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Notations
Rn : n-dimensional real vector.

N : The set of natural numbers.

R : The set of real numbers.

Rn,R+,Rp,Rm,Rj , D : All parts of Rn.

P.D : Positive definite.

µ : Control parameter.

F : Recurrence function.

Xk : Instant state vector.

x∗ : Fixed point.

T : Finite set of linearly independent real numbers.

A : Open set of Rn.

λi : Proper value.

V : Lyapunov function.

|.| : Absolute value.

‖ . ‖: The euclidean norm.

φ(t, x) : Semi flow of dynamical system.

Ẋ : Derivable from X .

xe : Equilibrium point.

δ, λ, c, γ, η : Positive constants.

G.A.S : Globally asymptotically stable.

L.A.S : Locally asymptotically stable.

W (x) : Positive definite function.

∂V
∂x : The jacobian matrix.

∂V : The boundary of a set V .

S : Set {x ∈ D|V̇ (x) = 0}.

A(t) : State matrix n× n.

B(t) : Control matrix n×m.

h : Continous function.

L+(x) : The ω − limit set of x.
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Bε : The ball {x ∈ Rn , ‖ x ‖≤ δ}.

ν : Non empty neighborhood of the origin in Rn.

Γ : Set {x ∈ D , V ′(x) = 0}.

Ωc : Set {x ∈ Rn , V (x) ≤ c}.

C0(Rn,R+) : Set of continous functions of Rn in R+.

G : Set {x ∈ Rn : V (g(x))− V (x) = 0}.

G∗ : Largest positively invariant.

Bδ : ball {x ∈ Rn : ‖ x ‖≤ ε}.

AG∗ : Domain of attractivity relative to G∗.

∆V : The distance.

g(xk, µ) : Universal controller function.
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Introduction

The theory of dynamical systems may [1] be said to have begun as a special topic in the theory of ordinary diffeerential
equations with the pioneering work of Henri Poincar in the late 19th century. Poincar followed by Bendixson,
studied topological properties of solutions of autonomous ordinary differential equations in the plane. The Poincaré-
Bendixson theory is now a standard topic of discussion in courses on ordinary differential equations.
Almost simultaneously with Poincar, A.M.Liapunov developed his theory of stability of a motion (solution) for a
system of n first order ordinary differential equations. He defined in a precise form the concept of stability, asymptotic
stability, and instability; and gave a " method " (the second or direct method of liapunov). For the analysis of the stability
properties of a given solution of an ordinary differential equation. Both his definition and his " method " characterize, in
a strictly local setting, the stability properties of a solution of the differential equation. As such, the liapunov theory is
strikingly different from the Poincaré theory, in which, on the contary, the study of the global properties of differential
equations in the plane play a major role.
One of the main aspects of the Poincaré theory is the introduction of the concept of trajectory, i.e, a curve in the x ẋ plane,
parametrized by time variable t, which can be found by eliminating the variable t from the given equations, thus reducing
it to a first order differential equation connecting x and ẋ. In this way, Poincaré set up a convenient geometric framework
in which to study qualitative behavior of planar differential equations. Poincar was not interested in the integration of
particular types of equations, but in classifying all possible behaviors of the class of all second order differential equations.
By introducing this concept of trajectory, Pioncar was able to formulate and solve, as topological problems, problems
in the theory of differential equations.
The " butterfly effect " has become a popular [2] slogan of chaos. But is it really so surprising that minor details some-
times have major impacts? sometimes the proverbial minor detail is taken to be the difference between a world with some
butterfly and an alternative universe; as a result of this small difference, the worlds soon come to differ dramatically from
one another. The mathematical version of this concept is known a sensitvedependence. Chaotic systems not only
exhibit sensitive dependence, but two other properties as well: they are deterministic, and they are nonlinear.
Chaos is important, in part, because it helps us to cope with unstable systems by improving our ability to describe, to un-
derstand, perhaps even to forecast them. Indeed, one of the myths of chaos we will debunk is that chaos makes forecasting
a useless task. In an alternative but equally popular butterfly story, there is one world where a butterfly flaps its wings and
another world where it does not. This small difference means a tornado appears in only one of these two worlds, linking
chaos to uncertainty and prediction: in which world are we? chaos is the name given to the mechanism which allows such
rapid growth of uncertainty in our mathematical models. The image of chaos amplifying uncertainty and confounding
forecasts will be a recurring theme throughout this introduction.
The stability of dynamical systems (chaotic or not) has an inportance in serval sciences [3 − 4 − 8 − 9], there are also
several ways to study the stability of dynamic systems see [4−5−6−7−8−9−10−11]. In our study, we chose the
Lyapunov approach, they are an indispensable tool in analysis and controller design of nonlinear systems [3− 11− 12],
where we divided our not into three chapters:

In the first chapter, we defined some basic concepts related to dynamic order and chaos, the orbits, flow, trajectory,
invariance and attraction, basin of attraction, the sensitivity to initial conditions, poincare section, Lyapunov exponents,
phase space, bifurcation and finally bifurcation diagram.

The second chapter, we have defined everything related to Lyapunov as a Lyapunov function and settled on the Lya-
punov approach, Lyapunov stability for autonomous and nonautonomous system, LaSalle’s invariance principle theorem,
Lyapunov theorem for global asymptotic stability finally the controlled systems.

In the final chapter, it is the most important part of our memorandum where we address our problem "Lyapunov
function and global asymptotic stability" by presenting our application and reaching stability through the steps used
previously and providing a numerical example to ensure the validity of the experiment.



Chapter 1

Generalities on dynamical systems and chaos

1.1 Introduction

As a mathematical discipline [29] , the study of dynamical systems most likely originated at the end of the 19th century
through the work of Henri Poincare in his study of celestial mechanics . Once the equations describing the movement
of the planets around the sun are formulated (that is, once the mathematical model is constructed), looking for solutions
as a means to describe the planets motion and make predictions of positions in time is the next step. But when finding
solutions to sets of equations is seemingly too complicated or impossible, one is left with studying the mathematical
structure of the model to somehow and creatively narrow down the possible solution functions. This view of studying
the nature and structure of the equations in mathematical model for clues as to the nature and structure of its solutions is
general idea behind the techniques and theory of what we now call dynamical systems. Being only a 100+ years old, the
mathematical concept of a dynamical system is a relatively new idea. And since it really is a focused study of the nature
of functions of a single (usually), real (usually) independent variable, it is a subdiscipline of what mathematicians call real
analysis. However, one can say that dynamical systems draws its theory and techniques from many areas of mathematics,
from analysis to geometry, topology and dynamics second generation mathematics, since they tend to bridge other more
pure areas in their theories. But as the study of what is actually means to model phenomena via functions and equations,
dynamical systems is sometimes called the mathematical study of any mathematical concept that evolves over time.[28]
There exist two essentially different approaches to the study of dynamical systems, based on the following distinction:

time-continuous nonlinear differential equations
 time-discrete maps

One approach starts from time-continuous differential equations and leads to time-discrete maps, which are obtained from
them by a suitable discretization of time. This path is pursued, e.g, in the book by strogatz. The other approach starts
from the study of time-discrete maps and then gradually builds up to time-continuous differential equations. After a
short motivation in terms of nonlinear differential equations, for the rest of this course we shall folow the latter route to
dynamical systems theory. This allows a generally more simple way of introducing the important concepts, In this chapter
we provide some important definitions about dynamical systems and chaos.

1.2 Dynamical systems
A dynamic system is a system whos state changes over time. Mathematically, a dynamical system consists of a state
space and the law of dynamics that allows determining the state that corresponds to the current state defined by linear
differential equations of the first order of the form :

x =
dx

dt
= f(x, t, µ) (1.1)

Where f is vector fields.
x ∈ U ⊆ Rn state vector.
µ ∈ V ⊆ RP parameter vector and t temporal variable.
When the vector field f does not depend explicitly on time, we say that the system dynamic is autonomons otherwise it is
nonautonomous.

1.3 Autonomous systems
When the vector field f does not depend explicity on time, we say that the system dynamic is autonomous otherwise, it is
nonautonomous.
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Note
Each non-dependent dynamical system with dimension n can be written as an independent dynamical system whith
dimension n + 1 by variable variation.

1.4 Dynamical systems solutions
Dynamic systems is general have no solutions, but linear dynamic systems can be completely solved, and linear systems
can be used to understand the qualitative behavoir of systems by calculating the equilibrium points and approximating
then as a linear system around each of these points.

1.5 deterministic system
A deterministic system is a system that does not include any randomness in the evolution of the state of the system over
time.

1.6 discrete system
The range of dynamic systems can be extended to discrete systems. We call a discrete dynamic system each system of
iterative algebraic differential equations defined by :

xk+1 = F (xk, µ) (1.2)

Where F recurrence function , xk ∈ U ⊆ Rn instant state vector tk
µ ∈ V ⊆ Rn parameter vector and k ∈ N

1.7 Chaos theory
This theory is one of the latest physical mathematical theories that deals with nonlinear dynamic systems(moving sen-
tences) that show a kind of random behavior known as chaos , this behavior results either throngh the inability to determine
the initial conditions (the butterfly effect) of through the probabilistic physical nature of quantum mechanics . This theory
reveals the hidden system by establishing rules for studying these systems such as weather forecasts, the solar system, the
market economy · · · .

1.8 The orbits

For any point x of a function F the discrete orbit of x defined by the set of points {x, f(x), f2(x), · · · }.

1.9 Equilibrium orbits
x∗ is a balance solution that achieves the relationship :

x∗ = f(x∗) = 0 (1.3)

All points that satisfy the relation (1.3) are called add points.

1.10 Periodic orbits

Let x(t, x0) be the orbit of the stable or unstable dynamical system representing the periodic solution if and only if :

∃ τ > 0 , ∀ t x(t+ τ, x0) = x(t, x0)

The periodic orbit of any dynamical system is called an isolated orbit is single and if the system is independent then the
isolated orbit is called a limit cycle.
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1.11 Quasi-periodic orbits

Let’s x(t, x0) dynamical system orbit and T = {T1,T2, · · · ,Tn} a finite set of linearly independent real numbers.
The orbital x(t, x0) is quasiperiodic if it is periodic for all Ti ∈ T
The orbit x(t, x0) called n-periodic.

1.12 Chaotic orbit
At the beginning of the seventies, the convergence between the work of physicists and mathematicians made it possible
to discover the mathematical reality of chaos in deterministic physics systems. It is difficult to formulate the basis of the
idea of a chaotic orbit, so we try to approach it on the basis of the behavioral characteristics of this type of orbit.

1.13 Chaotic attractors
Considered as the rest of the other orbits, the orbits of the chaotic solution is a steady flow that is configured in the basin
of attraction that is a orbit that converges towards the chaotic attractor.

Figure 1.1: Chen’s attractor

1.14 Flow and Trajectory
Consider the autonoms dynamic system :

dx

dt
= f(x) , x ∈ U ⊂ Rn (1.4)

We call flow of (1.2) the application :

Ψ =

{
R× U −→ Rn

(t, x0) −→ φ(t, x0) = X(t, x0)
(1.5)

Such as :
For each x0 fixed, t −→ φ(t, x0) is a solution of the differential equation φ(0, x0) = x0
φ(t, x0) the value at time t of the solution which goes from x0 to t = 0.
In other words φ(t, x0) is the value at time t of the solution which is worth x0 at t = 0.

11



Let x0 ∈ U be an initial condition and x(t, x0) the solution to (1.4). The set of points {∀ t ∈ R, x(t, x0)} is the trajectory
in state space passing to point x0 at the initial instant.
Therefore, two identical trajectories necessarily emanate from the same initial state:

∀ t , φ(t, x1) = φ(t, x)⇒ x1 = x2 (1.6)

1.15 Invariance and attraction

1.15.1 Invariant set

Definition 1.1
A open set of Rn , we say that A is invariant if [19] :

∀ x ∈ A , φt(x) ∈ A

Where φt(x) system flow.

1.15.2 Attractant set

Definition 1.2
A a closed invariant set [19] is said to be attractive if there exists U a neighbor hood of A such that:

∀ x ∈ U, lim
x→∞

d(φt(x), A) = 0

1.15.3 Attractor
The attractor is a geometrical [17] object towards which all the trajectories of the points in phase space tend, i.e a situation
(or a set of situations) towards wich a dynamical system evolves what ever its initial conditions tiales.
There are two type of attractors: regular attractors and strange attractors or chaotic.

1.15.4 Basin of attraction
The basin of attraction [17] of an attractor is the set of points in phase space which give a trajectory evolving towards the
attractor.

1.16 Sensitivity to initial conditions

Sensitivity to initial [18] conditions is a phenomenon first discovered at the end of the 19th century by Poincare. Then
rediscovered in 1963 by Lorenz during his work in meteorology. This discovery led to a large number of important
works mainly in the field of mathematics. This sensitivity explains the fact that for a chaotic system a tiny modification of
the initial conditions can lead to unperdictable results over the long term. The degree of sensitivity to the initial conditions
quantifies the chaotic character of the system.

12



Figure 1.2: Sentivity to initial conditions

1.17 Poincare section

The Poincare section [20] is a simple mathematical tool very frequently used to study dynamical systems and in particular
periodic trajectories. This method transforms a continuous dynamical system in to a discrete system and reduces its
dimension while keeping the same topological properties. Consider now a continuous dynamical system described in a
state space of dimension n and a surface of dimension n− 1. The Poincare map is the dynamical system in discrete time
whose sequence of iterations corresponds to the coordinates of the successive points of intersection of the trajectory with
this surface. The set of intersection points located on the surface represents the Poincare section.

Figure 1.3: Poincare section
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1.18 Asymptotic behaviors
In this component we will learn about the basic dynamic properties of dynamical systems solutions. There is no general
method for the integration of nonlinear differential systems, so it is not always possible to find an exact solution and
therefore we can estimate the solution obtained by numerical simulation when integration is not possible, on the other hand
qualitative knowledge of solutions is very userful when it comes to indentifying potential long-term devlopments stability
ramifications or even getting an overview of dynamic behaviors depending on the situation excitement or information .

1.19 Stability of dynamical systems
Stability is a specific characteristic of dynamical systrms. It is a basic term and is used frequently in discipline science
and systems theory. It means that all movements of a dynamic system except for the stable ones must be controllable. It
means that all motions of dynamical system beyond the stable ones have to be controllable.

1.20 Stability of discrete systems

Consider the discrete time system [14]:

x(k + 1) = A(k), x ∈ Rn (1.7)

Definition 1.3
The discrete time (1.7) is said to be

1. Stable in the Lyapunov sense, or internally stable, if for every initial condition X(k0) = x0 ∈ Rn the homoge-
neous response

X(k) = φ(k, k0)X0, ∀ k0 ≥ 0

is uniformly bounded.

2. Asymptotically stable if, in addition, for every initial condition Xk0 = X0 ∈ Rn, we have X(k)→ 0 as t→ 0.

3. Exponentially stable, if in addition there exist constants c > 0, λ < 1 such that for any initial condition Xk0 =
X0 ∈ Rn

‖ X(k) ‖≤ Cλk−k0 ‖ X(k0) ‖,∀ k ≥ k0

4. Unstable if not marginally stable in the Lyapunov sense.

Theorem 1.1
The system (1.7) is :

1. Marginally stable if and only if all the eigen values of A have magnitude smaller than or equal to 1 and jordan
blocks corresponding to eigen values magnitude 1 are 1× 1.

2. Asymptotically stable and exponentially if and only if all the eigen values of A have magnitude strictly less then
1× 1.

3. Unstable if and only if atleast one eigen value of A has magnitude greater than 1 or equal to 1 with the corresponding
jordan block is larger than 1× 1.
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Figure 1.4: Unit circle for mapping z-plane poles

1.21 Lyapunov exponents

The divergence [18] speed of two initially close trajectories can be studied from the Lyapunov exponents in order to
characterize the nature of the detected chaos.
Alexander Lyapunov (1857 − 1918) developed a parameter which allows us to calculate the rate of divergence
between the evolution of trajectories resulting from close initial conditions within this bounded space which is the strange
attractor.This means of control is called "Lyapunov exponent" which is a quantity allowing to characterize temporal chaos
and is defined for dynamical system by:

λ(x0) = lim
n→∞

1

n
ln | dF

n(x0)

dx
|

= lim
n→∞

1

n

n−1∑
i=0

ln | F t(xi) |

Where F : R −→ R is an application and x0 is an initial condition.
The Lyapunov exponent number is equal to the species dimension of the largest exponent quantifies the degree of chaos.
The following conditions are necessary for the appearance of chaos in a dynamic system.
• At least one of Lyapunov exponents is positive in explaining the divergence of trajectories.
• At least one of Lyapunov exponents is negative to justify the folding of the trajectories.
• The sum of all the exponents is negative to indicate that a chaotic system is dissipative that is it loses energy.
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Table:illustrates the connection between the Lyapunov exponents and the forms of attractors and give the signs of the
Lyapunov exponents for each type of attractor:

attractor Lyapunov exponents
fixe point 0 > λ1 > λ2 > · · · ≥ λn
limit cycle λ1 = 0, 0 > λ2 ≥ λ3 ≥ · · ·λn

tornus of order2 λ1 = λ2 = 0, 0 > λ3
tornus of order K λ1 = λ2 = · · · = λk = 0, 0 > λk+1 ≥ · · · ≥ λn
chaotic attractor λ1 > 0,

∑n
i=1λi < 0

Table 1.1: Lyapunov exponents for different attractors

Figure 1.5: Lyapunov exponent of the Lorenz continuous system
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Note
• A negative Lyapunov exponent a long one direction indicates that the trajectories get closer and consequently we lose
the information on the initial conditiions. The orbit is therefore attractive towards a periodic orbit or a fixed point. It
characterizes dissipative systems, this kind of system exhibits asymptotic stability.
• A positive Lyapunov exponent along one direction indicates that the divergence between two neighboring trajectories
increases exponentially with time. the trajectories diverge the orbit is therefore chaotic. Intuitively it is sensitivity to initial
conditions.
• A null Lyapunov exponent the orbits resulting from different initial conditions, keep a constant separation, neither
convergent non divergent one compared to the other. In this case such a physical system is said to be conservative.

1.22 Phase space

In dynamical systems theory [21], a phase space (or state space) is a mathematical space in which all possible states of
a system are represented each possible state corresponding to a unique point in phase space . For machanical systems,
the phase space usually consists of all possible values of the position and momentum variables . For a particle the phase
space has 6 dimensions, the position and momentum space each having 3 dimensions. The concept of phase space was
devloped at the end of the 19th century by Ludwing Boltzmann, Henri Poincare and Josiah Willard Gibbs.

Definition
The dynamical system is characterized by a certain number of state variables at a given moment . The dynamic behavior
of the system is thus linked to the evolution of each of these state variables. This space is called " phase space " where
each point defines a state and the point associated with this state defines a trajectory called an orbit.

1.23 Bifurcation

The fundamental aspect [23] of the study of dynamical systems is the notion of bifurcation. The term bifurcation was
introduced by Henri Poincare at the beginning of the 20th century in these works on differential systems for certain
critical values of the control parameters of the system. The solution of the differential equation changes qualitatively, we
say that there is bifuraction.

Definition 1
Bifuraction means [23] a qualitative change in the properties of a system such as stability, the number of equilibrium
points or the nature of steady states duing a quantitative variation of a system parameter. The values of the parameters at
the time of the change are called bifuraction values.

Definition 2
A bifuraction [23] is a qualitative change in the solution " or " of the system (1.1) and (1.2). When the control parameter
is modified and more precisely the dispperarance or change of stability and the appearance of new solution.
The approach to study dynamic systems is as follows :

- Search for fixed points.

- Study of the stability of fixed points.

- Bifurcation diagram.

There are four type of bifurcation :

• Node-pass bifurcation.
• Fork bifurcation.
• Hopf bifurcation.
• Transcritical bifurcation.
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1.24 Bifurcation diagram

The bifurcation diagram [22] is a plot of the points of the steady state of the system as a function of the parameter of
the control. Typically a variable state is chosen and its limit value is plotted as a function of a single control parameter
for discontinuous systems, one simply plots the successive valus of a variable state for continuous systems, some type of
discretization is required usually using a Poincare section. A bifurcation diagram summarizes the information on the state
space and the variation depending on the parameter can be visualized, the transition from a steady state to chaos can be
observed.

Figure 1.6: Bifurcation diagram of the henon system
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Chapter 2

Stablility in the sense of Lyapunov

2.1 Introduction

Since the 1960s [19], Lyapunov function based approaches have been well devloped for the analysis of system stability
among these a very useful criterion, called the "LaSalle invariance principle" and has been applied and extended to the
study of many diverse areas in the recent literature. For instance, Byrnes and Martin proposed an integral invariance
principle to study the stability of nonlinear time-invariant systems. However neither the LaSalle invaraince principle
nor the integral invariance principle can be applied to time-varying systems directly. This is due to the fact that the
ω − limit set is not an invariant set in general time-varyind systems. Since the invariance principles have been proved
to be important and use ful in the analysis of system dynamics, the extension of these principles to general time-varying
systems has attracted much attention, results for some classes of time-varying systems such as almost periodic systems
and asymptotically autonomous systems were optained using. The concept of pseudo-invariant set. However, no simple
method was given for the determination of the pseudo-invariance set. Instead of using the concept of the invariance
principles, two interesting results employing the concept of "limit equations" and the direct Lyapunov approach were
obtained for time-varying systems. All though the stability criteria proposed in pervious literature can be used in some
time-varying systems, their approaches are in general hard to check. The devlopment of simple stability criteria for
easy checking remains an important issue. In this mote a simple stability criterion for time-varying systems is proposed.
Instead of using the existence of ω − limit set, the concept of limit systems is defined for time-varying systems. Two
detectability conditions will be given in terms of limit systems. Based on these conditions and an integral inequality for
the observer function, bounded solutions of system dynamics are shown to approach a pre-specified equilibrium set. The
relationships between the proposed scheme and LaSalle invariance principle as well as the integral invariance principle
are also studied. Finally, throgh such an application it can be see that, just like the LaSalle invariance principle being
feasible to the stability study of time-invariant systems, the approach presented in this note is applicable to analyze the
stability of time-varying systems.

2.2 Lyapunov’s function

Lyapunov function [24] are one of the fundamental tools in control theory that can be used to verify stability of a dynam-
ical system (Kalman and Bertram,1960).
- A Lyapunov function V is a continous function V : Rn → R that satisfies the following properties :

1. (nonnegative) V(ξ) ≥ 0 for all ξ,

2. (zero at fixed-point) V(ξ) = 0 if and only if ξ = ξ∗,

3. (radially unbounded) V(ξ)→∞ as ‖ ξ ‖→ ∞,

4. (decreasing) V(ξk+1) ≤ ρ2V(ξk) for k ≥ N,

Where ξk := (Xk, gk, fk) is the state of the system at iteration k. The state at iteration k includes past iterates function
values and gradient values from iterations K −N up to k. If we can find such a V, then it can be used to show that the
state converges linearly to the fixed-point from any initial condition (the rate of convergence depends on both ρ and the
structure of V).
Lyapunov functions are typically found by searching over a parameterized family of functions (called Lyapunov function
condidates). In the simple case where the state {ξk} is generated by a linear dynamical system, one can search over
quadratic Lyapunov function condidates by solving a semidefinite program.
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Definition 2.1
A Lyapunov function is a function that allows to estimate the stability of point of equilibrium (or, more generally of a
movement, that is to say of a maximum solution) of a differential equation.

Theorem 2.1

Consider a dynamical system Ẋ = f(x) and x∗ an fixed point. It is assumed that he exists a function V which are C1

withe the properties:

1. V (x∗) = 0.

2. ∀ x 6= x∗, V (x) > 0 (we say thet V is positive definite).

3. ∀ x 6= x∗, dVdt < 0.

2.3 Lyapunov stability
By difinition, stability means that if a system is equilibrium, it will remain in that state when the weather varies. The
analysis of stability in the sense of Lyapunov consists of the study of the trajectories of the system when the initial
state is close to a state of equilibrium. The goal of stability is to drow conclusions about the behavior of the system
without explicitly calculating its trajectories in ordes to study the classical results on the notion of stability in the sense of
Lyapunov.

Note
The definition of stability in the sense of Lyapunov is closely related to that of continuinty of solutions. An equilibrium
is stable if all solutions starting at nearby points stay nearby, otherwise, it is unstable. It is asymptotically stable if all
solutions starting at nearby points not only stay nearby, but also tend to the equilibrium point as time approaches infinity.

2.4 Lyapunov stability definition 1
Consider a time-invariant autonomous (with no control) nonlinear system:{

Ẋ = f(x)

X(0) = X0

(2.1)

• Assumption:

(i) f Lipschitz continous.

(ii) origin is an isolated equilibrium f(0) = 0.

• Stability definition: The equilibrium xe = 0 is called stable in the sense of Lyapunov if:

∀ ε > 0 , ∃ δ > 0 , s.t , ‖ x(0) ‖≤ δ ⇒ ‖ x(t) ‖≤ ε ∀ t ≥ 0

Definition 2.2
The point xe is a point of equilibrium at the singular point of the system (2.1) if when x(t0) = xe then x(t) = xe for all
t ≥ t0 in other words xe verifies the equation f(x0) = 0 we always consider the balance at 0 for the general case.

2.5 Lyapunov stability definition 2
? Asymptotically stable : if it is stable and δ can be chosen so that

‖ x(0) ‖≤ δ ⇒ x(t)→ 0 as t→∞

? Exponentially stable : if there exist positive constants δ, λ, c such that

‖ x(t) ‖≤ c ‖ x(0) ‖ e−λt , ∀ ‖ x(0) ‖≤ δ

? Globally asymptotically (exponentially) stable : if the above conditions holds for all δ > 0.
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2.6 Some stability definition

We consider nonlinear time-invariant system [26]:

Ẋ = f(x) where f : Rn → Rn

a point xe ∈ Rn is an equilibrium point of the system if f(xe) = 0
xe is an equilibrium point⇐⇒ x(t) = xe is a trajectory .
suppose xe is an equilibrium point.
• system is globally asymptotically stable (G.A.S) if for every trajectory x(t), we have x(t)→ xe as t→∞
(implies xe is the unique equilibrium point).
• system is locally asymptotically stable (L.A.S) near or at xe if there is an R > 0 s.t:

‖ x(0)− xe ‖≤ R =⇒ x(t)→ xe as t→∞.

Theorem 2.2

The equilibrium point 0 of Ẋ = f(X(t), t) , X(t0) = X0 is stable in the sense of Lyapunov if there exists a locally
positive definite function V (x, t) such that V̇ (x, t) ≤ 0 for all t ≥ t0 and all X in a local region X : |x| < r for some
r > 0.

I such a V (x, t) is called a Lyapunov function .

I i.e V (x) is PD and V̇ (x) is negative semidefinite in a local region |x| < r.

Theorem 2.3

The equilibrium point 0 of Ẋ = f(X(t), t) , X(t0) = X0 is locally asymptotically stable if there exists a Lyapunov
function V (x) such that V̇ is locally negative definite.

Theorem 2.4

The equilibrium point 0 of Ẋ = f(X(t), t) , X(t0 = X0) is globally asymptotically stable if there exists a Lyapunov
function V (x) such that V (x) is positive definite and V̇ is negative definite.

2.7 Basic theorem of Lyapunov

Theorem 2.5

Let V (x, t) be a nonegative function [25] with derivative V̇ along the trajectories of the system.
1. If V (x, t) is locally positive definite and V̇ (x, t) ≤ 0 locally in x and for all t, then the origin of the system is locally
stable (in the sense of Lyapunov).
2. If V (x, t) is locally positive definite and decrescent and V̇ ≤ 0 locally in x and for all t, then the origin of the system
is uniformly locally stable (in the sense of Lyapunov).
3. If V (x, t) is locally positive definite and decrescent, and −V̇ (x, t) is locally positive definite, then the origin of the
system is uniformly locally asymptotically stable.
4. If V (x, t) is positive definit and decrescent, and −V̇ (x, t) is positive definite, then the origin of the system is globally
uniformly asymptotically stable.

2.8 Lyapunov stability theorem for autonomous system

Consider the autonomous system [3]:

Ẋ = f(x) (2.2)

Where f : D → Rn is locally Lipschitz map from a domain D ⊂ Rn into Rn. Suppose x ∈ D is an equilibrium point of
(2.2) that is f(x) = 0. Our goal is to characterize and study the stability of x. For convonionce, we state all definitions
and theorems for the case when the equilibrium point is at the origin of Rn that is x = 0. There is no loss of generality in
doing so because any equilibrium point can be shifted to the origin via a change of variables. Suppose x 6= 0 and consider
the change of variables y = x− x the derivative of y is given by
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ẏ = ẋ = f(y + x) = g(y) , where g(0) = 0

In the new variable y, the system has equilibrium at the origin. Therefore, without loss of generality, we will always
assume that f(x) satisfies f(0) = 0 and study the stability of the origin x = 0

Definition 2.3
The equilibrium point x = 0 of (2.2) is
• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖ x(0) ‖< δ ⇒‖ x(t) ‖< ε , ∀ t ≥ 0

• unstable if it is not stable.
• asymptotically stable if it is stable and δ can be chosen such that

‖ x(0) ‖< δ ⇒ lim
t→∞

x(t) = 0

For autonomous system, uniform (asymptotic) stability is the same as (asymptotic) stability.

2.9 Positive definite (semi-definite) function

Definition 2.4
A continuously differentiable function [26] V : Rn → R is called positive definite in a region U ⊂ Rn containing the
origin if :

a. V (0) = 0

b. V (x) > 0 , x ∈ U and x 6= 0

A function is called positive semi-definite if condition "b" is replaced by V (x) ≥ 0.

2.10 Lyapunov theorem

Theorem 2.4
For autonomous systems [26]. Let D ⊂ Rn be a domain containing the equilibrium point of origin. If there exists a
continuously differentiable positive definite function V : D → R such that :

V̇ =
∂V

∂x

dx

dt
=
∂V

∂x
f(x) = −W (x) (2.3)

is negative semi-definite in D, the equilibrium point 0 is stable. Moreover, if W (x) is positive definite, then the equilib-
rium is asymptotically stable.
In addition, if D = Rn and V is radially unbounded, i.e

‖ x ‖→ ∞⇒ V (x)→∞ (2.4)

Then, the origin is globally asymptotically stable.
For autonomous systems, when W (x) in the above theorem is only positive semi-definite, asymptotic stability may still
be obtained by applying the folowing simplified version of LaSalle’s theorem.

2.11 LaSalle’s invariance principle theorem

Theorem 2.5
For autonomous systems [26]. Let D ⊂ Rn be a domain containing the equilibrium point of origin. If there exists a
continuously differentiable positive definite function V : D → R such that :

V̇ =
∂V

∂x
f(x) = −W (x) ≤ 0 (2.5)

in D Let

S = {x ∈ D | V̇ (x) = 0} (2.6)

and suppose that no solution can stay identically in S, other then the origin. Then, the origin is asymptotically stable.
In addition, if D = Rn and V is radially unbounded, the origin is globally asymptotically stable.
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2.12 Stability of nonautonomous systems

Consider the nonautonomous system [3]:

ẋ = f(t, x) (2.7)

Where f : [ 0,∞)×D →⊂ Rn is piecewise continuous in t and locally Lipshitz in x on [ 0,∞)×D, and D ⊂ Rn is a
domain that contains the origin x = 0. The origin is an equilibrium point for (2.7) at t = 0 if

f(t, 0) = 0 ∀ t ≥ 0

An equilibrium point at the origin could be a translation of a nonzero equilibrium point or, more generally, a translation
of a nonzero solution of the system. To see the latter point, suppose y(τ) is a solution of the system

dy
dτ = y(τ, y)

defined for all τ ≥ a. The change of variables

x = y = −y(τ) ; t = τ − a

transforms the system into the form :

ẋ = g(τ, y)− ẏ(τ) = g(t+ a, x+ y(t+ a))− ẏ(t+ a) = f(t, x)

Since

ẏ(t+ a) = g(t+ a, y(t+ a)), ∀ t ≥ 0

the origin x = 0 is an equilibrium point of the transformed system at t = 0. Therefore, by examining the stability behavior
of the origin as an equilibrium point for the transformed system, we determine the stability behavior of the solution y(τ)
of the original system. Notice that if y(τ) is not constant, the transformed system will be nonautonomous even when
the original system is autonomous, that is, even when g(τ,y) = g(y). This is why studying the stability behavior of
solutions in the sense of Lyapunov can be done only in the context of studying the stability behavior of the equilibria of
nonautonomous systems.
The notions of stability and asymptotic stability of equilibrium points of nonautonomous systems are basically the same as
those introduced in definition for autonomous system depends only on (t− t0). The solution of a nonautonolous system
may depend on the both t and t0. Therefore, the stability behavior of the equilibrium point will, in general be dependent
on t0. The origin x = 0 is a stable equilibrium point for (2.7) if for each ε > 0, an any t0 ≥ 0 there is δ = δ(ε, t0) > 0
such that

‖ x(t0) ‖≤ δ ⇒‖ x(t) ‖< ε , ∀ t ≥ t0

The constant δ is in general dependent on the initial time t0. The existence of δ for every t0 does not necessarily guarantee
that there is one constant δ, dependent only on ε, that would for all t0.

Definition 2.4
The equilibrium point x = 0 of (2.7) is:

• stable if for each ε > 0, there is δ = δ(ε, t0) > 0 such that

‖ x(t0) ‖< δ ⇒‖ x(t) ‖< ε , ∀ t ≥ t0 ≥ 0 (2.8)

• uniformly stable if for each ε > 0, there is δ = δ(ε > 0) independent of t0, such that (2.8) is satisfied.

• unstable if not stable.

• asymptotically stable if it is stable and there is c = c(t0) > 0 such that x(t)→ 0 as t→∞, for all ‖ x(t0) ‖< c.

• uniformly asymptotically stable if it is uniformly stable and there is a positive constant c independent of t0, such
that for all ‖ x(t0) ‖< c, x(t)→ 0 as t→∞, uniformly in t0, that is for each ε > 0, there is T = T(ε) > 0 such that

‖ x(t) ‖< ε , ∀ t ≥ t0 + T (ε) , ∀ ‖ x(t0) ‖< c (2.9)
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• globally uniformly asymptotically stable if it is uniformly stable and, for each pair of positive numbers ε and c, there
is T = T(ε, c) > 0 such that

‖ x(t) ‖< ε , ∀t ≥ t0 + T (ε, c) , ∀ ‖ x(t0) ‖< c (2.10)

Lemma 2.1
The equilibrium point x = 0 of (2.7) is

• Uniformly stable if and only if there exist a class K function α an a positive constant c, independent of t0 such that

‖ x(t) ‖≥ α(‖ x(t0) ‖) , ∀ t ≥ t0 ≥ 0 , ∀ ‖ x(t0) ‖< c (2.11)

Theorem 2.6
Let x = 0 be an equilibrium point for (2.9) and D ⊂ Rn be a domain containing x = 0. Let V : [0,∞) ×D → R be
continuously differentiable function such that

W1(x) ≤ V (t, x) ≤W2(x) (2.12)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x) (2.13)

∀ t ≥ 0 and ∀x ∈ D, where W1(x),W2(x), and W3(x) are continuous positive definite functions on D. Then, x = 0 is
uniformly asymptotically stable.

condition on V (x) condition on −V̇ (x) conclusion
V (x) > 0 , x 6= 0 locally −V (x) ≥ 0 locally stable
V (x) > 0 , x 6= 0 locally −V (x) > 0 , ∀ x 6= 0 locally asymptotically stable

V (x) > 0 , x 6= 0 , V (x)→∞ as ‖ x ‖→ ∞ −V (x) > 0 , ∀x 6= 0 globally asymptotically stable
α ‖ x ‖p≤ V (x) ≤ β ‖ x ‖p locally −V (x) ≥ εV (x) locally locally exponentially stable
α ‖ x ‖p≤ V (x) ≤ β ‖ x ‖p globally −V (x) ≥ εV (x) globally globally exponentially stable

Table 2.1: Basic Lyapunov stability for autonomous system

2.13 Lyapunov theorem for global asymptotic stability

The region in the state space for which our earlier results hold is determined by the region over which V (x) serves as a
Lyapunov function. It is of special interest to determine the " basin of attraction " of an asymptotically stable equilibrium
point, i.e. the set of initial conditions whose subesquent trajectories and up at this equilibrium point. An equilibrium point
is globally asymptotically stable (or asymptotically stable "in the large") if its basin of attraction is the entire state space.
If a function V (x) is positive definite on the entire state space, and has the additional property that |V(x)| ↗ ∞ as
‖ x ‖↗ ∞, and if its derivative V̇ is negative definite on the entire state space, then the equilibrium point at the origin is
globally asymptotically stable.
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Exemple 2.1
Cosider the system :

x = −c(x)

With the property that c(0) = 0 and x′c(x) > 0 if x 6= 0. the unique equilibrium point of the system is at 0. New
consider the condidate Lyapunov function

V (x) = x′x

which satisfies all the desired properties including | V (x) |↗ ∞ as ‖ x ‖↗ ∞.
Evaluating its derivative along trajectories, we get

V̇ (x) = 2x′x = −2x′C(x) < 0 , ∀ x 6= 0

Hence, the system is globally asymptotically stable.

2.14 Global stability definitions

2.14.1 Global asymptotic stability

Definition 2.5
The equilibrium point 0 is globally asymptotically stable if it is stable and

lim
t→∞

s(t, t0, x0) = 0 , ∀ x0 ∈ Rn

.

Definition 2.6
The equilibrium point 0 is said to be globally uniformly asymptotically stable, if it is uniformly stable and for each pair
of positive numbers M, ε withe M arbitrarily large and ε arbitrarily small, there exists a finite number T = T(M, ε) such
that

‖ x0 ‖< M, t0 ≥ 0⇒‖ s(t + t0, t0,x0) ‖< ε , ∀ t ≥ T(M, ε)

Definition 2.7
The equilibrium point 0 is said to be globally exponentially stable if there exists constants c, γ such that

‖ s(t0 + t, t0, X0) ≥ c ‖ X0 ‖ e−γt , ∀t, t0 ≥ 0 , ∀x0 ∈ Rn (2.14)

For an equilibrium point to be either globally uniformly asymptotically stable or globally exponentially stable, a necessary
condition is that it is the only equilibrium point.

Lemma 2.2
Suppose a function V : Rn → R satisfies V(0) = 0 and V (x) > 0 for all x 6= 0.
If V is convex, then it is radially unbounded.

2.15 Global asymptotic stability using LaSalle

Corollary 2.1

Let x = 0 be an equilibrium point of Ẋ = f(x). Let V : Rn → R be a continuously differentiable radially unbounded
positive definite function on Rn\{0} such that V̇ ≤ 0 on Rn. Let E be the set of points where V̇ (x) = 0 and suppose
that no solution can stay identically in E other then the trivial solution x = 0 then, the origin is globally asymptotically
stable.
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2.16 Controlled systems
A controlled nonlinear system (one controlled) is a differential system of the form :

ẋ = f(x, u, t), t ∈ [0,+∞[, x(t) ∈M , u(.) ∈ U (2.15)

In general, the vector of states x(t) belongs to a differential manifold M of dimension n (we will assume here that M is
a connected open of Rn), the controls u(.) belong to an admissible set U, which is a set of locally integrable functions
defined on [0,+∞), a values in U ⊂ Rm, and f(., ., .) is nonlinear function with values inRn (wich we will assume to be
sufficiently regular, we will specify this regularity later). The natural number n is the order of the system. A special case
of such systems is the linear system of the form

ẋ = A(t)x+B(t)u (2.16)

With A(t) an n×n matrix function called the state matrix, and B(t) an n×m matrix function called the control matrix.

26



Chapter 3

Global asymptotic stability of discrete map

3.1 Introduction

The essential motivation [28] of this section is to eliminate any bounded behavior (chaotic or not) is some forms of n−D
discrete map and drives it globally asymptotically to their fixed points, via the controller of a universal continous function.
by constructing explicitly a nonnegative semi-definite Lyapunov function that guaranties the stabilization of such system.

We consider the general n−D discrete map of the forme :

g(xk, µ) =


x1k+1 = xikf1(xk, µ) ;

x2k+1 = xikf2(xk, µ) ;

· · ·
xnk+1 = xikfn(xk, µ) ;

(3.1)

Where µ = (µ1, µ2, . . . , µj) ∈ Rj are bifuraction parameters and xk = (x1k, x
2
k, . . . , x

n
k ) ∈ Rn is the state variable

and (fk)1≤k≤n are real continouus functions defined as follow: fk : Rn × Rj → R.
The origin (0,0,0, . . . ,0) ∈ Rn is a fixed point for the map (3.1)
i.e, g(0,0,0, . . . , µ) = (0,0,0, . . . ,0).
On the other hand, assume that for all µ in subset Ωµ ∈ Rj , the solutions of system (3.1) are bounded.

the controlled system associated with system (3.1) is given by :

g(xk, µ) =


x1k+1 = xikf1(xk, µ)

x2k+1 = xikf2(xk, µ) + U(xk, µ)

· · ·
xnk+1 = xikfn(xk, µ)

(3.2)

Where ther controller U given by :

U(xk, µ) =


0
0
· · ·

−xikfi(xk, µ) + h(xk)xik
· · ·
0

 (3.3)

Where the function fi(xk, µ) is given in the ith component of the uncontrolled map (3.1), and all the components of the
controller U are zero, expect the ith component, and h : Rn → R is any real continuous function satisfying |h(x)| < 1,
for all x ∈ Rn.
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Hence, the controlled system (3.2) is now given explicitly by :

xk+1 = gc(xk, µ) =



x1k+1 = xikf1(xk, µ) ;

x2k+1 = xikf2(xk, µ) ;

· · ·
xik+1 = h(xk)xik ;

· · ·
xnk+1 = xikfn(xk, µ) ;

(3.4)

The origin (0, 0, 0, · · · , 0) ∈ Rn is a fixed point for the controlled map (3.4), and it has the same form given in (3.1).

Notations
a) The ω − limit set of vector x ∈ Rn is defined by:

f+(x) = {fk(x), k ∈ N}

b) A ball in Rn of radius δ is given by Bδ = {x ∈ Rn, ‖ x ‖≤ δ}.

Definition 3.1
A set G∗ is positively invariant under the action of a map g if and only if: g(G∗) ⊂ G∗.

Definition 3.2
Let G∗ be the largest positively invariant set contained in G, i.e, gc(G∗) ⊂ G∗.

Definition 3.3
Let G∗ be a closed positively invariant set such that (0,0, . . . ,0) ∈ G∗, then the origin is said to be :

1. G∗ stable if ∀ ε > 0,∃ δ > 0 , g+(Bδ ∩G∗) ⊂ Bε.

2. G∗ asymptotically stable if it is G∗ stable and there exists δ > 0 such that:

lim
n→∞

gn(x) = 0 , ∀x ∈ Bδ ∩G∗

In the squel, if the system (3.1) has a nonnegative Lyapunov function defined in a neighbourhood of the origin ν ⊂ U,
we will denote by G0 the set where V vanishes, G the set where the difference of V along the trajectories of the system
vanishes, G the set where the difference of V along the trajectories of the system vanishes, and G∗ the largest invariant
set contained in G.
One can easily show that G0, G∗ and G are closed sets. G0 is positively invariant and G0 ⊆ G∗ ⊆ G.

3.2 LaSalle’s Invariance Principle

LaSalle’s invariance principle [16] is a result about the asymptotic stability [15] of the solutions to a system of differential
equation in Rn. The notion of asymptotic stability is expressed as "remain[ing] near the equilibrium state and in addition
tend[ing] to return to the equilibrium". In fact, LaSalle proves that under some conditions the solutions approach a
given (bounded) region of space when time goes to infinity and he uses this result on examples where the properties
of this region imply that it is the equilibrium.[29] LaSalle’s theorem enables one to conclude asymptotic stability of an
equilibrium point ever when one can’t find a function V (x) such that V ′(x, t) is locally negative definite. However, it
applies only to time-invariant or periodic systems. We will deal with the time-invariant case and begin by introducing a
few more definitions.
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Definition 3.4
The set S ⊂ Rn is the limit set [29] of a trajectory x(t, x0) if for every p ∈ S, there exists a strictly increasing sequence
of time tn such that x(tn, x0)→ p as tn →∞.

Definition 3.5
A set M is said to be a positive invariant set if:

x0 ∈M implies x(t, x0) ∈M,for all t ≥ 0.

A set M is said to be an invariant set if :

x0 ∈M implies x(t, x0) ∈M,for all t ∈ R.

Lemma 3.1

Suppose Ω ⊆ Rn is open, f : Ω→ Rn is locally Lipschiptz function and V : Ω→ R is a C1 function and bounded from
below. Suppose that p ∈ Ω and for all t ≥ 0, x(t, p) is defined and is contained in Ω. Then [30]

for all q ∈ L+ , V ′(q) = 0.

Proof

if L+ = 0 then there is nothing to prove. Suppose q1 = q3 ∈ L+, q2 ∈ L+ and fix any ε > 0.
Since V is continuous at q1 and at q2, there exists δ > 0 such that for all x ∈ Ω, for i = 1,2, if

‖ x− qi ‖< δ then |V (x)− V (qi)| <
ε

4
.

Since qi ∈ L+, i = 1, 2, there exists 0 ≤ t1 ≤ t2 ≤ t3 such that for i = 1,2,3, ‖ x(t,p)− qi ‖< δ,
and hence for

i = 1, 2, 3, |V (x(t, p))− V (qi)| <
ε

4
.

This implies that

|V (x(t3, p))− V (x(t1, p))| ≤ |V (x(t3, p))− V (q1)|+ |V (q1)− V (x(t1, p))| <
ε

2
.

Since V′ does not change the sign this implies

|V (x(t2, p))− V (x(t1, p))| =|
∫ t2

t1

V ′(x(s, p))ds|

≤ |
∫ t3

t1

V (x(s, p))ds|

≤ |V (x(t3, p))− V (x(t1, p))| <
ε

2
.

Therefore,

|V (q2)− V (q1)| ≤ |V (q2)− V (x(t2, p))|+ |V (x(t2, p))− V (x(t1, p))|+ |V (x(t1, p))|

≤ ε

3
+
ε

3
+
ε

3
= ε.

Since ε > 0 was arbitrary, this establishes that V is constant on L+.
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3.3 LaSalle’s Theorem

Theorem 3.1
Let f be a locally Lipschiptz function [30] defined over a domainD ⊂ Rn and Ω ⊂ D be a a compact set that is positively
invariant with respect to x′ = f(x).
Let V (x) be a C1 function defined over D such that V ′(x) ≤ 0 in Ω. Let E be the set of all points in Ω where
V ′(x) = 0, and M be the largest invariant set in E. Then, every solution starting in Ω approaches M as t → ∞, means
that d(x(t, x0),M)→ 0 as t→∞, for all x0 ∈ Ω.

Proof
Suppose p ∈ Ω and consider the curve t→ x(t, p). Since V is continuous it is bounded from below from on the compact
set Ω. Since Ω is invariant by hypothesis,

for all t ≥ 0, x(t, p) ∈ Ω.

More ever, using that Ω is compact, and hence bounded, the positive limit set L+ is non-empty.
Since Ω is closed,

L+ ⊆ Ω.

Using the Lemma above,

for all q ∈ L+, V ′(q) = 0

and therefore,

L+ ⊆ {y : V ′(y) = 0} = E ⊆M.

Since the positive limit sets are invariant,

L+ ⊆M.

Since

L+ ⊆M,

it follows that

q ∈M.

Thus, the solution curve starting at an arbitrary p ∈ Ω approaches M as t→∞.

Theorem 3.2
Let f be a locally Lipschitz function [31] defined over a domain D ⊂ Rn ; 0 ∈ D.

Let V (x) be a C1 positive definite function defined over D such that V ′(x) ≤ 0 in D − {0}. Let

Γ = {x ∈ D : V ′(x) = 0}

(i) If no solution can stay indentically in Γ, other then the trivial solution x(t) = 0, then the origin is asymptotically
stable.

(ii) Morever, if Γ ⊂ D is compact and positively invariant, then it is a subset of the region of attraction.

(iii) Furthermore, if D = Rn and V (x) is radially unbounded, then the origin is globally asymptotically stable.

LaSalle’s theorem can also extend the Lyapunov theeorem in three different directions.

(1) It gives an estimate of the RoA not necessarily in the form of

Ωc = {x ∈ Rn : V (x) ≤ c}.
the set can be a positively invariant set which leads to less conservative estimate.

(2) Can determine stability of equilibrium set, rather then isolated equilibrium point.

(3) The function V (x) does not have to be positive definite.
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3.4 Relation betwen Lyapunov theory and LaSalle’s theorem

If V̇ (x) is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov’s second
theorem. The invariance principle gives a criterion for asymptotic stability in the case when V̇ (x) is only negative semi-
definite.

Theorem 3.3

If there exists a function V ∈ C0(Rn,R+) satisfying [11]:

(1) V (x) ≥ 0 for all x ∈ Rn and V(0) = 0.

(2) ∆V (x) = V (g(x))− V (x) ≤ 0 for all x ∈ Rn.

(3) 0 is G∗ globally asymptotically stable where G∗ is the largest positively invariant set contained in
G = {x ∈ Rn : V (g(x))− V (x) = 0}.

(4) All the solutions of system (3.1) are bounded.

Then the origin is globally asymptotically stable.

Proof
The set G0 = {x ∈ Rn : v(x) = 0} is positively invariant so it is contained in G∗.
All the assumptions of theorem (3.1) are satisfied which implies that the origin is stable, that it is for any positive δ there
exists a positive number γ such that any solution of (3.1) which starts in Bγ remains in Bδ for all integer n.

Let AG∗ be the domain of attractivity relative to G∗. We choose δ > 0, such that Bδ ∩ G∗ ⊂ AG∗ . To show the
attractivity of the origin, we shall prove that Bγ is contained in the domain of attractivity, i.e,

∀ x ∈ Bγ : lim
k→+∞

gk(x) = 0 (3.5)

Let x0 ∈ Bγ and let ε be any positive real number. Thanks to the stability of the origin there exists η > 0 such
that

gn(Bη) ⊂ Bε , ∀ n ∈ N (3.6)

Since
Bδ ∩G∗ ⊂ AG∗

there exists N ∈ N such that

‖ gn(y) ‖< η

2
, ∀ n ≥ N , ∀y ∈ Bδ ∩G∗ (3.7)

The continuity of the solutions ensures the existence of α > 0 such that

∀(x, y) ∈ Bδ ×Bδ , ‖ x− y ‖< α⇒‖ gn(x)− gn(y) ‖< η

2
, ∀ n ≤ N (3.8)
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Now, let y be an element of L+(x0). According to LaSalle Invariance Principle, y belongs to Bδ ∩G∗ so by (3.7)

‖ gn(y) ‖< η

2
, ∀ n ≥ N (3.9)

On the other hand y ∈ L+(x0) hence

∃ p ∈ N : ‖ gp(x0)− y ‖< α (3.10)

Using (3.10), (3.8) and (3.9) we get

‖ gN+p(x0) ‖< η

2
+
η

2
= η (3.11)

and from (3.6), it follows

‖ gn(gN+p(x0)) ‖< ε , ∀ n ∈ N

Wich proves that limk→+∞ gk(x0) = 0. So we have shown that there are exists a positive real number η such that Bη is
contained in the domain of attractivity, and thus Theorem (3.1) is established.
New suppose that the system (3.1) is defined on Rn and there exists a nonnegative function V ∈ C0(Rn,R+) which is
Lyapunov function for (3.1) that is ∆V (x) = V (g(x)) − V (x) ≤ 0 for all x ∈ Rn. As above G∗ denotes the largest
invariant set contained in G = {x ∈ Rn : ∆V (x) = V (g(x))− V (x) = 0}. One can ask the following: Does the global
asymptotic stability of the system reduced to the invariant set G∗ imply the global asymptotic stability of system (3.1).

3.5 An universal controller function approach
In this section, we state the main result of this contribution, where the proof needs the construction of a nonnegative
semi-definite Lyapunov function for the controlled system (3.4).

Theorem 3.4

Considered the map (3.1) and assume that for all µ ∈ Ωµ ⊂ Rj, all its solutions are bounded.
Then, for any continuous function h : Rn → R verifying :

|h(x)| < 1, ∀ x ∈ Rn (3.12)

the universal controller function (3.3) makes the map (3.1) globally asymptotically stable.
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Proof
The idea of our proof is based on the construction of a nonnegative semi-definite Lyapunov function V (x) for which the
origin is glpbally asymptotically stable as shown in [11], that is :

1) V (x) ∈ C0(Rn,R+),and V (x) ≥ 0 for all x ∈ Rn − {(0, 0, . . . , 0)}, and V(0,0, . . . ,0) = 0.

2) ∆V (x) = V (g(x))− V (x) ≤ 0, for all x ∈ Rn − {(0, 0, . . . , 0)}, and ∆V(0,0, . . . ,0) = 0.

3) the origin (0,0, . . . ,0) is G∗ globally asymptotically stable where G∗ is the largest positively invariant set con-
tained in G = {x ∈ Rn : V (g(x))− V (x) = 0}.

4) All the solutions of the controlled system (3.4) are bounded for all µ ∈ Ωµ.

This result show that the global asymptotic stability of the controlled system (3.5) reduced to the invariant set G∗

imply its global asymptotic stability in Rn, wich is a consequence of LaSalle Invariance Principle [12].

Let us consider the folowing scalar function :

V (x) = (xik)2 (3.13)

And the universal controller function given by :

g(xk, µ) =


xikf1(xk, µ)
xikf2(xk, µ)
· · ·

xikh(xk)
· · ·

xikfn(xk, µ)

 (3.14)

Assume that system (3.1) is defined on Rn and possesses K continous first integrals h that are defined on Rn and denoted
by h the continous function :

h : Rn → R

Verifying |h(x)| < 1 for all x ∈ Rn.

• Now suppose that there exists a nonnegative function V ∈ C0(Rn,R+) which is a Lyapunov function for (3.1).

On has

∆V (x) = V (g(x))− V (x) = (xik)2h2(xik)− (xik)2 = (h2(xik)− 1)(xik)2

We have V (x) = (xik)2 ≥ 0 for all x ∈ −{(0, 0, . . . , 0)} and V(0,0, . . . ,0) = 0, then V is a nonnegative semi-definite
Lyapunov function on Rn. (1verify)

so h2(xik)− 1 ≤ 0 (because |h(x)| < 1)

Thus ∆V (x) = V (g(x)) − V (x) ≤ 0 and ∆V(0,0, . . . ,0) = 0.Thus, ∆V is semi negative-definite on Rn.
(2verify)

• In other hand, on suppose that if λ = (x1, x2, · · · , xi = 0, · · · , xn) we have :

G = {λ : λ ∈ Rn} = {(x1, x2, · · · , xi = 0, · · · , xn) ∈ Rn}
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Let G∗ be the largest positively invariant set contained in G. i.e. (gc(G∗) ⊂ G∗)

For all λ ∈ G we have gc(λ) = (0,0, . . . ,0). So (0,0, . . . ,0) ⊂ G∗ thus G∗ = {(0,0, . . . ,0)}

F ∀ ε > 0 , ∃ δ > 0 : g+
c (Bδ ∩G∗) ⊂ Bε

∀ x ∈ Bδ (‖ x ‖≤ δ) ⇒ g+
c (x ∩G∗)⇒ g+

c (x ∩ {(0,0, . . . ,0)}) = (0,0, . . . ,0) ⊂ Bε

The origin G∗ stable.

There exists δ > 0 such that Bδ ∩G∗ ⊂ Bε

∀ x ∈ Bδ ∩G∗ : lim
n→+∞

gnc (x) = 0

F Let x ∈ Bδ ∩G∗, and let ε > 0 . There exists η > 0 such that :

g+c (Bη) ⊂ Bε ∀ n ∈ N (3.15)

Since Bδ ∩G∗ ⊂ Bε

There exists N ∈ N such that

‖ gnc (y) ‖< η

2
, ∀n ≥ N , ∀y ∈ Bδ ∩G∗

∃ α > 0 such that

∀(x, y) ∈ Bδ ×Bδ , ‖ x− y ‖< α⇒‖ gnc (x)− gnc (y) ‖≤ η

2
, ∀ n ≤ N (3.16)

Let y ∈ L+(x0) hence

‖ gnc (y) ‖< η

2
, ∀ n ≥ N (3.17)

on the other hand y ∈ L+(x0) hance

∀p ∈ N : ‖ gpc (x0)− y ‖< α (3.18)

Using (3.18), (3.16) and (3.17) we get

‖ gn+pc (x0) ‖≤ η

2
+
η

2
= η

and from (3.16), it follows

‖ gnc (gn+pc (x0)) ‖< ε , ∀ n ∈ N
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Which approve that limn→+∞ gn
c = 0. The origin G∗is asymptotically syable.

Since Bδ ∩G∗ = {(0,0, . . . ,0)} for all δ > 0 thus, 0 is globally asymptotically stable. (3verify)

• All the solution of the controlled system (3.4) are bounded for all µ ∈ Ωµ. (4verify)

From (1), (2), (3) and (4) we conclude that the origin (0,0, · · · ,0) of the controlled system (3.4) is globally asymptot-
ically stable.

Example
Let us consider the new rational chaotic map given by :

g(x, y, µ = a) =

x(
−a

1 + y2
+ 1)

x

 (3.19)

Where µ = a ∈ R is the bifurcation parameter.

We have f1(x,y,a) = (
−a

1 + y2
+ 1) and f2 = x, i = 1 , for a = 4.

applying the proposed control law (3.3) with h(x, y) =
1

2
to drive map (3.19) globally asymptotically to its fixed point

(0.0).

Thus, the controlled map given by :

gc(x, a) =

(x
2
x

)
(3.20)

Let V (x, y) = x and G0 = {(x, y) ∈ R2 : V (x, y) = 0} = G and so G0 = G∗ the origin 0 is globally asymp-
totically stable.
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Figure 3.1: Chaotic attractor of the map (3.19) for a=3.5.

Figure 3.2: Chaotic attractor of the map (3.19) for a=4.
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Figure 3.3: Time series of the map (3.19).

Figure 3.4: Lyapunov exponent of the map (3.19) versus 0 ≤ a ≤ 4.5.
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Figure 3.5: Bifurcation diagram of the map (3.19) versus 0 ≤ a ≤ 4.5.

Figure 3.6: Bifurcation diagram of the map (3.20) shows the map (3.20) is globally asymptotically stable to its fixed point
(0,0).
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Conclusion
In this distrcation , we have described the underlying theorem which enables us to eliminate any bounded behavior

(chaotic or not) in some froms of continuous n−D discrete maps and drives it globally asymptotically to their fixed
points, vio the controller of a universal function. An elementary example for stabilizing a new 2−D rational chaotic

map is also given and discussed.
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Résumé
Dans cette mémoire, nous discuterons de la stabilité de certains systèmes dynamiques (chaotiques ou non chaotiques) en
utilisant la fonction de Lyapunov, c’est un outil indispensable dans l’analyse de la conception et la controle des systèmes
non linéaires, la principale motivation de cette contribution est l’élimination du comportement fini (chaotique ou non) dans
certaines formes de cartographie discrète n −D. Ce travail a été réalisé dans le cadre des intérets de ce mémorandum
"Lyapunov function and global asymptotic stability".

Abstract
In this memorandum, we will discuss the stability of some dynamical systems (chaotic or ont chaotic) using the Lyapunov
function it is an indispensable tool in the desing analysis and control of non linear systems, the primary motivation for
this contribution is the elimination of finite behavior (chaotic or not) in some forms of n −D discrete map. This work
was canied ont within the frame work of the mterests of this memorandum "Lyapunov function and global asymptotic
stability".
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