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Abstract   
This study addresses the problem of accurately predicting the tops of the 

formation and its lithology while drilling using a novel machine learning (ML) approach. 

Our model achieves 68% accuracy and 69% precision in real-time litho-facies 

identification using 11 drilling parameters. Extensive data preprocessing ensured 

unbiased and effective model performance. The model was carefully trained and 

evaluated, with extensive data preprocessing to reduce features, balance the sample 

distribution, and ensure an unbiased dataset. This attention to data quality and 

preprocessing is crucial for effective model performance. 

A case study in the Hassi Messaoud oil field validated the model's practical 

applicability y. This ML-based methodology offers significant advantages for real-time 

geosteering, enhancing decision-making and efficiency in drilling operations. The 

model successfully predicts fine sand and fine sandstone lithologies, and for clay 

predictions are reasonably close to the real values. However, for salt, the model 

significantly overestimates the presence compared to the real data, suggesting 

challenges in predicting the “salt” lithology.  

Résumé  
Cette étude aborde le problème de la prévision précise des sommets des 

formations et de leur lithologie pendant le forage à l'aide d'une nouvelle approche de 

learning machine (ML).  Notre modèle, atteint une précision de 68 % et une exactitude 

de 69 % dans la reconnaissance en temps réel des litho-faciès en utilisant 11 

paramètres de forage. Un prétraitement des données exhaustif a assuré une 

performance du modèle non biaisée et efficace. Le modèle a été soigneusement 

entraîné et évalué, avec un prétraitement des données étendu pour réduire les 

caractéristiques, équilibrer la distribution des échantillons et garantir un ensemble de 

données non biaisé. Cette attention à la qualité des données et au prétraitement est 

cruciale pour une performance efficace du modèle. 

Une étude de cas dans le champ pétrolifère de Hassi Messaoud a validé la mise 

en   pratique du modèle. Cette méthodologie basée sur le ML offre des avantages 

significatifs pour la surveillance géologique en temps réel, améliorant la prise de 

décision et l'efficacité des opérations de forage.  Le modèle prédit avec succès les 

lithologies de sable fin et de grès fin, et pour les argiles, les prédictions sont 

raisonnablement proches des valeurs réelles. Cependant, pour le sel, le modèle 

surestime considérablement sa présence par rapport aux données réelles, ce qui 

suggère des difficultés dans la prédiction de la lithologie  "sel". 

 ملخص 

هذا البحث يعالج تحدي التنبؤ الدقيق بالتكوينات الحجرية والحدود الطبقية في صناعة النفط باستخدام منهج جديد 

معلمة  11في تحديد ملامح الصخور في الوقت الفعلي باستخدام  ٪69و ٪68 ، يحقق دقة(ML) "للتعلم الآلي 

 .كفل التحضير الشامل للبيانات أداء نموذجي غير متحيز وفعال .حفر

تم تدريب النموذج وتقييمه بعناية، مع التحضير الشامل للبيانات للحد من الميزات ، وموازنة توزيع العينة ، 

يعُد هذا الاهتمام بجودة البيانات والتحضير أمرًا حاسمًا لأداء النموذج  .وضمان مجموعة بيانات غير متحيزة
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 الفعال

حاسي مسعود صحة التطبيق العملي للنموذج. وتوفر هذه المنهجية القائمة لحقل النفطي الحالة في الأثبتت دراسة 

فاءة عمليات عملية صنع القرار وك على التعلم الآلي مزايا كبيرة للمراقبة الجيولوجية في الوقت الحقيقي، وتحسين

الحفر.  يتنبأ النموذج بنجاح بالطبقات الصخرية الرملية الناعمة والحجر الرملي الناعم، وبالنسبة للصلصال، فإن 

بشكل  اجوده، يبالغ النموذج في تقدير ويةملحطبقة البالنسبة لل أماالتنبؤات قريبة بشكل معقول من القيم الفعلية. 

 .“حيةالمل”بالبيانات الفعلية، مما يشير إلى وجود صعوبات في التنبؤ بالطبقات الصخرية  كبير مقارنة  
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Introduction  

Lithology prediction involves determining the types of rocks that will be encountered 

during drilling, which is essential for various considerations such as distinguishing rock 

types, preventing formation pressures, optimizing drilling parameters, and improving 

safety. The relationship between drilling parameters, lithology, and instrument 

parameters is crucial for optimizing drilling operations and improving the accuracy of 

subsurface characterization.  

Historically, lithology identification relied on direct physical examination of drilling 

samples, which was time-consuming and limited in spatial coverage. The integration 

of geophysical logging data, such as gamma ray, resistivity, sonic, density, and neutron 

logs, emerged as a crucial technique for inferring lithological properties. However, this 

indirect data required expert interpretation and was not suitable for real-time, 

accurate, and cost-effective lithology recognition. 

Recent advancements in artificial intelligence and machine learning have 

revolutionized lithology recognition, introducing innovative techniques that address 

the limitations of traditional methods. Intelligent algorithms, including artificial neural 

networks (ANN) and deep learning models like Convolutional Neural Networks (CNN), 

enable rapid and accurate identification of lithologies from rock images, making the 

process more accessible and less reliant on specialized petrology expertise. 

The integration of machine learning tools and drilling parameters offers the potential 

to transform the way lithology is identified, providing instant insights and enabling 

more informed decision-making during exploration and production processes. This 

study aims to explore the frontiers of lithology recognition, leveraging the power of 

modern machine learning techniques to develop a robust and adaptive framework for 

accurate and timely lithology identification. By harnessing the wealth of information 

available from drilling parameters and other relevant data sources, this research seeks 

to establish a new paradigm in subsurface characterization, ultimately enhancing the 

efficiency and effectiveness of exploration, extraction, and resource management. 

The dissertation is structured around four chapters: 

Introduction to Lithology Recognition        

 Importance of accurate lithology identification in various industries 

 Historical progression of lithology recognition methods 

 Limitations of traditional approaches 

 Role of artificial intelligence and machine learning 

 Emergence of techniques like ANN and CNN 

 Benefits of rapid and accurate lithology identification from rock images 



 

 2 

 Importance of real-time insights for time-sensitive operations 

 

Study Area: Hassi Messaoud Region   

An Overview of the Hassi Messaoud region and its relevance to the research 

 

Materials and Methods 

 Data sources: Drilling parameters (MWD) , Chromatographic data 

 Data processing techniques 

 Machine learning techniques and algorithms employed 

 

Results and Interpretation 

 Presentation of the findings from the proposed framework 

 Analysis of the accuracy, efficiency, and adaptability of the lithology recognition 

approach 

 Discussion of the implications and potential impact on exploration, extraction, and 

resource management 
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Chapter I : Introduction to the Lithology 
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I. Overview of Drilling Operations 

Drilling operations are a critical component of the oil and gas industry, involving 

the extraction of hydrocarbons from underground reservoirs. The process typically 

begins with exploration, where geologists and engineers identify potential drilling sites 

based on geological surveys and seismic data. 

Once a site is selected, a drilling rig is set up (fig. 01) , and a well is drilled through 

the earth's crust to reach the targeted reservoir. The drilling process involves the use 

of specialized equipment, including drill bits, drill pipes, and drilling fluids, which are 

designed to manage the pressure and temperature conditions encountered during 

drilling. 

In Algeria, various companies, including national and international oil and gas 

companies, carry out drilling operations. These 

operations are subject to regulations and guidelines set 

by the government and international organizations, 

such as the International Association of Drilling 

Contractors (IADC) and the International Labor 

Organization (ILO). 

Conventional drilling is the most common method 

used in Algeria. It involves pumping a drilling fluid (Mud) 

, typically a mixture of oil and additives, down the drill 

pipe to cool and lubricate the drill bit and remove 

cuttings from the wellbore. This method is widely used 

due to its effectiveness in managing the pressure and 

temperature conditions encountered during drilling.  

(Solutions intégrées de sécurité Algeria ) 

                                                                                  

Figure 01 - Drilling rig 

II.  lithology recognition 

Lithology identification is a critical aspect of drilling operations, as it provides 

crucial information about the geological composition of subsurface formations. 

Accurate lithology identification helps optimize drilling parameters, improve drilling 

performance, and reduce costs. Traditional methods of lithology identification rely on 

physical rock samples obtained during drilling (fig. 02-a,b) ,  by means of observing the 

color, structure, and mineral crystallinity, rocks can be classified into several general 
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categories ( Kathrada & Adillah , 2019). For further classification, thin sections are 

observed from such perspectives as the optical characteristics of minerals and crystal 

shapes (Hu et al., 2010; Chen et al., 2010).  As well as geophysical log data or 

geochemical methods such as gamma ray, resistivity, sonic, density, and neutron logs. 

However, these methods can be time-consuming (fig. 03) , labor-intensive, and 

subjective, especially when dealing with large amounts of data ( Chopra et al.,2002;  

Smith et al., 2002; Xu et al., 2021). 

In Algeria, the National Wells Services Company has adopted a specialized model 

called GEOLOG to help with the visualization of lithology in a comprehensive master 

log. This model relies on the lithological information provided by the mud logger, who 

analyzes the rock samples obtained during the drilling process. 

 

 

 

 

 

 

Figure 02,a - Obtained samples from down hole 

 

 

 

 

 

 

Figure 02 ,b - observation and analysis of the samples 
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III.  Advanced Lithology identification researches 

   To address the mentioned challenges of time and others , researchers have 

explored intelligent methods for lithology identification using artificial intelligence and 

machine learning algorithms. These are some  key advancements in lithology 

identification :  

1. Improved Object Detection Algorithms 

Single Shot Multi box Detector (SSD): 

 Functioning Principle: SSD is an object detection algorithm that uses a single 

neural network to predict bounding boxes and class probabilities directly from full 

images. It is designed to handle a wide range of object sizes and aspect ratios. 

 Improvements: The SSD algorithm was modified by adding residual networks and 

adaptive moment estimation to improve its performance. This modification 

enhanced the accuracy of the algorithm in identifying rock types. 

 Results: The modified SSD algorithm achieved average accuracies of 89.4% and 

98.4% in identifying 12 rock types in the Xingcheng area of China. (Hou, 2023 ) 

Integration of Remote Sensing and Machine Learning 

 Functioning Principle: This method combines remote sensing data from various 

sources (Landsat, Sentinel-2, ASTER, and Hyperion) with machine learning 

algorithms (SVM, RF, and ANN) to create detailed and accurate lithological maps. 

 Principle: The remote sensing data provides detailed information about the 

geological composition of the area, which is then used to train machine learning 

models to identify lithological features (HAMMAD, 2016). 

 Results: This method has been shown to be particularly effective in remote or 

inaccessible areas where traditional methods may be difficult to apply (  Xu et al., 

2021). 

Application of Artificial Intelligence in Petroleum Reservoirs 

 Functioning Principle: AI-based methods are used to analyze real-time drilling data 

and predict lithology types in low permeability reservoirs. 

 Principle: The AI algorithms are trained on large datasets of drilling data and are 

able to identify patterns and relationships that are difficult for humans to 

recognize. 

 Results: AI-based methods have been shown to improve the accuracy and speed 

of lithology identification compared to traditional techniques like cross plots and 

mathematical statistics.(Tiantai Li, 2022;  Khalifa , 2023 ) 
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Deep Learning for Refined Lithology Identification 

 Functioning Principle: Deep learning models such as Faster R-CNN and Region 

Vision Transformer are used to analyze rock images and identify lithology types. 

 Principle: These models use convolutional neural networks to extract features 

from the rock images and then use these features to identify the lithology type. 

 Results: These models have been shown to be highly accurate in identifying rock 

types, including sandstone lithofacies.( Xu et al., 2022) 

These advancements in lithology identification using artificial intelligence and machine 

learning have significantly enhanced the efficiency, accuracy, and accessibility of the 

process, making it easier to study geological features and support applications in 

mineral exploration, geotechnical engineering, and petroleum geology. 

 

Here’s a detailed look at the relationship between lithology prediction and drilling 

tools calibration: 

IV. Lithology Prediction for Drilling Tools Calibration 

Lithology prediction involves determining the types and properties of rocks that will 

be encountered during drilling operations.  

Calibration of drilling tools involves adjusting and fine-tuning the tools and equipment 

used in drilling operations to ensure they function correctly under the predicted 

conditions. 

 Lithology prediction and the calibration of drilling tools are closely connected in the 

context of oil and gas exploration, mining, and other subsurface investigations. 

Understanding this relationship is crucial for optimizing drilling operations, improving 

efficiency, and ensuring safety. Accurate lithology prediction helps in: 

 Drill Bit Selection and Optimization: Accurate lithology prediction allows for the 

selection of the most appropriate drill bits and their calibration to minimize wear 

and optimize performance. Different lithologies cause different wear patterns, 

and understanding these can lead to better bit selection and longer bit life. 

 Torque and Drag Management: Calibrating tools to handle expected resistances 

from different rock types.  

 Drilling Efficiency: Knowing the lithology helps in calibrating the drilling 

parameters such as weight on bit, rotational speed, and drilling fluid properties. 

This ensures efficient penetration rates and reduces non-productive time.  

 Tool Life and Maintenance: Predicting the types of lithologies and their 

abrasiveness can help in planning maintenance schedules and the calibration of 
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tools to prolong their life 

 Mud System Calibration: Adjusting the properties of drilling mud to optimize hole 

cleaning and pressure control based on lithology. 

 Measurement While Drilling (MWD) and Logging While Drilling (LWD) Tools: 

During drilling, real-time lithology prediction (through MWD/LWD tools) helps in 

making immediate adjustments to the drilling tools and parameters. This 

continuous calibration process enhances drilling efficiency and safety.  

 Data Integration: Combining lithology prediction data with calibration parameters 

enhances the ability to predict tool performance and necessary adjustments, 

creating a feedback loop that improves future predictions and calibrations. 

 Formation Damage Prevention: Proper calibration based on lithology can prevent 

issues such as formation damage or wellbore instability, which can arise from 

inappropriate drilling parameters or tools. 

  

 

 

 

. 
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V. Historical  Background and geological situation of Hassi 

Massaoud rigion  

Historical Background of the Hassi-Messaoud Field 

Several wells have been drilled in the Hassi Messaoud region. The first well was  drilled 

in 1956, to a depth of 3338 meters. A second well was  drilled in 1957 to complete the 

first reservoir, which was put into production at the end of 1958. Subsequently, 20 

more wells were drilled, allowing for a production of approximately 0.5 million tons. 

By the end of 1964, 153 wells were in production, with the start-up of the first two 

high-pressure gas re-injection stations. Seven injection wells were then equipped. 

Between 1963 and 1967, an average of 8 wells per year were drilled. By the end of 

1975, 262 wells had been drilled, of which 222 were operational. In 2000, the number 

of wells drilled reached 1096, including 783 oil producers, 100 gas injection wells, and 

37 water injection wells. The field also had 129 dry wells and 47 water-producing wells. 

Subsequently, several studies have been conducted to better understand the structure 

of the Hassi-Messaoud field (Djemili, & Boublal, 2016). 

 

Geological structure  of the Hassi-Messaoud Field 

The Hassi-Messaoud field represents the largest oil deposit in Algeria. It is located in 

the northeastern part of the Saharan platform and corresponds to the northern 

extension of the Amghid el biod ridge ( figure 03 ). It is a flattened, broad, oval anticline 

trending north- northeast to south- southwest (Djemili, & Boublal, 2016), parallel to 

the major fault zone (fig. 3b). It covers almost 2,000 Km² in the Oued Mya basin 

(Moussous, 2008; Loukil, 2016).  

The field  is bounded: 

 To the north, by the Djamaa-Touggourt structure 

 To the west, by the Oued Mia depression 

 To the east, by the Dahar depression 

 To the south, by the Amguid depression 

In geographical coordinates, the field is situated between: 

 32°15' north latitude to the north 

 31°30' north latitude to the south 

 5°40' east longitude to the west 

In Lambert coordinates, the field extends between: 
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 790,000 and 840,000 m east for the X coordinate 

 110,000 and 150,000 m north for the Y coordinate 

 

Zonatation of Hassi Massaoud field  

The Hassi-Messaoud oil field is divided into numbered zones, which are naturally 

deduced from the production characteristics and the geology of the reservoir 

(Hamzioui, 2016). This subdivision is based on the evolution of well pressures as a 

function of production, allowing for the identification of 25 distinct producing zones 

(fig. 04) 

Figure 04- Zonatation of Hassi Massaoud field 

Figure 03 – a. geographical location of hassi 

messaoud region 
Figure 03 – b. geological context  of hassi 

messaoud region (Wec Algeria, 2007) 
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VI. Internship at the National Company for Well Servicing 

(ENSP) - Insights into Drilling Operations and Lithology 

Recognition in the Hassi Messaoud Region 

To gain a deeper understanding of the drilling operations and lithology 

recognition processes in this area, we conducted an internship at the National 

Company for Well Servicing (ENSP) from May 20 th, 2024, to May 31st, 2024. 

During this internship, we had the opportunity to visit several key service areas 

within the ENSP, including the Mud Logging Cabin, the Control Quality Service, and the 

Well Site W1. This hands-on experience provided invaluable insights into the real-

world practices and challenges associated with lithology recognition in the Hassi 

Messaoud region. 

Well Site W1 : 

At the Well Site W1 , we observed the drilling operations and the collection of drilling 

parameters (MWD) and chromatographic data. We witnessed the continuous 

monitoring of various parameters, such as mud flow rate, drill bit weight, and 

rotational speed, which are crucial for identifying changes in the subsurface lithology 

in real-time. Additionally, we learned about the process of lithology identification by 

collecting rock samples from the well and analyzing their physical and mineralogical 

properties. This firsthand experience highlighted the importance of integrating these 

drilling parameters with the chromatographic and rock sample data for effective 

lithology recognition. 

Mud Logging Cabin: 

The Mud Logging Cabin served as a central hub for data 

acquisition and analysis. Here, we gained insights into 

the processes of data collection, handling, and 

preliminary interpretation. We observed the real-time 

monitoring of drilling parameters, the integration of 

chromatographic data, and the use of specialized 

software for initial lithology identification ( figure 05 ) . 

This experience highlighted the challenges and 

complexities involved in translating the raw data into 

meaningful geological insights. 

                                                                                                  

Figure 05 - Drilling parameters 
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Control Quality Service: 

The Control Quality Service department was responsible for ensuring the reliability 

and accuracy of the data collected during the drilling operations. We learned about 

the various quality control measures, such as instrument calibration, data validation, 

and error detection, that are essential for maintaining the integrity of the dataset used 

in the lithology recognition process. 

The knowledge and practical experience gained through this internship at the ENSP 

have significantly enriched our understanding of the drilling operations and lithology 

recognition challenges in the Hassi Messaoud region. These insights have directly 

informed the design and development of the machine learning-based lithology 

recognition framework presented in this study. 
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VII. Exploratory Data Analysis  

Effective lithology recognition in the Hassi Messaoud region requires a thorough 

understanding of the available data sources and their characteristics. Before applying 

any machine learning techniques, it is essential to conduct a comprehensive 

exploratory data analysis (EDA) to gain insights into the data, identify potential 

patterns, and uncover any underlying relationships or anomalies. This preliminary step 

is crucial for informing the selection and optimization of the most appropriate 

modeling approaches. 

In this section, we present the EDA conducted on the drilling parameters (MWD) and 

chromatographic data collected from the Hassi Messaoud region. 

1. Drilling parameters (MWD) :  

Measurement While Drilling (MWD) sensors play a pivotal role in drilling 

operations by providing essential drilling parameters and formation evaluation 

data in real-time. Unlike Logging While Drilling (LWD) sensors, which primarily 

focus on geological formations, MWD sensors emphasize drilling dynamics and 

directional control. However, they also contribute significantly to lithology 

recognition by offering: 

Formation Pressure Measurements: MWD sensors monitor formation pressures, 

enabling drillers to anticipate and mitigate potential well bore stability issues and 

fluid influxes. 

Drill Bit Performance Data: By monitoring drill bit performance metrics such as 

weight-on-bit and torque, MWD sensors help assess drilling efficiency and identify 

drilling challenges in real-time. 

Downhole Temperature and Pressure Measurements: These measurements 

provide insights into downhole conditions, including temperature gradients and 

pressure differentials, aiding in the interpretation of lithological boundaries and 

formation properties. 

MWD sensors are integral to steering the drill bit accurately through the formation, 

optimizing drilling performance, and ensuring precise wellbore placement. Their 

contribution to lithology interpretation enhances overall drilling efficiency and 

facilitates informed decision-making during drilling operations. 
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a) - Weight on Bit (WOB): 

Weight on Bit (WOB) is the weight applied by the bottom hole assembly (BHA) on the 

drill bit. 

b) - Rotation Speed or RPM (Revolutions Per Minute): 

Rotation speed is another variable that can influence the Rate of Penetration (ROP). 

The total tool rotation speed is equal to the surface rotation speed plus the downhole 

motor/turbine rotation speed. It is varied depending on the tool used and the 

geological formations encountered to reduce lateral vibrations and avoid triggering 

the drillstring resonance. 

c) - Rate of Penetration (ROP): 

Rate of Penetration (ROP) represents the speed at which the drilling tool advances into 

the rock. It is measured in meters per hour and is influenced by various factors. 

d)- Torque: 

Torque is an indicator of what is happening at the drilling tool level. In soft formations, 

torque can indicate that the tool is in contact with the bottom before the WOB. If 

downhole torque measurements are available, they can be used in combination with 

surface measurements for greater accuracy. 

e) - Mud  Flow in : 

 the flow rate of the drilling mud as it enters the wellbore during the drilling process. 

f) - Stand pipe Pressure (SPP): 

Standpipe pressure represents the sum of pressure losses generated by the mud flow 

through the drill string, passing through the tool, and returning through the annular 

space. It is measured at the surface through the standpipe and provides various 

information about well conditions, the resistance and hardness of the geological 

formation being drilled, as well as the quality of the drilling mud used. 

G) - Drilling Depth: 

Drilling depth is an important parameter that can influence the Rate of Penetration 

(ROP) during the drilling operation. 

H )- Bit Drilling Time 

The amount of time the drill bit is actively engaged in penetrating and drilling through 

the formation. 
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2. Chromatographic data (TOTAL Gas ) : 

The total gas detected during the drilling process refers to the measurement and 

analysis of the various gas components present in the drilling mud. This includes the 

detection and quantification of both hydrocarbon gases, such as methane, ethane, 

propane, and others, as well as non-hydrocarbon gases like carbon dioxide, hydrogen 

sulfide, nitrogen, and helium. 

Several analytical techniques are employed to detect and characterize the total 

gas in the drilling fluid, including gas chromatography (GC), mass spectrometry (MS), 

Fourier transform infrared spectroscopy (FTIR), and laser absorption spectroscopy 

(LAS). These methods allow for the identification and precise measurement of the 

individual gas components, providing detailed information about the composition of 

the gas mixture in the drilling mud. 

The analysis of the total gas detected during drilling is an important tool for 

understanding the subsurface conditions and potential hydrocarbon reservoirs 

encountered while drilling a well. The gas composition data can help geologists and 

engineers make informed decisions about the drilling operations and the potential for 

hydrocarbon production.[Mostafa Raouf ,Apr17,2023],[J. ERZINGER, T. WIERSBERG 

AND M. ZIMMER,June 2006],[Haibo Liang; Haifeng Chen; Jinhong Guo; Xing Zuo, 2019] 

3. Data collection  and description : 

The analysis revolves around data from wells originating from the Hassi Massoud 

region, comprising 12 columns - 2 columns of depth, 8 columns of drilling parameters, 

Total Gas, and Lithology (the output variable) sourced from mud logging data. The 

dataset contains 4,492 rows without any missing values. The investigation of the 

Lithology column reveals a diverse array of 15 lithologies: Anhydrite, Argile, Argile 

silteuse, Calcaire, Calcaire dolomitique, Dolomite, Dolomite et calcaire crayeux, 

Dolomite et calcaire argileux, Dolomite et calcaire vacuolaire, Grès fins, Gypse, Sable 

fin, Sable moyen, Marne, and Sel. The study focuses on all these lithologies and aims 

to address the imbalanced class distribution using appropriate techniques, such as 

oversampling, to derive valuable insights from the drilling data. 

4. Data Imputation (oversampling)  : 

Imputation of missing values is a procedure that replaces missing values with plausible 

estimates to enable accurate estimation of population parameters and maintain the 

power of data mining and analysis techniques. The optimal approach depends on the 

amount of missing data, and it is generally recommended to compare results before 
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and after imputation if more than 25% of the data is missing .(Rubin ,1976) 

In the context of this study, we encountered a significant amount of missing data 

in the total gas field. To address this challenge, we implemented an imputation 

procedure that increased the available data from 1,085 to 4,492 data points. This 

allowed us to better capture the underlying trends and patterns in the total gas 

variable, which is a crucial input for the lithology recognition framework developed in 

this study. By imputing the missing values, we were able to maintain the statistical 

power of our analysis and ensure more reliable estimates of the population 

parameters. 

 

Figure 06,a - data infos before imputation 

 

Figure 06 ,b- data infos after imputation 

5. Data Normalization : 

Data normalization is a crucial pre-processing step in machine learning that transforms 

data into a common format, ensuring that all input parameters are scaled to a common 

range. It is essential for datasets with different units or magnitudes across different 

features His function returns the standardized value of a distribution characterized by 

a mean value and a standard deviation [Goyal & Singh, 2019).  
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Figure 07 ,a - Data before the  normalization

 

Figure 07 b - Data after the  normalization 

6. Data visualization :   

Through  series of statistical analyses, visualizations, and data transformations, we aim 

to: 

 Describe the overall structure and distribution of the variables within the dataset. 

 Identify any missing values, outliers, or data quality issues that may require 

attention.  

 Explore the relationships between the drilling parameters, chromatographic data, 

and the known lithological classifications. 

 Assess the suitability of the data for the subsequent machine learning-based 

lithology recognition tasks.  

By thoroughly examining the data characteristics and establishing a solid 

understanding of the underlying patterns, we can lay the groundwork for the 

development of a robust and effective lithology identification framework tailored to 

the Hassi Messaoud region. The insights gained from this exploratory analysis will 

guide the selection of relevant features, the design of appropriate modeling 

architectures, and the interpretation of the final results (fig.08). 
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Figure 08 - Data Visualization 

VIII. Machine learning tools 

Machine learning is a field within artificial intelligence that focuses on developing 

and studying statistical algorithms capable of learning from data and making 

predictions without explicit programming instructions. It enables machines to learn 

from past experiences, identify patterns, and improve incrementally with minimal 

human intervention. Machine learning algorithms are trained on data sets to create 

models that can categorize images, analyze data, predict outcomes, and perform 

various tasks autonomously. 

Machine learning approaches are typically categorized into three main paradigms: 

supervised learning, unsupervised learning, and reinforcement learning, each with its 

own characteristics and applications. Supervised learning involves learning from 

labeled data, unsupervised learning discovers patterns in unlabeled data, and 

reinforcement learning involves learning through interaction with an environment and 

rewards. These approaches cater to different learning scenarios and tasks, 

contributing to the versatility of machine learning in various fields such as natural 

language processing, computer vision, speech recognition, and more. 

1.  Supervised Learning Algorithms: 

Supervised machine learning is a fundamental but strict technology. Operators 

provide the computer with input examples and the desired outputs, and the computer 

searches for solutions to obtain those outputs based on the inputs. The goal is for the 

computer to learn the general rule that maps inputs to outputs. 

Supervised machine learning can be used to make predictions on unavailable or 

future data (referred to as "predictive modeling"). The algorithm tries to develop a 

function that accurately predicts the output based on the input variables. For example, 
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predicting the value of a real estate property (output) based on inputs such as the 

number of rooms, year of construction, land area, location, etc. Supervised machine 

learning can be divided into two types: 

 Classification: The output variable is a category. 

 Regression: The output variable is a specific value. 

The main algorithms used in supervised machine learning are as follows: random 

forests, decision trees, k-nearest neighbors (k-NN) algorithm, linear regression, 

support vector machines (SVM), logistic regression (fig. 09, a) and gradient boosting,  

naive Bayes classification. 

 

Figure 09,a.  Machine Learning techniques (DNN, LR, K-NN, RF, and SVM) 

illustrated as conceptual drawings (Rashidi et al.  2020) 
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Supervised learning algorithms are trained using labeled data, where the input 

features are associated with corresponding target labels. In the context of lithology 

recognition, supervised learning algorithms can be trained to classify drilling data into 

different lithological formations based on known examples. Common supervised 

learning algorithms used for lithology recognition (Figure 09, b) include: 

Figure09 b - Supervised learning algorithms  

a)- Decision tree Classifier  

Decision trees (DTs) are a powerful machine learning tool used for both 

classification and regression tasks. They construct a tree-like flowchart structure 

where each internal node represents a test on a feature, branches depict the outcomes 

of the test, and leaf nodes hold the class labels. 

Compared to other algorithms, DTs provide a clear indication of the role and 

importance of each variable in making predictions (Higa, 2018; Zhao & Zhang, 2008). 

The DT algorithm works by recursively partitioning the training data into subsets based 

on feature values until a stopping criterion is met, such as maximum tree depth or 

minimum samples required to split a node. At each step, it selects the feature that 

provides the maximum information gain or minimizes impurity after the split, using 

metrics like entropy or Gini index (Criminisi et al., 2012; Gupta et al., 2017; Witten et 

al., 2016). 

DTs are generally built using a top-down, recursive divide-and-conquer approach 

(Breiman et al., 2017; Witten et al., 2016). A standard decision tree consists of a root 

node, branching nodes, and leaf nodes. The algorithm starts by selecting the root node 

attribute, and then progressively splits the instances into sub samples based on the 

values of the chosen attributes at each branching node. 

DTs offer several advantages, including generating interpretable rules, handling 
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both continuous and categorical variables, providing clarity on important predictive 

features, ease of use, scalability, missing value tolerance, managing non-linear 

relationships, and handling imbalanced data. However, they can be prone to over 

fitting, especially with complex or deep trees, and may not perform as well as other 

algorithms for continuous target prediction. 

b)- Random forest Classifier  

The random forest (RF) classifier is an ensemble learning method that combines 

multiple decision trees to improve the accuracy and robustness of classification tasks. 

It works by creating a set of decision trees from randomly selected subsets of the 

training data and features. Each tree in the forest votes for a class, and the class with 

the most votes becomes the predicted class for the input data. 

Some key characteristics of the RF classifier include: 

 It can handle both classification and regression problems. 

 It is well-suited for large, complex data sets and high-dimensional feature spaces. 

 It provides feature importance scores to understand the significance of different 

variables. 

 It is resistant to over fitting compared to individual decision trees. 

The RF algorithm has several advantages: 

 It is versatile and can be used for many types of machine learning tasks. 

 It is easy to use and requires little data preprocessing. 

 It provides a good indicator of feature importance. 

 It is hard to beat in terms of performance compared to other algorithms. 

However, it also has some limitations: 

 It can be computationally expensive due to the construction of multiple trees. 

 It may be biased towards the majority class in imbalanced datasets. 

 It can be challenging to interpret the reasoning behind individual predictions 

compared to a single decision tree. 

Overall, the RF classifier is a powerful and widely-used machine learning 

algorithm that combines the strengths of multiple decision trees to deliver accurate 

and robust predictions. It has been successfully applied in a variety of remote sensing 

experiments, including farmland mapping, and has achieved efficient classification 

results in these domains (Chuvieco et al., 2002; Chen et al., 2018; Guru et al., 2017; 

Hentze et al., 2016; Karnieli et al., 2010). 
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c)- Support Vecto Machine /Support Vector Classifications : 

Support Vector Machines (SVMs) and Support Vector Classifiers (SVCs) are 

powerful machine learning algorithms primarily used for classification tasks. SVM is a 

versatile method that can handle both classification and regression problems by 

constructing an optimal hyperplane to separate different classes in a multidimensional 

feature space. 

On the other hand, SVC is a specific implementation of the SVM algorithm, 

designed exclusively for classification problems. The goal of SVC is to find the best 

hyperplane that can effectively classify data points into distinct classes. 

Support Vector Machines (SVM) 

SVMs are efficient in high-dimensional spaces and are widely used for classification 

tasks. They aim to find a maximum-margin hyperplane that separates the classes with 

the largest possible distance. The concepts of support vectors, hyperplanes, and 

margins are essential in understanding SVMs. SVMs can handle both linear and non-

linear classification problems by using kernel functions. They are robust to outliers and 

can effectively handle datasets with a large number of features. 

Support Vector Classification (SVC) 

SVC is a classification-specific variant of the SVM algorithm, focused on categorizing 

data points into different classes. It is implemented in the sci kit-learn library 

as sklearn.svm.SVC and supports multiclass classification. SVC is mathematically 

grounded in linear algebra and optimization, with the goal of finding the optimal 

values for defining the separating hyper plane. Similar to the general SVM algorithm, 

SVC can handle both linear and non-linear classification problems by using kernel 

functions. SVC provides a flexible and powerful tool for solving a wide range of 

classification problems, especially when dealing with high-dimensional data. 

d)- The K-Nearest Neighbors (KNN) 

The K-Nearest Neighbors (KNN) algorithm is a non-parametric, supervised 

learning technique used for both classification and regression problems in machine 

learning. It operates based on the principle of proximity, where the algorithm makes 

predictions by assessing the similarity between data points. 

 

KNN is a straightforward yet powerful algorithm that classifies data points based 

on a majority vote of their nearest neighbors. For classification tasks, KNN uses this 

majority voting mechanism to assign class labels, with the choice of the k value 

determining the number of neighbors considered. 
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KNN is a lazy learning algorithm, meaning it stores the training data and performs 

the computational work during the prediction stage. This approach makes KNN 

memory-intensive, as it needs to retain the entire training dataset for making 

predictions. 

The selection of the optimal k value is crucial, as it can impact the model's bias-

variance trade-off. Higher k values tend to reduce the model's variance but increase 

the bias, while lower k values have the opposite effect. Cross-validation techniques are 

often employed to determine the best k value that provides the desired balance 

between performance and generalization. 

2. Common Matrix 

During the assessment of classification models, several common metrics play a vital 

role, including accuracy, precision, recall, and the F1 score. These metrics offer 

valuable insights into the model’s performance and effectiveness. The equations and 

their respective  

definitions are as follows:  

 Accuracy: It is the ratio of correctly predicted observations to the total number of 

observations. This metric is useful when the classes of the target variable are 

nearly balanced.  

                                  TP + TN                              

                      TP + TN + FP + FN 

(A1)  

 Precision: It is the ratio of correctly predicted positive observations to the total 

number of predicted positive observations.  

TP  

TP + FP  

(A2) 

 

 

 

Accuracy =      

Precision =  
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 Recall: Recall is the ratio of correctly predicted positive observations to the total 

number of actual positive observations.  

TP  

TP + FN  

(A3)  

 F1 Score: The F1 score is the harmonic mean of precision and recall, aiming to find 

a balance between precision and recall.  

Precision ∗ Recall  

Precision + Recall  

(A4) 

where  

 TP: correctly predicted positive observations.  

 TN: correctly predicted negative observations.  

 FP: incorrectly predicted positive observations.  

 FN: incorrectly predicted negative observations.  

Recall =  

 

      

F1Score = 2 ∗ 
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IX. Data correlation  

Present the correlation matrix to show relationships between numerical features 

for our study this our correlation heat map (matrix) (fig. 10). 

 

Figure 10- correlation heat map 

 The diagonal elements represent the perfect correlation (value of 1) between each 

parameter and itself. 

 The color scheme indicates the strength and direction of the correlations, with red 

representing strong positive correlations, blue representing strong negative 

correlations, and lighter colors indicating weaker correlations. 

 The parameters that appear to have the strongest positive correlations are Depth: 

TMD and Depth: TVD, indicating they are closely related. 

 There are also strong positive correlations between ROP Inverse and Bit Drilling 

Time, as well as between RPM Avg and WOB Avg, suggesting these parameters 

are likely interdependent. 

 Some parameters, such as TGAS and the various drilling performance metrics, 

show relatively weak correlations with the other variables, indicating they may be 

more independent. 

Based on the analysis of the correlation heat map, we can draw the following key 

results: 

Interdependent parameters: 

 Depth: TMD and Depth: TVD are highly correlated, indicating they are closely 

linked and interdependent. 
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 ROP Inverse and Bit Drilling Time also show a strong positive correlation, 

suggesting these parameters are interconnected. 

 RPM Avg and WOB Avg exhibit a strong positive correlation, implying they are 

likely correlated in their influence on the drilling process. 

Independent parameters: 

 TGAS appears to have relatively weak correlations with the other variables, 

indicating it may be more independent and influenced by different factors. 

 Some of the other drilling performance metrics, such as SPP Avg and Torque Avg, 

also display relatively weaker correlations, suggesting they may be more 

independent. 

X.     Models  performances 

The selection of appropriate modeling techniques was guided by the unique 

characteristics of the dataset, including the nature and distribution of the input 

variables, as well as the presence of missing data. We carefully considered the trade-

offs between model complexity, interpret ability, and predictive accuracy to identify 

the most suitable approaches for this application. 

In the following sections, we present a detailed analysis of the models' 

performances, highlighting their strengths, weaknesses, and the specific scenarios in 

which they excel.  

1. Random forest classifier  
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3. Decision tree Classifier : 

 

2. SVM Classifier : 
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4. K Nearest Neignbors Classifier : 

 

5. Gaussian NB Classifier : 
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XI. Models performance comparison  
The evaluation of the machine-learning models was performed, and the 

confusion matrices for each model were presented in the previous figures. These 

confusion matrices highlight the superior predictive capability of the random forest 

model (tab. 01, Fig. 21). 

All the models were able to perfectly identify the 'sable moyen' class. However, 

the random forest model excelled in accurately predicting both the 'sable moyen' and 

'sable fin' classes. 

In contrast, the Gaussian NB model faced challenges in accurately classifying the 

'sable fin' class, as evidenced by the confusion matrix (Fig. 20). This suggests that the 

random forest model outperformed the Gaussian NB model in discriminating between 

the different sand types. 

Table 01 - Models Performance comparison  

 The Model Its accuracy 

0 Random Forest 0.680756 

1 Decision Tree 0.616240 

2 SVM 0.631813 

3 K Neighbors  0.644049 

4 Gaussian NB 0.325918 

 

Figure 21  - Histogram of Models Performance comparison 
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The random forest classifier emerged as the top-performing model with 

anaccuracy of 68,07%, whereas the Gaussian NB model registered the lowest accuracy 

of 32% . 

Figure 22 shows the precision of models in order by Lithology Classification 

Probability Distributions.  

 

 

 

 

 

 

 

 

 

Figure 22 - Lithology Classification Probability Distributions (by order ) 

XII. Features importance in the model  

The feature importance analysis of the Random Forest model reveals the key 

factors that drive its predictive capabilities (Fig. 23). At the top of the list is the true 

vertical depth (TVD) of the well, indicating that this depth-related parameter is the 

most significant input for the model's predictions. Closely following is the measured 

depth (TMD), further emphasizing the critical role of depth characteristics in the 

model's decision-making. 

The third most important feature is the average standpipe pressure (SPP Avg), 

suggesting that this drilling parameter is also a crucial input for the model. The next 

two features of importance are the bit drilling time and the average torque, 

highlighting the relevance of drilling dynamics and operational factors in the model's 

performance. 

The remaining features, such as rate of penetration (ROP), inverse ROP, flow rate, 

weight on bit, and rotational speed, have progressively lower importance scores. This 

implies that while these parameters do contribute to the model's predictions, they 
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play a relatively less significant role compared to the top-ranked depth, pressure, and 

drilling-related inputs 

Figue 23 - Histogram of Features importance 

XIII. Results Sammury  

The comparison between the real and predicted lithologies (Fig. 24, 25 and 26) 

reveals several key findings about the model's performance. For the "sable fin" (fine 

sand) and "gres fin" (fine sandstone) lithologies, the real and predicted values closely 

align, indicating the model accurately captures these rock types. However, for "sel" 

(salt), the model significantly overestimates the presence compared to the real data, 

suggesting challenges in predicting the salt lithology.  

The model's predictions for "argile" (clay) are reasonably close to the real values, 

though still somewhat higher, pointing to room for improvement in this area. 

Conversely, larger discrepancies exist between real and predicted values for other 

lithologies, such as "Angle Structure calcaire" and "Calcaire oolitique", highlighting the 

need to enhance the model's predictive capabilities for those specific rock types. 

Overall, the variability in the model's performance across the different lithologies 

suggests that further refinement and optimization of the model would be beneficial to 

improve its consistency and accuracy in predicting a wider range of geological 

characteristics. This analysis provides valuable insights that can guide future model 

development efforts and help target areas for model enhancement to better align the 

predicted lithologies with the observed real-world data. 
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Figure 24- Comparison of Real vs Predicted Lithology ( lithology in function of counts) 
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Figure 25 - Comparison of Real vs Predicted Lithology (lithology in function of depth )
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Figure 26- Comparison of Real vs Predicted Lithology  ( all data ) 

XIV. Limitations and Challenges  

1. Complexity of Drill Parameters: 

The model  relies on analyzing a vast array of drill parameters, such as weight-on-bit, 

rotational speed, rate of penetration, and torque, among others. The sheer volume 

and complexity of these parameters can make it challenging to extract meaningful 

patterns and correlations with the underlying lithology. Effectively processing and 

interpreting this data in real-time is a significant challenge. 

2. Lithology Variability: 

Geological formations can exhibit a high degree of heterogeneity, with abrupt changes 

in lithology types, mineral compositions, and physical properties. The model  needs to 

be able to quickly adapt to these rapid changes in lithology and update its recognition 

models accordingly. Accommodating this variability in a robust and accurate manner 

is a key limitation. 

3. Execution Time Constraints: 

Real-time lithology recognition based on drill parameters requires the system to 

process the data and provide accurate results within a very short time frame, often in 

the order of seconds or less. This places significant constraints on the computational 
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algorithms and hardware used, as they need to be highly efficient and optimized to 

meet the stringent timing requirements. 

4. Dynamic Data Collection and Sensor Degradation: 

The drill parameters used by the model  may be affected by various factors, such as 

sensor degradation, drilling conditions, and changes in the sampling methods. 

Maintaining the system's performance and accuracy in the face of these dynamic 

factors can be a significant challenge, requiring robust data preprocessing and quality 

control techniques. 

5. Validation and Uncertainty Quantification: 

Ensuring the reliability and trustworthiness of the model's output is crucial, as the 

results may be used for critical decision-making in exploration, development, and 

production activities. Developing robust validation and uncertainty quantification 

techniques is essential to address this limitation, particularly when dealing with the 

inherent uncertainties associated with drill parameter data. 

 

 

XV. Futur work  

As the field of lithology progresses with the integration of advanced machine learning 

models, the next significant step is to seamlessly incorporate these models into real-

time applications. One such potential application is LithoVision, a comprehensive tool 

designed for geologists and engineers to visualize and analyze lithology data efficiently. 

The integration of our Random Forest model for lithology recognition into LithoVision 

can revolutionize the way geological data is interpreted and utilized in the field. Here 

are some key points for future work in this area: 

1. Seamless Integration with LithoVision: 

 API Development: Develop a robust API that allows LithoVision to 

communicate with the machine learning model. This API will handle data 

transfer, model inference, and result retrieval in real-time. 

 User Interface (UI) Enhancements: Update the LithoVision UI to include 

features that allow users to input new data and visualize predictions. The UI 

should be intuitive and provide clear visual cues about lithology classifications. 

 Batch and Real-Time Processing: Ensure that the model can handle both batch 

processing of historical data and real-time processing of streaming data from 

drilling operations. 

2. Model Optimization and Validation: 
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 Model Retraining: Periodically retrain the model with new data to improve 

accuracy and adapt to changes in geological formations. This ensures that the 

model remains up-to-date and reliable. 

 Validation and Testing: Rigorously test the model within LithoVision under 

various scenarios to validate its performance. This includes edge cases and 

unusual lithology types to ensure robustness. 

3. Enhanced Visualization Tools: 

 Interactive Logs: Implement interactive lithology logs that allow users to drill 

down into specific depths and see detailed predictions and feature 

importances. 

 3D Visualization: Integrate 3D visualization capabilities that provide a 

comprehensive view of the geological formations, helping users better 

understand the spatial relationships and lithology distributions. 

 Heatmaps and Annotations: Include heatmaps to highlight areas with high 

uncertainty in predictions, and allow users to annotate these areas for further 

investigation. 

4. User Feedback Loop: 

 Feedback Mechanism: Implement a feedback mechanism within LithoVision 

where users can provide insights and corrections to model predictions. This 

user-generated data can be invaluable for retraining and improving the model. 

 Continuous Improvement: Use the feedback loop to continuously refine the 

model. Incorporate active learning techniques where the model prioritizes 

learning from user-identified errors. 

5. Integration with Other Tools: 

 Data Sources: Integrate LithoVision with other data sources such as seismic 

data, core samples, and well logs to provide a holistic view of the geological 

environment. This can enhance the model’s predictive capabilities by providing 

more context. 

 Collaboration Tools: Incorporate collaboration tools that allow multiple users 

to work on the same dataset simultaneously, facilitating better decision-

making and knowledge sharing. 

6. Scalability and Performance: 

 Scalable Infrastructure: Deploy the model on a scalable cloud infrastructure to 

handle large volumes of data and multiple simultaneous users. Ensure that the 

system can scale up during peak usage times. 
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 Performance Optimization: Optimize the model and API for low latency to 

ensure that predictions are provided in real-time, which is crucial during drilling 

operations. 

7. Regulatory and Compliance: 

 Data Security: Ensure that all data handling complies with relevant data 

protection regulations. Implement strong security measures to protect 

sensitive geological data. 

 Compliance: Ensure that the application and its usage comply with industry 

standards and regulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 - LithoVision logo and interface 
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Conclusion  

In this research, we present a machine learning-based approach to real-time 

lithology prediction using drilling data, focusing on the application of a Random Forest 

classifier. Our proposed methodology, termed LITHOVISION, successfully differentiates 

between various lithologies, achieving an accuracy of 68% in our study. This represents 

a significant improvement over traditional methods that primarily rely on the rate of 

penetration (ROP) for lithology prediction. 

The relationship between lithology prediction and drilling tools calibration is reciprocal 

and critical for successful drilling operations. Accurate lithology predictions inform the 

calibration of drilling tools, leading to optimized performance, enhanced safety, and 

reduced operational costs. Conversely, well-calibrated tools provide more accurate 

data, improving future lithology predictions. This interaction is essential for advancing 

drilling technologies and achieving efficient resource extraction. 

The LITHOVISION model uses a comprehensive set of drilling data features, 

including ROP, total gas content, and torque. This diverse feature set enables the 

model to capture the intricate relationships between different drilling parameters and 

their influence on lithology identification. By doing so, our approach provides a more 

nuanced and accurate prediction of subsurface lithologies, enhancing the 

understanding of geological formations encountered during drilling operations. 

Despite the challenges in identifying rare lithologies, our research demonstrates 

significant progress in immediate subsurface analysis. The robustness of our results is 

evidenced by consistent precision and recall values around 69%, underscoring the 

efficacy of our methodology. These real-time lithology insights are particularly 

valuable for geosteering, a critical aspect of maintaining the optimal well trajectory 

within the pay zone, thereby improving drilling efficiency and reducing operational 

risks. 

We are committed to the continuous enhancement of our LITHOVISION web 

application. Future improvements will focus on incorporating a dedicated section for 

diverse data visualization features, making the app more user-friendly and providing 

deeper insights. These enhancements will empower users with real-time, data-driven 

decision-making capabilities during drilling operations. 

In conclusion, our study highlights the transformative potential of machine 

learning in real-time lithology prediction. While the current accuracy of 68% indicates 

room for further refinement, our research lays a solid foundation for revolutionizing 

subsurface analysis and geosteering in the oil and gas industry. By continually refining 

our models and integrating them into user-friendly applications like LITHOVISION, we 

aim to significantly enhance the efficiency and effectiveness of drilling operations, 

driving innovation and progress in the field.  
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