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Abstract

This study addresses the problem of accurately predicting the tops of the
formation and its lithology while drilling using a novel machine learning (ML) approach.
Our model achieves 68% accuracy and 69% precision in real-time litho-facies
identification using 11 drilling parameters. Extensive data preprocessing ensured
unbiased and effective model performance. The model was carefully trained and
evaluated, with extensive data preprocessing to reduce features, balance the sample
distribution, and ensure an unbiased dataset. This attention to data quality and
preprocessing is crucial for effective model performance.

A case study in the Hassi Messaoud oil field validated the model's practical
applicability y. This ML-based methodology offers significant advantages for real-time
geosteering, enhancing decision-making and efficiency in drilling operations. The
model successfully predicts fine sand and fine sandstone lithologies, and for clay
predictions are reasonably close to the real values. However, for salt, the model
significantly overestimates the presence compared to the real data, suggesting
challenges in predicting the “salt” lithology.

Résumeé

Cette étude aborde le probleme de la prévision précise des sommets des
formations et de leur lithologie pendant le forage a I'aide d'une nouvelle approche de
learning machine (ML). Notre modeéle, atteint une précision de 68 % et une exactitude
de 69 % dans la reconnaissance en temps réel des litho-facies en utilisant 11
parametres de forage. Un prétraitement des données exhaustif a assuré une
performance du modele non biaisée et efficace. Le modéle a été soigneusement
entrainé et évalué, avec un prétraitement des données étendu pour réduire les
caractéristiques, équilibrer la distribution des échantillons et garantir un ensemble de
données non biaisé. Cette attention a la qualité des données et au prétraitement est
cruciale pour une performance efficace du modéle.

Une étude de cas dans le champ pétrolifere de Hassi Messaoud a validé la mise
en pratique du modele. Cette méthodologie basée sur le ML offre des avantages
significatifs pour la surveillance géologique en temps réel, améliorant la prise de
décision et I'efficacité des opérations de forage. Le modéle prédit avec succes les
lithologies de sable fin et de grés fin, et pour les argiles, les prédictions sont
raisonnablement proches des valeurs réelles. Cependant, pour le sel, le modele
surestime considérablement sa présence par rapport aux données réelles, ce qui
suggere des difficultés dans la prédiction de la lithologie "sel".
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Introduction

Lithology prediction involves determining the types of rocks that will be encountered
during drilling, which is essential for various considerations such as distinguishing rock
types, preventing formation pressures, optimizing drilling parameters, and improving
safety. The relationship between drilling parameters, lithology, and instrument
parameters is crucial for optimizing drilling operations and improving the accuracy of
subsurface characterization.

Historically, lithology identification relied on direct physical examination of drilling
samples, which was time-consuming and limited in spatial coverage. The integration
of geophysical logging data, such as gamma ray, resistivity, sonic, density, and neutron
logs, emerged as a crucial technique for inferring lithological properties. However, this
indirect data required expert interpretation and was not suitable for real-time,
accurate, and cost-effective lithology recognition.

Recent advancements in artificial intelligence and machine learning have
revolutionized lithology recognition, introducing innovative techniques that address
the limitations of traditional methods. Intelligent algorithms, including artificial neural
networks (ANN) and deep learning models like Convolutional Neural Networks (CNN),
enable rapid and accurate identification of lithologies from rock images, making the
process more accessible and less reliant on specialized petrology expertise.

The integration of machine learning tools and drilling parameters offers the potential
to transform the way lithology is identified, providing instant insights and enabling
more informed decision-making during exploration and production processes. This
study aims to explore the frontiers of lithology recognition, leveraging the power of
modern machine learning techniques to develop a robust and adaptive framework for
accurate and timely lithology identification. By harnessing the wealth of information
available from drilling parameters and other relevant data sources, this research seeks
to establish a new paradigm in subsurface characterization, ultimately enhancing the
efficiency and effectiveness of exploration, extraction, and resource management.

The dissertation is structured around four chapters:
Introduction to Lithology Recognition

Importance of accurate lithology identification in various industries
Historical progression of lithology recognition methods

Limitations of traditional approaches

Role of artificial intelligence and machine learning

Emergence of techniques like ANN and CNN

Benefits of rapid and accurate lithology identification from rock images



® Importance of real-time insights for time-sensitive operations

Study Area: Hassi Messaoud Region

An Overview of the Hassi Messaoud region and its relevance to the research
Materials and Methods

® Data sources: Drilling parameters (MWD) , Chromatographic data
® Data processing techniques
® Machine learning techniques and algorithms employed

Results and Interpretation

® Presentation of the findings from the proposed framework

® Analysis of the accuracy, efficiency, and adaptability of the lithology recognition
approach

® Discussion of the implications and potential impact on exploration, extraction, and
resource management



Chapter | : Introduction to the Lithology
recognition



|. Overview of Drilling Operations

Drilling operations are a critical component of the oil and gas industry, involving
the extraction of hydrocarbons from underground reservoirs. The process typically
begins with exploration, where geologists and engineers identify potential drilling sites

based on geological surveys and seismic data.

Once a site is selected, a drilling rig is set up (fig. 01) , and a well is drilled through
the earth's crust to reach the targeted reservoir. The drilling process involves the use
of specialized equipment, including drill bits, drill pipes, and drilling fluids, which are
designed to manage the pressure and temperature conditions encountered during

drilling.

In Algeria, various companies, including national and international oil and gas

companies, carry out drilling operations. These
operations are subject to regulations and guidelines set
by the government and international organizations,
such as the International Association of Drilling
Contractors (IADC) and the International Labor
Organization (ILO).

Conventional drilling is the most common method
used in Algeria. It involves pumping a drilling fluid (Mud)
, typically a mixture of oil and additives, down the drill
pipe to cool and lubricate the drill bit and remove
cuttings from the wellbore. This method is widely used
due to its effectiveness in managing the pressure and
temperature conditions encountered during drilling.
(Solutions intégrées de sécurité Algeria )

ll. lithology recognition
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Figure 01 - Drilling rig

Lithology identification is a critical aspect of drilling operations, as it provides
crucial information about the geological composition of subsurface formations.
Accurate lithology identification helps optimize drilling parameters, improve drilling
performance, and reduce costs. Traditional methods of lithology identification rely on
physical rock samples obtained during drilling (fig. 02-a,b), by means of observing the
color, structure, and mineral crystallinity, rocks can be classified into several general



categories ( Kathrada & Adillah , 2019). For further classification, thin sections are
observed from such perspectives as the optical characteristics of minerals and crystal
shapes (Hu et al., 2010; Chen et al., 2010). As well as geophysical log data or
geochemical methods such as gamma ray, resistivity, sonic, density, and neutron logs.
However, these methods can be time-consuming (fig. 03) , labor-intensive, and
subjective, especially when dealing with large amounts of data ( Chopra et al.,2002;
Smith et al., 2002; Xu et al., 2021).

In Algeria, the National Wells Services Company has adopted a specialized model
called GEOLOG to help with the visualization of lithology in a comprehensive master
log. This model relies on the lithological information provided by the mud logger, who
analyzes the rock samples obtained during the drilling process.

Figure 02 ,b - observation and analysis of the samples
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Advanced Lithology identification researches

To address the mentioned challenges of time and others , researchers have

explored intelligent methods for lithology identification using artificial intelligence and
machine learning algorithms. These are some key advancements in lithology
identification :

1.

Improved Object Detection Algorithms

Single Shot Multi box Detector (SSD):

Functioning Principle: SSD is an object detection algorithm that uses a single
neural network to predict bounding boxes and class probabilities directly from full
images. It is designed to handle a wide range of object sizes and aspect ratios.
Improvements: The SSD algorithm was modified by adding residual networks and
adaptive moment estimation to improve its performance. This modification
enhanced the accuracy of the algorithm in identifying rock types.

Results: The modified SSD algorithm achieved average accuracies of 89.4% and
98.4% in identifying 12 rock types in the Xingcheng area of China. (Hou, 2023)

Integration of Remote Sensing and Machine Learning

Functioning Principle: This method combines remote sensing data from various
sources (Landsat, Sentinel-2, ASTER, and Hyperion) with machine learning
algorithms (SVM, RF, and ANN) to create detailed and accurate lithological maps.
Principle: The remote sensing data provides detailed information about the
geological composition of the area, which is then used to train machine learning
models to identify lithological features (HAMMAD, 2016).

Results: This method has been shown to be particularly effective in remote or
inaccessible areas where traditional methods may be difficult to apply ( Xu et al.,
2021).

Application of Artificial Intelligence in Petroleum Reservoirs

Functioning Principle: Al-based methods are used to analyze real-time drilling data
and predict lithology types in low permeability reservoirs.

Principle: The Al algorithms are trained on large datasets of drilling data and are
able to identify patterns and relationships that are difficult for humans to
recognize.

Results: Al-based methods have been shown to improve the accuracy and speed
of lithology identification compared to traditional techniques like cross plots and
mathematical statistics.(Tiantai Li, 2022; Khalifa, 2023 )



Deep Learning for Refined Lithology Identification

® Functioning Principle: Deep learning models such as Faster R-CNN and Region
Vision Transformer are used to analyze rock images and identify lithology types.

® Principle: These models use convolutional neural networks to extract features
from the rock images and then use these features to identify the lithology type.

® Results: These models have been shown to be highly accurate in identifying rock
types, including sandstone lithofacies.( Xu et al., 2022)

These advancements in lithology identification using artificial intelligence and machine
learning have significantly enhanced the efficiency, accuracy, and accessibility of the
process, making it easier to study geological features and support applications in
mineral exploration, geotechnical engineering, and petroleum geology.

Here’s a detailed look at the relationship between lithology prediction and drilling
tools calibration:

IV. Lithology Prediction for Drilling Tools Calibration

Lithology prediction involves determining the types and properties of rocks that will
be encountered during drilling operations.

Calibration of drilling tools involves adjusting and fine-tuning the tools and equipment
used in drilling operations to ensure they function correctly under the predicted
conditions.

Lithology prediction and the calibration of drilling tools are closely connected in the
context of oil and gas exploration, mining, and other subsurface investigations.
Understanding this relationship is crucial for optimizing drilling operations, improving
efficiency, and ensuring safety. Accurate lithology prediction helps in:

® Drill Bit Selection and Optimization: Accurate lithology prediction allows for the
selection of the most appropriate drill bits and their calibration to minimize wear
and optimize performance. Different lithologies cause different wear patterns,
and understanding these can lead to better bit selection and longer bit life.

® Torque and Drag Management: Calibrating tools to handle expected resistances
from different rock types.

® Drilling Efficiency: Knowing the lithology helps in calibrating the drilling
parameters such as weight on bit, rotational speed, and drilling fluid properties.
This ensures efficient penetration rates and reduces non-productive time.

® Tool Life and Maintenance: Predicting the types of lithologies and their
abrasiveness can help in planning maintenance schedules and the calibration of



tools to prolong their life

Mud System Calibration: Adjusting the properties of drilling mud to optimize hole
cleaning and pressure control based on lithology.

Measurement While Drilling (MWD) and Logging While Drilling (LWD) Tools:
During drilling, real-time lithology prediction (through MWD/LWD tools) helps in
making immediate adjustments to the drilling tools and parameters. This
continuous calibration process enhances drilling efficiency and safety.

Data Integration: Combining lithology prediction data with calibration parameters
enhances the ability to predict tool performance and necessary adjustments,
creating a feedback loop that improves future predictions and calibrations.
Formation Damage Prevention: Proper calibration based on lithology can prevent
issues such as formation damage or wellbore instability, which can arise from
inappropriate drilling parameters or tools.



Chapter Il : Study Area- Hassi Messaoud Region



Chapter Il : Study area - Hassi Messaoud region

V. Historical Background and geological situation of Hassi

Massaoud rigion

Historical Background of the Hassi-Messaoud Field

Several wells have been drilled in the Hassi Messaoud region. The first well was drilled
in 1956, to a depth of 3338 meters. A second well was drilled in 1957 to complete the
first reservoir, which was put into production at the end of 1958. Subsequently, 20
more wells were drilled, allowing for a production of approximately 0.5 million tons.
By the end of 1964, 153 wells were in production, with the start-up of the first two
high-pressure gas re-injection stations. Seven injection wells were then equipped.
Between 1963 and 1967, an average of 8 wells per year were drilled. By the end of
1975, 262 wells had been drilled, of which 222 were operational. In 2000, the number
of wells drilled reached 1096, including 783 oil producers, 100 gas injection wells, and
37 water injection wells. The field also had 129 dry wells and 47 water-producing wells.
Subsequently, several studies have been conducted to better understand the structure
of the Hassi-Messaoud field (Djemili, & Boublal, 2016).

Geological structure of the Hassi-Messaoud Field

The Hassi-Messaoud field represents the largest oil deposit in Algeria. It is located in
the northeastern part of the Saharan platform and corresponds to the northern
extension of the Amghid el biod ridge ( figure 03 ). It is a flattened, broad, oval anticline
trending north- northeast to south- southwest (Djemili, & Boublal, 2016), parallel to
the major fault zone (fig. 3b). It covers almost 2,000 Km? in the Oued Mya basin
(Moussous, 2008; Loukil, 2016).

The field is bounded:

To the north, by the Djamaa-Touggourt structure
To the west, by the Oued Mia depression

To the east, by the Dahar depression

To the south, by the Amguid depression

In geographical coordinates, the field is situated between:

® 32°15'north latitude to the north
® 31°30' north latitude to the south
® 5°40' east longitude to the west

In Lambert coordinates, the field extends between:

10



Chapter Ill : Study area - Hassi Messaoud region

® 790,000 and 840,000 m east for the X coordinate
® 110,000 and 150,000 m north for the Y coordinate

Figure 03 — a. geographical location of hassi

Figure 03 — b. geological context of hassi
messaoud region

messaoud region (Wec Algeria, 2007)

Zonatation of Hassi Massaoud field

The Hassi-Messaoud oil field is divided into numbered zones, which are naturally
deduced from the production characteristics and the geology of the reservoir
(Hamzioui, 2016). This subdivision is based on the evolution of well pressures as a
function of production, allowing for the identification of 25 distinct producing zones
(fig. 04)

Figure 04- Zonatation of Hassi Massaoud field

11



Chapter Il : Study area - Hassi Messaoud region

VI. Internship at the National Company for Well Servicing
(ENSP)- Insights into Drilling Operations and Lithology

Recognition in the Hassi Messaoud Region

To gain a deeper understanding of the drilling operations and lithology
recognition processes in this area, we conducted an internship at the National
Company for Well Servicing (ENSP) from May 20 th, 2024, to May 31st, 2024.

During this internship, we had the opportunity to visit several key service areas
within the ENSP, including the Mud Logging Cabin, the Control Quality Service, and the
Well Site W1. This hands-on experience provided invaluable insights into the real-
world practices and challenges associated with lithology recognition in the Hassi
Messaoud region.

Well Site W1 :

At the Well Site W1, we observed the drilling operations and the collection of drilling
parameters (MWD) and chromatographic data. We witnessed the continuous
monitoring of various parameters, such as mud flow rate, drill bit weight, and
rotational speed, which are crucial for identifying changes in the subsurface lithology
in real-time. Additionally, we learned about the process of lithology identification by
collecting rock samples from the well and analyzing their physical and mineralogical
properties. This firsthand experience highlighted the importance of integrating these
drilling parameters with the chromatographic and rock sample data for effective
lithology recognition.

Mud Logging Cabin:

The Mud Logging Cabin served as a central hub for data
acquisition and analysis. Here, we gained insights into
the processes of data collection, handling, and
preliminary interpretation. We observed the real-time
monitoring of drilling parameters, the integration of
chromatographic data, and the use of specialized
software for initial lithology identification ( figure 05 ) .
This experience highlighted the challenges and
complexities involved in translating the raw data into
meaningful geological insights.

Figure 05 - Drilling parameters

12



Chapter Il : Study area - Hassi Messaoud region

Control Quality Service:

The Control Quality Service department was responsible for ensuring the reliability
and accuracy of the data collected during the drilling operations. We learned about
the various quality control measures, such as instrument calibration, data validation,
and error detection, that are essential for maintaining the integrity of the dataset used
in the lithology recognition process.

The knowledge and practical experience gained through this internship at the ENSP
have significantly enriched our understanding of the drilling operations and lithology
recognition challenges in the Hassi Messaoud region. These insights have directly
informed the design and development of the machine learning-based lithology
recognition framework presented in this study.

13
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VII. Exploratory Data Analysis

Effective lithology recognition in the Hassi Messaoud region requires a thorough
understanding of the available data sources and their characteristics. Before applying
any machine learning techniques, it is essential to conduct a comprehensive
exploratory data analysis (EDA) to gain insights into the data, identify potential
patterns, and uncover any underlying relationships or anomalies. This preliminary step
is crucial for informing the selection and optimization of the most appropriate
modeling approaches.

In this section, we present the EDA conducted on the drilling parameters (MWD) and
chromatographic data collected from the Hassi Messaoud region.

1. Drilling parameters (MWD) :

Measurement While Drilling (MWD) sensors play a pivotal role in drilling
operations by providing essential drilling parameters and formation evaluation
data in real-time. Unlike Logging While Drilling (LWD) sensors, which primarily
focus on geological formations, MWD sensors emphasize drilling dynamics and
directional control. However, they also contribute significantly to lithology
recognition by offering:

Formation Pressure Measurements: MWD sensors monitor formation pressures,
enabling drillers to anticipate and mitigate potential well bore stability issues and
fluid influxes.

Drill Bit Performance Data: By monitoring drill bit performance metrics such as
weight-on-bit and torque, MWD sensors help assess drilling efficiency and identify
drilling challenges in real-time.

Downhole Temperature and Pressure Measurements: These measurements
provide insights into downhole conditions, including temperature gradients and
pressure differentials, aiding in the interpretation of lithological boundaries and
formation properties.

MWD sensors are integral to steering the drill bit accurately through the formation,
optimizing drilling performance, and ensuring precise wellbore placement. Their
contribution to lithology interpretation enhances overall drilling efficiency and
facilitates informed decision-making during drilling operations.

15
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Weight on Bit (WOB) is the weight applied by the bottom hole assembly (BHA) on the
drill bit.

Rotation speed is another variable that can influence the Rate of Penetration (ROP).
The total tool rotation speed is equal to the surface rotation speed plus the downhole
motor/turbine rotation speed. It is varied depending on the tool used and the
geological formations encountered to reduce lateral vibrations and avoid triggering
the drillstring resonance.

Rate of Penetration (ROP) represents the speed at which the drilling tool advances into
the rock. It is measured in meters per hour and is influenced by various factors.

Torque is an indicator of what is happening at the drilling tool level. In soft formations,
torque can indicate that the tool is in contact with the bottom before the WOB. If
downhole torque measurements are available, they can be used in combination with
surface measurements for greater accuracy.

the flow rate of the drilling mud as it enters the wellbore during the drilling process.

Standpipe pressure represents the sum of pressure losses generated by the mud flow
through the drill string, passing through the tool, and returning through the annular
space. It is measured at the surface through the standpipe and provides various
information about well conditions, the resistance and hardness of the geological
formation being drilled, as well as the quality of the drilling mud used.

Drilling depth is an important parameter that can influence the Rate of Penetration
(ROP) during the drilling operation.

The amount of time the drill bit is actively engaged in penetrating and drilling through
the formation.
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2. Chromatographic data (TOTAL Gas ) :

The total gas detected during the drilling process refers to the measurement and
analysis of the various gas components present in the drilling mud. This includes the
detection and quantification of both hydrocarbon gases, such as methane, ethane,
propane, and others, as well as non-hydrocarbon gases like carbon dioxide, hydrogen
sulfide, nitrogen, and helium.

Several analytical techniques are employed to detect and characterize the total
gas in the drilling fluid, including gas chromatography (GC), mass spectrometry (MS),
Fourier transform infrared spectroscopy (FTIR), and laser absorption spectroscopy
(LAS). These methods allow for the identification and precise measurement of the
individual gas components, providing detailed information about the composition of
the gas mixture in the drilling mud.

The analysis of the total gas detected during drilling is an important tool for
understanding the subsurface conditions and potential hydrocarbon reservoirs
encountered while drilling a well. The gas composition data can help geologists and
engineers make informed decisions about the drilling operations and the potential for
hydrocarbon production.[Mostafa Raouf ,Apr17,2023],[J. ERZINGER, T. WIERSBERG
AND M. ZIMMER,June 2006],[Haibo Liang; Haifeng Chen; Jinhong Guo; Xing Zuo, 2019]

3. Data collection and description :

The analysis revolves around data from wells originating from the Hassi Massoud
region, comprising 12 columns - 2 columns of depth, 8 columns of drilling parameters,
Total Gas, and Lithology (the output variable) sourced from mud logging data. The
dataset contains 4,492 rows without any missing values. The investigation of the
Lithology column reveals a diverse array of 15 lithologies: Anhydrite, Argile, Argile
silteuse, Calcaire, Calcaire dolomitique, Dolomite, Dolomite et calcaire crayeux,
Dolomite et calcaire argileux, Dolomite et calcaire vacuolaire, Grées fins, Gypse, Sable
fin, Sable moyen, Marne, and Sel. The study focuses on all these lithologies and aims
to address the imbalanced class distribution using appropriate techniques, such as
oversampling, to derive valuable insights from the drilling data.

4. Data Imputation (oversampling) :

Imputation of missing values is a procedure that replaces missing values with plausible
estimates to enable accurate estimation of population parameters and maintain the
power of data mining and analysis techniques. The optimal approach depends on the
amount of missing data, and it is generally recommended to compare results before
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and after imputation if more than 25% of the data is missing .(Rubin ,1976)

In the context of this study, we encountered a significant amount of missing data
in the total gas field. To address this challenge, we implemented an imputation
procedure that increased the available data from 1,085 to 4,492 data points. This
allowed us to better capture the underlying trends and patterns in the total gas
variable, which is a crucial input for the lithology recognition framework developed in
this study. By imputing the missing values, we were able to maintain the statistical
power of our analysis and ensure more reliable estimates of the population
parameters.

@ Depth: TMD[m 4351 non

ROP[m/n ] 4491 non-null

B Column Non~Nu Count Dtype

& Depth: T™MO[m] 4451 non-null floates
1 Depth: TVO[m] 4451 non-null floated
2 RoP[m/h] 4451 non-rmull  floates
3 ROP Inverse [min/m) 4451 non-null floates
4  Bit Crllling Time[h] 4491 non«nuil floatss
5 RPN Avgirpm] 4451 non-null flootés
& W08 Avg[t] 4451 non-null  floates
7 PP Avglpsi) 4491 non-nuil floatés
) Yorgue Avgllb*ft] 44%1 non-mull floatés
& Flow IN Avg[l/min] 4351 non-null floatesd
1@ TGAS[N] 4491 non-null floatss
11 Lithology 4491 non-null chject

Figure 06 ,b- data infos after imputation

5. Data Normalization :

Data normalization is a crucial pre-processing step in machine learning that transforms
datainto a common format, ensuring that all input parameters are scaled to a common
range. It is essential for datasets with different units or magnitudes across different
features His function returns the standardized value of a distribution characterized by
a mean value and a standard deviation [Goyal & Singh, 2019).
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Figure 07 ,a - Data before the normalization
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Figure 07 b - Data after the normalization

Data visualization :

Through series of statistical analyses, visualizations, and data transformations, we aim

to:
o
o

By

Describe the overall structure and distribution of the variables within the dataset.
Identify any missing values, outliers, or data quality issues that may require
attention.

Explore the relationships between the drilling parameters, chromatographic data,
and the known lithological classifications.

Assess the suitability of the data for the subsequent machine learning-based
lithology recognition tasks.

thoroughly examining the data characteristics and establishing a solid

understanding of the underlying patterns, we can lay the groundwork for the
development of a robust and effective lithology identification framework tailored to
the Hassi Messaoud region. The insights gained from this exploratory analysis will
guide the selection of relevant features, the design of appropriate modeling
architectures, and the interpretation of the final results (fig.08).
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. :

Figure 08 - Data Visualization

VIIl. Machine learning tools

Machine learning is a field within artificial intelligence that focuses on developing
and studying statistical algorithms capable of learning from data and making
predictions without explicit programming instructions. It enables machines to learn
from past experiences, identify patterns, and improve incrementally with minimal
human intervention. Machine learning algorithms are trained on data sets to create
models that can categorize images, analyze data, predict outcomes, and perform
various tasks autonomously.

Machine learning approaches are typically categorized into three main paradigms:
supervised learning, unsupervised learning, and reinforcement learning, each with its
own characteristics and applications. Supervised learning involves learning from
labeled data, unsupervised learning discovers patterns in unlabeled data, and
reinforcement learning involves learning through interaction with an environment and
rewards. These approaches cater to different learning scenarios and tasks,
contributing to the versatility of machine learning in various fields such as natural
language processing, computer vision, speech recognition, and more.

1. Supervised Learning Algorithms:

Supervised machine learning is a fundamental but strict technology. Operators
provide the computer with input examples and the desired outputs, and the computer
searches for solutions to obtain those outputs based on the inputs. The goal is for the
computer to learn the general rule that maps inputs to outputs.

Supervised machine learning can be used to make predictions on unavailable or
future data (referred to as "predictive modeling"). The algorithm tries to develop a

function that accurately predicts the output based on the input variables. For example,

20



Chapter Il :Materiels and Methods

predicting the value of a real estate property (output) based on inputs such as the
number of rooms, year of construction, land area, location, etc. Supervised machine

learning can be divided into two types:

® Classification: The output variable is a category.

® Regression: The output variable is a specific value.

The main algorithms used in supervised machine learning are as follows: random
forests, decision trees, k-nearest neighbors (k-NN) algorithm, linear regression,
support vector machines (SVM), logistic regression (fig. 09, a) and gradient boosting,

naive Bayes classification.

K-NEAREST NEIGHBOR

SUPPORAT VECTOR MACHINE

Figure 09,a. Machine Learning techniques
illustrated as conceptual drawings (Rashidi et al. 2020)

(DNN, LR, K-NN, RF, and SVM)
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Supervised learning algorithms are trained using labeled data, where the input
features are associated with corresponding target labels. In the context of lithology
recognition, supervised learning algorithms can be trained to classify drilling data into
different lithological formations based on known examples. Common supervised
learning algorithms used for lithology recognition (Figure 09, b) include:
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Figure09 b - Supervised learning algorithms

Decision trees (DTs) are a powerful machine learning tool used for both
classification and regression tasks. They construct a tree-like flowchart structure
where each internal node represents a test on a feature, branches depict the outcomes
of the test, and leaf nodes hold the class labels.

Compared to other algorithms, DTs provide a clear indication of the role and
importance of each variable in making predictions (Higa, 2018; Zhao & Zhang, 2008).
The DT algorithm works by recursively partitioning the training data into subsets based
on feature values until a stopping criterion is met, such as maximum tree depth or
minimum samples required to split a node. At each step, it selects the feature that
provides the maximum information gain or minimizes impurity after the split, using
metrics like entropy or Gini index (Criminisi et al., 2012; Gupta et al., 2017; Witten et
al., 2016).

DTs are generally built using a top-down, recursive divide-and-conquer approach
(Breiman et al., 2017; Witten et al., 2016). A standard decision tree consists of a root
node, branching nodes, and leaf nodes. The algorithm starts by selecting the root node
attribute, and then progressively splits the instances into sub samples based on the
values of the chosen attributes at each branching node.

DTs offer several advantages, including generating interpretable rules, handling

22



Chapter Il :Materiels and Methods

both continuous and categorical variables, providing clarity on important predictive
features, ease of use, scalability, missing value tolerance, managing non-linear
relationships, and handling imbalanced data. However, they can be prone to over
fitting, especially with complex or deep trees, and may not perform as well as other
algorithms for continuous target prediction.

The random forest (RF) classifier is an ensemble learning method that combines
multiple decision trees to improve the accuracy and robustness of classification tasks.
It works by creating a set of decision trees from randomly selected subsets of the
training data and features. Each tree in the forest votes for a class, and the class with
the most votes becomes the predicted class for the input data.

Some key characteristics of the RF classifier include:

® |t can handle both classification and regression problems.

® |tis well-suited for large, complex data sets and high-dimensional feature spaces.
® |t provides feature importance scores to understand the significance of different
variables.

® |tis resistant to over fitting compared to individual decision trees.

The RF algorithm has several advantages:

It is versatile and can be used for many types of machine learning tasks.
It is easy to use and requires little data preprocessing.
It provides a good indicator of feature importance.

It is hard to beat in terms of performance compared to other algorithms.
However, it also has some limitations:

® |t can be computationally expensive due to the construction of multiple trees.

® |t may be biased towards the majority class in imbalanced datasets.

® |t can be challenging to interpret the reasoning behind individual predictions
compared to a single decision tree.

Overall, the RF classifier is a powerful and widely-used machine learning
algorithm that combines the strengths of multiple decision trees to deliver accurate
and robust predictions. It has been successfully applied in a variety of remote sensing
experiments, including farmland mapping, and has achieved efficient classification
results in these domains (Chuvieco et al., 2002; Chen et al., 2018; Guru et al., 2017;
Hentze et al., 2016; Karnieli et al., 2010).
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Support Vector Machines (SVMs) and Support Vector Classifiers (SVCs) are
powerful machine learning algorithms primarily used for classification tasks. SVM is a
versatile method that can handle both classification and regression problems by
constructing an optimal hyperplane to separate different classes in a multidimensional
feature space.

On the other hand, SVC is a specific implementation of the SVM algorithm,
designed exclusively for classification problems. The goal of SVC is to find the best
hyperplane that can effectively classify data points into distinct classes.

Support Vector Machines (SVM)
SVMs are efficient in high-dimensional spaces and are widely used for classification
tasks. They aim to find a maximum-margin hyperplane that separates the classes with
the largest possible distance. The concepts of support vectors, hyperplanes, and
margins are essential in understanding SVMs. SVMs can handle both linear and non-
linear classification problems by using kernel functions. They are robust to outliers and
can effectively handle datasets with a large number of features.

Support Vector Classification (SVC)

SVC is a classification-specific variant of the SVM algorithm, focused on categorizing
data points into different classes. It is implemented in the sci kit-learn library
as sklearn.svm.SVC and supports multiclass classification. SVC is mathematically
grounded in linear algebra and optimization, with the goal of finding the optimal
values for defining the separating hyper plane. Similar to the general SVM algorithm,
SVC can handle both linear and non-linear classification problems by using kernel
functions. SVC provides a flexible and powerful tool for solving a wide range of
classification problems, especially when dealing with high-dimensional data.

The K-Nearest Neighbors (KNN) algorithm is a non-parametric, supervised
learning technigue used for both classification and regression problems in machine
learning. It operates based on the principle of proximity, where the algorithm makes
predictions by assessing the similarity between data points.

KNN is a straightforward yet powerful algorithm that classifies data points based
on a majority vote of their nearest neighbors. For classification tasks, KNN uses this
majority voting mechanism to assign class labels, with the choice of the k value
determining the number of neighbors considered.
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KNN is a lazy learning algorithm, meaning it stores the training data and performs
the computational work during the prediction stage. This approach makes KNN
memory-intensive, as it needs to retain the entire training dataset for making
predictions.

The selection of the optimal k value is crucial, as it can impact the model's bias-
variance trade-off. Higher k values tend to reduce the model's variance but increase
the bias, while lower k values have the opposite effect. Cross-validation techniques are
often employed to determine the best k value that provides the desired balance
between performance and generalization.

2. Common Matrix

During the assessment of classification models, several common metrics play a vital
role, including accuracy, precision, recall, and the F1 score. These metrics offer
valuable insights into the model’s performance and effectiveness. The equations and
their respective

definitions are as follows:

® Accuracy: It is the ratio of correctly predicted observations to the total number of
observations. This metric is useful when the classes of the target variable are
nearly balanced.

TP +TN

Accuracy =
TP+TN+FP +FN

(A1)

® Precision: It is the ratio of correctly predicted positive observations to the total
number of predicted positive observations.

TP
Precision =

TP + FP

(A2)
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® Recall: Recall is the ratio of correctly predicted positive observations to the total
number of actual positive observations.

TP
Recall =
TP + FN
(A3)
® F1Score: The F1 score is the harmonic mean of precision and recall, aiming to find
a balance between precision and recall.
Precision [ Recall
F1Score =2
Precision + Recall
(A4)
where

® TP: correctly predicted positive observations.

® TN: correctly predicted negative observations.
® FP:incorrectly predicted positive observations.
® FN:incorrectly predicted negative observations.
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IX. Data correlation

Present the correlation matrix to show relationships between numerical features
for our study this our correlation heat map (matrix) (fig. 10).

Figure 10- correlation heat map

® The diagonal elements represent the perfect correlation (value of 1) between each
parameter and itself.

® The color scheme indicates the strength and direction of the correlations, with red
representing strong positive correlations, blue representing strong negative
correlations, and lighter colors indicating weaker correlations.

® The parameters that appear to have the strongest positive correlations are Depth:
TMD and Depth: TVD, indicating they are closely related.

® There are also strong positive correlations between ROP Inverse and Bit Drilling
Time, as well as between RPM Avg and WOB Avg, suggesting these parameters
are likely interdependent.

® Some parameters, such as TGAS and the various drilling performance metrics,
show relatively weak correlations with the other variables, indicating they may be
more independent.

Based on the analysis of the correlation heat map, we can draw the following key
results:

Interdependent parameters:

® Depth: TMD and Depth: TVD are highly correlated, indicating they are closely
linked and interdependent.
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® ROP Inverse and Bit Drilling Time also show a strong positive correlation,
suggesting these parameters are interconnected.
® RPM Avg and WOB Avg exhibit a strong positive correlation, implying they are
likely correlated in their influence on the drilling process.

Independent parameters:

® TGAS appears to have relatively weak correlations with the other variables,
indicating it may be more independent and influenced by different factors.
® Some of the other drilling performance metrics, such as SPP Avg and Torque Avg,
also display relatively weaker correlations, suggesting they may be more

independent.

X. Models performances

The selection of appropriate modeling techniques was guided by the unique
characteristics of the dataset, including the nature and distribution of the input
variables, as well as the presence of missing data. We carefully considered the trade-
offs between model complexity, interpret ability, and predictive accuracy to identify
the most suitable approaches for this application.

In the following sections, we present a detailed analysis of the models'
performances, highlighting their strengths, weaknesses, and the specific scenarios in

which they excel.

1. Random forest classifier

The accuracy classification of random forest classifier 8.688756394

The confusion matrix classification of random forest classifier
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2. SVM Classifier :

Chapter IV: Results and discussion

The accuracy classification of SVM classifier ©.6318131256952169
The confusion matrix classification of SVM classifier
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3. Decision tree Classifier :

The classification report classification of decision tree classzifier

The accuracy classification of decision tree classifier ©.61624826639632926
The confusion matrix classification of decision tree classifier
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The classification report classification of SVM classifier
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4. K Nearest Neignbors Classifier :

The accuracy classification of KNeighbors classifier 0.6440489432703004
The confusion matrix classification of KNeighbors classifier
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The accuracy classification of GaussianNB classifier ©.3259176863181313
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Chapter IV: Results and discussion

XI. Models performance comparison

The evaluation of the machine-learning models was performed, and the
confusion matrices for each model were presented in the previous figures. These
confusion matrices highlight the superior predictive capability of the random forest

model (tab. 01, Fig. 21).

All the models were able to perfectly identify the 'sable moyen' class. However,
the random forest model excelled in accurately predicting both the 'sable moyen' and

'sable fin' classes.

In contrast, the Gaussian NB model faced challenges in accurately classifying the
'sable fin' class, as evidenced by the confusion matrix (Fig. 20). This suggests that the
random forest model outperformed the Gaussian NB model in discriminating between

the different sand types.

Table 01 - Models Performance comparison

The Model Its accuracy
0 Random Forest 0.680756
1 Decision Tree 0.616240
) SVM 0.631813
3 K Neighbors 0.644049
4 Gaussian NB 0.325918

0.7
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Acouracy

ny

0.2

a1

Comparison of Model Performance

0.0+

o>

Mol

Figure 21 - Histogram of Models Performance comparison

32



Chapter IV: Results and discussion

The random forest classifier emerged as the top-performing model with
anaccuracy of 68,07%, whereas the Gaussian NB model registered the lowest accuracy
of 32% .

Figure 22 shows the precision of models in order by Lithology Classification
Probability Distributions.

15
10 D.8 |
08 "
> > 0.6 4 :;04
g0e;
} D.4
& 04 & £,
0.2 1 h.2 K ‘ J\
0.0 — - 0 et — -
-10 0 10 -10 0 10 -10 0 10
o = ] Lithology
104 Ba—
0.8 4 >
> > P31
g 061 :
D.2 4
3 04 3
0.2 1 p-1 1 /
\ /“/"‘ \
0.0 — v 0 o \,g_‘\
-10 0 10 -10 0 10
Uthology uthology

Figure 22 - Lithology Classification Probability Distributions (by order )

XIl. Features importance in the model

The feature importance analysis of the Random Forest model reveals the key
factors that drive its predictive capabilities (Fig. 23). At the top of the list is the true
vertical depth (TVD) of the well, indicating that this depth-related parameter is the
most significant input for the model's predictions. Closely following is the measured
depth (TMD), further emphasizing the critical role of depth characteristics in the
model's decision-making.

The third most important feature is the average standpipe pressure (SPP Avg),
suggesting that this drilling parameter is also a crucial input for the model. The next
two features of importance are the bit drilling time and the average torque,
highlighting the relevance of drilling dynamics and operational factors in the model's
performance.

The remaining features, such as rate of penetration (ROP), inverse ROP, flow rate,
weight on bit, and rotational speed, have progressively lower importance scores. This
implies that while these parameters do contribute to the model's predictions, they
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play a relatively less significant role compared to the top-ranked depth, pressure, and
drilling-related inputs

Featue

Feature Importances in Random Forest Model

De=pth: TWO{m]
De=pth: TMO{m|

SPF gl pse]

Bet: Onlling Tirme]h|
Torgue foeg| o]
RO mih]

ROR Inyerz= [minimj|
Flow T swg{imen]

woe avalt] {8

RPe Avgrem] 1

TEAS|®|

a0 ooz g0 0orE n.1og =8 -] B0 LTS
mipartancs

Figue 23 - Histogram of Features importance

XIll. Results Sammury

The comparison between the real and predicted lithologies (Fig. 24, 25 and 26)
reveals several key findings about the model's performance. For the "sable fin" (fine
sand) and "gres fin" (fine sandstone) lithologies, the real and predicted values closely
align, indicating the model accurately captures these rock types. However, for "sel"
(salt), the model significantly overestimates the presence compared to the real data,
suggesting challenges in predicting the salt lithology.

The model's predictions for "argile" (clay) are reasonably close to the real values,
though still somewhat higher, pointing to room for improvement in this area.
Conversely, larger discrepancies exist between real and predicted values for other
lithologies, such as "Angle Structure calcaire" and "Calcaire oolitique", highlighting the
need to enhance the model's predictive capabilities for those specific rock types.

Overall, the variability in the model's performance across the different lithologies
suggests that further refinement and optimization of the model would be beneficial to
improve its consistency and accuracy in predicting a wider range of geological
characteristics. This analysis provides valuable insights that can guide future model
development efforts and help target areas for model enhancement to better align the
predicted lithologies with the observed real-world data.
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Figure 24- Comparison of Real vs Predicted Lithology ( lithology in function of counts)
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Figure 25 - Comparison of Real vs Predicted Lithology (lithology in function of depth )
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Figure 26- Comparison of Real vs Predicted Lithology ( all data)

XIV. Limitations and Challenges

1. Complexity of Drill Parameters:

The model relies on analyzing a vast array of drill parameters, such as weight-on-bit,
rotational speed, rate of penetration, and torque, among others. The sheer volume
and complexity of these parameters can make it challenging to extract meaningful
patterns and correlations with the underlying lithology. Effectively processing and
interpreting this data in real-time is a significant challenge.

2. Lithology Variability:

Geological formations can exhibit a high degree of heterogeneity, with abrupt changes
in lithology types, mineral compositions, and physical properties. The model needs to
be able to quickly adapt to these rapid changes in lithology and update its recognition
models accordingly. Accommodating this variability in a robust and accurate manner
is a key limitation.

3. Execution Time Constraints:

Real-time lithology recognition based on drill parameters requires the system to
process the data and provide accurate results within a very short time frame, often in
the order of seconds or less. This places significant constraints on the computational
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algorithms and hardware used, as they need to be highly efficient and optimized to
meet the stringent timing requirements.

4. Dynamic Data Collection and Sensor Degradation:

The drill parameters used by the model may be affected by various factors, such as
sensor degradation, drilling conditions, and changes in the sampling methods.
Maintaining the system's performance and accuracy in the face of these dynamic
factors can be a significant challenge, requiring robust data preprocessing and quality
control techniques.

5. Validation and Uncertainty Quantification:

Ensuring the reliability and trustworthiness of the model's output is crucial, as the
results may be used for critical decision-making in exploration, development, and
production activities. Developing robust validation and uncertainty quantification
techniques is essential to address this limitation, particularly when dealing with the
inherent uncertainties associated with drill parameter data.

XV. Futur work

As the field of lithology progresses with the integration of advanced machine learning
models, the next significant step is to seamlessly incorporate these models into real-
time applications. One such potential application is LithoVision, a comprehensive tool
designed for geologists and engineers to visualize and analyze lithology data efficiently.
The integration of our Random Forest model for lithology recognition into LithoVision
can revolutionize the way geological data is interpreted and utilized in the field. Here
are some key points for future work in this area:

1. Seamless Integration with LithoVision:

e APl Development: Develop a robust API that allows LithoVision to
communicate with the machine learning model. This APl will handle data
transfer, model inference, and result retrieval in real-time.

e User Interface (Ul) Enhancements: Update the LithoVision Ul to include
features that allow users to input new data and visualize predictions. The Ul
should be intuitive and provide clear visual cues about lithology classifications.

¢ Batch and Real-Time Processing: Ensure that the model can handle both batch
processing of historical data and real-time processing of streaming data from
drilling operations.

2. Model Optimization and Validation:
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e Model Retraining: Periodically retrain the model with new data to improve
accuracy and adapt to changes in geological formations. This ensures that the
model remains up-to-date and reliable.

e Validation and Testing: Rigorously test the model within LithoVision under
various scenarios to validate its performance. This includes edge cases and
unusual lithology types to ensure robustness.

3. Enhanced Visualization Tools:

e Interactive Logs: Implement interactive lithology logs that allow users to drill
down into specific depths and see detailed predictions and feature
importances.

e 3D Visualization: Integrate 3D visualization capabilities that provide a
comprehensive view of the geological formations, helping users better
understand the spatial relationships and lithology distributions.

e Heatmaps and Annotations: Include heatmaps to highlight areas with high
uncertainty in predictions, and allow users to annotate these areas for further
investigation.

4. User Feedback Loop:

¢ Feedback Mechanism: Implement a feedback mechanism within LithoVision
where users can provide insights and corrections to model predictions. This
user-generated data can be invaluable for retraining and improving the model.

¢ Continuous Improvement: Use the feedback loop to continuously refine the
model. Incorporate active learning techniques where the model prioritizes
learning from user-identified errors.

5. Integration with Other Tools:

o Data Sources: Integrate LithoVision with other data sources such as seismic
data, core samples, and well logs to provide a holistic view of the geological
environment. This can enhance the model’s predictive capabilities by providing
more context.

e Collaboration Tools: Incorporate collaboration tools that allow multiple users
to work on the same dataset simultaneously, facilitating better decision-
making and knowledge sharing.

6. Scalability and Performance:

e Scalable Infrastructure: Deploy the model on a scalable cloud infrastructure to
handle large volumes of data and multiple simultaneous users. Ensure that the
system can scale up during peak usage times.
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e Performance Optimization: Optimize the model and API for low latency to
ensure that predictions are provided in real-time, which is crucial during drilling
operations.

7. Regulatory and Compliance:

o Data Security: Ensure that all data handling complies with relevant data
protection regulations. Implement strong security measures to protect
sensitive geological data.

o Compliance: Ensure that the application and its usage comply with industry
standards and regulations.

Login to Account
"

Welcome Back!

LithoVision

Figure 27 - LithoVision logo and interface
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Conclusion

In this research, we present a machine learning-based approach to real-time
lithology prediction using drilling data, focusing on the application of a Random Forest
classifier. Our proposed methodology, termed LITHOVISION, successfully differentiates
between various lithologies, achieving an accuracy of 68% in our study. This represents
a significant improvement over traditional methods that primarily rely on the rate of
penetration (ROP) for lithology prediction.

The relationship between lithology prediction and drilling tools calibration is reciprocal
and critical for successful drilling operations. Accurate lithology predictions inform the
calibration of drilling tools, leading to optimized performance, enhanced safety, and
reduced operational costs. Conversely, well-calibrated tools provide more accurate
data, improving future lithology predictions. This interaction is essential for advancing
drilling technologies and achieving efficient resource extraction.

The LITHOVISION model uses a comprehensive set of drilling data features,
including ROP, total gas content, and torque. This diverse feature set enables the
model to capture the intricate relationships between different drilling parameters and
their influence on lithology identification. By doing so, our approach provides a more
nuanced and accurate prediction of subsurface lithologies, enhancing the
understanding of geological formations encountered during drilling operations.

Despite the challenges in identifying rare lithologies, our research demonstrates
significant progress in immediate subsurface analysis. The robustness of our results is
evidenced by consistent precision and recall values around 69%, underscoring the
efficacy of our methodology. These real-time lithology insights are particularly
valuable for geosteering, a critical aspect of maintaining the optimal well trajectory
within the pay zone, thereby improving drilling efficiency and reducing operational
risks.

We are committed to the continuous enhancement of our LITHOVISION web
application. Future improvements will focus on incorporating a dedicated section for
diverse data visualization features, making the app more user-friendly and providing
deeper insights. These enhancements will empower users with real-time, data-driven
decision-making capabilities during drilling operations.

In conclusion, our study highlights the transformative potential of machine
learning in real-time lithology prediction. While the current accuracy of 68% indicates
room for further refinement, our research lays a solid foundation for revolutionizing
subsurface analysis and geosteering in the oil and gas industry. By continually refining
our models and integrating them into user-friendly applications like LITHOVISION, we
aim to significantly enhance the efficiency and effectiveness of drilling operations,
driving innovation and progress in the field.
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