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Notations and conventions

Conventions

1. Latin indices and exponents: i, j, p, ..., take their values in the set {1,2, 3}, unless

otherwise indicated as when they are used for indexing sequences.

2. Greek indices and exponents: «, 3,0, ..., except € and v in the outer normal deriva-

tive operator 0,, take their values in the set {a, 8}

3. The repeated index summation convention is systematically used in conjunction

with conventions 1 and 2.

4. The symbol ¢ designates a parameter that is > 0 and approaches zero.

Notations

a.b: Euclidean inner product of a € R* and b € R3.

a A b: Exterior product of a € R? and b € R3.

| a | Euclidean norm of a € R3.

E3: denote a three-dimensional Euclidean space.

Q: domain in R? (open, bounded, connected subset of R? with a Lipschitz-continuous
boundary, the set Q being locally on one side of its boundary).

x = (z;): generic point in €.

dz: volume element in €.

0
0; = pr
[': boundary of €.

dl': area element along I'.



(n;): unit outer normal vector (defined dI'-almost everywhere) along T'.

[' =Ty UTy: partition of the boundary of 2 with area I'g > 0.

w: middle surface of the shell.

2¢: thickness of the shell.

QF = & x [—¢,¢€]: reference configuration of a shell.

w: domain in R? (open, boundary, connected subset with a Lipschitz-continuous
boundary, th set w being "locally on one side of its boundary").

~ or Jw: boundary of the set w.

dv: length element along ~.

7o: measurable subset of v with length o > 0.

~1: measurable subset of v with length v, > 0.

y = (z4) = (x1,z2): generic point in the set w, sometimes also denoted y.

0 ik
Oa = gy O = OaOzs
Q=wx]—1,1].

v x [~1,1]: lateral face of the set €.

Lo = x[—1,1].

[y =y x[-1,1].

[, =w x {1}: upper face of the set Q.

I'_ =w x {—1}: lower face of the set Q.

v x [—€,¢]: lateral face of the set QF.

I'§ = v X [—¢,¢]: portion of the lateral face where a shell is clamped.
I =w x {e}: upper face of the set O°.

I'° =w x {—¢}: lower face of the set QF.

2¢ = (25) = (21, 20, 25) = (y,25): generic point in the set (.

o5 0

LT
7°: bijection from Q onto Qf, defined by 7° (1, 72, 73) = (71, T2, £73).

A = 0,4: Laplacian.
A? = AA = 0,,055: biharmonic operator.

(v): unit outer normal vector along ~.



(o) With 77 = —1n, 79 = v4: unit tangent vector along ~.
0,0 = v,0,0: outer normal derivative of # along ~.

0,0 = 7,0,0: tangential derivative of 8 along ~.

—: weak convergence.

—: strong convergence.

Definitions

WeP(.), (s € R, p>1): usual Sobolev space.
| ||s,p..: norm in W*P(.).
| |sp.: semi-norm in W*P(.), (s € N).

Ho() =W=2(0), | s, =1 ls2. and | |, = | |sz..



Introduction

The advancement in science and technology have brought forward many mathematical
models. Among these models involving structural mechanics. Most applications of these
structures have been made to plates and shells. The mathematical formulation of these
models leads to a system of partial differential equations and a set of boundary conditions
with a complicated geometrical shape like that of many shells. The most important among
them is the von Karman equations, which are two-dimensional model for a nonlinearly
elastic plate subjected to boundary conditions of von Karman’s type. They were initially
proposed by von Karman [I], which is originating from continuum mechanics and play an
important role in applied mathematics. Next, these equations are extended to Marguerre—
von Karméan equations for a nonlinearly elastic shallow shell by Marguerre [2] and von
Kéarméan and Tsien [3].

The asymptotic methods can be used for justifying the two-dimensional models of
elastic plates and shells starting from the three-dimensional models. More details about
von Karméan and Marguerre—von Kéarman theories, can be found in, e.g., [4]-[22] and the
historical references therein. In addition, we refer to the works are due to Ghezal and
the others [23]-[28] for Marguerre-von Karman shallow shells, [29], and [30] for linear
shallow shells. In this direction, numerous works have been devoted to shell theory, see,
for example, [31] and the references cited therein. Especially, we refer to [32]-[39] about
nonlinearly elastic shells.

Limited studies for von Kéarman shells theory based on the minimization of the energy,
were done in the past few years. This theory was derived by Lewicka, Mora, and Pakzad
in [40] and [41], using I'-convergence. Then Hornung and Vel¢i¢ derived the homogenized

von Karman shell theory in [42]. We refer to Li and Chermisi [43] for von Karman theory



of incompressible shells, Roychowdhury and Gupta [44] for Foppl-von Kéarman shells. In
the same direction, the time-dependent von Karman shells equation recently obtained by
Qin and Yao [45)].

In the first chapter, we review the basic notions, such as the metric tensor and covari-
ant derivatives, arising when a three-dimensional open set is equipped with curvilinear
coordinates. Next, we prove that the vanishing of the Riemann curvature tensor is suf-
ficient for the existence of isometric immersions from a simply-connected open subset of
R™ equipped with a Riemannian metric into a Euclidean space of the same dimension.
We then study basic notions about surfaces, such as their two fundamental forms, the
Gaussian curvature and covariant derivatives.

In the second chapter, we give a detailed account of recent justifications of nonlinear
shell theories that are also based on an asymptotic analysis of the three-dimensional solu-
tion with the thickness as the "small" parameter. A remarkable progress in the asymptotic
analysis of nonlinearly elastic shells is due to Miara [32], Miara and Lods [35], Ciarlet [31],
who justified the two-dimensional equations of a nonlinearly elastic "membrane" shells
and "flexural" shells, by means of the method of formal asymptotic expansions applied
to the three-dimensional equations of a nonlinearly elastic shell modeled by a St Venant-
Kirchhoff material. Another remarkable progress is due to Le Dret and Raoult [34], who
gave the first proof of convergence of the three-dimensional solutions to a two-dimensional
one as the thickness approaches zero. The purpose of this chapter is to lay the preliminary
grounds for the formal approach.

In the third chapter, we give the asymptotic justification of the two-dimensional equa-
tions for membrane shells with boundary conditions of von Karman’s type. More precisely,
we consider a three-dimensional model for a nonlinearly elastic membrane shell of Saint
Venant—Kirchhoff material, where only a portion of the lateral face is subjected to bound-
ary conditions of von Karman’s type. Using technics from formal asymptotic analysis with
the thickness of the shell as a small parameter, we show that the scaled three-dimensional
solution still leads to the two-dimensional equations of von Karman membrane shell. This

work was published in [46].



In the fourth chapter, we give the asymptotic justification of the two-dimensional
equations of von Kéarman flexural shell. Also, we prove an existence theorem for the

minimization problem.
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Chapter 1

DIFFERENTIAL GEOMETRY OF
SHELLS

In this Chapter, let us briefly recall some properties of the three-dimensional differential
geometry and differential geometry of surfaces, due to Ciarlet [54], which will be used
here.

We begin by reviewing basic definitions and properties arising when the three-dimensional
open subset O(Q) of E? is equipped with the coordinates of the points of  as its curvilin-
ear coordinates. Of fundamental importance is the metric tensor of the set ©(£2), whose
covariant and contravariant components. It is shown in particular how volumes, areas,
and lengths, in the set ©(Q2) are computed in terms of its curvilinear coordinates, by
means of the functions g;; and g. Covariant derivatives constitute a generalization of the

usual partial derivatives of vector fields defined by means of their Cartesian components.

Consider w is a two-dimensional open set in R?. Then by contrast, such a two-
dimensional manifold equipped with the coordinates of the points of w as its curvilinear
coordinates, requires two tensor fields for its definition (this time up to proper isometries
of E®), the first and second fundamental forms of . In particular, it is shown how
areas and lengths, i.e., ametric notionsa, on the surface @ are computed in terms of its
curvilinear coordinates by means of the components a,z of the first fundamental form. It
is also shown how the curvature of a curve on @ can be similarly computed, this time by

means of the components of both fundamental forms.
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1.1 THREE-DIMENSIONAL DIFFERENTIAL GEOM-

ETRY

1.1.1 CURVILINEAR COORDINATES

Let there be given an open subset 2 of E? and assume that there exist an open subset
of R? and an injective mapping © :  — E? such that ©(Q) = €.

Then each point & € Q can be unambiguously written as
T =0(x),x €,

and the three coordinates x; of x are called the curvilinear coordinates of Z (e.i., cylindrical
coordinates and spherical coordinates).

The three coordinates x1, x9, x5 of x € {2 are the curvilinear coordinates curvilignes of
7=0(x) e

If the three vecteors g;(z) = 0,0(x) are linearly independants, they form the covariant

basis at T = ©(x) and they are tangent to the coordinate lines passing through z.
Example 1.1 (Cylindrical coordinates)
O : (p,p,2) € Q — (pcos(p), psin(p), z) € E?,
(i, p, z) are the cylindrical coordinates of 7 = O(y, p, 2).
Example 1.2 (Spherical coordinates)

O : (p,,1) € Q — (rcos(v) cos(p), 7 cos(v) sin(g), rsin(v)) € B

(p, 1, 1) are the spherical coordinates of T = ©(p, 1, 7).

1.1.2 METRIC TENSOR

Let © be an open subset of R? and let
O = @Zéz Q= E3

11



be a mapping that is differentiable at a point z € Q. If dx is such that (x + dx) € Q,
then
Oz + dx) = O(x) + VO(x)dx + o(0x), (1.1)

where the 3 x 3 matrix VO(z) and the column vector dx are defined by

0,01 0,0, 056, 0xy
V@(l’) = 61@2 62@2 83@2 (1’) and dx = (5.732
0103 0,03 0503 dxs3

Let the three vectors g;(z) € R? be defined by

0,0,
gi(z) = 0,0(x) = 0,02 (),
62‘93

i.e., g;(x) is the i-th column vector of the matrix VO(x). Then the expansion of © about
x may be also written as

O(x + dz) = O(z) + 62" g;(x) + o(S). (1.2)

If in particular dz is of the form dx = dte; in (1.2]), where dt € R and e; is one of the basis

vectors in R?, this relation reduces to

O(x + dote;) = O(z) + dtgi(x) + o(dx). (1.3)

Definition 1.1 A mapping © : Q — E3 is an immersion at x € Q if it is differentiable at
x and the matriz VO(x) is invertible or, equivalently, if the three vectors g;(x) = 0,0(x)
are linearly independent.

Assume from now on in this section that the mapping © is an immersion at x. Then
the three vectors g;(z) constitute the covariant basis at the point & = O(z).

In this case, the relation ([1.3)) thus shows that each vector g;(x) is tangent to the i-th
coordinate line passing through & = ©(x), defined as the image by © of the points of

that lie on the line parallel to e; passing through x.

There exist tg and ¢; with t5 < 0 < t; such that the i-th coordinate line is given by
t E]to,tl[% fl(t) = @(CE -+ t(fl)

12



in a neighborhood of x, hence f;(0) = 9;0(z) = g;(z), since dz = dx’e; of (1.2)), we obtain

O(z + 0z) — O(2)]* = &Uigi(x).gj(a:)éxj + o(|6x[?)
= 627VO(x)'.VO(z)dz + o |6x|?).

In other words, the principal part with respect to dx of the length between the points
O(x+d6z) and O(x) is {d2'g;(x)- g;(x)6x7} /2. This observation suggests to define a matrix
(gij(x)) of order three, by letting

9ii(%) = gi(w).g;(x) = (VO(2)"VO(x))y;. (1.4)

The elements g;;(z) of this symmetric matrix are called the covariant components of
the metric tensor at & = O(z).

Note that the matrix VO(z) is invertible and that the matrix (g;;(x)) is positive
definite, since the vectors g;(z) are assumed to be linearly independent.

The three vectors g;(z) being linearly independent, the nine relations

g'(x)g;(w) = ;. (1.5)

unambiguously define three linearly independent vectors g;(z). To see this, let a priori
gi(x) = X™(x)gi(x) in the relations g’(x) - gj(z) = 07. This gives X" (x)gp;(x) = 0};

consequently, X (x) = g*(z), where
(97 (x)) = (gij(2))™".
Hence ¢'(z) = g*(x)g" (x). These relations in turn imply that
g'(x) - ¢’ (x) = g*(2)gr(2)) - (¢"'(2)gu(2)) = g™ (2)g” (2)gua(2) = g™ (2)0] = ¢" (),

and thus the vectors g'(z) are linearly independent since the matrix (g% (z)) is positive
definite. We would likewise establish that g;(z) = g;;(x)g¢’ ().

The three vectors g'(z) form the contravariant basis at the point & = O(z) and the
elements ¢"/(z) of the symmetric positive definite matrix (¢"(z)) are the contravariant
components of the metric tensor at & = ©(x).

Let us record for convenience the fundamental relations that exist between the vectors

of the covariant and contravariant bases and the covariant and contravariant components

13



of the metric tensor at a point = € {2 where the mapping © is an immersion:

(z) - gj(z) and g” (x) = g'(z) - ¢’ (2),
(z)g’ () and ¢'(z) = g (x)g;(x).

9ij () =g
Gij

9i()

Definition 1.2 A mapping © : Q — E3 is an immersion if it is an immersion at each
point in ), i.e., if © is differentiable in Q and the three vectors g;(x) = 0;0(x) are linearly

independent at each x € ).

1.1.3 VOLUMES, AREAS, AND LENGTHS IN CURVILINEAR
COORDINATES

Theorem 1.1 Let Q be an open subset of R3, let © : Q — E? be an injective and smooth

enough immersion, and let Q@ = ().

(a) The volume element di at & = ©(x) € Q is given in terms of the volume element

dx at x € Qby
dz = |det VO(z)|dx = \/g(z)dx, where g(z) = det(g;;(x)). (1.6)

(b) Let D be a domain in R® such that D C Q. The area element dU(z) at & = O(z) €

dD is given in terms of the area element dT'(x) at x € OD by

A (#) = [Cof VO(x)n(x)|dT (x) = v/g(x)\/ni(x)g (2)d0(z),  (L.7)
where n(x) = n;(x)e’ denotes the unit outer normal vector at x € dD.
(¢) The length element di(z) at & = ©(x) € Q is given by
di(z) = {027 VO(2)TVO(x)dx}V/? = {02’ g, (x)0a? } 2, (1.8)

where dx = dx'e;.

14



Proof.

(a) Since T = O(z), then
dz = | det VO(z)|dz.

follows

g(7) = det(gy; (7)) = det(VO(2)'VO(x)) = | det(VO(z)[*.

Hence
| det VO(z)| = v/g(2).

(b) According to Theoreme 1.7-1 in [54] that
dL(7) = |cof VO(z)n(z)|dT (z),

hence

lcofVO(z)n(z)|* = n(x) (cof VO(z)) cof VO (z)n(x).

Using the relations
(cof A)T = cof AT and cof(AB) = (cof A)(cof B),

we next have

lcofVO(z)n(z)|* = n(z) cof (VO(z)'VO(x))n(z) = g(x)nz(x)g”(a:)n](x)

(c) Recalls that di(z) is by definition the principal part with respect dz = dz’e; of the
length ©(z + 0x) and O(z). For more detailed, we refer to Theorem 1.3-1 in Ciarlet

[54].

Remark 1.1 The relations found in Theorem are used in particular for computing

volumes, areas, and lengths inside Q by means of integrals inside Q, i.e., in terms of the

curvilinear coordinates used in the open set €):
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Let D be a domain in R? such that D C Q let D = (D), and let f € L'(D) be given.
Then

| fadi = [ (7o 0)(w)Votw)ds.
D D
In particular, the volume of D is given by

volD:/f)d:%:/Dmdw.

Next, let T = 0D, let © be a dl-measurable subset of T, let & = O(X%) cdD, and let
h e L\(3) be given. Then

/S h(#)dP () = /Z (2)/g(@)/mi(2)g" (@) (@)D ().

In particular, the area of S s given by

area 3 — /E dD(3) = /E Va@)y/ni(x)g¥ (x)n, (2)dr ()

Finally, consider a curve C = f(I) in Q, where I is a compact interval of R and
f = fle; : I — Q is a smooth enough injective mapping. Then the length of the curve
C'=0(C) c Q is given by

7 J
length C' = /\— (©o f)(t)|dt = /\/gzj df CZ; (t)dt

This relation shows in particular that the lengths of curves inside the open set O(£2) are

precisely those induced by the Euclidean metric of the space E3. For this reason, the set
O(9) is said to be isometrically imbedded in E3.

1.1.4 COVARIANT DERIVATIVES OF A VECTOR FIELD

Suppose that a vector field is defined in an open subset Q of E3 by means of its Cartesian
components 9; :  — R, i.e., this field is defined by its values ©;(2)é’ at each & € { where
the vectors é' constitute the orthonormal basis of E3.

Suppose now that the open set Q is equipped with curvilinear coordinates from an

open subset  of R?, by means of an injective mapping © : Q — E? satisfying ©(Q2) = Q.

16



It turns out that the proper way to do so consists in defining three functions v; : 2 — R
by requiring that
vi(z)g' (z) = 0;(2)é" for all & = O(x),z € Q

where the three vectors g‘(z) form the contravariant basis at & = O(z).
Using the relations g*(x) - g;(z) = 6, and €' - &; = 0} , we immediately find how the old

and new components are related,

vi(2) = vi(2)g'(2) - g;(x) = Bi(@)e" - g;(2),

0;(%)

The three components v;(x) are called the covariant components of the vector v;(z)g*(z)
at z, and the three functions v; : 2 — R defined in this fashion are called the covariant

components of the vector field v;g* : Q — E3.

Theorem 1.2 Let © : Q — E3 be an immersion injective is also a C*— diffemorphisme

of  onto Q = O(Q). Given a vector field Die" : Q& — R® with 0; € CY(Q) that defined by:

0;(7)e" = vi(2)g' (x), VT = O(x),7 € Q.

~

Then v; € CY(Q) and for all x € Q
0;5(®) = (veyelg™ilg"]y) (2), VE = O(w),x € O,
where

vy = Ojv; — F’i’jvp ( The first order covariant derivatives of the vector field v;g"),

Iy, = g".0ig; ( Christoffel symbols of the second kind ),
[¢'(2)]x = ¢"(x).€ ( Denotes the i — th component of g'(x) over the basis {€y,€y,€3}).
Proof.

(i) Let O(z) = ©%(2)e; and © : QO — R3,O(Z) = ©(Z)e;, where © = O,
Since

O(6(z)) = z,Vz € Q,

17



and

A~ A~

V6(2)VO(z) = I,

where

VO(r) = (0;0%(x)) ( the row index is k),
VO(%) = (0,0/(7)) ( the row index is 7).

or equivalently

s IR 0;6'(x) |
5,6/(2)0,6"(z) = (0,6 (3@) 5,6'(3) 5,6/ (@) ( 9,0(x) ) 5.
0;0°(x)

We deduce that
hO'(T).g;(x) = 6.

Since ¢'(z) is uniquely defined by ¢'(z).g;(z) = 8}, we obtain
[9'(@)]k = 0O'().
(ii) Since © € C*(Q; E?), then
9" =g"g: € C'(Q), dug" € C°(Q).
Recalling that the vectors g®(z) form a basis, we may write a priori
g’ (z) =T (2)g"(x), T% :Q—R.
we observe that
Lo = Do (@)0F" = T4,,9™ (2)-g(2) = —0eg* () .gn().
Hence, noting that 9,(g?(z).gx(x)) = 0, we obtain
Il (x) = g% (x).Ougr ().
and [¢%(z)], = 517(:)‘7(3), we obtain
Ph(2) = 0,0"(7)0n6" (v) = T (x).

Since © € C2(Q; E?) and © € C}(Q;R?), we deduce that I, € CO(€).

18



(iii) If w: Q — R a differentaiable function, satisfies
O5w(O(7)) = Drw(2)9;0(7) = dew(w)ly(x)];-
Since 0;(7) = vi,(x)[¢"(2)];, we obtain

0;5:(7) = 9u(0(2))[g"(2)]; + v, (2)3;[97(O(@))]i
= Qo) (9" (@)];19" (@) + va(2) Delg?(2)]:) " (2)];
= (Opoi(x) — Th(2)vy(2))[g" (@)]ilg" (x)];,

since 0pg?(z) = —T'f, (x)g"(x).

Since Ogug(z) — T} (@)vg(x) = vge(x), then
070i(%) = (vryelg"lilgly) ().
For more detailed, we refer to Theorem 1.4-1 in Ciarlet [54]. m

Theorem 1.3 Let © : Q — E3 be an injective immersion and C?-diffeomorphism of

onto Q) = O(Q), and let there be given a vector field v;g' : @ — R with v; € C1(Q).

(a) vi; € C(Q2) which are defined by:

aj (Uz‘gi) = Uz'||jgi>
and
vit; = {0;(vg") } 9.

(b) I'}; = g7.0,9; = '}, € C(2) satisfy the relations

0" = —T0;q9,

)

and
aqu = Fé-)qu .

Proof.
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(a) Let
9;(vig') = (Ojui)g’ + v,0;9".
Since ;9" = —T'%,g", we obtain
9i(vig") = (9;v)g" — vl g"
) — T
vili9'-

(b) We note that

0=20;(9"9,) = 0;9".94 + 9”059,

= —I7,9".9,+ ¢".0;9,

= I, +9".0;9,

Hence

9°.0;9, =T,
then
8qu = F?qu‘

For more detailed,we refer to Theorem 1.4-2 in Ciarlet [54]. m

1.2 DIFFERENTIAL GEOMETRY OF SURFACES

1.2.1 CURVILINEAR COORDINATES ON A SURFACE

Let there be given an open subset w of R? and a smooth enough mapping 6 : w — E3.
The set
w=0(w),

is called a surface in E3.

If @ is injective, each point § € w can be unambiguously written as
Vi ew§=10(y)ycw,
and the two coordinates (y,) of y are called the curvilinear coordinates of ¥.
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If the two vectors a,(y) = J,0(y) are linearly independent, they are tangent to the
coordinate lines passing through g and they form the covariant basis of the tangent plane
to W at y = 0(y).

The two vectors a®(y) form this tangent plane defined by

a®(y)-ap(y) = 55.

The vecteors a®(y) form its contravariant basis.

1.2.2 FIRST FUNDAMENTAL FORM

Let 6:0;¢: w C R? — 0(w) = © C E? is differentiable at y € w.
If (y + 0y) € w, then

0(y + dy) = 0(y) + VO(y)dy + o(dy)

where
0107 0s0,
Vo(y) = | 102 026 | (y)
0105 005
and

_ oY1
oy = <5y2) i

Let the two vectors a,(y) € R?® be defined by

0,0,
aa(y) = 0a0(y) = | Ouba | (v).
0,05
Then
O(y + dy) = 0(y) + 6y“aa(y) + o(dy). (1.9)

If 6y = dtey, where 6t € R and {e,} is one of the basis vectors in R%. This relation

reduces to

O(y + ote) = 0(y) + 0tan(y) + o(6t). (1.10)

Definition 1.3 A mapping 0 : w — E3 is an immersion at y € w, if it is differentiable at

y and the matriz VO(y) is of rank two, i.e., the two vecteors a,(y) are linearly independent.
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Assume form now on in this section that the mapping # is an immersion at y € w. In this
case, the last relation shows that each vecteor a,(y) is tangent to the o — th coordinate
line passing through y = 6(y), defiend as the image by 6 of the points of w that lie on a
line parallel to e, passing through .
Then there exist to and ¢; with ¢ty < 0 < ¢; such that the a — th coordinate line is
given by
t €lto, t1[—= falt) = 0y + tea),

in a neighborhood of § hence f/(0) = 0,0(y) = aa(y).

From (|1.9]), we obtain
1(0(y + 6y) — 0(y)|> = 6y" VO(y)"VO(y)dy + o(|5y|*)
= 0y aa(y).as(y)dy” + o(|dy|?).

In other words, the principal part with respect to dy of the length between the points

0(y + dy) and 0(y) is \/0y“aa(y)-as(y)oy’.
The define a matrix (a,5(y)) of order two by letting

aas(y) = aa(y)-as(y) = (VO(y)" VO(y))as.

The elements a,s(y) of this symmetric matrix are called the covariant components of the
first fundamental form, also called the metric tensor, of the surface & at ¥ = 6(y).

The two vecteors a®(y) being thus defined, the four relation:

a®(y).as(y) = 65.

We pose a®(y) = Y*(y)aq(y).
This gives
Y (y)ass(y) = 0.

Hence,
Y (y) = a(y),

where (a*?(y)) = (aap(y)) ™"
Hence

Y)ao(y)-
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These relations in turn imply that

a®(y).a”(y) = a® (y)ao(y).a"" (y)a-(y)

(v)
= a""(y)a” (y)ao- (y)
= a"*(y)d;
= a*(y).

Since the matrix (a®?(y)) is positive definite, then the vecteors a®(y) are linearly inde-
pendant.

The two vecteors a®(y) form the contravariante basis of the tangent plane to the
surface @ at ¥ = 0(y).

The elements a®?(y) are called the contravariant component of the first fundamental
form, or metric tensor, of the surface & at y = 0(y).

We deduce that

9

aa(y) = aap(y)a’(y) and a®(y) = a®(y)as(y
ap(y) = aa(y)as(y) and a®’(y) = a*(y)a’(y

~— —r

Definition 1.4 A mapping 0 : w — E3 is an immersion if it is an immersion at each point
inw, ie., if 0 is differentiable in w and the two vectors 0,0(y) are linearly independent

at each y € w

1.2.3 AREAS AND LENGTHS ON A SURFACE

Theorem 1.4 Let § : w — E3 be an injective and smooth enough immersion, and let

5=0(w).

(a) The area element da(y) at y = 6(y) € & is given in terms of the area element dy at
y Ew by

da(y) = v aly)dy,

where a(y) = det(aqs(y)).
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(b) The length element d(3) at § = 60(y) € & is given by

A(G) = \/0y°ans(y)yPdy. (1.11)

(c) Let I is a compact interval of R and C = f(I) a curve in w, with
f = f%q : I = w is a smooth enough injective mapping. Then the length of the

curve C' = 0(C) C & is given by
~ d
length C — /y—(e o )(t)|dt

/ \/ tos(f df ’ )Cg: (t)dt

Proof. See proof of Theorem 2.3-1 in Ciarlet [54]). =

1.2.4 SECOND FUNDAMENTAL FORM

Let v be a smooth enough planar curve parametrized by its curvilinear abscissa s. Con-
sider two points p(s) and p(s + As) with curvilinear abscissae s and s + As, let A¢(s)
be the algebraic angle between the two normals v(s) and v(s + As) to v at those points
(oriented in the usual way).

If Allr_rgo A(( )) exist, called the curvature of y at p(s), if this limit is non zero, its inverse
R is called the "algebraic radius of curvature" of v at p(s) ( the sing of R depends on the
orientation chosen on 7).

The point p(s) + Rr(s) is called the "center of curvature" of v at p(s).

Theorem 1.5 Let 6 € C?*(w;E?) be an injective immersion and y € w be fized.
Consider a plane P normal to @ = 0(w) at the point y = O(y). The intersection PN©
is a curve C on W, which is the image C C @ of a curve C in the set @. Assume that, in a
sufficiently small neighborhood of y, the restriction of C' to this neighborhood is the image
f(I) of an open interval I C R, where f = fY, : [ — R is a smooth enough injective

mapping that satisfies
afe

O (Dea 0.t € Ly = f(1).
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Then, the curvature % of the planar curve C at y is given by the ratio

1 bas(FO) L)L (1)
_ b %_t d (1.12)

R ans(f(t))

where
bap(y) = as(y)-Oaas(y) = —0aas(y).as(y) = bsa(y),
are called the covariant components of the second fundamental form of the surface & at

y=10(y) and
_ai(y) Aas(y)
%) = {0 (y) Aaa(y)

is thus well defined, has euclidean norm one, and is normal to the surface & at 7.

The denominater in the definition of as(y) may be also written as
a1 (y) A az(y) = v a(y),

where a(y) = det(ans(y)).

Proof.
(i) We note that

sin Ag(s) = v(s).7(s + As)
= —[v(s+ As) — v(s)].7(s + As),

hence
L A(s)
R Alggo As
— lim sin Ag(s)
As—0 A(S)
_ dv(s)
=—— 7(8).

(ii) There thus exist an interval I ¢ I, J C R and a mapping p : J — P such that
(0o f)(t) =p(s) and (azo f)(t) = v(s),Vt € I,selJ.

Then the curvature % of C is given by:




Where
dv(s) d(azo f) ; dt

s~ a Vs
= s FO) D (1)
T(s) = d];is)
Ao f)(t) dt
o dt ds
B
—a(panTOE

B
= as(ran L0 E

Hence

L dfe(t) df’(t)  d
= = —uas(F ) as (s LD Ly

Since bag(f(t)) = —0aas(f(t)).as(f(t)) and the relation ([1.11)) that

— /6y°ans(y)oyP —\/ dfa dfﬁ( )dt, (1.13)

For more detailed, we refer to Theorem 2.4-1 in Ciarlet [54]. m

26



Chapter 2

ASYMPOTOTIC ANALYSIS OF
NONLINEARLY ELASTIC SHELLS

In this Chapter due to Ciarlet [31], we give a detailed account of recent justifications
of nonlinear shell theories that are also based on an asymptotic analysis of the three-

dimensional solution with the thickness as the "small" parameter.

A remarkable progress in the asymptotic analysis of nonlinearly elastic shells is due to
B. Miara in [32], then to B. Miara and V. Lods in [35], who justified the two-dimensional
equations of a nonlinearly elastic "membrane" shell and those of a nonlinearly elastic
"Hexural " shell, by means of the method of formal asymptotic expansions applied to
the three-dimensional equations of a nonlinearly elastic shell modeled by a St Venant-

Kirchhoff material.
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2.1 THREE-DIMENSIONAL PROBLEMS SHELLS IN

CARTESIAN COORDINATES

Let w be a bounded, open and connected subset of R?, we assume that the boundary ~ of
w Lipschitz-continous. Let vy be a relatively open subset of v such that length(yy) > 0.
The unit outer normal vector (v,) along boundary v, we denote by y = (y,) a generic
point of @, and 9, = 9/0y,. Let the mapping 6 : @ — R3 is a smooth enough injective
immersion of class C3.

For any € > 0, let

O =wx] —e,+¢], TL =w x {xe}, T =0 X [—¢, +¢].

Let © : O° — R3 be the mapping a smooth enough immersion given through the relation
O(2°) = 0(y) + 25a3(y) for all 2° = (y,25) € QF,
hence zf, = y,. The three vectors
g; (x°) = 9;0(z7),

(with 05 = 0, 05 = 0/0x5) are then linearly independent and they form the covariant
basis at the point ©(z°).

We consider a nonlinearly elastic shell whose reference configuration is @, we denote
by & = ©(2°) a generic point in @, and we let 9F = 8/, where QF = O(QF),

with middle surface w = 6(@w) and thickness 2e > 0, we assume that the elastic material
constituting the shell is a Saint Venant-Kirchhoff i.e, a homogeneous and isotropic, and
that the reference configuration is natural state with Lamé constants A\®* > 0 and p® > 0,
(7%) is the unit outer normal vector along the upper and lower faces IS = O(I'%) and that
I's = O(I%) the position of the lateral face [ = O(I'¢) ( where 49 = 0(7y)). We assume
that the shell is clamped on a portion IS,

The shell is subjected to body forces of density (f¢) : Q — R3 and surface force on

the upper and lower faces with density (Zf ) : fi UTe — R3 We define the spaces
V() = {6° = (65) € W"H(Q5R?); o =0 on T},
£ = (= (75) € (@))% 75 = 7).

)
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The unknown displacement field 4 = () and stress field 6° = (57;) satisfy the following

three-dimensional shell problem in cartesian coordinates

—55(&5 + 0%y JeiiE) = f¢in O,
(65 + 0%, 0515 )75 =lfonle UTY,
u; = 0 on F

such that the Piola-Kirchhoff stress tensor (67;) and the Green-Saint Venant strain tensor

(E;;(07)) are given by
pp\ )i T ij \ R (2.1)

First, we rewrite the previous boundary value problem in the weak form, by using
Green’s formula, we show that any smooth solution of the boundary value problem also

satisfies the following variational problem

PO Find (4°,06°) € V(QE) x 3¢ such that
() Joo (65, + 65,0005)0505da® = [, feo7di® + [p. g 505dDE for all o5 € V(QF).
s ufe

Next, the variational problem P(Qs) may be formulated as a minimization problem

4° € V(¥) and JE(0°) = inf  Jo(¢°),
e eV ()

such that the stored energy function J¢ of a Saint Venant-Kirchhoff material given by
JE0) = 3 Jo A B (6°) By (0)die — { o fro5das + [ g oD} for all 6 € V),

where

AtiRle — \egiight e (5T 4 §iloIk),

We hereby declare that there is no conclusive result confirming the existence of so-
lutions to the minimization problem stated above. The only proof we have is that J is
coercive on V(Q).

There are two theories of existence. The first theory is based on the implicit function
theorem, which is valid for St Venant-Kirchhoff materials and is therefore restricted to
specific categories of boundary conditions. The bodies are either fixed along their entire
boundaries (a pure displacement problem, i.e., Iy = 02 ) or nowhere along their boundary

(a pure traction problem, i.e., I'; = 92 because the displacements fields does not reduce
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to {0}). This theory does not include the conditions found here if the applied forces are
not small enough.

The second theory, presented by John Ball, demonstrates the existence theory of the
minimization problem of the energy for hyperelastic materials that satisfies certain phys-
ically realistic conditions of polyconvexity, coerciveness, and ad hoc growth conditions.
This theory conforms to non-smooth boundaries and boundary conditions of the type
found in our problem and is not limited to forces that are small enough. This theory also
applies to stored energy functions of St Venant-Kirchhoff materials that are not polycon-
vex, as stated in Raoult [49]. Thm 4-10-1) .However, there is no solution to the variational

problem that exists in our problem because the energy is not differentiable (see [50] Sect.
7.10).

2.2 THREE-DIMENSIONAL VARIATIONAL PROB-

LEM SHELLS IN CURVILINEAR COOORDINATS

In view of writing problem P(£2°) in curvilinear coordinates, we define de covariant com-

ponents u;, of the displacement by the formula
UE(2°)6" = u, (¢) g™ (2°) for all &° = O(x°) € {Q°}~,
where
9 (2%)) = g5 (2°) - & and [¢"*(27)]; = ¢"*(27) - &,

[9:(2)] denotes the j-th component of the vector g;(z), and [¢°(z)]; denotes the j-th

2

component of the vector g'(x), over the basis {e!,é? é*} = {é;,és, 3} has the following

expression in terms of the inverse mapping o:
[9'(2)]x = VZO(2°) = (8:0%(iF)) for all 25 € Q°.
Using the relations ¢'(x) - g;(z) = 5; and é' - é; = 5;, note that the
97 ()]l ()] = 0.

We likewise associate functions v; with the functions v; appearing in variational problem
P() by letting

05 (2°)e" = v5 (%) g7 («°) and o5 (2°) = v§(2%)g"* (2%) - &;, for all 2° = ©(a°) € {Q°}
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The preceding relations thus become
vf () = 05 (8)g2 (a")) amd uf (%) = @@ lgs(@), for all & = O(a%), a* € OF.
We deduce that v° is in the following space
V() = {v = (v]) € WH(Q%R?); v =0 on I},
¥ ={r" = (1) € (LX) 7, = 75,

Y] Jit:

The vector v° is in the space V(£2°) of theorems ([1.2)) and ([1.3)), such that

0r: () = (viylo™ g1, ) (@),
V(@) = OFvp(x°) — T (%) 03 (2), (2.2)
iy () = g"(2%) - O (a°),

for all 2 = O(2°),2° € Q. The symmetric matrix o¢ is in the space ¥° reads

€
q

65:(2°) = o5, (2°)[g"° (2°)]x g7 (z°)]; for all 2° = O(aF), 2° € . (2.3)

We use the relations (2.2)), we obtain

1
2

= %((Uiinz + Vi + 9" vn ) 9 ilg 1) (%) (2.4)

= (Bu(0)g"ilg);) (+°) for all 3 = O(a%), a* € O

E5(0°)(2°) = 59505 + 9505 + OF oy, 0507°) (2%)

i “m~j

We have

(B @) (@) =

= ((Bfy) (w)v*g"<Llg ;) (=°) at all & = ©(a),2° € O
From and (2.5)), we show that
(65,((B5) (00 ) (3 = (o5 (Bfp) (u)e?)) (2°) at all &° = O(a*),a° € O,

where

e __ pijklie e 5
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From the relations (1.6)) and (1.7)), taking into account the following relations

di® = /g (x?)dx®, (2.6)

AU (%) = /g7 (%) /e (2%) ¥ (%) my () T2 (2°), (2.7)

£

where (ng

¢) is the unit outer normal vector along the boundary I'° U T

We associate with the Cartesian components of the applied forces f’“e = ff and [¢ =
2, the contravariant components f>° € L*(Q°) and [** € L*(I'%. UT?) defined by
fr(a)e’ = f25(a%) g5 (2%), (89" = {ni(a)g™= () (2%)} 21 (%) g5 (%),
Then we obtain

/ ff@fdf: frevivgeda / Zf@fdeZ/ ["v5y/gedl™.
2 fe Uiy rsurs.

Consequently, the variational problem P(Qa) is equivalent to the following variational

problem in curvilinear coordinates

Find u® € V(9°) such that

P() S Jor ATEEER ) (uf) Fy (uf, 0°)/gFda® = [, foovf\/g7da*
+ Jpe ups P05 VgRATE, Vo € V()

where
Az’jkl,s _ )\sgij,sgkl,s + Ius (gik,egjl,z-: + gil,sgjk,s)
F(u,0%) = (E5);) (u¥)o".
Therefore, the stored energy function J¢ of a Saint Venant-Kirchhoff material in curvi-

linear coordinates given by

— 2 st AUMSEZHZ v°) zHJ( )V gEda®
—{ fQE FHVE G + fpe pe 505 /FATe .

2.3 FORMAL ASYMPTOTIC ANALYSIS

2.3.1 THE THREE-DIMENSIONAL EQUATIONS OVER A DO-

MAIN INDEPENDENT OF ¢

Using technics from asymptotic analysis due to Ciarlet [31], we transform the problem

P(€) into asymptotically equivalent problem posed over a domain independent of .
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More specifically, we let
Q=wx]|—-1,1], Ty =9 x [-1,1], 'y =w x {1},

and with any point 2° = (25) € QFf, we associate the point z = (z;) € Q defined by
To = Yo and x3 = %x%

We define the bijective mapping 7 from € to ¢ such as

i x = (1) € Q— 2° = (25) = (w1, 19, c23) € Q.

)

So we have

0., =0, and 05 = %83.

We define the space
V(Q) = {v=(v;) € W*(Q);v; =0 on Iy}

To begin the asymptotic analysis, we first make the following scalings.
To the fields u®, v° € V(QF), we associate the scaled fields u(e), v € V(Q) are defined
by

ui(e)(z) = us(2°) and v;(x) = v5(2°),Va® = 72 € (.
The scaled functions g” (), TY;(¢), g(e), A (e), Ey;(e;u(e)), (e ule), v), wy;(e),

and
vj);(€) are defined by

g7 (e)(x) = g"7=(2%), TT(e)(x) =TT (27), g(e) (@) = g°(a),
/4”k”(€ (x) = AV (z ), Eij(g;ule))(x) = B, (uf)(x7),
kav@)@@) Fy (uf, 0%) (%), wa(e) (@) = gy (2°),

for all ° = 7°x € QF.
Next, we make the following assumptions on the data: there exists constant A > 0
and p > 0, the functions f* € L*(Q) and I' € L*(I'y UT_) are independent of € > 0 such

that
A=X, = s,
fi(e)(x) = fi5(2°) Va© = 7z € QF, (2.8)
l'(e)(x) = 1" (af) Va* = 7z € = UT=.

We thus have the following result.
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Theorem 2.1 The scaled unknown u(e) satisfies the following variational equations

(

Find u(e) € V(Q) such that
P<5; Q) €f Amkl EkHl(g u( ))F”] g, u \/ dI =
G Jo Fi@viv/gle)de + [i_ o, e)vin/gle)dl Vo e V(Q),

where

/

AT (e) = Mg (e)g™(e) + (g™ (e)g” () + g™ (e) g™ (e)),

Eyi(2,u(e)) = 5 (wii(€) + wja(e) + g™ (€)umyi(€)uny; (),

| Fasle, ule),v) = 5 (Vi (&) + v310(8) 4+ g7 (€) { i (€)Vn))j (&) + i (€)vmyi(€)}),
with
ug|a(€) = Oaupg(e) — I g(e)up(e), vsjale) = davs — I z(e)vp,

u3||a(5) = Oauz(e) — Ths(0)uq(e), USIIO!(E) = Oav3 — I'3(€)vs,

Uq|3(€) = éagua(s) —I's(0)us(e), vays(e) = %831;& —I'%.(e)vy,

\U3||3(8) = §83U3(€), USH3(5) - %831]3.

Proof. See proof of Theorem 8.4-1 in [31] m

2.3.2 FORMAL ASYMPTOTIC EXPANSIONS METHODS

The objective of the asymptotic analysis is to study the behavior of the solution wu(e) of
the problem P(g;(2) when € approaches zero. To this end, in order to obtain a mem-
brane model in the limit, we transform the variational problem P(g;2) into the following

problem

Find u(e) € V() such that
P*(&;Q) ¢ [o A7 () Epyu(e, ule ))FHJ e, u(g),v) \/ g)dx =
Jo Fi(@)vin/g(e)da + fr,uml (e)vin/g(e)dl’ Vv € V(Q)

Next, we write the scaled unknown as a formal expansion in terms of powers of the

thickness as follows

——u V(@) 4 (2) Feut(x) (2.9)
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for some integer N = 0, where each term u?, ¢ = —N is independent of &, with
u N u N e V(Q).
Next, according to Theorems 8.5-1 and 8.5-2 in [31]], for all 0 < & < gy, we have

(g:(2)(x) = ai(z1, 22) + ex39 (31, 1) + 0(€),
§(e) (%) = a¥ (21, 22) + ex3g”! (21, 22) + 0(),
g7 (e)(x) = a¥(zy, x9) + ex39" (21, 12) + 0(e), (2.10)

Va(e)(x) = \/a (1, 22) + ex39" ($1,$2)+0(5)

Tk (e)(x) = THO(xy, 20) + 5-T3F¢j Y21, 22) 4 o(e),

\ " Y

I

where

g%t = 20718, ¢! =0, FZ’E = F25,F3§ = bag, T3 = =07,

3 =180 =0 ng = =9 |o= —(0a0G + T, b5 — T 5b7), (2.11)
Pas = —02bop, T35 = —b3b7, Toy =Tl =0.

Also, the contravariant components A“*(g) of the scaled three-dimensional elasticity

tensor satisfy

AM(e) (@) g(e)(x) = AT(0)V/a(w1, ) + eBI + B2 4 0(?),  (2.12)

where

(2.13)

AQBUT(O) — )\aaﬁam' + u(aaoaﬂT + a/OéTa/ﬂO')’ Aaﬂ33(0) — )\aaﬁ’
Aa303<0) — Maaa’ A3333(0) =\ + 2,LL, AaﬁaS(()) — Aa333(0) =0.

Finally, we will need the following Lemmas.

Lemma 2.1

(i) Let the functions AY*(0) be defined as in (2.13)). Then for any symmetric matrices
(sw) and (ti;),

Aijkl(O)skltij = (Aa*Pa" + ,u{a“"aﬁT + ama,ﬁ”})swtag + 401a%7 43t 3
+ A0 535t 0 + N7 S grtz3 4 (N + 24u)S33l33. (2.14)
(i) Let a =a'-a’. Then for any y € & and any matriz (t;;),

aij(y)am”(y)timtjn >0 and a¥ (y)a™ (y)timtjn =0 < t;; = 0. (2.15)
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Proof. See proof of Theorem 8.7-1, part (i)-(ii) in [3I], or proof of Lemma 1 in [32].

Lemma 2.2 The formal asymptotic expansions of u;;(¢), Ey;()(u(e)) and Fy;(e)(u(e), v),

beginning with different powers of €, are of the form

;

1
um”a(s) N mﬂfa—'—"' ,
1 u-N-1 1 u-N
Um||3(€) N+1 m||3 + 5 eN mH3 e
1 _
Eqs(esu(e)) = 5y Eaiy +-
1 —2N-1
Eqs(eiu(e)) = N EaHB TR 010
1 B _ .
Ey3(e;u(e)) = N E3H?’>N 24
1
a||5(87u(‘€)7v) 5NFCV||:8( )+ )
1 N
Fys(e;u(e);v) = N Fa”g’ Yo)+---,
1
\ F3||3(€,U(6),U) €N+2F3||év 2( )_|_ .

where

-N _ —-N p,0 ,, —N
umHa—aaum — hu, ™,

= a3u_N+1 an%u_N (217)

_ 0
Umfla = OV — [B7 0

mH3

The expressions for the functions Ey; and Fy; above differ according to the value of N,

for instance

1
E2N = —am”u;ﬂfa il if N> 1,

i
— 0 mn,,0 0 ; —
= 5 (tqys T Ugja + A" gy iys) I N =0,

_N _N .
am”{um”avnuﬁ + un||ﬂvm||a} if N > 1,

Proof. The proof is as in Theorem 8.7-1, part (iii) of Ciarlet [31]. In addition to detailing
the accounts. Using a formal asymptotic expansion (2.9) and the relations ([2.10])-(2.11)),
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we obtain

Um|a(€) = Oalim(e) — 2, (€)up(e)

1
— -N —N+1
_a(eNm+N1m++ )

{ 1

— e (OuuY  Th) +
_ 1 7N N 1 *N+1+ .

(
(I‘p, +€ZE3FP’$L+"')<€—U_N+"'>,

e (O = T )

[ T v Ymle T N2 Ymlla ;
, X (2.18)
tm3(£) = ZOstum(e) = This(E)up(e)
= 133(€%U;LN + 6;—_1u;nN+1 o) = (TP + exsTPh 4 - - )(EiNu;N +0),
- N1+133u;LN+€iN(a u VT I‘p’o —N)_|_... ,
| = ol
, ) X ' (2.19)
usy3(e) = ga:aus(&) = —33(€—u3N + gN_lugNH + uz Nt ),
- 5’\7}163” 51 Opug ™ (2.20)
| T vt ;;g 1+6 u3‘g+ -
( Eqys(g;u(e)) = Eqyp(e, ELNU_N + N—_lu—N‘H +--4)
:%<( : Uiy + N : ity o) %v Ul + Nll Ul "))
+%(amn+exsgmn’1 +---)(;V u i+ gNl cu ) %V u o+ ]\} Cup
+--) = %(%amnu;ﬁau;ﬁg) +e
| =B
f 1 (2.21)
Eq3(g;u(e)) = Eajale, g—Nu_N + mu—f\“ﬂ +--0)
= 5 (el o o)+ Gyl et )
%(am" + exzg™™t 4 )( %V Unloe + Ezvl—l%fa“ 1. )(5N1+1 up (2.22)
+;vl;|f§ +o0)= {_:mi—ﬂ(%a mHaagu*N) + %(ﬁamnu;ﬁaunlg) N
_— 52N+1E07||23N T gzNE_II2?fV+"' ’
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( 1

E33(g;u(e)) = Ey3(e, €—qu + ———u V)

€N—1

1 1 1 1
= (gl ™ s ) (@ g™ )

15N+1 313 ) ) 2 eN+1 U3

+5_N§%||3;r"-)(5N+1 Ungiy '+ Ttz T ) (2.23)
= v (30" s )

B Ao

[ Fusleule );v)zFauﬁ(ﬁ,i B 171u*N“—|—--- v)
= % (000 — (Fp + ez - )v,) + (Davp — (Fpﬁ + 5:1031“”5 + - )vp))
+%(amn + exgg™t 4 - ){(;V ;ﬂ[a - ENl_lu;ﬂ[*l - )(Oavy, — (Fg’n
el )+ (;V Unjjs T N1 T+ ) (Oavm — (T
FemTh + )} = (50 m"{um“a@vn Pﬁz%) ) Outm — T200,))
o= ;\r(; mn{“muavnllﬂ +“n\\ﬁvm\\a}) "

U 5_NFa_HJg(U>+ ’

(2.24)

1
Fos(siu(e);v) = Foysle, E_NU7N i wNL L )

eN-1

]' 1 log log g a
= 5 (00— (U204 eaal T+ )en) o+ @ava = (025 el )
1 1 1 1
+§@m"+aw¢mﬂ+«~ﬂgw ) - AE4+.”xﬂ%%
1 1
— (170 4 exs%% + - v,) + (T Ep— Op Uy — (IP0
n3 n3 am

. =N+ U3 eN n||3

1
+5~"C31F’é’5@ o )u)} = e (Ga™ Ui O30n) -+
F;‘gfl(v) e

\ - gN+1
(2.25)

( 1 -N 1 —N+1

F3||3(5- u(e);v) = Fys(e, g—Nu + mu +ee )

_ 1 1
= —831]3 4 ( mnar gmn,l 4o >(5N+1 m]H\g 1y 8_Numjlr3 4. )(5831}”
—1 mny, —-N
= 5]\[-&-2 (a UmH?) a?ﬂ)m) + m(@ m”383vn) 4 .. ,
1 N—-2 ]- N—1

\ - 5N+2F3H3 ( ) F3||3 ( )+ s

We now show that the expansion ([2.9)) begins with a term of order 0 with respect to
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Theorem 2.2 Assume that the scaled unknown satisfying problem P(e) admits for each

0 < e < ¢gg a formal asymptotic

_N,U_N+1 c V( )

expansion with u N £0, for

some integer N € Z. Then N = 0.

Proof. The proof is as in Theorem 8.7-1, part (iv) of Ciarlet [31]. In addition to detailing

the accounts

(i) We substitute ([2.9)), (2.10)),

(2.11)) and formal asymptotic expansions of E;;(¢)(u(e))

and Fj;(¢)(u(e), v) the found in of the Lemma [2.2[in P(c), we obtain
[ Jo(A(0)Va + ea3 BN + ) Eyle, u(e)) Fy (e, u(e), v)da
= Jo(A7R(0) Byyule, ule)) Fy;(e, ule), v)v/adz
+ [ (exs B 4 ) Eyu(e, ule)) Fy (e, u(e), v)da,
:fQ(Aijkl(o)(gmin’k_'ﬁN 2+€2N+1Ek_||2[N 1Jr 1 E;;||21N+)
(gN—iQEﬂjV‘Q(vaﬂ‘,f‘l( )+ - . —F ) + - )adz
+ [, (exs Bk +“')(52N+2Ek||2lN . oy v B! + - ! v EatN 4
(51\71+innyN “(v) + N+1FzﬂJN (v )+ : F||] (v )+"')d9€
AR B0 ads
+ g Jo AT O By Fy T (v)Vade
+€3%+2 Jo AT Ei 2 Fy N (v) Vada
+83N+1 fQ AUH(0) k||2lN 2FZHJN+1(U)\/5d$
TN 3]\1r+3 Jo AH(0) k||2lN IFZHJN *(v)Vadx
T 3N e Jo ATR(0) BV Fy N (v) Vade
+€3N+2 IQA”M(O) k||2zNFﬂjN *(v)Vada
TN 3N+1 Jo A7TH(0) k||21NEL\|jN '(v)Vadzx
fQ {ATR0) ELiV Fy Y (v) + Ek||2zNHF;||JN o) }adx
+ ;N Jox3BY klEklﬁNF”N Yv)dz + -+ -
= Jo fi(e \/_dx—l— fr Ty li()viy/g(e)dT,

\

(2.27)

for all v € V(§2). We are now in a position to start the cancellation of the factors of

the successive powers of € found in the variational equations (2.27)). In what follows,
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L" designates for any integer » > —3N — 4 the linear form defined by
L' (v) = / i v/ adx +/ 1"/ adz, (2.28)
Q F7UF+

and it is always know that the functions f*" € L*(Q), I*"*' € L*(T'y UT_) are

independent of €.

Assume that N > 0. Since the lowest power of € in the left-hand side in (2.27)) is
e73N=1 using the relations (2.16) and (2.17) of the Lemma[2.2] we obtain

( 1

c3N+4 fQ Aijkl(O)E RN 2( )\/de

k|l illg

= Z3N+4 fQ Aaﬁwm)EgHQTN 2Fa||]g 2( )Vadz
1

a3o N— N—
3N +4 fQ 4A 3Eoz||23 2F10||3 2( )\/Edl’

1 « 2N -2 N—-2
c3N+4 fQA 633E3||3 Fallﬁ (v)v/adx

oT N— N—
c3N+4 fQA33 Ea||27 2Fg||3 *(v)Vadx

1 IN—2 71— N—2
~3N+4 fQ A3333E3||3 F3||3 (v)Vadz.

4
4
N
\ + =~

The gives the first assumption on the order of the applied forces: There exist
[N e L2(Q), I73V3 € L3(I'y UT_) independent of & such that

P @) = S P ),
li(e)(x) = 531$+3 [i-3N=3 ().

Then the cancellation of the coefficient of e 3¥~* then produces the equations:

/ (A +20) B 2 Fy 2 (0)ade = LY (v) for all v € V().
Q

From the relations ([2.23]) and (2.26)) of proof the Lemma we obtain

]. _ —_ mn
By = 50" 05, Ogu, " and Fy™(v) = a™" Osu,, " Osvn,

we must have

L3N4(y) = / fi,—3N—4vi\/adm+/ 15738 =3y.\/adl = 0
0

ryur—

for all v € V() that are independent of x3. According to the first requirement,

implies that we must let f>=3N=4 =0, [»73NV=3 = (.
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N

By choosing test function v = =" in the resulting variational equations, we obtain

CON-2 - N—2, — 1 e _
/E3”23N 2F3Hév 2(uNvade = 5/(a Osu, N ogu M) \/ade = 0,
0 Q

we observe that

amnﬁgu;Nagu;N =0.

Since the symmetric matrix (a%) is positive definite and according the relation ([2.15))
from the Lemma [2.1], we infer

Osu™ = Ozu, N =0in Q, (2.29)

N

we conclude that the first term of formal asymptotic expansion v~ is independent

of x3. Then, we get

E;2N"2 =0 and F?)_Hév_2(v) =0 for all v € V(Q).

Let us introduce the space
Vir(w) = {n = (n;) € W (w);n = 0 on }. (2.30)
Since ™ € Vs (w), then

E2N2 = E 2N — 0 in Q and F; VN %(v) = 0 for all v € V(Q), (2.31)

ill il illg

and to the new assumption that there exist f—2¥=3 € [?(Q) and [*¥~2 € L*(T, U
I'_) independent of € such that

FE) = e ),

(e) () = — o [i—3N=2()

e3N+2

The cancellation of the coefficient of e73¥=3 in (2.27)) then produces the equations:

/ Aijkl(O)E—ZN—lF‘_N_Q(U)\/ad:B = L_3N_3(U) for all v € V(Q),
Q

k||t il
where
L3N73(y) = / o3V SBu/ade + / 153N =2y.\/adl .
Q I, ur_
Since Ek_HZlN 1 =01in 1} according the first requirement imply that we must let

fE3N=3 = 0 and [%3V~2 = ( leads to
L™3N=3(p) = 0 for all v € V(Q),
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(i)

which leads to the assumption that there exist f=3¥=2 € L*(Q) and [3V~! €
L*(Ty UT_) independent of € such that

4 1
f'(e) = Z3N+2
; 1
I'(e) = 23N+

fi,f3N72

bl

i,~3N—1
The cancellation of the coefficient of e73V~2 in ([2.27) then produces the equations:
/ Aijkl(O)E,;'ﬁNﬂﬂ;V_Q(v)\/adx = L3N "2(v) for all v € V(Q),
Q

where

L3N=2(y) :/fi,—3N—2vi\/adx+/ 163N =Yy /adr.
Q Tr

+ur'—

Since F;V"2 = 0 in 1| for all v € V(Q), according the first requirement imply

illj
that we must let

fi,—3N—2 — 07 li,—3N—1 — 0 (232)
leads to L™3N=2(v) = 0 for all v € V(Q).

Assume that N > 1. The same type of assumption: there exist f3V~! € L?(Q)
and [3N € [?(I'y UT_) independent of & such that

FE@) = e ),
li(e)(x) = 83Lszv—?W(gz;).

The cancellation of the coefficient of e73¥~1 in ([2.27)) then produces the equations:

/ APR0)E2N FN = (v)yade = LN\ (v) for all v € V(Q),
Q

ill

From the relations ([2.21)-(2.22)-(2.23))-(2.24))-(4.3))-(2.26)) of proof the Lemma [2.2]

we obtain

1

2N _ ~ _mn,—N —N —N-1 —

Edip = 50" Unlatinlpr Faps~ (V) =0,
1

2N _ Y mn, -N_ N p-N—-1/\ _ * mn —N
Elis =50 u s, Fo (v)—2a umHaagvn, (2.33)

2N _ Yt mn, N, -N p-N—-1/\ _ _mn,-N
Eyisw = 9@ 3tz a3 (v) =a “m||3a3vn

Choosing v € V() be independent of z3 then shows that we must let f43V=1 =0

and [>73" = 0 (the first requirement), we obtain

/ Aij’“(O)Ek_HQINF._N_l(v)\/de =0 for all v € V(Q).
Q

il
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et the field w"' = (w e define
L he field w? (ﬂ]\{)b defined by

3=

= 0N — (1 )T for all (y, 25) € O

w m

Then w? € V(Q) and dzw) = dsu Nt — Ff,;%u;N = u;n]HVg Next, from (2.33) we

get

Foy (™) = EZAY and Fyi~H(w) = 255",

Choosing v = w the test function in the last variational equations, we find that
/ AT0) BV Y (w™)Vade = 0. (2.34)
Q

We substitute the relations (2.14)) of the Lemma and (2.33)) in equations (4.19)),

we obtain
or 7—2N 7—2N ao 7—2N p—2N —2N n—2N
/Q()\a E N2 4 2002 B2V E 2N 4+ (A + 20) By 2N By 2N)Vade = 0

or
/Q (™ B MBS 4 2pa™ B Y EEY ) Vade = 0.

According the relation (2.15) from the Lemma , we observe that

mn ;ﬁi\[ — %aijam”ui‘”ﬁ u]_”];[ > 0in 0
and
E?,_H%,N = %amnu;f”\gu;”]g > 0 and am”E;ﬁéanng > 01in €,
so that

mn 7—2N 7—2N __ :
a Em||3 En”3 =0 in €,

consequently that

9N .
Em”3 =01in €,

1
in special then, E?)_H%N = §amnu;ﬁgu;‘g = 0 and thus

u = 0. (2.35)

m||3

Assume that N > 2, the same type of assumption: there exist f=3" € L*(Q) and
[73N*1 € [2(T' UT_) independent of ¢ such that

FE) ) = g (),
ZZ(S)(.YI) — engllli,—SN—H(x).
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The cancellation of the coefficient of 73" in (2.27)) then produces the equations:

L N
+ [, ng”kl’lEk_HQINF._N_l(v)dx = L73N(v) for all v € V(Q),

il

(2.36)

From the relations (2.21))-(2.22)-(2.23)-(2.24)-(4.3)-(2-26) of proof the Lemma [2.2]

we obtain

( 1
E2N =0, E2N — —gmng =N N

ill3 ol = 9% Umjjatn)s

1
—N-— -N mn(,,—N —N
Fap ' (0) =0, Fyi(v) = 5a™ (U vnls + tyj5Vmia);

s ) = g O, Fof(0) = Sam(un g0, — Y T,
\ Fgﬂé\f’l(v) =0, Fgﬂé\](v) = am”u;fuvgﬂﬁgvn.
(2.37)
Noting that, from ([2.37) that Foj||]§_1(v) = F;Hév(v) = 0 if O3v = 0 and using the
relation from the Lemma , we thus infer that reduce to
/Q A5 (0) ES2Y Y (0)ade = LY (v) (2.38)

for all v € V() that are independent of x5, according the linearization trick, implies
that L=3N(v) = 0 for all v € V(Q) that are independent of z3. Hence we must let

fi,—?)N =0 and li,—3N+1 =0.

Since u~ is independent of x3, we may let v = u=% is a test function in (2.38)), we
get

/ AT (0) EL 2N B2V ada = 0,
Q

: ~N(, N\ _ 9p—2N
since F 5 (u™) = 2E_ 5", Then

1
—2N _ -~ mn, —N , —N __
EaHB = 2a Uyl Unl| 3 = 0 in Q.

Using the relation (2.17)) from the Lemma imply that v = 0 and from (2.35),

mlla

consequently

uw N =0.

mli

From the relations (2.11)) and (2.17)), we get

-N -N 0 -N _ 5  —N -N —N
Uglo = Oatg — Iogu, ™ = Oaug™ — If5u," — bagug ™,

N _ g5 ,-N_1p0, -N _ 5  —N | 15 —N
Ugio = Oausz ™ —Togu, ™ = daug™ + bgu, ™.
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Let ¢ = u; ™ |z3—0. Then ¢; € W4 (w) since u; ¥ € WH(Q) and ¢; = 0 on 7, since
N =0 on I'y, imply that

N—0forall N > 2.

Assume that N = 1, the first four steps of cancellation rest the same, leading to

Osu™t =0 u;nh?) = 0 when N = 1 in the relations 1' and 1’ of proof the

Lemma the expression of F R becomes

1
F! 8gva + —a™

a||3 2 ( mHa FnS UO')

3”3 = 83’03 + a™ m”3631}n.

Therefore, only required the consideration of functions v € V(2) that are indepen-

dent of x3, in this case F} = 0, the second requirement of linearization can be

313
retained, we show that

ul=0.

Hence, the formal asymptotic expansion u(g) becomes

u(e)(r) = u’(z) + eut(x) + -, (2.39)
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Chapter 3

ASYMPTOTIC JUSTIFICATION OF
EQUATIONS FOR VON KARMAN
MEMBRANE SHELLS

The objective of this chapter is to study the asymptotic justification of the two- dimen-
sional equations for membrane shells with boundary conditions of von Karman’s type.
More precisely, we consider a three-dimensional model for a nonlinearly elastic mem-
brane shell of Saint VenantaKirchhoff material, where only a portion of the lateral face
is subjected to boundary conditions of von Karmén’s type. Using technics from formal
asymptotic analysis with the thickness of the shell as a small parameter, we show that
the scaled three-dimensional solution still leads to the two-dimensional equations of von

Karman membrane shell. This work was published in [46]
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3.1 THREE-DIMENSIONAL PROBLEMS OF VON KAR-
MAN MEMBRANE SHELL IN CARTESIAN CO-

ORDINATES

Let w be a connected bounded open subset of R? with a Lipschitz-continuous boundary
and let v be a relatively open subset of v such that length(vyy) > 0 and length(y;) > 0,
where 71 = 7\7. Let 0 : & — R3 is a smooth enough injective immersion of class C? such
that #3 constant on the boundary ;.

We let F = O(), 41 = 0(n), Y0 = 0(70), (RS) is the unit outer normal vector along
the upper and lower faces I, = ©(I'}). We let 'y = O(I'5) and ! = ©(T%) the portions
of the lateral face. Since 5 is constant on the boundary 7 of w, the portion I'j is vertical.
We denote by 2° = O(2°) a generic point in O and we let d° = 8/0is.

Consider a nonlinearly elastic membrane shell occupying in its reference configuration
the set &, with middle surface @ = #(w) and thickness 2 > 0, the material constituting
the shell is a Saint Venant—Kirchhoff material, i.e., a homogeneous, isotropic material,
whose Lamé constants are denoted by A* > 0 and p* > 0. We assume that the reference
configuration is a natural state. The shell is assumed to be clamped on the portion fg.

The shell is subjected to body forces of density (f¢) : Q — R3 and surface force on
the upper and lower faces with density (Zf) : fi U — R3 On the portion fi, the
shell is subjected to forces of von Karman’s type, which are horizontal, only the resultant
(he, kS, 0) after integration across the thickness is given along 4;. We call this a "von
Karman membrane shell", see Fig. cf. Examples of nonlinearly elastic membrane
shells given in [31), Section 9.1].

Finally, we define the spaces

A, 0° = (05) € Wit QE;R3;17§:0 on IA’E,
vy - {, C3 0w s

independent of 7% and 05=0 on I%

e = {3 = () € (L) 7 = 74}

ij

The unknown displacement field 4° = (45) and stress field 6° = (67;) satisfy the
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Figure 3.1: A von Kérman membrane shell.

following three-dimensional von Karmén shell problem in cartesian coordinates
A . . .
13} ~E ~E E N E — g 1 g
~E ~E AEA€ A€_A€ AE A6
(O’ij—l-O'kj kui)nj—li on I UI%,
NE AE
u; =0 on IF,
+e
1 o~ ~e Aene e __ je 2
2 / <Uaﬁ + O-kﬁakua) Vg de - ha on i,
—E

NE

] $E AE
4;, independent of z§ on I7,

NE — A&
u3 =0 on IY,

\

such that the Piola-Kirchhoff stress tensor (67;) and the Green—Saint Venant strain tensor

(E;j(0°)) are given by

) i YmY5 Ym

{&gj = NEE,(4°)6;5 + 2 B, (4°),
1 A A N
B (i) = (05 + 5 + O, b5, )
where 6;; is the Kronecker’s symbol.

First, we rewrite the previous boundary value problem in the weak form, by using

Green’s formula, we show that any smooth solution of the boundary value problem also
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satisfies the following variational problem
Find (4¢,6°) € V() x £¢  such that

. 6 GEus)é%f dif = | frofdif + / 25 dI*
P(Sr) /< R ar Pe uPe

+/ he (/ (5 0 ©) dw§> 4y, Vit e V().
M

—&

Next, the variational problem P(QE) may be formulated as a minimization problem

iF e V(QF) and JE(0F) = inf  J(0°),
eV (QF)

such that the stored energy function J¢ of a Saint Venant-Kirchhoff material given by

Te /e 1 1ikl,e ~E e (E 13
Jo(5%) = 5 || AP B9 By ) i

—{ e di® +/ Zf@fdf6+/ Bg(/ (@;o@)dx§> d@},
Qe rsure A1 —e

Aijkl,s _ )\séijékl + /LE <5ik‘5jl + 6il5jk>,

where

Because of the material constituting the shell and its boundary conditions, we cannot
use the implicit function theorem (valid for a Saint Venant-Kirchhoff material with smooth
boundaries) and existence theory is due to Ball [48] for polyconvex stored energy (the
stored energy function of a Saint Venant—Kirchhoff material is not polyconvex, see [49]).
For a more detailed survey, see [50], [31], and we refer to [5I] for some open problems in

elasticity. Recently, some new existence results found in [52], [53].

3.2 THREE-DIMENSIONAL VARIATIONAL PROB-
LEM OF VON KARMAN MEMBRANE SHELL

IN CURVILINEAR COORDINATES

As previously stated in Sect [2.2] we follow the same method, clearly that, v =0 on I'§.
In order to find a guaranteeing of boundary conditions on I'{, we compute the com-

ponents g5 (z¢) on I'.
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Note that (see, for example, part (iv) of the proof of Theorem 2.8-1 in [54])

9a(77) = aaly) + 25a5(y) and  g5(z°) = as(y).

Since 63 is constant on ~; by assumption, then it is easy to obtain, for all y € ~;,

8181 8291
ar(y) = | b2 | (v),  axy) = | 0ba | (v),
0 0
0
(a1 N ag)(y) = 0 (y)-

0101.0205 — 0,05.0,0,
Then we have ¢, is independent of 25 and v§ = 0 on I'].

We deduce that if ©° is in V(Qe), then v¢ is in the following space

3
«

ve = (v5) € WH(Q5R3); v =0 on T, }

independent of z§ and v5=0 on IY

v ={

[

1/2
The length element dvy(y) = {dyT dy} is transformed through the components
aas(y) into dy(y) of the form (see, for example,|The relation (1.13)), and Theorem [1.5])

R N 1/2 .
dy() = {dy s (Y) dyﬁ} ,  Yy=0@), yeEm.

The length element dy cannot be expressed in terms of dv, like the formulas found in
the relations (2.6 and (2.7)). For simplicity, we assume that there exist a smooth function
p(y) : 11 — R such that

dy(@) = ply)dy(y), Vi=0), yeEmn.

Particularly, in the case of shallow shell, where the initial shell curvature is assumed to

be small, the function @ is defined by

0(y) = (y1,92,0(e)),

then we obtain p(y) = 1, see, for example, [55].
Now we associate with the Cartesian components of the von Karmén forces i = ﬁf,

the contravariant components h* € L?(;) defined by
B@)E = h*W)gf(45.0),  Yi=0@). yEmn.
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In particular, we see that h3¢ = 0.
Hence that for all v* € V(§2¢), we have

/’% EZ </_+5(f)3 0 0) dxé) dy = / hﬁ’a[gg]o‘</+e g d$§>pd7

€ Y1 —€

+e
= [ onelgacte ([ ass)
m —
:28/ ph®cve, dry.
71

We indicate if the curve v; be parameterized by its arc length through the mapping
o0, i.e.,
M= {Q(t); te 1}7
where o is a smooth enough injective mapping and [ is a compact interval. Then the

length element d# is given by

a 8 1/2
#49) = {austol) ) (1)} " i

For more details about this, see, for example, |1.13] Theorem .
Consequently, the variational problem P(QE) is equivalent to the following variational

problem in curvilinear coordinates

Find u® € V(Q°) such that
praey ] [ AP B GV = [ s [ i

< ury

+25/ phfvs dry, Vo© e V(§F),
71

where
{Aijkl,s — )\sgij,sgkl,s + Ius <gik,€gjl,s + gil,sgjk,s)
Fiy (0 0F) = (B3, (wd)er
Therefore, the stored energy function J¢ of a Saint Venant—Kirchhoff material in curvi-

linear coordinates given by

€ (1€ 1 ijkl,e e € € € €
JE(v°) = 5/ AT BR (0%) B (v) Vg da

- { FoEuE g dat + / 1P50f\/gF dT° + 2¢ / ph= s dfy}.
Q= reurs 7
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3.3 FORMAL ASYMPTOTIC ANALYSIS

3.3.1 SCALED THREE-DIMENSIONAL VARIATIONAL PROB-
LEM OF VON KARMAN MEMBRANE SHELL

Using technics from asymptotic analysis in Chapter [2 we transform the problem P(Q)
into asymptotically equivalent problem posed over a domain independent of €.

More specifically, we let
Q:OJX]—l,l[, F():’)/QX[—l,lL F1:71X[—171], FiZWX{:l:l},

We define the space

V() = v=(v;) € WH(Q;R3); v, =0 on Ty,
~ | v, independent of x5 and vs=0 on I'y[°

Next, we make the following assumptions the function h® € L?(vy;) are independent
of € > 0 such that

h*(e)(y) = h™(y) Yy em.

We thus have the following result.

Theorem 3.1 The scaled unknown u(e) satisfies the following variational equations

p

Find u(e) € V()  such that
P(e; Q) 8/(;Aijkl(S)Ekl(E:,U(E))E”j(g,u(g),'U)\/g(g) dxze/gfi(s)vm/g(a) dx
—|—/F . I'(e)vin/g(€) dF+25/ ph(e)vy d, Vo e V(Q),

3.3.2 FORMAL ASYMPTOTIC EXPANSIONS METHODS

The objective of the asymptotic analysis is to study the behavior of the solution u(e) of
the problem P(e;$2) when £ approaches zero. To this end, in order to obtain a membrane

model in the limit, we transform the variational problem P(e; Q) into the following singular
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perturbation problem

e

Find u(e) € V()  such that
P*(;:9) /QAW(@)EW(&U(€>)E|j(€,U(ﬁ),v)\/9(ﬁ) dv = /Qf"(e)vn/g(ﬁ) dx
+%/ I'(e)viv/g(e) dT + 2/ ph(e)vady, Vv e V(Q).

\

Next, we write the scaled unknown as a formal expansion in terms of powers of the
thickness as relation [2.9.

We now show that the expansion (2.9) begins with a term of order 0 with respect to €.

Theorem 3.2 Assume that the scaled unknown satisfying problem P*(e;)) admits for
each 0 < e < g¢ a formal asymptotic expansion of the form [2.9) with u™, u=N*1 € V(Q),

and u=N # 0 for some integer N € Z. Then N = 0.

Proof. According the relations (2.27), then the problem P*(g;Q) is rewritten as fol-

lows:

/Q A (0) Eyu(e, u(e)) Fyy (= ule), v)va da

S —l—/g(eBiﬂd’l+€2Bijkl’2+0(52)>Ek||l(€,u(e))FiU(a,u(s),’u) d:c,—/gf"(s)vi\/g(e) dx
—l—%/r o I'(e)vin/g(e) dF—i—Q/ phe(e)v, d, Vo e V(Q).

(3.1)

The proof is long, and similar to the proof of Theorem|[2.2. The only extra term appear-
ing here, comes from the functions h*(e). Taking into account the two basic requirements
systematized by Ciarlet [31)], the first one asserts that no restriction can be put on the

applied forces and the second is the linearization requirement.

In conclusion, first, we show that the first term of formal asymptotic expansion v~
is independent of x3, i.e., that satisfies
Ou™N =0 in Q. (3.2)
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Then we have

E?JIQ?)NQ =0 m Q and F:;Hévfz(v) =0, Vo e V(Q).

Therefore, u= belongs to the space

Viw) = {n =) eWHw); n=0 on 5, m=0 on M}  (33)
We also have

E;féV_Q = Eiﬁ.N_l =0 i Q and F;H]g_Q(v) =0, VoeV(Q). (3.4)

Next, we obtain

(

B3N =0, By = 30" Uiy

F %' (v) =0, Frs(v) = 5a™ (u;favnuﬂ + U;@Uvnna)a
Foj”g[*l(v) = %am"u;%ﬂ[aﬁgvn, F;Hg(v) =1a™ <U;Z|Ya+1a3vn - U;JH\;FZ’??UU),
\Fgﬂév’l(v) =0, F?)’Hév(v) = am"u;%ﬂagvn.

Ultimately, we conclude that the formal asymptotic expansion u(e) becomes

u(e)(r) = u’(z) + eut(x) + - . (3.5)

3.4 TWO-DIMENSIONAL MODEL OF VON KAR-

MAN MEMBRANE SHELL

3.4.1 TWO-DIMENSIONAL VARIATIONAL EQUATION OF
VON KARMAN MEMBRANE SHELL

Before giving the limiting two-dimensional model of von Kdrmdn membrane shell, we will

need the following Lemma.
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Lemma 3.1 Let u € L*(Q) such that / u - Osvdx =0 for all v € V(QY), then u = 0.
Q

Proof. See proof of Theorem 3.4-1in [31]. =

Theorem 3.3 Assume that the scaled unknown u(e) satisfying the three-dimensional vari-
ational problem P*(e;$) admits a formal asymptotic expansion of the form (3.5)).
Under the two basic requirements, the components of the applied forces must be scaled

as follows:

f@®) = f(e)(x) = fOx), YVzeQ,

I5(2°) = (e)(2) = el'(z), Yaxel,UTl_,

| (y) = hle)y) =1(y), Yy em,
where the scaled functions f© € L*(2), I' € L*(T,UT_), and h° € L?*(y1) are independent
of €.

Then the leading term u®

1s independent of the transverse variable x3 and its average

1 /1
== [ e
2/,
satisfies the following scaled two-dimensional variational equation

(

Find ¢° € Vyy(w) such that

Py (w) %/aaﬁmEguf(Co)Fg,3(77)\/50@_ /pi’omx/ady

w

+2/ ph®%n, d~, Vn e Vi(w),
71

\
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where

Egys = %<C2Hﬁ + (o + amn@ua%m)’

Fys(n) = %(nauﬁ + 7gjja + am”{C%uJinuﬁ + C3||g77m||a}>7
Nalls = ONa — Logle — bapms,

318 = 93 + bF7o,

aaﬁm’ — )\ﬁi\gu aaﬁaaT + 2/1, (aaaaﬁ'r + aO‘TCLBU),

1
p*o :/ Fodas + 15+ 10 with 13 =1"(, 1),
-1

\
Proof. For clarity, the proof is divided into three parts.

(i) The first part (i) of the proof of Theorem[3.4 remains valid in case N = 0 (i.e., the

cancellation of the factors of €74, €73 and e72). It follows from (3.2)) that

0u’ =0 in Q,

which implies ¢° € Vy(w) (where the space Vi (w) is defined as in (3.3))).

For any integer r > —1, L™ denotes the linear form, be defined as follows:

L™ (v) :/fi’rvi\/adx—i—/ li’r+lvi\/adF+2/ ph®" v dry,
Q r

— UF+ 71

where the functions f*" € L*(Q), I""t' € L*(Ty UT_), and h™" € L*(v1) are independent
of €.
(ii) We assume that there exist f~' € L*(Q), I° € L*(T, UT_), and h™' € L*(y,) are

independent of € such that
(

file)(@) = 2 (),
Y U(E)(z) = 1"(),

|7 (y) = 2P (y).
The cancellation of the factor of e~ in (3.1)), it follows from (3.4) that

/Q A0 ES Pl (v)vade = L), Yo € Vi(w),
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Using the relations (2.16|) and (2.17)) in the case N =0, we have that

(
0 _ 1 0 0 0 0 -1 _
Eag =2 (“allﬁ + Ugja T “m"“mua“mw)’ Fp(0) =0,

Egus l( (()4\\)3 + u3||a +a™"u anauf“)g), Fa_‘lé(v) = %(83% + a™ \\a03vn> (3.6)
E;E,)H:s = ugﬂ)g + sa™"u 7(7%3“510“)37 Fgﬂé(v) = O3v3 + @™ m||aa3vm
with
Upnjjow = Oty = Lo,
m||3 = Oy, %%UO

The special notation “7(2|)|3 is due to Clarlet [31), indicates that ufg‘)‘g also depend on u'.

The expressions of the functions Fiﬂjl (v) are found in (3.6) imply that L= (v) =0 for
all v € V(Q) that are independent of x3.
The first requirement implies that f>~1 =0, [** =0, and h*~ ' = 0.

Hence we obtain
/QAW( VEY Fyj(v)Vade =0, Vo e V(Q).
Using the relations , , and , we obtain
[ A By ) ada

= /Q QMCLO“’EgH?) (831)0 + am"ugnnaagvn + UgHUagUg) Vadz
+ /Q <)\a°‘5Eg|B + ()\ + 2,u> E§3> ((1 + uéﬂé)c(?gvg + am"uggf':,ﬁgvn) Vadx

= /Q<2”E2II3 (a‘” +a"a BT%”U) + ()\a EOW + ()\ + 2,u> E§||3>a u ”3) dzv,/adx
+ /Q <2Ww By, + (A BYys + (A +20) B ) (1+ u3”3>)03v3\/_ dz

~ 0. (3.7)

The last integral in (3.7)) takes the form (wTﬁgvT + wgagv;;).
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Applying Lemma shows that

<ACI/ EOHﬁ -+ ()\ + 2/,L) Eg”?’) Ef(h)?’ + 2/,LE0H3( ar + a/ag ﬁTUﬁ”o.> = O mn Q,
<)\a/aﬁEgHﬁ + ()\ + 2,u> Eg”3> (1 + U/:(;')')S) + 2/,La/aoE3”3ug”o. = O Zn Q

This nonlinear system, has the obvious solution
NP+ (A 20) Sy =0 and Bl =0 in Q. (3.8)

In order to recover the linear model suggested by the linearization requirement of Sec-
tion [3.3.9, we consider only this obvious solution in the sequel, further details may be
found in part (ii) of the proof of Theorem 8.8-1 in [3]].

(111) We assume that there exist f° € L*(Q), I' € L*(T'y UT_), and h® € L3*(y1) are
independent of € such that

(

fie) (@) = (),
I'(e)(z) = el (),
1)) =m0 (y).
The cancellation of the factor of €% in , it follows from that

/Aijkl(o){Eknsz( )+ By Fyyy (v )}\/_d$+/ BUMEY F(v)de = LO(v), Vv e V(Q).
Q

The expressions of the functions Fiﬂjl (v) are found in (3.6) imply that Fiﬂ;@) =0 for
all v € V(Q) that are independent of xs.

Obuviously, we must have that
| AT OBy F )ade = L), Vi€ Varlw),

where L°(n) = /pi’oni\/a dw + 2/ ph™n, dry.
w pa!

58



Using the relations (2.13)), (2.14)), and (3.8)), we obtain
/QAMM(O) n i (mVa dze
:/(Aaaﬁa(ﬁ+'u<aa0a6T+aaTaBU)>Ea||TFaIIB(77)\/Edw

Q

+/Q<4“aaUEall3F 13(1) + AP Eg Foy (n ))\/_dx

/Q<>‘aJTEOIIT <)‘+2ﬂ)E??||3> 3||3( )\/_df

:/Q((/\aaﬁacfr+N<aaaa57'+aaTaﬂo>>Eo||TFaﬁ(n)+>\aaBE33 ||ﬁ( ))\/_dl’

1
— aﬁar 0
= 2/9 B\ Fays(mvadz
= L(n). (3.9)

Since u® € V(Q) is independent of x3, we can identify it with a function (° € Vi(w). In

this sense, we have

1
0o _ 0 0 mn 0 0 2
E21s = 5(Cs + o+ 4" ChaCils) € L),

1 mn
Foys(n) = 3 (Uanﬁ + Ngla + @ {C%\\annwwﬁ + CgH,Bana}) € L*(w).
We define the nonlinear manifold of inextensional displacements by
Mpo(w) = {n eWw);n=0 on v, Mm=0 on v, aws(n)—aus=0 1in w},

where aqz(n) are the covariant components of the first fundamental form of the deformed

surface (9 + ma’) (w) be defined by

aap(n) = aa(n).as(n),  aa(n) = (0 4 nia’).

Extending the definition given in [32, (31, we conclude that if the manifold Mo(w) re-
duces to {0}, then the variational problem Py(w) represents the so-called two-dimensional

variational equation of von Kdarmdn membrane shell. m
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In addition, an application of [31, Theorem 9.2-1] shows that the problem Py(w) can

be written as
§

Find ¢° € Vy(w) such that
PE@)] [ a7 Gon()(Gop(Om) Vady = [ povady

+2 / ph®n, dy, Ve Vi(w),
\ Y1

where Gap(n) = %(aaﬁ(n) - aaﬁ>; Gap(¢”) = Efi”g, and G;g(Co)n = Fgug(n)-

Finally, the variational problem Py(w) may be formulated as a minimization problem

CeVuw)  and jyu(¢)= inf ju(n),

nGV]\/j (w)

where the scaled two-dimensional energy of von Kdrmdn membrane shells given by

1

Ja(n) = 3 /w a*’er <aw(n) - aa7> (aag(n) — aw) Vady — /w pnivady

—2/ ph®°nq dry.
"
The energy ja is coercive on the space Vy(w), but it is not weakly lower semi-

continuous on Vi (w). Therefore, we do not guarantee the existence of a solution to this

minimization problem, referring to [31, Theorem 9.3-1], or [32, Section 1.4] for details.

Remark 3.1 We note that "membrane shells” and "flexural shells” represents a general
terminology about shells that is commonly used in the Western literature, as in e.g., Ciarlet
[31].  Other terminologies are used, as "geometrically rigid shells" and "geometrically

bendable shells".

3.4.2 TWO-DIMENSIONAL EQUATIONS OF VON KARMAN
MEMBRANE SHELL

Now we write the two-dimensional variational problem Pﬁ(w) as an equivalent boundary

value problem.
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Theorem 8.4 Assume that the functions n®® are in H'(w). Then any smooth solution
C% of the variational problem Pf[(w), is also a solution of the following equations of von

Kdarman membrane shell

(

— (naﬁ + noBam SHU) , + bgnUﬁC;?HU = p0 n o w,
—bag (naﬂ + n"BaO‘TCS”U) - (n"‘BCgHa> )= p>0 in o w,
Py(w) =0 on Yo,
ﬁ(naﬁ + n"ﬁamé'f”g) vg = 2ph*? on M,
C;? =0 on M,

where )

naﬂ _ &aBUTGO_T(CO) ’

n®ls= 9sn* +I'g,n7,

knaﬂ|0.: Oyn®P + T2 nPT 4+ T8 pot,

Proof. We recall that
Oar/a = /al's,. (3.10)

Taking into account n®® = nP®, we replace n®® in the variational problem Pﬁ(w) with its

expression, we find that

[ 7 Gorl ) (Gl ) Vady
= [ (Gt ) Vady
= /w \/Enaﬁ{% <77a||5 + 77ﬁHa> + %am” <ng||oﬂ7nuﬁ + Qg\\ﬁ”m”&) } dy

:/ Van® s dy + / Van®?a"" G oty dy.
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Using Green’s formula and taking into account (3.10), we obtain

/w\/anaﬁnaw dy
_ /w Jan® (3% — T, — baﬁn?,) dy
= / Van®®dna dy — / Van®Tg g dy — / Van® bagns dy
= —/w@ﬂ<\/5n“ﬁ>na dy—/w\/_naﬁfagna dy — /\/_naﬁbaﬁﬁ:% dy+/ Van® vgn, dy
— / ﬁ<3ﬁna5+TngBT+Fngm Mo dy — / Van®Pbagns dy + / Van®Pvgn, dy
w w "
_/\/a<n°‘5|ﬁ>na dy—/\/ano‘ﬁbagng dy—i—/7 \/anaﬁlfﬁ% dry
w w '
= —/w\/a{ (”aﬂ|ﬂ>77a + baﬂnaﬁ%} dy Jr/7 Van®’vgn, dy,

and

/w\/anaﬁamnfgqannlﬁ dy
= / Van " ¢ a5 dy + /w Van* G, ms)5 dy
/ Van™a°7¢l, (aﬁna — gm0 — baﬁ"]3> dy + /w Van™ G, (8,3773 + b%”?cr) dy
- /w\/_ an”’a"" Gy, o dy — / Van?a®T G, I g dy
—/w\/_n"ﬁ T Qrbasns dy+/\/_" <3||a3ﬁ773d1/+/\/_” *C31abGs dy
_/waﬁ (\/anaﬁawfgua Mo dy — /w Vana OWCSIIU ap’ls 4y
—~ /w Van’a*" (Y bagns dy — /w 35(\/5"a5<§||a>’73 dy
* / Van* ¢, bime dy + / Van? a7 Gy, vana dy
w a1
- /w va{ (n7a7cl),) s b5 Gl dy /w Va{bagna "y + (06
Jr/7 Van®? a7 vgna dy.

ﬁ}n:a dy
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Hence the variational problem P]T;(w) reads as follows:

— / ﬁ{{(n“ﬁ +n%Baom EHU> ) gn”ﬁana} +pa’0}’f?a dy
_ / ﬁ{{bag (no‘ﬁ + n"ﬁamﬁgug> + <na6C§Ha) B} +P3’0}773 dy
/ {ﬁ(no‘ﬁ +nPaoT 2”0> vg — 2,0h°"0}77a dy =0,

71

for all m € Vy(w). The equating to zero all the factors of n, and ns in their respective

domains of integration, yields the boundary value problem Py(w).

Remark 3.2 It is remarkable that the functions n®® are stated in Py(w) do not satisfy
the equations 9sn®® = 0 in w, even if the functions p®° vanish in w. Hence we can’t

associate to this model, another equivalent model which involves an Airy function, such

as plates and shallow shells.
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Chapter 4

ASYMPTOTIC JUSTIFICATION OF
EQUATIONS FOR VON KARMAN
FLEXURAL SHELLS

The purpose of this chapter is to study the asymptotic justification of the two- dimen-
sitonal equations for flexural shells with boundary conditions of von Kdrmdn’s type. More
precisely, we consider a three-dimensional model for a nonlinearly elastic flexural shell
of Saint VenantdKirchhoff material, where only a portion of the lateral face is subjected
to boundary conditions of von Kdarman’s type. Using technics from formal asymptotic
analysis with the thickness of the shell as a small parameter, we show that the scaled
three-dimensional solution still leads to the two-dimensional equations of von Kdrmdn

flexural shell and we prove an existence theorem for the minimization problem.
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4.1 TWO-DIMENSIONAL VARIATIONAL PROBLEM

OF VON KARMAN FLEXURAL SHELL

Let w be a connected bounded open subset of R? with a Lipschitz-continuous boundary v and
let vo and 7y, be a relatively open subsets of v such that length(o) > 0 and length(~,) > 0.
Let 0 : @ — R3 is a smooth enough injective immersion of class C® such that 05 constant
on the boundary ;.

Extending the definition given in [35, [31], we say that a nonlinearly elastic shell, is a
flexural, if the manifold

Mp(w) ={n e W (w); E33(n) =0 inw;n = 0,n =0 on yo,n3 = Oyms = 0 on 7},
and its tangent space
TeoMp(w) = {n € W' w); F3y5(¢°n) = 0 in w;n = d,n =0 on y,13 = dyms = 0 on 1},
contains nonzero functions, i.e.,
Mp(w) # {0} and ToMp(w) # {0} for all (* € Mp(w).
In this section, we need the following Lemmas.
Lemma 4.1 The term of order one in the formal ezpansion of u(e) is of the form
ut = ¢t — x5y,
with ¢* € V(w) and ¥° = (¢) € V(w) is define by
U7 = 07C0 + (1 +a*CQ) G — a0 Gl
Py = b5¢0 + (1 +a™! 2|I1)C§H2 - aalCSHQC;?”p
Vg = —aaﬁan,a - aalam(CSHlCB”z — CoaSBi)s
Proof. See part (i) of the proof of Theorem 10.1-2 in [71]. =
Lemma 4.2 For (° € Mp(w), the tensor E(i”B in (2.16]) is given by
E01¢||B = FO(é)Hﬁ(COa Cl) - x3E3¥\\B(CO)7 (41)
where E(i”ﬂ(CO) is independent of x5 and takes the form
. 1 . 1
1 (0 0 (+0 1 k1 -0 ij (k.1 ~0 0 k10 om0 0
Eap(67) = = Fop(¢7,¥7) + Tog + 50" (TyjaGiia + Gilal 5iis) Gk — 5977 Calalriis:
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Proof. See part (iv) of the proof of Theorem 10.1-2 in [31)], or proof of Lemma 3 in [35].
|

Lemma 4.8 Let(° € V(w) be given. For any two-dimensional vector field n € TeoMo(w),
there ezist v(n) € V() such that

Fyj (v(m) = Fy;(n), (4.2)
the vector v(n) takes the form
v(n) =7+ z37(n),
where the vectors 7 and 7(n) belong to V(w) and 7(n) is uniquely defined by the relations
—7i(n) = =b7e — (1 + aa242||2)77g||1 —(1+ GQQUQHQ)C??\H + Cloa(ﬁnﬂ?:gnz + aa2772||1C§H2,
—7a(n) = —by 77a (1+ aa1C2||1)77??||2 -1+ aalng\u)g:?\p + a"‘ngnangnl + a“1n2||2C§H1,
—73(n) = aaﬁﬁgnﬁ + aalam@a”ﬁ?g”z +a*a’ (77@”1%”2 Cauzﬂg\u) - 773“2(2“1)-
Proof. See proof of Theorem 10.1-3 in [31], or proof of Lemma 4 in [35]. m
Lemma 4.4 For alln € TeoMo(w),
FYi5(n) — FYs(v(n) = Flys(n) — 23 F5(n). (4.3)

where F! s () Fg\\ﬁ(n) € L*(w) are independent of x3 and

~ 1 oT
Fais(m) = Fos(£° () = 597 H{Cpanris + Gpnolot

1 mn
+ Fa6+ Sa" Tl s + T Cua )

—~

mn{( ml«a + Ffﬁ}y@?)nnﬂﬁ + (¢2H5 + Fzﬂﬁlgg)nm||a}7

@ l\DI»—t

with Y = 1;(CY), where ¥(n) is define by

1(n) = 030 + 03+ a®(CQam3in + Cptalz — SNt — Copam3ii2)s
Pa(n) = 0570 + N3z + a® (312 + CjaMain — CEjuMalz — CopamBin)s

w3(n) = —a® nas — a® a”(C s + CBunaln — Copalsin — CBjaMali2);

Proof. See proof of Theorem 10.1-4 in [31], or proof of Lemma 5 in [35]. m
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Theorem 4.1 If the space My(w) of inextensional displacements does not reduce to {0},
then to get a limiting problem, it is necessary to assume that there exist f*> € L*(Q),
e L*T,UT_) and h? € L*(v,) independent of € such that

fe(2%) = f(e)(x) = €2 f*(x) for all x € Q,
F(2°) = l(e)(z) = 33(x) forallz e T, UT_,

he(y) = h(e)(y) = €*h*(y) for ally € n.

In this case, C° satisfies the following two-dimensional nonlinear limit variational problem

Find (° € Mp(w) such that
1 agT 7
Pp(w) g/w R O S E )\/_dy—/

w

+1 ) )
( / iy + 1+ lﬁ3) nvady (4.4

1

ph®*nady, for alln € ToMp(w),

N "
where
( 70 0 L oriso 0 L mn p,1 0
Eois = Fais (%) = 5071 C1aChis + (Tos + 50™ {TheCs + T DG
- 1
Fguﬁ(n) = Fa\\ﬁ(SOO(U)) - —g‘”’l{éguam”ﬁ + CTH/BT]U”&}
1
+(Fp/5 + amn{Fma nl||B8 + Fnﬁgmﬂa})np
1
+2am"{( mija + ThaC) s + (Yo + L) mja}
\

Proof. This proof complements what we have come up in proof the Theorem [3.3 with
the use of some notations frequently used below. We are now in a position to start the
cancellation of the factors of the successive powers of € found in the variational equations
. In what follows, L™ designates for any integer r > 0 the linear form defined by

_/fZ’TUz\/adl’—F/ li’r+1vi\/5df+2/ pha’TUad% (45)
Q I ulr—
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where the functions f*" € L*(Q), I**1 € L*(T, UT_) and h™" € L*(v,) and that they

are independent of €.

1

(1) Our point of departure is the cancellation of the coefficients of €', we showed in

proof the Theorem in relations that

«
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(i)

and that the assumptions Mo(w) # {0} and T¢Mo(w) # {0} at all { € Mo(w)
imply that
E°

o

5 =01inw. (4.6)

Then, we get
Ejs =0 in Q. (4.7)

The equations 2E0”3 = 0 take the form of a nonlinear system

(0) 080 0 (0)
2E?n:a = “1\\3 + C§||1 ta ﬁ4a||1 /3||3 + 43”1“3”3’

_ 9,00 ) (0 0y, (0)
2E§||3 2u3”3 +a® uaH3“B||3 T Ug)3Us)i3s

where the unknowns are the functions ul(ﬁi We note that the solution of this system

determines the value of Osu' are given by
Osul = uaH3 —b7¢ = —Y and Ozuy = ué(ﬁ)g —3. (4.9)
We consider the following solution (we return to [31[-[35)] for more details):

0 [e% «
uypy = —(1+ a*2Cu)¢8) + a™CY G,

0 [e% «
wgpy = —(1+ a2 )¢S + QG (4.10)

0) afB -0 al B2(+0 0 0 0
ugyy = Gy + a2 (Ch Ry — G )

From that Osu' is independent of x3, then the term of order one in the formal
expansion is of the form

u' = (' — 239° with ¢* € V(w) and ¥° € V(w)
and the condition u' € V(w) implies that
TeoMp(w) = {n € W (w); 3 5(C°,n) = 0 in w;n = ,n =0 on 5,73 = dyns on 1},

Cancellation of the coefficient of €°. From the relations (@ and . Then, we
get EY i =0 and since L° = 0, the inspection of the coefficient of €° in leads

to the variational problem:

/ A klEk”lF Hv)vadx =0 for allv € V() (4.11)
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where

Foyis(v) =0,
1
FaH?)(v) = 5(831}& + a”7ufy O3v,) + §UgHaagv3,

F. H3(U) = aaﬁugngﬁgvﬂ +(1+ ug||3)831)3.

The problem reduces to three decoupled problems (see the similar treatment
of the coefficient of e~* in proof the Theorem)

([ A0 B F ) Vads

- / (44 (0) EL 3y b (0) + (AP (0) EL + AW (0) Bl ) Fypb(v) v ade

= /(2/L(ICWEC1¥”3(83UU + a™ m”oag,vn + U3”083’U3)
Q

(AP B 5 + (A + 20) B ) (1 + ug)y) 0505 + a™uloy ,050,))/ada
= /Q((2ME1||3( T+ a*a T ugy,) + (A Egys + (A + 2M)E§\\3)GUTUJH)3)33UT

+(2pa® B)gugy, + (AP EL 5 + (X 4 2p) Egyp) (1 + Ug(l)l):s))831}3>\/ad;€ = 0.
(4.12)

\

The integral takes the form (u”Osv,; + u3dsvs). Then, we get, that

Q,UEé”g(aaT + aozcraﬁTu%”a> + (/\aaﬁEiHB + ()\ + ZN)E&‘{H:’,)C‘ UH3 =0 in Q,
200 E5ul, + (Aa® By s 4+ (A + 20) B3yp3) (1 + ugﬁ@ =0 in Q.

This is a linear system with respect to the three variables ()\aaﬁEl”ﬁ +(A+2p) 3||3)
E1H3 and E2H3' For a displacement field C° that vanishes, this system is invertible,
therefore we assume that it has a unique solution, at least in a suitable neighborhood

of (° = 0. Then we have a system of three nonlinear equations, has the trivial

solution
ElH3 =0 and \a® Elnﬁ + (A + 2u)E§||3 =0 in Q. (4.13)

07

(iii) We assume that there exist f* € L*(Q), 1> € LTy UT_) and h' € L*(y)

fie) (@) = ef"(x),
l'(e)(x) = X" (),
h(e)(y) = eh™(y).
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The cancellation of the coefficient of €' in the variational problem reads

/QAij (0 ){Ekul ”J( )+EkHl ZIIJ( )}\/_dx+/ Bijkl,lEk”lF

il

(v)dz = L' (v),

(4.14)
for allv € V(R2), where

L'(v) :/fi’lvi\/adx—l—/ li’2vi\/adf+2/ ph® vadry.
Q ryur— Y1

Choosing test functions v = 1 independent of x3. Then, we get F”]( v) = 0 and

from , we obtain
/Aijkl(O)Ek”l N, (mVadz = L' (n) for alln € V(w). (4.15)
Q

Using the expressions of the functions AY*(0) in and the relation , we
obtain

p

/QAijkl(O)Einz i, (mvadz

— /Q(Aa“ﬁa” + (a7 d’ + a*a"?)) By FY 5(n)Vada
(407 Epys Fj(n) + Aa® Egyu FY) 5 (n))Vada
()\a"TEluT ()\+2M)E§||3) 3\\3( )Vadz

(Aa™a™ + (a0’ + a*Ta")) By Fo5(n) + Aa® Eg3Fy) 5(n))vadz

+
o)

+

S5

1
- 5/ a® "B FY5(n)Vadz = L' (n) for alln € V(w),
\ Q
(4.16)
4\
aaﬁg-r — : _'_/;“’uaaﬁaof + 2,u(aa0'a,8‘r + aom'a,ﬁa).

For the relation (see Lemma , where the functions FSIIB(Cl) and Egllﬁ are

independent of the transverse variable x3, we obtain

/w QBUTFSHT(CI) Oé||5( >\/_d1' =0 fO’I" all nec V( )

Choosing test functions n = (! € V(w) in these equations, shows that FSHB(Cl) =0.
Hence ¢* € TooMo(w), consequently EéH/B is independent of ¢ and reads

1 _ ]
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(iii) We assume that there exist f? € L?(Q), I € L*(T'L UT_) and h* € L*(y)

fie)(@) = 22 (x),
I'(e)(z) = (),
WP (e)(y) = e*h™*(y).
The cancellation of the coefficient of €% in the variational problem reads
/QAijkl< ){Ek”l Hj( )+Ek||lF||]< )+Ek:||l 1||J( v) I adzx

+/Qf’5 B By Fij; () + EQyFy (v )}dfc+/933§B““’2Ekzﬂ||a( v) = L*(v),

for allv € V(). For test function v = n independent of x3 since F|| (v) =0, we
get

/QAUM( ){EkHl ||]<77)+Ek||l ||]( )}\/_dx+/$3Bijkl’1Ek||zE||g(77)dI:LQ(U)
(4.18)
for allm € V(w), equations that we compare to equations , which now read

/QAijkl< ){E,i“l 2||J( )—i—E,?Hl Zﬂ]( >}\/—dx+/x3Bijkl’lE,1”lF

il \1

Y(n)dz =0 (4.19)

for all v € V(Q). Used the relation m Lemma then by computing the
difference between equations and , we obtain

| AP B (Y ) — B, (o)} Vads = L2(3) for alln € Teo Ma(),
Used the relations (ﬂ) and (-) we obtain
3 | @B AF ) = Falom)}ads = ) for all y € Teo M (),
For the relations (w and (-) we get that
; /w a7 B FYys(n)Vady = L2(n) for alln € ToMp(w).
[

Remark 4.1 From to two-dimensional variational problem of a nonlinearly elastic flexu-

ral shell due to Ciarlet ([31)], Sect. 10.3), we show that the two-dimensional von Kdrmdn
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flexural shell problem Pr(w) can be written as the following

;

Find ¢° € Mp(w) such that
PEG)] 5 [ @ RO B () ady =
F) 5 TR () ady

w

+1 P . e
( fi2das + 1% + ﬂ:‘) niv/ady

1

+2/ ph®*nadry, for alln = (n;) € TeooMp(w),
\ 71

(4.20)

where
Bl = Rs(C%) = (bap(n) — bag) for all n € Mp(w),

Fgllﬁ(ﬁ) = (Riﬁ)/(go)ﬁ for alln € TCOMF(("))a

4.2 EXISTENCE OF SOLUTIONS TO THE MINIMIZA -

TION PROBLEM

Let the functional j5 : W**(w) — R be defined by

Br = g [ @R ) R ady ~

w

( fi2das + 15 + 1“3) niv/ady

-1

—2/ ph**nady, ¥y € W (w).
7

(4.21)

Then the functional j5 is differentiable over the space W**(w) and ¢° € Mp(w) is

a solution to the variational problem if and only if it is a stationary point of the

functional 75 over the manifold Mp(w), i.e., it satisfies (5%)((°)n = 0 for all n in the

tangent space TeoMp(w) to the manifold Mp(w) at (°. Since the functions bag(n) are

well defined for all n € Mp(w), particular solutions to problem are obtained by
solving the minimization problem:

el = 5 [ a7 b ) = ) aslo) — bu)Vady

w

+1 ] )
— / ( f2’2dl’3 + l:’_3 + 11_73) m\/ady (422)

1

—2 / ph**nady
!

The functional jg is caled two-dimensional energy of a nonlinearly elastic von Kdrmdn

flexural shell.
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Theorem 4.2 Let there be given a mapping 0 € W2P(w; R3) with p > 2, let there be given
a mapping 0o : Yo — R? and a mapping @1 : v1 — R3 such that the manifold of admissible

inextensional deformations

Pp(w) = {¢p € H*(w);1) = o on 70,13 = @13 on 1, aas(¥) — aes = 0 in w}.

15 not empty.

Then if p € ®p(w), the vectors a, (V) = 0,0 are linearly independent a.e. in w and
the functions bag(¥) are in L*(w). Given a continuous linear form L on H*(w), define
the two-dimensional energy Ip : ®p(w) — R of a nonlinearly elastic von Kdrmdn flexural

shell by

53

1(6) = S [ @7 b 0) = b)) = bus)Vady — L)
for all ¢ € Op(w).
Then there is at least one ¢ such that

) 1 = inf 1T .
¢ € Pp(w) and Ip(p) wegi(w) r(¥)

Proof. For the purpose of clarity, the demonstration is divided into seven numbered parts,
labeled (i) to (vii).

In the first five parts, we establish different characteristics of the manifold ®p(w).
While, in the remaining two parts, we establish properties of the functional 1p over this
manifold.

The demonstration follows a common pattern in the calculus of variations:

First, we prove that the manifold ®p(w) is sequentially weakly closed (part (i)).

Next, we demonstrate that the functional Ir is sequentially weakly lower semi-continuous
and coercive over ®p(w) (parts (vi) and (vii)), with all these properties being applicable
to the topology of the space H?(w).

Minimization technics can then be applied to show the existence of a minimizer of I
over ®r(w) based on these properties.

Note that the coerciveness of the functional hinges on the crucial property that the
manifold ®p(w) lies in a bounded subset of W (w) (part (iii)).

(i) As a subset of H*(w), the manifold ®p(w) is sequentially weakly closed, a.e.,

e Op(w), 1> 1, and ' — ¢ in H*(w) = ¢ € dp(w)
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(i4)

Let ' € ®p(w), | > 1, be such that ' — 1 in H*(w). Since the trace operator
tr from H?*(w) into L*(vyo) is continuous and also tr from H?*(w) into L?*(yy) is
continuous with respect to the strong topologies of both spaces, it remains so with
respect to the weak topologies of both spaces. Hence triy)t — trip in L*(vo) and thus
trip = o on v since tript = g on o for all 1 > 1, and tryl — trips in L2(vy1) and
thus trips = p13 on 1 since tripl = p13 on vy for all 1 > 1.

By the Rellich-Kondrasov imbedding theorem (see, e.g., Theorem 6.1-5 in [50]),
Yt — ) in HY(w); hence

aas (V') = aa(¥') - ap(V') = aa(¥) - ag()) = aap(¥)) in L'(w).
Since an(YP') = aap a.e. in w for all I, we conclude that a,s(Y) = ans a.e. in w;
hence ¥ € ®p(w) as was to be proved.

Should the manifold ®r(w) include a second boundary conditions of the form 0,4 =
Qo on Yo and Oyips = @13 on v (recall that the manifold Mp(w) comprises a
boundarys conditions of the form d,mn = 0 on vy and d,n3 = 0 on v1), a similar

argument shows that such a manifold is again sequentially weakly closed.

There exists Cy such that, for all vector fields v € H*(w) satisfying

aop(V) = anp a.e. in w
0 < C1 <la1(¥) Aas(¥)| a.e. in w,
Cit <laa(¥)| < Cy ae. inw.

Consequently, the vectors a;(v) and a*(v) associated with such vector fields v are
well defined and "uniformly” linearly independent a.e. in w, the corresponding func-
tions bag () are in L*(w), and the functional 1 is well defined over the manifold
Op(w) (that the functions bas() are indeed well-defined when v belongs to the man-
ifold ®p(w) was already observed in Theorem 10.3-1 in [31]).

Since the set w is compact, the vectors a, = 0,0 are "uniformly" linearly independent
in & (they belong to the space WP (w; R?), which is continuously imbedded into the

space C°(@w;R3) since p > 2), in the sense that there exist c; and co such that
0<c¢ <1 and|a;-as| < ci]asl]as| in w,

0<ce <1 andc <|a,| <t in @,
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(iii)

Furthermore

a1 (V) - az(¥) = a12(Y) = ara = a1 - ag a.e. inw,

lar(V)? = a1 () = a1y =|a1|* ae. inw,

laz (V) [? = age (1) = ag =|as|* a.e. in w,
consequently

lar () - ag ()| < ci]ar (V) ||az (V)| a.e. in w.

This inequality shows that the vectors ai(v) and as(v) are likewise "uniformly”

linearly independent a.e. in w, since c; < 1. Hence there exists cg3 > 0 such that

cslar () A aa()| >|ar(¥)||az ()| =laillaz| a.e. in w,

and thus there exists a constant Cy such that the two announced inequalities hold.

The vector (V) A as(¥)
as(v) = a®(v) = lax () A ag(9)]

is thus well defined a.e. in w. Consequently,

bap(¥) = Dupt) - a3(¥)) € L*(w),

since |az()| = 1 a.e. in w. The vectors a*(y)) are likewise well defined and "uni-

formly" linearly independent a.e. in w.

Let 1) € H*(w) be such that ans(V) = aunp a.e. inw. 1 € WH®(w) and there exists
Cy such that
106t]0,0000 < Co for all v € H*(w).

In addition, there exists Cy such that
||¢||1,OO,wS C13 fO’r' all @Z) - CDF((,L))

Let 1) = (1;) € H?*(w) be such that a,s(1) = anp a.e. in w. We already noticed that
there exists co > 0 independent of such fields 1 such that, for almost all y € w,

0t ()* =laa () (W)* =laa(y)* < 5.

This shows that J,¢0 € L™(w), hence that ¢ € W1 (w) since in addition ¢ €
H?(w) < C%w;R3); it also shows that there exists Cy independent of such fields
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(iv)

Y such that |0a¥|o00w < Ca. Let q > 2 be fized. By assumption, length vy > 0;
hence, by the generalized Poincard inequality found in [50, Thm. 6.1-8/, there exists
cs = c4(q,0) such that, for all b € Wi (w)

[ty < el | Slovvran+] / i)

Let ¢ € ®p(w). then
[ Siouvtray < 2c3 [ ay and| [ warlr | [ ot
Wy w Yo 0

Since the field o : o — R3 is continuous on ~yo (as the trace on vy of a function in
H?(w); the set ®r(w) is not empty by assumption), there exists cs = c5(ca, Ca, Po, 0,3)
such that, for all ¢ € Pp(w),

161y = / (i Y10l by < cs.

The Sobolev imbedding WP (w) < C°(@) then implies the existence of cg = cg(cs)
such that, for all ¢ € Pp(w),
|¢’0,oo,w§ Ce,

and the second assertion is proved. If ¢ € ®p(w), the components Oapt)-a, (1)) of the
vector fields Ouptp = Ona5(v0) € L*(w) over the vectors a’(v) of the contravariant
basis of the tangent plane to the deformed surface ¥(©) are in L*(w), since ay (1) =
Op € L®(w) by (iii). We next show that these components remain in a bounded

subset of the space L*(w) when varies in the set ®p(w).

There exists Cy such that

100+ @6 (V) |0 < Cu for all i € Pp(w).

By assumption, 0 € WP (w; R3) with p > 2; as a consequence, D50 - 0,0 € LP(w) C
L?*(w). Differentiating the relations

aa@D . 6/377/) = aa/g(@/J) = QaqB = 800 : 859,

in the sense of distributions (which is licit, as is immediately verified) then shows
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(v)

that there exists cz such that, for all ) € ®p(w)

|01 - 010w < €7, (012 - 010w < 7,
|0129) - Do 0w < 7, |02 - Oa0, < 7,
1011 - o) + 0129 - 010w < c7,

|20 - 0100 + D127 - Dat|o 0 < 7.

The relations

O - O0tp = (0119 - Oatp + O1t) - O1) — D12t - 019,

Oa2® - 019 = (Og2t) - 1% 4 D190 - Oa0) — 127 - Do),

then imply that
10117 - 0290, < 207, [O22%) - O1¥]0w < 2¢7.

Thanks to parts (ii) to (iv), a lower bound for the norms |bas(¥)|o . when ¢ € ®p(w)
can now be established. This lower bound will be essential for proving in part (vii)

the coerciveness of the functional Ip over the manifold ®p(w).

There exists Cs such that

D Ibap(@)[80 =1l ¢ (13, +C5 for all ¢ € Op(w).
a,B

Let b € Op(w). For almost all y € w, the vectors a;(¢)(y) are linearly indepen-
dent by (ii), so that the vectors a'(v)(y) are well defined by the relations a'(¢)(y) -
a;(V)(y) = 5; for almost all y € w. We can then expand Onp) as

Oapt) = {Oasth - ao (V) }a” (V) + {Dast) - as(¥) }a’ () a.e. in w.

Since bag (V) = Oapt) - az(¥), |a®*()| = 1, and a*(¢) -a° () = 0, we have, for almost
ally € w,

Ot ()" =H{Oapt () - a0 (V) (y) - a () (y) }a” () (y)[*+bas (V) ().

Then

[0ast()* ~1bas () (W)[* ={0asto(y) - aa (V) () - as(¥)(y) }a” () (y)[*.
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(vi)

Since the vector fields a” () lie in a bounded subset of L>(w) when 1 varies in the
set Pp(w) (parts (it) and (iii)) and since the functions Ot - ay (1) lie in a bounded
subset of L*(w) when ¥ varies in ®p(w) (part (iv)), there exists cg such that

{Oust - a(¥)}a” ()low < s for all ¢ € Pp(w).

Consequently, there exists cg such that, for all ¢ € p(w),

0< Z|8a5@/)|0w Z|baﬁ |0w =

Since there exists c19 such that ||¢]|1,< c10 for all Y € Pp(w) (see part (iii)), we
finally have

Z|baﬁ IOW>Z!%W!0W+H¢H1W e [

> Hin%’w—cg — c%o for all Y € Pp(w).

We now turn our attention to the functional Ig.

The functional 1r is sequentially weakly lower semi-continuous over the manifold
(IDF(w), i.e.,

e Op(w), 1> 1, and ' — ¢ € Dp(w) in H*(w),

implies that
Ir(v) < lim inf I (4.
—00

The weak convergence ' — 1 in H?*(w) clearly implies that
Oapth! = Oapt) in L*(w) and as(1') = aa () in L*(w).

The last convergences being consequences of the Rellich-Kondrasov imbedding theo-

rem. We first show that it also implies that

a3(¢l) — as(v) in L*(w).

To this end, we observe that |az(¢')| =1 a.e. in w and that there such that exists a

subsequence (Y™)_; of (Y1), such that

aa(™)(y) = aa()(y) for allmost all y € w,
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since aq(Y) = aq (V) in L*(w).
The definition

_a (@) (y) Aas (™) (y)
lax(¥)(y) A az () ()|

as(Y"™)(y)
thus shows that

m a1(¥)(y) A az(¥)(y)
")) = 1 @) ) A a0) ()

for almost ally € w (by (ii), the vectors a,(¥™), m > 1, and a,(v) are well defined

ag(Y)(y) as m — oo,

and "uniformly"” linearly independent a.e. in w). Therefore, az(y™) — az(v) in
L*(w) by Lebesgue’s dominated convergence theorem. Since the limit az(v) is unique,

the whole sequence (asz(¢"))22, strongly converges in L*(w) to this limit.

Using these properties, we next show that
bap(V') = Oapt)’ - az(¥') = Oapt) - az(¥)) = bap(¥) in L*(w).

To this end, fix o and 3, let f' € L*(w) denote one component of .’ (the same
for all 1 > 1), let ¢' € L*™(w) denote the same component of az(¥'), and finally, let

[ € L*(w) and g € L™(w) likewise denote the corresponding components of Onpt)
and az(1)).

In this fashion, the two sequences (f1)2, and (g')22, satisfy:
f'=f in L*(w),

g — fin L*(w) and |¢')0.0ew < 1 for all l.
It then follows that fg € L*(w) and

flg = fgin L*(w).

Although these implications are standard, we provide a proof for completeness. For
any ¢ € D(w), the bilinear form

(f.9) € L*(w) x L3(w) — / fgedy,

18 strongly continuous; hence

fl — fin LQ(w) and gl — g in LQ(w) = / flglgody — / fgedy.
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Let (f™g™)°_, be an arbitrary subsequence of (f'g)2,. Since | /™9™ 0w <|/™]0w
and the weakly convergent sequence (f™)5°_, is bounded in L*(w), there is a subse-

quence (frg™)2, of (f™g™):2, that weakly converges in L*(w) to some h € L*(w).
Therefore,

/f"g"gody — / hody = / fapdy for all ¢ € D(w).

Thus h = fg.

Since the limit fg of the subsequence (fg™)S%, is unique, the whole sequence (f'g')52,

weakly converges in L*(w) to this limit.
In particular then, we have established that bag(Y') — bas() in L*(w).

We are now in a position to establish the sequential weak lower semi-continuity of

Ir over ®p(w).

Let L2(w) denote the space of all fields of symmetric matrices of order two with

components in L*(w).

The symmetric bilinear form B : L(w) x L%(w) — R defined by
B(S,T) = / a®?" 5 ot apv/ady,

for all (S, T) = ((sap), (tag)) € L2(w) x L2(w) is strongly continuous and positive
definite. We note, first that

a®?(y)a” (Y)tortas = (a7 (y)tas)® 2 0,
for all y € w and all matrices, next that
(@ (y)a” (y) + a7 (y)a™ (y))tortas = 2t A(y)t,

for all symmetric matrices (top), where

&11&11 2&11&12 a12a12

A(y): 2012412 2(&12a12+a11a22) 2a12¢22 (y),

a12a12 2&12&22 a22a22
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and

t11
t= |t
t22
Since a'a' > 0 in w
allall 2a11a12 0/110/11 o
det =2 >0 in w,

2a12a12 2(a12a12+a11a22>

2
det A=—>0inw,
a

where a = det(aqg), we infer from a well-known characterization that the symmetric

matriz A(y) is positive definite at all y € @, since there exist constant ¢y, such that

0 < ¢y and aaﬁ‘”(y)tﬂtag > e Z|ta5|2,
a,p

for all y € w and all symmetric matrices (top) and there exist constant cio

0<ecip<1and0<cpy<yaly) <cpy.

for all y € @. Being strongly continuous and (strictly) convez, the mapping
S € L2(w) — B(S,S),
18 thus weakly lower semi-continuous.
Let
Sas = bas(¥') = bag and sag = bas(1)) — bag.
Then
8" = (s05) = S = (sap) in L*(w),
since bas(P') — bag() in L?(w), and thus
B(S,S) < n{nme(sl, sh.
—00

This shows that the functional 1r, which is defined by

53

() = 5 [ a7 (b0r () = b)) — bus)Vady — L)

for ally € ®p(w) is sequentially weakly lower semi-continuous on Ir(w) (recall that

L is by assumption a continuous linear form on H?*(w)).
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(vii) There ezist constants Cs and Cy such that
Co > 0 and Ip(v) > Cs|v||5,+C7 for all ¢ € Pp(w).

Consequently, the functional I is coercive on the manifold ®p(w). By definition of

the functional 1, we have (the constants c11 and cio appeared in the proof of part

(vi))

83

1(6) = 5 [ a7 () = bor)(bas(4) = by ~ L),

3
13
Ip(y) > 5 ‘ez E 1bas (1) = baglg e — c1sllt 2.0,
a”B

where c13 denotes the norm of the continuous linear form L.

Since

1bap (1) = bagldw = =1bap(V)[6 = 1basld w0

DO | —

and since, by (v),

D Ibap(¥)[50 = [[9]15,+Cs for all ¢ € ®p(w).
a8

We find
Lp(1h) > Col[¥||3,4Cr for all ¢ € Pp(w).

the assertion follows, and the existence of a minimizer of the functional 1p over the
manifold ®p(w) is thus established.
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Conclusions and perspectives

The major conclusions of these studies are:

1. An application of the technics from formal asymptotic analysis to the three-dimensional
model of nonlinearly elastic shells with a specific class of boundary conditions of von
Kdrman’s type, made of a Saint Venant—Kirchhoff material shows that the leading
term of the expansion is characterized by a two-dimensional model of von Kdrmdn
membrane shell, under specific assumptions on the geometry of the middle surface
of the shell and on the components of the applied forces. We found in particular that
the forces of von Kdrmdn’s type should be of order O(&).

2. An application the same technics to the three-dimensional model of von Kdrmdn
flexural shell shows that the leading term of the expansion is characterized by a two-
dimensional model of von Kdarmdn flexural shell. But we found in particular that
the forces of von Kdrmdn’'s type should be of order O(g?). Also we establish the

ezistence of solution to the two-dimensional model.
As future work, we plan to:
1. Eaxtend these studies to viscoelastic materials.
2. Eaxtend these studies to generalized von Kdrmdn's type.

3. Justification of two-dimensional energy of von Kdrmdn membrane shell using I'-

convergence theory.

4. Justification of two-dimensional energy of von Kdrmdn flexural shell using I'-convergence

theory.
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Title: Asymptotic modeling of shells with von Karman boundary
conditions

Abstract: The objective of this work is to study the asymptotic justification of the two-
dimensional equations for membrane and flexural shells with boundary conditions of von
Kdrman’s type. More precisely, we consider a three-dimensional models for a nonlinearly
elastic membrane and flexural shells of Saint Venant-Kirchhoff material, where only a
portion of the lateral face is subjected to boundary conditions of von Kdrmdn’s type. Us-
ing technics from formal asymptotic analysis with the thickness of the shell as a small
parameter, we show that the scaled three-dimensional solution still leads to the so-called
two-dimensional equations of von Kdrmdn membrane and flexural shells.

Key words: Asymptotic analysis, nonlinear elasticity, shell theory, von Kdrmdn

boundary conditions.
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Titre: Modélisation asymptotique des coques avec des conditions
aux limites de von Karman

Résumé: Lobjectif de ce travail est d’étudier la justification asymptotique des équations
bidimensionnelles pour les membranes et les coques flexibles avec des conditions auz limites
de type von Kdrmdn. Plus précisément, nous considérons des modéles tridimensionnels
pour des membranes €lastiques non linéaires et des coques flexibles en matériau de Saint
Venant-Kirchhoff, ou seule une partie de la face latérale est soumise a des conditions
aux limites de type von Kdrmdn. FEn utilisant des techniques d’analyse asymptotique
formelle avec l’épaisseur de la coque comme petit paramétre, nous montrons que la solution
tridimensionnelle mise a [’échelle conduit toujours aux équations bidimensionnelles dites
de von Kdrmdn pour les membranes et les coques flexibles.

Mots clés: Analyse asymptotique, €lasticité non linéaire, théorie des coques, condi-

tions aux limites de von Kdrmdn.
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