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Abstract— In this paper, we propose an adaptive non-coherent 
serial pseudo-noise (PN) acquisition scheme for code division 
multiple access (CDMA) communication systems.  Acquisition 
systems based on a fixed threshold may not be able to adapt to 
varying mobile communication environments leading to a high 
false alarm rate and/or a low detection probability.  
Accordingly, an adaptively varying threshold scheme based on 
artificial neural networks, namely the artificial neural 
networks constant false alarm rate (ANN−CFAR) algorithm 
for the serial system under consideration to improve the 
detection performance. The performance of the proposed 
system in terms of probability of detection, false alarm rate and 
mean acquisition time in a nonhomogenous Rayleigh fading 
channel is studied and compared  with those of the 
conventional adaptive acquisition scheme based on CA-CFAR 
and OS-CFAR detectors. 
    Key-Words— serial acquisition; PN sequences; CDMA; CFAR; 
Rayleigh fading channel; ANNs. 

I. INTRODUCTION 

seudo-noise (PN) code synchronization is an essential 
task in CDMA mobile communication systems because 

data transmission is possible only after the spread spectrum 
receiver accurately synchronizes the locally generated PN 
code with the incoming PN one [1]. This synchronization is 
usually achieved in two basic steps: acquisition and 
tracking. The first step achieves coarse alignment within 
some fraction of one code chip interval between the two PN 
codes; while the second achieves finer alignment. In this 
paper, we consider the code acquisition problem [2].  

Acquisition methods can be classified as serial search 
methods and parallel search ones, which have been 
extensively treated in the literature [3].  In a serial search 
scheme [2], each possible code phase of a given position in 
the uncertainty region is tested one at a time, while in a 
parallel search strategy [4], many, if not all, of the possible 
code phases are tested simultaneously.  The focus of this 
paper is on serial search acquisition because of its hardware 
simplicity. 

To communicate with code-division multiple-access 
(CDMA), a pseudo-noise (PN) code acquisition should be 
performed first.  In conventional systems, only the structure 
of the acquisition system is changed to gain better 

performances.  Since, the received signal levels are 
unknown and location varying, good acquisition 
performance of a PN sequence may not be achieved if a 
fixed threshold is employed.  These facts suggest the use of 
adaptive signal processing techniques employing an 
adaptive detection threshold, which should be determined in 
accordance with the local situation [5,6]. 

Many constant false alarm rate (CFAR) processors used in 
radar systems have been also applied in code acquisition 
problems for estimating the variance of noise in DS/CDMA 
systems; namely, the cell averaging (CA) and the ordered-
statistics (OS).  The CA-CFAR processor is an optimum 
CFAR processor in homogenous environments [7].  Yet, the 
assumption of homogenous environment is no longer valid 
when the number of users changes abruptly (presence of 
multiple-access interference) and/or there is fading.  In such 
situations, the performance of the CA-CFAR processor is 
seriously degraded [8].  Various classes of CFAR techniques 
have been proposed to enhance the robustness against 
nonhomogeneous environment for different applications [8].  
In particular, OS based CFAR detectors proved to give good 
performance in the presence of MAI (Multiple Access 
Interference).  The OS-CFAR detector was first proposed in 
[ ], in which an appropriate reference cell is used to estimate 
the background noise power level.  The OS-CFAR detector 
has a small additional detection loss over the CA-CFAR 
detector in homogeneous backgrounds but can resolve 
closely spaced interferences.  However, it requires a longer 
processing time than the CA-CFAR detector [9].  

In fact, we need a detector that can give butter 
performance in nonhomogenous background, it must adapt 
with sever environment cases, that is characterized by 
presence of MAI (Multiple Access Interferences) and multi-
path problem (Rayleigh fading), and make the best decision 
in small processing time. Several factors motivate us to 
apply Artificial Neural Networks (ANN) as a CFAR 
detector. Also, the random structure of MAI and nonlinear 
decision formed by an optimal detector in CDMA can be 
realized by ANNs. 

This paper is organized as follows: Section 2 describes the 
acquisition scheme. Section 3 presents expressions for 
deriving detection and false alarm probabilities for CA and 
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OS-CFAR detectors in Rayleigh fading channel. We also 
explain the neural network CFAR detector used in our study. 
The mean acquisition time expression is also given in this 
section. Simulation results for the proposed system are given 
in Section 4 along with comparison to conventional CA and 
OS-CFAR detectors.  Finally, we conclude this work with 
conclusions and some future works. 

II. SYSTEM DESCRIPTION   

The system under consideration is a single dwell serial 
search scheme with a noncoherent detection as shown in 
Fig.1.  

This system consists of a single adaptive detector (AD) 
with a correlation tap size N.  The AD consists of two 
blocks: the first block is the conventional noncoherent 
matched filter (MF) detector as shown in Fig.2.  The second 
bloc illustrates the adaptive CFAR operation of the decision 
process. Fig.3 illustrates the overall operation in some 
details. The received PN signal plus noise and any 
interference are arriving at the input of the adaptive detector.  
If the AD declares that the present cell is the correct one, the 
tracking loop is activated, and the relative time delay of the 
local PN signal is retarded by TC, where TC is the chip 
time, to examine the next cell.  The whole testing procedure 
is repeated.  Usually the value of  is 0.25, 0.5 or 1.  In our 
case,  is set to 1.  On the other hand, if the AD declares that 
the present cell is the noncorrect one, the phases of the two 
codes (incoming and local) are automatically adjusted to the 
next offset position and the test is repeated. 

For the adaptive operation of the decision processor, the 
constant false alarm rate (CFAR) is used.  The threshold 
value of the comparator in the AD is adapted in accordance 
with the magnitude  of   the incoming  signals.  Accordingly,  

 

 

 

 
 
 
 
 
 
Fig.1.  Adaptive serial search acquisition scheme. 

 
Fig.2.  I-Q noncoherent matched filter. 

 

Fig.3.  Bloc diagram of the adaptive detector. 

the outputs of the correlator are sent serially into a shift 
register of length M+1.  The first register, denoted as Y, 
stores the output of the test phase.  The following M 
registers, denoted by Zj, j = 1, 2, …, M, and called reference 
window, store the output of the previous M phases.  Using 
the suitable algorithm CFAR, the system can estimate the 
background noise power level X of the incoming signals. 
The value X is scaled by T, where T is set according to the 
desired false alarm rate from the algorithm CFAR used by 
the AD.  Therefore, the adaptive threshold value of the 
adaptive detector is TX. 

III. SYSTEM ANALYSIS 

In the derivation of the detection and false alarm 
probabilities for a typical Rayleigh fading channel, the 
following assumptions are made [7]: (i)There is one samples 
corresponding to the correct phase (one H1 cell) , (ii)All 
samples are independent, (iii)The correlation tap size N >> 1 
is selected so that the correlation of the received sequence 
and the local code is about zero when they are not in phase 
(H0 cell), (vi)The self noise of the desired signal due to 
multipath transmission and due to MAI inflected by the (U-
1) data transmission users can be modeled by AWGN. 

The communication system under consideration consists of 
U simultaneous transmitters, which includes (U-1) data 
transmission users (who have finished acquisition) and one 
initial synchronization user (whose PN sequence is being 
acquired by the base station).  We assume that the first user 
is the initial synchronization user, whose performance to be 
evaluated.  Each user is assigned a unique CDMA sequence, 
which spreads the data sequence.  The received signal can 
then be written as 
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where,k is the relative time delay associated with an 
asynchronous transmission scheme, 

)(2 ckcklklkl lTf  , which are modeled as 

independent and identically distributed (i.i.d.) random 
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variables uniformly distributed in [0, 2], while n(t) 
represents the AWGN with a double sided power spectral 
density of N0/2.  Note that, since the (U-1) interfering users 
are in the data transmission process, we assume that their 
signals are ideally power controlled and the average 
received power from each interfering signal expressed as PI.  
The average received power at the base station from the 
initial synchronization user power is expressed as PR. 

A widely accepted model for a frequency-selective 
multipath fading channel is a finite-length tapped delay line 
with a tap spacing of one chip, for the kth signal, where the L 
tap weights {ki} are assumed to be i.i.d. Rayleigh random 
variables with a probability density function (pdf) given by 
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where, 22 2][  kiE .  In [9], they have derived the statistics 

for cell-by-cell detection of the matched filter correlator’s 
outputs, YI and YQ for inphase branch and quadrature branch, 
respectively, which are approximately Gaussian random 
processes.  Hence, for the conventional detection, the 

decision variable 22
1 QI YYY   represents either an H1 state 

or an H0 state.  Given the Gaussian nature of YI and YQ, and 
assuming that Y1 constitutes an H1 sample, the pdf of  Y1 for 
the given 1l is the chi-square distribution with two degrees 
of freedom, which can be expressed as 
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RI PP / , 222 2][  klE and 0NTP cRc   represents 

the signal-to-noise ratio per chip that is SNR/chip.  )(0 I  is 

the modified Bessel function of the first kind with zero order 
and m is the normalized non-central metric given by [9]  
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When Y1 constitutes a H0 sample, Y1 is a central chi-square 
distribution and its pdf can be expressed as 
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Let 2
01 / YY  be the normalized output of the correlator. 

It can be shown that Y becomes chi-square distributed with 
two degrees of freedom; its pdf can be expressed as  
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where,   lSmS 10
2
0

2 . , with 2S  being the 

conditional energy-to-noise ratio per path over the N-chip 
integration dwell-time conditioned on the instantaneous 
fading parameter  l1 , and 0S  is expressed as 
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After absorbing the random variable S, )|( 1HyfY  

becomes 
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where, 2
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A.  CA-CFAR detector 

With CA-CFAR processor, the output CAX  is the 

summation of the values in the reference window and is 
given by 
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The values in the window are summed and scaled by T, 
where T is set according to the desired false alarm 
probability.  Therefore, the adaptive threshold value of an 
AD is TX.  Since the reference signals in the window cells 
can be assumed to be noise signals (H0 cells) [7], the pdf of 
values Zj in the windows cells is the same as the H0 
distribution.  Also the pdf of H0 cells can be written as an 
independent distribution of )2,1(G , where ),( G is the 

Gamma distribution.  Hence, the pdf of Zj is  
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where )(  is the gamma function.  

With CA-CFAR, the probability of false alarm is given by 
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The probability of detection is obtained directly from the 
probability of false alarm of the equation (15), by replacing 
T by  1T . 
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B. OS-CFAR detector 

In this case, the input to M reference cells, are stored in an 
increasing order 
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where,  kz  denotes the magnitude of the kth smallest 

samples.  The threshold is obtained by selecting the kth 
ranked cell to represent the noise and interference level, and 
then multiplying the input to that cell by a scalar factor T. 
Let Mkzk ,...,2,1,,  , be a sequence of statistically i. i. d. 

random variables.  The pdf of the kth value of the ordered 
statistics is given by [10] 
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The probability of false alarm of the OS-CFAR detector is 
calculated using equations (14), (18) and (10), it is given by 
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The probability of detection is determined from equation 
(19), by replacing T by  1T . 

C. ANN-CFAR Detector 

The artificial neural networks are constructed with neurons 
that connected to the each other. Each connection has a 
weight factor and these weights are adjusted in a training 
process. There are many types of neural networks for 
various applications in the literature [11]. A commonly used 
one is the multilayered perceptrons (MLPs).  

Multilayered perceptrons (MLPs) are the simplest and 
therefore most commonly used neural network architectures. 
MLPs consist of input, hidden and output layers and they 
have feedforward connections between neurons. Neurons in 
the input layer only distribute the input signals to neurons in 
hidden layers by using various activation functions [12]. 

Weights are changed with various learning algorithm for 
getting proper output. A typical MLP structure is shown in 
Fig. 4. The mostly used training algorithm is the back-
propagation (BP) algorithm. 

The back propagation learning algorithm is composed of 
forward propagation and back propagation. Forward 
propagation is the input signal transmitted to output layer via 
hidden layers. If the output layer gets the desired output, the 
learning algorithm ends. Otherwise, the back propagation is 
then realized. The back propagation reversely calculates the 

errors (the differences between desired outputs and network 
outputs), then the weights and thresholds of every layer are 
adjusted by the gradient descent method. Finally, the errors 
are decreased. The back propagation algorithm is popular in 
a variety of engineering problems [13]. 

 
Fig. 4.  Structure of the MLP artificial neural network. 

 Procedure to Dimension the ANN-CFAR Detector: The 
ANN-CFAR detector can be controlled by two parameters, 
which define the dimension of the MLP. The first one is the 
number of selected cells or number of MLP inputs (number 
of reference cells) denoted as M. The second one is the 
number of hidden layers and its number of neurons, denoted 
as Hi (i is the number of hidden layers). Both parameters 
must be optimized at the same time because the optimal 
solution can give us the butter detector. This procedure is 
divided in the following steps. 
Step 1: Select a desired PFA, and a set of values of M and Hi 

for this study. 
Step 2: Train the MLP with randomly initialized weights. 

Choose the best trained MLP in terms of the highest 
PD for the desired PFA. 

Step 3: Repeat the first and the second steps for all the M–Hi 
pairs. 

Step 4: Finally, once we found the best ANN-CFAR 
detector for each M–Hi pair, we are in conditions of 
selecting the best M–Hi combination, considering the 
highest PD for the desired PFA. 

D.  Mean Acquisition Time 

The mean acquisition time is given by [14] 
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IV. SIMULATION RESULTS 

To study the performance of the proposed adaptive system, 
the probabilities of detection and false alarm, and mean 
acquisition time are determined with various parameters.  
We assume a Rayleigh fading channel, a chip time 10-6sec, a 
PN sequence of length 1023 and the penalty time 1000K . 

To produce the ANN-CFAR detector, we generated a 
training base of 1320 samples having an exponential 
distribution in homogeneous and nonhomogeneous 
environment, for several values of SNR/chip, several values 
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of interfering cells with various powers. After several tests, 
we observed that the best number of input is M+1, with 
M=32. The number of neurons of hidden layers is 17 for one 
hidden layer network, 19 and 8 respectively, for two hidden 
layers network.  The output layer contains only one neuron, 
because we need a decision about the presence (or the 
absence) of the desired signal. The simulation base of the 
false alarm probability contains 104 samples. 

The first part of results shows the influence of the 
following parameters on the convergence of our network: 
the number of hidden neurons, the training rate and the 
number of iterations. According to simulation results, shown 
by figures 5, 6 and 7, we demonstrate that increasing the 
number of hidden neurons, the training rate and the number 
of iteration can minimize the mean square error (MSE) and 
make the convergence of the network faster. For butter 
performance, the value of the MSE should not be lower 

than 210  to avoid the overfitting problem. In figure 8, we 
demonstrate how we can fix the false alarm rate using the 
threshold of the output neuron. 

In tab.1, we give threshold values of CA, OS and ANN-
CFAR detectors for different values of desired probability of 
false alarm. We can see in table 2 that, we can regulate the 
probability of false alarm using ANN-CFAR algorithm in 
good manner comparing to CA and OS-CFAR algorithms.   

 
Fig. 5. Mean square error versus the number of iterations for 

2.0 , and different numbers of hidden neurons. 

 
Fig. 6. Mean square error versus the number of iterations for 
11 hidden neurons, and different values of training rate. 

 

 
Fig. 7. Mean square error versus the number of iterations for 
11 hidden neurons and 2.0 . 

 
Fig. 8. Probability of false alarm versus the threshold of the 
output neuron.  

Tab.1. Thresholds of different CFAR algorithms for 
different values of PFA. 

 

Tab.2. The variation of PFA around the desired values for 
different CFAR algorithm. 

 

It is clear that the interval of the probability of false alarm 
variation of ANN-CFAR detectors is small comparing to the 
other algorithms in almost of cases. 



           The INTERNATIONAL CONFERENCE ON ELECTRONICS 

& OIL: FROM THEORY TO APPLICATIONS 
March 05-06, 2013, Ouargla, Algeria 

 

 

In figure 9, we need to demonstrate that we can 
approximately regulate the probability of false alarm around 
a desired value, for different situations, using ANN-CFAR 
algorithm.  

We show in figures 10 and 11, the performance of the 
proposed ANN-CFAR detector.  

 
Fig.9. Simulation of the probability of false alarm versus the 
number of iterations.  

 

Fig.10. Probability of detection versus SNR/Chip for 

32M , 310FAP , different power in the tow interfering 

cells, using two hidden layers network. 

 

Fig.11. Mean acquisition time versus SNR/Chip for 

32M , 310FAP , different power in the tow interfering 

cells, using two hidden layers network. 

It is clear that the probability of detection of this detector 
outperform CA and OS-CFAR detectors, in nonhomogenous 
situation that is characterized by the presence of random 
power interferences. The same remarks can given for the 
mean acquisition time.    

V. CONCLUSION 

In this paper, we analyzed the backpropagation artificial 
neural network performance, for the detection of DS/CDMA 
signals in nonhomogenous Rayleigh fading channels. We 
compare the performance of the ANN-CFAR detector with 
the CA-CFAR and OS-CFAR detectors. The results showed 
that the artificial neural network is a good solution to solve 
the problem of detection in the presence of multiple access 
interferences. Using this algorithm, we can regulate the 
probability of false alarm; we can ameliorate the probability 
of detection and the mean acquisition time.  
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