces lorsque les faces forment un angle compris entre 60° et 120°.

Longueur des soudures (NF EN 1993-1-8/NA:2007, 4.5.1(2))

Pour supporter un effort, il convient de ne pas prévoir de soudure d'angle d'une longueur efficace inférieure à 30 mm ou inférieure à 6 fois son épaisseur de gorge, en prenant la plus grande de ces deux valeurs.

Gorge utile (NF EN 1993-1-8/NA:2007, 4.5.2(2))

Il convient que la gorge utile d'une soudure d'angle ne soit pas inférieure à 3 mm.

Résistance des soudures d'angles (NF EN 1993-1-8/NA:2007, 4.5.3)

4.5.3.1 Généralités

(1) Il convient de déterminer la résistance de calcul d'une soudure d'angle soit par la méthode directionnelle donnée en 4.5.3.2 soit par la méthode simplifiée donnée en 4.5.3.3.

4.5.3.2 Méthode directionnelle

(6) La résistance de la soudure d'angle sera suffisante si les deux conditions suivantes sont satisfaites:

$$[\sigma_{\perp}^{2} + \Im(\tau_{\perp}^{2} + \tau_{\parallel}^{2})]^{0.5} \le f_{u}/(\beta_{u}\gamma_{eq})$$

 $\sigma_{\perp} \le 0.9 f_{u}/\gamma_{eq}$

OÚC.

e,: Contrainte normale perpendiculaire à la gorge

t : Contrainte tangente (dans le plan de la gorge) perpendiculaire à l'axe de la soudure

 τ_{II} : Contrainte tangente (dans le plan de la gorge) parallèle à l'axe de la soudure

f_u: Résistance nominale ultime à la traction de la pièce assemblée la plus faible

β_w: Facteur de corrélation pour les soudures d'angle

y_{M2}: Résistance des soudures

Ym2 : 1.25

			Vérifi	ications	géomét	riques	5			
Réf.		Г	Гуре	(17	a nm)	 (mi	m)	t (mm)	An (deg	gle rés)
Soudure de l'âr	ne	D'	angle		6	17	75	10.0	90	.00
a: Gorge utile l: Longueur des so t: Épaisseurs de m	udures atériau									
			Con	trôle de	la résist	ance	l			
Controlle de la resistance							Contra	inte normale		
Réf.	σ ₁ (N/mm ²)	τ ₁ (N/mm ²)	t _{ii} (N/mm²)	Valeur (N/mm ²)	Taux de	trav.	σ. (N/mm²)	Taux de trav.	(N/mm	β.
Soudure de l'âme	49.5	50.6	20.9	107.0	29.7	2	50.6	19.52	360.	0 0.80
Boulons: 2020 Disposition: Po	mm L=50 sition X: Co	entrée P	gueur dr osition Y	oite ': Centré	e .	Julast	- Lunt		Te.	
-Disposition: Po-	sition X: C	entree P	osition Y	: Centre	e		Vale	urs	É	tat
éparation minin 2 diamitres	nale entre	tiges:					Mini	mum: 40 mm ulé: 371 mm	c	onforme
éparation minin 2 diamètres	nale tiges-	bord:					Mini	mum: 40 mm ulé: 90 mm	c	onforme
ongueur minimu Calcul de la long	um de la ti ueur de l'ancr	ge d'anc rage néces	rage:	l'adhèrenci			Mini Calc	mum: 24 cm ulé: 50 cm	c	onforme
ncrage tige dan	s béton:							161 - V. 1813A-S-VICE		
- Traction:							Max Calc	Maximum: 85.48 kN Calculé: 33.54 kN		
- Effort tranch	ant:						Max Calc	imum: 59.83 k ulé: 28.19 kN	cN C	onforme
- Traction + E	ffort tranci	hant:					Max Calc	imum: 85.48 k ulé: 73.81 kN	dN C	onforme
raction dans la	tige des bo	oulons:					Max	imum: 100.53 ulė: 33.54 kN	kN C	onforme
iontrainte de Vo	n Mises da	ins la tig	e des bo	ulons:			Max Calc	imum: 400 MP ulé: 169.918 I	Ра ИРа С	onforme
crasement tige	d'ancrage anchait dans	dans pla une tige d	sque: Fancrage t	ravallant c	ontre une p	Seque	Max	imum: 206.8 l ulé: 26.87 kN	dN C	onforme
ontrainte de Vo	n Mises da	ins les se	ections g	lobales:	5		Max	imum: 235 MP	a	

Calculé: 43.8917 MPa Conforme Calculé: 43.8917 MPa Conforme - Haut: - Bas: Flèche globale équivalente: Minimum: 250 wabilité des débards Limitation de la défor - Droite: Calculé: 1883.83 Conforme Calculé: 1883.83 - Gauche: Conforme - Hauts Calculé: 1970.42 Conforme - Bas: Calculé: 1970.42 Conforme Maximum: 235 MPa Calculé: 0 MPa Contrainte de Von Mises locale: Contrainte per traction des boulons sur les plaques avec débord Conforme Toutes les conditions sont vérifiées

Informations supplémentaires: Relation de rupture la plus défavorable de la section de béton: 0.0518

Attaches soudées

Généralités (NF EN 1993-1-8/NA:2007, 4.1(1)) Les dispositions données dans ce chapitre s'appliquent aux aciers de construction soudables conformes à l'EN 1993-1-1 et aux épaisseurs de matériau de 4 mm et plus.

Résistance des soudures d'angles (NF EN 1993-1-8/NA:2007, 4.5.3)

4.5.3.1 Généralités

(1) Il convient de déterminer la résistance de calcul d'une soudure d'angle soit par la méthode directionnelle donnée en 4.5.3.2 soit par la méthode simplifiée donnée en 4.5.3.3.

(6) La résistance de la soudure d'angle sera suffisante si les deux conditions suivantes sont satisfaites:

$$\begin{split} &[\sigma_1^2+3(\tau_1^2+\tau_1^2)]^{0.5} \leq f_0/(\beta_n\gamma_{N2}) \\ &\sigma_+ \leq 0.9\,f_0/\gamma_{N2} \end{split}$$

où:

oj: Contrainte normale perpendiculaire à la gorge

r,: Contrainte tangente (dans le plan de la gorge) perpendiculaire à l'axe de la soudure

r_{ii}: Contrainte tangente (dans le plan de la gorge) parallèle à l'axe de la soudure

f.: Résistance nominale ultime à la traction de la pièce assemblée la plus faible

ße: Facteur de corrélation pour les soudures d'angle

yes: Résistance des soudures

740 : <u>1.25</u>

Résistance de calcul des soudures bout à bout (NF EN 1993-1-8/NA:2007, 4.7)

4.7.2 Soudures bout à bout à pénétration partielle

(1) Il convient de déterminer la résistance d'une soudure bout à bout à pénétration partielle au moyen de la méthode donnée en 4.5.2 (3) pour une soudure d'angle à forte pénétration.

			Vérifi	cations	géométri	ques		1.0.7		an de la composition de la composition Composition de la composition de la comp
[;	Réf.			Тур	e	Préparat	ion des bords (mm)	(mm)	t (mm) (Angle degrés)
Soudure des bou base	ions à la p	plaque d	e Å pe	inétratio	n partielle		7	63	20.0	90.00
l: Longueur des soud t: Épaisseurs de mat	lunati éritay						7			
			Cont	rôle de	la résista	nce				
	1	Con	trainte d	ie Von Mi	ses	C	ontrainte norn	nale	1725	
Réf.	6. (N/mm²)	t. (N/mm ²)	E ₂ (h/mm ²)	Valeur (N/mm ²)	Taux de (%)	rav.	s: Taux de mm²) (%)	trav.	(N/mm ²	β.
Soudure des boulons à la plaque de base	0.0	0.0	106.8	184.9	51.37	0	0.00)	360.0	0.80

Les vérifications de l'assemblage de rive :

1) Poutre (a) IPE 450

Contrôles de résistance								
Composant	Vérification	Unités	Défavorable	Résistant	Taux de trav. (%)			
Åme	Charges concentrées dans l'âme	kN	0.00	375.26	0.00			

Attaches soudées

Vérifications géométriques								
Réf.	Туре	a (mm)	1 (mm)	t (mm)	Angle (degrés)			
Soudure de l'aile supérieure	D'angle	7	190	14.6	77.59			
Soudure de l'âme	D'angle	4	388	9.4	90.00			
Soudure de l'aile inférieure	D'angle	7	190	14.6	77.59			
Soudure de l'âme du jarret	D'angle	4	409	9.4	90.00			
Soudure de l'aile du jarret	D'angle	7	190	14.6	77.53			
Soudure de l'âme du jarret à l'aile inférieure	D'angle	7	1000	9.4	90.00			
Soudure de l'aile du jarret à l'aile inférieure	D'angle	10	190	14.6	65.11			

a: Gorge utile

l: Longueur des soudures t: Épaisseurs de matériau

			Contr	ôle de la	résistance	e			
4		Contr	ainte de	Von Mise	Contra	inte normale		6	
Réf.	α. (N/mm²)	α. τ. Vmm²) (N/mm²)		Valeur (N/mm²)	Taux de trav. {%}	σ. (N/mm²)	Taux de trav. (%)	f. (N/mm²)	β.,
Soudure de l'aile supérieure	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'âme	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'aile inférieure	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'âme du jarret	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'aile du jarret	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'âme du jarret à l'aile inférieure	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'aile du jarret à l'aile inférieure			La véri	fication n	l'est pas réa	alisée.		360.0	0.80

Vérification	Unités	Défavorable	Résistant	Taux de trav. (%)
Relation entre les modes 1 et 3	i inter	0.94	1.90	52.32
Moment résistant	kNm	0.00	458.50	0.00
Capacité de rotation	mm	15.00	14.85	100.99

2) Poutre (b) IPE 450

Contrôles de résistance									
Composant Vérification Unités Défavorable Résistant Taux de trav.									
Åme	Charges concentrées dans l'âme	kN	0.00	375.26	0.00				

Attaches soudées

Vérifications géométriques										
Réf.	Туре	a (mm)	 (mm)	t (mm)	Angle (degrés)					
Soudure de l'aile supérieure	D'angle	7	190	14.6	77.59					
Soudure de l'âme	D'angle	4	388	9.4	90.00					
Soudure de l'aile inférieure	D'angle	7	190	14.6	77.59					
Soudure de l'âme du jarret	D'angle	4	409	9.4	90.00					
Soudure de l'aile du jarret	D'angle	7	190	14.6	77.53					
Soudure de l'âme du jarret à l'aile inférieure	D'angle	7	1000	9.4	90.00					
Soudure de l'aile du jarret à l'aile inférieure	D'angle	10	190	14.6	65.11					

a: Gorge utile

l: Longueur des soudures

t: Épaisseurs de matériau

			Contro	ôle de la	résistance				
		Contr	ainte de	Von Mis	8	Contra	inte normale		
Réf.	đi (N/mm²)	t. (N/mm²)	t _{ii} (N/mm²)	Valeur (N/mm²)	Taux de trav. (%)	ő, (N/mm²)	Taux de trav. (%)	f, (N/mm ¹)	β.
Soudure de l'aile supérieure	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'âme	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'aile inférieure	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'âme du jarret	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'aile du jarret	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'âme du jarret à l'aile inférieure	0.0	0.0	0.0	0.0	0.00	0.0	0.00	360.0	0.80
Soudure de l'aile du jarret à l'aile inférieure		La vérification n'est pas réalisée.							

Vérifications pour les vis

		Disposit	ions				
Tige d'ancrage	Dénomination	d₀ (mm)	e, (mm)	e 2 (mm)	pı (mm)	P2 (mm)	m (mm)
1	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
2	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
3	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
4	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
5	EN 14399-3-M20x65-10.9-HR	22.0		65	96	89	40.0
6	EN 14399-3-M20x65-10.9-HR	22.0		65	96	89	40.0
7	EN 14399-3-M20x65-10.9-HR	22.0		65	96	89	40.0
8	EN 14399-3-M20x65-10.9-HR	22.0		65	96	89	40.0
9	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
10	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
11	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
12	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
	rification n'est pas nialisée.						

		Rési	stance		
rage		. Max. (%)			
Tige d'ar	Vérification	Défavorable (kN)	Résistant (kN)	Taux de trav.	Taux de trav
1	Glissement	0.000	41.160	0.00	0.00
2	Glissement	0.000	41.160	0.00	0.00
3	Glissement	0.000	41.160	0.00	0.00
4	Glissement	0.000	41.160	0.00	0.00
5	Glissement	0.000	41.160	0.00	0.00
6	Glissement	0.000	41.160	0.00	0.00
7	Glissement	0.000	41.160	0.00	0.00
8	Glissement	0.000	41.160	0.00	0.00
9	Glissement	0.000	41.160	0.00	0.00
10	Glissement	0.000	41.160	0.00	0.00
11	Glissement	0.000	41.160	0.00	0.00
12	Glissement	0.000	41.160	0.00	0.00

Vérification	Unités	Défavorable	Résistant	Taux de trav. (%)		
Relation entre les modes 1 et 3	6	0.94	1.80	52.32		
Moment résistant	k Nim	0.00	458.50	0.00		
Capacité de rotation	mm	15.00	14.85	100.99		

Les vérifications d'assemblage poteau-poutre :

1) Poutre (a) IPE 450

Contrôles de résistance									
Composant Vérification Unités Défavorable Résistant Taux de trav.									
Åme	Charges concentrées dans l'âme	IcN .	0.00	375.26	0.00				

			Vérifica	ations g	éométriqu	es				
[[Réf.				Туре	a (mm)	[reserch	t (mm)	An (de)	gle print)
Soudure de l'aile s	upérieur	e		34	D'angle	7	190	14.6	5 77	.59
Soudure de l'âme				104	D'angle	4	388 9.4		90	.00
Soudure de l'aile i	nférieure				D'angle	.7	190	14.6	77	.59
Soudure de l'âme	du jarret			1.3	D'angle	4	409	9.4	90	.00
Soudure de l'aile d		D'angle	7	190	14.6	5 77	.53			
Soudure de l'âme du jarret à l'aile inférieure					D'angle	7	1000	9.4	90	.00
Soudure de l'aile d	Soudure de l'aile du jarret à l'aile inférieure					10	190	14.6	65	.11
E Langueur des soudu E Épaisseurs de metér	ninisi Natur									
Contrôle de la résistance										_
	-	Contr	ainte de	Von Mis	es	Contra	sinte nor	male		
Réf.	es. (Nomm*)	(N/mm*)	(N/mmit)	(Nelmensit)	trav.	(N/mm3)	Taux d	e trav.	(Noterantic)	p.,
Soudure de l'aile supérieure	0.0	0.0	0.0	0.0	0.00	0.0	0.0	20	360.0	0.80
Soudure de l'âme	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0	360.0	0.80
Soudure de l'aile Inférieure	0.0	0.0	0.0	0.0	0.00	0.0	0.0	20	360.0	0.80
Soudure de l'âme du jarret	0.0	0.0	0.0	0.0	0.00	0.0	0.0	20	360.0	0.80
Soudure de l'aile du jarret	0.0	0.0	0.0	0.0	0.00	0.0	0.0	00	360.0	0.80
Soudure de l'âme du jarret à l'aile inférieure	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.00		0.80
Soudure de l'aile du jarret à l'aile inférieure			La véri	fication (n'est pas ré	allisée.			360.0	0.80

Verification	Unités	Défavorable	Résistant	Taux de trav. (%)
Relation entre les modes 1 et 3	1	0.94	1.80	52.32
Moment résistant	kiNimi,	0.00	458.50	0.00
Capacité de rotation	in man	15.00	14.85	100.99

2) Poutre (b) IPE 458

Contrôles de résistance									
Composant	Vérification	Unités	Défavorable	Résistant	Taux de trav. (%)				
Ame	Charges concentrées dans l'âme	14/N	0.00	375.26	0.00				

			Vérifica	ations g	eométriq	ues	1				
	Réf.				Туре	0.00	a m)	(mm)	t (mm)	An (dep	gle (ris)
Soudure de l'aile s	upérieur	10			D'angle		7	190	14.6	77	.59
Soudure de l'âme					D'angle	- 4	4	388	9.4	90	.00
Soudure de l'aile i		D'angle	- 7	7	190	14.6	77.	.59			
Soudure de l'âme	du jarrel	t			D'angle	- 4	4	409	9.4	90	.00
Soudure de l'aile d	du jarret				D'angle	7	7	190	14.6	77	.53
Soudure de l'âme	du jarrel	t à l'aile	inférieur	e	D'angle	- 7	7	1000	9.4	90	.00
Soudure de l'aile d	du jarret	à l'aile i	nférieure	2	D'angle	1	0	190	14.6	65	.11
a: Gorge utile 1: Longueur des soudures 1: Épaisseurs de matériau											
Contrôle de la résistance											
	Contrainte de Von M			Von Mis	es		Contra	inte nor	male		
Róf.	Réf. c. <u>t.</u> <u>t.</u> Valk (N/mm ²) (N/mm ²) (N/mm ²)		Valeur (N/mm²)	Taux de trav. (%)	a (a. N/mm²)	Taux de trav.		f_ (N/mm ²)	β	
Soudure de l'aile supérieure	0.0	0.0	0.0	0.0	0.00		0.0	0.00		360.0	0.80
Soudure de l'âme	0.0	0.0	0.0	0.0	0.00		0.0	0.0	00	360.0	0.80
Soudure de l'aile inférieure	0.0	0.0	0.0	0.0	0.00		0.0	0.0	0	360.0	0.80
Soudure de l'âme du jarret	0.0	0.0	0.0	0.0	0.00		0.0	0.0	00	360.0	0.80
Soudure de l'aile du jarret	0.0	0.0	0.0	0.0	0.00		0.0	0.0	00	360.0	0.80
Soudure de l'âme du jarret à l'aile inférieure	0.0	0.0	0.0	0.0	0.00		0.0	0.0	00	360.0	0.80
Soudure de l'aile du jarret à l'aile inférieure			La véri	fication	n'est pas i	réalis	sée.			360.0	0.80

Vérifications pour les vis

		Disposit	ions				
Tige d'ancrage	Dénomination	ds (mm)	e, (mm)	е, (mm)	p, (mn)	ps (mm)	m (mm)
1	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
2	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
3	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
4	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
5	EN 14399-3-M20x65-10.9-HR	22.0		65	96	89	40.0
6	EN 14399-3-M20x65-10.9-HR	22.0		65	96	89	40.0
7	EN 14399-3-M20x65-10.9-HR	22.0		65	96	89	40.0
8	EN 14399-3-M20x65-10.9-HR	22.0		65	96	89	40.0
9	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
10	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
11	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
12	EN 14399-3-M20x65-10.9-HR	22.0		65	175	89	40.0
	differentiate and a set of a links			-			

Résistance								
orage		Effort tr	anchant		. Max. (%)			
Tige d'ar	Vérification	Défavorable (kN)	Résistant (HI)	Taux de trav.	Taux de trav.			
1	Glissement	0.000	41.160	0.00	0.00			
2	Glissement	0.000	41.160	0.00	0.00			
3	Glissement	0.000	41.160	0.00	0.00			
-4	Glissement	0.000	41.160	0.00	0.00			
5	Glissement	0.000	41.160	0.00	0.00			
6	Glissement	0.000	41.160	0.00	0.00			
7	Glissement	0.000	41.160	0.00	0.00			
8	Glissement	0.000	41.160	0.00	0.00			
9	Glissement	0.000	41.160	0.00	0.00			
10	Glissement	0.000	41.160	0.00	0.00			
11	Glissement	0.000	41.160	0.00	0.00			
12	Glissement	0.000	41.160	0.00	0.00			

Verification	Unités	Défavorable	Résistant	Taux de trav. (%)
Relation entre les modes 1 et 3		0.94	1.80	52.32
Moment résistant	kNm	0.00	458.50	0.00
Capacité de rotation	mm	15.00	14.85	100.99

Vérifications

1) Poutre (a) IPE 450

- Platine frontale

Tronçon en T équivalent (NF EN 1993-1-8/NA:2007, 6.2.6.5)	
Doit être respecté:	
$\frac{F_{T,EH}}{F_{T,M}} \leq 1$	0.35≤1 √
où:	
F _{t.re} : Valeur de calcul de l'effort de traction	F.m : 87.15 kN
Ftma: Tension de résistance de conception d'une semelle de tronçon en T	Fr.m : 245.78 kN
Il convient que la résistance de calcul à la traction F _{tui} d'une semelle de tronçon en T soit prise égale à la plus petite des valeurs pour les trois modes de ruine possibles 1, 2 et 3.	6105-910 00000000 044
승규가 잘 알 수 있는 것은 것을 하는 것을 하는 것이 같아. 그는 것이 같아. 그는 것이 같아.	

La plus petite résistance a été obtenue dans la file: 1.

$$F_{T,M} = \min(F_{T,1,N0}, F_{T,2,N0}, F_{T,3,N0})$$
 $F_{T,N0} : 245.78 kN$

Rési	stance de calcul F _{un} d'une semelle de tronçon (en T. (Tableau 6.2)
	Des effets de leviers peuvent apparaître:	
Mode 1	$F_{T,1,MS} = \frac{4M_{\mu,1,MS}}{m}$	F _{t.1.41} : 332.22 kN
Mode 2	$F_{T,2,kel} = \frac{2M_{p(2,Nd} + n\sum F_{T,Nl}}{m+n}$	F _{1.2,m} : 245.78 kN
Mode 3	$F_{T,3Rd} = \sum F_{t,Rd}$	F _{t.LM} : 282.24 kN

où: .

Mode 1: Plastification totale de la semelle

Mode 2: Ruine de boulons avec plastification de la semelle

Mode 3: Ruine de boulons

$M_{\mu,t,ka} = 0.25 \sum l_{eff,t} \cdot t_{f}^{2} \cdot f_{\mu} / \gamma_{H0} \qquad \qquad$	į t	2.88	kN-m
$M_{pl,2,Rd} = 0.25 \sum l_{eff,2} \cdot t_r^2 \cdot f_v / \gamma_{H0} \qquad \qquad$	4	3.47	kN·m
ΣF_{une} : Valeur totale de F_{une} pour tous les boulons dans le tronçon			
en T SFex	e 2	282.24	kN
t: Épaisseur d'une semelle de tronçon en T	ł.	15.0	mm
m: Distance du centre du boulon à la ligne de plastification m	1 2	35	mm
n: Égal à e mais n ≤ 1,25·m r	۱.	43	mm
ΣI_{ets} : Somme des longueurs efficaces pour le mode 1 ΣI_{ets}	1.4	218	mm
$\Sigma I_{et,s}$: Somme des longueurs efficaces pour le mode 2 $\Sigma I_{et,s}$	r 1	263	mm
f,: Limite d'élasticité f	1	235.00	N/mm ²
γ _{ss} : Coefficient partiel pour la résistance des sections transversales γ _s		1.00	

= Aile

Compression dans le profilé base (Critère de CYPE, basé sur EN 1993-1-1:2005, 6.2)

Il convient que la valeur de calcul de l'effort de compression N_{ac} dans chaque section transversale satisfasse la condition suivante:

$\frac{N_{Ed}}{N_{c,red}} \leq 1,0$			0.29	≤ 1 √
où:				
N _{se} : Valeur de calcul de l'effort normal de compression	Ner	1	193.22	kN
N., w: Valeur de calcul de l'effort de compression	N.M.	: (667.49	kN
$N_{c,ed} = \frac{\mathbf{A} \cdot \mathbf{f}_{c}^{*}}{\gamma_{eq}}$				
A: Aire comprimée	A	÷	2840	mm²
f',: Limite d'élasticité réduite	$\mathbf{f}_{\mathbf{y}}$		235.00	N/mm²
$\mathbf{f}_{\mathbf{r}}^{\prime} = (1 - \boldsymbol{\rho}) \cdot \mathbf{f}_{\mathbf{r}}$		3=		
f _y : Limite d'élasticité o: Coefficient de réduction nour déterminer les valeurs de calcul.	f,	8 <u>1</u>	235.00	N/mm²
des résistances à la flexion réduites par la présence d'efforts				
tranchants.	p	8	0.000	
γ _{Ho} : Coefficient partiel pour la résistance des sections transversales	Yes.		1.00	

Réduction de la résistance de calcul par actions combinées

Lorsque l'effort tranchant est inférieur à la moitié de la résistance plastique au cisaillement, son effet sur le moment résistant peut être négligé

Traction (NF EN 1993-1-1/NA:2007, 6.2.3)

 Il convient que la valeur de calcul de l'effort de traction N_{er} dans chaque section transversale satisfasse la condition suivante:

$$\frac{N_{\text{Bd}}}{N_{\text{bal}}} \leq 1 \quad (6.5)$$

où:

N_{no}: Valeur de calcul de l'effort de traction

N_{um}: Valeurs de calcul de résistances à la traction

$$N_{1,2,0} = \frac{A \cdot E_{f}}{7 \mu_{0}}$$

f.: Limite d'élasticité

yes: Coefficient partiel pour la résistance des sections transversales f, : 235.00 N/mm²

Yes : 1.00

Ligne	Aire (mm²)	N _{ss} (kN)	N _{LM} (kN)	Taux de trav. (%)
Lignes extérieures	1421	22.49	333.82	6.74
Lignes intérieures	242			
Σ		22.49	333.82	6.74

- Âme

Résistance aux forces transversales (NP EN 1993-1-5/NA:2012, 6)	
Doit être respecté:	
$\frac{F_{Ed}}{F_{ed}} \le 1$	0.26 ≤ 1 √
où:	
F _{ac} : Valeur de conception de la force transversale.	F. : 96.48 kN
Fw: Résistance à la courbure locale due à des forces transversales	Fw : 375.26 kN
$F_{nd} = \frac{f_{nn} L_{nn} t_n}{\gamma_{nn}} $ (6.1)	
où:	
t.: Épaisseur de l'âme	t.: 9 mm
f _{ye} : Limite élastique de l'âme	f. : 235.00 N/mm2
L _{en} : Longueur efficace pour la résistance aux forces transversales, qui se dètermine avec	L _{er} : _170.00_mm
$L_{eff} = \gamma_F \ell_{\gamma} $ (6.2)	
où:	
I,: Longueur effective de charge	l, : 170 mm
χ ₂ : Facteur de réduction dû à la courbure locale.	χ₂ : <u>1.00</u>
Le facteur de réduction χ_r s'obtient avec:	
$\chi_r = \frac{0,5}{\lambda_r} \le 1,0 \tag{6.3}$	
où:	
$\overline{\lambda}_{\rm p} = \sqrt{\frac{\ell_{\rm v} t_{\rm w} f_{\rm yw}}{F_{\rm w}}} \tag{6.4}$	ž. : <u>0.43</u>
$F_{ar} = 0,9 k_{p} E \frac{t_{m}^{3}}{h_{w}}$ (6.5)	F. : <u>2271.34</u> kN
Pour les âmes sans raidisseurs longitudinaux, k s'obtient avec la Figure 6.1.	
$k_r = 6 + 2 \left(\frac{h_w}{a}\right)^2$	k , : <u>6.09</u>

La longueur effective de charge I, se calcule comme suit:

$\mathbf{m}_{\mathrm{t}} = \frac{\mathbf{f}_{\mathrm{ye}} \mathbf{b}_{\mathrm{t}}}{\mathbf{f}_{\mathrm{yw}} \mathbf{t}_{\mathrm{w}}}$		m,	ä.	20.21		
où:						
br: Largeur de la	semelle	b,	4	190.00	mm	
$m_2 = 0$ si $\overline{\lambda}_s \le 0.5$		m,	4	0.00	_	
l, s'obtient en utilisant:						
$\ell_{\gamma}=s_{\varepsilon}+2t_{r}\left(1+\sqrt{m_{i}+m_{2}}\right)$	mais l, s distance entre les raidisseurs transversaux adjacents. (6.10)	I,		170	m	

Traction (NF EN 1993-1-1/NA:2007, 6.2.3)

 Il convient que la valeur de calcul de l'effort de traction N_{st} dans chaque section transversale. satisfasse la condition suivante:

$\frac{N_{bd}}{N_{cRd}} \le 1 $ (6.5)	0.25 ≤ 1		s 1 🗸
où:			
N _{se} : Valeur de calcul de l'effort de traction	Nee :	67.05	kN
N _{use} : Valeurs de calcul de résistances à la traction	N _{s,nd} :	265.40	kN
$N_{L,NE} = \frac{A \cdot f_{\gamma}}{\gamma_{MD}}$			
A: Aire	A :	1129.00	mm ²
f,: Limite d'élasticité	f, :	235.00	N/mm ²
γ_{MG} : Coefficient partiel pour la résistance des sections transversales	Yes 1	1.00	

Annexe 02

1407240	0.04 x 2.30	1.40X 2.50	120X2.60	0.60/2.00	0.0010.00	2,200(1,20	0.70(1.20