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 الملخص

 

يمكن أن تتعرض الأنظمة الكهربائية للأعطال لأسباب مختلفة. قد تحدث هذه الأخطاء نتيجة لتقادم المكونات أو ظروف 

ين: تلك يمكن تصنيف الأخطاء بشكل عام إلى فئت الاستخدام أو عيوب التصنيع التي لم يكن من الممكن اكتشافها أثناء التشغيل.

التي تحدث داخل الآلة الكهربائية مثل أعطال اللف وميل المحور، وتلك التي تحدث خارج الآلة الكهربائية في سلسلة القيادة، 

 مثل الأعطال في علبة التروس الميكانيكية.

ي يزود الطاقة لجهاز غير متزامن. قد يكون للمحول، مثل يركز أحد مجالات البحث الرئيسية على مراقبة حالة المحول الذ

(، عيوب هيكلية مثل المفاتيح المعطلة )أشباه الموصلات( التي قد تؤدي إلى تلف النظام PWMعاكس تعديل عرض النبض )

 لنظام.ل بأكمله. من الضروري الاستثمار في اكتشاف الأعطال لمنع مثل هذه العيوب من التسبب في ضرر لا يمكن إصلاحه

( مزايا مختلفة مقارنة بالطرق التقليدية. تلغي هذه AIتوفر تقنيات مراقبة وتشخيص الحالة القائمة على الذكاء الاصطناعي )

التقنيات الحاجة إلى نماذج رياضية، مما يقلل من وقت الهندسة والتطوير بشكل كبير. تعتمد التقنيات القائمة على الذكاء 

بيانات النظام أو معرفة الخبراء لإجراء تنبؤات دقيقة. في حالة التحكم في محرك حثي يعمل  الاصطناعي على مجموعات

، يمكن للطرق المعتمدة على الذكاء الاصطناعي اكتشاف أخطاء الدائرة المفتوحة و/أو الدائرة PWMبواسطة عاكس جهد 

 ظ على المستوى المطلوب من الأمان.القصيرة واتخاذ التدابير التصحيحية لضمان عمل النظام بكفاءة مع الحفا

في هذه الأطروحة، قمنا بتحليل جدوى استخدام تقنيات الذكاء الاصطناعي في اكتشاف وتشخيص وإعادة تشكيل الأخطاء في 

تطوير وصفًا تفصيلياً لأخطاء تبديل العاكس وقمنا بالعاكس ثلاثي الطور الذي يعمل على تشغيل المحرك التعريفي. لقد قدمنا 

طريقة بسيطة لاستخلاص الخصائص لدراسة إمكانية اكتشاف وتشخيص هذه العيوب. لقد حاولنا أيضًا إعادة تكوين نظام 

 العاكس لمنع حدوث الأخطاء.

 تكوين إعادة الأخطاء، تشخيص المتزامن، غير المحرك الأخطاء، مع المتسامح العاكس الأخطاء، تصنيف :كلمات مفتاحيه

 .العاكس



Abstract

Electrical systems can experience faults due to various reasons. These faults may occur as a

result of aging components, conditions of use, or manufacturing defects that were undetectable

during commissioning. The faults can be broadly classified into two categories: those that

occur within the electrical machine such as winding faults and axis tilt, and those that occur

outside the electrical machine in the drive chain, such as faults in the mechanical gearbox.

One major area of research is focused on monitoring the state of the converter that supplies

power to an asynchronous machine. A converter, such as a Pulse Width Modulation (PWM)

inverter, may have structural defects like malfunctioning switches (semiconductors) that could

damage the entire system. It’s crucial to invest in malfunction detection to prevent such defects

from causing irreparable harm to the system.

Artificial intelligence (AI) based condition monitoring and diagnosis techniques offer various

advantages over traditional methods. These techniques eliminate the need for mathematical

models, which reduces engineering and development time significantly. AI-based techniques rely

on system datasets or expert knowledge to make accurate predictions. In the case of controlling

an induction motor powered by a PWM voltage inverter, AI-based methods can detect open

circuit and/or short circuit faults and take corrective measures to ensure the system operates

efficiently while maintaining the required level of security.

In this thesis, we analyzed the feasibility of using artificial intelligence techniques in detecting,

diagnosing, and reconfiguring faults in a three-phase inverter that powers an induction motor.

We provided a detailed description of inverter switching faults and developed a simple method

to extract characteristics for studying the possibility of detecting and diagnosing these defects.

We also attempted to reconfigure the inverter system to prevent faults from occurring.

Keywords: Fault Classification, Fault Tolerant Inverter, Asynchronous Motor, Fault Diag-

nosis, Inverter Reconfiguration.
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Résume

Les systèmes électriques peuvent rencontrer des pannes pour diverses raisons. Ces défauts

peuvent survenir suite au vieillissement des composants, aux conditions d’utilisation ou à des

défauts de fabrication indétectables lors de la mise en service. Les défauts peuvent être globale-

ment classés en deux catégories : ceux qui surviennent au sein de la machine électrique comme

les défauts de bobinage et d’inclinaison des axes, et ceux qui surviennent à l’extérieur de la

machine électrique dans la châıne d’entrâınement, comme les défauts de la bôıte de vitesses

mécanique.

Un domaine de recherche majeur porte sur la surveillance de l’état du convertisseur qui ali-

mente une machine asynchrone. Un convertisseur, tel qu’un onduleur à modulation de largeur

d’impulsion (PWM), peut présenter des défauts structurels tels que des commutateurs (semi-

conducteurs) défectueux qui pourraient endommager l’ensemble du système. Il est crucial

d’investir dans la détection des dysfonctionnements pour éviter que ces défauts ne causent des

dommages irréparables au système.

Les techniques de surveillance conditionnelle et de diagnostic basées sur l’intelligence arti-

ficielle (IA) offrent divers avantages par rapport aux méthodes traditionnelles. Ces tech-

niques éliminent le besoin de modèles mathématiques, ce qui réduit considérablement le temps

d’ingénierie et de développement. Les techniques basées sur l’IA s’appuient sur des ensem-

bles de données système ou des connaissances d’experts pour effectuer des prédictions précises.

Dans le cas du contrôle d’un moteur à induction alimenté par un onduleur de tension PWM, les

méthodes basées sur l’IA peuvent détecter les défauts de circuit ouvert et/ou de court-circuit

et prendre des mesures correctives pour garantir le fonctionnement efficace du système tout en

maintenant le niveau de sécurité requis.

Dans cette thèse, nous avons analysé la faisabilité d’utiliser des techniques d’intelligence ar-

tificielle pour détecter, diagnostiquer et reconfigurer les défauts d’un onduleur triphasé qui

alimente un moteur à induction. Nous avons fourni une description détaillée des défauts de

commutation de l’onduleur et développé une méthode simple pour extraire les caractéristiques

afin d’étudier la possibilité de détecter et de diagnostiquer ces défauts. Nous avons également

tenté de reconfigurer le système d’onduleur pour éviter que des pannes ne se produisent.

Mots-clés: Classification de défauts, Onduleur Tolérant aux Défauts, Moteur asynchrone, Di-

agnostic de Défauts, Reconfiguration d’onduleur.
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GENERAL INTRODUCTION

In the mid-1980s,a new technique for the torque control of induction motors well-known as

Direct Torque Control (DTC) [1]. Shortly after, M. Depenbrock introduced Direct Self Control

(DSC) [2]. These two techniques are referred to conventional DTC. Since their inception, they

have undergone continuous development and improvement by numerous researchers. DTC is

known for its simple structure and excellent dynamic behavior. However, it has several draw-

backs, the most significant of which is variable switching frequency.

Recently, a new control technique called Direct Torque Control - Space Vector Modulated

(DTC-SVM) has been developed from the classical DTC methods. This new method eliminates

the disadvantages of classical DTC and operates with a constant switching frequency. The

DTC-SVM strategies are based on the same fundamentals and drive analysis as classical DTC,

and they are the main subject of this thesis.

AC drives may face various issues with different components such as stator winding, inverter

arm cut, switching device, DC bus, rotor and stator, drive chain, faults, and power supply [3].

Switching devices are susceptible to faults due to their frailty [4]. Many electrical power system

defaults have already been invented and published to address these issues [5].

To manage induction motors, intelligent algorithms have been advanced, such as Artificial

Neural Networks (ANN) [6], Fuzzy Logic Control (FLC) [7], and Adaptive Neuro-Fuzzy Inter-

ference System (ANFIS).

Artificial Neural Networks (ANN) are based on the human brain’s functioning and modeled

as a network of connected neurons. It can be used to address various computer-based applica-

tion problems in different industries. However, before a neural network can solve problems, it

needs to be trained [8]. Fuzzy logic control is gaining attention from many scientists worldwide

1



as it can control a system without knowing its mathematical model. It uses the experience of

people’s knowledge to form its control rule base [9].

To achieve accurate fault diagnosis with neural networks, it is essential to have appropriate

features. Researchers have now started using deep neural networks to automatically extract

features from raw data. However, when dealing with signals using Convolutional Neural Net-

works (CNN), it is necessary to convert the raw data into an image using various techniques [10].

A study will be conducted on the assembly of the induction motor and voltage inverter.

Control structures will be implemented for the induction motor powered by an inverter that

can tolerate various types of faults. Solutions based on detection techniques and self-adaptation

to failure using artificial intelligence such as fuzzy and neural will be employed to ensure the

safety and dependability of the motor-inverter system. These solutions will involve the de-

velopment of estimators, comparison and decision-making algorithms, as well as substitution

commands to control the system in the presence of failure.

The thesis is comprised of six chapters. Chapter one provides an overview of control strate-

gies employed for induction motors and the current condition of inverter fault diagnosis. Chap-

ter Two covers artificial intelligence. In Chapter Three, we analyze the diagnosis system using

artificial intelligence. Here, we select two types of control strategies, DTC and DTC-SVM,

and perform diagnosis using both fuzzy logic and neural network. Chapter Four presents a

diagnosis of multiple Open Circuit faults in neural direct torque control of induction motor

drive using neural networks. In this chapter, we implant an artificial neural network in DTC

command after diagnosis using a neural network. Chapter Five discusses the use of a type of

deep learning convolution neural network, CNN AlexNet, for Open Switch fault detection in a

phase inverter feeding induction motor. In the last chapter, we explain the present three-phase

inverter reconfiguration, which solves the problem when a fault is detected and located in the

inverter. Finally, we conclude.
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Chapter 1

State of the art for induction motor

control strategies and inverter fault

diagnosis

1.1 Introduction

Induction motors (IMs) have developed since their creation and gradually replaced DC motors

to become the most widely used electric machine in the sector [11]. In the beginning, IMs were

chosen for constant speed applications due to their robustness, compactness, low production

cost, and ease of maintenance. Accurate speed control applications have been added to the

scope of IMs in recent years due to the rapid growth of power electronics [12].

Scalar control and vector control are two important groupings of approaches in the field of

speed control. The voltage/frequency ratio is often controlled as a constant in the scalar

method. Scalars have the benefits of being inexpensive, having an easy control algorithm, and

not requiring sensors. Scalar control techniques are so frequently employed in low-performance

applications. However, because of its inability to properly manage the moment, it is unsuitable

for applications requiring rapid dynamics or exact speed and torque control [13].

Although the vector control approach has limitations, such as challenging control algorithms

and complex hardware design, it is dependable and suitable for applications with high precision

requirements [14, 15]. Field Oriented Control (FOC) and direct self-control (DSC) are the two

primary methods used in the vector control technology. The stator flux space vector is the

key control technique of the DSC method, whereas the rotor flux angle is the primary control

technique of the FOC method for controlling the current’s components [12]. The controller
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needs the feedback signal from the current, rotor speed, and voltage sensors to carry out the

control orders in the FOC approach.

We call these techniques conventional DTC. Numerous researchers have been working to con-

tinuously enhance and improve them since 1985. DTC’s key characteristics are its excellent

dynamic behavior and straightforward structure. Nevertheless, there are a number of drawbacks

to traditional DTC, the most significant of which being its changeable switching frequency. Di-

rect Torque Control – Space Vector Modulated (DTC-SVM) is a novel control approach that

was created recently to replace the traditional DTC methods. The strategies of this methods is

operates with constant switching frequency. The foundations and driving analysis of structures

are the same as those of classical DTC. The DTC-SVM approach that is being presented has

a straightforward structure and offers dynamic behavior that is similar to traditional DTC.

However, in steady state operation, the DTC-SVM approach is distinguished by significantly

improved parameters [16]

1.2 Modulation Techniques

Carrier-Based Pulse-Width Modulation (PWM)

Carrier-Based Pulse-Width Modulation (PWM) is a technique used in electronic systems to

control the amount of power delivered to a load by varying the pulse width of a constant-

frequency carrier signal. PWM offers simplicity in implementation and flexibility in control

parameters. This modulation technique is widely used in power electronics, motor control,

and communication systems [17]. In this technique, the reference signals (UAC , UBC , UCC) are

compared with a triangular carrier signal (Ut) to generate three logical signals (Sa, Sb, Sc) that

define the switching instants of the power transistors. This method is often referred to as

”comparator-based PWM.”

As is shown in Fig. 1.1, the triangular carrier signal is a waveform that linearly increases from a

minimum value to a maximum value and then resets to the minimum value. This signal provides

the timing reference for generating the PWM signals. The reference signals (UAC , UBC , UCC)

represent the desired output voltages or currents that need to be controlled. They are typically

sinusoidal waveforms in applications such as motor control or can be any other desired waveform

based on the specific application requirements. The reference signals (UAC , UBC , UCC) are

individually compared with the triangular carrier signal (Ut) using comparators. When the

reference signal amplitude is higher than the carrier signal, the corresponding comparator
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Figure 1.1: Block scheme of carrier based sinusoidal PWM [18]

outputs a logical high signal; otherwise, it outputs a logical low signal. The outputs of the

comparators form the logical signals Sa, Sb and Sc. These signals indicate the switching states

of the power transistors [18].

Space-Vector Modulation (SVM)

Space-Vector Modulation (SVM) is a popular technique used in power electronics to control the

output voltage of three-phase inverters. It is commonly employed in applications such as motor

drives, renewable energy systems, and power converters. SVM offers several advantages over

other modulation techniques, including better output voltage quality, reduced harmonics, and

improved efficiency. Figure 1.2 illustrates the process of SVM implementation, which generally

involves three stages: first, identifying the sector; second, determining the region; and third,

selecting a suitable switching sequence. [19]

Figure 1.2: Space Vector Modulation (SVM) model [19]
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1.3 Overview of Control Methods for Three-Phase In-

duction Machines

The methods used for controlling Induction Motors (IM) can be categorized into scalar and

vector control techniques. Figure 1.3 illustrates the overall classification of IM control strategies

based on variable frequency control [18,20]. The following section provides a brief overview of

both types of methods.

Figure 1.3: Control methods for IMs [19]

Scalar based controllers

Scalar control methods, also known as V/f control or Volts per Hertz control, are simple and

widely utilized in pumps, fans, and other simple industrial applications where precise control is

not a primary requirement. Scalar control methods are suitable for many applications that do

not require high-performance control. Here are the key scalar control methods used in induction

motors:

1. Open-Loop V/f Control

In open-loop V/f control, the V/f ratio is kept constant for the entire speed range of

the motor. The voltage and frequency are varied together. It is widely used in industry.

A shown in figure 1.4, feedback signal are not required. This type of motor control is

advantaged due to its low cost and simplicity. However, this method lacks torque control,

limiting access to the desired torque only at the nominal operating point. If the load
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torque varies, it leads to corresponding changes in the motor’s speed [21-25].

Figure 1.4: Open-Loop V/Hz constant Control [25]

2. Closed Loop V/f Control

The closed-loop approach outperforms the open-loop method in speed control. Addition-

ally, it also regulates the torque. Within the closed-loop system, a slip control loop is

incorporated since slip is directly related to torque. The system compares the actual speed

with the target speed, and the disparity is minimized to zero through the PI controller,

ensuring the motor achieves the desired speed efficiently. This technique does not allow

the control of the magnetic flux [21, 24].

Figure 1.5: Closed-Loop V/Hz constant Control [25]
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Vector-based controllers

Vector control methods, also known as Field-Oriented Control (FOC) or Direct Torque Con-

trol (DTC), offer more precise and sophisticated control of induction motors. Vector control

decouples the control variables, such as torque and flux, allowing independent control of these

quantities. Vector control methods are more complex and require additional sensors and control

algorithms compared to scalar control. However, they offer superior control precision, faster

dynamic response, and improved efficiency over a wide range of operating conditions. Scalar

control, on the other hand, is simpler and more cost-effective, suitable for applications where

precise control is not critical.

1. Field Oriented Control (FOC)

FOC is one of the vector control strategies that has the ability to control the torque

and flux separately [26- 28]. The reference torque and flux are generated by the voltage,

current, and speed parameters from the induction motor [29].

2. Direct Torque Control (DTC)

Direct Torque Control (DTC) is a popular vector control technique that directly regulates

torque and flux in an induction motor. It involves estimating the stator flux and torque

components based on the motor model and measured or estimated quantities. DTC

provides excellent control performance and fast torque response, making it suitable for

high-performance applications. DTC with a constant switching frequency calculates the

required stator voltage vector over a sampling period to achieve the desired torque and

stator flux. This section is more detailed in Chapter 3.

3. Direct Torque Control- Space Vector Modulation (DTC-SVM)

A good and quick response can be achieved in an induction motor with DTC control by

directly controlling the torque and stator flux without regulating the current. In order

to minimize high flux and torque ripples and achieve a fixed switching frequency, space

vector modulation has been used. This section is more detailed in Chapter 3.

4. Direct-Self Control (DSC)

Direct-Self Control (DSC) is an advanced control technique that enables precise control

of motor speed and torque with reduced complexity and improved performance. DSC is

based on the principle of directly controlling the stator flux and torque of the motor. It

eliminates the need for complex mathematical calculations and uses a simpler algorithm
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to achieve control. Similar to Direct Flux and Torque Control (DTC), DSC also does not

require a speed sensor for feedback.

1.4 Inverter fault diagnosis

Structure of the voltage source inverter

The basic structure of the voltage source inverter is shown in figure (1.6). It contains six

Insulated-Gate Bipolar Transistors (IGBT)Tii = 1, ..., 6 which work complimentary and six

freewheel diodesDii = 1, ..., 6. The inverter provides entirely balanced 3-phase sinusoidal cur-

rents and voltages [30-31].

Figure 1.6: Drawing of a VSI feeding three-phase induction motor

The voltage source inverter faults are subdivided into short and open circuits. In the open

switch fault, the IGBT remains off state. Open-circuit faults do not cause system shutdown,

the system continue functioning in degradation mode. In the short circuit case, an overcurrent

is detected by the standard protection system, and shutdown is carried out.

Open circuit faults

Open circuit faults can be classified into three categories: single switch faults, double switch

faults in the same bridge arm, and double switch faults in different bridge arms. All possible

faults are shown in table 1.1 [32].

1. Single open switch fault
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Consider the scenario of an open switch fault, specifically when switch T1 is open. In

this situation, during the positive half-cycle of the input AC voltage, current cannot flow

through phase A via the upper bridge arm, resulting in zero output current for phase A.

This absence of current in phase A disrupts the balance of the three-phase system, leading

to distorted currents in the remaining phases during this half-period. However, during

the negative half-cycle, when the current is in the negative range, phase A current can

circulate through the lower bridge arm using the freewheel diode D4. In this configuration,

the currents in all three phases remain undistorted during this half-period.This analysis

applies similarly to other switches in the system, as described in reference [32].

2. Double-switch faults in the same bridge arm

In the scenario of a double switch fault occurring within the same bridge arm, the current

in the considered phase is zero. As a result, the currents in the remaining phases become

distorted; they are out of phase.

For example if T2 and T5 are open,[32]. ia(t) = −ic(t)

3. Double-switch faults in different bridge arms

In this scenario, where both switches T1 and T2 are open, specific conditions arise.Within

the interval [2kπ, 2kπ+2π/3], the current in phase A becomes zero due to the open switch

fault in T1 . Concurrently, the current in phase B becomes negative and flows through

diode D5. Phase C experiences a slightly distorted but generally normal current flow.

Notably, the currents in phases B and C are in opposition, meaning they flow in opposite

directions during this interval. In the intervals [2kπ+2π/3, 2kπ+π], the current in phase

A remains at zero due to a fault in switch T2 . Consequently, phase B , which should be

positive, also remains inactive. Since both phases A and B have zero current, phase C is

forced to be at zero as well. In the interval [2kπ+π, 2kπ+5π/3], phase A ’s current flows

through freewheel diode D4 , while phase B ’s current stays at zero. This situation causes

a distortion in phase C ’s current. Finally, in the last interval [2kπ + 5π/3, 2kπ + 2π], all

three currents flow normally through D4 and D5 in the upper bridge arm [32].

Short circuit faults

When a short circuit occurs in an electrical system, the stator currents can increase significantly,

potentially leading to catastrophic failure of the inverter and other connected components. Due

to the rapid and intense increase in current during a short circuit, relying solely on stator

10



Chapter 1 State of the art for induction motor control strategies and ...

currents to detect such faults may not be practical or effective. It is essential to employ

other protective measures, such as circuit breakers, fuses, or more sophisticated fault detection

techniques like impedance-based methods or digital protective relays, to quickly and accurately

identify short-circuit faults and prevent further damage to the system. These protective devices

can respond much faster and are designed to handle such high-current situations, ensuring the

safety and reliability of the electrical system [32].

Table 1.1: Faults types and location

Fault types Fault location
Healthy mode -

Single open switch fault T1, T2, T3, T4 T5, T6
Double open-switch fault in the same bridge arm T1-T4, T2-T5, T3-T6

Double open-switch fault in different bridge arms
T1-T2, T1-T3, T1-T5, T1-T6 ,
T2-T3, T2-T4,T2-T6, T3-T4,
T3-T6 T4-T5, T4-T6, T5-T6

Single short-circuit fault S1, S2, S3, S4 ,S5, S6

Detection methods for open circuit faults in IGBTs

IGBTs (Insulated Gate Bipolar Transistors) are widely used in power electronics and are es-

sential components in a variety of applications, including electric vehicles, renewable energy

systems, and industrial automation. However, IGBTs are prone to faults, including open-

circuit faults, which can cause system failures and damage to other components. Therefore,

detecting open-circuit faults in IGBTs is crucial to ensure the reliability and safety of these

systems.

There are several detection methods for open-circuit faults in IGBTs, including:

1. Voltage measurement method: This method involves measuring the voltage across the

IGBT and comparing it to a threshold value. If the voltage is below the threshold value,

it indicates that there is an open-circuit fault.

2. Current measurement method: This method involves measuring the current flowing

through the IGBT and comparing it to a threshold value. If the current is below the

threshold value, it indicates that there is an open-circuit fault.

3. Gate voltage measurement method: This method involves measuring the gate voltage of

the IGBT and comparing it to a threshold value. If the gate voltage is below the threshold

value, it indicates that there is an open-circuit fault.
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4. Gate pulse width measurement method: This method involves measuring the width of

the gate pulse and comparing it to a threshold value. If the pulse width is below the

threshold value, it indicates that there is an open-circuit fault.

5. Emitter current measurement method: This method involves measuring the emitter cur-

rent of the IGBT and comparing it to a threshold value. If the emitter current is below

the threshold value, it indicates that there is an open-circuit fault.

These methods can be implemented using hardware-based or software-based solutions, de-

pending on the application requirements. Additionally, advanced techniques such as machine

learning and artificial intelligence can be used to improve the accuracy and speed of fault de-

tection in IGBTs. Overall, detecting open-circuit faults in IGBTs is essential to ensure the safe

and reliable operation of power electronics systems.

Research in open-circuit fault in 3-phase inverter-fed induction mo-

tors

Open-circuit faults (OCF) and short-circuits faults (SCF) are common types of faults that

can occur in electrical power systems. Research in these areas typically focuses on developing

methods for detecting, diagnosing, and mitigating these faults to improve the reliability and

safety of power systems.

There has been significant research conducted on open-circuit fault (OCF) detection and diag-

nosis in 3-phase inverter fed induction motors. The technique proposed by Bo Wang et al. [33]

for open-circuit fault diagnosis is based on voltage residual analysis and eliminates the need

for extra voltage sensors. In this method, the characteristics of the reference voltage and the

actual output voltage are analyzed under both normal (healthy) and faulty conditions. The

paper likely discusses the theoretical framework, methodology, experimental setup, and evalu-

ation of the proposed method for open-circuit fault diagnosis in modular multilevel converters.

Another technique for diagnosing open-circuit faults based on feature extraction with JADE–

ICA algorithm and neural network has been proposed by Hailin Hu et Al. in [34]. The finite

element analysis is also conducted for open-circuit fault of multiple IGBTs switches in a PWM.

In [35], the authors aim to investigate the effects of these faults on the performance of the in-

duction motor using FEA modeling. The method described in reference [14] involves extracting

a fuzzy basis by analyzing current vector patterns under various fault conditions. The goal is to

use fuzzy logic to locate the faulty switch in the system. In the frequency domain analysis, the
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Fourier transform [36] and wavelet-based multi-resolution analysis [37-38] are widely utilized

techniques for detecting open-circuit faults in power-converter drives. For instance, in reference

[36], the fault-signature spectrum derived from three-phase currents is utilized as a distinguish-

ing feature. Additionally, a dimensionally reduced Fast Fourier Transform (FFT) employing

principal component analysis is proposed in this context. Meanwhile, in another approach de-

scribed in [38], wavelet coefficients serve as the feature vector. Principal component analysis is

applied to reduce the dimensionality of this feature vector [39,40]. The resulting feature vector

is then employed in classification tasks using various machine learning algorithms, including

linear classifiers such as k-nearest neighbors (kNN), decision trees, support vector machines

(SVM), and neural networks (NN) [4,41]. Open-circuit fault diagnosis with neural networks

is treated as a pattern recognition challenge [5,42-45], involving two essential stages: feature

extraction and fault classification.

In the time domain, features are directly derived from the three stator currents or the Clark

currents transform [6,46]. For instance, features like current angle and diameter were consid-

ered in reference [7]. These features are effective for classifying single faults. To address the

detection of multiple faults, mean, surface, and angle parameters extracted from Clark currents

are taken into account [47-48].

Nevertheless, the effectiveness of neural networks in fault diagnosis significantly relies on the

choice of features used. These features act as the foundation for fault diagnosis. As a result,

researchers have increasingly turned to deep neural networks to automatically extract relevant

features from raw data. In the context of working with signals, utilizing Convolutional Neural

Networks (CNN) necessitates the transformation of raw data into images. Various techniques

are employed to accomplish this conversion, enabling CNNs to process and analyze the data

effectively. [37-39].

1.5 Conclusion

In this chapter, a detailed comparative analysis of scalar and vector control strategies for railway

traction applications has been discussed, with a special focus on their operation at high speeds.

This study has reviewed several faults types in 3-phase inverter fed induction motors which

are a common problem in industrial applications, and there has been significant research in

this area in monitoring and fault diagnostic. Different failure detection and diagnosis-based

methodologies in 3-phase inverter such as open or short circuit were explored from the prior

literature, highlighted their advantages and disadvantages.
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Chapter 2

Diagnosis system for DTC and

DTC-SVM using Artificial Intelligence

2.1 Introduction

Direct Torque Control (DTC) is widely used in permanent magnet synchronous motor control

with its simple control mode, fast torque response, and strong perturbation of internal param-

eters and external disturbance [47]. It has been examined during the last decade in the area of

AC drives. This control strategy was confirmed by Takahashi in 1986 [1].

From the conventional DTC techniques, a new control strategy called as Direct Torque Control-

Space Vector Modulated (DTC-SVM) has recently been developed. This innovative strategy

gets rid of the drawbacks of the conventional DTC. Basically, DTC-SVM strategies are meth-

ods that employ a constant switching frequency [18]. The described DTC-SVM technique has

a simple structure, exhibits dynamic behavior, and dramatically improves parameters during

steady-state operation [47]. The modeling of inverters and induction motors has been covered

extensively in numerous articles [48–54].

Inverters feeding induction motors are key element in driving process at variable speeds. Most

common inverter faults are mainly caused by damaged power semiconductor switches. Power

semiconductor switch faults can be divided into short- circuit faults and open circuit faults.

The detection of open or short-circuit switches fault in power converters have been extensively

studied [43,55-56].

By applying the Fast Fourier Transform and sum surface algebraic feature extraction tech-

niques, we will investigate the potential for fault detection and diagnosis for short and open

circuit faults in the inverter. The chapter makes use of fuzzy logic control and artificial neural
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networks to accomplish this purpose. However, the features that are employed are crucial for

problem identification and have a significant impact on the neural network’s performance. Be-

cause of this, researchers are now using deep neural networks to automatically extract features

from unprocessed data. It is well known that working with signals on convolutional neural

networks (CNNs) necessitates employing several strategies to transform the raw input into an

image [57–59].

The chapter summaries the Direct Torque Control (DTC) principle in the second section. The

third section is dedicated to introducing the DTC-SVM. Section four describes the concept of

feature extraction for diagnosing. The fifth section involves the application of Artificial Neural

Networks (ANN) and Fuzzy logic control to diagnose issues in both DTC and DTC-SVM-IM

settings. Finally, conclusion.

2.2 DTC Basic

Basic Principle of DTC

Two control loops corresponding to the stator flux and torque magnitudes. The reference values

for torque and flux (φ∗
s, T

∗
e ) are compared with actual values (φs, Te), inducing errors that feed

into two hysteresis blocks. The outputs from these hysteresis blocks, as well as the stator flux

position (θs), serve as inputs to the switching table. Using these errors and the position of the

stator flux, the inverter is switched on via six-region control. As a result, the inverter operates

in six-step operation with six active vectors and two zero vectors, as shown in Figure 1. The

inverter output voltage vector is adjusted to minimize flux and torque errors and define the

direction of the flux rotation, as demonstrated by previous works cited from sources numbered

[43,60-61].

Figure 2.1: Basic DTC block diagram.[62]
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1. Voltage calculation

The inverter output Us is obtained via the switching status (Sa,Sb and Sc) and the DC

voltage source that fed the inverter U0. It is formed as follows [125-128]:

Us =

√
2

3
U0

[
Sa + Sb exp

(
i
2π

3

)
+ Sc exp

(
i
4π

3

)]
(2.1)

2. Clarke-Concordia transformation

The line currents of the three phases with respect to the neutral are represented in the

αβ -reference frame by a simple vector addition of these three-phase variables. These two

new vectors are obtained by applying the Clarke-Concordia transformation. Therefore,

the measured currents (Isa,Isb ,Isc) are transformed into two dimensions (Isα,Isβ) by [56]:


Iα =

2

3
Ia −

1

3
Ib −

1

3
Ib

Iβ =
1√
3

(
1

3
Ib −

1

3
Ib

) (2.2)

Also the voltage (Vsα,Vsβ) obtained by applying the Clarke-Concordia transformation.

The stator voltages in αβ -reference frame are determined as:
Vsα =

√
2

3
U0(Sa −

1

2
(Sb − Sc))

Vsβ =
1√
2
U0(Sb − Sc)

(2.3)

3. Flux and Torque Estimator

The estimator calculates the stator flux and the electromagnetic torque. are given by:

φs =

∫ t

0

(Vs −RsIs) dt (2.4)

φs = φsα + iφsβ (2.5)

 φsα =
∫ t
0
(Vsα −RsIsα) dt

φsβ =
∫ t
0
(Vsβ −RsIsβ) dt

(2.6)

φs =
√
φ2
sα + φ2

sβ (2.7)
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The angle θs is given by equation 8.

θs = arctan
φsβ
φsα

(2.8)

The electromagnetic torque can be estimated from the estimated flux magnitudes φsα,φsβ

and the calculated magnitudes of the current Isα,Isβ It is evaluated by equation 9.

Te =
3

2
p(Isβφsα − Isαφsβ) (2.9)

p: pole number

4. PI Controller

A common cascaded control method in variable-speed motor drives is PI control. Using

this method, PI controllers are applied to the DTC drive’s speed as well as the flux, torque,

and speed of the DTC-SVM drive. A PID controller is utilized in the speed control mode,

and its input is the difference between the motor’s real speed and the reference speed.

In the event of saturation, anti-windup is employed to accurately modify the regulator’s

integral action. Achalhi, Jnayah, and other authors’ works are quoted in support of these

conclusions. [67–71]

Figure 2.2: Structure of the speed PI controller with anti-windup [67,72].
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2.3 DTC-SVM Basic

DTC-SVM Principle

The DTC-SVM operates at constant switching frequency. A scheme presented in Figure.3

has speed, torque and flux loops operating with PI controllers [133,135].The motor speed (ωr)

is sensed using a speed sensor, which converts the mechanical speed into an equivalent volt-

age value compared with the reference speed(ω∗
r ).The speed error is processed through a PI

controller, generating the reference torque (T ∗
e ).The reference torque is compared with the esti-

mated torque (Te), generating the torque error , which is handled through a torque PI controller

(V ∗
q ). The estimated flux (φs), is compared with the reference flux (φ∗

s), and the flux error is

processed through a flux PI controller, generating (V ∗
d ).Ones (V ∗

d , V
∗
q ) are obtained, the trans-

formation of variables from the synchronous to stationary frame (αβ) using (θs) estimator, then

injected into the SVM modulation block which generates the inverter control orders. Equations

(2) and (3) describe the calculation to obtain Currents (Ia,Ib ,Ic) and voltage (Va,Vb ,Vc) gen-

erated form inverter transformed into the stationary frame (d-q) to generate (Vsd, Vsq, Isd, Isq)

that used to estimate torque, flux and sector (Te, φs, θs) [18,49,53,60 ,74].

Figure 2.3: Block diagram of DTC-SVM of Induction motor [53].
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Output voltages in (d−q) reference of the PI regulators are transferred into (α−β) reference.

Vα = V ∗
d cos(θ)− V ∗

q sin(θ) (2.10)

Vβ = V ∗
d cos(θ) + V ∗

q sin(θ) (2.11)

Vs =
√
V 2
α + V 2

β (2.12)

Vsd =
2

3
Va −

1

3
Vb −

1

3
Vc (2.13)

Vsq = 0 +
1√
3
Vb −

1√
3
Vc (2.14)

Isd =
2

3
Ia −

1

3
Ib −

1

3
Ic (2.15)

Isq = 0 +
1√
3
Ib −

1√
3
Ic (2.16)

 φsd =
∫ t
0
(Vsd −RsIsd) dt

φsq =
∫ t
0
(Vsq −RsIsq) dt

(2.17)

φs =
√
φ2
sd + φ2

sq (2.18)

θs = arctan
φsq
φsd

(2.19)

Te =
3

2
p(Isqφsd − Isdφsq) (2.20)
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2.4 Simulation (DTC and DTC SVM)

• SIMULATION FOR DTC

Figure 2.4: Basic DTC Simulation in Permanent State for a Speed, Torque, Flux Variation in
healthy and faulty Mode.
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Figure 2.5: Basic DTC Simulation in Permanent State for currents Variation in healthy and
faulty Mode.
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Figure 2.6: Fault current patterns in healthy and faulty Mode in DTC (open switch).
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Figure 2.7: Fault current patterns in multiple faults Mode in DTC

23



Chapter 2 Diagnosis system for DTC and DTC-SVM using Artificial Intelligence

Figure 2.8: Fault voltage patterns in healthy and faulty Mode in DTC (short witch)
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Figure 2.9: Matlab/Simulink block diagram of PWM inverter controlled by DTC
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• SIMULATION FOR DTC-SVM

Figure 2.10: Basic DTC-SVM Simulation in Permanent State for a Speed, Torque, Flux Vari-
ation in healthy and faulty Mode
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Figure 2.11: Basic DTC-SVM Simulation in Permanent State for currents Variation in healthy
and faulty Mode
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Figure 2.12: Fault currant Patterns in faulty and healthy Mode in DTC-SVM (open witch).
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Figure 2.13: Fault voltage patterns in healthy and faulty Mode in DTC-SVM (short witch).
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Figure 2.14: Matlab/Simulink block diagram of PWM inverter controlled by DTC-SVM
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2.5 Discussing the result of simulation

A reference speed of 70 rad/s and a reference flux of 1Wb were fixed between 0 and 1s .Load

is integrated to the motor at second 0.5s. After, these desired parameters were changed to 40

rad/s and 0.5Wb respectively. Between 1.5s and (2s), we made an open-switch fault at T1,

removed at second 2s. And Between 2.5s and (3s) we made a double faults in T1 and T2,

removed at second 3s. As shown in Figure 4&9.

• Open circuit faults

Open circuit faults can be classified into three categories: single switch faults, double

switch faults in the same bridge arm, and double switch faults in different bridge arms.

– Single open switch fault

To see the effect of an open switch fault, consider the case when the switch T1 is open.

The current cannot flow in the phase A through the upper bridge arm when this

current is positive; the output current of phase A is zero. During this half period, the

phase current of the remaining phases are distorted due to the three-phase current

balance. When the phase current is in the negative range, the current can flow in

the phase A through the lower bridge arm via the freewheel diode D4. The three

currents have no distortion in this half-period. The same reasoning remains valid

for the other switches [75]. Shape in Figure 5 illustrate single faults in (αβ) mode.

– Double-switch faults in the same bridge arm

In the case of a double switch fault in the same bridge arm, the current in the

considered phase is zero. Consequently, the currents of the other phases are distorted;

they are out of phase. For example if T1 and T4 are open, [75].

– Double-switch faults in different bridge arms

In this case, consider T1 and T2 are open. The current of phase A is zero following

the open switch fault of T1. The current of phase B which is negative in this interval

passes through the diode D5. The current of phase C passes normally but with a

slight distortion. The currents of phases B and C are in phase opposition [75]. Shape

in Figure 6 illustrate multiple faults in (αβ) mode.

• Short circuit faults

When a short circuit occurs, stator currents increase dramatically leading to catastrophic

failure of the inverter [76]. So using stator currents to detect short-circuit fault is not

practical. On the other hand, the normalized mean value of stator voltage in the (α, β)
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space for the six short-circuit switches are almost equal to zero, then the short-circuit

switches fault cannot be distinguished. To remedy, the stator voltages in the frequency

domain are used. Shapes in Figure 10 illustrate single faults in mode (αβ).

2.6 Feature extraction

Feature extraction based on surface calculation

Feature extraction is critical for developing an efficient problem detection and diagnosis system

from the output three-phase current signal. It was used to extract data and train a neural

network to detect faults. Existing feature extraction approaches have limits in terms of accuracy

and time and a lack of sufficient meaningful information in the classification set. Normalized

functions should be universal for different reference speeds [64, 31,77].

We employ the extracted feature as an input to artificial neural network and fuzzy logic control,

which aids in recognizing and identifying defects. It provides the opportunity to make a system

more precise in fault patterns. Feature extraction mathematical model defined in equation (21)

[74, 31]: 
Sα =

∑N
i=1 Isα(i)

length(Isα)∗max(abs(Isα))

Sβ =
∑N
i=1 Isβ(i)

length(Isβ)∗max(abs(Isβ))

(2.21)

Where, N defines the number of samples contained in Isα,β. The choice of N depends on the

diagnosis decision time.

Figure 15 shown data acquired under single multiple faults occurrence that will be used to train

the neural network.
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(a)

(b)

Figure 2.15: Feature extraction (a) under single fault, (b) under multiple fault occurrence

Feature extraction based on Fast Fourier transformation (FFT)

The set of detailed signal spectrum values are typically decomposed from one domain to another

via a sort of transformation known as the Fast Fourier transform, also referred to as the Fourier

Transform (FFT). The signal spectrum that can be processed with a small number of data at

each stage of the process is used to estimate the variation in the dataset. Induction motor

defects can be found using this FFT algorithm variant. [77] the definition of the FFT.

X(k) =
N=1∑
n=0

x(n)e−j2πnk/N (2.22)

Where N defines the number of data samples.

K = 0,1,2. . . . . . N-1
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x(n) = time-domain discrete signal.

Selecting surface computation as the open circuit feature extraction method allows for the

presentation of three symmetric levels (negative, zero, and positive) representing the upper

switch default, the healthy switch, and the lower switch default. The data are arranged neatly,

and classifying the faults will be straightforward. By manually opening the IGBTs gates in the

Simulink model that is being used, we are able to create the dataset. The features for single and

multiple open switch failures that were found using equation (21) are displayed in Figure 15.

Stator currents cannot be used to detect short circuit faults that result in overcurrent, hence

this method is not practicable. Additionally, the normalized mean voltage value is nearly zero.

Because of this, a suitable substitute for short-circuit defect detection is the power spectrum.

We have computed the Discrete Fourier Transform of the two voltage signals, Vsα,Vsβ, using

the Fast Fourier Transform (FFT) in order to obtain the power spectrum [77]:

2.7 Diagnosis system for DTC and DTC-SVM

The structure bellow (Figure 16) illustrate deferent command techniques and implantation

of artificial intelligent for diagnosis system. Figure 17 illustrate matlab Simulink block for

Figure 2.16: Structure of diagnosis system for DTC and DTC-SVM

diagnosis. In (Figure 17a), three stator currents Isabd calculate their surfaces (Sa, Sb and Sc)

using feature extraction mathematical model defined in equation (21) diagnosing using fuzzy

logic. In (Figure 17b), tow stator currents in mode (Sαβ) Isαβ calculate their surfaces (Sα, Sβ)

using the same feature extraction defined in equation (21) diagnosing using neural network.

34



Chapter 2 Diagnosis system for DTC and DTC-SVM using Artificial Intelligence

(a)

(b)

Figure 2.17: Matlab/Simulink block Diagnosis. (a) By using Fuzzy Logic (b) By using ANN

Diagnosis DTC-ANN for open and short faults

a) System of Fault Diagnosis

Figure 18 shows the proposed fault diagnosis system in open and short switch. Faulty switch

Figure 2.18: Matlab/Simulink block diagram of PWM inverter controlled by DTC-SVM

can be recognized in twenty-nine pattern, twenty-tow pattern for open switch, six-pattern for

single fault and fifteen-pattern for multiple faults, a circle shape describes current pattern in

healthy mode as illustrate in Figure. 6 and 7, and seven-pattern for single short switch. As

illustrate in Figure.8
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b) ANN fault classification

Neural networks have shown excellent performance in detecting open circuit faults. The main

idea is to train a Multi layer Perceptron (MLP) from a data set consisting of input examples

and their corresponding desired outputs. As shown in Figure.19, the architecture of the used

MLP has two hidden layers H1, H2 with two input nodes corresponding to the surfaces Sα,Sβin

the open switches case and the power spectrums Vα,Vβin the short-circuit case. The output can

take values from 0 to 22 for the open switches case and from 0 to 6 in the short-circuit case.

This architeture is adopted after multiple training.

Figure 2.19: Matlab/Simulink block diagram of PWM inverter controlled by DTC-SVM

c) Simulation Results

• Input / Output data

In order to create the dataset, we manually flip the switches open or closed, then we run

the simulation with the desired torques of 0.5 and 1 N.m. and motor speeds of 40 and

70 round/s. The segmentation of the signal using a sliding window is how the suggested

method detects and classifies faults. Every segment that makes up a signal period consists

of 450 samples.

The various fault modes will be used to teach the network. For every pattern input, there

are 2000 features in the input data. This yields a healthy pattern of 2000 and a fault

occurrence of 2000*21. This results in 44000 vectors. There are 560 features used for the

short-circuit instance, with 80 input features for each defect. 50% of these examples of

the two cases are used for training, 25% for the validation and 25% for the test.
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• Neural Network training

After numerous simulations, we have determined that the optimal design for the two

cases is 11 neurons in the first hidden layer and 9 neurons in the second layer. Because

of its regular characteristic qualities and quick training time, the Levenberg Marquardt

training method is widely employed. When the chosen Mean Squared Error (MSE) is

met, the training procedure will come to an end. Equation (23) provides the MSE. [43].

MSE =
1

N

N∑
i=1

(yi − di)2 (2.23)

Where yi the output value of target, di is out of training data, N is training data number.

Figure.20 shows the convergence curves for training process for 21 open switches faults.

(a) (b)

Figure 2.20: Training process for (a) open-switches and (b) short-circuit cases.

The best validation performance is obtained after 1109 epochs with a MSE of 0.0094. In

the short-circuit case, a best performance of 0.0016 is obtained for the all single faults

S1,. . . ,S6 after 10000 epochs (see Figure.3. 7b).

Figure.19 shows the performance of the neural network during the training phase. The

prediction ration is almost 99.99% for training, validation and testing process in the open

and short-circuits cases.
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(a) (b)

Figure 2.21: Behavior of the MLP during training, validation and testing process for (a) open-
switches and (b) short-circuit cases.

• Performance Evaluation

To evaluate the performance of the trained MLP, accuracy and the confusion matrix met-

rics have been used to measure the true or the misclassification of different faults [78].

The accuracy is an essential metric for the evaluation of the result. testing data and is

the ratio of accurately anticipated defects to total faults. In the event of open switches,

the accuracy is 99.84%, whereas 100% accuracy is attained in the case of a short circuit

problem. We can see the MLP’s performance for the two fault types by defining the con-

fusion matrix in the table. The genuine labels are shown in each row and the predicted

labels are shown in each column of the matrix. The accuracy by class is displayed in

the confusion matrix. Figure 22 confusion matrix illustrates that for single open switches

and short circuit failures, accuracy is 100%. Out of 7500 problems, 12 misclassified faults

related to numerous open switches are noticed.
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(a) (b)

Figure 2.22: Confusion matrix for test data (a) open switches and (b) short circuit cases.

Diagnosis DTC-FYZZY for open single switch faults

a) Structure of Fault Diagnosis System

Figure 23 shows the proposed fault diagnosis system in single open switch faults. Diag-

nosis System consist feature extraction surfaces sum algebraic and Fuzzy System.

Figure 2.23: DTC-FYZZY proposed fault diagnosis system
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b) Structure of Fuzzy Diagnosis System

– Fuzzification

Allows the passage from the digital domain to the symbolic domain in order to

determine the membership function of a variable of the fuzzy system [67].

The fuzzification is the process of a mapping from measured or estimated input to

the corresponding fuzzy set in the input universe of discourse. In this system there

are three inputs. Sa,Sb,Sc are surfaces sum algebraic given by equation (21), The

Figure 2.24: Membership function of three inputs and output variables (DTC-FYZZY).

membership functions of the 3 inputs and the output are represented in Figure.24.

Sa,Sb,Sc memberships function is decomposed in three fuzzy sets: N (negative), Z

(zero), P (positive)

The Faulty switch membership function is decomposed in seven fuzzy sets: T0 toT6

– Inference rules

Forms the basis of the applied inference systems (rules). This block allows one to

use the laws of inference to replicate human decision-making and infer the fuzzy

regulator’s control actions. A fuzzy rule explains how input and output variables

relate to one another. [67].

Control rules are often expressed in the IF-THEN format. Rules Ri can be written

as:
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R1. If Sa is Z, and If Sb is Z, and If Sc is Z, Than Ti=0: Healthy mode

R2. If Sa is N, and If Sb is Z, and If Sc is Z, Than Ti=1: T1 switch is defect

R3. If Sa is Z, and If Sb is N, and If Sc is Z, Than Ti=2: T2 switch is defect

R4. If Sa is Z, and If Sb is Z, and If Sc is N, Than Ti=3: T3 switch is defect

R5. If Sa is P, and If Sb is Z, and If Sc is Z, Than Ti=4: T4 switch is defect

R6. If Sa is Z, and If Sb is P, and If Sc is Z, Than Ti=5: T5 switch is defect

R7. If Sa is Z, and If Sb is Z, and If Sc is P, Than Ti=6: T6 switch is defect

These roles obtained after stators currents in phase of feature extraction as illustrated

in Figure.25

Figure 2.25: Sa,Sb,Sc surfaces currents calculations from feature extraction sum algebraic

– Défuzzification

Sets the value ranges of the membership functions from the output variables and

performs defuzzification to provide a digital signal [129].
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Figure 2.26: The structure of FUZZY DTC controller

Diagnosis DTC-SVM-ANN for open and short switch single faults

a) System of Fault Diagnosis

As illustrated in Figure.27. The proposed fault open and short switch in the diagnosis system.

Figure 2.27: The structure of the DTC-SVM-ANN controller

b) ANN Fault classification

1. Design of neural network architecture

The same architecture illustrated in Figure.19.
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2. Neural Network Training

• Open switch

A network will be trained with different faulty modes. The input matrix data is two

rows length. (Sα,Sβ) Each pattern input has a total of 40000 columns. This gives

a healthy pattern a score of 40000. And 40000*6=24000 for fault occurrence. That

gives a 280000 data base for neural network training. The output target categoriza-

tion is represented for various speed references.

• Short switch

A network train with faulty and healthy modes (T0, T1, T2, T3, T4, T5, T6).

The input matrix data is two rows length. (Vα,Vβ). 5000 columns for every single

pattern inputs. That gives a 35000 data base for neural network training. The

output corresponding target is represented for various speed references.

3. Neural Network Testing

(a) (b)

Figure 2.28: Training, validation, and test errors of the diagnosis ann. (a) Open switch, (b)
short switch

For open switch: as shown in is shown in Figure.28a, the number of the off-line training

to get 0.001 error is 614 epochs.

For short switch: as shown in is shown in Figure.28b, the number of the off-line

training to get 0.042 error is 530 epochs.
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Diagnosis DTC-SVM-FUZZY for open switch single fault

a) Structure of Fault Diagnosis System

Figure.29 shows the proposed fault diagnosis system in single open switch faults. Diagnosis

System consist feature extraction surfaces sum algebraic and Fuzzy System.

Figure 2.29: DTC-SVM-FUZZY proposed fault diagnosis system

b) Structure of Fuzzy Diagnosis System

• Fuzzification

Sa,Sb,Sc are surfaces sum algebraic given by equation (21), The membership functions of

the 3 inputs and the output are represented in Figure.30.

The Faulty switch membership function is decomposed in seven fuzzy sets: T0 toT6

Figure 2.30: Membership function of three inputs and output variables (DTC-SVM-FUZZY)
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• Inference rules

Control rules are often expressed in the IF-THEN format. Rules Ri can be written as:

R1. If Sa is Z, and If Sb is Z, and If Sc is Z, Than Ti=0: Healthy mode

R2. If Sa is Z, and If Sb is N, and If Sc is P, Than Ti=1: T1 switch is defect

R3. If Sa is P, and If Sb is Z, and If Sc is N, Than Ti=2: T2 switch is defect

R4. If Sa is N, and If Sb is P, and If Sc is Z, Than Ti=3: T3 switch is defect

R5. If Sa is Z, and If Sb is P, and If Sc is P, Than Ti=4: T4 switch is defect

R6. If Sa is Z, and If Sb is Z, and If Sc is P, Than Ti=5: T5 switch is defect

R7. If Sa is P, and If Sb is N, and If Sc is Z, Than Ti=6: T6 switch is defect

These roles obtained after stators currents in phase of feature extraction as illustrated in

Figure 31

Figure 2.31: Sa,Sb,Sc surfaces currents calculations from feature extraction sum algebraic
(DTC-SVM-FUZZY)

• Défuzzification

Sets the value ranges of the membership functions from the output variables and achieves

defuzzification to deliver a digital signal [68].
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Figure 2.32: The structure of the FUZZY DTCSVM controller,

2.8 Conclusion

A Fault Diagnosis System based on DTC and DTC-SVM has been proposed using Fuzzy

Logic and Neural Network fault classification methods. The proposed system utilizes a feature

extractor based on Normalized Algebraic Sum and Fast Fourier Transform to transform the

output stator current and voltage signals, which helps in rating the signal value as an important

characteristic for classifying a fault hypothesis. With a good performance, the proposed method

has the ability to classify and identify the fault location of both single and multiple open circuits.

The models proposed for diagnosis in DTC and DTC-SVM are simple and effective, making it

a promising solution to robustness problems and a reliable way to control an induction motor

drive.
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Chapter 3

Diagnosis of Neural Direct Torque

Multiple Open Circuit Faults Using

neural networks for induction motor

drive control

3.1 Introduction

Variable Frequency Drives or inverters are widely used in industrial applications for controlling

the speed and torque of alternative current (AC) motors. Direct Torque Control (DTC) is a

powerful control technique for electric motor drives, providing high-performance and efficient

control of motor torque and speed. The key principle behind DTC is to directly estimate the

stator flux and torque based on the motor voltage and current measurements. By having direct

access to these quantities, DTC can quickly and accurately adjust the motor control variables

to achieve the desired torque and speed.

Insulated Gate Bipolar Transistors (IGBTs) play an important role in the operation of inverters

by converting DC power into variable-frequency AC power, enabling motor control. However,

IGBTs are among the components that commonly encounter issues. IGBT faults can have a

significant impact on the performance and reliability of the feeding systems [42]. In order to

prevent further damage and ensure reliable operation, various fault diagnosis methods based on

signal analysis have been developed for electrical machine drives [44,79,64,60,80]. The advantage

of these methods is that they only require measurements of line currents or line-to-line voltages

[31,75,81-82]. As with other engineering problems, fault detection using neural networks has
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not remained immune. In the literature, we can found that open-circuit fault diagnosis using

neural networks is considered as a pattern recognition problem [83-85]. Regardless of the used

scheme, open-switches fault detection using neural network consist of two key steps; feature

extraction and fault classification. Since neural DTC has been proposed to improve the DTC

performance, in particular the reduction in the torque and the flux ripples, we investigate in

this chapter how neural networks perform in fault detection problems when neural DTC is

used. Instead of using several types of features, or several signal cycles as in previous works, we

found that the normalized mean Clark currents and the power value of the signal are sufficient

to obtain a full accuracy.

This chapter is organized as follows: Section 2 introduces the neural DTC principle. Section 3

analyses the Fault Diagnosis system under single and multiple open switches. Section 4 presents

the proposed method. Section 5 presents simulation results. Section 6 conclusion.

3.2 Neural DTC

The neural DTC consists of replacing the two hysteresis blocks and the switch table from basic

DTC (figure 1) with a neural network controller shown in Figure 1 [81]. The neural networks

has an input layer containing three neurons corresponding to the three inputs εT , εs , θs , and

an output layer containing three neurons corresponding to the three switching status Sa, Sb and

Sc .

Figure 3.1: Neural DTC block diagram
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3.3 Open-Switches Fault Diagnosis

Faulty switch can be recognized in twenty-pattern, six-pattern for single fault and fifteen-

pattern for multiple faults, current pattern illustrate a fault location. Circle shape describes

current pattern in healthy mode. All patterns are illustrated in figure 2.

Figure 3.2: Patterns of multiple open-circuit faults

3.4 Proposed Method

Effective feature extraction is crucial in the development of a reliable system for detecting and

diagnosing open-switches faults from the three-phase current signal output. The purpose of

feature extraction is to extract relevant data from the signal and utilize it to train a neural

network for fault detection. However, existing approaches have certain limitations in terms of

accuracy and processing time. To overcome these challenges, it is recommended to employ nor-

malized and reduced features that can be applied across different reference speeds. By utilizing

normalized functions, the feature extraction process can be standardized and optimized, en-
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suring consistent and accurate results regardless of the specific operating conditions or speeds.

Figure 3 depicts the proposed fault diagnosis system.

Figure 3.3: Proposed fault diagnosis system

As illustrated in figure (3), to construct the vector of features, the currents measured Isa,Isb

,Isc are transformed into two dimensions (Isα,Isβ) by equation (3.2) and their surfaces (Ssα,Ssβ)

are calculated using feature extraction mathematical model given by the following equations

(3.21) [86-87]:

In addition, the autocorrelation function at lag zero of the currents Isα,Isβ are considered to

improve the accuracy of the proposed diagnosis fault system [88].

rsα(0) =
1

N

N∑
i=1

I2sα(i) (3.1)

rsβ(0) =
1

N

N∑
i=1

I2sβ(i) (3.2)
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3.5 Simulation Results

Neural DTC

As mentioned above, the neural DTC has the flux and the torque errors and the sector selec-

tion (KT ,Kφ,φs) as inputs and The switching status (Sa,Sb,Sc) as outputs. After numerous

simulations, we have found that two hidden layers with 7 and 3 neurons in each as shown in

figure (3.4) provide the best results.

Figure 3.4: Multilayer network architecture for neural DTC

Using this configuration and the Levenberg-Marquardt as training algorithm, a mean squared

error (MSE) goal of 0.01 was fixed. To create the test data sets, various simulations with vary-

ing speed references were performed. For each input vector and corresponding output vector,

15105 samples were collected where 50% are used for training, 25% for testing and 25% for

validation. From figure (5), an MSE of 0.042 was reached in only 465 iterations.

Figure 3.5: The neural DTC in training, validation, test errors
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To see the effectiveness of the neural DTC, we construct the data sets for open-swiches

faults under basic and neural DTC, a reference speed of 75 rad/s and a reference flux of 1Wb

were fixed between 0 and 0.3s. After 0.3s, these desired parameters wre changed to 40 rad/s

and 0.5Wb respectively. Between 0.6s and 0.9s, we made an open-swiche fault at T1. At 1.2s,

we made a double faults in T1 and T2. As shown in Figure 6, the estimated flux and torque

are the same under the basic and neural DTC.

Figure 3.6: Stator flux and torque under basic DTC and neural DTC.

Fault detection under basic and neural DTC

To create the dataset, we manually produce faults by opening the IGBTs gates in the used

Simulink model. Figure 7 shows the obtained features using equations 8 and 9 for healthy

and all single and double-open switches. The whole data sets consist of 27500 vectors of 4

components with the correspondent labels as outputs.

The outputs are labeled from 1 to 22 and listed in table 1.
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Table 3.1: Fault Labels

Healthy T(1)
Single
Fault

T(2),T(3),T(4),T(5),T(6),T(7)

Multiple
Fault

T(8),T(9),T(10),T(11),T(12),T(13),T(14),T(15),T(16),
T(17),T(18),T(19),T(20),T(21),T(22)

Figure (7) shows the evolution of the four components Sα,Sβ ,rsα(0),rsβ(0) occurring in the

same order as in table I.

(a) Two features Sα,β

(b) Two features rα,β

Figure 3.7: Feature extraction under single and multiple fault occurrences

To see how the added feature can improve the fault detection process, we visually explore

the datasets using the t-Distributed Stochastic Neighbor Embedding (t-SNE) [89]. As we can

see from figure (8), when using the two first components, we can see an overlapping in labels

(1,19), (10,19), (2,9) and (8,14). Also the label 21 is divided to two sets.

However, the autocorrelation coefficients added to components make the novel feature more

discriminative and will be able to effectively separate different classes in the dataset.
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Figure 3.8: t-SNE obtained using two and four features

The simulation model generates a total of 75,000 datasets across 22 different labels. These

datasets are then divided into three sections: 50% for training, 25% for testing, and 25% for

validation. This means that there are 20625 datasets allocated for both training and validation

purposes. For the fault detection problem, we have considered the neural input without and

with autocorrelation components. For the two cases, three hidden layers with 20,20,15 neurons

were chosen.

Figures 9,10 show the convergence curves and the regression plots respectively. Regression plots
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show the relationship between the outputs of the network and the targets. It is evident from

regression plots that practically all the data falls directly on the line with the associated slope

of 1, expressing the exact match between the neural network output and target data. However

in figure (10.a), the scatter plot shows that some of data points like 2,8,9,10,19 and 21 have

relatively poor fits which confirm t-SNE discussed above.

(a) Two features Sα,Sβ

(b) Four features Sα,Sβ ,rsα,rsβ

Figure 3.9: Convergence’s curves for (a) two inputs and (b) for four inputs.
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(a) Two features Sα,Sβ

(b) Four features Sα,Sβ ,rsα,rsβ

Figure 3.10: Regression plots of the neural network on training, validation, testing and total
sets for the (a) two inputs and (b) for four inputs.

After validating and testing the simulation model, it is important to compare its performance

with other to evaluate its superiority or effectiveness.

The test accuracy is a performance measure that quantifies the proportion of correctly pre-

dicted outcomes by the model on the test dataset. It is calculated by dividing the number

of correctly classified instances by the total number of instances in the test set. This metric

provides an indication of how well the model can generalize its predictions to unseen data. The

test accuracy defined by [87].

A =
N −M
N

∗ 100% (3.3)
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where N is the number of vectors in the test dataset and M the number of misclassified datasets.

In the comparative analysis, the proposed method is assessed in comparison with two distinct

types of machine learning models: ensemble extreme learning machine (ELM) [72] and the

Weighted Random Forests Algorithm [73]. The results presented in Table II show that the

proposed algorithm achieves the highest accuracy, reaching 100%. This suggests that the new

method successfully identifies all fault types and significantly reduces the occurrence of false

negatives (fault miss detection).

Table 3.2: Comparison with other methods

Method Test Accuracy
Ensemble ELM [72] 94.55%

WRFA [73] 96.25%
Proposed 100%

3.6 Conclusion

This chapter proposes a fault recognition and diagnosis in a PWM inverter with an induction

motor drive controlled by an artificial neural network direct torque control (NDTC).An effec-

tive and simple technique to control an induction motor drive appears in NDTC, providing a

promising solution to the robustness problems. The simulations were done on a regular induc-

tion motor using a basic and neural direct torque control.

The study focused on identifying open inverter switching faults, both single and multiple, by

simulating various defect modes using artificial intelligence methods. The outcomes indicate

that the proposed approach successfully detects all types of faults and significantly reduces the

likelihood of missed detections.
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Chapter 4

Deep learning for Open-Switch Faults

Detection in Inverter Feeding

Induction Motor

4.1 Introduction

Nonetheless, the effectiveness of neural networks in fault diagnosis heavily relies on the features

utilized, which serve as the fundamental aspects of fault detection. Consequently, researchers

have been motivated to employ deep neural networks to automatically extract features from raw

data. When dealing with signals, employing Convolutional Neural Networks (CNN) necessitates

the conversion of raw data into images through various techniques [44]. In the domain of

convolutional neural networks (CNNs), transfer learning is a commonly employed technique for

image classification tasks. Its primary advantage lies in leveraging the knowledge acquired from

training a model on a large dataset to enhance the performance of a model on a smaller, related

dataset. By utilizing a pre-trained model as a starting point, we can retrain only a subset of the

network’s layers on our specific dataset, instead of initiating the training process from scratch

and training the entire network anew. This strategy conserves both time and computational

resources, all the while ensuring commendable performance on the intended task. Numerous

pre-trained networks, such as AlexNet, VGG16, ResNet, and DenseNet, are readily accessible

for various deep learning tasks .

In this chapter, AlexNet is proposed to detect open-circuit faults, taking advantage of its status

as a transfer learning model where specific layers are retrained. Initially, the αβ current signals

are converted into images using an appropriate mapping technique. These generated images are

58



Chapter 4 Deep learning for Open-Switch Faults Detection in Inverter...

then utilized for training and testing the network. The remainder of this chapter is structured

as follows: Section 2 outlines the problem statement and examines the fault diagnosis system

concerning both single and multiple open switches. Section 3 introduces the proposed method,

while Section 4 presents the simulation results. Finally, Section 5 concludes the study.

4.2 Problem statement

Open-circuit faults

Within the fundamental configuration of the voltage source inverter (figure 5.1), there are

six Insulated-Gate Bipolar Transistors (IGBTs) Si, i = 1, ..., 6 that operate complementarily,

alongside six freewheel diodes Di, i = 1, ..., 6. This inverter is responsible for supplying perfectly

balanced 3-phase sinusoidal currents and voltages. The majority of failures in the rectifier

manifests in power electronic switches, primarily in the form of open-circuit faults (OCFs) and

short-circuit faults (SCFs). In cases of open switch faults, the IGBT remains in an off state.

Unlike short-circuit faults, open-circuit faults do not result in system shutdown; instead, the

system continues to function in a degraded mode [87].

Figure 4.1: Three-phase power converter feeding an electric system (a) and typical faults (b)
[149]

Open circuit faults can be categorized into three distinct types: single switch faults, double

switch faults occurring within the same bridge arm, and double switch faults emerging in

different bridge arms. Table 5.1 [56,87] illustrates all conceivable fault scenarios.
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Table 4.1: Summary of different faults

Fault type Fault Location

Single open-switch Fault S1,S2,S3,S4,S5,S6

Double open-switch Fault

in the same bridge arms
S1-S4,S2-S5,S3-S6

Double open-switch Fault

in different bridge arms

S1-S2,S1-S3,S1-S4,S1-S5,S1-S6,S2-S3,S2-S4,

S2-S5,S2-S6,S3-S4,S3-S5,S3-S6,S4-S5,S4-S6,S5-S6,

Clarke-Concordia transformation

The measured currents (Ia,Ib ,Ic) are transformed into two dimensions (Iα,Iβ) through the

application of the Clarke-Concordia transformation, as outlined in reference [43].


Iα =

2

3
Ia −

1

3
Ib −

1

3
Ib

Iβ =
1√
3

(
1

3
Ib −

1

3
Ib

) (4.1)

The Figure 5.2 shows various alpha-beta stator currents forms of defects for different double

faulty switches. It can be noted that the path drawn is a portion shape of circle for all cases of

defects [39].

Figure 4.2: Ideal shape of different trajectories of the phase current according to the normal ,
single , and double faulty modes
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Fast detection and isolation of open-circuit faults in IGBT switches are of great importance

to prevent damage to other components in the system and to avoid costly downtime. Fault

detection and isolation methods are an active area of research in power electronics, and various

techniques have been proposed to improve the reliability and fault tolerance of power electronic

systems. In this thesis, we propose to use Alexnet to identify and classify multi-open-circuit

faults.

4.3 Proposed method

The proposed method for open switches fault detection in the induction motor inverter is

outlined in Figure 5.3, and comprises three key steps:

• Raw Currents Data generation:

This step is responsible for gathering raw current data from the induction motor inverter.

Typically, current sensors installed in the motor drive circuit are utilized for acquiring

this data.

• Data Organization:

The purpose of this step is to collect data samples and labels from the raw current

data. The data samples correspond to the current signals, whereas the labels denote the

associated fault types.

• Detection and classification:

This step employs the AlexNet neural network to extract the most representative features

and classify the data into different types of faults.

Figure 4.3: Flowchart of the proposed multi-faults diagnosis
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Data organization

To implement deep convolutional neural networks (CNNs) for fault detection, the αβ current

signals are transformed into images through a specific mapping technique. In this process, each

sample of αβ stator currents is represented as a binary pixel belonging to the object’s contour.

The coordinates for these pixels are determined as follows :

x =
[iα −min(iα)](Lx − 1)

max(Iα)−max(Iα)
+ 1 (4.2)

y =
[iβ −min(iβ)](Ly − 1)

max(Iβ)−max(Iβ)
+ 1 (4.3)

Where: iα and iβ are the values of each element of the vectors Iα and Iβ respectively.

Figure 5.4 illustrates the process of reconstructing data from a 1D transform to a 2D format.

Figure 4.4: Example of the currents in the Concordia frame before and after mapping when
one switch is opened

AlexNet for Detection and classification

AlexNet is a convolutional neural network (CNN) that was introduced in 2012 by Alex Krizhevsky

’et al.in 2012 . The architecture of AlexNet comprises 8 layers, including 5 convolutional layers

and 3 fully connected layers. The layers used for feature extraction in a pre-trained AlexNet

model are typically the first five convolutional layers .The remaining three are fully-connected

and used for classification (see Fig 5.5).
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Figure 4.5: AlexNet CNN architecture

4.4 Simulation results and discussion

In this study, we addressed a multi-classification problem involving 22 distinct classes, utilizing

the AlexNet model for the classification task. The training of the AlexNet model was conducted

on a computer equipped with an Intel(R) Core(TM) i9 processor and 32GB of memory, ensuring

efficient processing and accurate training results.

Fault description and labeling

Fault description and labeling are essential components of any fault analysis or diagnostic

system. The fault types are labeled and grouped into three distinct groups based on their char-

acteristics which are summarized in Table 5.2: The first group includes the ”normal” operating

condition without any faults: No fault (healthy): H

The second group comprises the six fault types related to single IGBT open-circuit faults,

where individual IGBT components within the circuit have an open connection: Single fault in

Si : Si, i = 1, ..., 6

The third group includes the 15 fault types associated with double IGBT open-circuit faults,

indicating situations where pairs of IGBT components have open connections: Double faults

in Si, Sj : Sij, i = 1, ..., 6, j = 1, ..., 6
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Table 4.2: Summary of different labels Fault Types

Fault Type Lable Fault Type Lable
No fault (healthy) H T1 and T6 Open-circuit S1,6

T1 Open-circuit S1 T1 and T2 Open-circuit S2,3

T2 Open-circuit S2 T2 and T4 Open-circuit S2,4

T3 Open-circuit S3 T2 and T5 Open-circuit S2,5

T4 Open-circuit S4 T2 and T6 Open-circuit S2,6

T5 Open-circuit S5 T3 and T4 Open-circuit S3,4

T6 Open-circuit S6 T3 and T5 Open-circuit S3,5

T1 and T2 Open-circuit S1,2 T3 and T6 Open-circuit S3,6

T1 and T3 Open-circuit S1,3 T4 and T5 Open-circuit S4,5

T1 and T4 Open-circuit S1,4 T4 and T6 Open-circuit S4,6

T1 and T5 Open-circuit S1,5 T5 and T6 Open-circuit S5,6

Database generation

To construct the dataset, we manually induced open circuits as specified in Table 1 and then

simulated the corresponding scenarios. The resulting grayscale images were standardized to a

size of 227x227 pixels. These images were generated using the signal-to-image method, em-

ploying a sample signal comprising 4500 sampling points. Figure 5.6 illustrates the outcomes

of signal conversion under normal and faulty conditions. As can be seen from the conversion

results, the converted images under different work conditions look completely different. The

dataset comprises 300 images for each pattern input, totaling 6600 images. 300 for a healthy

pattern, and 300*21 for various fault occurrences. To analyze this high-dimensional dataset

thoroughly, we employed the t-SNE (t-Distributed Stochastic Neighbor Embedding) method,

which reduced the dataset’s dimensionality to two dimensions .

To analyze this high-dimensional dataset thoroughly, we employed the t-SNE (t-Distributed

Figure 4.6: Converted images under normal and fault conditions
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Stochastic Neighbor Embedding) method, which reduced the dataset’s dimensionality to two

dimensions to enables the visualization of complex data structures in a more interpretable man-

ner.

In Figure 5.7, the t-SNE visualization was generated using two different distance metrics,

Chebyshev and Num PCA Components, resulting in favorable clustering outcomes. The Clarke-

Concordia transformation proved to be a successful technique for converting the three current

lines into two vectors. Converting these vectors into images through a suitable mapping opens

the possibility of utilizing pre-trained Convolutional Neural Networks (CNNs) for fault diagno-

sis.

Figure 4.7: t-SNE obtained using two distance metrics

Performance evaluation

Our proposed method’s performance was assessed using five metrics [93]: accuracy (Acc),

sensitivity (SN), also known as recall (R), precision (P), specificity (S), and F1-score (F).

These metrics were computed using the following formulas outlined in Equations (5.3-5.7).

Acc =
TP + TN

TP + FN
(4.4)

R =
TP

TP + FN
(4.5)
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P =
TP

TP + FP
(4.6)

S = 2
TN

TN + FP
(4.7)

F = 2
P ∗R
P +R

(4.8)

where:

• TP (True Positive) represents cases where the true value is positive, and the predicted

value is also positive.

• FN (False Negative) corresponds to cases where the true value is positive, but the pre-

dicted value is negative.

• FP (False Positive) denotes situations where the true value is negative, but the predicted

value is positive.

• TN (True Negative) indicates instances where the true value is negative, and the predicted

value is also negative.

A confusion matrix is a vital tool in the field of classification. It provides a clear and detailed

summary of how well a classification model is performing by displaying the number of true

positives, true negatives, false positives, and false negatives ( see table 5.3 ).

Table 5.3 Confusion matrix with various metrics
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Results

In the experimentation process, AlexNet was trained to detect various faulty modes using

different dataset splits. The data was divided randomly into training and testing sets, with

proportions of 80%-20%, 70%-30%, and 60%-40%. The performance analysis results are pre-

sented in Table 5.4, showing the evaluation metrics for fault detection.

Upon examination, it is evident that AlexNet achieved its highest performance in the 80%-20%

Table 4.3: Classification results for the three training-testing data split

Performance
metrics (%) Training-Testing

80%-20%

(240-60) images

70%-30%

(210-90) images

60%-40%

(180-120) images
Accuracy ( Acc ) 100 100 99.81
Sensitivity (R ) 100 100 100
Precision (P) 100 100 99.81
specificity (S) 100 100 99.99
F1-score (F) 100 100 99.99

and 70%-30% split combinations, outperforming the 60%-40% combination. These findings were

further supported by the confusion matrix illustrated in Figure 5.8. In this specific scenario,

there were only 5 misclassifications out of 2640 patterns, resulting in an impressive accuracy

rate of 99.81%. This outcome underscores the effectiveness of the model, particularly when

trained on the 80%-20% and 70%-30% data splits, in accurately identifying and classifying

faulty modes.

Figure 4.8: Confusion matrix for the 60%-40% combination

67



Chapter 4 Deep learning for Open-Switch Faults Detection in Inverter...

Using the described network-training configuration with only 6 epochs, the AlexNet could

provide a very high performance of classification. Figure 5.9 illustrates one of the training pro-

cesses of AlexNet, showcasing a pattern of random fluctuations in accuracy values during the

initial epochs. This behavior indicates that the model is continuously learning and adjusting

its weights based on the training data. As the training progresses, after the 5th epoch, the

accuracy reaches its peak value, achieving 100%. The fact that AlexNet consistently achieved

perfect accuracy across various fault cases is highly promising. This success underscores the

potential of employing deep learning models for fault diagnosis in source voltage inverters.

Ensuring the proper functioning of these systems is crucial, especially in variable speed drive

systems and renewable-energy-source-based electric systems. The use of deep learning models

with pre-trained CNNs for fault diagnosis in source voltage inverters is an exciting area of

research, and has the potential to improve the reliability and efficiency of these systems.

Figure 4.9: Training process of AlexNet for 80%-20% combination
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4.5 Conclusion

In this paper, transfer learning is applied to detect and classify open-switches faults in IG-

BTs (Insulated Gate Bipolar Transistor) switch in inverters feeding induction motor. Transfer

learning offers the advantage of reducing training time and computational costs since only a few

layers of the pre-trained model need to be retrained. The proposed approach utilizes AlexNet,

a deep Convolutional Neural Network (CNN), to detect and monitor the open-circuit fault. To

facilitate the application of deep CNNs, the αβ current signals are encoded into 227x227 im-

ages using a mapping method based on the analysis of Concordia vectors derived from the line

currents. Visualization of the transformed data using t-SNE confirms the separability of the 22

classes. The performance of the proposed method is assessed using five key metrics: accuracy,

sensitivity, precision, specificity, and F1-score. Notably, AlexNet exhibits outstanding perfor-

mance, achieving perfect scores (100%) across all these metrics in the 80%-20% and 70%-30%

data split combinations. The proposed method combines data acquisition, pre-processing, and

machine learning techniques to detect open switch faults in induction motor inverters. By using

deep learning algorithms like AlexNet, the method can achieve high accuracy in fault detection

and classification, which can help prevent damage to the motor and improve overall system

reliability.
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Chapter 5

Inverter Reconfiguration for DTC and

DTC-SVM

5.1 Introduction

It is necessary to diagnose and correct any inverter faults that are found. Fuzzy and neural

controls were used in this chapter to simulate the various fault modes for the six switches. The

results of this diagnostic exercise will be used to reconfigure the inverter so that the motor drive

can continue to operate in a safe manner [43].

5.2 Inverter Reconfiguration for DTC and DTC-SVM

To work alongside the inverter’s three primary legs, we add three auxiliary legs. The main

leg and each auxiliary leg are connected in parallel. When a fault switch occurs, the main leg

that carried the fault switch will be switched off by the same reconfiguration signal while the

auxiliary leg will be activated. The three-phase inverter that is proposed for reconfiguration

is shown structurally in Figure 1. The diagnostic system automatically generates the three

reconfiguration signals from inputs C1, C2, and C3, and these signals are predicted to activate

or deactivate the inverter arms.
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Figure 5.1: SIMULINK Model of PWM Inverter Reconfiguration

5.3 Reconfiguration for DTC (with ANN)

A model Simulink for DTC contain a bloc of reconfiguration linked to inverter. A reconfigu-

ration is done using artificial neural network. As a result, when an inverter failure occurs, an

order to switch to the auxiliary leg is sent after fault identification and localization.as shown

in figure 2
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Figure 5.2: Matlab/Simulink block diagram of DTC using ANN for inverter reconfiguration

72



Chapter 5 Inverter Reconfiguration for DTC and DTC-SVM

1. Input/output Data

A network has three hidden layers, tow input (Ss,Ss) and one output Ti. The notation

9-6-1 indicates the number of neurons for each hidden layers.

2. Neural Network Training

The network will be trained with different faulty modes. The size of the input matrix

data is two rows (Ss,Ss) with 2001 columns for each pattern input. That gives 2001 for

a healthy pattern and 2001*6=12006 for fault occurrence. That gives a 14007 data base

for neural network training. The output target classification is represented for different

speed references.

Figure 5.3: Errors in diagnosis training, testing, and validation (in DTC ANN)

As shown in is shown in Fig.3, the number of the off-line training to get 0.003 error is 2000

epochs.

• Simulation results The diagnosis result is displayed for each phase’s three stator cur-

rents, motor speed, torque, and flux.

73



Chapter 5 Inverter Reconfiguration for DTC and DTC-SVM

(a) Motor speed

(b) Torque

(c) Stator flux

Figure 5.4: Simulation for a sequence of faulty IGBT transistor (in DTC ANN)
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• Discussion of Results

The simulation is done like the following:

– Speed reference is 70 (rad/s), stator flux is 1(wb).

– We made (0.3s) for healthy mode, after we did fault in switch T1. Detection, local-

ization and reconfiguration is done in (0.7s), the same in switch T5, fault in (1s).

Detection, localization and reconfiguration is done in (1.6s) also in switch T6, fault

in (2s) reconfiguration in (3.25s). Total time for simulation is (4s)

Table 5.1: Summary of reconfiguration Time for DTC ANN

Open switch fault T1 T5 T6
Time for reconfiguration 0.4s 0.6s 1.25s

We select three fault switch for reconfiguration T1, T5 and T6 corresponding three auxiliary

leg a maximum time for reconfiguration is (1.25s).

5.4 Reconfiguration for DTC-SVM (with fuzzy)

There is a reconfiguration block attached to an inverter in this Simulink model for DTC-SVM as

well. The reconfiguration is managed via a fuzzy logic control. Therefore, after fault diagnosis

and localization, an instruction to switch to the auxiliary leg is delivered when an inverter

failure occurs. The diagnosis result is displayed for each phase’s three stator currents, motor

speed, torque, and flux.as shown in figure 5

• Discussion of Results

The simulation is illusrated in figure 6 & 7 and done like the following:

– Speed reference is 75 (rad/s), stator flux is 1(wb).

– We made (0.55s) for healthy mode, after we did fault in switch T1. Detection, local-

ization and reconfiguration is done in (0.65s), the same in switch T2, fault in (1s).

Detection, localization and reconfiguration is done in (1.15s) also in switch T6, fault

in (1.55s) reconfiguration in (1.7s). Total time for simulation is (2s)
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Figure 5.5: Matlab/Simulink block diagram of DTC-SVM using FUZZY for inverter reconfig-
uration
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(a) Motor speed

(b) Torque

(c) Stator flux

Figure 5.6: Simulation for a sequence of faulty IGBT transistor (in DTC-SVM FUZZY)
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(a) Current phase a

(b) Current phase b

(c) Current phase c

Figure 5.7: Current phase simulation for a sequence of faulty IGBT transistor (in DTC-SVM
FUZZY)
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Table 5.2: Summary of reconfiguration Time for DTC-SVM FUZZY

Open switch fault T1 T2 T6
Time for reconfiguration 0.1s 0.15s 0.5s

We select three fault switch for reconfiguration T1, T2 and T6 corresponding three auxiliary

leg a maximum time for reconfiguration is (0.15s).

5.5 Reconfiguration for DTC-SVM (with ANN)

Figure 5.8: Matlab/Simulink block diagram of DTC-SVM using ANN for inverter reconfigura-
tion

The same in this Simulink model DTC-SVM. A reconfiguration block connected to an

inverter. The artificial neural network is used for reconfiguration. Therefore, fault detection
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and localization had made the order to switch in the auxiliary leg to have been sent when an

inverter problem occurred.

1. Input/output Data

A network has three hidden layers, tow input (Ss,Ss) and one output Ti. The notation

9-6-1 indicates the number of neurons for each hidden layers.

2. Neural Network Training

The network will be trained with different faulty modes. The size of the input matrix

data is two rows (Ss,Ss) with 3960 columns for each pattern input. That gives 3960 for

a healthy pattern and 3960*6=23760 for fault occurrence. That gives a 27720 data base

for neural network training. The output target classification is represented for different

speed references. As shown in is shown in Fig.16, the number of the off-line training to

Figure 5.9: Errors in diagnosis training, testing, and validation (in DTC-SVM ANN)

get 0.002 error is 194 epochs.

• Simulation results

The diagnosis result is displayed for each phase’s three stator currents, motor speed,

torque, and flux.
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(a) Motor speed

(b) Torque

(c) Stator flux

Figure 5.10: Simulation for a sequence of faulty IGBT transistor (in DTC-SVM FUZZY)
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(a) Current phase a

(b) Current phase b

(c) Current phase c

Figure 5.11: Current phase simulation for a sequence of faulty IGBT transistor (in DTC-SVM
FUZZY)
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• Discussion of Results

The simulation is done like the following:

– Speed reference is 60 (rad/s), stator flux is 0.8(wb).

– We made (0.54s) for healthy mode, after we did fault in switch T4. Detection,

localization and reconfiguration is done in (0.78s), the same in switch T5, fault in

(1.2s)reconfiguration is done in (1.3s) also in switch T3, fault in (1.7s) reconfiguration

in (1.9s). Total time for simulation is (2.4s)

Table 5.3: Summary of reconfiguration Time for DTC-SVM ANN

Open switch fault T4 T5 T3
Time for reconfiguration 0.24s 0.1s 0.2s

We select three fault switch for reconfiguration T3, T4 and T5 a maximum time for reconfigu-

ration is (0.24s).

5.6 Control Strategies Summary

Space vector modulation- direct torque control (DTC-SVM) has fast reconfiguration a cause

to their characteristic constant frequency in both ANN and FUZZY. Therefore, direct torque

control (DTC) reconfiguration time is more logger.as illustrate in table 4.

Model technique
DTC ANN
(figure 2)

DTC-SVM ANN
(figure 8)

DTC-SVM FUZZY
(figure 15)

Time for reconfiguration 1.25 s 0.18 s 0.15 s

5.7 Conclusion

This chapter focused on diagnosing faults in inverter systems that use induction motor drives

that are managed by fuzzy logic and neural networks for both direct torque control (DTC) and

space vector modulation-direct torque control (DTC-SVM). That seems like a straightforward

and efficient method of operating an induction motor drive. It offers a potential fix for issues

with robustness. We looked at how to reconfigure the inverter to detect and diagnose open

inverter switching faults in DTC and DTC-SVM. To do this, we used artificial intelligence

to simulate the various defect modes for each of the six switches. Based on the results of
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our diagnostics, we redesigned the inverter to prevent faults from arising by utilizing neural

networks and fuzzy logic in direct torque control and space vector modulation- direct torque

control systems able to operate with any stability guarantee.
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GENERAL CONCLUSION

The aim of this thesis was to detect faults, diagnose and reconfigure a three-phase inverter

that feeds an induction motor drive, which is controlled through different artificial intelligence

techniques like fuzzy logic control (FL), artificial neural network (ANN), and convolution neural

network (CNN). We selected two types of control strategies: direct torque control (DTC), and

direct torque control with space vector modulation (DTC-SVM).

We presented models of diagnosis, namely DTC ANN, DTC FUZZY, DTC-SVM ANN, and

DTC-SVM FUZZY of induction motor drives feeding a PWM three-phase inverter. This control

technique is simple and effective in controlling an induction motor drive, which makes it a

promising solution to robustness problems.

The MATLAB SIMULINK program was utilized in the development of the suggested model

system. The results of the simulation show how well the anti-windup regulator works to restrict

current peaks during changes or inversions in rotational speed and to solve the saturation issue.

Our research has focused on the identification and treatment of short and open inverter

switching faults. We employed an artificial intelligence technique to mimic the various forms

of defects for each of the six switches. The inverter is reconfigured using the diagnostic infor-

mation to stop errors from happening. This guarantees the stability of the control system’s

operation.

As an additional approach to this work, we suggest utilizing other intelligent techniques

to enhance the recognition rate and improve diagnostic accuracy for the occurrence of three

faults. It is recommended that other control strategies such as Field Oriented Control (FOC)

and direct self-control (DSC) be explored.
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