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Résumé

Dans ce travail, nous nous intéressons a I'étude des résultats sur l'existence et
I'unicité de certaines équations différentielles fractionnaires discréte avec
conditions aux limites dans les espaces de Banach. Pour cela, la technique
utilisée consiste a transformer notre probléme en recherche d'un point fixe
pour les équations intégrales. Les résultats obtenus sont liés au théoréme du
point fixe de Banach

Mots et expressions clés : équations différentielles fractionnaires discrete,
équations intégrales, point fixe.

Abstract

In this work, we are interested in studying results on existence and
uniqueness of some discrete fractional differential equations with boundary
conditions in Banach space. For this, the technique used is to transform our
problem in search of a fixed point for integral equations. The results obtained
are related to Banach's fixed-point theory,

Key words and phrases: Discrete fractional differential equations,, integral

equations, fixed point..
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Introduction

Fractional difference calculus is a tool used to explain many phenomena in physics,
control problems, modelling, chaotic dynamical systems, and various fields of engineer-
ing and applied mathematics. In this direction, different kinds of methods and tech-
niques, including numerical and analytical methods, have been utilized by researchers
to discuss given fractional discrete and continuous mathematical models and boundary
value problems (BVPs) [1, 2, B, 4]. For some recent developments on the existence,
uniqueness, and stability of solutions for fractional differential equations, see, for exam-
ple, [5 6 [7, &, @) 10 1T, 12, 13, 14, 15 16l 17, 18, 19, 20, 21, 22| 23] and the references

therein.

In this work, we discuss existence and uniqueness of solutions to the discrete fractional
equation that involves Caputo discrete derivatives with boundary condition, these results
are determined, by applying Banach?s fixed point theory.

This work is structured as follows. The first chapter contains some basic concepts in
addition to the notions of the topology discrete that play an important role in the difference

fractional calculus

The second chapter is devoted to concepts and characteristics of integrals and derivatives
related to the two most important approaches to fractional computation, the Riemann-
Liouville approach
In the final chapter, we will study existence and uniqueness of solutions to the following

discrete fractional equation that involves Caputo discrete derivative:
AN =2l +o-1Lx(E+0—-1), 2<0<3,

Ax(0—3)=0,x(0+T)=0,A%(0—3) =0,

(0.0.1)
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for £ €[0,T]n, =1[0,1,2,...,T], T € N, CAE is the Caputo difference operator and
®:o—3,0+T]n, , X R — R is continuous.
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Chapter 1

Topologie discrete

1.0.1 Topological space

This chapter will explore the concept of topologies and continuous functions, and We
will focus on discrete topology, which is a particular case of a topology useful in many

mathematics areas.

Definition 1.1 Let X be a set. A topology T on X is collection of subsets of X, each

called a open set such that
1- 0 and X are open sets.
2- The intersection of finitely many open sets is an open set.
3-The union of any collection of open sets is an open set.

The set X together with a topology T on X 1is called a topological space.

Definition 1.2 If X is a topological space and E C X, we say E is closed iff X — E is

open.

Definition 1.3 If X is a topological space and x € X, a neighbourhood of x is a set U

which contains an open set V' containing x.



Thus, euvidently, U 1is a neighbourhood of x iff x € U°. The collection U, of all neigh-

bourhoods of x is the neighbourhood system at x.

Theorem 1.4 The neighbourhood system U, at x in a topological space X has the following

properties:
1- If U e Uy, then x € U.
2-If U,V €U, then UNV € U,.
3- If U € Uy, then there is a V € U, such that U € U, for each y € V.
4-IfU €U, and U CV, then V € U,.

4- G C X 1is open iff G contains a neighbourhood of each of its points.

1.0.2 Continuous functions:

We provide a general definition of continuity for functions that map from one topological
space to another. This topological definition of continuity is very simple to state and, as

we will show, is equivalent to the ¢ — ¢ definition for functions that map R to R.

Definition 1.5 Let X and Y be topological spaces. A function f: X — Y is continuous
if 7YV is open in X for every open set V inY.

We call this the open set definition of continuity. Paraphrased, it states that f is

continuous if the preimage of every open set is open.

Theorem 1.6 Let X and Y be topological spaces and B be a basis for the topology on Y .
Then f: X — Y is continuous if and only if f~*(B) is open in X for every B € B.
Proof. Suppose f: X — Y is continuous. Then f~1(V) is open in X for every V open in
Y. Since every basis element B is open in'Y, it follows that f~(B) is open in X for all
B e B.



Now, suupose f~(B) is open in x for every B € B. We show that f is continuous. Let V

be an open set in'Y. Then V is a union of basis elements, say V = UB,. Thus,
V) = f7HUB) = Uf(Ba)

By assumption, each set f~'(Bg) is open in X ; therefore so is their union. Thus, f~1(V)
is open in x, and it follows that the preimage of every open set in'Y is open in X. Hence,

f 1s continuous. m

Example 1.7 Let X be a non-empty set and let T be the collection of all subsets of X.
Clearly this is a topology, since unions and intersections of subsets of x are themselves
subsets of X and therefore are in the collection T .

We call this the discrete topology on X. This is the largest topology that we can define
on X.

1.0.3 Metric space

Definition 1.8 Let X be a set and d: X x X — R be a function such that
1-d(z,y) > 0 for all x,y in X.
2- d(z,y) = 0 if and only if x = y.
3-d(z,y) = d(y, ).
4-d(z,z) = d(z,y) + d(y, 2) (triangle inequality).

Then the pair (X,d) is called a metric space. The function d is called the metric or some-

times the distance function.

Definition 1.9 Let a be a point in a metric space (X,d), and assume that r is a positive

real number. The open ball centred at a with radius r is the set

B(a;r) ={x € X :d(z,a) <r}

3



The closed ball centred at a with radius v is the set

B(a;r) ={x € X : d(z,a) <71}

If Ais a subset of X and x is a point in X, there are three possibilities:

1- There is a ball B(x;r) around x which is contained in A. In this case z is called an

interior point of A.

2- Ther is a ball B(x;r) around x which is contained in the complement A°. In this

case x is called an exterior point of A.

3- All balls B(z;r) around x contains points in A as well as points in the complements

A¢. In this case x is a boundary point of A.

Proposition 1.10 A subset A of a metric space X is open if and only if its complement
A€ s closed.

Proof. If A is open, it does not contain any of the boundary points. Hence they all belong
to A¢, and A° must be closed.

Conwversely, if A° is closed, it contains all boundary points, and hence A can not have any.

This means that A is open. m

Definition 1.11 Let E be a metric space, A a subset of E. One says that A is open if,
for each o € A, there exists an € > 0 such that every point x of E satisfying d(zo,z) < €
belongs to A.

Theorem 1.12 Let E be a metric space.

1- The subsets ¢ and E of E are open.

2- Every union of open subsets of E is open.

3- Every finite intersection of open subsets of E is open.



Definition 1.13 Let (X, d) be a metric space. Take x € X andr > 0. We define the open
ball (or simply ball) of radius r centred at x to be the set

B.(x)={ye X | d(z,y) <r}.

A ball centred at x € X is said to be the unit ball centred at x if r = 1.

A set N(x) is called a neighbourhood of v € X if there exists an v > 0 such that
B.(z) C N(2).

This seems fairly straight-forward. The open ball is just the set of all points in our space

within the specified distance r.

Example 1.14 Let X = R be the set of real numbers equipped with usual metric, i.e.
u:R xR —= RTU{0} is defined by u(z,y) = |v —y| Va,y €R.
Let’s take x =0 and r = 1, then by definition
b0;1) ={yeR:u(0,y) < 1}
={yeR:|0—y|l <1}

={yeR: [y <1}
={yeR:-1<y<1}

So, open ball with centre 0 and radius 1 is an open interval (—1,1) in R

Theorem 1.15 FEvery neighbourhood is an open set.

That is, for any metric space X, any p € X, and any r > 0, the set N,(p) (def:
N,.(p) :=q € X :d(p,q) <r), could fail to be open as a subset of X.

Proof. We must show that for any q € N,(p) there is an h > 0 such that Ny(q) C N,(p).
We claim that h = r — d(p, q) works.Indeed, h is positive by the definition of N,(p); and for
any s € Ny(q) we have s € N,.(p) because

d(p,s) Sd(p,CI)—i-d(q,s) < (r—h)+h:r

So Ny(q) is a subset of N,.(p) as desired. m

Example 1.16 1- The set of natural numbers

consider the set of natural numbers, denoted as N. We can define a discrete metric on this



set as follows:
- For any two distinct natural numbers m and n, the distance between them is d(m,n) = 1

The distance between a number and itself is zero,i.e., d(m,m) = 0.

2- The set of integers:
Similar to the previous example, we can define a discrete metric on the set of integers,
denoted as Z:
- For any two distinct integers m and n, the distance between them is d(m,n) = 1.

- The distance between an integer and itself is zero,i.e, d(m,m) = 0.

3-Finite sets:
Any finite set can be equipped with a discrete metric. For examples, consider the set
S ={a,b,c}. We can define the following metric:
- For any two distinct elements X and Y in [, the distance between them is d(x,y) = 1.

- The distance between an element and itself is zero; d(x,z) = 0.

4- Subsets of given set:
Let X be a set, and consider the power set of X, denoted as P(X), which is the set of all
subsets of X. We can define a discrete metric on P(X) as follows:
- For any two distinct subsets A and B in P(X), the distance between them is d(A, B) = 1.
- The distance between a subset and itself is zero,i.e., d(A, A) = 0.

These are just a few examples, but in general, any set can be turned into a discrete metric
space by defining the distance between distinct elements to be 1 and the distance between an

element and itself to be 0.

1.0.4 Topology discrete

The discrete topology is one of the simplest and most important examples of a topology.

It is defined as follows:

Definition 1.17 Let X be a set. The discrete topology on X is the topology Tys. consisting
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of all subsets of X.

Example 1.18 Consider the set X = {1,2,3}. The discrete topology on X is given by:

%iscrete = {@, {1}7 {2}7 {3}7 {17 2}7 {17 3}7 {2’ 3}7 {17 2, 3}}

In other words, every subset of X is considered an open set in the discrete topology. This
means that any subset of X can be a neighbourhood of any of its points. Intuitively, this
topology is as "fine” or "precise” as possible, because it allows us to distinguish between
all possible subsets of X. Another important feature of the discrete topology is that it is
always metrizable. In other words, there always exists a metric on the space that induces

the discrete topology. To see why, consider the following metric:

Definition 1.19 Let X be a set. The discrete metric on X 1is the function d : X x X — R
defined by
L
{ , e Fy, (10.1)

0, ifex=uy.
It is easy to see that this metric induces the discrete topology, because every singleton set
is an open ball in this metric. This means that the discrete topology is not only a useful
tool in its own right, but also a building block for constructing more complex topologies.
In summary, the discrete topology is a simple but powerful tool that allows us to consider
all possible subsets of a space as open sets. This topology is always metrizable, and can be

a useful starting point for constructing more complex topologies.

The discrete metric space is often denoted as (X, dgs.) or simply X when the metric
is clear from the context. It is the most basic example of a metric space and has several

important properties:

1. Every subset of a discrete metric space is an open set.
2. Every function defined on a discrete metric space is continuous.

3. The discrete metric space is complete, which means that every Cauchy sequence in

the space converges.



The discrete metric space is commonly used as a tool in analysis and topology to provide
simple counter examples and illustrate concepts. It is also foundational in studying discrete

mathematics and combinatorics.

1.0.5 Functions on the discrete topology

A function f : X — Y is continuous on the discrete topology if and only if it maps every
open set in X to an open set in Y. Since every subset of X is open in the discrete topology,

this condition is always satisfied, and every function on the discrete topology is continuous.

Example 1.20 Consider the set X = {a,b, c} with the discrete topology. Define a function
f: X —>Rby fla) =1, f(b) =2, and f(c) = 3. Since every subset of X is open, f is

continuous on the discrete topology.

Example 1.21 Consider any set X with the discrete topology. The identity function idy :

X — X is always continuous, since every subset of X is open.

Properties of functions on the discrete Topology:

Functions on the discrete topology have several important properties:

First, every function on the discrete topology is continuous, as we saw in the previous

section.

Second, every function on the discrete topology is uniformly continuous, meaning that
for any € > 0, there exists a § > 0 such that |f(z) — f(y)| < € whenever x and y are within
0 of each other.

This is because the discrete topology has no limit points, so there is no need to worry about

continuity at a point where the function is jumping.



Chapter 2

Difference calculus

2.1 Delta calculus:

2.1.1 Two important set:
1. For a € R, we define N, := {a,a+ 1,a + 2, ...}.

2. For a,b € R with a — b € ZT, we define N2 := {a,a + 1,a + 2,...}.

Definition 2.1 Let f : N> = R. Ifb— 1> a, then for t € N>=1. We define the forward
difference operator A by

(Af)@) = f(t+1) = f(¢)
Definition 2.2 Fort € N°=! the forward jump operator o is defined by o(t) =t + 1

Note:
For t € N°=1 the composition of f : N’ — R and ¢ is given by :

fo) = (foo)t)=flo(t)) = ft+1) = f7(t) = f(t+1)
2.1.2 Properities:
Let f,g: N’ = R and o, 3 € R.Then for t € N>~!
1. Aa=0

2. Aaf(t) = aAf(t)



3. Alf +4l(t) = (Af) () + (Ag)(D)

4. AP = (a — 1)at*?

5. Alfgl(t) = (Af)(B)g(t) + fa(t))(Ag)(t)
f

o sl - COOIO ORI 6y,

Note:
If b—a > n, then for t € N> we define:

(A"f)(t) = A(A™f) () n=1,23.

(A"f)(t) = f(t)

Definition 2.3 For n € N, we define the following function t™ by

n—1

= (= 1)(t—2)o(t—n+ 1) = H(t —j) = %

we have
o tY:=1
o [II5(t—j)=0 ift—j+1=0 for some j.

Note:

At? = nt"1 generalisation to r € R, we have

Lt+1
tﬂ'——(—'—) =1

T t—r4 1
If £t —r+11is a pole of Gamma function and ¢ 4 1 is not a pole, then t* = 0.
2.1.3 Properties:
For every r,c € R ;we have:
1. tt=t¢

10



2. rt ==L =T(r +1)

3. If t < s then for each r > s,we have t© < s*

4. If 0 < ¢ < 1, then ¢ > (t¥)°

5.ttt = (¢t —r)tt e = (t — ¢)"te
2.1.4 Generalized power rules
For every a,r € R ;we have:

L At+a)=rt+a) !

2. Ala—t)t=—r(a—o(t)) !

3. A(tr) = rtr=L

We know that when n > k£ > 0 are integers, then the binomial coefficient satisfies :

n\  nl _n(n—1)..(n—k+1) nk
( ) C(n—k)K k! T(k+1)

. _
2.1.5 Generalized binomial coefficient

()=

Properties:

g A(:) B (ril)
2 a(7) = ()

3. AT(t) = (t — D)I(¢)

11



2.2 Delta integral

Let f:N, > Rand ¢,d € N, ={a,a+ 1,a+2,...}.
Then

d S ) e<d
[ a2

c>d

2.2.1 Properties

Let f,g: N, >R, b,ceN,, b<c<dand a € R, then:

L [af(t)At = [, f(t)AL

2. fb At—fb At"’fb
3. fb f(OAt =
4. [TFAL= [CFOA+ [T ()

ot

|y AL < [ 1f ()] A

Definition 2.4 Let f : N — R.We say F is an antidifference of f on N° provided F(t) :=

fat f(s)As

AF(t) = f(t) teN!

2.3 Discrete delta fractional calculus

2.3.1 Fractional sum

Definition 2.5 Let « > 0 and f : N, — R. Then the fractional sum of the function f (
based at a ) is defined by A= : C(N,,R) = C(Ngiq, R)
1 t—a+1
A0 = o [ o) as

1 <8 oy
= mZ(t—U(S))f (5)

sS=a

For eacht € Nyyo and o(t) =t + 1.

12



o Ifn—1<a<n, then one can extend the domain of A;*f on Nyja—n.

Note:
Let @« = m € N. Then m-th fractional sum of the function f : Ny - R  (based at 0) is
defined by

A" f = ZO (t;f__ll)f(s), tENy,

Proposition 2.6 A, *f(t) |i=ara= f(a)

Proof.
1 ata—a
AL () limata = ) 2 (a+a—o(s)* " f(s)
1 a—1
= (o —o@) T fa)
1 a—1
= P(a)(a—i-oz—a—l) f(a)
1 a—1
= m(a 1) f(a)
(o)
= mf(a)
= f(a)
n
Note:
Let t € N,.Then
—o(s))e _g)atl
L. f (tl"(ag-i)) As = _(i"(a)—ﬂ) tc
(t=s)2y _  (t—o(s))>=L (t—s—1)2=L
2 8s(tan) =~ T@ = Tt

Proposition 2.7 Let f : N, = R and o, 8 > 0. Then for every t € Nyjqtp we have:

ACAP () = AN F () = A D £ (1)

a

13



If f :Ng — R and m,n € N, then fort € Ny, we have

AAT(E) = ALATT () = AT f(1)

Lemma 2.8 Let o > 0 and f € R—{—1,-2,-3,...}. Then for everyt € Nyyo1p, we have

—« o B _ p—a(y a+pB __ F(6+1) . B+a
Aa-’-ﬁ(t a),_ﬁ (t CL) AL F(ﬁ—f—l—f—(){)(t a)i

Note:
Let o, 5 > 0 .Then

Dom(A,*f) =Nura . Dom(A;%A,°f = Novgra)

Now, we can define the fractional difference in terms of the fractional sum .

2.4 Fractional Difference

2.4.1 Riemann-Liouville fractional difference

Definition 2.9 Let f : N, — R and o > 0 such that n — 1 < a < n. Then the a-th
Riemann-Liouville fractional difference of the function f (based at 0) is defined by

ATF(t) == AN f() . 1€ Ngpn-a
Note that for any a = n, A f(t) = A"f(t) .

Definition 2.10 Let f : N, = R and a > 0 withn — 1 < a <n. Then fort € Ny, _q;

trat1 (t—o(s))=2 B .
A F(t) = o Ty /@As n-l<as<
ATf(t) a=n

or

14



where o(t) =t +1

Lemma 2.11 Leta >0 and f € R —{—1,-2,-3,...}. Then for every t € Notgim—a, we

have

B—a __ F(ﬁ + 1)

a —_ a8 = e+ —
a+6(t a),_ﬁ (t (l) _F(6+1—a)

(t —a)==

2.4.2 Properties
Let f: N, > R,aa>0withn —1<a<nThen (0 <k < a)
L AMAZf)() = (A f)(t) € Nara
2. AMAZHE) = (A N)(E) 1€ Nayna
3. AL (A1) = (AT .t €Natgina
Remark 2.12 Let f:N, > R , n—1<a<nandm—1< 8 <m. Then
1. Dom(AYf) = Notn—q
2. Dom(A%, 5077 F) = Nutsin—a
3. Dom(A;fm—ﬁAgf) = Notm—p+a

4 Dom(Ag+m—ﬁAgf) = Notm—pg+n—a

Theorem 2.13 Let f: N, = R and a > 0 withn —1 < a < n. Then for any constant a,
the general solution of the fractional difference equation A% U(t) =0 is given by

ata—n

Ut) = c(t—a)* L4yt —a)> =2+ ...+ cy(t — a)2=2, t € Noran

where ¢y, co, ..., c, € R are arbitrary.

15



2.4.3 Caputo fractional difference

Definition 2.14 Let f : N, - R and o > 0 withn —1 < a < n. Then the o — th
caputo fractional difference of the function f (based at a) is defined by A% : C(N,,R) —
C<Na+(nfa)a R)

; =)y n—a-1An _
A F(E) = A= AR p(p) = d T —a) om0~ OEPERAN () n—1 <<

Amf(1) a=n

for anyt € Nyyp_o, and o(t) =t +1

Theorem 2.15 Let o > 0 withn —1 < o < n. Then the general solution of the Caputo
difference equation AU (t) = f(t) is given by

Ut)y=A"f(t)+cotat—a)+ct—a)P+.. +cpi(t —a)

where ¢y, 1, Ca, ..., Crnq € R.

2.4.4 Some important relations

—Q a— —« a— r 1 o
L. Zizo(t —o(s)) == Zi:o(t —s—1)*t= aF(?EiZJ)rl) - ét*

o

T oa— I'(TH+a+1 o
DT +Ha—s—1)=t = CEF(JFT:U) - é(T"‘ a)s

T+1 a— I'(TH+a+1 a—
3. Y (T+a—s—1)72 = 2l — (T + q)e=t

T42 a—3 _ TI'T+a+l) _ 1 a—2
4 Y (T+a—s—1)== (@—2)[(T+3) — (a-2) (T + a)*=

T-1 a— I'T+a« I'T4a)-I'()I'(T+1
d. Zs:(] (T+a—-s-2) 2= (a£1) (F((TL)) - P(O‘)) = Erazl)F((72+(1)+ )

16



a [TO) T{-a+1)

_ -1[M(@)  T(+1) }
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Chapter 3

The existence and uniqueness of
solution for the discrete fractional
problem

In 2020, Selvam et al. [33] proved the existence of a solution to a discrete fractional

difference equation formulated as

A =P(E+o0—1,x(E+0-1), 1<0<2,

Ax(o—2) = M, X(e+T) = M,

(3.0.1)

for £ € [0, Ty, =10,1,2,..., T, TeN,n€o—1,T+ 00— 1]y, ,, My and M, constants,
®: [0—2, 0+T]y,_, xR — R continuous, and where CAE denotes the pth-Caputo difference.
Here, motivated by the discrete model , we shall consider two generalized discrete
problems.

Our first goal consists to study existence and uniqueness of solutions to the following

discrete fractional equation that involves Caputo discrete derivatives:

A =B(E+o-1x(E+0—1), 2<0<3,

Ax(0—3)=0,x(0+T)=0,A%(0—3) =0,

(3.0.2)

for £ € [0,T]n, = [0,1,2,...,7], T € N, CA? is the Caputo difference operator and & :
lo—3,0+ Ty, x R — R is continuous.

18



3.1 Integral equation

Lemma 3.1 Let 2 < o < 3 and ® : [o— 3,0+ Tln,_, — R. A function x(§) (§ €
l0—=3,0+T)n,_,) that satisfies the discrete FBVP

{CAE’X(f) =P +o0-1), 2<0<3, L)
Ax(e—3)=0,x(e+T)=0,A%(0—3) =0,
s given by
:L):g 91)<I>(l+g—1—LzT:Q+T p(1) @ VD + 0 —1)
(o) = () 1=
(3.1.2)

Proof. Let x(§) be a solution to (3.1.1)). Applying Lemma ?? and Definition ??, we find
that

J‘r\,

—0

x(§) = (&= p() e VD(I 4 0 — 1) + Co + C1&W + C2¢®, (3.1.3)

( ) 4
for £ € [0 — 3,0+ Tn,_,, where Cy,Cy,Cy € R. By using the difference of order 1 for
(13.1.3), we have

Il
o

E—o+1
AX(E) = Ty D (6= pD) P01+ 0= 1)+ Cy -+ 2060,
=0
and 1 e oto
A*x(€) = o9 D (E=p) D1+ 0—1)+ 20,

Now, from conditions Ax(¢ — 3) = 0 and A?x(p — 3) = 0, we obtain that

Cl = 0,
Cy=0
Therefore,
1 §—o
X(€) = (o) (& —p(1)eDD(I+ 0 — 1) + Cy, (3.1.4)
l
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for £ € [0 — 3,0+ T]n,_,- The other condition of (3.1.1)) gives

T
1
(77+B——F(QZQ+T p(1) @ VB(l + 0 — 1)+ Co = 0.
1=0
We have
oz
COI—WZQ‘FT p(D) VDI + 0 - 1),

=0

one obtains 2|) by substituting the value of Cy into [ ]

Now, let us consider the operator H : C(N,_3 pi7, R) = C(N,_3 ,4+7, R) defined by

‘ -
M
fQ

(5 p() e VO +o—1,x(I+0-1)) (3.1.5)

(HX)(&) =

=

0) 4

(0+T —p) e Vo(l+0—1,x(1+0—1))

5|
_
M-

(0) 4

I
=)

3.2 Existence and uniqueness of solutions

In this section, we prove the existence and uniqueness of solution for the Caputo discrete
fractional problem (3.0.2)). To accomplish this, we denote by C(N,_3 ,+7,R) the collection

of all continuous functions y with the norm

[l = max{[x(£)] : € € Nos o4}

Theorem 3.2 Assume that function ® satisfies

[D(&,x1) — P(&, x2)| < Kx1 — xal,

where K > 0,Y¢ € Ny_3 47 and x1, X2 € C(Ny_3 17, R). The discrete FBVP has

a unique solution on C(N,_3 ,+7,R) provided

F'lo+T+1) 1
T(o+ )I(T+1) ~ 2K (82.1)

IN
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Proof. Let x1,x2 € C(Ny_3 o417, R). Then, for each £ € N, 3,7, we have

-0
[(Hxa)(€) = (Hx2) (¢ ﬁZg o(1))@D

x [@(l+o0—1xi(l+0—1)) = ®(l+0—1,x2(l+0—1))|

L L
I'(o) 4

[M] =

(0+T —p(1))e?

I
o

x [@(+o0—1,xi(l+0—1)) =l +0—1,x2(l+0—1))|.

It follows that
B §—o
I - (@) < 22 S oy

Klxi — xoll < -1
Ko 2l $ g 7= piye

=0

+

Klxi— x| T(o+T+1)
I'(o) ol'(T + 1)

Kllx1 — x| T(e+T +1)
['(o) ol'(T +1)

_l_

Flo+T+1)

<2K — .
< 2K ol

From (3.2.1]), we conclude that H is a contraction. Then, by the Banach contraction
principle, the discrete problem (3.1.1)) has a unique solution on C(N,_3 ,.7,R). =

3.3 Example
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