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Summary

Abstract
In the realm of predictive analytics, two major issues capture attention: mobility
prediction and breast cancer diagnosis. Although these problems may seem unre-
lated, they are crucial in their respective domains. Mobility prediction is essential
for effective urban planning, while accurate diagnosis of breast cancer can save lives.
In this thesis, we tackle two problems: (i): Mobility Prediction (MP) problem in
big data, i.e, next location prediction of mobile users. (ii): Breast Cancer (BC) clas-
sification problem in high dimensionality datasets. We propose four contributions
which are: (i): mini survey: we presented some of the well-known solutions used
for reduce datasets high dimensionality, and we provided a comparison between
the presented solutions. (ii): we introduced a practical comparison using two
different classifiers (Multi Layer Perceptron (MLP) and Support Vector Machine
(SVM)) combined with five different dimensionality reduction techniques, in order
to understand the affect of high dimensionality on classifying Breast Cancer (BC).
The results showed that using dimensionality reduction techniques increased the
classification accuracy in some cases. The former, also showed that choosing the
wrong combination of dimensionality reduction algorithms may lead to a worse
results. The following accuracies are some of the results that we got: MLP-PCA,
and MLP-ISOMAP outperformed simple MLP model with 0.7% of classification
accuracy. SVM-PCA, and SVM-ISOMAP outperformed simple MLP with 0.3%.
An example of choosing a bad combination of a dimensionality reduction algo-
rithm and an MLP classifier is illustrated in the following example: MLP-AE, and
MLP-RFE decreased the classification accuracy by 1.7% compared to simple MLP
(iii): WP-BERTA: our proposed solution for next location prediction problem. The
former is a combination of Bertwordpiece embedding algorithm and Transformer
Roberta algorithm. (iv): WP-CamemBERT: our proposed solution for next loca-
tion prediction problem. The former is a combination of Bertwordpiece embedding
algorithm and Transformer CamemBERT algorithm. We showed that our solutions
(WP-BERTA, and WP-CamemBERT) outperformed state-of-the-art solutions by
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increasing the next location prediction accuracy by at least 3% compared to the
state-of-the-art algorithms.

Keywords Machine Learning; Deep Learning; transformer; Wi-Fi; mobility traces;
Next location prediction; Neural Networks; Big Data; Dimensionality Reduction;
Breast Cancer prediction; Medical datasets.
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صخلم

.يدثلاناطرسصيخشتولقنتلابؤبنتلا:مامتهالاىلعناتيسيئرناتلكشمذوحتست،يؤبنتلاليلحتلالاجميف

رمألقنتلابؤبنتلا.ةفلتخملااهتالاجميفةيساسأاهنأالإ،ةطبترمريغودبتدقلكاشملاهذهنأنممغرلاىلع

يف.سانلاةايحيدثلاناطرسلقيقدلاصيخشتلاذقنينأنكميامنيب،لاعفلايرضحلاطيطختلليساسأ

عقوملابؤبنتلايأ،ةمخضلاتانايبلايف(MP)لقنتلابؤبنتلاةلكشم:(1)امهنيتلكشمجلاعن:ةلاسرلاهذه

ةيلاعتانايبلاتاعومجميف(BC)يدثلاناطرسفينصتةلكشم:(2).لومحملافتاهلايمدختسمليلاتلا

mini)ريغصعالطتسا:(1):يهوتامهاسمعبرأحرتقن.داعبألا survey):ةفورعملالولحلاضعبانمدق

ةنراقمانمدق:(2).ةمدقملالولحلانيبةنراقمانمدقو،ةيلاعلاداعبألاتاذتانايبلاتاعومجمليلقتلمدختستيتلا

Multi-Layer)نيفلتخمنيفنصممادختسابةيلمع Perceptron (MLP)وSupport Vector Ma-
chine(SVM)ىلعةيلاعلاداعبألاريثأتمهفلجأنم،داعبألاليلقتلةفلتخمتاينقتسمخعمبنجىلإابنج

فينصتلاةقدنمدازداعبألاليلقتتايمزراوخمادختسانأجئاتنلاترهظأ.(BC)يدثلاناطرسفينصت

عمداعبألاليلقتتايمزراوخةبيكرتلئطاخلارايتخالانأةقباسلاةساردلاترهظأامك.تالاحلاضعبيف

جمدلالخنماهيلعلصحتملافينصتلاةقدةيلاتلاجئاتنلارهظت.أوسأجئاتنىلإيدؤيدقأبنتلاتايمزراوخ

يلعMLP-ISOMAPوMLP-PCAنملكقوفت:ثيحأبنتلاتايمزراوخعمداعبلاليلقتتايمزراوخ

يلعSVM-ISOMAPوSVM-PCAقوفتكلذكو.٪0.7اهردقفينصتةقدةبسنبMLPطيسبلاجذومنلا

MLPعمداعبالاليلقتتايمزروخلةئيسلاةبيكرتلاناجئاتنلارهظتنيحيف.٪0.3ةبسنبطيسبلاMLPطيسبلا

.طيسبلاMLPبةنراقم٪1.7ةبسنبفينصتلاةقدتضفخMLP-RFEوMLP:MLP-AEيفةلثمتملاو

(3):WP-BERTA:ةرابعوهلحلااذه.لومحملافتاهلامدختسمليلاتلاعقوملابؤبنتلاةلكشملحرتقملاانلح

TransformerةسدنهوBertwordpieceةيتاملكلاءازجألانيمضتامهنيتقيرطجزمنع Roberta.(4):

WP-CamemBERT:اموهنيتقيرطجزمنعةرابعوهلحلااذه.يلاتلاعقوملابؤبنتلاةلكشملحرتقملاانلح

TransformerةسدنهوBertwordpieceةيتاملكلاءازجألانيمضت CamemBERT.انلولحنأانرهظأدقل

WP-BERTA)و(WP-CamemBERTعقوملابؤبنتلاةقدةدايزلالخنملولحلاثدحأىلعتقوفت

;يلآلاملعتلا:ةيحاتفملاتاملكلا.بيلاسألاثدحأبةنراقملقألاىلع٪3ةبسنبلومحملافتاهلامدختسمليلاتلا

ياو.تالوحملا،ةيبطلاتانايبلاتاعومجم;يدثلاناطرسبؤبنتلا;ةيبصعلاتاكبشلا;داعبألاليلقت;قيمعلاملعتلا

.ةمخضلاتانايبلا؛يلاتلاعقوملابؤبنتلالقنتلاراثآ؛ياف
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Résumé

Dans le domaine de l’analyse prédictive, deux problématiques majeures retiennent
l’attention : la prédiction de la mobilité et le diagnostic du cancer du sein. Bien
que ces problèmes puissent sembler sans lien, ils sont cruciaux dans leurs domaines
respectifs. La prédiction de la mobilité est essentielle pour une planification urbaine
efficace, tandis qu’un diagnostic précis du cancer du sein peut sauver des vies. Dans
cette thèse, nous abordons deux problèmes qui sont :(1) : Problème de prédiction
de mobilité (MP) dans le big data, c’est-à-dire la prédiction de l’emplacement
suivant des utilisateurs mobiles.(2) : Problème de classification du cancer du sein
(BC) dans les bases de données de haute dimensionnalité. Nous proposons quatre
contributions qui sont : (1) : mini Survey : nous avons présenté certaines des
solutions bien connues qui sont utilisées pour réduire les bases de données de
haute dimensionnalité, et nous avons fourni une comparaison entre les solutions
présentées. (2) : nous avons introduit une comparaison pratique en utilisant deux
classificateurs différents (Multi-Layer Perceptron (MLP) et Support Vector Machine
(SVM) combinés avec cinq techniques différentes de réduction de dimensionnalité,
afin de comprendre l’effet de la haute dimensionnalité sur la classification du cancer
du sein (BC). Les résultats ont montré que l’utilisation des algorithmes de réduction
de la dimensionalité a augmenté la précision de classification dans certains cas.
Cependant, il a également été démontré que le choix d’une mauvaise combinaison
d’algorithmes de réduction de la dimensionalité peut conduire à de moins bons
résultats. Les précisions suivantes sont quelques-uns des résultats que nous avons
obtenus : MLP-PCA et MLP-ISOMAP ont surpassé le modèle MLP simple avec
une précision de classification de 0,7%. SVM-PCA et SVM-ISOMAP ont surpassé
le MLP simple de 0,3%. Un exemple de choix d’une mauvaise combinaison d’algo-
rithme de réduction de la dimensionalité et d’un classifieur MLP est illustré dans
l’exemple suivant : MLP-AE et MLP-RFE ont diminué la précision de classification
de 1,7% par rapport au MLP simple. (3) : WP-BERTA : notre solution proposée
pour le problème de prédiction de prochaine emplacement a visiter par un utilisa-
teur. Le premier est une combinaison de la méthode d’intégration Bertwordpiece
et de l’architecture Transformer Roberta.(4) : WP-CamemBERT : notre solution
proposée pour le problème de prédiction de prochaine emplacement a visiter par un
utilisateur. Le premier est une combinaison de la méthode d’intégration Bertword-
piece et de l’architecture Transformer CamemBERT. Nous avons montré que nos
solutions (WP-BERTA et WP-CamemBERT) surpassaient les solutions de l’etat
de l’art en augmentant la précision de la prédiction de prochain emplacement a
visiter d’au moins 3 % par rapport aux méthodes de l’etat de l’art.
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STF-RNN: Space time feature based recurrent neural network

STS-LSTM: Spacial-temporal-semantic-neural network

TSNE: T-distributed stochastic neighbor embedding

WP-Berta Word peace roberta

WDBC: Breast cancer wisconsin

ZB: Zettabyte
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1.1 Context
In the last few years, and because of the large production of heterogeneous in-
formation, i.e. structured, unstructured and semi-structured data, big data has
emerged as one among the most important technical words in multiple domains. In
this regard, the use of traditional mechanisms and theories for storing, processing,
and analyzing big data has become difficult or impossible. Thus, the necessity for
providing new ways to deal with big data is needed [1, 2]. Therefore, machine
learning (ML) and data mining techniques perfectly replaced the traditional ana-
lytic algorithms and succeeded in multiple domains to extract hidden patterns and
analyze big data for extracting value, i.e. big data analytics. It should be noted
that the key success behind the previous mentioned techniques, i.e. (ML) and data
mining techniques, is the nature of big data which is highly in dimensions and
composed of non linear data [3].
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1.2 The problems addressed in the in the thesis

1.2.1 Mobility prediction problem
In now days, we live an incredible raise in mobile technologies, in which they have
become a part of our lives. According to [4], about 4 billion of mobile users spend
more than six hours on the net, while the use of mobile phones and social media
applications on mobile devices have attained respectively 67%, 42% in the world
in 2019. Thus, a necessity of providing better user experience with personalized
services of better performance is needed.

Understanding users movements can help improving such services. It is important
to know that user movements which are constrained by some conditions and usual
users habits, are not totally randomized [5]. It is also important to know that
the privacy of mobile users is important. Thus, relying only on the user’s con-
text to make service personalization and provide better user experience is needed [6].

One common solution for the previous two problems, i.e. maintaining privacy and
understand user’s movements, is mobility prediction. The latter rely only on the
user’s historical context, i.e. maintaining privacy, to make predictions, i.e. extract
hidden patterns of movements. So, mobility prediction can be defined as: predicting
a user movements, i.e. learning and inference, using his historical personal context,
i.e. previous knowledge [5].

It is hard to accurately predict users mobility because of their behaviour. The latter
which is related to various dimensions, i.e. multi-dimensional problem, notably the
temporal and spacial dimensions, changes automatically concerning the user and
varies from one user to another [7].

1.2.2 Breast cancer classification in high dimensional tabular datasets
problem

Breast Cancer (BC) is one of the life-threatening and dreaded cancers among
women in the world. [8] asserts that this type of cancers occurs in the lining cells
of the ducts or lobules in the glandular tissue of the breast. Fundamentally, in the
end of 2020, (BC) turns out to be the most frequently occurring cancer worldwide
[8]. The fact that, in the last 6 years, 7.8 million women were diagnosed with (BC)
necessitates the inclusion of artificial intelligence technologies such as Machine
Learning (ML). These technologies typically seek to predict and understand the
disease better in order to avoid deaths and life loses. In essence, several research
studies were carried out for the sake of diagnosing (BC). Examples of such studies
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are [9, 10, 11, 12] and [13].
In the last few years and with the large production of data, high dimensional data
(HDD) have been applied in numerous fields such as: education, social media, web
and medicine, etc [14]. Using (HDD) for (BC) classification is challenging because
of the curse of dimensionality [14, 15, 16]. The latter, which introduces a large
search space affects negatively the models performance (classification accuracy
and pattern recognition) by increasing the models computations and result more
complexity [15, 16].

1.3 thesis structure
The rest of the thesis is splited into three chapters that are:

• Chapter 2: Big Data and Machine Learning Essentials,

• Chapter 3: Contributions, which includes related work. The former is made
up of the following sections:

– Section 3.1: A Comparative study for dimensionality reduction techniques
for big data.

– Section 3.2: On the effectiveness of Dimensionality Reduction Techniques
on High Dimensionality Datasets.

– Section 3.3: Next location prediction using Transformers.
– Section 3.4: WP-CamemBERT for next location Prediction.

At the end, a General Conclusion is presented as chapter 4.
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2.1 Introduction
This chapter illustrates machine learning and big data fundamentals. It presents
big data definition and characteristics, followed by describing its architectures and
its different data types. This chapter also explains big data storage and processing
concepts and technology, followed by introducing the term big data analytics and
its techniques. Then, big data tools and applications are presented in section 2.2.6
followed by challenges faces by big data technologies. Next, we introduce the basics
of ML as well as DL which is a subclass of it. First, we provide ML definition
in section 2.3.1, followed by section 2.3.2, which outlines the tasks that a ML
algorithm can finish. The learning paradigms as well as some of the well-known
ML algorithms are presented respectively in sections 2.3.3, and 2.3.4. Section 2.3.5
illustrates deep learning importance and the challenges that motivate it. Sections
2.3.6, 2.3.7, and 2.3.8 provide some of DL basics (definition, learning process in
DL, and design architectures). Finally, a conclusion summarizes the content of the
chapter is presented at the end.

2.2 Big data
2.2.1 Big data definition
The term ”big data” refers to the different techniques that are used to analyze or
extract value and useful information from too large or complex data. The latters
They have been gathered from various sources (sensors, devices, etc..) are very
challenging to process with the classical processing technologies [17].

2.2.2 Big data characteristics
A big data is described by one or more of the following characteristics. The latters
are also called v’s of big data, as figure 2.1 shows.

Figure 2.1: V’s of big data [18].
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• Volume It is referring to the large amount of data which is growing daily in a
exponential manner, and needs different big data solutions and techniques to
be processed and stored. This voluminous data came from distinct sources like
social media, sensors, online transactions, etc..) [18]. Figure 2.2 demonstrates
the amount of data created daily by some organizations and world wide users.

Figure 2.2: the daily created amount of data by some organizations and world
wide users [18].

• Velocity Big data which is voluminous, can be generated and accumulated
within a brief period of time. The term velocity refers to speed rate of data
generating, data analyzing, and result returning (data processing) [18]. Figure
2.3 demonstrates and example of the amount of data generated in one minute
period of time, and its relation with data velocity.

• Variety It means heterogeneous data that composes big data (Unstructured,
semi-structured, and structured data). Big data variety introduces some
challenges like: data integration, data storage, and data processing [18].
Figure 2.5 presents an example of high data variety that came from distinct
sources.

• Veracity presents the untrustworthiness in some sources of data [19]. Today,
a lot of data sources are available. This makes the data precision, quality, and
trust these sources a big issue for big data [20].
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Figure 2.3: Example of big datasets generated in one minute with high velocity
[18].

• Value It refers to the meaningful and useful information and patterns extracted
from big data. The two big data characteristics value and veracity are related
to each other. The more the quality and fidelity big data have, the more
value it contains. Also the time affects big data value characteristic. The
more time it needs to be processed, the less value it contains [18]. Figure
2.4 demonstrates how big data veracity and the time to generate analytical
results, affects big data value.

2.2.3 Types of data used in big data
Human interactions with machines like online services, and machine programs,
hardware devices are the two sources of data that consist big data [18]. Therefore,
the following list presents the different data types that are used in big data.

• Structured data is the data that corresponds to some data structures, models,
or schemes. It is used usually to catch relation between entities [18].

• Unstructured data It is a data that does not correspond to any data structure,
model, or scheme like figure 2.5 shows. Unstructured data forms the majority
type of all types of data (80% of data enterprises are unstructured) [18]. It
can be stored using relational databases (as binary large object), or using
NoSQL databases. It can not queried or processed directly using SQL [18].
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Figure 2.4: The relationship between time, data veracity, and data value [18].

Figure 2.5: Some types of unstructured data [18].

• Semi-structured data Usually, this type of data is hierarchical or graph based.
Thus, an implicit level of structure exists. Jason and XML files are generally
used for representing semi-structured data [18].

2.2.4 Big data architecture components
All big data architectures are developed to control data during storage, processing,
and analysis. Kappa, internet of things IOT, and lambda are famous big data
architectures [17]. In the list that follows, we present the main components of a
big data architecture.

• Data sources Sources of big data can be from one unique source or from
multiple sources. the following are some sources of data: data stores, static
files, and real-time sources [21].

• Data storage Data is stored in a distributed manner (distributed files). This
method can store all data formats, with different and high data volumes. The
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former is called data lake [17].

• Batch processing Usually and because of the high data volumes, batch jobs are
used to treat the large data (filtering, aggregation, analysis, and preparation)
[22].

• Real-time message ingestion Capturing and storing real-time messages (from
real-time sources) is important for stream processing. This data store is used
from big data solutions as messages buffer, queuing semantics, and for reliable
delivery [23].

• Stream processing Is the process of treating real-time data at the same time
it was created or received [23].

• Analysis and reporting Is the process of extracting useful ideas and insights
from big data. Mathematical, statistical, and some visualisation techniques
are used to complete that process [24].

• Analytical data store The analytical data store is an optimized data base that
stores data in a structured format. The latter can help in the analysis process
(querying the data) [17].

• Orchestration A big data solution is composed of a set repeated processing op-
erations, encapsulated in workflows. To automate the latters, an orchestration
technology is needed [17].

2.2.5 Big data analysis techniques
Big data analytics: is a set of analytical algorithms and processes aims at facilitat-
ing and making more effective decisions by extracting useful insights and knowledge
from big data [25].

This section and the following list summarize the basic techniques of data
analysis as mentioned in [18].

• Quantitative analysis This technique quantifies the relationships and useful
patterns in a given dataset. The samples used in this type of data analysis are
large, i.e. the use of statistical methods to extract large number of observations.
Thus, the captured observations and results in one sample can be generalized
to the hole dataset. Figure 2.6 describes quantitative analysis.

• Qualitative analysis This technique describes the qualities of data using textual
words. Thus, numerical computations or comparisons can not be used in the
type of analysis. Unlike quantitative analysis, this technique uses small samples.
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Figure 2.6: Quantitative analysis and its numerical output [18].

Therefore, we can not generalize the observations for the hole dataset. Figure
2.7 illustrates qualitative analysis.

Figure 2.7: Qualitative analysis and its descriptive outputs [18].

• Statistical analysis It refers to the use of statistical methods to analyse and de-
scribe a dataset. It can be quantitative or qualitative. A/B testing, correlation,
and regression are 3 type of statistical analysis.

• Machine learning Is the process of combining human knowledge and machine
powerfulness to automate solving problems without human interventions. ML
has multiple techniques like: classification and clustering.

• Semantic analysis Is the process of extracting useful patterns and insights
from speech and textual data. Its goal is to make machines understand speech
and textual data as humans do.

• Visual analysis Is the process of extracting useful patterns and insights through
the use of graphical representations. understanding graphical representations is
easier and quicker than understanding textual data. We mention the following
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types of visual analysis. Heat maps, time series plots, network graphs, and
spatial data mapping.

2.2.6 Big data tools and applications
There are a lot of tools and frameworks to use for processing and managing big
data. In this section, we illustrate some of them which are presented in [26].

Hadoop ecosystem

Hadoop is composed of a set of frameworks. Each of the latters is specialized in
completing a specific task. Hadoop frameworks are combined together and relying
to each other to generate the final output [26]. The following sections demonstrate
some of the key components of hadoop ecosystem.

Distributed file system component Distributed file system is the main component
in the hadoop ecosystem. It is used to store semantics in the data cluster, data
of any size, and files of any format. It provides data availability and protect from
data loss. Two types of distributed file system are: hadoop distributed file system
(HDFS), and distributed file system with posix compliance [26].

Distributed processing components Distributed processing components are dis-
tributed processing engines used to support various and distinct applications [26].
four categories of distributed processing components are presented as follows:

• first type is used only by hadoop ecosystem and its applications like hadoop
Map Reduce and TeZ [26].

• Another type that is compatible only with hadoop and used by only a single
application like Cloudera Impala distributed processing engine [26].

• Flink and spark are examples of the third type. The latter is compatible with
multiple big data technologies as hadoop, and used by distinct applications
[26].

• The last type is compatible with multiple big data technologies, and used only
by a single application type like apache Drill and apache storm [26].

Application components Distributed processing components are used by applica-
tion components to support distinct applications [26]. Various types of application
components exist, we mention the following categories:
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• SQL components This type of application components support SQL for pro-
cessing and querying big data. Hive and drill are famous examples of it
[26].

• Data flow components Are used to describe data transformations through
data flow processing pipelines. Pig and cascading are two famous examples of
data flow components [26].

• Graph processing components Graph processing components are used to
process data which is represented with graph architecture (nodes and edges)
like social networks and payment transactions. Giraph is a famous open source
application used to process this type of data [26].

• Modeling components Modeling components are used to create predictive
models in hadoop. Both statistical methods and machine learning algorithms
are used for creating this type of models. Apache mahout is an open source
example application used as modeling components on hadoop [26].

NoSQL databases

NoSQL databases have emerged in order to replace traditional relational databases.
The latters were incapable of handling the high write/read requirements of web
applications. MongoDB, casandra, and Hbase are three famous examples of NoSQL
databases [26].

In memory databases

Contrasted to the database management systems which use the disk for storing
data, in memory database management systems use the main memory of the device
for storing and processing data. Thus, very fast processing of the data with no
input/output to/from disk. There are a lot of in memory open source databases,
we mention aerospike, hazelcat, and gemfire as examples. [26].

Streaming event processing technologies

Streaming processing technologies treat large amount streaming data which is
continuously produced. The former use producer/consumer concept in treating
streaming data. Each producer/consumer agent process in a specific manner
streaming data and passes the results to another agent. There are many applications
used for processing this kind of data, we mention flume, storm, and kafka as an
open source examples [26].
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Search engines

This type of search engines is based on distributed indexing mechanism, where big
data can be indexed at a high speed rate. The generated index are distributed and
stored over many data nodes. Apache solr, elasticsearch, and sphinx search are
open source examples of big data search engines [26].
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2.3 Machine Learning
2.3.1 Machine learning definition
Machine learning (ML) is a set of algorithms that can learn useful patterns auto-
matically from data in order to complete a specific task, for example: classification
task. An algorithm learned useful patterns with specific experience A, only if its
performance enhanced with that experience [27].

2.3.2 Machine learning tasks
The thing that makes (ML) algorithms interesting is that they can solve hard
problems that are exceedingly tough to resolve using fixed programs. This section
aims at presenting some common tasks, i.e. models objective, that (ML) algorithms
can solve and realise. In [27], the authors presented some tasks, we mention the
following:

• Classification: Let K be the set K = {1, ..., m} of m categories, i.e classes.
Let X be a set of inputs X = {X1, ..., Xn}, where Xi, i = 1, .., n is a vector of
features. Classification task may be described as the assignment procedure of
some inputs Xi, i = 1, ..n to a specific category kj, j = 1, .., m. The former is
defined mathematically as the function f(x) = y, where y ⊂ {1, .., m}.

• Classification with missing inputs: It is hard to classify some inputs with
missing values, and rather than defining only one classification function, it is
needed to define a set of classification functions to classify the input X with
its missing inputs.

• Regression: This task is close to classification. The only difference is in the
output format, in which the function used in regression may outputs any
numerical number X, whereX ⊂ R. Essentially, This regression is used in
prediction relation tasks.

• Transcription: In this task, the (ML) model has a goal of transforming
unstructured data into discrete text data.

• Machine translation: As its name, the (ML) model here tries to transform a
sequence of words or symbols in a specific language into another equivalent
sequence in other language.

• Structured output: In this type of task, the (ML) model outputs any data
structure. The latter consists of elements with important relations between
them.
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• Anomaly detection: The (ML) model tries in this type of task to detect
abnormal or non typical events and objects.

• Synthesis and sampling: The (ML) model has a goal of generating new
synthesised data, i.e. new samples of data, that is similar to training data.
The model here is called generative model.

• Imputation of missing values: The (ML) model in this type of task tries to
predict missing parts in the new data inputs.

• Denoising: In this type of task, the (ML) model tries to clean the corrupted
data and predict new clean version of it.

• Dimensionality reduction: aims to simplify complex data by reducing the
number of input variables while preserving the essential information and
structure within the dataset.

2.3.3 Learning paradigms
There are a lot of learning paradigms in the literature. The following sections
introduce three well known of them that are: reinforcement learning, supervised
learning, and unsupervised learning.

Supervised learning

A learning paradigm is called supervised when the training data that will be fed
to the ML model, contains the correct outputs that should the ML model results
when a specific input is given. The outputs in the training data are called labels,
and the ML model corrects its weights based on the provided labels [28]. The
following examples represent some problems that are solved through supervised
learning paradigm.

Hand-written-digits classification problem [29]. In this problem, the ML model
classifies each hand written image into one of the 10 presented categories {0, ..,9}.
The learning is supervised because the data is labeled and for each input image,
and output (category) from 0 to 9 is provided.

Breast Cancer Wisconsin Diagnostic (WDBC) classification problem [30]. In
this problem, the ML model tries to categorize the input features into one of the
two provided classes, B for benign, and M for malignant.

Unsupervised learning

A learning paradigm is called unsupervised when the training data that will be
fed to the model is unlabeled. Unlabeled data is a data that does not contain any
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outputs that the ML model can use in the training process to supervise its learning.
Thus, the ML model here is obliged to detect useful patterns from only the given
input examples. The process of classifying unlabeled data is called clustering [28].
Figure 2.8 illustrates an example of clustering (unsupervised learning) some coins
based only on two input features: mass, and size.

Figure 2.8: Coin classification through unsupervised learning [28].

Reinforcement learning

This Paradigm is based on the reward, penalty strategies. So, the agent,i.e. learner
and decision maker, will be rewarded or punished based on its output actions with
the environment. So, the agent will learn how to interact with its environment
and chooses the optimal action for each situation [31, 28]. Figure 2.9 shows the
interaction between reinforcement learning and its environment.

2.3.4 Some of machine learning algorithms
This section introduces the most common ML algorithms used in the literature.

• Decision tree (DT). A decision tree is a graph that is made up of nodes, and
edges. Each node demonstrates a specific decision or condition, and each edge
demonstrates the output of that decision or condition. The final nodes are
called leaf nodes and they represent the final decision or class label. Thus,
the process of classifying a given instance example will go down from the root
node following some decisions/ conditions to the leaf node (class), which is the
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Figure 2.9: Reinforcement learning - environment interactions [32].

most convenient class for that input example [33]. The following list displays
some of decision tree algorithms. [33].

– Classification and regression tree (CART).
– Iterative dichotomiser 3 (ID3).
– CHI-squared automatic interaction detection (CHAID).

Figure 2.10 shows an example of how decision tree algorithm works

Figure 2.10: Decision Tree example [34]

• Support vector machine (SVM). SVM is used for regression/classification
tasks through supervised learning paradigm. It represents data in n-dimensional

35



Big Data and Machine Learning Essentials

space, where n refers to the number of features. Classes that are represented
in that n-dimensional space are separated using margin calculation. Therefore,
SVM separates classes using hyperplane, i.e. straight line or kernel trick for
non linear problems [33, 34]. Figure 2.11 demonstrates how SVM separates
two classes using a straight line.

Figure 2.11: SVM example [34].

• Naive bayes (NB). It is a probabilistic ML algorithm according to the theorem
of bayes of probability. It is used for clustering/ classification tasks, where
it assumes that the present features in the dataset are unrelated. Thus, it
classifies an input X to the class that has the maximum posterior probability
[33]. Figure 2.12 demonstrates the posterior probability formula.

Figure 2.12: NB posterior probability formula [34]
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• Principal component analysis (PCA). PCA is utilized usually for feature
selection and dimensionality reduction purposes. It works by choosing k
orthogonal linearly uncorrelated vectors that fits the data the most, and then
performing a change of basis of the data on the chosen vectors. The latters are
called principal components. so PCA is the process of transforming data into
lower dimensional data through orthogonality [34]. The following example
represents the PCA of iris dataset that consists of 3 types of iris flowers and 4
attributes.

Figure 2.13: PCA of iris dataset [35].

• K-means clustering. It is an unsupervised learning algorithm used for clus-
tering analysis. Its basic idea is to define k center points for k clusters, and
then assigns each point in the dataset to the cluster that has the minimum
mean. The algorithm repeats the process of rechoosing the clusters’s centers
and continue clustering until all the data is clustered [34].

• K-nearest neighbor (KNN). It is a supervised learning algorithm that is used
for both classification and regression applications.
In classification, the algorithm assigns an input X to the most common class
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between its k-nearest neighbors.
In regression, the algorithm outputs for an input X, the average value of its
k-nearest neighbors values.
Figure 2.14 demonstrates iris dataset [35] classification example, using KNN
algorithm with k=1. Iris dataset consists of 3 classes and 4 attributes.

Figure 2.14: K-nearest neighbor with k=1 [35].

• Random forests. (RF) In fact, random forests RF are ensemble of decision
trees combined together to form a forest. Each DT in the RF outputs a specific
results. Therefore, the RF algorithm combines those results to generate a
general output. RF are used usually for classification / regression tasks [33].
Figure 2.15 shows an illustration of the RF’s general architecture.

• Regression. Regression algorithms like linear regression, logistic regression,
and polynomial regression [33] are predictive algorithms that are used to find
the relation between the independent input features and the output target.
Their objective function is to decrease the distance between the data points
and the function curve or line [33].
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Figure 2.15: RF general architecture [36].

2.3.5 Challenges motivating deep learning

The traditional ML algorithms failed in solving both: central problems and in
generalization, where the data examples are small compared to data dimensions
(the provided examples does not cover all regions). Deep learning overcomes those
drawbacks by a set of assumptions. The former supposes that the data is composed
hierarchically of a set of features. Contrary to machine learning, the previous
assumptions help deep learning in generalization by gaining exponentially relations
between the provided examples and the existing regions [27].

2.3.6 Deep learning definition

Deep learning is a sub class of machine learning algorithms that uses artificial
neural networks (ANN) to learn meaningful patterns in hierarchically manner.
Deep learning algorithms attempts to learn higher representations from lower
representations in several levels (hierarchy). Deep learning algorithms can be
utilized in supervised, unsupervised, or semi- supervised learning paradigms [37].
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2.3.7 Learning process in neural networks
The process of learning in neural networks consists of two phases. The first phase is
called forward propagation. In the latter and after an initialization of the model’s
weights, the model uses a set of inputs X combined with the initialized weights to
produce (predict) some outputs. After that, a cost function is applied to compute
the error resulted in the firs phase. Note that making a neural network model
learns means that a change in the model’s weights must be applied to minimize the
cost function (error). Therefore, a back propagation in the second phase is applied
to propagate the error through the network, and to compute the influence of each
weight on the cost function. This influence is computed via partial derivatives of
the cost function with respect to the weights. Finally, adjusting the weights in
proportion to the cost function using a specific algorithm like stochastic gradient
descent [32].

2.3.8 Architectures design
Three main categories of artificial neural networks (ANN) are presented in the
following section.

• Convolution neural networks (CNNs) A CNN is a type of ANNs that consists
of stacked convolution and pooling layers one over the other. At the end
of the network, a fully connected layer is presented generally to perform
classifications. Convolution layers apply a set of filters on the inputs in order
to extract useful patterns and create a feature map from the obtained patterns.
While pooling layers are used to reduce computations and data dimensions
by summarizing a set of features in a specific location in the feature map
into one value in the next layer [38]. The following well-known examples of
architectures are CNN based architectures proposed in the literature: AlexNet,
ResNet, and googleNet [38]. Figure 2.16 shows the CNN’s general architecture.

• Pretrained unsupervised networks

– Autoencoders (AEs) An AE is a feed forward neural network that uses
unsupervised learning in processing data (unlabeled data). AEs are used
for dimensionality reduction tasks. The former composed of two parts:
an encoder which is used to compress the input data into data of smaller
dimensions, and a decoder which is responsible for reconstructing the
input data by decompressing the outputs of the encoder [38]. Figure 2.17
shows the AE’s general architecture.

– Generative adversarial networks (GANs) GANs models use unsupervised
learning in order to perform their tasks. Their main goal is to produce
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Figure 2.16: CNN’s General architecture [38].

Figure 2.17: General architecture of an AE [38].

synthesized data that is similar to the provided training data. GANs are
composed of a discriminator and a generator that are trained in parallel.
The discriminator is used for distinguishing between real and synthesized
data that is produced by the generator. The latter’s goal is to augment
the error rate of the discriminator, by producing synthesized data that is
so close to the real one, i.e. the discriminator can not differentiate between
synthesized and real data [38]. Figure 2.18 shows a general representation
of a GAN model.

– Deep belief networks (DBNs) A DBN composed of multiple hidden layers.
Each hidden layer is a stochastic recurrent neural network that is named
RBM (restricted boltzman machine). Each of the latter is connected with
two other RBMs, one is visible and the other is hidden [38], as figure 3.5
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Figure 2.18: GNA’s general representation [38].

shows.

• Recurrent networks Recurrent models are used for processing and treating
sequential data. In this category we mention two structures that are: long-short
term memory networks (LSTMs), and recurrent neural networks (RNNs).

– Recurrent neural networks RNNs RNNs differs from other architectures
by using internal memory. The latter is used to tel which information is
important to keep compared with the past information. The output of an
RNN will be fed as an input alongside the inputs. Therefore, the former
affects the current decision of the RNN model [38]. Figure 2.19 shows the
genera architecture of stacked RNN model.

Figure 2.19: Caption
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– Long-short term memory LSTMs An LSTM is a variation of the tra-
ditional RNN model. it was proposed to solve some RNN’s limitations
like the vanishing gradients problem and for handling larger data. It is
composed of a cell which consists of an input gate, and a forget gate [38].

• Transformers Transformers were first proposed by [39]. The former treat
sequential data in parallel based on the multi-head attention mechanism.
Each attention head performs a different attentions on the input sequence.
A transformer consists of an encoder and a decoder as figure 3.15 shows.
Transformer outperforms the traditional recurrent models like RNNs because
it work faster (parallel architecture), and treat all the sequence parts at the
same time (simultaneously observe the input sequence) because of the attention
mechanism [39].

2.4 Conclusion
In this chapter we presented the basics of big data and machine learning. First,
we defined the term big data and demonstrated its characteristics (v’s). Next, we
presented the data types that are used in big data, followed by presenting the
big data architecture components. Also, big data analytics was defined and its
different analysis techniques were provided. Then, a quick overview on big data
tools that are used in the industry like hadoop ecosystem was provided. After that,
we introduced the basics of machine learning ML. We provided some definitions
and presented the learning paradigms used during the learning process. We also
presented and explained some famous algorithms that are used in this domain area
like support vector machine SVM. We particularly focused on deep learning DL.
Therefore, we illustrated some of the ML challenges that motivates DL. Also, we
provided DL definition as well as explained its learning process which is based on
two passes (forward and backward propagation). And we conclude the chapter by
introducing the main DL architectures that are proposed in the literature.
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3.1 Comparative study for dimensionality reduction
techniques for big data

3.1.1 Introduction
Big data has been recently considered as a buzzword, especially with the large
production of information in an exponential manner [1, 2]. In this regard, stud-
ies expect that, in 2020, the amount of information produced would exceed 35
ZB(zettabyte) [40, 41]. Therefore, the use of traditional theories and technology
with big data has become even more difficult [1, 40, 19]. For this reason, seeking
new ways to deal with big data has become essential. It is essential to emphasize
that among the problems that face big data is high dimensionality [20]. The latter
makes the processes of analyzing big data and extracting a value from it (hidden
patterns and insights) a difficult task. This paper, therefore, will serve to introduce
some of the recent solutions that can be used to reduce high dimensionality in big
data. The outlines of this paper organized as follows: section 3.1.2, introduces the
term big data as well as its V’s (characteristics), the main challenges facing each
V, and the dimensionality reduction definition. Section 3.1.3, presents some of
the recent solutions that were proposed to solve the high dimensionality problem
for big data. After that, a comparative table is presented in section 3.1.4, that
describes the previous techniques and the data-sets used to test the performance of
each one. Finally, a conclusion and future work are presented in section 3.1.5.

3.1.2 BACK GROUND
We present in this section some definitions related to big data which includes
the definition, its characteristics, the problem in hand and its solution which is
dimensionality reduction.

3.1.2.1 BIG DATA

A lot of people think that big data is a large data-set that characterized only by
high volume. But the reality is that volume is just one of its characteristics. For
example [42] defines it as, “big data is high-volume, high-velocity, high-variety
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information assets that demand cost-effective, innovative forms of information
processing that enable enhanced insight, decision making, and process automation”.

In addition, Tech-America Foundation asserts big data as, large volume with
high variety and high velocity that requires advanced technologies to be stored,
captured, managed, and analyzed [19]. Similarly, [43] defines it as the data-sets that
require a lot of time to be captured, processed, and managed using the traditional
information technologies. In this respect, others define big data regardless of its
volume, as data-sets that have complex structure and need complex operations to
be processed [1]. For example, a graph of several terabytes may be considered as
big data while a simple data-set with several petabytes may not.

Figure 3.1: Data growth from the beginning of 2010 to the end of 2020 [41]

3.1.2.2 DIMENSIONALITY REDUCTION

Rather than dealing with a significant number of dimensions in which high compu-
tation is needed or some dimensions are low in value or insignificant, it is preferable
to deal only with few and essential dimensions. For that reason, dimensionality
reduction is defined as: “Dimensionality reduction is an effective solution through
finding meaningful low-dimensional structures hidden in their high-dimensional
observations” [20].
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3.1.3 RELATED WORK
In this section, we present some of the recent dimensionality reduction techniques
proposed for big data.

3.1.3.1 MODIFIED PRINCIPAL COMPONENT ANALYSIS

In this sub-section, we introduce the classical and the modified (PCA) as well as
the motivation behind the modified (PCA). The two algorithms are used to reduce
dimensions by extracting the principal components.

• CLASSICAL (PCA) PCA is a statistical algorithm that explains a large
number of correlated explanatory variables by a small number of uncorrelated
components using a linear combination of the explanatory variables for each
component [44]. The principal components are a result of singular value
decomposition (SVD) of the explanatory variables like the following [44]:
Let X be the matrix of n∗p of explanatory variables and XS its standardization.
Let the (SVD) of XS is: SV D = UDV ′ where:
U is an n ∗ p orthogonal matrix satisfying: U ′U = IP , V is an p ∗ p orthogonal
matrix satisfying: V ′V = IP , D is a P ∗ P diagonal matrix for singular values.
The columns of UD are the principles components.

• MODIFIED (PCA) The classical PCA needs to load all the data on memory
to be applied. Thus, when it comes to big data, memory barriers pop up. For
that reason, [44] proposed a modified PCA based on scanning data by rows
to overcome the memory barriers. Scanning data by rows loads individual
rows to the memory and provides a summary information. They provided two
distributions:

– Single processor. if the data size does not exceeds the hard disk memory
size, an algorithm of modified (SVD) of two rounds is proposed:

∗ First round Computes Dx, Vk of the optimal K for every K ≤ P
(using scanning data by rows).

∗ Second round uses the previous Dk, Vk of first round with scanning
data by rows to compute Uk and get the principal components.

– Parallel distribution if the data size exceeds the hard disk memory size,
a distributed (SVD) algorithm based on map reduce is proposed:

∗ First round
· Computes in parallel (using scanning data by rows and mapReduce)

Dk, Vk of the optimal K for every K ≤ P .
· Computes the total (SVD) modified using the Reduce function.
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∗ Second round scans data by rows for each processor and uses the
results (Dk, Vk) of the first round, to compute Uk and the principal
components using map and reduce.

3.1.3.2 SIMPLICIAL NON-NEGATIVE MATRIX TRI FACTORIZATION (SN-
MTF)

In this sub-section, we present the classical (NMF) which used to reduce dimensions
by factorize a matrix into a product of smaller matrices. Also, we present a new
proposed (SNMTF) which is based on the classical (NMF) to reduce dimensionality
with some modification.

• (NMF) Non negative matrix factorization(NMF) models are linear models for
dimensionality reduction by transforming data into low dimensions of latent
components, in which a given matrix V is factorized into a product of two
matrices W T and F with no negative values for all matrices [45].

Figure 3.2: Nonnegative matrix factorization [45]

• NEW (SNMTF) MODEL In [45], the authors based on the classical (NMF)
and because it does not explain consistently the roles of latent components,
they propose a new (SNMTF) model which factorizes a given matrix V
into product of three matrices W T DF , where D is positive diagonal matrix,∑r

k=1 Wki = 1∀i, ∑r
k=1 Fkj = 1∀j. Scaling the two factor matrices F and W

via the diagonal matrix D, can lead to inconsistency of interpretability.
To solve this problem, they add an assumption which equals all the weights
in the diagonal matrix λ1 = ...λr = λ [45]. And for decreasing the itera-
tion complexity, attain a linear convergence and easily control sparsity, they
proposed a combined algorithm of three-block alternating direction (used to
decompose the product W T DF into three blocks W, D, F ) and Frank-Wolfe’s
scheme (used to solve the sub-problems in each block W, F ). D solved using
the previous assumption. The new proposed model (SNMTF) outperformed
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(PCA) and the existing dimensionality reduction of (NMF) in the literature
[45].

3.1.3.3 STACKED AUTOENCODERS

Stacked autoencoders are a class of neural network (NN). They are identified by
the presence of the same number of neurons in the input and output layers and a
lower number of neurons in the hidden layers (symmetric architecture).

The dimensions of the data are decreased as they pass through the hidden
layers, [46] presented and compared the performance of stacked autoencoders
which are powerful dimensionality reduction technique for linear and/or non-linear
problems, versus classical (PCA) that we previously presented. The authors
found that autoencoder has reduced the reconstruction error by ten times than
(PCA). Actually, an autoencoder with just one hidden layer outperformed (PCA)
in reducing data. The following figure shows a general architecture of a stacked
autoencoder as presented in [46].

Figure 3.3: General architecture of stacked autoencoder (AE) [46].

3.1.3.4 LINGUISTIC HEDGES NEURO-FUZZY CLASSIFIER WITH FEA-
TURE SELECTION (LHNFCSF)

In [47], the authors presented a combination of neural networks and fuzzy inference
systems (neuro-fuzzy) based on linguistic hedges with feature selection algorithm,
for both dimensionality reduction and classification. The motivations behind this
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combination were first neural networks are strong in learning and classification,
while fuzzy inference systems are strong with issues of reasoning with high semantic
level. The second motivation was to overcome the drawbacks of both neural
networks like black box behavior, and fuzzy inference systems like selecting suitable
membership values.

In fact, they compared the performance of two models of neuro-fuzzy systems.
The first model was the combination without feature selection LHNFC, and the
second model (LHNFCSF) was the combination with feature selection. The selected
features in the second model were the features that have the biggest hedge value
for any class or the biggest hedge value for each class.

(LHNFCSF) has reduced the dimensions approximately to the half for all cases
without losing accuracy for classification during training or testing comparing with
(LHNFC).

The following figure shows the general architecture of neuro-fuzzy systems with
(LHs).

Figure 3.4: General architecture of neuro-fuzzy classifier with (LHs) [47].

• x1, x2: inputs.
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• Uij: the membership grade of ith rule and jth feature. Calculated by the
Gaussian function [47].

• αij = (Uij)pij : modified membership grade based on (LHs) of each fuzzy set,
where pij denotes the (LH) value of the ith rule and jth feature [47].

• Bi: degree of fulfillment (firing strength) of the rule i for D number of features:
ΠD

j=1αij.

• Ok: output weights which is calculated by: ∑U
i=1 Biwik, where wik represents

the degree of belonging to the kth class that is controlled with the ith rule,
and normalized if the summation > 1 [47].

• Ck: the existing classes.

The algorithm used to reduce the dimension (feature selection) is the following [47].
First, the equation used for the selection value of the jth feature is:

1. Describe only one fuzzy rule for each class using Gaussian distribution.

2. Set Pij = 0.5, for i = 1,2, ..., K and j = 1,2, ..., D, where K is the number of
classes and D is the number of features.

3. Set the number of selected features (L).

4. Train the neuro-fuzzy classifier with LHs. In training 0 ≤ Pij ≤ 1.

5. For i = 1 to K. Find the jth feature that satisfies the maximum p value for
the ith class. Take the jth feature into the individual discriminative features
set.

6. The (L − K) features, which have the biggest P value, are selected as common
discriminative features.

7. There are L discriminative features. The new training X new and testing data
are created by the selected features from the original data (feature dimensions
are reduced from the original number to L).

3.1.3.5 DEEP BELIEF NETWORK (DBN)

(DBNs) are a class of neural networks. A (DBN) consists of multiple hidden layers
where each layer is an (RBM) (Restricted Boltzman Machine), which is also a class
of neural networks. Each (RBM) is connected with two layers, a hidden layer and
a visible layer, and so on [48].

In [48], the authors proposed a new framework which consists of two (DBNs).
The first (DBN) used to reduce the dimension of spectral bands on all pixels of
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the input (reduce the number of features) while the second (DBN) used as feature
extractor (extract spectral-spatial features) and classifier at the same time because
of its last layer which is a discriminative type.

(NNs) are strong models dealing with labeled or unlabeled data. The proposed
model outperformed (PCA), and the results showed that it gave better class sparsity,
and thus, better and more stable classification accuracy [48].

The following figure shows the general architecture of a (DBN), which is consist
of 3 stacked (RBMs). In the first (RBM) from Figure 3.5, visible layer is x and
hidden layer is (h1). For the second (RBM), hidden layer in the first (RBM) be
the visible layer and so on.

Figure 3.5: General architecture of (DBN) with 3 hidden Restricted Boltzman
Machines (RBM1), (RBM2) and (RBM3) [48].

3.1.4 DISCUSSION
In this section, we introduce a comparative table that explains some details for
each algorithm, as well as, some figures that explain the obtained results.

It is apparent that 60% of the presented studies used images as case of study
while 40% of them used different types of text files as Figure 3.6 shows.

Based on the results obtained in [45, 46, 48], we present the following figures
that demonstrate the performance of the (SNMTF), (DBN), and the stacked
autoencoder (AE) respectively compared with (PCA).

Tables 3.1 and 3.2 presents some details, as well as the advantages and disad-
vantages for each algorithm.
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Figure 3.6: Types of data-sets used for each study.

Figure 3.7 shows that (SNMTF) outperformed (PCA) and gave less inaccuracy
classification for all the data-sets used (Faces, digits and Tiny-images).

Figure 3.7: Inaccuracy percentage of classification for different data-sets using
(SNMTF), (PCA) as dimensionality reduction.

Figure 3.8 demonstrates that (DBN) gives better classification accuracy (overall
accuracy (OA), average accuracy (AA)) and kappa statistic (KS), for all experiments
than (PCA).

In all cases and for the same number of components, the autoencoder performs
better than PCA and produce less reconstruction error [46].
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PCA modified [44] Neuro-fuzzy [47] Stacked SNMTF [45] DBN [48]
autoencoder [46]

Model Single or NNs + NNs Modified NMF NNs
parallel Fuzzy inference

distribution system
Metrics Means square Accuracy Reconstruction Sparsity, Accuracy

error (MSE) error, (MSE) Inaccuracy kappa statistics
(2 types),

value
Method Scan data Linguistic
based by rows and hedges with / modified NMF /

map-reduce for feature
parallel selection

distribution
Data sets 3 synthesized Breast cancer 5 synthesized Faces [49]+ Indian pines

data-sets [44] diagnostic+ data-sets digits [29]+ hyperspectral
+1999 KDD prognosis+ (Gaussian Tiny images images [48]
of California Erythemato distribution)[46] [50]

university [51] squamous+ +ozone level
Thyroid disease detection +

[51] gas drift
concentration

[51]
Results Reduced 100% Reduced Less Outperformed

dimensions train accuracy reconstruction inaccuracy PCA
more than half 97% error classification for

with minor test accuracy 10 times than all data-sets
error PCA compared to

PCA
Advantages Handle all The combination Independent of Low complexity, Supports any

data sizes overcomes linearity controlled type of data
even if it exceeds drawbacks /non linearity, sparsity

the memory of NNs labeled/
and fuzzy unlabeled
inferences data
systems

Table 3.1: Comparative table of the presented techniques used for dimensionality
reduction for big data PART.1
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Disadvantages Non linearity Training takes, Training takes Lot of constraints Training takes
difficulties time, extensive time, extensive to overcome time, extensive

exploration exploration the model’s exploration
to find the right to find the right problems and make to find

combination combination the model works the right
perfectly combination

Classifier Logistic, linear, LHNFCSF / Gradient boosting DBN
log-linear classifiers
regression

Table 3.2: Comparative table of the presented techniques used for dimensionality
reduction for big data PART.2

Figure 3.8: Different types of classification accuracy using DBN, PCA as dimen-
sionality reduction.
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3.1.5 Conclusion
In this thesis, we introduced the big data term with its multiple definitions from
various sources, as well as its characteristics (Vs). Furthermore, we briefly discussed
the major issues for each characteristic. This paper highlights some of the available
techniques for dimensionality reduction for big data. All the presented techniques
have a good performance for reducing dimensions of a given data-set; however, the
most interesting class of them is (NNs). (NNs) are considered strong techniques
for dimensionality reduction because, they yield the advantage of dealing with all
types of data. In this respect, our future work will be specialized in studying this
class and may propose a new model for dimensionality reduction using (NNs).
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3.2 On the effectiveness of Dimensionality Reduction
Techniques on High Dimensionality Datasets

3.2.1 Introduction
Breast Cancer (BC) is one of the most serious illnesses that affects women. It
mostly affects the cells that line the ducts or lobules in the glandular tissue of the
breast [8]. As mentioned by [8], The most prevalent cancer worldwide at the end of
2020 is (BC). A total of 7.8 million living women have been diagnosed with (BC) in
the last six years. Consequently, it is needed to incorporate innovations in artificial
intelligence (AI), such as machine learning (ML) for a deeper knowledge of the
illness and early detection. In this regard, a series of measures and therapies can
be used to reduce mortality and loss of life. As a result, several researches for (BC)
detection were carried out, including as [9, 10, 11, 12] and [13]. However, using (ML)
algorithms on high-dimensional datasets may result in excessive complexity. Thus,
The purpose of this work is to present a realistic comparison of five well-known
dimensionality reduction algorithms (DRTs) and investigate their performance
using Support Vector Machine (SVM) and Multi Layer Perceptron (MLP), which
are two well-known classifiers in the field.
the rest of the sections is organized as follows: Section 3.2.2 initially outlines the
major contributions for (BC) classification and, then, describes the basic techniques
and functions utilized in our studies. Section 3.2.3 shows and assesses the dataset
utilized in our research. Section 3.2.4 assesses the performance of the given (DRTs)
when used with (SVM) and (MLP) classifiers. Section 3.2.5 aims at reporting the
findings and drawing conclusions.

3.2.2 Materials and Method
3.2.2.1 Related Works

Several techniques have been proposed for (BC) diagnosis. [52] and [11] are some
examples. They concentrated on the K-nearest neighbor (KNN) algorithm for
classification of (BC). In particular in [11], for resolving the problem, the researchers
presented a new hybrid solution based on a Fuzzy-artificial immune system and
the (KNN) algorithm. The presented technique had a classification accuracy of
99.14%. [11].
Other research focused on labeling (BC) using the support vector machine (SVM)
technique. In [53], the researchers employed Linear Support Vector Machine (L-
SVM) as a reference algorithm and compared it to numerous machine learning
(ML) techniques used for the same purpose., i.e (BC) classification. The given
(L-SVM) achieved 96% of accuracy.
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In [54], a mixture of k-means and SVM techniques was proposed named (K-SVM).
For each class, K-means is utilized to identify hidden patterns while SVM is
employed as a (BC) tumor classifier. The latter uses the dataset’s characteristics
alongside with features derived by K-means algorithm to classify the tumor.
Others concentrated on ensemble algorithms for constructing a model made up of
numerous (ML) models. In [13], The authors proposed a novel architecture made up
of numerous (SVM) model structures. To reap the benefits of each individual (SVM)
model, they were all hybridized together. The suggested algorithm integrated two
forms of (SVM) called C-SVM and V-SVM, as well as six different types of kernel
functions.
In [55], The researchers proposed including a voting algorithm between several
(ML) classifiers into a single model for (BC) classification. The voting algorithm
picks the best model combination for maximum classification accuracy.
In [56],The authors developed a novel architecture comprised of a Genetic Algorithm
(GA) for extracting the most useful and relevant characteristics and a Rotation
Forest (RF) for classification. The findings showed that the suggested algorithm
achieved good classification accuracy.
Other works, such as [57, 10, 52] stressed the use of deep learning models (DNN)
to tackle the problem of (BC) classification. For example, [58] introduced a
Deep Belief Network-based (DBN-NN) architecture for (BC) classification. The
presented architecture consists of two stages. The first one is training the (DBN)
unsupervisedly while the second is training supervisedly another (DBN),i.e. the
same design, but with the first stage’s weights as input.
In [59], The authors presented a Neural network (NN) Self-Validation Cerebellar
Model Articulation Controller (SVCMAC). In reality, SVCMAC is a hybrid of
the Cerebellar Model Articulation Controller (CMAC) and the Self-Validation
Algorithm. The latter is utilized to select the model’s best parameters.
In [12], The authors presented a novel design for neural networks (NNs) called the
Genetically Optimized Neural Network Model (GONN). The researchers enhanced
Genetic programming by incorporating novel crossover and mutation algorithms in
order to get an optimum (GONN) architecture. The proposed algorithm significantly
improved classification accuracy. (GONN) achieved 98.24% by dividing the data
into 50% training and 50% test and validation.

3.2.2.2 Data Normalization

For the goal of normalizing the dataset, we used the Z-score normalization algorithm
in this study. The Z-score can be described as the difference between the raw
data xf and the feature’s mean value µ, divided by the original feature’s standard
deviation. σ [53]. The normalization method employed is described in the following
equation:
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xnew = xf − µf

σf

(3.1)

3.2.2.3 Dimensionality Reduction algorithms

In this section, we provide a brief description of the used algorithms in our experi-
ments for reducing high dimensionality.

3.2.2.3.1 Auto Encoders (AE) Stacked autoencoders belong to the neural net-
work (NN) class. They distinguish themselves from one another by having an
identical number of neurons in the layers of input and output and a smaller number
of neurons in the hidden layers (symmetric architecture). The dimensions of the
data are lowered as they transit through the concealed layers. [46].

3.2.2.3.2 T-Distributed Stochastic Neighbor Embedding (T-SNE) [60] is the
first to propose T-Distributed Stochastic Neighbor Embedding (T-SNE). Actually,
(T-SNE) uses basic gradients with a symmetrized (SNE) cost function. (T-SNE)
computes similarity using a Student-t distribution rather than a Gaussian distribu-
tion.

3.2.2.3.3 Recursive Feature Elimination (RFE) (RFE) is a dimensionality re-
duction algorithm that operates by eliminating the least significant features in a
subset of features recursively until the required number of features k, i.e. the most
significant k features, is attained [61].

3.2.2.3.4 Isometric Feature Mapping (Isomap) The researchers present the
Isometric Feature Mapping (Isomap) algorithm for decreasing high dimensionality in
[62]. The algorithm given consists of three steps: (1) determines the neighbors points
using the distance between the points; (2) (Isomap) aims to give an approximation of
the geodesic distances between the points by computing the shortest paths distances
between the points; and (3) (MDS) algorithm is used to construct d-dimensional
embeddings.

3.2.2.3.5 Principal Component Analysis (PCA) (PCA) is an algorithm for un-
supervised machine learning. [63] introduced it for the first time. It has been
widely employed in a variety of sectors, including engineering science, biology,
and physics, to name a few. The (PCA) algorithm’s main purpose is to reduce
the dimensionality of datasets by turning correlated characteristics into a set of
uncorrelated principal components. This algorithm consists of four major steps:
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1. Covariance matrix calculation.

2. Obtaining the eigenvalues and eigenvectors of the covariance matrix.

3. Sorting eigenvalues and their related eigenvectors.

4. obtaining the top k principal components.

3.2.3 Dataset Evaluation
We demonstrated our studies using WDBC dataset (diagnostic) from the (UCI)
machine learning repository [30]. The dataset consists of 596 cases separated into
2 categories (37.3 percent malignant, 62.7 percent benign). Each raw data set
is made up of thirty two characteristics, as defined in the (UCI) repository and
illustrated in Table 3.3. Please see [30] for further details.

id diagnosis radius-mean texture-mean perimeter-mean
842302 M 17.99 10.38 122.8

area-mean smoothness-mean compactness-mean concavity-mean concave points-mean
1001 0.1184 0.2776 0.3001 0.1471

symmetry-mean fractal-dimension-mean radius-se texture-se perimeter-se
0.2419 0.07871 1.095 0.9053 8.589
area-se smoothness-se compactness-se concavity-se concave points-se
153.4 0.006399 0.04904 0.05373 0.01587

symmetry-se fractal-dimension-se radius-worst texture-worst perimeter-worst
0.03003 0.006193 25.38 17.33 184.6

area-worst smoothness-worst compactness-worst concavity-worst concave points-worst
2019 0.1622 0.6656 0.7119 0.2654

symmetry-worst fractal-dimension-worst
0.4601 0.1189

Table 3.3: A raw data sample with thirty-two characteristics
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3.2.4 Result and Discussion
For (BC) classification, we employed two well-known models from the literature
To evaluate the efficiency of the five presented dimensionality reduction strategies,
namely (T-SNE, RFE, Isomap, PCA, and AE). These are the models: Multi Layer
Perceptron (MLP) and Support Vector Machine (SVM) [53]. Each classification
model was used alongside with each dimensionality reduction algorithm, and many
tests were carried out.

As a consequence, we split our data in half for training and half for validation
and testing.

Both the normalization and (DRTs) models were solely trained on training data
to prevent information leakage and to assess the models’ generalization power. The
trained models were then utilized to transform the testing data.

Figure 3.9: MLP and SVM confusion matrices using RFE and T-SNE dimension-
ality reduction algorithms.
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Figure 3.10: All 12 models’ average accuracy percentage.

We used confusion matrices to examine the effectiveness of all the given models
and to identify the true and false predicted classes, as shown in Figures 3.9 and
3.14. It is crucial to remember that a correct forecast is a true forecast, whether
it is positive or negative. Figures 3.9 and 3.14 show that without using dimen-
sionality reduction algorithms (DRTs),(SVM) outperformed (MLP) by making two
true predictions out of a total of 285 predictions for (SVM). Using the five given
(DRTs) improved correct predictions for almost every (MLP) scenarios by at least
two predictions. Only when (RFE) and (AE) were used as (DRTs) was there a
drop of at least 5 correct predictions in comparison to basic (MLP). The most
reliable prediction results were obtained by (MLP-Isomap) and (MLP-PCA) (276
correct predictions and just 9 wrong predictions, a gain of 2 correct predictions over
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simple (MLP)). (MLP-TSNE) had two less correct predictions than simple (MLP).
Nonetheless, combining the given (DRTs) algorithms with (SVM) showed only a
reduce of correct predictions by at least 1 prediction in comparison to simple (SVM).

MLP MLP-AE MLP-PCA MLP-Isomap MLP-TSNE MLP-RFE
MLP /// +1.7 -0.7 -0.7 +0.7 +27

MLP-AE -1.7 /// -2.4 -2.4 -1 +25
MLP-PCA +0.7 +2.4 /// 0 +1.4 +28

MLP-Isomap +0.7 +2.4 0 /// +1.4 +28
MLP-TSNE -0.7 +1 -1.4 -1.4 /// +27
MLP-RFE -27 -25 -28 -28 -27 ///

SVM +0.7 +2.4 0 0 +1.4 +28
SVM-AE -0.3 +1.4 -1 -1 +0.3 +27

SVM-PCA +0.3 +2.1 -0.3 -0.3 +1 +28
SVM-Isomap +0.3 +2.1 -0.3 -0.3 +1 +28
SVM-TSNE -4.5 -2.8 -5.2 -5.2 -3.8 +23
SVM-RFE -1.7 0 -2.4 -2.4 -1 +25

// // // // // // //
SVM SVM-AE SVM-PCA SVM-Isomap SVM-TSNE SVM-RFE

SVM /// +1 +0.3 +0.3 +5.2 +2.4
SVM-AE -1 /// -0.7 -0.7 +4.2 +1.4

SVM-PCA -0.3 +0.7 /// 0 +4.9 +2.1
SVM-Isomap -0.3 +0.7 0 /// +4.9 +2.1
SVM-TSNE -5.2 -4.2 -4.9 -4.9 /// -2.8
SVM-RFE -2.4 -1.4 -2.1 -2.1 +2.8 ///

Table 3.4: Differences in average accuracy between all the 12 presented models

in 3.10 and Table 3.4, we examined the average accuracy percentage of all the
twelve given models (simple (MLP), simple (SVM), and ten classifiers combined
with (DRTs) with eleven decreased features as input). We found that (MLP-
Isomap), (MLP-PCA), and basic (SVM) had the best accuracy by at least 0.3%
of prediction accuracy, followed by (MLP-TSNE), and finally (MLP-AE). (MLP-
RFE) performed the poorest after (MLP-AE). The former achieved 68% prediction
accuracy with a difference of ' 25% in comparison to the model that gave the the
least accurate forecast.
We observe that combining (SVM) with the five given (DRTs) failed to improve
overall accuracy. In comparison to the simple (SVM), the combinations (SVM-PCA)
and (SVM-Isomap) with 11 features as input have marginally lower prediction
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Figure 3.11: MLP’s average accuracy with the four DRTs and distinct number of
features.

Figure 3.12: SVM’s average accuracy with four DRTs and varied number features.

accuracy by 0.3%.
In general, among the other models, the combinations (MLP-PCA) and (MLP-
Isomap) provided the best accuracies.

We further tested the performance of the models with varying amounts of
features, as demonstrated in 3.11, 3.12, and 3.13 show.
Figure 3.11 shows a consistent correlation, indicating that increasing the number of
features has no effect on average accuracy for both (MLP-Isomap) and (MLP-PCA).

64



Contributions

Figure 3.13: The average accuracy of SVM, and MLP classifiers using the T-SNE
algorithm with various dimensions

(MLP-RFE) and (MLP-AE) revealed a positive correlation between the number of
features and the average accuracy, implying that increasing the number of features
enhances the average prediction accuracy.

Figure 3.12 shows a consistent correlation between the number of features and
average accuracy for both (SVM-Isomap) and (SVM-PCA). It further demonstrates
a positive correlation between the number of features and the average accuracy
for (SVM-RFE). Nonetheless, (SVM-AE) demonstrated an inconsistent correlation
with the highest average accuracy obtained using 11 as a number of features.

Figure 3.13 shows that utilizing 2 as a number of dimensions resulted in the
best average accuracy for (MLP-TSNE), whereas utilizing 1 or 3 resulted in a
drop. It further shows a positive correlation between the number of dimensions
and (SVM-TSNE) average accuracy. (MLP-TSNE) outperformed (SVM-TSNE) in
all dimensions and gave higher average accuracy.
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Figure 3.14: Confusion matrices for SVM, and MLP with no reducing dimension-
ality, and with dimensionality reduction algorithms AE, Isomap, and PCA
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3.2.5 Conclusion
Machine Learning (ML) models have proven indispensable in a variety of fields,
including medicine. The former is utilized to create precise models that aid in
prediction and classification problems. Developing (ML) models, on the other hand,
may result in high-complexity models that require a huge amount of resources to
execute. Dimensionality Reduction is therefore among the most popular strategies
that aid in the development of (ML) models with low-cost. In this thesis, we
emphasized the performance of 5 (DRTs) integrated with 2 popular (ML) models
utilized for the classification of (BC). The findings support the use of (DRTs) for
high dimensionality datasets in creating more accurate (ML) models and improving
classification/prediction accuracy. Furthermore, they reveal that selecting the
incorrect mix of classifiers and (DRTs) might result in poor outcomes and a
reduction in classification/prediction accuracy.
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3.3 Next location prediction using Transformers

3.3.1 Introduction
Predicting the mobility of users has become an essential task for a variety of
location-based services in various domains including travel recommender systems
[64, 65], urban management, transportation recommender systems [66, 67, 68, 69],
and recommender systems based on point of interest [70].

Various methods and algorithms have been proposed in predicting human mobil-
ity. These strategies are often focused on studying the history of user movements,
i.e. the sequence of past locations, as well as identifying repeated patterns that will
be used to forecast future locations. In this respect, markovian models are widely
used in predicting human mobility [71, 72, 73, 74, 75, 76, 77]. They predict the
next location of a given user based on the current context which is the sequence of
the K recent visited locations.

In light of the advancements in deep learning, a number of algorithms for
predicting user mobility have been proposed [78, 79, 80, 65, 81]. These algorithms
overcome some of the drawbacks of traditional mobility prediction models including
Markovian models. The drawbacks of the latter, for instance, are as follows: (1)
the difficulty of choosing the value of k a priori, (2) the impossibility of identifying
patterns from parts of the context and relying only on the whole context to predict
the next location. It is important to maintain that the main advantage of using
deep learning models instead of Markovian models is that they can identify and
extract hidden patterns. A hidden pattern P is a sequence of locations. Each
location of a hidden pattern belongs to the context. For example, a hidden pattern
P of length = 2 with context of length = K is defined as: P = (loci, locj) where
1 ≤ i, j ≤ K and i 6= j.

Deep learning models can perfectly represent any sequence and extract hidden
patterns from the users historical sequences. For instance, [82, 78], and [79] proposed
algorithms based on Recurrent Neural Network (RNN) and Long Short Term
Memory Network (LSTM). In all the proposed algorithms, spatial and temporal
information were extracted as features and used for next location predicting. In [80],
the authors considered the next location prediction as a classification task. They
proposed the use of a new embedding algorithm called loc2vec. The embedded
sub-sequences will be transformed to RGB images. The latter, will be fed to
a pretrained (CNN) model to classify the image, thereby predicting these next
location.

One of the most recent and powerful models used in Natural Language Un-
derstanding (NLU) is Bert Transformer [83]. This model can learn bidirectional
representations between parts, i.e. tokens, of any sequence. Many Bert extensions
were proposed with different objective functions such as ROBERTA [84], UNILM
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[85], ALBERT [86] , XLNET [87], and RomeBERT [88]. Transformers are better
than (LSTMs) because they can model longer dependencies in parallel manner
based on attention mechanism [39].

In our work, we have got the idea of leveraging the powerfulness of Transformers.
Consequently, we propose a new model called WP-BERTA that is based on a
combination of Bertwordpiece tokenizer [89, 83] and ROBERTA model [84]. Our
proposed model has improved significantly the prediction accuracy by 3% compared
to (CNN2D) [80], which is the model that gave the higher accuracy over all the
tested models in our experiments (see Table 3.7).

The present paragraph describes the structure of the rest of the sections. In
section 3.3.2, we introduce the main contributions for next location prediction,
describe Bert model, and specify its extensions that are used for (NLP). In section
3.3.3, and as depicted in Figures 3.15 and 3.16, we provide a general description
for the Transformer in order to explain its architecture , as well as its functions. In
section 3.3.4, we present the general architecture of our proposed model, along with
its description. Section 3.3.5 presents and evaluates the dataset used in our work.
In section 3.3.6, we evaluate the performance of our proposed model and, then,
discuss the obtained results. Section 3.3.7 aims at reporting the findings, making
inferences, and drawing conclusions. It also provides options for future research.

3.3.2 Related Work
a number of methods and algorithms were proposed for next location prediction.
Some of them are [71, 72, 73, 74, 75, 76], and [77]. They focused on O(K) Markovian
models to forecast the upcoming location. In Markovian models, the probability
of a given location to be the next location depends on its current context, i.e.
sequence of K recent visited locations. These models are simple and do not require
a large memory to be executed or updated from one state to another. However,
their main problem is the difficulty of finding the best value of K that matches
a specific situation. In the mentioned works, the authors found that the smaller
k was, the better accuracy they got, and the best value that provides the higher
accuracy is K = 2.

Others concentrated on predicting the next location based on Recurrent Neural
Networks (RNN). In [82], Spatial Temporal Recurrent Neural Network (ST-RNN),
which follows the same architecture of (RNNs), was proposed. To get more valuable
insights, the authors integrated two specific spatial-transition, time-transition
matrices that are used to model, respectively, spatial-context, time-context inside
each layer in the (RNN) model.

In [78], the researchers introduced Space Time Features-based Recurrent Neural
Network (STF-RNN). They treated spatial and temporal historical information as
features that the model should learn. They provided a look-up Table layer that is
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utilized to learn useful patterns from the encoded spatial and temporal information
(One hot encoded) and encode them for the second time to a vector of real values
that will be fed to the model. One of the drawbacks of (RNNs) is modeling problems
that require long-term dependencies due to its architecture, which is composed
of standard memory units. Each standard memory unit overwrites its content to
compute the new content on the base of the input and the previous hidden state.
(LSTMs) have solved the drawbacks of (RNNs). They can model problems that
require long-term dependencies more effectively than (RNNs). (LSTM) architecture
is composed of, firstly, memory unit that can keep information for long periods
of time and, secondly, special units. The latter, which are called gates, control
when information enters the memory cell, or when the memory cell forgets the
information [90].

In [79], a Spatial-Temporal-Semantic Neural Network algorithm (STS-LSTM)
were proposed. The proposed algorithm predicts the next location based on
historical information on two steps. The first step is extracting spatial and temporal
semantic features by applying STS algorithm. These features will be fed in the
second step to an (LSTM) that will be utilized to forecast the upcoming location.

In [65], the researchers presented a new architecture for (LSTM) by adding an
embedding layer after the input layer to limit the problems of high dimensionality.
The embedding layer transforms sequences of discrete locations into sequences of
dense vectors which will be fed to the (LSTM) cells. The latter will predict the
next location. It is important to mention that the main drawback of (LSTMs) is
that they treat a given sequence sequentially. In other words, the (LSTMs) treat
sequence components in a predefined number of steps. Transformers have solved
this problem based on attention mechanism. Transformers can capture longer term
dependencies naturally between sequence components than (LSTMs) and process
them simultaneously [39].

In [80], the researchers presented a new embedding method for embedding the
input sequence of discrete locations called loc2vec. They converted the embedded
vectors into RGB images. The latter, will be fed to a pretrained (CNN) model. The
pretrained (CNN) treats the image as classification task; As a result, it forecasts the
future place by classifying the image correctly. In this regard, each class represents
a location where the user can reside. The main drawback of (CNNs) is that they
also process sequentially the input, by applying N ∗ M filters that scan the input
rows one by one horizontally and vertically. Transformers overcome (CNNs) at this
point. They have the advantage of scanning any sequence parts simultaneously
based on attention mechanism [39].

In [83], BERT Transformer was proposed with Masked Language Modeling that
aims at learning bidirectional representations between any sequence parts (tokens)
by randomly masking tokens during training and trying to forecast them utilizing
Masked Language Modeling MLM objective function. Many Bert designs, such
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as UNILM [85], ALBERT [86], ROBERTA [84], and XLNET [87], were proposed
in Natural Language Understanding (NLU) with different objective functions [91].
For example, Permutation Language Modeling (PLM) objective function is used
to model sequence dependencies for XLNET model [91]. The aforementioned
transformers are robust models in (NLU) [91]. They are able to model and learn
useful patterns and representations for every given sequence. Substantially, in our
work, we propose WP-BERTA to predict the next location. WP-BERTA is a model
made up of ROBERTA and Bertwordpiece tokenizer. The state of the art methods,
i.e. (LSTMs), (CNNs),...etc, which are used to predict the next location, process
each part of the input locations sequence sequentially. Nevertheless, Transformers
see the entire sequence of locations at once and treat each part in the sequence
simultaneously based on attention mechanism [39].

3.3.3 Transformer

Transformer is made up of an encoder and decoder. Its general idea is that the
encoder maps the input sequence to a sequence of continuous representations that
will be used as an input to the decoder. The latter generates at each time step
one output. The output will be used as an input to the decoder at the next time
step along side the sequence of continuous representations in order to generate
the next output, and so on [39]. Figure 3.15 shows the general architecture of the
Transformer.

Encoder: The encoder is composed of N stacked identical layers in which each
layer consists of two sub-layers. The first one is a multi-head-self attention layer
while the second is position wise fully connected feed forward layer. Around each
sub-layer, the model uses residual connections followed by normalization layer [39].
Decoder: The decoder follows the same architecture of the encoder, including
the residual connections and normalization layers. Additionally, it consists of a
multi-head attention layer that is utilised for the sake of performing multi-head
attention over the output of the encoder. In order to prevent the decoder from
knowing the future positions, i.e. prediction relying only on current and past
positions, a masking mechanism is added to the first multi-head attention layer
[39].
Attention: Attention is described by [39] as mapping a query with a given set of
key-value pairs. The output of an attention function is computed using the dot
scaled product as the weighted sum of the values, wherein the weights represent
the compatibility of a query with a corresponding key.
Multi Head Attention: Multi-Head Attention function is defined as multiple self-
attention functions that run in parallel and are applied to the projected queries,
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Figure 3.15: General architecture of Transformer [39]

keys, and values. The outputs of each attention head are concatenated and pro-
jected other time [39]. Multi-head attention and Self-attention mechanisms are
demonstrated respectively in the right and left parts of Figure 3.16.
Position Wise Feed Forward layer: Position Wise layer is a Fully Connected Feed

Forward layer. It is made up of 2 transformations using ReLU between them [39].
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Figure 3.16: Attention function calculated using dot-product at the left, Multi-head
attention at the right [39]

Embeddings and softmax: The common learned embeddings, softmax, and trans-
formations are used in the architecture [39].
Positional Encoding: Positional Encoding is added to the input embeddings in
the encoder and decoder. Cosine and sine functions of different frequencies are
used to compute the positional encoding. The latter adds more information about
the positions of the sequence components in order to make use of the order of the
sequence [39].

3.3.4 Proposed Approach
In our work, and for the sake of predicting the next location of mobile users, we
propose WP-BERTA [92]. It follows the general architecture of Transformers that
is proposed by [39]. In reality, WP-BERTA is a combination of Bertwordpiece
tokenizer [89, 83] and Roberta [84]. WP-BERTA is composed of L hidden layers
and predefined number of self-attention heads, and hidden dimension.It should be
noted that the name of the access point to which the user device is connected is
defined as a location loci. Therefore, the aim of this work is to predict the next
location a user will visit based on its historical sequences. Therefore, our proposed
approach, which is illustrated in Figure 3.22, will be described. The three phases
of the proposed approach are as follows:
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3.3.4.1 Preprocessing Phase

3.3.4.1.1 Sub-sequences Generation There are two ways of generating sub-
sequences from the sequence of locations of a given user, as [80] mentioned. The first
one is called Overlapping in which sub-sequences of length k are overlapped through
a specific number of locations m using a sliding window of length s. The second
is referred to as Non overlapping method in which sub-sequences do not share
common locations and a given sub-sequence is generated by shifting k locations
from the precedent sub-sequence. In our work, we have proposed the use of the
overlapping sub-sequence division. Accordingly, Table 3.5 shows an example of how
the two methods work:

Locations sequence a b c d e f g h i
Overlapping s1= (a b c d e), s2= (b c d e f)
k = 5, m = 4, s = 1 s3= (c d e f g), s4= (d e f g h)

s5= (e f g h i)
Non overlapping s1= (a b c), s2= (d e f)
k = 3 s3=(g h i)

Table 3.5: Generating sub-sequence methods

Note that overlapping method generates more sub-sequences compared to the
non-overlapping. This is due to its sliding window; consequently, more samples(sub-
sequences) are fed to the model.

3.3.4.1.2 Sub-sequences Treating After the generation of K + 1-length sub-
sequences, i.e. (loc1, . . . , lock+1), (lock+2, . . .
, loc2(k+1)), . . . , (locN−k, . . . , locN) from the whole sequence of locations of the user
(loc1, loc2, . . . , locN), and in order to extract our sequence tokens during training
and deployment, we propose training Bertwordpiece tokenizer over the sequences
of users. Note that bertwordpiece tokenizer uses special tokens to encode any
sequence. [CLS] is used at the beginning of each sequence while [SEP] at the end
of each sequence, and [MASK] is used to mask a given location in a sequence [83].

3.3.4.2 Training Phase

In order to train WP-BERTA, we have chosen 15% as masked language probability
parameter. During training, WP-BERTA uses dynamic masking and generates
masking pattern each time a sub-sequence is fed to the model.
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3.3.4.3 Deployment

We divide the testing sequence of a given user into sub-sequences of length k plus
the special token [MASK] at the end of each sequence, so that the length will be
k + 1 for each sequence. The developed model WP-BERTA predicts the masked
location and returns the top k ≤ 5 locations that have the higher probability of
being the next location. In our model, we have chosen the top 1 that has the
highest probability as the predicted next location.

75



Contributions

Figure 3.17: General architecture used for next location prediction based on
WP-BERTA
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3.3.5 Dataset Evaluation
In our work, we have used a real Dataset of WiFi traces collected by Dartmouth
College [93] (For details on this dataset, consult [94, 95]). This work’s dataset
demonstrates that each user trace consists of a series of (time, location) pairs. The
location is indicated by the name of an access point to which the user’s device is
currently connected, as illustrated in Table 3.9.

Timestamp Location (AP)
1042409101 AcadBldg2AP2
1042453201 AcadBldg12AP2
1042471680 AcadBldg25AP4
1042653300 AcadBldg20AP1
1042657380 OFF

Table 3.6: A Sample of User Trace

Table 3.9 additionally shows an additional location known as OFF. The latter
symbolizes the users’ exit from the network. The granularity of the timestamps is
one second and measured as UNIX timestamps that count the number of seconds
since the epoch. It should be emphasized that a user’s location does not have
to match his specific physical location. It rather denotes a close match of that
location to one of the access points (AP) that was servicing the user at the time.
This means that the device of the user could associate and re-associate with several
different nearby access points without the need of physically moving. The length of
the sequence of locations that counts the number of locations in the mobility data
sequence of a particular user varies considerably from one user to another. It may
exceed 18000 locations for certain users. [80]. In our studies, we picked users at
random who had a varied length of sequence of locations ranging from min = 715
to max = 114791 and a different number of classes ranging from min = 4 to
max = 332. We divided each sequence into 67 percent for creating and training
our model and 33 percent for evaluation.

3.3.6 Result and Discussion
We compared the performance of the model we proposed with popular models
used to predict the next location. These models are O(K) Markov predictor [71],
Embedding-LSTM [65], and the baseline model (LSTM) [96]. We treated next
location prediction issue as a multiclassificaiton task. furthermore, we compared
our model to (CNN2D) [80] and (SVM) model that is based on one-vs-one (OVO)
strategy [97].

77



Contributions

Figure 3.18: Average accuracy of the proposed model compared to state of the art
models

We trained the provided models for 60 epochs, with one epoch referred to as the
number of training iterations in which a specific neural network completed a full
pass of the whole training set. We used K = 2 time steps as window for Markov
which is the context that gives the higher accuracy for Markov. Moreover, we used
K = 4 time steps as window for all the other models. In addition, we investigated
the performance of the models using different time steps K = 4, 8, 16, 32. We used
Transformers library that is provided by huggingFace to implement our model [98].
In Figure 3.18, We evaluated our proposed model’s average accuracy to the average
accuracy of the baseline (LSTM), Embedding-LSTM, Markovian O(K), (SVM),
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and (CNN2D) models. WP-BERTA improves accuracy by 3% when compared to
(CNN2D), the model with the best accuracy among the reference models, 4.5%
when compared to O(K) Markov, 3.5% when compared to Embedding-LSTM, 8.5%
when compared to (SVM), and 7.5% when compared to baseline (LSTM). Table
3.7 shows the differences in the average accuracy among all presented algorithms.
(CNN2D) and Embedding-LSTM models gave almost the same performance results.
However, the former (CNN2D) exceeds the latter (Embedding-LSTM) by 0.5%.

Markov LSTM EMBD-LSTM SVM CNN2D WP-BERTA
Markov /// +2.6 -1 +3.9 -1.5 -4.5
LSTM -2.6 /// -3.6 +1.3 -4.1 -7.1

EMBD-LSTM +1 +3.6 /// +4.9 -0.5 -3.5
SVM -3.9 -1.3 -4.9 /// -5.4 -8.4

CNN2D +1.5 +4.5 +0.5 +5.4 /// -3
WP-BERTA +4.5 +7.1 +3.5 +8.4 +3 ///

Table 3.7: Average accuracy differences.

Figure 3.19 shows the cumulative distribution of the prediction accuracy (of
100 users) obtained from the six tested prediction models. We indicate that our
WP-BERTA model constantly provides a better prediction accuracy compared to
the other models. The median accuracy of WP-BERTA model exceeds 72%.

Figure 3.20 represents the comparison accuracy results achieved utilizing our
proposed model, as well as the reference models. Importantly, these results concern
15 users that were randomly chosen. The results further reveal that our model
provides a better accuracy for almost all users, which is not the case for four of
them. To clarify, and concerning these four users, Markov model gives better
accuracy for only two. All the presented models give equal accuracy for the two
remaining users, except for Markov which provides less accuracy.

We also observe that Embedding-LSTM and (CNN2D) models provide almost
the same accuracy results for almost all users. Additionally, (SVM) and baseline
(LSTM) provide weaker results for all users, except for one user. Concerning the
latter, all models provide equal accuracy, except Markov that had a weaker accuracy.

We also investigated the performance of our proposed model in comparison with
the other presented models with different time steps and different configurations.
The results are portrayed in Figure 3.21, as well as Table 3.8.

Figure 3.21 confirms that our proposed model outperformed the other models,
consequently, providing higher average accuracy with all time steps used. It also
illustrates a positive correlation between time steps and average accuracy for our
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Figure 3.19: CDF of all presented models

proposed model and for Embedding-LSTM model. To clarify, the increase in time
steps raises the average accuracy. Furthermore, Figure 3.21 represents a negative
correlation for all the other models. That is, the increase time steps affects and
reduces the average accuracy.

Table 3.8 displays the average accuracy of our proposed model with different
time steps and different configurations, i.e. the number of attention heads and
hidden layers inside the model. The Table shows that a positive correlation exists
between time steps and average accuracy for all configurations. The best average
accuracy with all different time steps was gained using 16 attention-heads and 6
hidden layers. So, we use this configuration as a reference compared to the other
configurations.
Compared to the reference configuration, we gained the same average accuracy
using 8 attention-heads and 3 hidden layers for 4 and 8 time steps, and a decrease
by 1% for both 16 and 32 time steps.
Using 32 attention-heads and 12 hidden layers led to worse results by decreasing
the average accuracy compared to the reference configuration by 12%, 3%, 1%, 1%
respectively for 4, 8, 16, and 32 time steps.
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Figure 3.20: WP-BERTA, Markov, baseline LSTM, Embedding-LSTM, SVM, and
CNN2D accuracy comparisons for each user

Time steps 4 8 16 32
Attention-heads = 16 0.69 0.70 0.71 0.72
Hidden-layers= 6
Attention-heads = 08 0.69 0.70 0.70 0.71
Hidden-layers = 03
Attention-heads = 32 0.57 0.67 0.70 0.71
Hidden-layers = 12

Table 3.8: Average accuracy of WP-BERTA with different time steps and different
configurations.

3.3.7 conclusion
The current work introduced the importance of predicting human mobility for
various domains and location-based services such as recommendation systems and
urban management. Besides, it presented markovian and deep learning models,
which are used for next location prediction, along with their main issue in this
task. On that account, and primarily, We presented and explained Transformers
that are utilised for (NLP), and then provided their advantages and some of the
extensions available in the literature. Chiefly, we proposed a new combination of

81



Contributions

Figure 3.21: The average accuracy of all models provided utilizing different time
steps

ROBERTA Transformer and Bertwordpiece tokenizer named WP-BERTA for next
location forecasting. We presented and compared the performance of our proposed
model to distinct and well-recognized models in the domain. These models include:
Markovian, (LSTMs), (CNN2D), and (SVM). Majorly, we tested the performance
of the presented models on a real subset of mobility traces. The obtained results
demonstrated that our proposed model WP-BERTA outperformed all the presented
models by increasing the accuracy of the predicted next location by at least 3%.
Changing the hyper-parameters affected the accuracy results of predicting the next
location; therefore, choosing the right configuration of hyper-parameters remains a
challenge for such model. Substantially, in this work, we proposed a new model
and evaluated its performance utilizing only spatial information. In future work,
we seek to examine and evaluate the effectiveness of our presented model including
temporal features and may propose an extension of it.
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3.4 WP-CamemBERT for next location prediction

3.4.1 Introduction

In many fields and location-based services, such as travel recommendation systems
[65], civic management [99], and the internet of things [100, 101], accurate predic-
tion of the future locations of mobile users, also known as forecasting upcoming
locations, has become a crucial process.

The detection of hidden patterns in users mobility data is required for the pur-
pose of creating next location predictors. As a result, a variety of techniques and
algorithms based on analyzing and scanning mobile users’ history were proposed.
For example, mention [76, 102], and [77] for studies that are based on markovian
models. Other research focused on developing deep learning-based predictors for
next location. In this regard, some of the works concentrated on LSTM architectures
and recurrent neural networks (RNN), with the goal of extracting both spatial and
temporal features that will be utilized to create the upcoming location predictors
[78, 103, 104, 99, 65]. Further research concentrated on the CNN architecture
(convolutional neural networks) and treated the upcoming location prediction issue
as an issue of classification. In[80], for example, the authors presented the loc2vec
embedding algorithm for the input sequence of locations. Additionally, the authors
converted the embedded vectors into RGB images, which will be input into a pre-
trained CNN model. To identify important features and hidden patterns that will
be utilized to create the upcoming location forecasters, conventional deep learning
models, such as RNNs, LSTMs, and CNNs, handle the input sequence sequentially,
which is the main disadvantage of such algorithms. Unlike prior algorithm, such as
RNNs, LSTMs, and CNNs, Transformers [39] perceive the entire input sequence
simultaneously and process any input sequence in parallel. In this regard, numerous
transformer-based designs, such as BERT [83], have been proposed for NLP. In
reality, BERT transformer [83] is a sophisticated model that can learn bidirectional
representations among the input sequence parts.For NLP tasks, a variety of BERT
designs were proposed, including ROBERTA [84], CamemBERT [105], XLM [106],
and PhoBERT [107].

This study concentrated on transformers. Particularly, we focused on BERT
extensions. As a result, we presented WP-Camembert, a novel combination of
Bertwordpiece tokenizers [89, 83], and CamemBERT [105], for future locations
forecasting. When compared to well-known models in the domain, our presented
technique improved the accuracy of predictions by at least 3.2%.

The remainder of the work is structured as follows. The key contributions
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for the next location prediction issue are presented in section 3.4.2 . We detail
our strategy WP-Camembert and explain its three steps, namely preprocessing,
training, and deployment, in section 3.4.3. The dataset used in our research is
described in section 3.4.4. In section3.4.5, we analyze our model’s performance and
analyse the findings. The conclusion is represented by section 3.4.6 , in which we
summarize our findings and outline our upcoming work.

3.4.2 Related Work
For human mobility prediction, a variety of techniques and models have been de-
veloped. Some publications, for example, [71, 76, 102, 77] , use an O(K) markovian
model to forecast the future position. The next location will be predicted based on
the present context (k recently visited locations). Finding the proper k for a given
state remains a difficulty for Markovian models.

Other research focuses on deep learning algorithms to forecast mobile users’ next
location. The authors introduced Space Time Features-based Recurrent Neural
Network (STF-RNN) in [78]. The proposed technique extracts both temporal and
spatial features before encoding them into a one hot encoded vectors. The encoded
vectors are then passed into a look-up table layer, which uses the encoded vectors
to learn useful patterns and encode them again into vectors with real values.

The researchers of [104] presented a next location prediction algorithm utilizing
RNN and the mechanism of self-attention. Based on the historical data, the pro-
posed technique extracts geographical, temporal, and user ID features that will be
embedded together and utilized to forecast the upcoming location.

The researchers of [99], presented an RNN-based algorithm named DeepVM.
The latter aims to foresee the future location of moving vehicles by assessing the
likelihood of a vehicle entering a certain place in a specific time period based on
the vehicle’s mobility trajectory.

The researchers of [103] presented Hierarchical Spatial-Temporal LSTM (HST-
LSTM) for upcoming location prediction. The presented model, in fact, is made up
of numerous hierarchical layers of Spatial-Temporal LSTM (ST-LSTM). In order
to lower data sparsity, the latter incorporates spatial and temporal information
into LSTM.

The researchers of [65] proposed a mix of Embedding and LSTM layers for
next location forecasting. The embedding layer transforms the series of discrete
locations into a sequence of dense vectors. This is subsequently given to the LSTM
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layers.

The researchers of [80] presented loc2vec as an embedding algorithm for the
input series of discrete locations. They further suggested converting the embedded
vectors into RGB images that would be input to a pretrained CNN model. The
latter will forecast the future location by classifying the input images.

The primary disadvantage of traditional deep learning models, such as RNNs,
LSTMs, and CNNs, is the fact that they analyze input sequence parts sequentially.
In contrast to traditional deep learning designs, transformers introduced by [39]
and based on attention mechanisms bypass this limitation and enable them to
observe and process all sequence components simultaneously. (For further details,
please see [39]).

Bert transformer was initially introduced for NLP problems by [83]. Masked
Language Modeling (MLM) is employed in the introduced algorithm to learn
bidirectional representations between any sequence tokens. It masks tokens at
random during training and attempts to foresee them via the MLM objective
function. Various Bert extensions have been proposed for NLP and with distinct
objective functions [91], among them: ROBERTA [84], XLM [106], and PhoBERT
[107]. for instance, The XLM [106] model can employ one of the following objective
functions: causal language modeling (CLM), MLM, or Translation Language
Modeling (TLM).
The extensions indicated above are effective NLP models. They can model and
discover hidden patterns for any given sequence. In our study, we primarily propose
WP-Camembert for next location forecasting. WP-Camembert is, in reality, a
hybrid of Bertwordpiece tokenizers [89, 83], and CamemBERT model [105]. As
opposed to traditional models such as LSTMs, CNNs, and so on, WP-Camembert
can see the sequence locations at the same time and process them in parallel using
an attention mechanism [39].

3.4.3 Proposed Approach

In our research, we propose WP-Camembert for forecasting the user’s mobility, i.e.
next location prediction. The general architecture of CamemBERT [105] will be
used in our model. In fact, WP-Camembert is a mix of Bertwordpiece tokenizer
[89, 83], and CamemBERT [105]. As a result, Figure 3.22 depicts our proposed
approach, which is divided into three parts as follows:
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3.4.3.1 Preprocessing

First, we build k +1-length sub-sequences from the entire user sequence of locations.
Following that, we train Bertwordpiece tokenizer on all sub-sequences in order to
learn and extract all sequence tokens that will be utilized as inputs for the model
during training and deployment.

3.4.3.2 Training

WP-Camembert employs dynamic masking for training in the same manner as
ROBERTA citeLiu2019. The primary distinction between ROBERTA [84] and WP-
Camembert is that ROBERTA citeLiu2019 employs sub-word masking, whereas WP-
Camembert employs whole-word masking. According to the above, we trained the
model we proposed WP-Camembert with a masked language modeling probability
of 15%.

3.4.3.3 Deployment

After creating sub-sequences of length k from the testing sequence of locations, we
append the special token [MASK] to the end of each sub-sequence. The trained
model will replace the special token [MASK] as the predicted next location, i.e.
the location with the highest likelihood of being the next location.
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Figure 3.22: WP-Camembert’s general architecture
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3.4.4 Data set evaluation
We proved our approach using a real dataset of mobile users, i.e. the WIFI dataset,
made accessible by Dartmouth College’s through CRAWDAD project [93]. As
shown in 3.9, each user’s file in this dataset is a series of time and location pairs,
where the location is the name of the access point (AP) to which the user’s device
is connected at the specified time. (For further details, check [94, 95]).

The specific location OFF indicates the departure of users from the network,

Timestamp Location (AP)
994651234 ResBldg56AP13
994651299 OFF
1023208130 ResBldg101AP2
1023208139 ResBldg44AP3
1023314089 ResBldg91AP3

Table 3.9: A user trace example

according to Table 3.9. It should be noted that an AP to which a certain user’s
device is connected does not always accurately reflect his physical location. It really
represents an estimate of that location to the AP that was serving the user at the
time. This might result in a Ping-pong effect, in which the user’s device connects
and disconnects from several neighboring APs without physically moving. Each
user’s sequence of locations has a unique length that varies from one user to the
next. It may exceed 18000 locations for certain users [80]. In our study, we chose
users at random who have a different length of the sequence of locations ranging
from min = 715 to max = 114791 and a distinct number of classes ranging from
min = 4 to max = 332. We divided each sequence into 67 percent for creating and
training our model and 33 percent for testing.

3.4.5 Result and Discussion
A comparison of the proposed model’s performance with the most generally used
models for forecasting the next location was made. To clarify, such models refer
to the O(K) Markov predictor [71] along with the Embedding-LSTM [65] and the
baseline model LSTM [96]. The subject of predicting the next location was handled
as a multi-classification task. We also compared our model to the CNN2D [80] and
the SVM model, which is based on the one-vs-one (OVO) strategy, according to
[97]. The models presented were trained for 60 epochs, with each epoch defined as
the number of training iterations in which a neural network completed a full pass
of the whole training set. We used a window with K = 2 time steps for Markov.
The context that gives Markov the highest accuracy is k = 2. Furthermore, for all
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of the other models, we used a window of K = 4 time steps.
We compared the average accuracy of our presented model to the average accuracy
of the Markovian O(K) model, Embedding-LSTM, baseline LSTM, CNN2D, and
SVM models in 3.23. Our presented model improved accuracy by 3.2% when
compared to CNN2D, the reference model with the highest accuracy, 3.7% when
compared to Embedding-LSTM, 4.8% when compared to O(K) Markov, 7.3% when
compared to baseline LSTM, and 8.7% when compared to baseline SVM. The
CNN2D and Embedding-LSTM models performed nearly equally. Nonetheless, the
former CNN2D surpasses the latter Embedding-LSTM by 0.5%.
Figure 3.24. depicts the cumulative distribution of prediction accuracy (of 100
users) resulting from the 6 tested prediction models. The former showed that our
WP-CAMEMBERT model consistently outperforms the other models in terms of
prediction accuracy. The WP-CAMEMBERT model has a median accuracy of
more than 72 %.

Figure 3.26. depicts the comparison of accuracy results achieved using our
presented model as well as the reference models. importantly, these results corre-
spond to 15 randomly selected users. Except for four users, the findings indicate
that our approach improves accuracy for almost all of them. To be more specific,
the Markov model improves accuracy for just two of these four users. With the
exception of Markov, all of the available models produce the same accuracy for the
two remaining users.

We also observed that the Embedding-LSTM and CNN2D models resulted in
nearly identical accuracy for almost all users. In addition, SVM and baseline LSTM
yield poor results for all users with the exception of one. In terms of the latter,
all models provide equal accuracy, with the exception of Markov, which has lower
accuracy. We additionally evaluated the performance of our presented model to
that of various alternatives with different time steps. Figure 3.25. depicts the
results.

Figure 3.25 indicates that our proposed model outperformed the rest of the
models, resulting in a higher average accuracy over all time steps. It reveals that
there is a positive correlation between time steps and average accuracy for both our
presented model and the Embedding-LSTM model. To clarify, the average accuracy
is increased by raising the number of time steps. In addition, all of the other models
reveal a negative correlation, as seen in Figure 3.25. That is, increasing the number
of time steps reduces average accuracy.
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Figure 3.23: WP-CamemBERT average accuracy in compared to the reference
models
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Figure 3.24: CDF of the six presented models.

Figure 3.25: Average accuracy of the six described models employing different time
steps
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Figure 3.26: WP-CamemBERT, Markov, baseline LSTM, Embedding-LSTM, SVM,
and CNN2D accuracy comparison for each user
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3.4.6 Conclusion
Predicting user movement has become an important challenge in a variety of fields,
including advertisement distribution, urban management, and recommendation
systems. As a result, we introduced WP-Camembert, a novel strategy for the
future location prediction issue. WP-Camembert, in particular, is a hybrid of
bertwordpiece tokenizer and Camembert model. The latter is a popular deep
learning technique utilized for natural language processing. On a real subset of
mobile users made accessible through the CRAWDAD project, we investigated the
efficiency of our approach WP-Camembert by comparing it to the O(k) markovian,
Embedding-LSTM, Simple-LSTM, SVM, and CNN models. The findings showed
that the model we proposed improved prediction accuracy by a minimum of 3.2 %
when compared to CNN, the model with the best accuracy. This study primarily
presented a novel combination known as WP-Camembert for upcoming location
prediction using just spatial variables. We want to evaluate the efficiency of the
model we propose based on temporal characteristics in future research initiatives.
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Chapter 4

Conclusions and Future Work

In this thesis, four contributions were proposed in the areas of machine learning
and big data. Two contributions were a comparative studies for state of the
art methods that are used for DR and BC prediction problems. While the two
last contributions were an original propositions named respectively WP-BERTA,
and WP-Camembert for solving human mobility prediction problem. Our four
contributions are summarized as follows:

• First contribution: comparative study for dimensionality reduction techniques
for big data. We shed the light on the importance of dimensionality reduction
techniques, and how high dimensionality affect negatively the analysis process
in big data. Therefore, we review the main methods that are used in the
literature for reducing high dimensionality in big data. Also, a detailed
comparison were provided between all the presented methods.

• Second contribution: we focused in this contribution in studying how dimen-
sionality reduction techniques affect breast cancer prediction. Thus, a practical
comparison were proposed using the following five DRTs: AE, T-SNE, RFE,
ISOMAP, and PCA, and MLP, and SVM predictors. The results showed
that choosing the right combination of DRTs and predictors may increase the
prediction accuracy, while choosing the wrong combination may lead to the
worst results.

• Third contribution: A new deep learning approach was proposed in this
contribution named WP-BERTA for solving the next location prediction
problem. Our proposed approach was compared to five famous methods used
for solving the same problem. The reference models are: Markov, simple
LSTM, Embedding-LSTM, SVM, and CNN2D. WP-BERTA outperformed all
the presented methods and increased the prediction accuracy by at least 3%
compared to the model that resulted the highest accuracy.
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• Fourth contribution: A new deep learning approach was proposed in this
contribution named WP-CamemBERT for solving the next location predic-
tion problem. Our proposed approach was compared to five famous methods
that are: Markov, simple LSTM, Embedding-LSTM, SVM, and CNN2D.
WP-CamemBERT outperformed all the presented methods and increased the
prediction accuracy by at least 3.2% compared to the model that resulted the
highest accuracy.

In this thesis, two datasets were used to validate our findings:

Wisconsin Diagnostic Breast Cancer dataset WDBC: from the UCI machine
learning repository. The dataset contains 596 instances divided into two classes
(37.3% malignant, 62.7% benign). Each raw of data is composed of thirty two
features

CRAWDAD WI-FI dataset: we have presented and assessed some of machine
learning models for next location prediction problem based on a real subset of
actual mobility data provided by the Crawford project.

Actually, the two last contributions are both combinations of a Bertwordpiece
tokenizer, and two different transformer architectures that are: ROBERTA,
and CamemBERT. Bertwordpiece tokenizer was used to learn and extract all
the sequence tokens of the input sequence. Then, we proposed to combine the
trained Bertwordpiece tokenizer and two variations of transformer architectures
that are: Roberta, and CamemBERT for predicting the next location of a
specific user (predicting in which access point, the user will be connected to).
Our proposed models are based only on spatial features for predicting the next
location of a given user. Our future work, will focus on including temporal
features and investigate the performance of our models. Also, we seek to
explore a variety of large-scale datasets such as GPS-based datasets to validate
our findings. In addition, in order to find more useful features that can help
us predict human movements more accurately, We are interested in exploiting
different types of datasets, such as Transportation and Transit Data, and
social networks data like Twitter and Facebook.
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