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Abstract

Electrical systems can experience faults due to various reasons. These faults may occur as a
result of aging components, conditions of use, or manufacturing defects that were undetectable
during commissioning. The faults can be broadly classified into two categories: those that
occur within the electrical machine such as winding faults and axis tilt, and those that occur
outside the electrical machine in the drive chain, such as faults in the mechanical gearbox.
One major area of research is focused on monitoring the state of the converter that supplies
power to an asynchronous machine. A converter, such as a Pulse Width Modulation (PWM)
inverter, may have structural defects like malfunctioning switches (semiconductors) that could
damage the entire system. It’s crucial to invest in malfunction detection to prevent such defects
from causing irreparable harm to the system.

Artificial intelligence (AI) based condition monitoring and diagnosis techniques offer various
advantages over traditional methods. These techniques eliminate the need for mathematical
models, which reduces engineering and development time significantly. Al-based techniques rely
on system datasets or expert knowledge to make accurate predictions. In the case of controlling
an induction motor powered by a PWM voltage inverter, Al-based methods can detect open
circuit and/or short circuit faults and take corrective measures to ensure the system operates
efficiently while maintaining the required level of security.

In this thesis, we analyzed the feasibility of using artificial intelligence techniques in detecting,
diagnosing, and reconfiguring faults in a three-phase inverter that powers an induction motor.
We provided a detailed description of inverter switching faults and developed a simple method
to extract characteristics for studying the possibility of detecting and diagnosing these defects.

We also attempted to reconfigure the inverter system to prevent faults from occurring.

Keywords: Fault Classification, Fault Tolerant Inverter, Asynchronous Motor, Fault Diag-

nosis, Inverter Reconfiguration.
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Résume

Les systemes électriques peuvent rencontrer des pannes pour diverses raisons. Ces défauts
peuvent survenir suite au vieillissement des composants, aux conditions d’utilisation ou a des
défauts de fabrication indétectables lors de la mise en service. Les défauts peuvent étre globale-
ment classés en deux catégories : ceux qui surviennent au sein de la machine électrique comme
les défauts de bobinage et d’inclinaison des axes, et ceux qui surviennent a l'extérieur de la
machine électrique dans la chaine d’entrainement, comme les défauts de la boite de vitesses
mécanique.

Un domaine de recherche majeur porte sur la surveillance de ’état du convertisseur qui ali-
mente une machine asynchrone. Un convertisseur, tel qu'un onduleur a modulation de largeur
d’impulsion (PWM), peut présenter des défauts structurels tels que des commutateurs (semi-
conducteurs) défectueux qui pourraient endommager l'ensemble du systeme. Il est crucial
d’investir dans la détection des dysfonctionnements pour éviter que ces défauts ne causent des
dommages irréparables au systeme.

Les techniques de surveillance conditionnelle et de diagnostic basées sur l'intelligence arti-
ficielle (IA) offrent divers avantages par rapport aux méthodes traditionnelles. Ces tech-
niques éliminent le besoin de modeles mathématiques, ce qui réduit considérablement le temps
d’ingénierie et de développement. Les techniques basées sur I'TA s’appuient sur des ensem-
bles de données systeme ou des connaissances d’experts pour effectuer des prédictions précises.
Dans le cas du controle d’un moteur a induction alimenté par un onduleur de tension PWM, les
méthodes basées sur I'TA peuvent détecter les défauts de circuit ouvert et/ou de court-circuit
et prendre des mesures correctives pour garantir le fonctionnement efficace du systeme tout en
maintenant le niveau de sécurité requis.

Dans cette these, nous avons analysé la faisabilité d’utiliser des techniques d’intelligence ar-
tificielle pour détecter, diagnostiquer et reconfigurer les défauts d'un onduleur triphasé qui
alimente un moteur a induction. Nous avons fourni une description détaillée des défauts de
commutation de I'onduleur et développé une méthode simple pour extraire les caractéristiques
afin d’étudier la possibilité de détecter et de diagnostiquer ces défauts. Nous avons également

tenté de reconfigurer le systeme d’onduleur pour éviter que des pannes ne se produisent.

Mots-clés: Classification de défauts, Onduleur Tolérant auxr Défauts, Moteur asynchrone, Di-

agnostic de Défauts, Reconfiguration d’onduleur.
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GENERAL INTRODUCTION

In the mid-1980s,a new technique for the torque control of induction motors well-known as
Direct Torque Control (DTC) [1]. Shortly after, M. Depenbrock introduced Direct Self Control
(DSC) [2]. These two techniques are referred to conventional DTC. Since their inception, they
have undergone continuous development and improvement by numerous researchers. DTC is
known for its simple structure and excellent dynamic behavior. However, it has several draw-

backs, the most significant of which is variable switching frequency.

Recently, a new control technique called Direct Torque Control - Space Vector Modulated
(DTC-SVM) has been developed from the classical DTC methods. This new method eliminates
the disadvantages of classical DTC and operates with a constant switching frequency. The
DTC-SVM strategies are based on the same fundamentals and drive analysis as classical DTC,

and they are the main subject of this thesis.

AC drives may face various issues with different components such as stator winding, inverter
arm cut, switching device, DC bus, rotor and stator, drive chain, faults, and power supply [3].
Switching devices are susceptible to faults due to their frailty [4]. Many electrical power system

defaults have already been invented and published to address these issues [5].

To manage induction motors, intelligent algorithms have been advanced, such as Artificial
Neural Networks (ANN) [6], Fuzzy Logic Control (FLC) [7], and Adaptive Neuro-Fuzzy Inter-
ference System (ANFIS).

Artificial Neural Networks (ANN) are based on the human brain’s functioning and modeled
as a network of connected neurons. It can be used to address various computer-based applica-
tion problems in different industries. However, before a neural network can solve problems, it

needs to be trained [8]. Fuzzy logic control is gaining attention from many scientists worldwide



as it can control a system without knowing its mathematical model. It uses the experience of

people’s knowledge to form its control rule base [9].

To achieve accurate fault diagnosis with neural networks, it is essential to have appropriate
features. Researchers have now started using deep neural networks to automatically extract
features from raw data. However, when dealing with signals using Convolutional Neural Net-

works (CNN), it is necessary to convert the raw data into an image using various techniques [10].

A study will be conducted on the assembly of the induction motor and voltage inverter.
Control structures will be implemented for the induction motor powered by an inverter that
can tolerate various types of faults. Solutions based on detection techniques and self-adaptation
to failure using artificial intelligence such as fuzzy and neural will be employed to ensure the
safety and dependability of the motor-inverter system. These solutions will involve the de-
velopment of estimators, comparison and decision-making algorithms, as well as substitution

commands to control the system in the presence of failure.

The thesis is comprised of six chapters. Chapter one provides an overview of control strate-
gies employed for induction motors and the current condition of inverter fault diagnosis. Chap-
ter Two covers artificial intelligence. In Chapter Three, we analyze the diagnosis system using
artificial intelligence. Here, we select two types of control strategies, DTC and DTC-SVM,
and perform diagnosis using both fuzzy logic and neural network. Chapter Four presents a
diagnosis of multiple Open Circuit faults in neural direct torque control of induction motor
drive using neural networks. In this chapter, we implant an artificial neural network in DTC
command after diagnosis using a neural network. Chapter Five discusses the use of a type of
deep learning convolution neural network, CNN AlexNet, for Open Switch fault detection in a
phase inverter feeding induction motor. In the last chapter, we explain the present three-phase
inverter reconfiguration, which solves the problem when a fault is detected and located in the

inverter. Finally, we conclude.




Chapter 1

State of the art for induction motor
control strategies and inverter fault

diagnosis

1.1 Introduction

Induction motors (IMs) have developed since their creation and gradually replaced DC motors
to become the most widely used electric machine in the sector [11]. In the beginning, IMs were
chosen for constant speed applications due to their robustness, compactness, low production
cost, and ease of maintenance. Accurate speed control applications have been added to the
scope of IMs in recent years due to the rapid growth of power electronics [12].

Scalar control and vector control are two important groupings of approaches in the field of
speed control. The voltage/frequency ratio is often controlled as a constant in the scalar
method. Scalars have the benefits of being inexpensive, having an easy control algorithm, and
not requiring sensors. Scalar control techniques are so frequently employed in low-performance
applications. However, because of its inability to properly manage the moment, it is unsuitable
for applications requiring rapid dynamics or exact speed and torque control [13].

Although the vector control approach has limitations, such as challenging control algorithms
and complex hardware design, it is dependable and suitable for applications with high precision
requirements [14, 15]. Field Oriented Control (FOC) and direct self-control (DSC) are the two
primary methods used in the vector control technology. The stator flux space vector is the
key control technique of the DSC method, whereas the rotor flux angle is the primary control

technique of the FOC method for controlling the current’s components [12]. The controller
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needs the feedback signal from the current, rotor speed, and voltage sensors to carry out the
control orders in the FOC approach.

We call these techniques conventional DTC. Numerous researchers have been working to con-
tinuously enhance and improve them since 1985. DTC’s key characteristics are its excellent
dynamic behavior and straightforward structure. Nevertheless, there are a number of drawbacks
to traditional DTC, the most significant of which being its changeable switching frequency. Di-
rect Torque Control — Space Vector Modulated (DTC-SVM) is a novel control approach that
was created recently to replace the traditional DTC methods. The strategies of this methods is
operates with constant switching frequency. The foundations and driving analysis of structures
are the same as those of classical DTC. The DTC-SVM approach that is being presented has
a straightforward structure and offers dynamic behavior that is similar to traditional DTC.
However, in steady state operation, the DTC-SVM approach is distinguished by significantly

improved parameters [16]

1.2 Modulation Techniques

Carrier-Based Pulse-Width Modulation (PWM)

Carrier-Based Pulse-Width Modulation (PWM) is a technique used in electronic systems to
control the amount of power delivered to a load by varying the pulse width of a constant-
frequency carrier signal. PWM offers simplicity in implementation and flexibility in control
parameters. This modulation technique is widely used in power electronics, motor control,
and communication systems [17]. In this technique, the reference signals (Uac, Upc, Ucc) are
compared with a triangular carrier signal (U;) to generate three logical signals (S,, S, S.) that
define the switching instants of the power transistors. This method is often referred to as
”comparator-based PWM.”

As is shown in Fig. 1.1, the triangular carrier signal is a waveform that linearly increases from a
minimum value to a maximum value and then resets to the minimum value. This signal provides
the timing reference for generating the PWM signals. The reference signals (Uac, Upc, Ucc)
represent the desired output voltages or currents that need to be controlled. They are typically
sinusoidal waveforms in applications such as motor control or can be any other desired waveform
based on the specific application requirements. The reference signals (Uac, Upc, Ucc) are
individually compared with the triangular carrier signal (U;) using comparators. When the

reference signal amplitude is higher than the carrier signal, the corresponding comparator
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Figure 1.1: Block scheme of carrier based sinusoidal PWM [18]

outputs a logical high signal; otherwise, it outputs a logical low signal. The outputs of the
comparators form the logical signals S,, S, and S.. These signals indicate the switching states

of the power transistors [18].

Space-Vector Modulation (SVM)

Space-Vector Modulation (SVM) is a popular technique used in power electronics to control the
output voltage of three-phase inverters. It is commonly employed in applications such as motor
drives, renewable energy systems, and power converters. SVM offers several advantages over
other modulation techniques, including better output voltage quality, reduced harmonics, and
improved efficiency. Figure 1.2 illustrates the process of SVM implementation, which generally
involves three stages: first, identifying the sector; second, determining the region; and third,

selecting a suitable switching sequence. [19]

Va
~| Orhogonal .
unit-vectors V};
) Swilching
M; Swilching lime Carbp, Le Switching Signals
"Il I SO "l sequence [———
and .
g reg
region calculation =
Sector sector’
*1 detection 1

Figure 1.2: Space Vector Modulation (SVM) model [19]
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1.3 Overview of Control Methods for Three-Phase In-
duction Machines

The methods used for controlling Induction Motors (IM) can be categorized into scalar and
vector control techniques. Figure 1.3 illustrates the overall classification of IM control strategies
based on variable frequency control [18,20]. The following section provides a brief overview of

both types of methods.

[ Variable Frequency Control Methods of IM

| Scalar Yector
| ! } }
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Figure 1.3: Control methods for IMs [19]
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Scalar based controllers

Scalar control methods, also known as V/f control or Volts per Hertz control, are simple and
widely utilized in pumps, fans, and other simple industrial applications where precise control is
not a primary requirement. Scalar control methods are suitable for many applications that do
not require high-performance control. Here are the key scalar control methods used in induction

motors:

1. Open-Loop V/f Control
In open-loop V/f control, the V/f ratio is kept constant for the entire speed range of
the motor. The voltage and frequency are varied together. It is widely used in industry.
A shown in figure 1.4, feedback signal are not required. This type of motor control is
advantaged due to its low cost and simplicity. However, this method lacks torque control,

limiting access to the desired torque only at the nominal operating point. If the load
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torque varies, it leads to corresponding changes in the motor’s speed [21-25].

Vi
T | Three
phase
] ¢ -

Figure 1.4: Open-Loop V/Hz constant Control [25]

2. Closed Loop V/f Control

The closed-loop approach outperforms the open-loop method in speed control. Addition-
ally, it also regulates the torque. Within the closed-loop system, a slip control loop is
incorporated since slip is directly related to torque. The system compares the actual speed
with the target speed, and the disparity is minimized to zero through the PI controller,
ensuring the motor achieves the desired speed efficiently. This technique does not allow

the control of the magnetic flux [21, 24].

Vic
— Ut‘l
Three
phase
VSl
Wy dul Pl q f \@ / P |‘.|.1
@ 60

SHip limiter v ‘U’l

\Ira \'.-w
IJJl
Tachogenerator

Figure 1.5: Closed-Loop V/Hz constant Control [25]
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Vector-based controllers

Vector control methods, also known as Field-Oriented Control (FOC) or Direct Torque Con-
trol (DTC), offer more precise and sophisticated control of induction motors. Vector control
decouples the control variables, such as torque and flux, allowing independent control of these
quantities. Vector control methods are more complex and require additional sensors and control
algorithms compared to scalar control. However, they offer superior control precision, faster
dynamic response, and improved efficiency over a wide range of operating conditions. Scalar
control, on the other hand, is simpler and more cost-effective, suitable for applications where

precise control is not critical.

1. Field Oriented Control (FOC)
FOC is one of the vector control strategies that has the ability to control the torque
and flux separately [26- 28]. The reference torque and flux are generated by the voltage,

current, and speed parameters from the induction motor [29].

2. Direct Torque Control (DTC)
Direct Torque Control (DTC) is a popular vector control technique that directly regulates
torque and flux in an induction motor. It involves estimating the stator flux and torque
components based on the motor model and measured or estimated quantities. DTC
provides excellent control performance and fast torque response, making it suitable for
high-performance applications. DTC with a constant switching frequency calculates the
required stator voltage vector over a sampling period to achieve the desired torque and

stator flux. This section is more detailed in Chapter 3.

3. Direct Torque Control- Space Vector Modulation (DTC-SVM)
A good and quick response can be achieved in an induction motor with DTC control by
directly controlling the torque and stator flux without regulating the current. In order
to minimize high flux and torque ripples and achieve a fixed switching frequency, space

vector modulation has been used. This section is more detailed in Chapter 3.

4. Direct-Self Control (DSC)
Direct-Self Control (DSC) is an advanced control technique that enables precise control
of motor speed and torque with reduced complexity and improved performance. DSC is
based on the principle of directly controlling the stator flux and torque of the motor. It

eliminates the need for complex mathematical calculations and uses a simpler algorithm
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to achieve control. Similar to Direct Flux and Torque Control (DTC), DSC also does not

require a speed sensor for feedback.

1.4 Inverter fault diagnosis

Structure of the voltage source inverter

The basic structure of the voltage source inverter is shown in figure (1.6). It contains six
Insulated-Gate Bipolar Transistors (IGBT)7;i = 1,...,6 which work complimentary and six

freewheel diodesD;i = 1,...,6. The inverter provides entirely balanced 3-phase sinusoidal cur-
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Figure 1.6: Drawing of a VSI feeding three-phase induction motor

rents and voltages [30-31].

The voltage source inverter faults are subdivided into short and open circuits. In the open
switch fault, the IGBT remains off state. Open-circuit faults do not cause system shutdown,
the system continue functioning in degradation mode. In the short circuit case, an overcurrent

is detected by the standard protection system, and shutdown is carried out.

Open circuit faults

Open circuit faults can be classified into three categories: single switch faults, double switch
faults in the same bridge arm, and double switch faults in different bridge arms. All possible

faults are shown in table 1.1 [32].

1. Single open switch fault
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Consider the scenario of an open switch fault, specifically when switch 77 is open. In
this situation, during the positive half-cycle of the input AC voltage, current cannot flow
through phase A via the upper bridge arm, resulting in zero output current for phase A.
This absence of current in phase A disrupts the balance of the three-phase system, leading
to distorted currents in the remaining phases during this half-period. However, during
the negative half-cycle, when the current is in the negative range, phase A current can
circulate through the lower bridge arm using the freewheel diode D,. In this configuration,
the currents in all three phases remain undistorted during this half-period.This analysis

applies similarly to other switches in the system, as described in reference [32].

2. Double-switch faults in the same bridge arm
In the scenario of a double switch fault occurring within the same bridge arm, the current
in the considered phase is zero. As a result, the currents in the remaining phases become
distorted; they are out of phase.
For example if T2 and T5 are open,[32]. i,(t) = —i.(t)

3. Double-switch faults in different bridge arms

In this scenario, where both switches T'1 and T2 are open, specific conditions arise. Within
the interval [2k7, 2km+27/3], the current in phase A becomes zero due to the open switch
fault in T1 . Concurrently, the current in phase B becomes negative and flows through
diode D5. Phase C experiences a slightly distorted but generally normal current flow.
Notably, the currents in phases B and C are in opposition, meaning they flow in opposite
directions during this interval. In the intervals [2k7 + 27/3, 2k + 7|, the current in phase
A remains at zero due to a fault in switch T2 . Consequently, phase B , which should be
positive, also remains inactive. Since both phases A and B have zero current, phase C is
forced to be at zero as well. In the interval [2km + 7, 2k7m + 57 /3], phase A ’s current flows
through freewheel diode D4 | while phase B ’s current stays at zero. This situation causes
a distortion in phase C ’s current. Finally, in the last interval [2km + 57/3, 2k + 27], all
three currents flow normally through D4 and D5 in the upper bridge arm [32].

Short circuit faults

When a short circuit occurs in an electrical system, the stator currents can increase significantly,
potentially leading to catastrophic failure of the inverter and other connected components. Due

to the rapid and intense increase in current during a short circuit, relying solely on stator

10
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currents to detect such faults may not be practical or effective. It is essential to employ
other protective measures, such as circuit breakers, fuses, or more sophisticated fault detection
techniques like impedance-based methods or digital protective relays, to quickly and accurately
identify short-circuit faults and prevent further damage to the system. These protective devices
can respond much faster and are designed to handle such high-current situations, ensuring the

safety and reliability of the electrical system [32].

Table 1.1: Faults types and location

Fault types Fault location
Healthy mode -
Single open switch fault T1, T2, T3, T4 T5, T6
Double open-switch fault in the same bridge arm T1-T4, T2-T5, T3-T6

T1-T2, T1-T3, T1-T5, T1-T6 ,
Double open-switch fault in different bridge arms | T2-T3, T2-T4,T2-T6, T3-T4,
T3-T6 T4-T5, T4-T6, T5-T6
Single short-circuit fault S1, S2, S3, S4 ,S5, S6

Detection methods for open circuit faults in IGBTSs

IGBTs (Insulated Gate Bipolar Transistors) are widely used in power electronics and are es-
sential components in a variety of applications, including electric vehicles, renewable energy
systems, and industrial automation. However, IGBTs are prone to faults, including open-
circuit faults, which can cause system failures and damage to other components. Therefore,
detecting open-circuit faults in IGBTSs is crucial to ensure the reliability and safety of these
systems.

There are several detection methods for open-circuit faults in IGBTSs, including;:

1. Voltage measurement method: This method involves measuring the voltage across the
IGBT and comparing it to a threshold value. If the voltage is below the threshold value,

it indicates that there is an open-circuit fault.

2. Current measurement method: This method involves measuring the current flowing
through the IGBT and comparing it to a threshold value. If the current is below the

threshold value, it indicates that there is an open-circuit fault.

3. Gate voltage measurement method: This method involves measuring the gate voltage of
the IGBT and comparing it to a threshold value. If the gate voltage is below the threshold

value, it indicates that there is an open-circuit fault.

11
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4. Gate pulse width measurement method: This method involves measuring the width of
the gate pulse and comparing it to a threshold value. If the pulse width is below the

threshold value, it indicates that there is an open-circuit fault.

5. Emitter current measurement method: This method involves measuring the emitter cur-
rent of the IGBT and comparing it to a threshold value. If the emitter current is below

the threshold value, it indicates that there is an open-circuit fault.

These methods can be implemented using hardware-based or software-based solutions, de-
pending on the application requirements. Additionally, advanced techniques such as machine
learning and artificial intelligence can be used to improve the accuracy and speed of fault de-
tection in IGBTs. Overall, detecting open-circuit faults in IGBTs is essential to ensure the safe

and reliable operation of power electronics systems.

Research in open-circuit fault in 3-phase inverter-fed induction mo-

tors

Open-circuit faults (OCF) and short-circuits faults (SCF) are common types of faults that
can occur in electrical power systems. Research in these areas typically focuses on developing
methods for detecting, diagnosing, and mitigating these faults to improve the reliability and
safety of power systems.

There has been significant research conducted on open-circuit fault (OCF) detection and diag-
nosis in 3-phase inverter fed induction motors. The technique proposed by Bo Wang et al. [33]
for open-circuit fault diagnosis is based on voltage residual analysis and eliminates the need
for extra voltage sensors. In this method, the characteristics of the reference voltage and the
actual output voltage are analyzed under both normal (healthy) and faulty conditions. The
paper likely discusses the theoretical framework, methodology, experimental setup, and evalu-
ation of the proposed method for open-circuit fault diagnosis in modular multilevel converters.
Another technique for diagnosing open-circuit faults based on feature extraction with JADE-
ICA algorithm and neural network has been proposed by Hailin Hu et Al. in [34]. The finite
element analysis is also conducted for open-circuit fault of multiple IGBTs switches in a PWM.
In [35], the authors aim to investigate the effects of these faults on the performance of the in-
duction motor using FEA modeling. The method described in reference [14] involves extracting
a fuzzy basis by analyzing current vector patterns under various fault conditions. The goal is to

use fuzzy logic to locate the faulty switch in the system. In the frequency domain analysis, the

12
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Fourier transform [36] and wavelet-based multi-resolution analysis [37-38] are widely utilized
techniques for detecting open-circuit faults in power-converter drives. For instance, in reference
[36], the fault-signature spectrum derived from three-phase currents is utilized as a distinguish-
ing feature. Additionally, a dimensionally reduced Fast Fourier Transform (FFT) employing
principal component analysis is proposed in this context. Meanwhile, in another approach de-
scribed in [38], wavelet coefficients serve as the feature vector. Principal component analysis is
applied to reduce the dimensionality of this feature vector [39,40]. The resulting feature vector
is then employed in classification tasks using various machine learning algorithms, including
linear classifiers such as k-nearest neighbors (kNN), decision trees, support vector machines
(SVM), and neural networks (NN) [4,41]. Open-circuit fault diagnosis with neural networks
is treated as a pattern recognition challenge [5,42-45], involving two essential stages: feature
extraction and fault classification.

In the time domain, features are directly derived from the three stator currents or the Clark
currents transform [6,46]. For instance, features like current angle and diameter were consid-
ered in reference [7]. These features are effective for classifying single faults. To address the
detection of multiple faults, mean, surface, and angle parameters extracted from Clark currents
are taken into account [47-48].

Nevertheless, the effectiveness of neural networks in fault diagnosis significantly relies on the
choice of features used. These features act as the foundation for fault diagnosis. As a result,
researchers have increasingly turned to deep neural networks to automatically extract relevant
features from raw data. In the context of working with signals, utilizing Convolutional Neural
Networks (CNN) necessitates the transformation of raw data into images. Various techniques
are employed to accomplish this conversion, enabling CNNs to process and analyze the data

effectively. [37-39].

1.5 Conclusion

In this chapter, a detailed comparative analysis of scalar and vector control strategies for railway
traction applications has been discussed, with a special focus on their operation at high speeds.
This study has reviewed several faults types in 3-phase inverter fed induction motors which
are a common problem in industrial applications, and there has been significant research in
this area in monitoring and fault diagnostic. Different failure detection and diagnosis-based
methodologies in 3-phase inverter such as open or short circuit were explored from the prior

literature, highlighted their advantages and disadvantages.
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Chapter 2

Diagnosis system for DTC and
DTC-SVM using Artificial Intelligence

2.1 Introduction

Direct Torque Control (DTC) is widely used in permanent magnet synchronous motor control
with its simple control mode, fast torque response, and strong perturbation of internal param-
eters and external disturbance [47]. It has been examined during the last decade in the area of
AC drives. This control strategy was confirmed by Takahashi in 1986 [1].

From the conventional DTC techniques, a new control strategy called as Direct Torque Control-
Space Vector Modulated (DTC-SVM) has recently been developed. This innovative strategy
gets rid of the drawbacks of the conventional DTC. Basically, DTC-SVM strategies are meth-
ods that employ a constant switching frequency [18]. The described DTC-SVM technique has
a simple structure, exhibits dynamic behavior, and dramatically improves parameters during
steady-state operation [47]. The modeling of inverters and induction motors has been covered
extensively in numerous articles [48-54].

Inverters feeding induction motors are key element in driving process at variable speeds. Most
common inverter faults are mainly caused by damaged power semiconductor switches. Power
semiconductor switch faults can be divided into short- circuit faults and open circuit faults.
The detection of open or short-circuit switches fault in power converters have been extensively
studied [43,55-56].

By applying the Fast Fourier Transform and sum surface algebraic feature extraction tech-
niques, we will investigate the potential for fault detection and diagnosis for short and open

circuit faults in the inverter. The chapter makes use of fuzzy logic control and artificial neural
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networks to accomplish this purpose. However, the features that are employed are crucial for
problem identification and have a significant impact on the neural network’s performance. Be-
cause of this, researchers are now using deep neural networks to automatically extract features
from unprocessed data. It is well known that working with signals on convolutional neural
networks (CNNs) necessitates employing several strategies to transform the raw input into an
image [57-59].

The chapter summaries the Direct Torque Control (DTC) principle in the second section. The
third section is dedicated to introducing the DTC-SVM. Section four describes the concept of
feature extraction for diagnosing. The fifth section involves the application of Artificial Neural
Networks (ANN) and Fuzzy logic control to diagnose issues in both DTC and DTC-SVM-IM

settings. Finally, conclusion.

2.2 DTC Basic

Basic Principle of DTC

Two control loops corresponding to the stator flux and torque magnitudes. The reference values
for torque and flux (¢%, T¥) are compared with actual values (¢s, T, ), inducing errors that feed
into two hysteresis blocks. The outputs from these hysteresis blocks, as well as the stator flux
position (0,), serve as inputs to the switching table. Using these errors and the position of the
stator flux, the inverter is switched on via six-region control. As a result, the inverter operates
in six-step operation with six active vectors and two zero vectors, as shown in Figure 1. The
inverter output voltage vector is adjusted to minimize flux and torque errors and define the
direction of the flux rotation, as demonstrated by previous works cited from sources numbered

[43,60-61].
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Figure 2.1: Basic DTC block diagram.[62]
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1. Voltage calculation
The inverter output Us is obtained via the switching status (Sa,Sb and Sc) and the DC

voltage source that fed the inverter Uy. It is formed as follows [125-128]:

U, = \/gUO lSa + S exp (%”) + S, exp (ﬁg)} 2.1)

2. Clarke-Concordia transformation
The line currents of the three phases with respect to the neutral are represented in the
af -reference frame by a simple vector addition of these three-phase variables. These two
new vectors are obtained by applying the Clarke-Concordia transformation. Therefore,

the measured currents (Ig,,/s ,1s) are transformed into two dimensions (Is4,1s5) by [56]:

9 1 1
I,=21,— I, — =1,
3 370 37

Iy = % (%Ib - %Ib) (2.2)

Also the voltage (Vsa,Vsp) obtained by applying the Clarke-Concordia transformation.

The stator voltages in af3 -reference frame are determined as:

2 1
‘/sa = \/gUO(Sa - §(Sb - Sc)) (23)

1
Vig = EUO(SI) )

3. Flux and Torque Estimator

The estimator calculates the stator flux and the electromagnetic torque. are given by:

Qbs = /(:(vs - RsI_s) dt (24)

¢s = ¢sa + Z¢s[3 (25)

gbsa = fg(vtsoz - Rslsa) dt

2.6
bsp = Jy(Vas — Relp) dt 20

G = /O T P2 (2.7)
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The angle 6, is given by equation 8.

0 = arctan 2% (2.8)

s

The electromagnetic torque can be estimated from the estimated flux magnitudes ¢sq,¢s3

and the calculated magnitudes of the current I,,l,3 It is evaluated by equation 9.

Te - gp(jsﬁ¢sa - Isa¢sﬁ) (29)

p: pole number

4. PI Controller
A common cascaded control method in variable-speed motor drives is PI control. Using
this method, PI controllers are applied to the DTC drive’s speed as well as the flux, torque,
and speed of the DTC-SVM drive. A PID controller is utilized in the speed control mode,
and its input is the difference between the motor’s real speed and the reference speed.
In the event of saturation, anti-windup is employed to accurately modify the regulator’s
integral action. Achalhi, Jnayah, and other authors” works are quoted in support of these

conclusions. [67-71]

|§ Ts (z+1) Te*®
+ S
2{2-1 :|

Figure 2.2: Structure of the speed PI controller with anti-windup [67,72].
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2.3 DTC-SVM Basic

DTC-SVM Principle

The DTC-SVM operates at constant switching frequency. A scheme presented in Figure.3
has speed, torque and flux loops operating with PI controllers [133,135].The motor speed (w,)
is sensed using a speed sensor, which converts the mechanical speed into an equivalent volt-
age value compared with the reference speed(w; ).The speed error is processed through a PI
controller, generating the reference torque (7). The reference torque is compared with the esti-
mated torque (7 ), generating the torque error , which is handled through a torque PI controller
(V7). The estimated flux (¢5), is compared with the reference flux (¢7), and the flux error is
processed through a flux PI controller, generating (V;).Ones (V;, V") are obtained, the trans-
formation of variables from the synchronous to stationary frame (/) using () estimator, then
injected into the SVM modulation block which generates the inverter control orders. Equations
(2) and (3) describe the calculation to obtain Currents (1,,l, ,I.) and voltage (V,,V; ,V.) gen-
erated form inverter transformed into the stationary frame (d-q) to generate (Vig, Vig, Lsa, Isq)

that used to estimate torque, flux and sector (T, ¢s, 65) [18,49,53,60 ,74].

Us

. SVPWM

. T;
@, <\l Speed —Q/ Torque
(3\} controller ' Controller
| ;

@, ¢
@5 ol Flux
Controller

93 Va,Vb, Ve

Torque & i 7

Flux /:{x

estimator 7

ia,ib ,ic

Figure 2.3: Block diagram of DTC-SVM of Induction motor [53].
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Output voltages in (d—q) reference of the PI regulators are transferred into (av— f3) reference.

Vo = Vi cos(0) — V' sin(0)

Vs =V cos(f) + V" sin(0)

Vi=/VE+V§

Via= 2Va = 3Vi— 3V
mrn&%% %m
Iq= ;Ia - %Ib - %Ic
L,=0+ %Ib - %Ic

G = Jo (Vea — Roloq) dt
¢sq = f(f(vsq - Rs[sq) dt

(Zss Y, §d+¢§q

¢sq
sd

0, = arctan

3
Te = §p([sq¢sd - [sd¢sq)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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motor speed (OTC)

e SIMULATION FOR DTC

2.4 Simulation (DTC and DTC SVM)

Chapter 2
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Figure 2.5: Basic DTC Simulation in Permanent State for currents Variation in healthy and

faulty Mode.
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Figure 2.12: Fault currant Patterns in faulty and healthy Mode in DTC-SVM (open witch).
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2.5 Discussing the result of simulation

A reference speed of 70 rad/s and a reference flux of 1Wb were fixed between 0 and 1s .Load
is integrated to the motor at second 0.5s. After, these desired parameters were changed to 40
rad/s and 0.5Wb respectively. Between 1.5s and (2s), we made an open-switch fault at T1,
removed at second 2s. And Between 2.5s and (3s) we made a double faults in T1 and T2,

removed at second 3s. As shown in Figure 4&9.

e Open circuit faults
Open circuit faults can be classified into three categories: single switch faults, double

switch faults in the same bridge arm, and double switch faults in different bridge arms.

— Single open switch fault
To see the effect of an open switch fault, consider the case when the switch T1 is open.
The current cannot flow in the phase A through the upper bridge arm when this
current is positive; the output current of phase A is zero. During this half period, the
phase current of the remaining phases are distorted due to the three-phase current
balance. When the phase current is in the negative range, the current can flow in
the phase A through the lower bridge arm via the freewheel diode D4. The three
currents have no distortion in this half-period. The same reasoning remains valid

for the other switches [75]. Shape in Figure 5 illustrate single faults in («f) mode.

— Double-switch faults in the same bridge arm
In the case of a double switch fault in the same bridge arm, the current in the
considered phase is zero. Consequently, the currents of the other phases are distorted;

they are out of phase. For example if T1 and T4 are open, [75].

— Double-switch faults in different bridge arms
In this case, consider T1 and T2 are open. The current of phase A is zero following
the open switch fault of T1. The current of phase B which is negative in this interval
passes through the diode D5. The current of phase C passes normally but with a
slight distortion. The currents of phases B and C are in phase opposition [75]. Shape

in Figure 6 illustrate multiple faults in («f) mode.

e Short circuit faults
When a short circuit occurs, stator currents increase dramatically leading to catastrophic
failure of the inverter [76]. So using stator currents to detect short-circuit fault is not

practical. On the other hand, the normalized mean value of stator voltage in the («, )
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space for the six short-circuit switches are almost equal to zero, then the short-circuit
switches fault cannot be distinguished. To remedy, the stator voltages in the frequency

domain are used. Shapes in Figure 10 illustrate single faults in mode (af3).

2.6 Feature extraction

Feature extraction based on surface calculation

Feature extraction is critical for developing an efficient problem detection and diagnosis system
from the output three-phase current signal. It was used to extract data and train a neural
network to detect faults. Existing feature extraction approaches have limits in terms of accuracy
and time and a lack of sufficient meaningful information in the classification set. Normalized
functions should be universal for different reference speeds [64, 31,77].

We employ the extracted feature as an input to artificial neural network and fuzzy logic control,
which aids in recognizing and identifying defects. It provides the opportunity to make a system
more precise in fault patterns. Feature extraction mathematical model defined in equation (21)
(74, 31]:

_ S Isa(d)
SO‘ - length([sa)*lmax(abs(lm))

(2.21)

_ 201 Lss (i)
S[B o length([s[;)*1maa:(abs(ls[g))

Where, N defines the number of samples contained in Iy, 5. The choice of N depends on the
diagnosis decision time.
Figure 15 shown data acquired under single multiple faults occurrence that will be used to train

the neural network.
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Figure 2.15: Feature extraction (a) under single fault, (b) under multiple fault occurrence

Feature extraction based on Fast Fourier transformation (FFT)

The set of detailed signal spectrum values are typically decomposed from one domain to another
via a sort of transformation known as the Fast Fourier transform, also referred to as the Fourier
Transform (FFT). The signal spectrum that can be processed with a small number of data at
each stage of the process is used to estimate the variation in the dataset. Induction motor
defects can be found using this FFT algorithm variant. [77] the definition of the FFT.

N=1

X (k)= z(n)eI2mmk/N (2.22)

n=0
Where N defines the number of data samples.
K=0,12...... N-1
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x(n) = time-domain discrete signal.

Selecting surface computation as the open circuit feature extraction method allows for the
presentation of three symmetric levels (negative, zero, and positive) representing the upper
switch default, the healthy switch, and the lower switch default. The data are arranged neatly,
and classifying the faults will be straightforward. By manually opening the IGBTs gates in the
Simulink model that is being used, we are able to create the dataset. The features for single and
multiple open switch failures that were found using equation (21) are displayed in Figure 15.
Stator currents cannot be used to detect short circuit faults that result in overcurrent, hence
this method is not practicable. Additionally, the normalized mean voltage value is nearly zero.
Because of this, a suitable substitute for short-circuit defect detection is the power spectrum.
We have computed the Discrete Fourier Transform of the two voltage signals, V,,Vss, using

the Fast Fourier Transform (FFT) in order to obtain the power spectrum [77]:

2.7 Diagnosis system for DTC and DTC-SVM

The structure bellow (Figure 16) illustrate deferent command techniques and implantation

of artificial intelligent for diagnosis system. Figure 17 illustrate matlab Simulink block for

{ DTC diagnoses J

[ | 1

DTC ‘ ‘ DTC-SYM ‘

[ [

|
b
[mlﬂ [ FIL. } ANN FL

Single Open and Single open
Short switch fault switch fault

k.

[ Single Short switch and 1 Single open

multi Open switch fault switch fault

Figure 2.16: Structure of diagnosis system for DTC and DTC-SVM

diagnosis. In (Figure 17a), three stator currents Isqq calculate their surfaces (Sa, Sb and Sc)
using feature extraction mathematical model defined in equation (21) diagnosing using fuzzy
logic. In (Figure 17b), tow stator currents in mode (Saf3) Isp calculate their surfaces (S,, Sp)

using the same feature extraction defined in equation (21) diagnosing using neural network.
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a) System of Fault Diagnosis

Figure 18 shows the proposed fault diagnosis system in open and short switch. Faulty switch
Uo
—h |
Voltage Source i@
Inverter
E[Sb Sc T Ia| 1b1c

o A = Clarke
E |EFT ()| Vig | Transformation
Vlg =
Toz
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SE < WP:[ Ip Transformation
' 8 oy

Figure 2.18: Matlab/Simulink block diagram of PWM inverter controlled by DTC-SVM

can be recognized in twenty-nine pattern, twenty-tow pattern for open switch, six-pattern for
single fault and fifteen-pattern for multiple faults, a circle shape describes current pattern in

healthy mode as illustrate in Figure. 6 and 7, and seven-pattern for single short switch. As

illustrate in Figure.8
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b) ANN fault classification

Neural networks have shown excellent performance in detecting open circuit faults. The main
idea is to train a Multi layer Perceptron (MLP) from a data set consisting of input examples
and their corresponding desired outputs. As shown in Figure.19, the architecture of the used
MLP has two hidden layers H;, H, with two input nodes corresponding to the surfaces S,,Ssin
the open switches case and the power spectrums V,,V3in the short-circuit case. The output can
take values from 0 to 22 for the open switches case and from 0 to 6 in the short-circuit case.

This architeture is adopted after multiple training.

L8]

LT YV

Figure 2.19: Matlab/Simulink block diagram of PWM inverter controlled by DTC-SVM

c) Simulation Results

e Input / Output data

In order to create the dataset, we manually flip the switches open or closed, then we run
the simulation with the desired torques of 0.5 and 1 N.m. and motor speeds of 40 and
70 round/s. The segmentation of the signal using a sliding window is how the suggested
method detects and classifies faults. Every segment that makes up a signal period consists
of 450 samples.

The various fault modes will be used to teach the network. For every pattern input, there
are 2000 features in the input data. This yields a healthy pattern of 2000 and a fault
occurrence of 2000*21. This results in 44000 vectors. There are 560 features used for the
short-circuit instance, with 80 input features for each defect. 50% of these examples of

the two cases are used for training, 25% for the validation and 25% for the test.
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e Neural Network training

Mean Squared Error (mse)

After numerous simulations, we have determined that the optimal design for the two
cases is 11 neurons in the first hidden layer and 9 neurons in the second layer. Because
of its regular characteristic qualities and quick training time, the Levenberg Marquardt
training method is widely employed. When the chosen Mean Squared Error (MSE) is
met, the training procedure will come to an end. Equation (23) provides the MSE. [43].

N
1 2
MSE = ;(y —d;) (2.23)

Where yi the output value of target, di is out of training data, N is training data number.

Figure.20 shows the convergence curves for training process for 21 open switches faults.

» Best Validation Performance is 0.004995 at epoch 1109 , Best Validation Performance is 0.0016171 at epoch 10000
1 & - 10 ———
Train | Train
Valdation | == Validalion
—::,: | Tesl
2 st — 5
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Figure 2.20: Training process for (a) open-switches and (b) short-circuit cases.

The best validation performance is obtained after 1109 epochs with a MSE of 0.0094. In
the short-circuit case, a best performance of 0.0016 is obtained for the all single faults
S1,...,S6 after 10000 epochs (see Figure.3. 7b).

Figure.19 shows the performance of the neural network during the training phase. The
prediction ration is almost 99.99% for training, validation and testing process in the open

and short-circuits cases.
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Figure 2.21: Behavior of the MLP during training, validation and testing process for (a) open-
switches and (b) short-circuit cases.

e Performance Evaluation

To evaluate the performance of the trained MLP, accuracy and the confusion matrix met-
rics have been used to measure the true or the misclassification of different faults [78].

The accuracy is an essential metric for the evaluation of the result. testing data and is
the ratio of accurately anticipated defects to total faults. In the event of open switches,
the accuracy is 99.84%, whereas 100% accuracy is attained in the case of a short circuit
problem. We can see the MLLP’s performance for the two fault types by defining the con-
fusion matrix in the table. The genuine labels are shown in each row and the predicted
labels are shown in each column of the matrix. The accuracy by class is displayed in
the confusion matrix. Figure 22 confusion matrix illustrates that for single open switches
and short circuit failures, accuracy is 100%. Out of 7500 problems, 12 misclassified faults

related to numerous open switches are noticed.
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True labels

2 3
Predicted labels
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Figure 2.22: Confusion matrix for test data (a) open switches and (b) short circuit cases.
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Diagnosis DTC-FYZZY for open single switch faults

a) Structure of Fault Diagnosis System

Figure 23 shows the proposed fault diagnosis system in single open switch faults. Diag-

nosis System consist feature extraction surfaces sum algebraic and Fuzzy System.
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Figure 2.23: DTC-FYZZY proposed fault diagnosis system
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b) Structure of Fuzzy Diagnosis System

— Fuzzification
Allows the passage from the digital domain to the symbolic domain in order to
determine the membership function of a variable of the fuzzy system [67].
The fuzzification is the process of a mapping from measured or estimated input to
the corresponding fuzzy set in the input universe of discourse. In this system there

are three inputs. Sa,Sb,Sc are surfaces sum algebraic given by equation (21), The
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Figure 2.24: Membership function of three inputs and output variables (DTC-FYZZY).

membership functions of the 3 inputs and the output are represented in Figure.24.
Sa,Sb,Sc memberships function is decomposed in three fuzzy sets: N (negative), Z
(zero), P (positive)

The Faulty switch membership function is decomposed in seven fuzzy sets: TO toT6

— Inference rules
Forms the basis of the applied inference systems (rules). This block allows one to
use the laws of inference to replicate human decision-making and infer the fuzzy
regulator’s control actions. A fuzzy rule explains how input and output variables
relate to one another. [67].
Control rules are often expressed in the IF-THEN format. Rules Ri can be written

as:
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R1. If Sa is Z, and If Sb is Z, and If Sc is Z, Than Ti=0: Healthy mode

R2. If Sa is N, and If Sb is Z, and If Sc is Z, Than Ti=1: T1 switch is defect

R3. If Sa is Z, and If Sb is N, and If Sc is Z, Than Ti=2: T2 switch is defect

R4. If Sa is Z, and If Sb is Z, and If Sc is N, Than Ti=3: T3 switch is defect

R5. If Sa is P, and If Sb is Z, and If Sc is Z, Than Ti=/: T4 switch is defect

R6. If Sa is Z, and If Sb is P, and If Sc is Z, Than Ti=5: T switch is defect

R7. If Sa is Z, and If Sb is Z, and If Sc is P, Than Ti=6: T6 switch is defect
These roles obtained after stators currents in phase of feature extraction as illustrated

in Figure.25
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Figure 2.25: Sa,Sb,Sc surfaces currents calculations from feature extraction sum algebraic

— Défuzzification
Sets the value ranges of the membership functions from the output variables and

performs defuzzification to provide a digital signal [129].
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Sa (3)
DTC RJZZY
(sugeno)
Sb (3)
Trules
Ti(7)
Sc (3)

SystemDTC FUZZY: 3 inputs, 1 outputs, 7 rules

Figure 2.26: The structure of FUZZY DTC controller

Diagnosis DTC-SVM-ANN for open and short switch single faults

a) System of Fault Diagnosis

As illustrated in Figure.27. The proposed fault open and short switch in the diagnosis system.
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Figure 2.27: The structure of the DTC-SVM-ANN controller

b) ANN Fault classification

1. Design of neural network architecture

The same architecture illustrated in Figure.19.
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2. Neural Network Training

e Open switch

A network will be trained with different faulty modes. The input matrix data is two

rows length. (S,,55) Each pattern input has a total of 40000 columns. This gives

a healthy pattern a score of 40000. And 40000*6=24000 for fault occurrence. That

gives a 280000 data base for neural network training. The output target categoriza-

tion is represented for various speed references.

e Short switch

A network train with faulty and healthy modes (T0, T1, T2, T3, T4, T5, T6).

The input matrix data is two rows length. (V,,V3). 5000 columns for every single

pattern inputs.

That gives a 35000 data base for neural network training. The

output corresponding target is represented for various speed references.

3. Neural Network Testing

Best Validation Performance is 0.0010333 at apach 614
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Figure 2.28: Training, validation, and test errors of the diagnosis ann. (a) Open switch, (b)

short switch

For open switch: as shown in is shown in Figure.28a, the number of the off-line training

to get 0.001 error is 614 epochs.

For short switch: as shown in is shown in Figure.28b, the number of the off-line

training to get 0.042 error is 530 epochs.
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Diagnosis DTC-SVM-FUZZY for open switch single fault

a) Structure of Fault Diagnosis System

Figure.29 shows the proposed fault diagnosis system in single open switch faults. Diagnosis

System consist feature extraction surfaces sum algebraic and Fuzzy System.
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Figure 2.29: DTC-SVM-FUZZY proposed fault diagnosis system

b) Structure of Fuzzy Diagnosis System

e Fuzzification
Sa,Sb,Sc are surfaces sum algebraic given by equation (21), The membership functions of
the 3 inputs and the output are represented in Figure.30.
The Faulty switch membership function is decomposed in seven fuzzy sets: TO toT6

Input FEnyfesbon (DTCSVMD Input Fuezyfiosban [DTCSWMG

Dagres v mimEmhp

Irput Purzphoston [CTESNG

Diegron of nembelip
o I
-

Droren of membeshp

E] 4 B 7 4 08 48 D4 02 ©z os o 08 1
Fasky Suitch T Sa

Figure 2.30: Membership function of three inputs and output variables (DTC-SVM-FUZZY)
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e Inference rules
Control rules are often expressed in the IF-THEN format. Rules Ri can be written as:
R1. If Sa is Z, and If Sb is Z, and If Sc is Z, Than Ti=0: Healthy mode
R2. If Sa is Z, and If Sb is N, and If Sc is P, Than Ti=1: T1 switch is defect
R3. If Sa is P, and If Sb is Z, and If Sc is N, Than Ti=2: T2 switch is defect
R4. If Sa is N, and If Sb is P, and If Sc is Z, Than Ti=3: T3 switch is defect
R5. If Sa is Z, and If Sb is P, and If Sc is P, Than Ti=4: T/ switch is defect
R6. If Sa is Z, and If Sb is Z, and If Sc is P, Than Ti=5: T5 switch is defect
R7. If Sa is P, and If Sb is N, and If Sc is Z, Than Ti=6: T6 switch is defect
These roles obtained after stators currents in phase of feature extraction as illustrated in

Figure 31

Stator counent in phase b (DTCSVIM)

Figure 2.31: Sa,Sb,Sc surfaces currents calculations from feature extraction sum algebraic
(DTC-SVM-FUZZY)

e Défuzzification
Sets the value ranges of the membership functions from the output variables and achieves

defuzzification to deliver a digital signal [68].
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Sa(3)
OTCSVM
FUZZY
(mandani)
Sb(3)
7 rules
Ti(7)
Sc (3)

System OTCSVMUZZY: 3 inputs, 1 outputs, 7 rules

Figure 2.32: The structure of the FUZZY DTCSVM controller,

2.8 Conclusion

A Fault Diagnosis System based on DTC and DTC-SVM has been proposed using Fuzzy
Logic and Neural Network fault classification methods. The proposed system utilizes a feature
extractor based on Normalized Algebraic Sum and Fast Fourier Transform to transform the
output stator current and voltage signals, which helps in rating the signal value as an important
characteristic for classifying a fault hypothesis. With a good performance, the proposed method
has the ability to classify and identify the fault location of both single and multiple open circuits.
The models proposed for diagnosis in DTC and DTC-SVM are simple and effective, making it
a promising solution to robustness problems and a reliable way to control an induction motor

drive.
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Chapter 3

Diagnosis of Neural Direct Torque
Multiple Open Circuit Faults Using
neural networks for induction motor

drive control

3.1 Introduction

Variable Frequency Drives or inverters are widely used in industrial applications for controlling
the speed and torque of alternative current (AC) motors. Direct Torque Control (DTC) is a
powerful control technique for electric motor drives, providing high-performance and efficient
control of motor torque and speed. The key principle behind DTC is to directly estimate the
stator flux and torque based on the motor voltage and current measurements. By having direct
access to these quantities, DTC can quickly and accurately adjust the motor control variables
to achieve the desired torque and speed.

Insulated Gate Bipolar Transistors (IGBTs) play an important role in the operation of inverters
by converting DC power into variable-frequency AC power, enabling motor control. However,
IGBTs are among the components that commonly encounter issues. IGBT faults can have a
significant impact on the performance and reliability of the feeding systems [42]. In order to
prevent further damage and ensure reliable operation, various fault diagnosis methods based on
signal analysis have been developed for electrical machine drives [44,79,64,60,80]. The advantage
of these methods is that they only require measurements of line currents or line-to-line voltages

[31,75,81-82]. As with other engineering problems, fault detection using neural networks has
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not remained immune. In the literature, we can found that open-circuit fault diagnosis using
neural networks is considered as a pattern recognition problem [83-85]. Regardless of the used
scheme, open-switches fault detection using neural network consist of two key steps; feature
extraction and fault classification. Since neural DTC has been proposed to improve the DTC
performance, in particular the reduction in the torque and the flux ripples, we investigate in
this chapter how neural networks perform in fault detection problems when neural DTC is
used. Instead of using several types of features, or several signal cycles as in previous works, we
found that the normalized mean Clark currents and the power value of the signal are sufficient
to obtain a full accuracy.

This chapter is organized as follows: Section 2 introduces the neural DTC principle. Section 3
analyses the Fault Diagnosis system under single and multiple open switches. Section 4 presents

the proposed method. Section 5 presents simulation results. Section 6 conclusion.

3.2 Neural DTC

The neural DTC consists of replacing the two hysteresis blocks and the switch table from basic
DTC (figure 1) with a neural network controller shown in Figure 1 [81]. The neural networks
has an input layer containing three neurons corresponding to the three inputs er , €, , 0, , and

an output layer containing three neurons corresponding to the three switching status S,, S, and

Se .

i
S M
ol 4
Se
Voltage Current
1o calculation caleslation
7 Flux and _,uaa U,z I, | 1se
¢.| Torque
—~ estimation

Figure 3.1: Neural DTC block diagram
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3.3 Open-Switches Fault Diagnosis

Faulty switch can be recognized in twenty-pattern, six-pattern for single fault and fifteen-
pattern for multiple faults, current pattern illustrate a fault location. Circle shape describes

current pattern in healthy mode. All patterns are illustrated in figure 2.
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Figure 3.2: Patterns of multiple open-circuit faults

3.4 Proposed Method

Effective feature extraction is crucial in the development of a reliable system for detecting and
diagnosing open-switches faults from the three-phase current signal output. The purpose of
feature extraction is to extract relevant data from the signal and utilize it to train a neural
network for fault detection. However, existing approaches have certain limitations in terms of
accuracy and processing time. To overcome these challenges, it is recommended to employ nor-
malized and reduced features that can be applied across different reference speeds. By utilizing

normalized functions, the feature extraction process can be standardized and optimized, en-
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suring consistent and accurate results regardless of the specific operating conditions or speeds.

Figure 3 depicts the proposed fault diagnosis system.
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Figure 3.3: Proposed fault diagnosis system

As illustrated in figure (3), to construct the vector of features, the currents measured I,/

,Isc are transformed into two dimensions (/44,/55) by equation (3.2) and their surfaces (Ssq,553)

are calculated using feature extraction mathematical model given by the following equations

(3.21) [86-87]:

In addition, the autocorrelation function at lag zero of the currents I,,,/;3 are considered to

improve the accuracy of the proposed diagnosis fault system [88].

(3.1)

(3.2)
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3.5 Simulation Results

Neural DTC

As mentioned above, the neural DTC has the flux and the torque errors and the sector selec-
tion (K7p,K4,¢5) as inputs and The switching status (Sa,Sb,Sc) as outputs. After numerous
simulations, we have found that two hidden layers with 7 and 3 neurons in each as shown in

figure (3.4) provide the best results.
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Figure 3.4: Multilayer network architecture for neural DTC

Using this configuration and the Levenberg-Marquardt as training algorithm, a mean squared
error (MSE) goal of 0.01 was fixed. To create the test data sets, various simulations with vary-
ing speed references were performed. For each input vector and corresponding output vector,
15105 samples were collected where 50% are used for training, 25% for testing and 25% for
validation. From figure (5), an MSE of 0.042 was reached in only 465 iterations.

Best Validation Performance is 0 042894 at epoch 465
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Figure 3.5: The neural DTC in training, validation, test errors
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To see the effectiveness of the neural DTC, we construct the data sets for open-swiches
faults under basic and neural DTC, a reference speed of 75 rad/s and a reference flux of 1TWb
were fixed between 0 and 0.3s. After 0.3s, these desired parameters wre changed to 40 rad/s
and 0.5Wb respectively. Between 0.6s and 0.9s, we made an open-swiche fault at T1. At 1.2s,
we made a double faults in T1 and T2. As shown in Figure 6, the estimated flux and torque
are the same under the basic and neural DTC.
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Figure 3.6: Stator flux and torque under basic DTC and neural DTC.

Fault detection under basic and neural DTC

To create the dataset, we manually produce faults by opening the IGBTs gates in the used
Simulink model. Figure 7 shows the obtained features using equations 8 and 9 for healthy
and all single and double-open switches. The whole data sets consist of 27500 vectors of 4
components with the correspondent labels as outputs.

The outputs are labeled from 1 to 22 and listed in table 1.
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Table 3.1: Fault Labels

Healthy | T(1)

DINB e T(9) T(3),T(4),T(5),T(6),T(7)

Multiple | T(8),T(9),T(10),T(11),T(12),T(13),T(14),T(15),T(16)
Fault T(17),T(18),T(19),T(20),T(21),T(22)

Figure (7) shows the evolution of the four components S,,Ss ,rsa(0),755(0) occurring in the

same order as in table I.

200
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50

(b) Two features ro g

Figure 3.7: Feature extraction under single and multiple fault occurrences

To see how the added feature can improve the fault detection process, we visually explore
the datasets using the t-Distributed Stochastic Neighbor Embedding (t-SNE) [89]. As we can
see from figure (8), when using the two first components, we can see an overlapping in labels
(1,19), (10,19), (2,9) and (8,14). Also the label 21 is divided to two sets.

However, the autocorrelation coefficients added to components make the novel feature more

discriminative and will be able to effectively separate different classes in the dataset.

33



Chapter 3 Diagnosis of Neural Direct Torque Multiple Open Circuit Faults Using neural ...

S, Swr‘n,rm
13: ¥ L] L

- s

2 1l 3
/ 2 ;

d | & ., \(\ ‘ ‘ E

.5:h - .". 1 a
s ;

% ©

100 * * * _
5 : 5 ) I

-
"

a' i

10 v - v . 14

- '

ot i

) : - 17

Ny - 1o

0" ” L

w ¢ o . %

. "‘N—_ ‘\‘ :t

.5Jb -’ 4 -
10 . . -

Figure 3.8: t-SNE obtained using two and four features

The simulation model generates a total of 75,000 datasets across 22 different labels. These
datasets are then divided into three sections: 50% for training, 25% for testing, and 25% for
validation. This means that there are 20625 datasets allocated for both training and validation
purposes. For the fault detection problem, we have considered the neural input without and
with autocorrelation components. For the two cases, three hidden layers with 20,20,15 neurons
were chosen.

Figures 9,10 show the convergence curves and the regression plots respectively. Regression plots
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show the relationship between the outputs of the network and the targets. It is evident from
regression plots that practically all the data falls directly on the line with the associated slope
of 1, expressing the exact match between the neural network output and target data. However
in figure (10.a), the scatter plot shows that some of data points like 2,8,9,10,19 and 21 have

relatively poor fits which confirm t-SNE discussed above.
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Figure 3.9: Convergence’s curves for (a) two inputs and (b) for four inputs.
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Figure 3.10: Regression plots of the neural network on training, validation, testing and total
sets for the (a) two inputs and (b) for four inputs.

After validating and testing the simulation model, it is important to compare its performance
with other to evaluate its superiority or effectiveness.

The test accuracy is a performance measure that quantifies the proportion of correctly pre-
dicted outcomes by the model on the test dataset. It is calculated by dividing the number
of correctly classified instances by the total number of instances in the test set. This metric
provides an indication of how well the model can generalize its predictions to unseen data. The

test accuracy defined by [87].

A= w £ 100% (3.3)
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where N is the number of vectors in the test dataset and M the number of misclassified datasets.
In the comparative analysis, the proposed method is assessed in comparison with two distinct
types of machine learning models: ensemble extreme learning machine (ELM) [72] and the
Weighted Random Forests Algorithm [73]. The results presented in Table II show that the
proposed algorithm achieves the highest accuracy, reaching 100%. This suggests that the new
method successfully identifies all fault types and significantly reduces the occurrence of false

negatives (fault miss detection).

Table 3.2: Comparison with other methods

Method Test Accuracy
Ensemble ELM [72] 94.55%
WRFA [73] 96.25%
Proposed 100%

3.6 Conclusion

This chapter proposes a fault recognition and diagnosis in a PWM inverter with an induction
motor drive controlled by an artificial neural network direct torque control (NDTC).An effec-
tive and simple technique to control an induction motor drive appears in NDTC, providing a
promising solution to the robustness problems. The simulations were done on a regular induc-
tion motor using a basic and neural direct torque control.

The study focused on identifying open inverter switching faults, both single and multiple, by
simulating various defect modes using artificial intelligence methods. The outcomes indicate
that the proposed approach successfully detects all types of faults and significantly reduces the

likelihood of missed detections.
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Chapter 4

Deep learning for Open-Switch Faults
Detection in Inverter Feeding

Induction Motor

4.1 Introduction

Nonetheless, the effectiveness of neural networks in fault diagnosis heavily relies on the features
utilized, which serve as the fundamental aspects of fault detection. Consequently, researchers
have been motivated to employ deep neural networks to automatically extract features from raw
data. When dealing with signals, employing Convolutional Neural Networks (CNN) necessitates
the conversion of raw data into images through various techniques [44]. In the domain of
convolutional neural networks (CNNs), transfer learning is a commonly employed technique for
image classification tasks. Its primary advantage lies in leveraging the knowledge acquired from
training a model on a large dataset to enhance the performance of a model on a smaller, related
dataset. By utilizing a pre-trained model as a starting point, we can retrain only a subset of the
network’s layers on our specific dataset, instead of initiating the training process from scratch
and training the entire network anew. This strategy conserves both time and computational
resources, all the while ensuring commendable performance on the intended task. Numerous
pre-trained networks, such as AlexNet, VGG16, ResNet, and DenseNet, are readily accessible
for various deep learning tasks .

In this chapter, AlexNet is proposed to detect open-circuit faults, taking advantage of its status
as a transfer learning model where specific layers are retrained. Initially, the a3 current signals

are converted into images using an appropriate mapping technique. These generated images are
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then utilized for training and testing the network. The remainder of this chapter is structured
as follows: Section 2 outlines the problem statement and examines the fault diagnosis system
concerning both single and multiple open switches. Section 3 introduces the proposed method,

while Section 4 presents the simulation results. Finally, Section 5 concludes the study.

4.2 Problem statement

Open-circuit faults

Within the fundamental configuration of the voltage source inverter (figure 5.1), there are
six Insulated-Gate Bipolar Transistors (IGBTs) S;,i = 1,...,6 that operate complementarily,
alongside six freewheel diodes D;,7 = 1, ..., 6. This inverter is responsible for supplying perfectly
balanced 3-phase sinusoidal currents and voltages. The majority of failures in the rectifier
manifests in power electronic switches, primarily in the form of open-circuit faults (OCF's) and
short-circuit faults (SCFs). In cases of open switch faults, the IGBT remains in an off state.
Unlike short-circuit faults, open-circuit faults do not result in system shutdown; instead, the

system continues to function in a degraded mode [87].

Commutation Control

IEEREE

S1 S2 S3 S5 S5 Sg

Healthy

V de¢ T
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Short

Open

Joant

(a) ®)

Figure 4.1: Three-phase power converter feeding an electric system (a) and typical faults (b)
[149]

Open circuit faults can be categorized into three distinct types: single switch faults, double
switch faults occurring within the same bridge arm, and double switch faults emerging in

different bridge arms. Table 5.1 [56,87] illustrates all conceivable fault scenarios.
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Table 4.1: Summary of different faults

Fault type Fault Location
Single open-switch Fault | S1,52,53,54,55,56

Double open-switch Fault
S1-54,52-55,53-S6

in the same bridge arms
Double open-switch Fault | S1-S2,51-S3,51-54,51-S5,51-S6,52-S3,52-54,
in different bridge arms | S2-S5,52-56,53-54,53-55,53-56,54-S5,54-56,55-S6,

Clarke-Concordia transformation

The measured currents (I,,[p ,I.) are transformed into two dimensions (I,,lz) through the

application of the Clarke-Concordia transformation, as outlined in reference [43].

2 1. 1
-[oz - g[a _— g[b - g[b
oLt T (4.1)
T3\t 3

The Figure 5.2 shows various alpha-beta stator currents forms of defects for different double
faulty switches. It can be noted that the path drawn is a portion shape of circle for all cases of

defects [39].
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Figure 4.2: Ideal shape of different trajectories of the phase current according to the normal ,
single , and double faulty modes

60



Chapter 4 Deep learning for Open-Switch Faults Detection in Inverter...

Fast detection and isolation of open-circuit faults in IGBT switches are of great importance
to prevent damage to other components in the system and to avoid costly downtime. Fault
detection and isolation methods are an active area of research in power electronics, and various
techniques have been proposed to improve the reliability and fault tolerance of power electronic
systems. In this thesis, we propose to use Alexnet to identify and classify multi-open-circuit

faults.

4.3 Proposed method

The proposed method for open switches fault detection in the induction motor inverter is

outlined in Figure 5.3, and comprises three key steps:

e Raw Currents Data generation:
This step is responsible for gathering raw current data from the induction motor inverter.
Typically, current sensors installed in the motor drive circuit are utilized for acquiring

this data.

e Data Organization:
The purpose of this step is to collect data samples and labels from the raw current
data. The data samples correspond to the current signals, whereas the labels denote the

associated fault types.

e Detection and classification:
This step employs the AlexNet neural network to extract the most representative features

and classify the data into different types of faults.

o
Voltage Source i@)

Inverter

Raw cusrents
Ia| Ib] Ic| cata acquisition

Data Organization

:M o) [ Clarke-Concordia
-+ ‘—_— T E
Trsining B transformation
dsatasat I

AlexNet CNN

Figure 4.3: Flowchart of the proposed multi-faults diagnosis
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Data organization

To implement deep convolutional neural networks (CNNs) for fault detection, the a5 current
signals are transformed into images through a specific mapping technique. In this process, each
sample of af stator currents is represented as a binary pixel belonging to the object’s contour.

The coordinates for these pixels are determined as follows :

= o) Sy 42

_ lig = min(ig)](Ly — 1)
v max(Ig) — max(Ip) +1 (43)

Where: i, and ig are the values of each element of the vectors I, and I3 respectively.

Figure 5.4 illustrates the process of reconstructing data from a 1D transform to a 2D format.
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Figure 4.4: Example of the currents in the Concordia frame before and after mapping when
one switch is opened

AlexNet for Detection and classification

AlexNet is a convolutional neural network (CNN) that was introduced in 2012 by Alex Krizhevsky
‘et al.in 2012 . The architecture of AlexNet comprises 8 layers, including 5 convolutional layers
and 3 fully connected layers. The layers used for feature extraction in a pre-trained AlexNet
model are typically the first five convolutional layers .The remaining three are fully-connected

and used for classification (see Fig 5.5).
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Figure 4.5: AlexNet CNN architecture

4.4 Simulation results and discussion

In this study, we addressed a multi-classification problem involving 22 distinct classes, utilizing
the AlexNet model for the classification task. The training of the AlexNet model was conducted
on a computer equipped with an Intel(R) Core(TM) i9 processor and 32GB of memory, ensuring

efficient processing and accurate training results.

Fault description and labeling

Fault description and labeling are essential components of any fault analysis or diagnostic
system. The fault types are labeled and grouped into three distinct groups based on their char-
acteristics which are summarized in Table 5.2: The first group includes the "normal” operating
condition without any faults: No fault (healthy): H

The second group comprises the six fault types related to single IGBT open-circuit faults,
where individual IGBT components within the circuit have an open connection: Single fault in
SitSi=1,...,6

The third group includes the 15 fault types associated with double IGBT open-circuit faults,
indicating situations where pairs of IGBT components have open connections: Double faults

in SHS] : SZJ77/ = 1, ...,6,j = 1, ,6
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Table 4.2: Summary of different labels Fault Types

Fault Type Lable | Fault Type Lable
No fault (healthy) H | T} and Ty Open-circuit | 5S¢
T7 Open-circuit Sy T, and T Open-circuit | Sy
T5 Open-circuit Sy T, and T, Open-circuit | Sa4
T3 Open-circuit S T, and T Open-circuit | Sy
T, Open-circuit Sy T, and Ty Open-circuit | Sy
Ty Open-circuit S5 T5 and Ty Open-circuit | Ss4
Ts Open-circuit Se T35 and T Open-circuit | Sss
Ty and T, Open-circuit | Sio | T3 and T Open-circuit | Ss¢
Ty and T5 Open-circuit | Si3 | Ty and T5 Open-circuit | Sys
Ty and Ty Open-circuit | S;4 | Ty and T Open-circuit | Syg
Ty and T5 Open-circuit | Sy5 | 15 and Ty Open-circuit | Ss 6

Database generation

To construct the dataset, we manually induced open circuits as specified in Table 1 and then
simulated the corresponding scenarios. The resulting grayscale images were standardized to a
size of 227x227 pixels. These images were generated using the signal-to-image method, em-
ploying a sample signal comprising 4500 sampling points. Figure 5.6 illustrates the outcomes
of signal conversion under normal and faulty conditions. As can be seen from the conversion
results, the converted images under different work conditions look completely different. The
dataset comprises 300 images for each pattern input, totaling 6600 images. 300 for a healthy
pattern, and 300*21 for various fault occurrences. To analyze this high-dimensional dataset
thoroughly, we employed the t-SNE (t-Distributed Stochastic Neighbor Embedding) method,
which reduced the dataset’s dimensionality to two dimensions .

To analyze this high-dimensional dataset thoroughly, we employed the t-SNE (t-Distributed

Figure 4.6: Converted images under normal and fault conditions
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Stochastic Neighbor Embedding) method, which reduced the dataset’s dimensionality to two
dimensions to enables the visualization of complex data structures in a more interpretable man-
ner.

In Figure 5.7, the t-SNE visualization was generated using two different distance metrics,
Chebyshev and Num PCA Components, resulting in favorable clustering outcomes. The Clarke-
Concordia transformation proved to be a successful technique for converting the three current
lines into two vectors. Converting these vectors into images through a suitable mapping opens
the possibility of utilizing pre-trained Convolutional Neural Networks (CNNs) for fault diagno-
sis.
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Figure 4.7: t-SNE obtained using two distance metrics

Performance evaluation

Our proposed method’s performance was assessed using five metrics [93]: accuracy (Acc),
sensitivity (SN), also known as recall (R), precision (P), specificity (S), and Fl-score (F).

These metrics were computed using the following formulas outlined in Equations (5.3-5.7).

TP+ TN
A= 4.4
TP+ FN (44)
TP
_ 4,
R= TN (45)
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TP
P=—— 4.6
TP+ FP (4.6)
TN
_ 4.
S 2TN+FP (4.7)
PxR
F=2 4.8
P+ R (48)

where:

e TP (True Positive) represents cases where the true value is positive, and the predicted

value is also positive.

e FN (False Negative) corresponds to cases where the true value is positive, but the pre-

dicted value is negative.

e [P (False Positive) denotes situations where the true value is negative, but the predicted

value is positive.

e TN (True Negative) indicates instances where the true value is negative, and the predicted

value is also negative.

A confusion matrix is a vital tool in the field of classification. It provides a clear and detailed
summary of how well a classification model is performing by displaying the number of true

positives, true negatives, false positives, and false negatives ( see table 5.3 ).

Table 5.3 Confusion matrix with various metrics

Actual Class

Positive Negative
= | Positive TP FP T
< . =
o Precision : P

oiE T, +F,

o -
= Negative FN TN Negative prediction value :— ‘_‘"F
= Tn+Fy

Sensitivity | Specificity Accuracy :

¢ Ty T,+ Ty
Tp £ = F:‘\‘ T.\‘ & i Fp Tp - :r.\‘ + F, P '-F:\'
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Results

In the experimentation process, AlexNet was trained to detect various faulty modes using
different dataset splits. The data was divided randomly into training and testing sets, with
proportions of 80%-20%, 70%-30%, and 60%-40%. The performance analysis results are pre-
sented in Table 5.4, showing the evaluation metrics for fault detection.

Upon examination, it is evident that AlexNet achieved its highest performance in the 80%-20%

Table 4.3: Classification results for the three training-testing data split

Performance . . .
metrics (%) Training-Testing
80%-20% 70%-30% 60%-40%

240-60) tmages | (210-90) images | (180-120) images
( g g g

Accuracy ( Acc ) | 100 100 99.81

Sensitivity (R) 100 100 100

Precision (P) 100 100 99.81

specificity (S) 100 100 99.99

Fl-score (F) 100 100 99.99

and 70%-30% split combinations, outperforming the 60%-40% combination. These findings were
further supported by the confusion matrix illustrated in Figure 5.8. In this specific scenario,
there were only 5 misclassifications out of 2640 patterns, resulting in an impressive accuracy
rate of 99.81%. This outcome underscores the effectiveness of the model, particularly when
trained on the 80%-20% and 70%-30% data splits, in accurately identifying and classifying

faulty modes.
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Figure 4.8: Confusion matrix for the 60%-40% combination
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Using the described network-training configuration with only 6 epochs, the AlexNet could
provide a very high performance of classification. Figure 5.9 illustrates one of the training pro-
cesses of AlexNet, showcasing a pattern of random fluctuations in accuracy values during the
initial epochs. This behavior indicates that the model is continuously learning and adjusting
its weights based on the training data. As the training progresses, after the 5th epoch, the
accuracy reaches its peak value, achieving 100%. The fact that AlexNet consistently achieved
perfect accuracy across various fault cases is highly promising. This success underscores the
potential of employing deep learning models for fault diagnosis in source voltage inverters.
Ensuring the proper functioning of these systems is crucial, especially in variable speed drive
systems and renewable-energy-source-based electric systems. The use of deep learning models
with pre-trained CNNs for fault diagnosis in source voltage inverters is an exciting area of

research, and has the potential to improve the reliability and efficiency of these systems.
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Figure 4.9: Training process of AlexNet for 80%-20% combination
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4.5 Conclusion

In this paper, transfer learning is applied to detect and classify open-switches faults in 1G-
BTs (Insulated Gate Bipolar Transistor) switch in inverters feeding induction motor. Transfer
learning offers the advantage of reducing training time and computational costs since only a few
layers of the pre-trained model need to be retrained. The proposed approach utilizes AlexNet,
a deep Convolutional Neural Network (CNN), to detect and monitor the open-circuit fault. To
facilitate the application of deep CNNs, the af current signals are encoded into 227x227 im-
ages using a mapping method based on the analysis of Concordia vectors derived from the line
currents. Visualization of the transformed data using t-SNE confirms the separability of the 22
classes. The performance of the proposed method is assessed using five key metrics: accuracy,
sensitivity, precision, specificity, and F1l-score. Notably, AlexNet exhibits outstanding perfor-
mance, achieving perfect scores (100%) across all these metrics in the 80%-20% and 70%-30%
data split combinations. The proposed method combines data acquisition, pre-processing, and
machine learning techniques to detect open switch faults in induction motor inverters. By using
deep learning algorithms like AlexNet, the method can achieve high accuracy in fault detection
and classification, which can help prevent damage to the motor and improve overall system

reliability.
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Chapter 5

Inverter Reconfiguration for DTC and

DTC-SVM

5.1 Introduction

It is necessary to diagnose and correct any inverter faults that are found. Fuzzy and neural
controls were used in this chapter to simulate the various fault modes for the six switches. The
results of this diagnostic exercise will be used to reconfigure the inverter so that the motor drive

can continue to operate in a safe manner [43].

5.2 Inverter Reconfiguration for DTC and DTC-SVM

To work alongside the inverter’s three primary legs, we add three auxiliary legs. The main
leg and each auxiliary leg are connected in parallel. When a fault switch occurs, the main leg
that carried the fault switch will be switched off by the same reconfiguration signal while the
auxiliary leg will be activated. The three-phase inverter that is proposed for reconfiguration
is shown structurally in Figure 1. The diagnostic system automatically generates the three
reconfiguration signals from inputs C1, C2, and C3, and these signals are predicted to activate

or deactivate the inverter arms.
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Figure 5.1: SIMULINK Model of PWM Inverter Reconfiguration

5.3 Reconfiguration for DTC (with ANN)

A model Simulink for DTC contain a bloc of reconfiguration linked to inverter. A reconfigu-
ration is done using artificial neural network. As a result, when an inverter failure occurs, an
order to switch to the auxiliary leg is sent after fault identification and localization.as shown

in figure 2
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Figure 5.2: Matlab/Simulink block diagram of DTC using ANN for inverter reconfiguration
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1. Input/output Data
A network has three hidden layers, tow input (Ss,Ss) and one output Ti. The notation

9-6-1 indicates the number of neurons for each hidden layers.

2. Neural Network Training
The network will be trained with different faulty modes. The size of the input matrix
data is two rows (S5,55) with 2001 columns for each pattern input. That gives 2001 for
a healthy pattern and 2001*6=12006 for fault occurrence. That gives a 14007 data base
for neural network training. The output target classification is represented for different
speed references.

Bast Validation Performance is 0.0036926 at epoch 2000

Training: R=0.98325 Validation: R=0.95324
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Figure 5.3: Errors in diagnosis training, testing, and validation (in DTC ANN)

As shown in is shown in Fig.3, the number of the off-line training to get 0.003 error is 2000

epochs.

e Simulation results The diagnosis result is displayed for each phase’s three stator cur-

rents, motor speed, torque, and flux.

73



Chapter 5

Inverter Reconfiguration for DTC and DTC-SVM
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e Discussion of Results

The simulation is done like the following;:

— Speed reference is 70 (rad/s), stator flux is 1(wb).

— We made (0.3s) for healthy mode, after we did fault in switch T1. Detection, local-
ization and reconfiguration is done in (0.7s), the same in switch T5, fault in (1s).
Detection, localization and reconfiguration is done in (1.6s) also in switch T6, fault

in (2s) reconfiguration in (3.25s). Total time for simulation is (4s)

Table 5.1: Summary of reconfiguration Time for DTC ANN

Open switch fault T1 | T65 | T6
Time for reconfiguration | 0.4s | 0.6s | 1.25s

We select three fault switch for reconfiguration T1, T5 and T6 corresponding three auxiliary

leg a maximum time for reconfiguration is (1.25s).

5.4 Reconfiguration for DTC-SVM (with fuzzy)

There is a reconfiguration block attached to an inverter in this Simulink model for DTC-SVM as
well. The reconfiguration is managed via a fuzzy logic control. Therefore, after fault diagnosis
and localization, an instruction to switch to the auxiliary leg is delivered when an inverter
failure occurs. The diagnosis result is displayed for each phase’s three stator currents, motor

speed, torque, and flux.as shown in figure 5

e Discussion of Results

The simulation is illusrated in figure 6 & 7 and done like the following;:

— Speed reference is 75 (rad/s), stator flux is 1(wb).

— We made (0.55s) for healthy mode, after we did fault in switch T1. Detection, local-
ization and reconfiguration is done in (0.65s), the same in switch T2, fault in (1s).
Detection, localization and reconfiguration is done in (1.15s) also in switch T6, fault

in (1.55s) reconfiguration in (1.7s). Total time for simulation is (2s)

75



Chapter 5 Inverter Reconfiguration for DTC and DTC-SVM

T

gﬁea:'.,r|:::|
o 4

0
I Jﬂ

B|nn EEks i

.
|

[
om
sl
I B
=
—M
DS
Bl

-
¢ o r
¥ 5 = & ¥ & ::. 1\.—-'r ‘_' —i
L L i 1 o =1 o
al g | =) B |2} B R EOR (4
o ‘ vh ‘l : 5 R |":J = '
.:: o
-

—
AL
[,
L
=
m
———iH
alzi I:l]
a3 4t |7

patl [ 1= 4]0 o
neey
PR 1
o z '
- @
i
"

PN =
AL MR

s |
minoH

e

o~

L FIETS

.

CE

M=

wroe fe

rrrrreres

Funy apeudsan )
7

H

—
=

o

3 -
L
o

¥y ¥ i
5] I
-'
[

IC

1

7

LT T

i
wa

|5 LE m:-'..nmg"
'; +
ES
—
—t

HITE

Figure 5.5: Matlab/Simulink block diagram of DTC-SVM using FUZZY for inverter reconfig-
uration

76



Chapter 5

Inverter Reconfiguration for DTC and DTC-SVM

Figure 5.6: Simulation for a sequence of faulty IGBT transistor (in DTC-SVM FUZZY)
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stator current of phase a (DTC SVIM)
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Figure 5.7: Current phase simulation for a sequence of faulty IGBT transistor (in DTC-SVM
FUZZY)
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Table 5.2: Summary of reconfiguration Time for DTC-SVM FUZZY

Open switch fault T1 | T2 | T6
Time for reconfiguration | 0.1s | 0.15s | 0.5s

We select three fault switch for reconfiguration T1, T2 and T6 corresponding three auxiliary

leg a maximum time for reconfiguration is (0.15s).

5.5 Reconfiguration for DTC-SVM (with ANN)
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Figure 5.8: Matlab/Simulink block diagram of DTC-SVM using ANN for inverter reconfigura-
tion

The same in this Simulink model DTC-SVM. A reconfiguration block connected to an

inverter. The artificial neural network is used for reconfiguration. Therefore, fault detection
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and localization had made the order to switch in the auxiliary leg to have been sent when an

inverter problem occurred.

1. Input/output Data
A network has three hidden layers, tow input (S5,5) and one output Ti. The notation

9-6-1 indicates the number of neurons for each hidden layers.

2. Neural Network Training
The network will be trained with different faulty modes. The size of the input matrix
data is two rows (S5;,55) with 3960 columns for each pattern input. That gives 3960 for
a healthy pattern and 3960*6=23760 for fault occurrence. That gives a 27720 data base
for neural network training. The output target classification is represented for different

speed references. As shown in is shown in Fig.16, the number of the off-line training to
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Figure 5.9: Errors in diagnosis training, testing, and validation (in DTC-SVM ANN)

get 0.002 error is 194 epochs.

e Simulation results
The diagnosis result is displayed for each phase’s three stator currents, motor speed,

torque, and flux.
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Inverter Reconfiguration for DTC and DTC-SVM

Figure 5.10: Simulation for a sequence of faulty IGBT transistor (in DTC-SVM FUZZY)
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stator current of phase a (DTC SVIM)
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Figure 5.11: Current phase simulation for a sequence of faulty IGBT transistor (in DTC-SVM
FUZZY)
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e Discussion of Results

The simulation is done like the following;:

— Speed reference is 60 (rad/s), stator flux is 0.8(wb).

— We made (0.54s) for healthy mode, after we did fault in switch T4. Detection,
localization and reconfiguration is done in (0.78s), the same in switch T5, fault in
(1.2s)reconfiguration is done in (1.3s) also in switch T3, fault in (1.7s) reconfiguration

in (1.9s). Total time for simulation is (2.4s)

Table 5.3: Summary of reconfiguration Time for DTC-SVM ANN

Open switch fault T4 | TH5 | T3
Time for reconfiguration | 0.24s | 0.1s | 0.2s

We select three fault switch for reconfiguration T3, T4 and T5 a maximum time for reconfigu-

ration is (0.24s).

5.6 Control Strategies Summary

Space vector modulation- direct torque control (DTC-SVM) has fast reconfiguration a cause
to their characteristic constant frequency in both ANN and FUZZY. Therefore, direct torque

control (DTC) reconfiguration time is more logger.as illustrate in table 4.

DTC ANN | DTC-SVM ANN | DTC-SVM FUZZY

(figure 2) (figure 8) (figure 15)
Time for reconfiguration 1.25 s 0.18 s 0.15s

Model technique

5.7 Conclusion

This chapter focused on diagnosing faults in inverter systems that use induction motor drives
that are managed by fuzzy logic and neural networks for both direct torque control (DTC) and
space vector modulation-direct torque control (DTC-SVM). That seems like a straightforward
and efficient method of operating an induction motor drive. It offers a potential fix for issues
with robustness. We looked at how to reconfigure the inverter to detect and diagnose open
inverter switching faults in DTC and DTC-SVM. To do this, we used artificial intelligence

to simulate the various defect modes for each of the six switches. Based on the results of
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our diagnostics, we redesigned the inverter to prevent faults from arising by utilizing neural

networks and fuzzy logic in direct torque control and space vector modulation- direct torque

control systems able to operate with any stability guarantee.
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GENERAL CONCLUSION

The aim of this thesis was to detect faults, diagnose and reconfigure a three-phase inverter
that feeds an induction motor drive, which is controlled through different artificial intelligence
techniques like fuzzy logic control (FL), artificial neural network (ANN), and convolution neural
network (CNN). We selected two types of control strategies: direct torque control (DTC), and

direct torque control with space vector modulation (DTC-SVM).

We presented models of diagnosis, namely DTC_ANN, DTC_FUZZY, DTC-SVM_ANN, and
DTC-SVM_FUZZY of induction motor drives feeding a PWM three-phase inverter. This control
technique is simple and effective in controlling an induction motor drive, which makes it a

promising solution to robustness problems.

The MATLAB SIMULINK program was utilized in the development of the suggested model
system. The results of the simulation show how well the anti-windup regulator works to restrict

current peaks during changes or inversions in rotational speed and to solve the saturation issue.

Our research has focused on the identification and treatment of short and open inverter
switching faults. We employed an artificial intelligence technique to mimic the various forms
of defects for each of the six switches. The inverter is reconfigured using the diagnostic infor-
mation to stop errors from happening. This guarantees the stability of the control system’s

operation.

As an additional approach to this work, we suggest utilizing other intelligent techniques
to enhance the recognition rate and improve diagnostic accuracy for the occurrence of three
faults. It is recommended that other control strategies such as Field Oriented Control (FOC)
and direct self-control (DSC) be explored.
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