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Abstract— In this paper, we present a control law for a class of 
second order underactuated mechanical systems via a novel 
switching adaptive scheme. Exploiting the properties of 
underactuated mechanical systems and the advantages of sliding 
mode control method, the novel proposed strategy is based on an 
adaptive switching algorithm to reach the convergence 
performance for all outputs of the whole system. Based on 
Lyapunov stability theory, proofs and conditions are then given to 
ensure the global stability of all states of the system. Relevant 
application to an Overhead Crane and simulation results show the 
applicability of the proposed control algorithm 
 
Keywords—underactuated mechanical system, Sliding mode control, 
Switching, supervisory, Overhead Crane. 
 

I. INTRODUCTION 
 

A considerable amount of research has been carried out 
over the past few decades for the analysis and control design 
of underactuated mechanical systems (UMS). The control 
challenges associated with these systems arise from both the 
underactuation of the control input and the nonlinear nature of 
the dynamic equations describing the system’s motion. At 
same time, these systems do arise in a number of very 
important practical applications  
The interest carried to UMSs control can be oriented for fully 
actuated mechanical systems in case of actuator failure for 
which a fully-actuated system may become an UMS and 
hence the control algorithm developed for UMS can be widely 
used as a method of fault-overcoming control strategy too.  
However, there  is  not  a  unique  useful  theory  to  solve  the  
control  problem  of  UMSs  [1],  and so many  researchers  
have  to  analyze  the system’s  properties,  choose  and  fit  
some  common techniques or propose new techniques [2]. 
Recently, there has been extensive and remarkable research 
effort in the control of UMSs and several classifications and 
papers including modelling, stability and controllability 
issues, have been discussed. Some of the control approaches 

include Optimal Control [3], passivity based control [4]; 
Sliding Mode Control (SMC) [5], and Decoupling Sliding 
Mode Approach [6]. 
During the last two decades, there has been significant 
progress in the area of adaptive control design of nonlinear 
systems [7],[8].  As adaptive control approach, Supervisory 
and switching control which use information obtained online 
to decide on an appropriate control action. Generally, the 
“decision maker” uses simple logic rules to switch to a 
controller whose performance is “better” than other 
controllers in the candidate set of controllers based on the 
performance of each controller using the online measurements 
available [9]. 
There are several approaches to supervisory control in the 
literature. Model based approaches rely on a set of candidate 
models which are generally used to generate output estimates. 
These outputs estimates are compared to the plant output. The 
controller corresponding to the model with the smallest 
estimation error is placed in the loop. Examples of model 
based approaches can be found in [9], [10], [11], [12]. 
However, the design of a controller that can alter or modify 
the behavior and response of a hybrid plant to meet certain 
performance requirements can be a tedious and challenging 
problem in many control applications. 
Changes in the dynamics of the UMSs under control and/or in 
the character of the disturbances might require prompt 
changes in the control action in order to maintain satisfactory 
closed-loop performance. In particular, control of UMSs 
having hybrid dynamic requires adaptation in the feedback 
loop whenever robust control turns out to be inadequate [13].  
Generally, UMSs are special hybrid systems since they are 
composed of a set of subsystems. Hence, applying a switching 
control among these subsystems can designated to reach the 
needed performance.  
In this paper we will propose a new switching supervisory 
control scheme based on a selection of SMC candidates.  

Hence, the paper is structured as follows: Section II, is 
devoted to present the second order UMSs dynamics equation, 
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to analyze their properties and to expose the control problem. 
Controller design and stability analysis by using Lyapunov 
theory is exposed in Section III. Finally, in section IV, the 
proposed control method is applied for the control of a 2 DOF 
systems: Overhead Crane system. The performed simulation 
well proved the performance of the proposed method. 

 

II. PROBLEM STATEMENT 
 
The equations of dynamics of an underactuated system can be 
simplified as [1]:  
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Where  )(),(),(),( 4321 txtxtxtxx   is the state variable vector; 

)(tu  the control input; )(1 xf , )(2 xf , )(1 xb  and )(2 xb  are 
nominal nonlinear functions, and )(1 td  and )(2 td  are lumped 
disturbances, which include the parameter variations and 
external disturbances (i.e : they satisfy max)( ii dtd  , where 

maxid  are known nonnegative constants). In the all the 
remained part of this paper, the time variable is omitted for 
abbreviation reason. 
 Assumption 1. The state vector x  is available for 
measurement and the system modelling is well known, i.e.:  
functions if  and ib (with:  i=1,2) are well-known. 
Assumption  2. The system (2) is controllable, i.e.:   0xbi    
Assumption  3. In order to remedy the control discontinuity in 
the boundary layer, a sign function all along this paper is 
replaced by the following hyperbolic tangent function: 

10,
1
17159.1)sgn( 




 a
e
ex ax

ax
 (2) 

The system (1) can be viewed as two subsystems with second-
order canonical form including the states ),( 21 xx and 

),( 43 xx  for which we the following pair of sliding surfaces 
are constructed:  

1121111
~~ xxxxS     (3)

3243232
~~ xxxxS     (4)

Where dxxx 111
~   and dxxx 333

~  , ( dx1 and dx3 are 
constant desired values), 1λ and 2λ are positives constants. 
From (3) and (4) we can conclude the following: 

211111 xdubfS   (5)

422222 xdubfS   (6)

Since  xf1 and  xf2 are known, using the equivalent control 
law of the sub-systems gives:  

1

211
1 b

xfueq


  (7)

2

422
2 b

xfueq


  (8)

According to SMC methodology - for a given positive 
constants 1K  and 2K - a possible variable structure control 
law for each subsystem can be by:  

111 eqS uuu   (9)

222 eqS uuu   (10)

With:  
 1

1
11 sgn

1
SbKuS

  (11)

 2
1

22 sgn
2

SbKuS
  (12)

To guarantee that an ideal sliding motion takes place from any 
initial conditions after the sliding surface is reached, the 
following inequalities must be satisfied for each surface [7]:  

11
2
111 2

1 SS
dt
dSS   

22
2
222 2

1 SS
dt
dSS   

(13) 

Where 1 and 2  is a strictly positive constants. 
By choosing 1K  and 2K  in (11) and (12) large enough to 
have sufficient control energy to reach the sliding surface and 
maintain a sliding motion, it can guarantee that both equations 
of (13) are verified [7]. In the other word, 1K  and 2K  must 
be greater than the entire modelled and un-modelled system 
uncertainties. Accordingly, they should satisfy: 
 

max111 dK   

max222 dK   
(14)

 
However, these control laws: 1u and 2u  can’t ensure that each 
subsystem follows it own sliding surface since it consider 
exclusively the control of ),( 21 xx and ),( 43 xx subsystems. 
In the following section, we will describe a new methodology 
in order to construct a global control law by switching within 
a family of candidate controllers  21,uuC   in order to reach 
manifolds     0,,: 21  txStxSx . 
 

III. PROPOSED CONTROL STRATEGY   
 
To realize the adequate switching between both controllers 

1u and 2u , we consider the following global input signal given 
as:  

  21 1 uuu    (15) 
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With:  

10   (16) 

In (15),  is considered as the switching parameter used to 
adapt this global control input in order to stabilize both 
surfaces 1S and 2S . 
Clearly, for  =0 or  =1, the input signal will have 
exclusively both values 1u and 2u , and then Cu . 
The global strategy described here after will be based on the 
above considerations and the parameter  will be the control 
decision signal in order to have the suitable performance. 
The Supervisory unit which will be the decision maker, 
consisting of a monitoring signal generator and a switching 
logic, produces a switching signal that indicates at every time 
the suitable controller. 
This supervisor generates adaptively – depending on the 
signals produced by  – a piece-wise constant switching 
signal  t  according to  and decide at each time the 
controller in C to be put in the feedback loop.  
 
Now, Recalling (5) and replacing u by its value from (15), one 
get:  

   12111 1
1 duuubS eq    (17)

Or:  

   122111 1
duuuubS eq    (18)

Similarly, (6) becomes:  

   222122 2
duuuubS eq    (19)

Suppose that there exists an optimal control decision signal 
*  such as both sliding surfaces reach the performance 

condition:  

1
*
2

*
1  SS  (20)

Where: *
1S and *

2S  are sliding surfaces corresponding to 

optimal value * ; and 1  a positive constant such as: 01  . 
 
Assumption 5. It’s assumed that there exists an optimal 
decision signal *  that satisfies (20) lie in the convex region 
given by: 

 10    (21) 

Since the ideal decision signal *  is unknown, let us use its 
estimate ̂  instead to form the global adaptive switching 
control.  
Accordingly, one can write from (18) and (19):  

   1221
*

1
*
1 1

duuuubS eq    (22)

   2221
*

2
*
2 2

duuuubS eq    (23)

Thus, the minimum surface errors relative to first and second 
surfaces can be written respectively as:  

*
111

ˆ~ SSS   (24)

And  
*
222

ˆ~ SSS   (25)

The choice of the control action to use within the supervisor- 
among all the available candidate controllers 1u and 2u - is 
carried out via the evaluation of the non-negative function:  

2
2

2
1

~~ SS   
The supervisor selects the controller via the following 
Switching Optimal Supervisory given by: 

 











2
2

2
1

ˆ

* ~~
supminarg SS


  (26)

The recursion (26) is initialized with some   00    
arbitrarily chosen. Then, the minimum approximation error is 
defined as: 

*ˆ~    (27)

Consequently, from (22) and (27), (24) becomes:  

 ~~
2111 uubS   (28)

Similarly, from (23) and (27), (25) yields:  

 ~~
2122 uubS   (29)

Now, let the Lyapunov function candidate defined as: 













3

2

2

2
2

1

2
1

~~~

2
1





SSV  (30)

Where: 1 , 2  and 3 are positive design parameters. 
Recalling (27), (28) and (29), and differentiating (30), then we 
have:   

   

  










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


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32

2
2

1

1
121

32

2
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1

1
211

32
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1
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~

~~~
~

~
~

~~~~~~








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

















SbSbuu

SuubSuub

SSSSV

 

 

 

(31)

Let consider the following adaptive law:  
 

  





















2

2
2

1

1
1213

~~
~~


 SbSbuuk  (32)

An effective method for eliminating parameter drift and 
keeping the parameter estimates within some apriori defined 
bounds is to use the gradient projection method to constrain 
the parameter estimates to lie inside abounded convex set in 
the parameter space. 
This knowledge usually comes in terms of upper or lower 
bounds for the elements of * defined in (16). 
The solution of the constrained minimization problem follows 
from the gradient projection method can be given by: 
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 


































otherwise

ifSbSbuuk

,0~

10:,
~~

~~
2

2
2

1

1
1213












 

 

(33) 

Then, the decision switching signal  t  is produced by the 
following switching logic:  
 

 
 
 













1:1
0:0

10:,*






ift
ift
ift

 
 

(34) 

Accordingly, V becomes:  
 











otherwiseV
ifkV

,0

10:,~2



 
 (35) 

 
The negative semi-definiteness of the Lyapunov function 
guarantees that 1S , 2S  and ~ are bounded. 
 
Stability analysis 
 
Case A: 10   
Substituting the first equation of (35) in (30) yields:  
 













2

2
2

1

2
1

3

~~

2
1


SS

k
VV


  

Or  























2

2
2

1

2
1

3

~~

2
12


 SSVkV  (36) 

Clearly, for 03 k , (35) means that :  













2

2
2

1

2
1

~~

2
1


SSV  (37) 

Then, from (30), one can conclude that 0~  , or from (27) :  

*ˆ    (38) 

On another hand, from the first equation of (33) one can write:  

 

























2

2
2

1

1
1

21
3

~~
~~


 SbSb

k
uuk  (39) 

Similarly, for 03 k (39) yields:  

 















2

2
2

1

1
1

21
~~

~


 SbSb
k

uu  (40) 

However, since we have 0~  , then one can conclude from 
(40):  

  0
~~

2

2
2

1

1
1

21 













SbSb

k
uu  (41) 

Otherwise:  

  021 

k

uu  or 0
~~

2

2
2

1

1
1 













SbSb  (42) 

That is:  














2

1
21

1
121

21

~~ SbbS

or
uu



 (43) 

If the first equation of (43) holds, that means that both 
minimum surface errors are stable and asymptotically 
converge to zero. Moreover, it goes to zero in a finite time 

1t and 2t  given by:   111 0~ ηtSt   and    222 0~ ηtSt   

respectively.  
 
In case where second equation of (43) holds which is a result 
of 0~  , then (37) is valid and the control law is defined by   
(26). Thus, one can have:  

0~~ 2
2

2
1  SS  (44) 

Clearly, (44) means that both surfaces 1
~S  and 2

~S  converge to 
zero. 
 
Case B: Otherwise 
 
From the second equation of (33), one can conclude that V is 
bounded and non increasing function. However, the global 
controller has two case related to   1t  or   0t . 
Denoting by O  the candidate family of switching signals 
satisfying:   10   ortO  and similarly let  G  
global candidates family of switching signal as 

  *  tG . Thus, It’s clear from (34) that: 

GO  . However, we demonstrate in Case A (which 

corresponds to *  )  that 1
~S  and 2

~S  converge to zero. 
Since we have GO  , then one can conclude that for Case 

B, we have also 1
~S  and 2

~S  converge to zero. 
 
Proposition 1  
 
Consider a class of an underactuated mechanical system 
given by (1) and design the sliding surfaces as (3) and (4). 
The control law given by (15) supervised by the decision 
switching signal given in (34), asymptotically stabilises the 
surfaces (3) and (4).   
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Figure 1. Global control Scheme 
 
 

IV. SIMULATION AND DISCUSSIONS   
 

In this section, we apply the proposed controller for an 
underactuated Overhead Crane system (Figure 2). The control 
objective of the Overhead Crane is to move the trolley to its 
destination and complement anti-swing of the load at the same 
time. For simplicity, in this paper, the following assumptions 
are made:  
 
(a)  The trolley and the load can be regarded as point masses; 
(b) Friction force which may exists in the trolley and the 

elongation of the rope due to the tension can be neglected; 
(c) The trolley moves along the rail and the load moves in the 

x-y plan 
 
Using the Euler-Lagrange principle, we can obtain the 
following dynamic model for the Overhead Crane system [14]:  
 

FmLxMmx  )sincos()(: 2    (45) 

 0sincos:   gLx   (46) 

Where: M and m are the masses of the trolley and the load 
respectively, x is the horizontal displacement,   is the sway 
angle of the load g is the gravitation and L is the length of 
suspension rope. In summary, based on the system form (2) 
we obtain 211 ,, fbf  and 2b  as: 
 

 

 

 
Figure 2. Overhead-Crane System 

 
 
 
The initial conditions of the Overhead Crane system are: 
   0,0, 00 xx  ;    0,3/, 00   . The objective is to control 
the trolley to its expected displacement    0,4, mx dd  . The 
simulation parameters values are: M=1Kg; m=0.8Kg; 
L=0.305 m; g=9.8m/s2; 08.0max d ; 2.21  ; 122  ; 

37K , 81 K ; 192 K ;   5.00 0   8.01  , 22   
and 2.03  .  
 
According to Figure 3, we can see that both sliding surfaces 
converge asymptotically to zero and it is a proof to our 
demonstration in section III.  
From Figure 5 and Figure 6, we can see that the proposed 
control method can move the trolley to it desired value and in 
the same time control the anti-sway angle and let it converges 
to the desired value.  
 
The resulting decision signal α from the supervisory is shown 
in Figure 6. Once satisfying the performance control, the 
signal α is stabilized at an optimal value of 0.06. To note that 
the performance control is set as: 01  . 
Similarly, Figure 7 shows the control signal required to 
stabilize the Overhead Crane. 
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Figure  3. Evolution of sliding surfaces 
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Figure  4. Angle of the Crane  
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Figure  5. Position of the trolley 
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Figure  6. Decision signal α 
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Figure  7. Control input 

V. CONCLUSION 
 
A novel switching control scheme for a class of underactuated 
mechanical systems has been described in the paper. The 
proposed methodology is composed of a family of sliding 
mode controllers corresponding to each subsystem and a 
stable switching supervisor.  Depending on the system 
performance, the supervisor chooses control action to be 
applied to the UMS. The stability properties of the resulting 
control scheme are discussed and proved in the paper. 
Future research directions can be focused on the 
generalization of the strategy to more complicated 
underactuated mechanical systems having more degrees of 
freedom. 
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