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Abstract 
In this paper, a liquid-vapor lattice-Boltzmann program with 
an external force has been developed and used for the study of 
Stokes equations for a low Reynolds number multiphase flow 
in a periodic homogeneous two-dimensional porous media. 
The underlying theoretical model makes it possible to couple 
the state equation of a non-ideal fluid with the pressure tensor 
at the interface and uses the excess free-energy density 
formalism. The fluid properties can be prescribed in a 
thermodynamically consistent manner, which remains 
accurate at states close to the critical point. We have 
simulated some known two-phase flow configurations, like 
displacement of vapor by its liquid in homogeneous two-
dimensional porous media reconstructed by image treatment 
under the action of an external flow field. We present also 
results for the averaged velocity as a function of time iteration 
and the permeability of two dimensional porous media as a 
function of kinematic viscosity and mesh resolution. Our 
results confirm that the LBM scheme reproduces Darcy’s law 
through the analysis of the dependency of the permeability on 
the kinematic viscosity. 

Keywords:Porous Media; Low Reynolds; Lattice 
Boltzmann Method; multiphase flow; Darcy’s Law. 

 
 

1. Introduction 
 

The  lattice  Boltzmann  method  (LBM)  has  reached  an  
interesting  level  of development as an alternative and 
promising discrete numerical scheme for simulating fluid 
flows and modeling physics in fluids [1]. Lattice Boltzmann 
models are rather than new  numerical  techniques  aimed  at  
modeling  a  physical  system  in  terms  of  the dynamics of 
fictitious particles. The main idea of this approach is to model 
the physical reality  at  a  mesoscopic  level:  the  generic  
features  of  microscopic  processes  can  be expressed through 
simple rules, from which the desired macroscopic behavior 
emerges as  a  collective  effect  of  the  interactions  between  
the  elementary  components  [2, 3]. Because  no-slip 

boundaries are  easily implemented, the  lattice  Boltzmann 
equation (LBE) is emerging  as  an  effective  computational  
method  based  on  fundamental  physics  for simulating   
complex   flows   such   as   multiphase   and   multiple  
component   flows, particulate suspensions in fluid flows, and  
two-phase fluid flow through porous media [4-5-6]. 

Flow through porous media has been a topic of 
longstanding interests in many areas of science and 
engineering [7].  The  lattice  Boltzmann  discrete  numerical  
schemes  were found to be easily applied to fluid flows in 
different porous structures immediately after their elaboration, 
while recent applicationsare dealing with packed beds of fibers 
[8]. Previous numerical simulations, including finite difference 
schemes [9] and networking models [10], were either limited 
to simple physics, small geometry size, or both. Lattice gas 
automata (LGA) were also used to simulate porous flows and 
check Darcy’s law in simple and complicated geometries [11]. 
Succi & al. [12] used the LBM  to  measure  the  permeability 
in  3-D  random  media  Darcy’s  law  was  confirmed. Flows 
through sandstones measured using X-ray micro tomography 
were simulated by Buckles & al. [13], Soll & al. [14], and 
Ferréol & Rothman [15]. They found that the permeability for 
these sandstones, although showing large variation in space 
and flow directions, in general agreed well with experimental 
measurements within experimental uncertainty.  H.  Hidemitsu 
[16] also studied the effect of grid resolution on permeability. 
He found that the viscosity dependence decreases with the 
increase the grid resolution and the dependence of 
permeability on the grid resolution decreases as the viscosity 
decreases. This paper main objective is the simulation of a low 
Reynolds number two-phase flow in porous media, using a 
discrete numerical scheme.  The  method  is  based  on  the  
lattice  Boltzmann  approach  with  an external  force.  In  the  
first  section,  we  outline  the  essential  back-ground  of  the  
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LBM method  with  external  force.  Application to two 
dimensional porous media flow is detailed. 

2. Lattice Boltzmann method 
In the LB method, a typical volume element of fluid is 

described as a collection of particles that are represented in 
terms of a particle velocity distribution function at each point 
of space. The single particle distribution  

function,   defined for each lattice vector   
at each site x. Taking for simplicity a single-time relaxation 

approximation (BGK), the evolution of equation for a given  
takes the form [17]: 

 
Where  is the time step and τ  the relaxation parameter. 

 is an equilibrium distribution function. For a one 

component non-ideal fluid. The density  and the fluid 

momentum  are related to the distribution functions by: 

   

    

3. Free energy approach                                                                               

The higher moments of   must be chosen such that 
the resulting continuum equations correctly describe the 
hydrodynamics of nonideal, one-component fluid [18]. 
Defining the second moment as: 

 

Where  and represent a Cartesian coordinates and, as 
usual, a summation over repeated indices is assumed. 

The van der Walls fluid for nonideal system at a fixed 
temperature has the following free-energy functional within a 
gradient-squared approximation: 

 
The first term in the integral is the bulk free-energy density 

at a temperature T, which is given by: 

 

And the second term gives the free-energy contribution 
from density gradients in an inhomogeneous system and is 

related to the surface tension through the coefficient . To 
produce two-phase behavior, the pressure tensor must be 
generalized beyond the usual diagonal hydrostatic pressure 
tensor to include off-diagonal terms. The form used in these 
calculations is the Cahn-Hilliard pressure tensor which is 
related to the free energy in the usual way: 

 
With 

 

Where   is the equation of state 
of the fluid. 

The shear viscosity  is given by: 

 

Where  is the sound velocity. 

The Van Der Waals theory gives the following expression 
for the interfacial tension at a flat interface [19]: 

 
where z is the coordinate perpendicular to the interface. 

Applying the approximation done for the density near the 
critical temperature this expression becomes [20]: 

 
where D is a measure of the interface thickness. 

And the capillary number is given by [21]: 
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In Eqn. (13), is viscosity, subscript  represents the 

displacing fluid,  is the velocity of the displacing fluid, and  

 is the interfacial tension between fluids. 

4. Application of two dimensional flows in porous 
media 

The LBM method presented in the previous section takes 
the density and the velocity as independent variables. To 
simulate fluid flow in porous media, we use an LBM scheme 
for incompressible fluid, in which pressure and velocity are 
independent variables. This LBM   is   convenient   for   
confirming   the conservation   of   flow,   which,   for   an 
incompressible fluid, must be constant over a porous media 
[16]. One  fundamental  information  necessary  for  the  
understanding  of  such  a  flow  is  the relation between 
applied  pressure  gradient and the resulting fluid flux. In the 
limit of zero Reynolds number, the pressure-flux relation 
becomes linear, commonly known as Darcy’s law. This 
empirical based relation is shown to be valid by rigorous 
methods of homogenization and volume averaging [7, 22]. 
Permeability, as a fundamental physical quantity of a porous 
media, is defined using Darcy’s law [16], which takes the 
average values over this area: 

 

Where  is the fluid velocity,   is the average over the 

porous media,  represent the intrinsic permeability,  is 

the pressure gradient,  is the external force operating on 

the unit volume of the fluid and  the viscosity related to the 

kinematic viscosity through . 

For   the   purpose   of   numerical   calculations,   it   is   
convenient   to   introduce   the dimensionless permeability, 
which is related to the permeability of a square with side 

length  [16]: 

 

S.D.C. Walsh et al derive an analytical expression that 
relates the intrinsic permeability to the solid fraction [23]: 

 

Where  represent solid fraction and  represent the 
porosity of porous media. 

5. Results 

We implemented the lattice Boltzmann model for non-
ideal fluids to simulate two-phase flow in homogeneous two-
dimensional porous media reconstructed by image treatment. 
The two steps “stream and collide” algorithm [24] for a 
hexagonal lattice (D2Q7) is used to simulate lattice Boltzmann 

equation on  site lattices. 
The domain can be decomposed into unit cells of length L and 
only the content of such unit cell is displayed. The fluid 
chosen by Swift et al. [18] was selected for our study, which 

has as coefficients  

corresponding to a critical density , and a critical 

temperature throughout this work . No 
slip boundary conditions are imposed on the walls and 
periodic boundary conditions are imposed on the two domain 
ends, the parameter values are: 

. 

Fig.1 shows the variation of the average velocity over the 
porous media as a function of time iteration in the section of 
the media located at the position (x=Lx/2), the stationary 
regime was reached only after 500 simulation iterations. After 
this time the mode of flow is permanent what results in a 
constant average velocity at moment (t+1), this curve is a good 
indicator for the convergence of the results obtained.    

Fig. 2 shows treated image of a porous media. The dark is 
solid and the white is the pores [25] .The immiscible 
displacement of the vapor by liquid in reconstructed porous 
media is analyzed. This network consists of capillaries 
containing segments of variable cross sections with no 
preferential wetting as shown in Figure (3). A high capillary 

number  is reached during the flow 
which leads to a very efficient sweep [4, 26]. After 70000 time 
steps, the liquid traversed the totality of pores leaving some 
trapped vapor. For a complete sweep we need to run our 
program more than 200000 time steps. This type of simulation 
is useful to predict the flooding process in actual hydrocarbon 
fields with nonuniforme wettability [4].  

The variation of the dimensionless permeability 

values,  with the kinematic viscosity is obtained from 
Equations (13), (14) and (15). Changing the magnitude of the 
kinematic viscosity, we have calculated the dimensionless 

permeability and the results are given in Fig. 4. The 
problem wherein the permeability varies with the fluid 
viscosity has been investigated by H. Hidemitsu [16] and has 
been interpreted to originate from insufficient resolution of the 
underlying lattice of the LBM.  In order to confirm this 
interpretation, we increased the resolution by preparing a fine 
grid, in which we have two grid resolutions 
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and 
calculated the permeability using the fine grid. The results are 
shown in figure 4. We understand from this figure that the 
viscosity dependence decreases with the increase in the grid 
resolution, and the interpretation mentioned above is 
confirmed. In addition Fig. 4 indicates that the dependence of 
the permeability on the grid resolution decreases as the 
viscosity decreases, our results confirmed by an analytical 
solution [23] (Equations 16). As shown in Fig. 4, LBM 
method produces the correct result for this requirement for the 
calculated permeability.  

 

 

 

 

 

 

 

 
 

Fig.:1 Average axial velocity vs. time iteration  

 

 

 

 

 

 

 

 

 

Fig.:2 treated image of a porous media. The dark is solid and 

the white present the pores [26] 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.:3 vapor displacement by liquid in reconstructed porous 
media by image treatment. Blue color presents the solid (the 

dark color in Fig. 2) 

Figure 4: Dimensionless permeability vs. kinematic viscosity 
for two grid resolutions. (100*100)  and (170*170). 
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6. Conclusion 

We have developed an LBM with an external force for 
two-phase flow in homogeneous two-dimensional porous 
media reconstructed by image treatment. In which the 
independence variable are pressure and velocity. Using this 
LBM, we can impose the periodic boundary condition on the 
inlet and outlet of the flow driven by external force. This is an 
advantage of the LBM with an external force, because we can 
easily code the periodic boundary condition to be applicable to 
any velocity model, while the fluid mechanic   boundary must 
be prepared for each velocity model. The numerical study is 
extended to the estimate of the physical parameters 
characteristic of porous media, our results show the ability of 
LBM to calculate of the physical parameters correctly like the 
permeability. We have demonstrated the ability of LBM to 
predict a complexes phenomenon within a complex geometry.   
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