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General introduction

.
The field of theoretical physics is continuously evolving, enhancing our understanding of

the material world and the laws of nature. Among the various domains within this field,
quantum mechanics and deformed quantum mechanics stand out as crucial areas that ex-
pand our knowledge of physical phenomena at the atomic and subatomic levels. Quantum
mechanics, the branch of physics that studies the behavior of particles at the atomic level,
has revolutionized our understanding of the microscopic world. The Schrödinger equation,
in particular, has played a pivotal role in describing the state and evolution of a quantum
system over time. However, this equation faces significant challenges when considering sys-
tems with topological deformations or nonlinear effects. Deformations in quantum physics
can arise from various factors, including interactions with external fields, the presence of ma-
terial defects, or techniques used to manipulate particles with electromagnetic fields. These
deformations lead to modifications in the eigenvalues and wave functions of the quantum
system, necessitating the use of advanced mathematical methods to fully understand these
effects.

This study seeks to provide a comprehensive understanding of the impact of deformations
on quantum systems, particularly in the context of the Schrödinger equation. By focusing on
the relationship between deformation parameters (σ and θ) and the energy and probability
density of the quantum system, this research aims to contribute, even if through trial and
error, to the development of more accurate mathematical models for describing deformed
quantum systems. Such advancements can open new horizons in technological applications,
including quantum computing, nanotechnology, and the exploration of new materials.

Study Objectives:
1. Analyze the Impact of Deformations on Eigenvalues: Study how the eigenvalues,
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General introduction

representing the energy levels of the Schrödinger equation, change with the application of
different deformations.

2. Verify the Relationship Between Deformation Parameters and Probability Density:
Understand how deformations affect the probability density distribution of the quantum
system.

3. Compare Two Different but Theoretically Equivalent Approaches: Analyze and com-
pare the results obtained using the Feynman approach and the Schrödinger method for
dealing with deformations in quantum systems.

Several mathematical methodologies have been employed to analyze deformed quan-
tum systems, including Hamiltonian transformations and finding analytical solutions to the
Schrödinger equation in irregular spaces. Advanced analytical tools such as eigenfunctions
and eigenvalues have been applied, along with matrix diagonalization techniques, to a coupled
harmonic oscillator system in a deformed mixed phase space. After obtaining the solution,
it is analyzed and directly compared using Python software, specifically the Google Colab
platform, to overcome the formal mathematical complexity of the solution expressions. Sub-
sequently, the behavior of energy and probability density in terms of deformation parameters
is studied.

Univ-Ouargla/Theorical Physics: 2024 2



Chapter 1

Non-Commutative Phase Space

In this chapter, some mathematical foundations of commutative and non-commutative phase space and its

representations in classical and quantum physics.

1.1 Introduction:

In classical mechanics, the phase space of a system is a specific type of mathematical structure
called a symplectic manifold (M,Λ) that possesses a closed, non-degenerate 2-form Λ[1]. This
mathematical structure allows for the derivation of measurable physical quantities as well as
the conservation of physical laws under changes in the coordinate system, as long as it
meets the criteria of the Poisson bracket. Since the measurement process does not affect
the measured quantities, the Poisson bracket of the commutator is sufficient to meet the
computational requirements.

The symmetry of the manifold forces the phase space to be commutative, meaning the
measurement process has no impact on the measured physical quantities. This is valid in
macroscopic cases. However, over time, microscopic phenomena such as blackbody radia-
tion, the Compton effect, the photoelectric effect, and the behavior of electrons in the atom
necessitated the development of another mathematical structure that is non-commutative.
This new structure takes into account the deformation caused by the measurement process.
Given that physical quantities are inherently related to the Poisson bracket, finding non-
commutative structures that satisfy the Poisson bracket condition provides an opportunity
to understand these effects and allows for the precise study of microscopic structures.

As we will detail in this chapter, Therefore, in this chapter we will:
The method transitioning from classical mechanics to non-commutative classical mechanics,
known as deformation of phase space.

3



Non-Commutative Phase Space

The method transitioning from quantum mechanics to non-commutative quantum mechanics,
known as canonical quantization in the deformed phase space

1.2 Structure of Commutative Phase Space:

Definition 1.2.1 Symplectic Manifold: [2–5]
Let M be a smooth manifold of dimension 2n and Λ ∈ Ω2(M) a differential 2-form. The

pair (M,Λ) is called a symplectic manifold if the following conditions are satisfied:

1. Closedness: The form Λ is closed, i.e., dΛ = 0.

2. Strong Non-degeneracy:The form Λ is strongly non-degenerate, i.e. if
Λx(v, w) = 0 ∀ v ∈ TzM, then w = 0.

Properties 1.2.1 : [4–6]

1. Non-degeneracy: For any non-zero vector v ∈ TzM , there exists a vector w ∈ TzM

such that Λ(v, w) ̸= 0.

2. Strong Non-degeneracy:The symplectic form Λ satisfies dΛ = 0.

3. Canonical Transformations (Darboux’s Theorem: For every smooth symplectic man-
ifold (M,Λ), there exists a local coordinate system (qi, pi) called Darboux coordinates,
in which the symplectic form can be expressed as:

ω =
n∑

i=1
dqi ∧ dpi.

Definition 1.2.2 Hamiltonian Vector Field: [3, 6, 7]
Let H : M → R be a smooth function called the Hamiltonian. The Hamiltonian vector

field XH associated with H is defined by:

ιXH
ω = dH,

where ιXH
denotes the interior product of the vector field XH with the form ω.

In local coordinates (q1, . . . , qn, p1, . . . , pn), the Hamiltonian vector field XH is given by:

XH =
n∑

i=1

(
∂H

∂pi

∂

∂qi

− ∂H

∂qi

∂

∂pi

)

Properties 1.2.2 :

Univ-Ouargla/Theorical Physics: 2024 4



Non-Commutative Phase Space

1. Existence and Uniqueness:Due to the non-degeneracy of ω, for every smooth function
H, there exists a unique Hamiltonian vector field XH .

2. Symplectic Flow: The flow ϕt generated by XH preserves the symplectic form: ϕ∗t Λ = Λ.

3. Hamilton’s Equations:
q̇i = ∂H

∂pi

, ṗi = −∂H
∂qi

Definition 1.2.3 Poisson Bracket:[3, 6, 7]
Let (M,Λ) be a symplectic manifold, qnd F,G : M → R be smooth functions. The Poisson

bracket {F,G} is defined by:
{F,G} = Λ(XF , XG),

where XF and XG are the Hamiltonian vector fields associated with the functions F and G,
respectively.

In local coordinates (q1, . . . , qn, p1, . . . , pn),[8] this becomes:

{f, g} =
n∑

i=1

(
∂f

∂qi

∂g

∂pi

− ∂f

∂pi

∂g

∂qi

)

Properties 1.2.3 [1, 3, 7]

1. Bilinearity{af + bg, h} = a{f, h}+ b{g, h} for all a, b ∈ R.

2. Antisymmetry {f, g} = −{g, f}.

3. Jacobi Identity {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0

4. Leibniz Rule {fg, h} = f{g, h}+ g{f, h}.

Note 1.2.1 (1), (2), and (4) define the Lie bracket on A.[1, 9]

Definition 1.2.4 [1, 2, 10, 11] Let A be a K-vector space, and · and {·, ·} two bilinear
applications on A× A. A is a Poisson algebra if:

1. · is associative and commutative.

2. {·, ·} is a Lie bracket.

3. · and {·, ·} are related by the Leibniz identity:

∀f, g, h ∈ A, {f · g, h} = f · {g, h}+ {f, h} · g (1.1)

Univ-Ouargla/Theorical Physics: 2024 5



Non-Commutative Phase Space

Definition 1.2.5 [1, 9, 11] Let g be a vector space equipped with a binary operation called
the Lie bracket [·, ·] : g× g→ g, we call the (g [·, ·]) a Lie algebra if it was:

1. Bilinearity: The bracket operation is linear in both arguments.

2. Antisymmetry: [x, y] = −[y, x] for all x, y ∈ g.

3. Jacobi Identity: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ g.

Note 1.2.2 Let V be a vector space. We denote · as the usual product of two functions,
and {·, ·} as a Poisson bracket on V . Then (F (V ), ·, {·, ·}) is a Poisson algebra. A manifold
equipped(M, {·, ·}) with a Poisson bracket is called a Poisson manifold.[1, 4, 12]

the application f 7→ Hf is a homomorphism of Lie algebras from (N, {·, ·}) into the Lie
algebra of Hamiltonian vector fields [1, 5].Sow, we can given the properties of the Poisson
bracket, there exists a unique antisymmetric contravariant 2-tensor, denoted Λ, such that

{f, g} = Λ(df, dg) (1.2)

Thus, Λ(z) is called the Poisson tensor of the Poisson manifold M or the Poisson bivector
[10], and in local coordinates, we have

{f, g}(z) =
∑
ij

Λij(z) ∂f
∂zi

∂g

∂zj

, where Λij(z) = {zi, zj} (1.3)

In the case of an N -dimensional system, the base A0 = {pi, xi} of the phase space satisfies
the following relations

{xi, xj} = 0, {xi, pj} = δij, {pi, pj} = 0; i, j = 1, . . . , N (1.4)

In the unified notation of the phase space variables: z(t) = (xi(t), pi(t)), i = 1, . . . , N ,
and a = 1, . . . , 2N , we have

{za, zb} = Λab =
 0 I

−I 0

 (1.5)

Using (1.3), it is possible to rewrite (1.5) in the multidimensional case as follows:

{g(z(t)), f(z(t))} = (∇zg)Λ(∇zf) (1.6)

We now consider a dynamic system described by the Hamiltonian H(z). The Hamiltonian
system thus defined on the previous symplectic manifold admits the following equation of
motion:

żi(t) = {zi, H(z)} = Λij∂jH(z) (1.7)

Univ-Ouargla/Theorical Physics: 2024 6



Non-Commutative Phase Space

This structure represents the fact that no physical process affects the other value, which
allows for the interchange of these values (functions that satisfy the Poisson bracket). How-
ever, on the microscopic level and due to the smallness of physical quantities, it is impossible
to measure without affecting the measured quantities, as long as we rely on physical phe-
nomena whose effects are much larger than the phenomena we want to study.

This situation forces us to develop a new structure for phase space that represents the
influence of measurable quantities by the measurement process itself or even by the interaction
of the system’s components with each other. Thus, the concept of quantization was developed,
which succeeded in explaining phenomena such as the blackbody spectrum through Planck’s
quantization. In this context, scientists continue to refine and develop quantization methods,
among which is the quantization of deformed phase space.

Here, it is necessary to mention the most important point in any scientific theory: to be
considered valid, a scientific theory must explain and predict the studied phenomenon and
also be able to explain and predict the phenomena explained by previous theories.

From this perspective, we notice that the derivation of Hamilton’s equations in classical
phase space is merely a result and property of the Poisson bracket. From here, Moyal hypoth-
esized that if the Poisson bracket is modified to meet the condition of non-commutativity by
changing the definition of the product in the algebra of measurable functions (specifically,
using the Moyal product), and if this new structure still satisfies the essential properties of
the Poisson bracket, then its quantization will lead to the quantization of deformed phase
space, thus accommodating the deformation in phase space. This is what we will study now.

1.3 Canonical Quantization:

The state of a physical system, as previously described, is represented by a point in phase
space with coordinates of position and momentum. The symmetric structure of classical
mechanics includes Poisson brackets between these variables. Thus, all transformations that
remain invariant under the application of the Poisson bracket are called canonical transfor-
mations.

In quantum mechanics, the dynamic variables are replaced by operators in the Hilbert
space of quantum states. The Poisson brackets are directly replaced by commutation rela-
tions, which lead to Heisenberg’s uncertainty principle[11, 13].

{f, g} → 1
iℏ

[f̂ , ĝ] (1.8)

Univ-Ouargla/Theorical Physics: 2024 7



Non-Commutative Phase Space

This proposal can be interpreted as seeking a "quantization map," O, that associates a
function f on classical phase space with an operator f̂ in quantum Hilbert space such that:

O{f, g} = 1
iℏ

[O(f),O(g)] (1.9)

If we consider the following representation for the position and momentum operators in
Hilbert space:

O(xi) = xi and O(pi) = −iℏ ∂

∂xi

(1.10)

Applying the Poisson bracket to these operators forms the following Heisenberg algebra:

[xi, xj] = 0, [xi, pj] = iℏδij, [pi, pj] = 0 (1.11)

Since canonical quantization lacks precision in its assumptions, which are restricted to
a standard form that assumes no interaction between the dynamical variables, mathemati-
cians have proposed various quantization structures considered more general, most notably
Deformation quantization[1, 14].

1.4 Deformation Quantization:

In classical mechanics, a system is described by the triple (M, {·, ·}, H), where M is the phase
space, {·, ·} is the Poisson bracket, and H is the Hamiltonian. Quantum mechanics, on the
other hand, uses a complex Hilbert space H with an associated Hamiltonian operator Ĥ.
The correspondence between classical and quantum mechanics has been challenging due to
the lack of a precise mathematical mapping. Groenewold’s[14, 15] no-go theorem shows that
the Poisson algebra C∞(R2n) cannot be quantized such that the Poisson bracket maps to the
commutator of operators.

In his research paper, Bain et al. (1978)[1, 11, 14, 15] proposed a formulation of de-
formation quantization that provides a rigorous framework for transitioning from classical
mechanics to quantum mechanics by deforming the algebraic structure of phase space[1].
Instead of directly creating operators on Hilbert space, this approach focuses on modifying
the algebra of functions in classical phase space F (M). By modifying the standard product
between functions to a star product, non-commutativity in phase space is expressed with a
deformation parameter ℏ.

Definition 1.4.1 Star Product:

Univ-Ouargla/Theorical Physics: 2024 8
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The star product ∗ is a bilinear map on the space of smooth functions C∞(M) defined as:

(f, g) 7→
∞∑

k=0
Ck(f, g)ℏk (1.12)

Properties 1.4.1 :
The star product satisfies the fundamental properties of the Poisson algebra[1, 14, 15],

except commutativity:

1. Associativity: For all p ≥ 0,∑
p=k+l=0

Ck(Cl(f, g), h) =
∑

p=k+l=0
Ck(f, Cl(g, h)) = 0 (1.13)

2. C0(f, g) = fg

3.
1
2(C1(f, g)− C1(g, f)) = {f, g} (1.14)

where {f, g} is the Poisson bracket.

4. Each map Ck : A× A→ A must be a bidifferential operator.

The formal deformation of the Poisson bracket is an antisymmetric map as follow:

(f, g) 7→
∞∑

k=0
Tk(f, g)ℏk (1.15)

It satisfies:

1. Jacobi Identity: For all p ≥ 0,∑
p=k+l=0

Tk(Tl(f, g), h) = 0 (1.16)

where the sum is taken over cyclic permutations of the set {f, g, h}.

2. T0(f, g) = {f, g}, where {f, g} is the Poisson bracket.

3. Each map Tk : A× A→ A must be a bidifferential operator.

The maps Ck and Tk are bidifferential operators[1, 14]. The Moyal star product is given
by:

f ∗ g = exp
iℏ

2
∑
i,j

ωij ∂

∂xi

∂

∂xj

 (f · g) (1.17)

whereωij is a constant skew-symmetric tensor on Rn with i, j = 1, ..., n,
The Moyal product is a specific example of a star product defined on the symplectic vector

space R2n.

Univ-Ouargla/Theorical Physics: 2024 9
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Definition 1.4.2 Given functions f and g, the Moyal product is:

(f ∗ g)(q, p) = f(q, p) exp
(
iℏ
2
(←−
∂q

−→
∂p −

←−
∂p

−→
∂q

))
g(q, p)

= exp
iℏ

2
∑
i,j

ωij ∂

∂xi

∂

∂xj

 (f · g)(q, p)
(1.18)

Where: ωij they are the elements of a Poisson tensor ωij =
 0 I

−I 0

 , with I is the identity

matrix and i, j = 1, ..., 2n,

Properties 1.4.2 The Moyal product has the following properties[16, 17]:

1. Non-commutativity:

f(x, p) ∗ g(x, p) ̸= g(x, p) ∗ f(x, p) (1.19)

2. Associativity:

(f(x, p) ∗ g(x, p)) ∗ h(x, p) = f(x, p) ∗ (g(x, p) ∗ h(x, p)) (1.20)

3. Complex Conjugation:

(f(x, p) ∗ g(x, p))∗ = g(x, p)∗ ∗ f(x, p)∗ (1.21)

4. Integral Relation: ∫
dDx (f ∗ g)(x, p) =

∫
dDx f(x, p)g(x, p) (1.22)

5. Cyclic Permutation:∫
dDx (f ∗ g ∗ h)(x, p) =

∫
dDx (h ∗ f ∗ g)(x, p) (1.23)

6. Leibniz Rule:
∂u(f ∗ g) = (∂uf) ∗ g + f ∗ (∂ug) (1.24)

Univ-Ouargla/Theorical Physics: 2024 10
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1.4.1 Deformation of the Poisson Algebra

To prove that the new star quantization satisfies the basic properties of Poisson algebras,
except for commutativity, we need to check the following properties[14, 15]:

1. Bilinearity.

2. Associativity.

3. Antisymmetry.

4. Jacobi Identity.

5. Leibniz Rule.

Bilinearity
The star product ∗ is defined as:

(f ∗ g)(x) = f(x)g(x) +
∞∑

k=1
ℏkCk(f, g)(x) (1.25)

For any scalars α, β ∈ C and functions f, g, h ∈ C∞(M), the product is bilinear:

(αf + βg) ∗ h = α(f ∗ h) + β(g ∗ h) (1.26)

f ∗ (αg + βh) = α(f ∗ g) + β(f ∗ h) (1.27)

Proof :
From the definition of the star product:

(f ∗ (αg + βh))(x) = f(x)(αg(x) + βh(x)) +
∞∑

k=1
ℏkCk(f, αg + βh)(x) (1.28)

Since Ck are bidifferential operators, they are linear in both arguments, so:
∞∑

k=1
ℏkCk(f, αg + βh)(x) = α

∞∑
k=1

ℏkCk(f, g)(x) + β
∞∑

k=1
ℏkCk(f, h)(x) (1.29)

Thus,
(f ∗ (αg + βh))(x) = α(f ∗ g)(x) + β(f ∗ h)(x) (1.30)

Associativity.
The star product must satisfy:

(f ∗ g) ∗ h = f ∗ (g ∗ h) (1.31)

Univ-Ouargla/Theorical Physics: 2024 11
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For the Moyal product:

(f ∗ g ∗ h)(x) = f(x)g(x)h(x) + iℏ
2 {f, g}h+O(ℏ2) (1.32)

The associativity follows from the fact that the Moyal product is constructed to be associa-
tive through its definition involving exponential operators and the Baker-Campbell-Hausdorff
formula.

Proof :
Using the Baker-Campbell-Hausdorff formula, the exponential representation of the Moyal

product ensures associativity:

(f ∗ g) ∗ h =
(
fe

iℏ
2
←−
∂ θ
−→
∂ g
)
e

iℏ
2
←−
∂ θ
−→
∂ h = fe

iℏ
2
←−
∂ θ
−→
∂
(
ge

iℏ
2
←−
∂ θ
−→
∂ h
)

= f ∗ (g ∗ h) (1.33)

Antisymmetry.
For the commutator of the star product, which gives the deformed Poisson bracket, we

have:
{f, g}∗ = 1

iℏ
(f ∗ g − g ∗ f) (1.34)

This bracket is antisymmetric:

{f, g}∗ = −{g, f}∗ (1.35)

Proof :
The antisymmetry is a direct consequence of the definition of the deformed Poisson

bracket:
{f, g}∗ = 1

iℏ
(f ∗ g − g ∗ f) (1.36)

which clearly satisfies:
{f, g}∗ = −{g, f}∗ (1.37)

Jacobi Identity.
The deformed Poisson bracket satisfies the Jacobi identity if:

{f, {g, h}∗}∗ + {g, {h, f}∗}∗ + {h, {f, g}∗}∗ = 0 (1.38)

Proof :
The Jacobi identity for the deformed Poisson bracket follows from the associativity of the

star product and the properties of the commutator. The associativity of the Moyal product
ensures that:

{f, {g, h}∗}∗ + {g, {h, f}∗}∗ + {h, {f, g}∗}∗ = 0 (1.39)

Univ-Ouargla/Theorical Physics: 2024 12
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Leibniz Rule.
The star product satisfies the Leibniz rule:

{f, gh}∗ = {f, g}∗h+ g{f, h}∗ (1.40)

Proof :
The Leibniz rule is verified by considering the action of the star product on products of

functions and using the definition of the Moyal product. Using the properties of bidifferential
operators Ck and their derivation properties, we find:

{f, gh}∗ = {f, g}∗h+ g{f, h}∗ (1.41)

When the phase space is deformed, the Poisson bracket is modified to incorporate non-
commutativity. The deformed Poisson bracket is given by:

{f, g}θ = (∇zf)Λdef(∇zg) (1.42)

where Λdef is the deformed Poisson tensor. This tensor satisfies:

Λdef
ij (z) = Λ(0)

ij (z) + θΛ(1)
ij (z) + θ2Λ(2)

ij (z) + · · · (1.43)

Where the modified Poisson tensor Λdef is given by:

ωij
def = ωij + θij (1.44)

The modified Poisson bracket is then defined using Λdef:

{f, g}def =
∑
i,j

Λij
def
∂f

∂zi

∂g

∂zj

(1.45)

where zi represents the phase space variables (qi, pi).
On a system with four coordinates (xi(t), pi(t)), defining a point in the deformed phase

space. This phase space is naturally equipped with the symplectic form:

dxi ∧ dpi = Λdef =


0 θ 1 0
−θ 0 0 1
−1 0 0 σ

0 −1 −σ 0

 (1.46)

where θ and σ are antisymmetric matrices. These commutation relations correspond to
the deformed Poisson brackets in the classical phase space:

{xi, xj} = θij, {pi, pj} = σij, {xi, pj} = δij (1.47)
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Non-Commutative Phase Space

Example 1.4.1 Let us try to write the Hamiltonian for a system consisting of a constant
coupled harmonic vibrating pair whose coupling is λ.
In the commutative case:
We will use a switching Poisson tensor with zero distortion parameters, which means the
Poisson tensor is:

Λ0 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


Using this tensor, the modified Poisson bracket becomes the standard Poisson bracket:

{f, g} =
∑
i,j

Λij
0
∂f

∂zi

∂g

∂zj

The Hamiltonian for the system in this switching case is:

H0(x1, x2; p1, p2) = 1
2mp2

1 + 1
2mp2

2 + mω2

2 x2
1 + mω2

2 x2
2 + λx1x2 (1.48)

In the non-commutative case:
Using the modified Poisson tensor:

Λdef =


0 θ 1 0
−θ 0 0 1
−1 0 0 σ

0 −1 −σ 0


The modified Poisson bracket is:

{f, g}def =
∑
i,j

Λij
def
∂f

∂zi

∂g

∂zj

The Hamiltonian incorporating the effects of the non-commutative geometry becomes:

Hθσ(x1, x2; p1, p2) ≈
1

2µ1
p2

1 + 1
2µ2

x2
2 + 1

2ω
2
2p

2
2 + 1

2ω
2
1x

2
1 + gp1x2 + λx1x2 + θλp1x1 (1.49)

where, the parameters µ1, µ2, ω1, ω2, g, λ, θ have specific values as defined:

µ1 = m

1 +m2θω2 , µ2 = m

σ2 +m2ω2 , ω2 = 1√
m
, ω1 = ω

√
m, g = σ

m
+ θmω2 (1.50)

The new terms represent mutual effects that express the interaction of measurable physical
quantities with each other.
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The commutative base A0 is replaced by the non-commutative base Aθ following the
canonical method:

{f, g}nc → [f̂ , ĝ] (1.51)

In our case N = 2, we choose for E.C.O.C. the set of operators Oq1 = q1, Op2 = p2, and
consequently, we have:

Op1 = ℏ
i

∂

∂q1
= −σiℏ

i

∂

∂p2
; Oq2 = ℏ

i

∂

∂p2
= θiℏ

i

∂

∂q1
(1.52)

These operators generate the modified Heisenberg algebra:

[q1, q2] = iℏθ; [qi, pj] = iℏδij; [p1, p2] = iℏσ (1.53)

To retain the spirit of the Feynman construction, let us introduce the following notations:
XT = (q1, p2) = (X1, X2), P T = (q2, p1) = (P1, P2). The previous commutation relations
become:

[Xi, Pj] = iΛ−1
θ,σδij (1.54)

with

Λθ,σ = 1
1− θσ

1 θ

σ 1

 (1.55)

At this level, let us introduce an E.C.O.C[1]. basis on which this realization of the
algebra is verified. Let {|X1, X2⟩ = |Xi⟩} be a complete set of eigenvectors of the E.C.O.C.
The components of P will then be represented by:

P̂1Ψ (X1, X2) = iℏ
(

∂

∂X2
Ψ (X1, X2)− θ

∂

∂X1
Ψ (X1, X2)

)

P̂2Ψ (X1, X2) = iℏ
(
σ

∂

∂X2
Ψ (X1, X2)−

∂

∂x1
Ψ (X1, X2)

) (1.56)

where |X1, X2⟩ is a state in Hilbert space.
In the absence of deformation, the expressions for the momentum operators will reduce

to:

P̂1Ψ (X1, X2) = iℏ
(

∂

∂X2
Ψ (X1, X2)

)
, P̂2Ψ (X1, X2) = iℏ

(
− ∂

∂x1
Ψ (X1, X2)

)
(1.57)
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Non-Commutative Phase Space

Thus, we have come to understand the structure of non-commutative phase space and
its essential properties for accurately describing microscopic phenomena by introducing the
concept of deformation quantization. This is achieved by modifying the algebra of functions
in classical phase space to account for the inherent non-commutativity at microscopic scales.
Using the rigorous framework established by Bain et al. (1978) to transition from classical
mechanics to quantum mechanics involves deforming the algebraic structure of phase space.
Instead of directly creating operators on Hilbert space, their approach modifies the algebra
of functions in classical phase space F (M) by introducing a star product, which includes a
deformation parameter ℏ. This star product retains the fundamental properties of the Poisson
algebra, such as associativity, bilinearity, and the Jacobi identity, while allowing for non-
commutativity. This quantization procedure, known as "deformation quantization," provides
a bridge between classical and quantum descriptions and preserves the non-commutative
nature of quantum mechanics.

By modifying the Poisson bracket to include non-commutativity, represented by a de-
formed Poisson tensor, this adjustment is essential for accurately describing physical systems
at microscopic scales where two physical quantities cannot be measured without affecting each
other. This provides a more general framework that accommodates the non-commutativity
of phase space.
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Chapter 2

Schrödinger equation in the
non-commutative case

2.1 Introduction

In 1926, Schrödinger succeeded in formulating a differential equation by generalizing de
Broglie’s principle, which describes the behavior of a particle through its solutions—the
wave function and the energy spectrum[13, 18]. Since then, Schrödinger’s wave equation has
served as a strong bridge between classical and quantum descriptions of physical systems.
While it has been extensively studied within the framework of commutative geometry, recent
developments have expanded its applicability to non-commutative phase spaces, unveiling
new horizons of scientific discoveries. These focus primarily on revealing more precise cor-
rections to previous quantum formulations. This chapter will attempt to address aspects of
this through:

- A brief review of Schrödinger’s equation, the properties of the wave function, and an
example within the framework of commutative phase space.

- Studying a system defined on a deformed phase space and solving the corresponding
Schrödinger equation.

17



Schrödinger equation in the non-commutative case

2.2 Review of the Time-Independent Schrödinger Equa-
tion

Definition 2.2.1 [18–20]:
The general expression for the time-independent Schrödinger equation for a physical sys-

tem is given by:

Ĥ |ψ(x)⟩ = E |ψ(x)⟩ (2.1)

where:

• Ĥ is called the Hamiltonian operator and represents the total energy of the system. It
must be Hermitian to ensure that all its eigenvalues are real.

• E is the eigenvalue of the Hamiltonian operator, also known as the energy spectrum.

• ψ(x) is the wave function.

Since we are dealing with operators in Hilbert space, it is necessary to specify the general
properties of operators in quantum mechanics in general, and the Schrödinger equation in
particular.

Properties 2.2.1 Operators in the Schrödinger equation[13, 21–23]:
1. All Eigenvalues of a Hermitian Operator (Self-Adjoint Operator Spectrum) are Real:

Let ψ be an eigenfunction of the Hermitian operator Ĥ, meaning there exists an E such that:

Ĥ |ψ⟩ = E |ψ⟩ (2.2)

Given that the operator is Hermitian:〈
Ĥψn1 , ψn2

〉
=
〈
ψn1 , Ĥψn2

〉
= E ⟨ψn1 , ψ⟩ ⇐⇒ Ĥ = Ĥ† (2.3)

2. Orthogonality of Eigenfunctions: If |ψ1⟩ and |ψ2⟩ are eigenfunctions of the Hermitian
operator Ĥ with different eigenvalues, then the functions are orthogonal:

⟨ψ1 |ψ2⟩ = 0 (2.4)

If they are eigenfunctions with the same eigenvalue, any linear combination of these func-
tions will also be an eigenfunction of the operator with the same eigenvalue. This is straight-
forward.
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Schrödinger equation in the non-commutative case

The Hermiticity of operators in quantum mechanics ensures that they have physical signif-
icance in reality, with each operator corresponding to a measurable physical quantity. As
long as it satisfies the Hermiticity condition, like the Hamiltonian operator in our specific
case, its eigenvalues represent the energy spectrum of the system described by it.

2.2.1 Wave Function

The wave function in quantum mechanics is a mathematical function that describes the quan-
tum state of a physical system[18, 20]. It contains all the information needed to determine
the physical properties of the system, most notably the probability density of finding a par-
ticle, for example. Since the wave function is not a real-valued function but rather a complex
one, it cannot have a physical meaning by itself[23, 24]. However, when multiplied by its
complex conjugate, it gives us the probability density of the particle’s presence.

The wave function also has important conditions that enable us to calculate the eigen-
values of the Hamiltonian operator, which, as we mentioned earlier, represent the energy
spectrum of the studied system through strict conditions and properties that characterize
it[25, 26].

The wave function is usually denoted by ψ(r, t), where r represents the spatial coordinates
and t represents time[26]. Some of the most important properties of the wave function are:

1. Normalization[18]:

∫
|ψ(r)|2 dr = 1 (2.5)

The wave function must be normalized to ensure that the total probability of finding the
particle in all space is one. This property is crucial for the probabilistic interpretation of
quantum mechanics.

2. Continuity[20]:

ψ(r) and ∂ψ(r)
∂xi

must be continuous.

The wave function and its first derivative must be continuous to avoid infinite probabilities
and ensure physical viability.

3. Boundary Conditions[27]: The wave function must satisfy appropriate boundary
conditions depending on the physical problem. For example, it must go to zero at infinity
for a bound state.

4. Single-Valued[23]:ψ(r) must be single-valued.:

∀x ∈ Domain of ψ, ∃!y : y = ψ(x) (2.6)
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Schrödinger equation in the non-commutative case

The wave function must have a unique value at each point in space to ensure the consistency
of the physical description.

2.3 Deformed phase space and Schrödinger Equation

There is no general rule that describes how the Schrödinger equation is affected by the defor-
mation of phase space, as quantum deformations inherently preserve the laws of differentiation
and integration, as we discussed earlier when talking about Moyal quantization. This means
that only the operators will change their forms depending on the altered generalized Poisson
brackets, which in turn modify the corresponding Heisenberg algebra relations.

Thus, when defining operators in the deformed phase space, the wave function—which is
responsible for finding the eigenvalues of the Hamiltonian operator—will retain its essential
properties.Given that we have already applied the concept of deformation to the example
of the coupled harmonic oscillator in the previous chapter and written the Hamiltonian in
both commutative and non-commutative cases, formulating the corresponding Hamiltonian
operator suffices to account for the modifications arising from the non-standard forms of the
coordinate and momentum operators. These changes present a challenge when attempting
to solve the Schrödinger equation for the coupled harmonic oscillator.

We will now focus on solving the Schrödinger equation for this specific example to study
the effect of space deformation on the energy values and the wave function.

2.4 Coupled harmonic oscillator pair in the mixed non-
commutative phas space:

Starting from writing the Hamiltonian for the coupled harmonic oscillator pair in the equa-
tionIn the non-commutative case (1.49):

Hθσ(x1, x2; p1, p2) ≈
1

2µ1
p2

1 + 1
2µ2

x2
2 + 1

2ω
2
2p

2
2 + 1

2ω
2
1x

2
1 + gp1x2 + λx1x2 + θλp1x1 (2.7)

where, the parameters µ1, µ2, ω1, ω2, g, λ, θ have specific values as defined:

µ1 = m

1 +m2θω2 , µ2 = m

σ2 +m2ω2 , ω2 = 1√
m
, ω1 = ω

√
m, g = σ

m
+ θmω2 (2.8)

And by substituting Q = (x1, p2), P = (x2, p1) we can, based on our definition of the
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Poisson bracket, reformulate the Hamiltonian in the following matrix form[1, 28]:

Hθσ(Q,P ) = 1
2
(
P TMP +QT Ω2Q

)
+ P TGQ (2.9)

Where:

M =
 1

µ1
0

0 1
µ2

 , Ω =
 1√

m
0

0 ω
√
m

 , G =
 λ 0
θλ 0

 (2.10)

Note that the presence of the interaction term makes the complete matrix formulation of
the Hamiltonian non-diagonal. In the upcoming transformations, our goal is to diagonalize
the Hamiltonian matrix to handle it conveniently and solve the corresponding Schrödinger
equation accurately.

By setting the following transformation:

P = TP P̄ , Q = TQQ̄ (2.11)

where

TP = 1√
2


(

µ2
µ1

) 1
4

(
µ2
µ1

) 1
4

−
(

µ1
µ2

) 1
4
(

µ1
µ2

) 1
4

 , TQ = 1√
2


(

µ1
µ2

) 1
4

(
µ1
µ2

) 1
4

−
(

µ2
µ1

) 1
4
(

µ2
µ1

) 1
4

 (2.12)

The Hamiltonian in terms of the transformed is given by:

Hθσ(Q̄, P̄ ) = 1
2
(
P̄ TT T

P MTP P̄ + Q̄TT T
Q Ω2TQQ̄

)
+ P̄ TT T

P GTQQ̄ (2.13)

This gives us the general form of the transformed Hamiltonian:

Hθσ(Q̄, P̄ ) = 1
2
(
P̄ TµP̄ + Q̄TϖQ̄

)
+ P̄ T ΛQ̄ (2.14)

Where:
µ = T T

P MTP , ϖ = T T
Q Ω2TQ, Λ = T T

P GTQ (2.15)

We chose this transformation because it allows us to diagonalize the momentum matrix,
which is the desired goal of this transformation. We will now compute the resulting matrices
for the kinetic part µ, the potential part ϖ, and the interaction part Λ in the following steps.

Step 01:for µ = T T
P MTP

µ =

 1√
2


(

µ2
µ1

) 1
4 −

(
µ1
µ2

) 1
4(

µ2
µ1

) 1
4

(
µ1
µ2

) 1
4



 1

µ1
g

g 1
µ2


 1√

2


(

µ2
µ1

) 1
4

(
µ2
µ1

) 1
4

−
(

µ1
µ2

) 1
4
(

µ1
µ2

) 1
4


 (2.16)

Let’s compute the product T T
P M :
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T T
P M = 1√

2


(

µ2
µ1

) 1
4 −

(
µ1
µ2

) 1
4(

µ2
µ1

) 1
4

(
µ1
µ2

) 1
4


 1

µ1
g

g 1
µ2

 (2.17)

T T
P M = 1√

2


((

µ2
µ1

) 1
4 · 1

µ1
−
(

µ1
µ2

) 1
4 · g

) ((
µ2
µ1

) 1
4 · g −

(
µ1
µ2

) 1
4 · 1

µ2

)
((

µ2
µ1

) 1
4 · g +

(
µ1
µ2

) 1
4 · 1

µ1

) ((
µ2
µ1

) 1
4 · 1

µ2
+
(

µ1
µ2

) 1
4 · g

)
 (2.18)

Now we need to multiply this intermediate product by TP :

µ = 1
2


((

µ2
µ1

) 1
4 · 1

µ1
−
(

µ1
µ2

) 1
4 · g

) ((
µ2
µ1

) 1
4 · g −

(
µ1
µ2

) 1
4 · 1

µ2

)
((

µ2
µ1

) 1
4 · g +

(
µ1
µ2

) 1
4 · 1

µ1

) ((
µ2
µ1

) 1
4 · 1

µ2
+
(

µ1
µ2

) 1
4 · g

)


(

µ2
µ1

) 1
4

(
µ2
µ1

) 1
4

−
(

µ1
µ2

) 1
4
(

µ1
µ2

) 1
4

 (2.19)

Now compute each element of the final matrix µ:

µ11 = 1
2

(µ2

µ1

) 1
4

· 1
µ1
−
(
µ1

µ2

) 1
4

· g

 · (µ2

µ1

) 1
4

+
(µ2

µ1

) 1
4

· g −
(
µ1

µ2

) 1
4

· 1
µ2

 · −(µ1

µ2

) 1
4


µ12 = 1
2

(µ2

µ1

) 1
4

· 1
µ1
−
(
µ1

µ2

) 1
4

· g

 · (µ2

µ1

) 1
4

+
( µ2

mu1

) 1
4
· g −

(
µ1

µ2

) 1
4

· 1
µ2

 · (µ1

µ2

) 1
4


µ21 = 1
2

(µ2

µ1

) 1
4

· g +
(
µ1

µ2

) 1
4

· 1
µ1

 · (µ2

µ1

) 1
4

+
(µ2

µ1

) 1
4

· 1
µ2

+
(
µ1

µ2

) 1
4

· g

 · −(µ1

µ2

) 1
4


µ22 = 1
2

(µ2

µ1

) 1
4

· g +
(
µ1

µ2

) 1
4

· 1
µ1

 · (µ2

µ1

) 1
4

+
(µ2

µ1

) 1
4

· 1
µ2

+
(
µ1

µ2

) 1
4

· g

 · (µ1

µ2

) 1
4


We have:

(µ2

µ1

) 1
4

· 1
µ1
±
(
µ1

µ2

) 1
4

· g

 · (µ2

µ1

) 1
4

=
√
µ2√
µ1µ1

± g
√
µ2√
µ1µ1

+
√
µ1√
µ2µ2

= µ2√
µ2µ1µ1

+ µ1√
µ1µ2µ2

= 2
√
µ2µ1

(2.20)

so:

µ11 = 1
√
µ2µ1

− g, µ12 = µ21 = 0, µ22 = 1
√
µ2µ1

+ g (2.21)

we can write:

µ = T T
P MTP =

 1√
µ2µ1
− g 0

0 1√
µ2µ1

+ g

 (2.22)
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Step 02:for ϖ = T T
Q Ω2TQ.

Now, let’s calculate T T
Q Ω2:

T T
Q Ω2 = 1√

2


(

µ1
µ2

) 1
4 −

(
µ2
µ1

) 1
4(

µ1
µ2

) 1
4

(
µ2
µ1

) 1
4


 1

m
0

0 ω2m

 = 1√
2

 1
m

(
µ1
µ2

) 1
4 −ω2m

(
µ2
µ1

) 1
4

1
m

(
µ1
µ2

) 1
4 ω2m

(
µ2
µ1

) 1
4

 (2.23)

Finally, multiply this intermediate product by TQ:

ϖ = T T
Q Ω2TQ = 1

2

 1
m

(
µ1
µ2

) 1
4 −ω2m

(
µ2
µ1

) 1
4

1
m

(
µ1
µ2

) 1
4 ω2m

(
µ2
µ1

) 1
4



(

µ1
µ2

) 1
4

(
µ1
µ2

) 1
4

−
(

µ2
µ1

) 1
4
(

µ2
µ1

) 1
4

 (2.24)

Now compute each element of the final matrix ϖ:

ϖ = 1
2


(

1
m

√
µ1
µ2

+ ω2m
√

µ2
µ1

) (
1
m

√
µ1
µ2

+ ω2m
√

µ2
µ1

)
(

1
m

√
µ1
µ2

+ ω2m
√

µ2
µ1

) (
1
m

√
µ1
µ2

+ ω2m
√

µ2
µ1

)
 (2.25)

Extracting: 1
m

√
µ1
µ2

as a common factor we find:

ϖ = 1
2m

√
µ1

µ2

1 + ω2 µ2
µ1

1− ω2 µ2
µ1

1− ω2 µ2
µ1

1 + ω2 µ2
µ1

 (2.26)

Step 03: for Λ = T T
P GTQ

First, calculate T T
P G:

T T
P G = 1√

2


(

µ2
µ1

) 1
4 −

(
µ1
µ2

) 1
4(

µ2
µ1

) 1
4

(
µ1
µ2

) 1
4


 λ 0
θλ 0

 = 1√
2

λ
(

µ2
µ1

) 1
4 − θλ

(
µ1
µ2

) 1
4 0

λ
(

µ2
µ1

) 1
4 + θλ

(
µ1
µ2

) 1
4 0

 (2.27)

Next, multiply this intermediate product by Λ:

Λ = T T
P GTQ = 1

2

λ
(

µ2
µ1

) 1
4 − θλ

(
µ1
µ2

) 1
4 0

λ
(

µ2
µ1

) 1
4 + θλ

(
µ1
µ2

) 1
4 0



(

µ1
µ2

) 1
4

(
µ1
µ2

) 1
4

−
(

µ2
µ1

) 1
4
(

µ2
µ1

) 1
4

 (2.28)

Now compute each element of the final matrix Λ:

Λ = λ

2


((

µ2
µ1

) 1
4 − θ

(
µ1
µ2

) 1
4
) (

µ1
µ2

) 1
4
((

µ2
µ1

) 1
4 − θ

(
µ1
µ2

) 1
4
) (

µ1
µ2

) 1
4((

µ2
µ1

) 1
4 + θ

(
µ1
µ2

) 1
4
) (

µ1
µ2

) 1
4
((

µ2
µ1

) 1
4 + θ

(
µ1
µ2

) 1
4
) (

µ1
µ2

) 1
4

 = λ

2


√

µ1
µ2
− θ

√
µ1
µ2
− θ

θ +
√

µ1
µ2

θ +
√

µ1
µ2


(2.29)
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After writing the final expressions for the matrices µ̄, ϖ, and Λ, we can write the final
expression for the transformed Hamiltonian: :

Hθσ(Q̄, P̄ ) = 1
2
(
P̄ TµP̄ + Q̄TϖQ̄

)
+ P̄ T ΛQ̄ (2.30)

Where the matrices µ̄, ϖ, and Λ are defined as:

µ = T T
P MTP =

 1√
µ2µ1
− g 0

0 1√
µ2µ1

+ g

 , Λ = T T
P GTQ = λ

2


√

µ1
µ2
− θ

√
µ1
µ2
− θ

θ +
√

µ1
µ2

θ +
√

µ1
µ2

 ,
ϖ = T T

Q Ω2TQ = 1
2m

√
µ1

µ2

1 + ω2 µ2
µ1

1− ω2 µ2
µ1

1− ω2 µ2
µ1

1 + ω2 µ2
µ1


(2.31)

We now notice that the momentum matrix is ready to separate. But unlike the interaction
and position matrices.For this reason,we define the following transformation:

P̄ = 1√
µ

Π, Q̄ =
√
µX (2.32)

The general form of the Hamiltonian in the new coordinates X and Π becomes:

Hθσ(X,Π) = 1
2

ΠT

(
1√
µ

)T

µ

(
1√
µ

)
Π +XT

√
µ

T
ϖ
√
µX

+ ΠT

(
1√
µ

)T

Λ
√
µX (2.33)

This gives us the general form of the transformed Hamiltonian:

Hθσ = 1
2(ΠT Π +XTϖX + 2ΠT ΛX) (2.34)

Where:

(
1√
µ

)T

µ

(
1√
µ

)
= 1,

√
µ

T
ϖ
√
µ = ϖ,

(
1√
µ

)T

Λ
√
µ = Λ (2.35)

We chose this canonical transformation specifically in order to ensure that there are no
subsequent transformations on the momentum matrix, so that it is possible to break the
coupling between momentum and position while preserving the diagonal of both, or at least
one of them, as we will see in the following steps.
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step 01:The transformed matrix µ:
by sitting a and b andκ:

a = 1
√
µ2µ1

− g, b = 1
√
µ2µ1

+ g, and κ =
√
a√
b

(2.36)

µ =
 1√

µ2µ1
− g 0

0 1√
µ2µ1

+ g

 =
a 0

0 b

 =⇒
(

1√
µ

)
=
 1√

a
0

0 1√
b

 and
√
µ =

√a 0
0
√
b


(2.37)

Using thus definations (2.37), we find:

µ′ =
(

1√
µ

)T

µ

(
1√
µ

)
=
 1√

a
0

0 1√
b

a 0
0 b

 1√
a

0
0 1√

b

 =
 1

a
a 0
0 1

b
b

 =
1 0

0 1

 = 1

(2.38)
step 02: The transformed matrices ϖ and Λ.
for ϖ

ϖ =
√
µ

T
ϖ
√
µ = 1

2m

√
µ1

µ2

√a 0
0
√
b

(1 + ω2 µ2
µ1

) (1− ω2 µ2
µ1

)
(1− ω2 µ2

µ1
) (1 + ω2 µ2

µ1
)

√a 0
0
√
b

 (2.39)

ϖ = 1
2m

√
µ1

µ2

 a(1 + ω2 µ2
µ1

)
√
ab(1− ω2 µ2

µ1
)

√
ab(1− ω2 µ2

µ1
) b(1 + ω2 µ2

µ1
)

 (2.40)

ϖ =
√
ab

2m

√
µ1

µ2

√a√
b
(1 + ω2 µ2

µ1
) (1− ω2 µ2

µ1
)

(1− ω2 µ2
µ1

)
√

b√
a
(1 + ω2 µ2

µ1
)

 (2.41)

for Λ:

Λ =
(

1√
µ

)T

Λ
√
µ =

 1√
a

0
0 1√

b

 λ

2


√

µ1
µ2
− θ

√
µ1
µ2
− θ

θ +
√

µ1
µ2

θ +
√

µ1
µ2


√a 0

0
√
b

 (2.42)

Λ = λ

2


√

µ1
µ2
− θ

√
b√
a

(√
µ1
µ2
− θ

)
√

a√
b

(
θ +

√
µ1
µ2

)
θ +

√
µ1
µ2

 (2.43)

Using our definition of the values a, b and κ from (2.36), we find:

ϖ =
(√

1
µ1µ2

− g2

)
1

2m

√
µ1

µ2

κ(1 + ω2 µ2
µ1

) (1− ω2 µ2
µ1

)
(1− ω2 µ2

µ1
) κ−1(1 + ω2 µ2

µ1
)

 (2.44)
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Λ = λ

2


√

µ1
µ2
− θ κ−1

(√
µ1
µ2
− θ

)
κ
(
θ +

√
µ1
µ2

)
θ +

√
µ1
µ2

 (2.45)

Thus, we can write the Hamiltonian expression after the second transformation with the
following expression:

Hθσ = 1
2
(
ΠT Π +XTϖX + 2ΠT ΛX

)
(2.46)

Where:

ϖ =
(√

1
µ1µ2

− g2

)
1

2m

√
µ1

µ2

κ(1 + ω2 µ2
µ1

) (1− ω2 µ2
µ1

)
(1− ω2 µ2

µ1
) κ−1(1 + ω2 µ2

µ1
)



Λ = λ

2


√

µ1
µ2
− θ κ−1

(√
µ1
µ2
− θ

)
κ
(
θ +

√
µ1
µ2

)
θ +

√
µ1
µ2

 , With: κ =

√
1√

µ1µ2
− g√

1√
µ1µ2

+ g

(2.47)

After reducing the kinetic part within the new coordinate system by second transfor-
mation, we can now search for a transformation that decouples the interaction part and
integrates it into either the kinetic or potential part.

Let the following transformation be:Π→ Π′ = Π− ΛX:
Substitute Π′ into the Hamiltonian form (2.46) , we can write:

Hθσ = 1
2
(
Π′T Π′ +XTϖX + 2Π′T ΛX

)
(2.48)

First, compute Π′T Π′:

Π′T Π′ = (Π− ΛX)T (Π− ΛX) = (ΠT −XT ΛT )(Π− ΛX)

= ΠT Π− ΠT ΛX −XT ΛT Π +XT ΛT ΛX
(2.49)

Next, compute the term 2Π′T ΛX:

2Π′T ΛX = 2(Π− ΛX)T ΛX = 2(ΠT −XT ΛT )ΛX

= 2ΠT ΛX − 2XT ΛT ΛX
(2.50)
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Now, let’s substitute these results back into the Hamiltonian (2.48):

Hθσ = 1
2
(
ΠT Π− ΠT ΛX −XT ΛT Π +XT ΛT ΛX +XTϖX + 2ΠT ΛX − 2XT ΛT ΛX

)
= 1

2
(
ΠT Π +XTϖX − ΠT ΛX −XT ΛT Π +XT ΛT ΛX + 2ΠT ΛX − 2XT ΛT ΛX

)
= 1

2
(
ΠT Π +XTϖX + ΠT ΛX −XT ΛT Π +XT ΛT ΛX − 2XT ΛT ΛX

)
= 1

2
(
ΠT Π +XTϖX + ΠT ΛX −XT ΛT Π−XT ΛT ΛX

)
(2.51)

Notice that ΠT ΛX and −XT ΛT Π are transpose terms of each other and they cancel out
when combined with their negative counterparts:

Hθσ = 1
2
(
ΠT Π +XT (ϖ − ΛT Λ)X

)
(2.52)

Notice now that the interaction term has disappeared and has been incorporated into the
position matrix. For simplicity and accuracy, we will compute the difference ϖ − ΛT Λ and
write it as a single matrix, which we will call A, where A = ϖ − ΛT Λ

The transformed matrix ϖ is:

ϖ =
(√

1
µ1µ2

− g2

)
1

2m

√
µ1

µ2

κ(1 + ω2 µ2
µ1

) 1− ω2 µ2
µ1

1− ω2 µ2
µ1

κ−1(1 + ω2 µ2
µ1

)


The matrix ΛT Λ is:

ΛT Λ = λ2

4


(√

µ1
µ2
− θ

)2
+ κ2

(√
µ1
µ2

+ θ
)2

κ−1
(√

µ1
µ2
− θ

)2
+ κ

(√
µ1
µ2

+ θ
)2

κ−1
(√

µ1
µ2
− θ

)2
+ κ

(√
µ1
µ2

+ θ
)2

κ−2
(√

µ1
µ2
− θ

)2
+
(√

µ1
µ2

+ θ
)2


Now, we compute the elements of A:
1. The element (1,1):

A11 =
(√

1
µ1µ2

− g2

)
1

2m

√
µ1

µ2
κ

(
1 + ω2µ2

µ1

)
− λ2

4

(√µ1

µ2
− θ

)2

+ κ2
(√

µ1

µ2
+ θ

)2


2. The elements (1,2) and (2,1):

A12 = A21 =
(√

1
µ1µ2

− g2

)
1

2m

√
µ1

µ2

(
1− ω2µ2

µ1

)
− λ

2

4

κ−1
(√

µ1

µ2
− θ

)2

+ κ

(√
µ1

µ2
+ θ

)2


3. The element (2,2):

A22 =
(√

1
µ1µ2

− g2

)
1

2m

√
µ1

µ2
κ−1

(
1 + ω2µ2

µ1

)
− λ2

4

κ−2
(√

µ1

µ2
− θ

)2

+
(√

µ1

µ2
+ θ

)2

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So the matrix A is:

A = ϖ − ΛT Λ =
A11 A12

A12 A22


The final Hamiltonian (2.52) in terms of the matrix A is:

Hθσ = 1
2
(
Π2

1 + Π2
2 + A11X

2
1 + A22X

2
2 + 2A12X1X2

)
(2.53)

where the matrix A has elements as defined above. This simplifies the Hamiltonian
and allows for easier analysis and solving of the Schrödinger equation in the transformed
coordinates.

Since all the transformations we applied are orthogonal transformations This ensures
that it is legal and normalized at the same time, which means that the momentum operator
statement does not change its form therefore We can write:

Π̂2 = iℏ
(
σ

∂

∂X2
− ∂

∂X1

)
, Π̂1 = iℏ

(
∂

∂X2
− θ ∂

∂X1

)
From the expression and by substituting the expressions for the momentum operators

into the equation , we find:

Ĥθσ = 1
2

(
−ℏ2

(
(1 + σ2) ∂2

∂X2
2

+ (θ2 + 1) ∂2

∂X2
1
− 2(θ + σ) ∂2

∂X1∂X2

)
+ A11X

2
1 + 2A12X1X2 + A22X

2
2

)
(2.54)

We convert the linear writing to matrix form by setting −ℏ2 = 1:

Ĥθσ = 1
2
(
X1 X2

∂
∂X1

∂
∂X2

)

A11 A12 0 0
A12 A22 0 0
0 0 (1 + σ2) −(θ + σ)
0 0 −(θ + σ) (θ2 + 1)




X1

X2
∂

∂X1
∂

∂X2

 (2.55)

Note that:
Kinetic part B

B =
 (1 + σ2) −(θ + σ)
−(θ + σ) (θ2 + 1)

 =
B11 B12

B12 B22

 (2.56)

Potonsial part A

A =
A11 A12

A12 A22

 (2.57)
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Note that:

[A,B] =
A11B11 + A12B12 − (B11A11 +B12A12) A11B12 + A12B22 − (B11A12 +B12A22)
A12B11 + A22B12 − (B12A11 +B22A12) A12B12 + A22B22 − (B12A12 +B22A22)


=
0 0

0 0


(2.58)

This means they can have common eigenvectors[29, 30], which implies that there is a
common linear transformation that allows us to preserve the structure of derivation and
distillation at the same time.

Find Common Eigenvectors and Eigenvalues Solve the characteristic equation for
A and B:

det(A− γAI) = 0⇒
∣∣∣∣∣∣A11 − γA A12

A12 A22 − γA

∣∣∣∣∣∣ = (A11 − γA)(A22 − γA)− A2
12 = 0. (2.59)

det(B− γBI) = 0⇒
∣∣∣∣∣∣(1 + σ2)− γB −(θ + σ)
−(θ + σ) (θ2 + 1)− γB

∣∣∣∣∣∣ = 0 (2.60)

The eigenvalues are:

γA1,2 =
(A11 + A22)±

√
(A11 + A22)2 − 4(A11A22 − A2

12)
2 (2.61)

γB1,2 =

((1 + σ2)) + (θ2 + 1))±

√√√√√ ((1 + σ2) + (θ2 + 1))2

−4
(
(1 + σ2) (θ2 + 1)− (−(θ + σ))2

)
2 (2.62)

Eigenvectors Calculation For each eigenvalue γA, solve (A− γAI)v = 0.
For Eigenvalue γA1 :

A− γA1I =
A11 − γA1 A12

A12 A22 − γA1

 . (2.63)

Solving (A− γA1I)v1 = 0:

(A11 − γA1)v1x + A12v1y = 0⇒ v1x = A12

γA1−A11
v1y. (2.64)
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Normalize the eigenvector v1:

v1 = v1 = 1√
1 +

(
A12

γA1−A11

)2

 A12
γA1−A11

1

 . (2.65)

For Eigenvalue γA2 :

A− γA2I =
A11 − γA2 A12

A12 A22 − γA2

 . (2.66)

Solving (A− γA2I)v2 = 0:

(A11 − γA2)v2x + A12v2y = 0⇒ v2x = A12

γA2 − A11
v2y. (2.67)

Normalize the eigenvector v2:

v2 = 1√
1 +

(
A12

γA2−A11

)2

 A12
γA2−A11

1

 . (2.68)

P =
v1x v2x

v1y v2y

 =



A12
γA1−A11√

1+
(

A12
γA1−A11

)2

A12
γA2 −A11√

1+
(

A12
γA2 −A11

)2

1√
1+
(

A12
γA1−A11

)2
1√

1+
(

A12
γA2 −A11

)2

 (2.69)

Transform the Hamiltonian:

Ĥθσ = 1
2
(
y1 y2

∂
∂y1

∂
∂y2

)

γA1 0 0 0
0 γA2 0 0
0 0 −ℏ2γB1 0
0 0 0 −ℏ2γB2




y1

y2
∂

∂y1
∂

∂y2

 , (2.70)

Solving the Schrödinger Equation with the Transformed Hamiltonian

The Hamiltonian in Operator Form:

Ĥθσ = 1
2

(
γA1y

2
1 + γA2y

2
2 − ℏ2γB1

∂2

∂y2
1
− ℏ2γB2

∂2

∂y2
2

)
(2.71)

Schrödinger Equation The time-independent Schrödinger equation is:

ĤθσΨ(y1, y2) = EΨ(y1, y2) (2.72)
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Substituting the Hamiltonian H:
Separate Variables Assume a solution of the form:

Ψ(y1, y2) = ψ1(y1)ψ2(y2) (2.73)

Separate the equations for ψ1 and ψ2:

1
2

(
γA1y

2
1 − ℏ2γB1

d2

dy2
1

)
ψ1(y1) = E1ψ1(y1) (2.74)

1
2

(
γA2y

2
2 − ℏ2γB2

d2

dy2
2

)
ψ2(y2) = E2ψ2(y2) (2.75)

Each equation resembles the form of a harmonic oscillator. The solutions are known:
Wave functions

ψn1(y1) =
(

Ω̄1

πℏ

)1/4 1√
2nn!

Hn1

√Ω̄1

ℏ
y1

 e− Ω̄1y2
1

2ℏ (2.76)

ψn2(y2) =
(

Ω̄2

πℏ

)1/4 1√
2n2n2!

Hn2

√Ω̄2

ℏ
y2

 e− Ω̄2y2
2

2ℏ (2.77)

Energies eigenvalues

E1 = ℏΩ̄1

(
n1 + 1

2

)
, n1 = 0, 1, 2, . . . (2.78)

E2 = ℏΩ̄2

(
n2 + 1

2

)
, n2 = 0, 1, 2, . . . (2.79)

From the transformations , we have:

α1 = 1√
2

(
µ1

µ2

) 1
4
√√√√ 1
√
µ2µ1

− g, α2 = 1√
2

(
µ1

µ2

) 1
4
√√√√ 1
√
µ2µ1

+ g (2.80)

X1 = 1
2α1

(Q1 −Q2), X2 = 1
2α2

(Q1 +Q2) (2.81)

y1 = v1x
1

2α(Q1 −Q2) + v2x
1

2α(Q1 +Q2) (2.82)

y2 = v1y
1

2α1
(Q1 −Q2) + v2y

1
2α2

(Q1 +Q2) (2.83)
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So, we can write the solution to the Schrödinger equation for the studied system in terms
of the original coordinates as follows:

Ψn1,n2(Q1, Q2) =

√√√√ √
η̄1Ω̄1η̄2Ω̄2

πℏ2n1+n2n1!n2!
exp

{
− η̄1Ω̄1

2ℏ [v1x
1

2α1
(Q1 −Q2) + v2x

1
2α2

(Q1 +Q2)]2
}

exp
{
− η̄2Ω̄2

2ℏ [v1y
1

2α1
(Q1 −Q2) + v2y

1
2α2

(Q1 +Q2)]2
}

Hn1

√ η̄1Ω̄1

ℏ
[v1x

1
2α1

(Q1 −Q2) + v2x
1

2α2
(Q1 +Q2)]


Hn2

√ η̄2Ω̄2

ℏ
[v1y

1
2α1

(Q1 −Q2) + v2y
1

2α2
(Q1 +Q2)]


(2.84)

Energy eigenvalues

E = E1 + E2 = ℏΩ̄1

(
n1 + 1

2

)
+ ℏΩ̄2

(
n2 + 1

2

)
, n1, n2 = 0, 1, 2, . . . (2.85)

where Hn1 and Hn2 are Hermite Polynomials , with:

Ω̄1 = √γA1γB1 , Ω̄2 = √γA2γB2 , η̄1 = 1
γB1

, η̄2 = 1
γB2

(2.86)

v1x =
A12

γA1−A11√
1 +

(
A12

γA1−A11

)2
, v2x =

A12
γA2−A11√

1 +
(

A12
γA2−A11

)2
(2.87)

v1y = 1√
1 +

(
A12

γA1−A11

)2
, v2y = 1√

1 +
(

A12
γA2−A11

)2
(2.88)

And γA1,2 , A12, A11, A22 and γB1,2 : Transformation parameters based on µ1, µ2, g, θ, σ and,
λ.
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Chapter 3

Analysis of the results

3.1 Introduction

The computational power of many programming languages provides an appropriate envi-
ronment for conducting comparisons and numerical and graphical analyses of methods for
processing complex physical systems, especially those involving numerous variables and com-
plex mathematical expressions, such as the solution and energy expression in the deformed
state we solved in the previous chapter. Among the most important software for physics,
particularly for computational analysis, are Maple, Mathematica, and recently, Python. The
choice of suitable software depends on the required comparison accuracy, the complexity
of the mathematical expressions to be processed, financial resources, computational power
available to the user, and other conditions.

In this chapter, we will use Python to analyze the results obtained from solving the
Schrödinger equation for the coupled harmonic oscillator system in both commutative and
non-commutative phase spaces, using the Google Colab environment. We take advantage
of the technical support availability, widespread use, and open-source nature of Python,
although it may not match Mathematica or Maple in computational accuracy. This consid-
eration should be kept in mind when discrepancies or uncertainty in mathematical expressions
arise during the discussion of solutions.Also, we will compare the solution with Feynman’s
approach to the same system, published by Khayari and others in the scientific paper titled
“Time-Independent Coupled Harmonic Oscillator via Path Integral Method in a Deformed
Phase Space.” This comparison aims to highlight the impact of phase space deformation on
the energy levels and wave functions of the system, providing insights into the fundamental
quantum mechanical behaviors under phase space deformation.
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3.2 Range of comparison parameters

We choose an angular frequency of 1016 Hz for our system, aligning with the typical range of
frequencies associated with electronic transitions in atoms and molecules, which spans up to
1016 Hz. This range corresponds to phenomena involving weak coupling between two electrons
modeled as harmonic oscillators, making it particularly suitable for our analysis due to its
relevance to our quantum mechanical system. Additionally, we adopt the Hartree unit system
to simplify quantum mechanical equations by setting fundamental constants (electron mass,
reduced Planck constant, and elementary charge) to unity. This standardization facilitates
easier manipulation and comparison of quantum states and their properties. The time unit in
Hartree units corresponds to the period it takes for an electron to orbit the hydrogen nucleus
in the ground state, providing a natural timescale for atomic and subatomic processes.

Given the Hartree energy unit of approximately 27.2114 eV, and the time unit derived
from the electron’s orbital period in a hydrogen atom of approximately 2.42× 10−17 seconds,
we can convert the chosen frequency to Hartree units as follows:

ωH = 2πν × tH = 2π × 1016 Hz× 2.42× 10−17 s ≈ 1.52

Given this context, we can set the angular frequency parameter within the order of unity
for comparison purposes.

Regarding the coupling constant, we need to consider the conditions defining the weak
coupling regime in relation to the terms in the static part of our Hamiltonian(1.48), often
referred to as:

λ≪ mω2

By using the Hartree unit system, and based on the acceptable angular frequency range
in this system, we find that:λ≪ 1 , so we can set a range for the λ as follows 0 < λ < 0.1

Given that we are studying small deformations, it is logical that their range should be
less than the range of classical parameters that affect the system’s behavior. In our specific
case, this means the coupling constant. Therefore, since the coupling range λ has been
set0 < λ < 0.1, the range of deformation parameters should θ and σ be less than that. For
simplicity, we will set it θ, σ0.01.

Thus, we have defined the necessary range for all variables related to the system under
study.
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3.3 Summary of Solutions for the Coupled Harmonic
Oscillator System

3.3.1 Schrödinger approach

Based on the work we did in the previous chapter, we can summarize the Schrödinger solution
for the commutative and non-commutative cases as follows:

Wave function

Ψn1,n2(Q1, Q2) =

√√√√ √
η̄1Ω̄1η̄2Ω̄2

πℏ2n1+n2n1!n2!
exp

{
− η̄1Ω̄1

2ℏ [v1x
1

2α(Q1 −Q2) + v2x
1

2α(Q1 +Q2)]2
}

exp
{
− η̄2Ω̄2

2ℏ [v1y
1

2α(Q1 −Q2) + v2y
1

2α(Q1 +Q2)]2
}

Hn1

√ η̄1Ω̄1

ℏ
[v1x

1
2α(Q1 −Q2) + v2x

1
2α(Q1 +Q2)]


Hn2

√ η̄2Ω̄2

ℏ
[v1y

1
2α(Q1 −Q2) + v2y

1
2α(Q1 +Q2)]


(3.1)

Energy eigenvalues

E = E1 + E2 = ℏΩ̄1

(
n1 + 1

2

)
+ ℏΩ̄2

(
n2 + 1

2

)
, n1, n2 = 0, 1, 2, . . . (3.2)

where Hn1 and Hn2 are Hermite Polynomials , withe:

Ω̄1 = √γA1γB1 , Ω̄2 = √γA2γB2 , η̄1 = 1
γB1

, η̄2 = 1
γB2

(3.3)

v1x = 1√
1 +

(
−A11−γA1

A12

)2
, v2x = 1√

1 +
(
−A11−γA2

A12

)2
(3.4)

v1y =
−A11−γA1

A12√
1 +

(
−A11−γA1

A12

)2
, v2y =

−A11−γA2
A12√

1 +
(
−A11−γA2

A12

)2
(3.5)

And γA1,2 , A12, A11, A22 and γB1,2 : Transformation parameters based on µ1, µ2, g, θ, σ and,
λ.
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3.3.2 Feynman approach

Wave function

Ψn1,n2 =


√
Ω̄1Ω̄2

πℏ2n1+n2n1!n2!

1/2

exp
[
−1

4
(
Ω̄1(Q1 −Q2)2 + Ω̄2(Q1 +Q2)2

)]

×Hn1

√Ω̄1

2 (Q1 −Q2)
Hn2

√Ω̄2

2 (Q1 + xQ)


(3.6)

Energy eigenvalues

En1,n2 = ℏΩ̄1

(
n1 + 1

2

)
+ ℏΩ̄2

(
n2 + 1

2

)
n1, n2 = 0, 1, 2, . . . (3.7)

Non-Commutative state: where:

Ω̄1 =
√√

Ω1Ω2 + Ω3, Ω̄2 =
√√

Ω1Ω2 − Ω3 (3.8)

Ω1 = (κa− κ2b2 − c2)
(

1
2 + 1

2θ

√
µ1

µ2

)
+
(
a

κ
− b2 − c2

κ2

)(
1
2 −

1
2θ

√
µ1

µ2

)

+ 2κb2 + 2c2

κ
+

√

1
µ1µ2
− g2

m

√µ1

µ2

(
ω2

µ1
µ2 − 1

) (3.9)

Ω2 = (κa− κ2b2 − c2)
(

1
2 −

1
1θ

√
µ1

µ2

)
+
(
a

κ
− b2 − c2

κ2

)(
1
2 + 1

2θ

√
µ1

µ2

)

− 2κb2 − 2c2

κ
−


√

1
µ1µ2
− g2

m

√µ1

µ2

(
ω2

µ1
µ2 − 1

) (3.10)

Ω3 = (κa− κ2b2 − c2)

κ
(

1
2θ

√
µ1

µ2
− 1

2

)
−

(
1
2θ

√
µ1
µ2

+ 1
2

)
κ



+
(
a

κ
− b2 − c2

κ2

)κ
(

1
2 −

1
2θ

√
µ1

µ2

)
+

(
1
2θ

√
µ1
µ2

+ 1
2

)
κ



+
2κb2 + 2c2

κ
+

√

1
µ1µ2
− g2

m

√µ1

µ2

(
ω2

µ1
µ2 − 1

)×

κ
(

1
2θ

√
µ1
µ2
− 1

2

)2

(
1
2θ

√
µ1
µ2

+ 1
2

) + κ

(
1
2θ

√
µ1

µ2
+ 1

2

)
(3.11)
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a =

√

1
µ1µ2
− g2

2m

√µ1

µ2

(
ω2

µ1
µ2 + 1

)
, b = 1

2λ
(
θ −

√
µ1

µ2

)

c = 1
2λ

(
θ +

√
µ1

µ2

)
, κ =

√
1√

µ1µ2
+ g√

1√
µ1µ2
− g

(3.12)

Commutative state:
Where:

Ω̄1 =
√
ω2 + λ

m
, Ω̄2 =

√
ω2 − λ

m
(3.13)

These simplified expressions highlight the changes in the system’s behavior due to the
coupling constant λ and the deformation parameters θ and σ.

It is observed from the complex expressions of both solutions that it is exceedingly difficult
to study their convergence through symbolic comparison. This necessitates resorting to
numerical comparison, which we will adopt, having previously set the parameter range in
Hartree units.

3.4 Comparison of Results:

Numerical analysis and the exploitation of computational capabilities have greatly facili-
tated researchers’ study of complex phenomena with intricate mathematical forms. These
capabilities allow us to explore the wave function shapes and energy expressions for the ex-
ample under study (Schrödinger’s approach and Feynman’s approach in the case of a coupled
harmonic oscillator pair, which we have previously examined and provided a mathematical
summary of the results of both treatments). This approach provides an understanding that
cannot be easily achieved through purely mathematical treatment, although this perspective
remains numerical and approximate rather than being on par with abstract mathematical
analysis, except in cases where experimental results are available.

To ensure comprehensive coverage, we will first study the commutative limit of Schrödinger
compared to Feynman, which has been previously defined. Then, we will study the behavior
of both energy and probability density in the case of small deformations.

Univ-Ouargla/Theorical Physics: 2024 37



Analysis of the results

3.4.1 The commutative limit:

To study the commutative limit of the solution, we will set the values of θ and σ to the
smallest possible values and plot the energy for different levels as a function of λ, which we
vary according to the range previously defined. This will give us the output in the form of a
table as well as a graphical curve through which we compare the behavior of the energy and
the probability density, which represents the behavior of the wave function as it equals the
function multiplied by its conjugate. Let’s proceed:

3.4.1.1 State Energies

λ Commutative Feynman Shrodenger : σ = θ = 0
0.00 1.00000 1.00000
0.02 0.99995 0.99995
0.04 0.99980 0.99980
0.06 0.99954 0.99955
0.08 0.99919 0.99919
0.10 0.99874 0.99874

Table 3.1: State Energies n1 = n2 = 0

3.4.1.2 Probability Density

λ Commutative Feynman Schrödinger : σ = θ → 0
0.00 0.31669 0.31669
0.02 0.31665 0.31667
0.04 0.31659 0.31659
0.06 0.31645 0.31645
0.08 0.31624 0.3162
0.10 0.31597 0.31597

Table 3.2: Max Probability Density Values for Schrödinger and Feynman Approaches
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Figure 3.1: Probability Density of Feynman Commutative and Schrödinger σ =
θ → 0

(a) n1 = n2 = 0 (b) n1 = n2 = 0 (c) n1 = 0, n2 = 1 (d) n1 = 0, n2 = 1

(e) n1 = 1, n2 = 0 (f) n1 = 1, n2 = 0 (g) n1 = n2 = 1 (h) n1 = n2 = 1

3.4.1.3 Notes

• Both approaches show a gradual increase in energy with increasing deformation param-
eters Theta and Sigma.

• The energy surfaces are very similar, with no significant differences between the Schrödinger
and Feynman approaches.

• Probability density remains relatively stable with increasing Theta and Sigma, showing
only slight variations.

• The maximum probability density values are nearly identical in both approaches, indi-
cating a high degree of similarity.

Overall, the Schrödinger and Feynman approaches exhibit similar trends in energy and
probability density behavior under deformation, with no significant differences.

This indicates that the reciprocal limit of both the Feymann and Schrödinger approaches
agrees within the bounds of errors of user software approximations with the standard solution
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of a coupled harmonic vibrating pair. Which confirms the principle of equivalence between
the Schroedtger and Feyman approaches and also confirms that the physical meaning of the
mixed elimination option is a correct principle, firstly, because it relies on the basic rules,
as we previously showed, for Heismarberg algebra and the rules of quantization, and also
because it matches the previously known results. It now remains to compare the behavior of
each approach when theta and sigma change Let’s continue

3.4.2 Non-Commutative case

We will now pay special attention to 3D graphics because theta and sigma change together
in the range of weak distortions. In particular, we will study the behavior of energy and
the highest values of probability densities for different energy levels to observe the effect of
distortion on both approaches, as shown in the following images.

Figure 3.2: Observations of Probability Density Behavior with Respect to σ and
θ

(a) n1 = n2 = 0 (b) n1 = n2 = 0 (c) n1 = 1, n2 = 0 (d) n1 = 1, n2 = 0

Figure 3.3: Observations of Energy Behavior with Respect to σ and θ

(a) n1 = n2 = 0 (b) n1 = n2 = 0 (c) n1 = 1, n2 = 0 (d) n1 = 1, n2 = 0
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3.4.2.1 Nots

From the curves provided we found the following:
For energy

• Overall Behavior: Both the Schrödinger and Feynman approaches exhibit a gradual
increase in energy as the deformation parameters, Theta and Sigma, increase. The
energy surfaces show a consistent trend across both methods.

• Similarity: The energy values and their corresponding surfaces are highly similar
between the two approaches, indicating consistent behavior and minimal discrepancies.

• Differences: Any differences observed in the energy values between the Schrödinger
and Feynman approaches are minor and do not significantly impact the overall trend.
These minor differences suggest that both approaches are reliable and can be used
interchangeably for analyzing energy behavior under deformation.

For Probability Density

• Overall Behavior: The probability density remains relatively stable with increasing
Theta and Sigma, showing only slight variations in both approaches. This indicates
that the deformation parameters have a minimal impact on the overall probability
density distribution.

• Similarity: The maximum probability density values are nearly identical in both the
Schrödinger and Feynman approaches, highlighting a high degree of similarity in their
results. This suggests that both methods provide a consistent and reliable measure of
probability density under deformation.

• Differences: Any observed differences in the probability density values between the
two approaches are insignificant. These minor variations do not affect the overall sta-
bility and reliability of the probability density distributions provided by either method.

Thus we can conclude that: The results confirm that the phase space deformation im-
pacts the energy levels and wave functions in predictable ways. The equivalence between the
Schrödinger and Feynman approaches in the commutative limit is maintained under small
deformations, reinforcing the validity of using either method for analyzing such systems. As
we point out, the key aspect of phase space deformation is the introduction of nonlinear
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effects, especially in the context of non-commutative geometries; while Python is an excel-
lent tool for numerical analysis, it may not match the computational accuracy of specialized
software like Mathematica or Maple. This is important to consider when interpreting re-
sults, as numerical approximations can introduce discrepancies. However, for our purposes,
the consistency observed between the Schrödinger and Feynman approaches indicates that
Python provides sufficient accuracy for our analysis.
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In this study, we focused on solving the Schrödinger equation for a coupled harmonic oscillator
system in a non-commutative phase space. Our primary goal was to understand how phase
space distortion affects the system’s dynamics and derive analytical solutions for the modified
Hamiltonian. The harmonic oscillator was chosen as a fundamental model applicable to
various physical systems in quantum mechanics, allowing for a deep comparison between
solutions in commutative and non-commutative phase spaces, highlighting the impact of
distortion on system dynamics.

We began with an extensive bibliographic study on non-commutative phase space, en-
abling us to redefine momentum operators and use modified Poisson brackets, which express
the effect of distortion in contexts such as non-commutative geometry and quantum gravity.
We constructed a modified Hamiltonian using deformation parameters θ and σ, and coupling
constant λ, as corrections to the conventional Hamiltonian.

Key Steps Included:
1. Redefining Momentum: Using modified Poisson brackets, we redefined the momentum

operators to account for the effects of phase space distortion. This redefinition was crucial
for accurately representing the dynamics in a non-commutative setting.

2. Hamiltonian Diagonalization: By removing cross terms and mixed differentials, we
facilitated variable separation in the Schrödinger equation. This step was essential for sim-
plifying the problem and making it tractable for analytical solutions.

3. Deriving Analytical Solutions: We derived an expression for the corrected frequency
(Ω̄) and solved the Schrödinger equation in the deformed phase space. This allowed us to
obtain energy levels and wave functions that reflect the impact of phase space distortion.

4. Comparative Analysis: Using Python software, we compared solutions in deformed and
non-deformed phase spaces. This numerical approach enabled us to visualize and quantify
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the differences in system behavior due to deformation.
Results and Discussion:
Our analysis revealed similar behavior between Schrödinger and Feynman solutions except

for specific values of the deformation parameters. These discrepancies were attributed to
Python’s numerical approximations, suggesting that both approaches are robust but may
yield slightly different results under certain conditions.

We summarize the results as follows
1. Eigenvalue Modifications:
- Energy levels decrease as deformation parameters increase, indicating stronger stabi-

lization effects due to phase space distortion.
2. Probability Density Distribution:
- Distortion leads to increased density concentration, reflecting constrained particle dy-

namics.
3. Method Comparison:
- Schrödinger and Feynman methods produce comparable results, though numerical meth-

ods highlight slight differences due to approximations.
Recommendations for Future Research:
1. Expanding the Study:
- Investigate more complex quantum systems, including multi-particle interactions and

non-linear effects, to understand the broader implications of phase space distortion.
2. Experimental Verification:
- Conduct experiments to validate theoretical findings and provide empirical evidence for

the impact of deformations on quantum systems.
3. Advanced Mathematical Tools:
- Develop new mathematical frameworks and tools to better analyze and solve problems in

non-commutative quantum mechanics, facilitating more accurate and comprehensive models.
In conclusion, this study offers significant insights into the effects of phase space distortion

on quantum systems. By combining analytical and numerical methods, we have provided a
detailed understanding of the modified dynamics and highlighted the importance of consid-
ering such deformations in theoretical and applied quantum mechanics. This work paves the
way for future research aimed at further unraveling the complexities of deformed quantum
systems and their potential technological applications.
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Abstract
In this study, we focused on solving the Schrödinger equation for a pair of harmonic oscillators in a

non-commutative phase space. Our primary goal was to understand the effect of phase space deformation
on the system dynamics and derive analytical solutions for the modified Hamiltonian.

We began with an extensive literature review on non-commutative phase space, which allowed us to
redefine momentum operators and utilize modified Poisson brackets. These brackets express the impact
of deformation in non-commutative geometry and quantum gravity contexts. We constructed a modified
Hamiltonian using deformation parameters θ and σ, and a coupling constant λ, as corrections to the
traditional Hamiltonian. We then solved the Schrödinger equation and derived an expression for the
corrected frequency (Ω̄). Next, we conducted a numerical comparison between the Schrödinger and
Feynman approaches for the same system under deformed and standard conditions.

The results showed perfect agreement between the approaches when deformation parameters approach
zero. Additionally, energy levels and probability density for the system under weak deformations exhibited
similar behaviors for both approaches, depending on the deformation parameters. This highlights the
role of deformation in generating noticeable differences in energy values and probability density.
Key words: Schrödinger equation, Coupled harmonic oscillator pair, Non-commutative phase space,
Modified Hamiltonian, Modified Poisson brackets, Probability density.

Résumé
Dans cette étude, nous nous sommes concentrés sur la résolution de l’équation de Schrödinger pour

un système de deux oscillateurs harmoniques dans un espace de phase non commutatif. Notre objectif
principal était de comprendre l’effet de la déformation de l’espace de phase sur la dynamique du système
et d’en déduire des solutions analytiques pour l’hamiltonien modifié.

Nous avons commencé par une revue de littérature approfondie sur l’espace de phase non commuta-
tif, ce qui nous a permis de redéfinir les opérateurs de momentum et d’utiliser des crochets de Poisson
modifiés. Ces crochets expriment l’impact de la déformation dans les contextes de géométrie non commu-
tative et de gravité quantique. Nous avons construit un hamiltonien modifié en utilisant les paramètres
de déformation θ et σ, ainsi qu’une constante de couplage λ, en tant que corrections à l’hamiltonien tra-
ditionnel. Ensuite, nous avons résolu l’équation de Schrödinger et dérivé une expression pour la fréquence
corrigée (Ω̄). Ensuite, nous avons effectué une comparaison numérique entre les approches de Schrödinger
et de Feynman pour le même système dans des conditions déformées et standard.

Les résultats ont montré un accord parfait entre les approches lorsque les paramètres de déformation
tendent vers zéro. De plus, les niveaux d’énergie et la densité de probabilité du système sous de faibles
déformations ont présenté des comportements similaires pour les deux approches, en fonction des pa-
ramètres de déformation. Cela met en évidence le rôle de la déformation dans la génération de différences
notables dans les valeurs d’énergie et la densité de probabilité.
Mots clés : Équation de Schrödinger, Paire d’oscillateurs harmoniques couplés ,Espace de phase non
commutatif, Hamiltonien modifié, Crochets de Poisson modifiés, Densité de probabilité.
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