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ABSTRACT

In this work, we care to study the Cauchy problem for thermoelastic plate systems, our
interest was about the study done (in 2023) by Chen and Liu: "A not on asymptotic
profiles for the thermoelastic plate system" proce. of the AMS 151(10): 4317 4329 2023.
They consider the Cauchy problem for thermoelastic plate systems with Newton’s Law of
cooling.

Firstly, we define some important notations, and we recall some mathematical con-
cepts that will be used throughout this dissertation. Then, we verified the results obtained
in the article which is about the asymptotic behaviors of solutions, this was done by using
the reduction, Pointwise estimates and auxiliary functions in the Fourier spaces, where
we checked the growth (n < 4) or decay (n > 5) estimates and the asymptotic profiles of

solutions for large time at the end.
Keywords:

thermoelastic plate system, Newton’s law of cooling, Cauchy problem, growth estimate,

decay estimate, Fourier spaces, asymptotic profile.
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RESUME

Dans ce travail nous soucions étudier le probléme de Cauchy pour les systémes de plaques
thermoélastiques, notreL’intérét était sur 1’étude réalisée (en 2023) par Chen et Liu : "
A not on AsymptotiqueProfils pour le systéme de plaques thermoélastiques" procédé de
I'AMS 151(10): 4317 4329 2023. Ils considérent le probléme de Cauchy pour les sys-
témes thermoélastiques avec la loi de Newton de refroidissement. Tout d’abord, nous
définissons quelques notations importantes, et nous rappelons quelques notions mathé-
matiques. concepts qui seront utilisés tout au long de cette thése. Ensuite, nous avons
rerifié les résultats obtenus dans ’article qui concerne les comportements asymptotiques
des solutions, cela a été fait en utilisant la réduction, les estimations ponctuelles et les

fonctions auxiliaires dans les espaces de Fourier,otl nous avons vérifié les estimations de

croissance (n <4) ou de décroissance (n> 5), et le asymptotique profils de solutions a la fin.

Mots clés: le séstéme de plaques thermolastique, la loi de Newton de refroidissement,
probléme de Cauchy, estimations de croissance, estimations de décroissance, les espaces

de Fourier, profil asymptotique
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NOTATION

we define the following zones of the Fourier space:
Zini(0) = {[¢] < 0 < 1},

Zpad(€0, No) := {0 < [§] < No},

Zewt(No) :={I€] = No > 1}

the cut-off functions Xint, Xodd, Xext € C°° own supports in their corresponding zones
Zint(€0), Zpaa(€0/2,2No) and Z.¢(Ny), respectively.

such that xpaa(§) =1 — Xint(§) — Xext (&) for all £ € R™

f < g means that there exists a positive constant C fulfilling f < Cg, which may
be changed in different lines, analogously, for f 2 g.

the asymptotic behaviors f ~ ¢ holds if and only if ¢ < f < g.

(.,.) by the inner product in Euclidean space.

(€) := /14 [¢]? is the Japanese bracket.

the weighted L' space :

LY = {f e L' | fllpn ::/ (14 |z|)|f(x)|dz < oo}
Rﬂ/



CONTENTS CONTENTS
so that || fllr < [ f[lzrs
e a summable function f are denoted by
Py =[5, f(z)dx , My = [, xf(z)d
the time-independent functions
=1 ifn <3, ta iftn=1,
D, (t) := Int ifn=4, and B,(t) := Int if n=2, (1)
1275 ifn > 5, t17%  ifp > 3,




INTRODUCTION

Problem modeling
Thin plates equation modeling

Thin plate theory has numerous practical applications in engineering, (e.g. airport
runways, raft foundations, and road pavements). In the last century, various mathemat-
ical models have been developed to describe the motions of thin plates under different
cases, these models for instance, Mindlin-Timoshenko models, Von Karman equations,

and thermoelastic plate systems

Let us consider a homogeneous, elastic, and thermally isotropic plate subjected to
temperature distribution. By combining the second law of thermodynamics for irreversible
processes, the monographs [14, 15| modeled the well-known thermoelastic plate system
with Fourier’s law of heat conduction and Newton’s law of cooling, namely,

uy + A%u + A =0,
{Ht—AQ—l—a@—Aut:O, @)

Here, the scalar unknowns u = u(t,z) and 6 = 6(t,z) denote, respectively, the ver-

tical displacement and the temperature (relative to some reference temperature), the
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non-negative constant ¢ in the temperature equation is related to the heat transfer co-

efficient.For the heuristic derivations of the thermoelastic plate system (2), we mention |[13]

Fourier’s law of heat conduction
The classical thermoelasticity is concerned with the effect of heat on the deformation of
an elastic solid and with the inverse effect of deformation on the thermal state of the solid.
In the classical linear model for heat propagation, the heat flux is governed by Fourier’s
law of heat conduction, which states that the heat flux is proportional to the gradient of

temperature. i.e

q(z,t) = —0Vo(x,t),

where x stands for the material point,t is the time, 0 is the temperature (difference to a
fixed constant reference temperature), ¢ is the heat flux vector and 0 is the coefficient of

thermal conductivity.

Newton’s law of cooling
Newton’s law of cooling states that the rate of heat loss of a body is directly proportional
to the temperature difference between the body and its surroundings. This means that the
hotter on object is, the faster it will cool down. The law is often expressed mathematically
as :
T(t) = Tony + (To = Teny)e ™

where T'(t) is the temperature of the object at given timet, T, is the temperature of the

environment, 7Tj is initial temperature of the object, and k is the cooling constant.

Over the past thirty years, there has been extensive research on the thermoelastic plate
system (2) from various communities, including partial differential equation (PDEs), con-

trollability, inverse problems,; and dynamical systems (in [4, 8, 9, 15, 24, 26] ).

Indeed, most of the recent studies investigated the thermoelastic plate system (4)
with 0 = 0, for example the corresponding Cauchy problem for (4) with ¢ = 0 has
been thoroughly investigated in [4, 23, 25|, where sharp decay proprieties of an energy
term (ug, Au, ) have been discovered. Among these result, in the work [4] the authors
discovered the critical dimension n = 4 for the vertical displacement, which determines

different large-time behaviors, namely:
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optimal growth forn < 3,

bounded behavior for n = 4,

decay estimates for n > 5

the optimality of these results is ensured by the same behaviors for both upper and lower

bounds. Additionally, they founded the large-time asymptotic profile ¢» = ¥ (¢, x) by

Uit x) :=F_, (#(6_%'5% - COS(G2|§\215)€_GO£|%)) Py

_, (sin(aslé]?t) _, e
+F 1$<—e arl§l*
- az|¢[?

with Wy := 2a,u; +6p and ¥ := (a2 +a3—a?)u; + (ag— a1 )by, where the positive constants

(3)

ap, a1, ay are defined in the second statement of Proposition 3.1.

Nevertheless, the Cauchy problem for thermoelastic plate system (4) with ¢ > 0 so far
has not been explored yet. As for other works on the model (2) with o > 0, for the exact
controllability problem see [12, 13] , and for the exponential stability of semigroups [13,
14].

For the study of asymptotic behavior of solutions of some thermoelastic plate prob-
lem depending on the work of WENHUI CHEN and YAN LIU in [3] , we consider the

corresponding Cauchy problem for the thermoelastic plate system (4), namely

Uy + Azu + Af = 0,
Gt—AQ—I—JQ—Aut:O, (4)
(u, ug, 0)(0,x) = (ug, ut, 0p)(x).

with the constant ¢ > 0, and (t,x)€ Ry x R™ for any n> 1.

Our main focus is by employing WKB method(an initialism for Wentzal-Karmers-Brillouin)
and Fourier analysis, the influence of the lower-order term +06 on the temperature equa-
tion (4) from Newton’s law of cooling on large-time asymptotic behaviors of the vertical
displacement. we obtain optimal growth estimates for n<4 and decay estimates for n>5
for the vertical displacement in the L? framework.

We will consider the L? norm of solutions because it may contribute to study global (in
time) existence and asymptotic profiles of solutions to some corresponding nonlinear prob-
lems by Duhamel’s principle and fixed-point theorem in suitable evolution spaces (see, for
example [5, 9, 22|).
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Among them, as we will state in Remark 1.1 and Table 1, the growth rates when n < 4
are the same as those for the pure plate model, but the growth rate when n=4 and decay
rates n>5 are weakened by the lower-order term +06 comparing with the result in [4].
In addition, the dominant Fourier multiplier of asymptotic profiles has been greatly
changed into
1 sin(|f|2t) _ 1 g4
Fg_m(—‘€|2 e 5o €l ),

which causes the weakened effect of decay rates when n<4. Indeed, the effect of the
lower-order term +06 in the temperature (parabolic) equation will propagate throughout
(AQ, —Au — 1) to the plate model. Tt leads to slower decay rates for n< 4 in comparison

with the classical model with o =0 .

This work is divided into three chapters:

e In chapter one, we define some important notations, and we recall some mathemat-

ical concepts that will be used throughout this memory .

e In chapter two, we study the asymptotic behaviors of solutions by reduction proce-

dure, Pointwise estimates and auxiliary functions in the Fourier spaces .

e In chapter three we find the optimal estimates for the vertical displacement in the

L? norm, and the asymptotic profile of solution.




CHAPTER 1

PRELIMINARIES

In this chapter, we recall some notations and review some mathematical concepts that we

will use later .
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1.1. FUNCTIONAL SPACES CHAPTER 1.

1.1 Functional spaces

1.1.1 Lebesgue spaces

Definition 1 Let 2 be a domain in R"(n € N) for 1 < P < oo, the Lebesgue space LP(S2)

18 defined by:

LP(Q) = {u : Q@ — R, u is measurable and [, |u(z)|Pdx < oo},

with the norm

S =

lull, = (Jq [u(@)Pdz)? .
In addition, we define L (Q)by:
L>*(Q) = {u:Q — R, u is measurable and 3 ¢ > 0 such that |u(z)| < ¢ a.e on Q},
equipped with the norm

|tu]|o = esssup |u(z)| = inf{c: |u(z)| < ¢ a.e on Q}.

1.1.2 Fourier spaces

Definition 2 Let v € L*(R"), we define its Fourier transform
w(§) = fRn u(x)e”@tdx, VE € R,
and its inverse Fourier transform
1 -~ iT.
) = g Jeo BE)C S

Theorem 3 (Plancherel’s theorem) Assume that v € L'(R™) N L*(R"). Then 4 €

L*(R™) and

[allz = [lullz,

8



1.2. SOME INEQUALITIES CHAPTER 1.

1.2 Some inequalities

Theorem 4 (Hausdorff-Young inequality) For every u € LP(R"™) we have the esti-

mate

[l < lull, (1.1)

wheneverlgpSQand%+z%:1.

Theorem 5 (Holder’s inequality) Let 1 < p < co. if u € LP(Q) and v € L (Q), then

uv € LY(Q) and
[wvlly < flullp[[o]ly

1, 1
where = + =5 = 1.
P +p’

By taking p = p' = 2, we have the Cauchy-Schwarz inequality .

Theorem 6 (Minkowski’s inequality) Let p € [1,00|, f,g € LP(Q). Then, f+ g €
LP(Q2) and

1f + gllp < [1£1lp + llgll
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ASYMPTOTIC BEHAVIORS OF
SOLUTION IN THE FOURIER
SPACE
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CHAPTER 2.

2.0.1 Reduction procedure

To begin with this section, strongly motivated by the recent work|3], we employ the

reduction procedure with respect to the vertical displacement. Due to

equipping the identity operator I, we act this diffusion operator (4) to arrive at the third-

order (in time) evolution equation as follows:

Ugsr + A%ut + A0 — Augy — AN*u — AAO + ouyy + o A*u + oA =0
Ut + A2Ut -+ A@t —+ (0' — A)Utt -+ (O' — A)AQU — A26 + ocAO =0

by the second equation (4) we get
Qt—AQ—{—U@:Aut
Aet — A29 + O_AQ = A2Ut
U + (0 — A)ug + A%ut + A, — A%0 + oA + (0 — A)A*u =0
Uy + (0 — Ay + A%ut + APut + (0 — A)A’u =0

{Uttt + (o — A)ugy + 20%u; + (0 — A)A*u = 0 1)
2.1

(U, Ut utt>(07 .I') - (Uo, Uy, u2)(£)7
with (¢,z) € R, x R", where the third data is determined by uy := —A%uy — A#y.

An application of the partial Fourier transform to the model (4) ,with respect to spatial

variables yields

{ﬁttt + (0 + €7 ) s + 2/¢[ 2 + (o + [E7)]¢] ' a =0
(2.2)

(ﬂ’ U, ﬂttxo’ f) = (a()? uy, ﬁQ)(ﬁ)v

with (¢,€) € R, x R™. Note that @y = —|¢|*a0 + |€]26,

Its characteristic equation is given by

11



CHAPTER 2.

Nt (0 + [E2)A + 20€ "M + (o + )l =0 (2.3)
we have the cubic equation 22 + az?® + bx + ¢, here discriminant given by
Agis = a*b? + 18abc — 4b3 — 4a3c — 27¢2

so, with
a=(o+[P)
b=2[¢*
c=(o + €7 [¢*

This cubic owns the strictly negative discriminant

Agis = [(o + [P (211 + 18[(0 + [€)20€1*[(0 + [€7)[€1*] — 4[21¢]*T?
—4[(o + €)1 + E7)IE1"T = 271(0 + |17 I€]4?
= (o + [E17)°41E[* + 18(0 + [€17)21¢[* (o + €17 1]* — 4(BIE]") — 4o + [£17)*14]* — 27[(0 + [€7) €]
= 4(0 + [€7)?1&]° + 36(0 + [§1*)I€1° — 321¢[** — 4(o + [€1*)*I¢]* — 27[(0 + € I<]°]
= (4436 —27)(0 + [¢])7I¢]* — 320¢]"™* — 4(o + [¢]*) "¢
= —4(o + [¢1)*E* — 3201 + 13(0 + €11
= —d(o + [¢)HE]* = 320¢]" + 16v2(0 + [€*)*IE* — 16V2(a + [€1)?[¢]° + 13(0 + €*)? [
= —4[(o + [¢17)71€]° = 2v2[¢]T* = (16v2 = 13) (0 + [€]*)°[¢]*) < 0

For this reason, the last cubic (2.3) has one real root A; and two complex conjugate roots
Aoj3 = Ar £ @A carrying Ag € R.

Different from the homogeneous characteristic equation of the model with o = 0 in [4],
N €PN 4 21 A+ [€1° =0
her discriminant given by

Aais = —4(1¢]° = 2v2[¢]°)* — (16v2 — 13)[¢]** < 0.

has one real root and two complex (non-real) conjugate roots as follows
1+a_
M = —aolé? ==~
.\/§@+

) 2—o_
)\2,3 = —a1]§|2 i@0l2|f|2 = _T|§|2 ==/ 6

€17,

12



CHAPTER 2.

1 1
with ay = \3/5(3@+ 11) + \3/5(3@— 11)

for )\1 s

AD 4 [EPAT + 20€1* A + [¢[°

14+ a_ 1+ a_ 1+ a_

= (= 5P + 1€ (= —5—Iel)" + 2" (— —5— ) + I€l
—a’ =
_ 11 a57 15a_’f‘6

o = i/%(3@+ 1) - i/%(s\/@— 1) = (a—b)

11 —a® — 150

=11 - (a —b)* — 15(a — b)

= 11— (a® — b* + 3ab(a — b)) — 15(a — b)

11— (%(3\/@ +11) - %(3\/@ 1)) + 3ab(a — b) — 15(a — b)
= 3ab(a — b) — 15(a — b)

= (a —b)(3ab — 15)

(a —b)(3ab—15) =0siab=5

1 1
ab = (§/§(3\/@+ 11))({/5(3\/@ — 11)) = 2.618795544 x 1.909274671 = 5

According to the size of frequencies |£], one may separate the discussion into three

zones. To be specific, we employ Taylor-like asymptotic expansions for £ € Z;,,(eq) U

Zewt(Np), and a contradiction argument combined with continuity of the roots for £ €

Zpaa(€0, No). By proceeding with lengthy but straightforward computations, we state the

next behaviors for the roots.

Proposition 7 The characteristic roots \; = X\;(|€]) with j=1,2,3 to the cubic equation

(2.3) can be expanded by the next forms.

e Concerning £ € Ziy(eo), three characteristic roots behave as

13



CHAPTER 2.

g

M = =0+ = |gP + O(l€l),
. 1 1, (2041)i
— 2 _ 4 6 8

namely A = — L [E]* + 5511 + O(|€[®) and \; = €2 + 225 |€]5 + O(¢®),

802

o Concerning £ € Z..1(Ny), three characteristic roots behave as

A= —agl¢]* + O(1),
Aoz = —ClllfP + m2’5‘2 +0(1),

where ag 1= 1+30‘* ~ 0.57, ay := 2_6“* ~ 0.22 and aqg := % ~ 1.31

carrying the constants
oy = {/1(3V69 + 11) £ ¢/ 1(3v69 — 11),
namely, \p = —a1|¢]* + O(1) and A\; = —as|&> + O(1).

e Concerning & € Zpaa(c0, No), three characteristic roots fulfill R\; < 0 for all j =
1,2,3.

Remark 8 In the small frequencies portion of Proposition (7), we not only obtain pair-
wise distinct characteristic roots with negative real parts, but also investigate some higher-
order terms, i.e. |E|?-terms in Aoz when & € Zi(g0). These nonvanishing higher-order

terms will contribute to further expansions of solutions in the Fourier space.

2.0.2 Pointwise estimates and auxiliary functions in the Fourier

space

Throughout this subsection, we consider £ € Z;,;(g0) U Z..(No) only because of exponen-
tial decay estimates for £ € Zy44(c0, No). According to the representation of solution to

the third-order model (2.2) and the expression of the last data

14



CHAPTER 2.

iy = —|&[ a0 + 1£]209
we may arrive at
(€1 = N3 = AB)ag + 2X gty — |€]20 it
IARA — A2 — A% — A
(2ArM — AT — [€[M) o — 2Rl + |€]%00
2ApA — A2 — 2% — A3
Mi(ArAL+ AT = A) + 1§11 (Ar — M)l
A (2ARM — A2 — A% — \2)
(N = A7 = A — [€*(Ar — M)l
M(2A A — A2 — 22— 22)
whose idea should be traced back to [5].

U =

cos(Art)err!

sin(Agt)er!

sin(Agt)e !

To analyze asymptotic behaviors of solution, we firstly set ¢g; = ¢;(¢,&) with j = 1,2
such that

. —\2sin( A\ t)errt A
g1 = 1sin(Ari) Uy

A1(2ApA — A2 — 2% — \2)

. — X2 cos(Apt)errt €12 A\ sin( A\t )elr?!
g2 : Ug + D) D) 23\ 705
MMM — N — A2 — A2

T 2ArM — A2 A% — A9

whose origins are extractions of leading terms of @ for small frequencies. Applying the

asymptotic expansions derived in Proposition (7), with

o

At =—0+ 5 3015‘2 +O(I¢]")
Ar = — el — g2 + Olep)
R 20 5 +%02
o
Ar = (€ + 5= €10 + O(E)

the next error estimate holds:

i — g1 — Go =
(6" = X7 = ApJito + 2his — 660 n,r , (Ards — A = 6 )ilo = Zhits + 16100y one
2ApA — A2 — A%, — A2 2ARA — A2 — N2, — A2
MiArA + A7 = A5 + [ A = A)Jio - (A = AT = A — [§]*(Ar — M1)bo Sin(At)eM!
Ar(2ArA = AF = A% — \Y) A(2ArA = A = A% — A2) !
—A\2sin(\jt)errt . —A2cos(Apt)errt |E]2 A, sin(A\ft)err?t

EDYICIYS VIS VID RN v L) W W R VAR V) L R W5) Vi W) Uy VRS VI

15



CHAPTER 2.

U—g1— g2 =
432 _ \2)q, I\ piy — 2) 9 —1EM G — 2\ il 2
(I€] 2 R)“;) + QRul : €] Hoem N (2ArA1 — [€] )u02 >\2RU1 t ISR cos(At)e nt
AR — A2 — A% — X2 AR — A2 — A% — X2
([/\1(/\1?.)\1 + A7 =A%) + €11 (Ar — M)l (A — AD)iy — €] A0y ) sin(Agt)ent
A (2XrA — X2 — X2 — X2 A (20 rA — A2 — X2 — )2 !

th(f)m — g1 — £f2|
1 A 1 1 R
(%)2|€|6|u0| + (—\5!4 —!§|6)!ﬁ1| + [€]%(6o
"+ 22+3 €7
1 ~
1€1%) |20 +(—|€|4+—2|§|6)|ﬁ1| + 1710
20?2

ot o lEP

3o 202+ 0 +2
€1 (€1 + — e 1Y) ol R
i (6) (AT I el
|§|2(02+2+3 1€1%)
1 A
€15 )|€!4+\€ +1¢ —§4 ¢ .
+ Xine (€)( A ( <7+ 552140 0’)|sln(|§| 2p) e~ 26 161" gz 4P
[€[%(o® + |§\ )

) 6(_0"’_ 2_030- ‘5'2)t

1
Z1€l6 +
(O|§’ 2—|—3

+xinl€)( ) cos((€[)]el= 1= saler

2+3

< Xont (€ (161 ato] + [€]ia| + 1€ 7160l e + Xt (€) (161 t0] + I€] Jia| + €160 ]) | cos(le[2E) e~
1 Xint () (1€ 210l + [€21a] + [€1*1Ao1)  sin(Je[e)fel¢"

Xint(§)|U — g1 — g2
< Xint(€) (€7 + [ cos(I€)[e)) (1€ dio| + [€]*|dia| + [€[[6o])
+ Xint (€) (1€ t0] + €] + [€]*(00]) | sin(|¢|t) eI

S Xant(€) (7 + | cos(I€ 1) (1€ ol + €]*[dn] + I€[16])
+ Xint (€) sin([€[*0)e (1€ ado]| + €1]1dn ] + €160

Xint(§)|0 — g1 — Go| S Xint(§)|§|26_clf|4t(|uj0| + |1 ] + |éo|) (2.4)

Where we took advantages of |£]* — A2 = O(|¢]®) as well as 2A\gA; — [€]* = O(|¢[®) for

16



CHAPTER 2.

§ - an(é‘).
Due to the estimates that

A lsin(|Art)]|

S Art|
int(§)|gl| —th(f) )\[(2)\}%)\1 )\2 )\2 — )\2) |U1|
2 2
. L OO e,
(02 + 5o fel)
SXint(f)w 70‘5|4| 1
i
and
A2 A 21| sin(\ .
th<£>’gA2’ :th(£>( 1|COS( 1t)| )\Rt| 0|+ |€| 1|Sln< It)| eARt|6)O|)

SRV VS U ey v M2 eh — N2 2
2| cos(Aqt)] IE12 | sin(Art)|

)
2)\R)\1 - )\2 )\2 _ )\2|u0| )\[(2)\R)\1 _ )\% — )\%{ — )\2)| 0|)
o + [€]7] cos(I€[*t))] €12(0 +

= Xint (5) GARt (

[€1%) [ sin(lg )]

SXint(é)e 20‘§|4 22|f‘6( 2+3 5 |UAO|+ 2+3 5 |00|)
24 o 2 2( 12 o’ 2
o+ el €202 + 5= —IEP)
o+ €17 sin(|€]*2)]
< G i+ T 57 6o
2 4 2
ot e
—eleldt /1~ ~
< Xint (€)™ (Ja0] + [60])
we have :
[ — g1 = [t — g1 — g2 + g2
We use the triangle inequality to obtain
U — g1 < |a— g1 — Ga| + |G|
Xint(§)0 — 1] < Xine(§)|2 — g1 — Ga| + Xint(§)[ 2]
—cleldt ) A R A _ClElAE /) A ~
< Xint ()€™ (Jado| + [1da] + [00]) + Xint (€)™ (0] + |60])
clel . R -
< Xint(§)e™ e[| + (1 4 [€]%) (ko] + |6o])
Hence
SN —eleldt (1 . -
Xint ()8 = G| S Ximt (€)™ ([tio] + €[] 12| + |6o]) (2.5)

17



CHAPTER 2.

And,
U] = | — g1 + g1

We use triangle inequality to obtain

|u| < |t — gi| + |1
|Sin(|f|2t)\€fc\g|4

Xint (8] S Xine ()€™ ([ito] + [€[?t1| + [6o]) + Xame (€) 7 Jii
S X (€)e~ (a1l + (@012 + 2 Dl
S X il + 160 + 2L e
Hence
o (©)] @l + D4 1) 2.6

Let us introduce some approximations jj = jj (t,|€|) with j = 0,1 such that

i sin(lgP)

0= Te_%wt and J; := cos(|¢[2t)e 2 k",

They are the Fourier transformations of higher-order diffusion-plates. Then, we are

able to claim the refined estimates by subtracting some approximated functions.

Proposition 9 Concerning £ € Z;,1(20), the following refined estimates hold:

Xint(€)161 — Jotin| < Xine(€)e ™ty | (2.7)
Xint ()61 — (Jo + Ho + H)|tir| < Xone ()€ a1y (2.8)
Xint (€)]G2 — Tvitg — o €| Jobo| S Xame ()€™ (Jado| + 160]]), (2.9)

Where the auziliary functions ﬁj = ﬁj(t,f) with 7 = 0,1 are defined by

_20—1—1

o= 224 L cos(lgPrye i,
802

A 1
Hy = o€ tsin(gt)e = ",

18



CHAPTER 2.

Proof. A direct subtraction associated with suitable decomposition implies

— (Jo + Ho + Hy)iiy = Y27 Ejiy,

Where the error terms are

—A2sin(\t)errt

Ey = )\1(2)\3)\1 iy Py PR v |€|2 sin(Ast)|err!

b \fl2 (sin(Art) —sin([¢[*) — 20 + Llefes cos([¢[*t)) e,
By = |€|2 sin(|€[2t) (Mt — e~ lel't i2|§|6t6—210|§4t)

Ey = 20 + ! €] cos(|€]?t) (eMrt — e 2s161)

For one thing, the asymptotic behavior stated in proposition(7) leads to

5 — AT sin(Art)ern! sin(|€°4)] e
Xint €)1 Bl = X &) | 5y ST e
—X3EPR + A3 — A1(2ArA1 — A2 — %)
A1(2ARAL — A2 — A3 — A2)[¢)?
A= [€17) = A(2ApM — AP — M%)
A1(2ArA — A7 — A% — AD)IE)?
A1) — Ar(2ArA1 — A7 — A,)
A(2ARA — A2 — A% — D)€

= th(f )

= Xint (S)

~—

0% + |§|2 &
< Xont(©) 1w @+3)
1€I?(0? + 2+3 1€]2)[¢ ]2
2
1 (2+30’) |£’4 44
< Xint (§) (@"‘ 952 e~k )
el + 520 )

—clgft
< Xint (§)[& 7€

because of A\; — |£|> = o(|€[%) for &€ € Zini(e0).

For another, with the help of Taylor’s expansions as |[¢| < 1, we notice
20 4+ 1
) 802
Mt = el 4 W|§|6te_%|ﬂ4t +o(|€]12t)t2e s 8"

sin(Art) = sin(|€]?t) +

[€1° cos([€]%¢) + o([€] )22,

| sin(Agt)|e !
sin(Ast)]|e*!

| sin(At)|er!

| sin(|¢[24)|e 20 K" 2zl

19



CHAPTER 2.

As a consequence,

Aot ©)(Br + B+ B3) = xon(€) (s ! (0 12)62) + =

€]?
20 —|—

sin(1€12¢ 12 26—i|§\4t
|€|2 (Ig172) (o(l€] 1)t )

+th(§)( |€|*t cos(|€]? t)( \§|6 e~ 35 1€ + o([€]12t)t%e 21U|§\4t))
NI + s PO =)
+ th(f)(20 = [€[*t cos(|€[*t) (%‘Q‘ﬂﬁtezglfl% + o(\ﬁ]lzt)tze*%|€\4t))

20 +1
(802)(202)

Xina () (1Br] + 1Bl + |Bs[) S Xant(€)I€] e S e (€) e[ Pe 1"

Xint () (| Ex| + | Ea| + | Bs]) < €192 cos(|€[2¢)|ekl"t

Summarizing the last estimates, we conclude

— (Jo + Ho + Hy)iiy = Y7 Ejiy
Xint(€)1G1 = (Jo + Ho + Hy)tir| < ximt(€) 37— | B |10
Xint (€)|61 — (Jo + Ho + Hi)tir| S Xint () 1€ [P~ 1],
which completed the proof of (2.8).

Additionally, by the use of the triangle inequality associated and with

Hy + Hy = 27 2 e cos([gfP)e 9 4 2i|§|4tsm<|§|2t>e el
Xine(€) (1Bl +F11) < Xina(€) (22 €[] cos(€20) 3518 ] sim([g4) = +14")
Nint ) (1ol + [Ha]) < xina (€) (161" + teelel®)
th(ﬁ)(|ﬁo| + |H1|) < Xt (€)te
Xint(€)<|ﬁ0| + |ﬁ1|) < Xt (€) el

we have
lgh — jOUA1| =|g1 — Jotiy + (ﬁo + ﬁl)dl - (]'—70 + ﬁl)dﬂ
|61 — Jotia| < |gi — Jotin + (Ho + Hy)aia| + |(Ho + Hy)iy|
Xint (§)|G1 — Jotia] < Xant(§)|g1 — (Jo + Ho + Hy)tia| + xint(§) (| Ho| + [ Hy|)| |
Xint (g1 — Jotii| S Xine ()I€[*e™ ™ || + xine (€)™ |
Xint(©)]G1 — Jotin] S Xine(€)e™ S in| (|€]* + 1)
Xint (E)|d1 — Jotin| S Xine (€) e [udy

20



CHAPTER 2.

complete proof of (2.7)

By a similar approach to the above, we may prove (2.9) easily

—A2cos(Aft)errt |E]2 Ay sin(Ajt)ert N

— Jytip — Jof
vito = o€ oo = o 22— — 20T N 20 — AZ— A% — %) 0

— con(eft)e H iy — o P e

32 Art
Avcost)er™ cos(|€[2t)e ") i,

= (G = PRSP PRNPY

: A
. ( €120 Sln(2)\1t)62 Rt _ _1|€’281H(|£|2 t)] _ 1[,\§|4t)é0
A1(2ARAL — A7 = AR — A]) N
_/\%
= —1 Art)e
(G = A2 -\ ) cos(Art)e™ g
A .
+ ( L — 0_1) sin()\lt)e’\RtGO

A(2ApA — A2 — A%, — \))
_ 2ApA\1 — AF — )%, )
2R — A2 =A% = A2
A
AM(2ArAL — A2 — 2% — \D)

cos(Art)e

+ ( — 0'_1) sin()qt)e’\RtGAO

SN T
. a. 1ie3%a el 2-3 )
Xint(f)’g2_t]lu0_a 1‘5’2J090‘§th(5)€ ﬂt( ( 202) ‘COS(|§‘2t)HUO‘
2 2
- -
202
a+2_30|5|2+a*1|5|2<a2+2_30| noo
T ( : )] sin(le] t>||eo|)
€2(0% + 2)
S ST
—cle g 2—30’ N
< i@ (TR BTN o) i
o 20 _jep
2 —30
7+ 5T el + olel? + el A
T — ) sin((€[%)]16,))
€l2(0? + 52— [e]?)
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1
. 5 _ T —ele)d o(2—-30 .
Xint (&) |2 — Jitio — o €2 JoBo < Name (€)W ( ( 5,2 ) 1£17] cos(|€]%¢) || o]
2 2
0%+ 5 — 3U|f\
27_jep
2 —30 20 s 24)116
+ 5,7 1€]?] sin(|€]%t)]]60])
2 2 2
€|?(0? + 2_30|§| )

< Xt (€) eI (€2 cos(|€[24) o] + [€[?| sin(|€[*¢)]]6o])
S Xint(§>|§|2€_6|£|4t(|a0| + |é0|)

completed the proof of (2.9). m
Eventually, we propose pointwise estimates under bounded and large frequencies such
that

(11 = A3 = M)t + 22Xk — |00 it

v IARAL — A2 — AL — A7
(2ArM\ = A — [¢[*)ito — 2\mi + [¢]*0
* 1 ZA;)\l — A - Mg — Xf} 2 cos(Art)e!
MM + A2 =A%) + [€[* (Mg — A1)l (e
A (2ArM — A2 — )2, — X2) !
(A% = A = M) — [€POr — M)bo . At
At)eM
JWETPS W v vy v S GO0
X t(g),& <X t(g) (( (’5‘4 + a§‘€’4 + UJ%’&‘ZL)@O + 2a1|f|2ﬁ1 + ’f‘Qéo —a0|§|2t)
B 2apa1|¢]* + a3|¢* + aF|¢]* + ad|¢]!
(2apa1[¢[* + aF€]* + [€]*)[do| + 201 |2 an] + €211, it e
+( 1 214 2|4 2 ¢cl4 | cos(—az|€[7t)|e )
2apa1|€]* + a3[¢|* + ai|€]* + ag[¢]
_ 2 4 2| ¢4 2| ¢4 4 2 2 ~
N ([ ao|§|* (aoar |§* + a3|€]" + ail]®) + [€]*(aa]€]” + aol¢] )]|Uo||Sin(_aﬂélzt),efal\a%)

—az8]*(2a0a1 []* + a3|¢]* + af|€]* + aglE]!)

(aT1€]* + a3lé]* + aplél )| + €1 (arlél” + aolé]*) 6o
—a2|¢[*(2a0am [€]* + a3[E* + atl¢]* + afl¢[)

+ Jsin—ae e
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CHAPTER 2.

< Xeae(€) (6 1 [ cos([€[2) e~ (|| + @w T @wbo
- Xeat (6) sin(JE[20) e (| o] + @mlr + @re}ﬂ)
< Xexe€)e (| 10] + @uau +16,))

S Xeat(€)e™ ([0l + €17 (|a] + 16ol)

(x0aa(€) + Xext ()i S (Xaa(€) + Xear(€)) e (lito] + (&) Jita| + (€)*60l)  (2.10)

whose proof is standard basing on Proposition (7).On may see the second estimate in

[4]. They will not influence on large-time behaviors of solutions since exponential decays.
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3.1. THE VERTICAL DISPLACEMENT ESTIMATES CHAPTER 3.

3.1 The vertical displacement estimates

Our first result contributes to optimal estimates for the vertical displacement in the L2
norm . Especially, the solution grows to infinite polynomially (lower-dimension n=1,2,3)

or logarithmically (critical-dimension n=4) as t— oc.

Theorem 10 Let us consider the thermoelastic plat system (4) with o > 0 and carrying
initial datum (ug,uy,0y) € (L* N LY)?. Then, its vertical displacement fulfills the following

optimal estimates:
Dy ()P, | S NJut, )2 S Da(@)|| (o, ur, 00)l z2nLr)s (3.1)

for t >1, where the time-dependent coefficient D, (t) was defined in (1). Namely, if

|P.,| # 0 then the optimal estimates ||u(t,.)|| 2 =~ Dy(t) hold for anyn > 1 as t >1.

Proof. let us firstly recall the optimal estimates proposed in [9,propositions 3.1-3.3| as

follows: ' )
sin(|€]*?) o—cleltt
€[ 2

for any k € Ny and ¢ > 1, where D,,(t) was introduced in (1). Then, by applying Holder’s

e iR (3.2)

~ D, (t) and H|§|k6_c|§‘4t

inequality, Hausdorff-Young inequality and Plancherel’s theorem we can obtain form (2.6)
and that (2.10)

from (2.6) we obtain

i (E)]] S Xone(€)e— (0] + %‘a” + 1)
N : 2
Yot (1] < Xant )= (Jtg] + [60]) + xoma (€)=l SRUEED 5

€17

and, from (2.10) we obtain
(Xbaa(€) + Xear(©))[t] S (xpaa(€) + Xear(§)) e (Jito] + (€) || + (£)7216o])
(1 = Xine(©)) 1] S (1= xima (&) e (Jito] + (€) 72| + (€)72/60])
[il] = Xine (€)1 S = (|dio] +(€) 72|+ (€)216o) — Xine (€)™ (Jiio] + (&) ~2ita] + (€) (6]
il = Xint (€] S = (Jito] + (€) ~[a] + (£)~260l)

25



3.1. THE VERTICAL DISPLACEMENT ESTIMATES CHAPTER 3.

So, by summation

ejepre | SIn(|€]%t)

Xint ()] + 18] = Xint ()] S Ximt (€)™ (0] + 60]) + ximt(E)e BE | i | + e (Jo]

+ ()| + (€)2160])

ez | sin(1€]*t)

1] S Xint (€)™ (Jdio] + [60]) + xomt()e €17 LSRN

+ e (Jap] + (&) 2| + (€)~2/60))

" - 1| sin(]€)%t
J1iae 5 [ (e G+ o) P + [ (e =2 E D,
e / (it + -+ ) e
S [ @ P i+ ) e+ [ [rim(E)e Lsin(EPOI; 124

€17
+€_Ct/‘(’a0+ﬂ1+90)’ d§

2

dg

by Holder’s inequality and the Hausdorff-young inequality

[sin(I€0)] e
€17

—cle|*
lullZ2 < Mxine ()€™ L2 (lluollr + 180l ) I + [xime(€) el

+ e ([Juollz2 + lJull 2 + 160l 22)

oleld
ullzz < line (€)™ p2 ([luoll £t + |60|1)

[ SIn(IE*] ey
+ lxine ) e €154 L2 || 1

+e " (lluollze + lluallze + 116o]]22)

—clg|* —c
< Ixine ()™ 12 (luollzr + 166llz1) + €™ (lluollz2 + 160 ] =)

| sin(|¢*2)] e—clet)

& r2|[ua]| e +@76t(HU1HL2)

+ Xt (§)
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3.1. THE VERTICAL DISPLACEMENT ESTIMATES CHAPTER 3.

S ot (€)e L2 (fuoll o + 1160l 1) + e (lluollz2 + [160llz2)

|€fc|r5|4tHL2 ug || + eiCt(HmHL?)

S 73 (lluoll 2 + 160l arz) + Da®)lfun | 2

for large-time ¢ > 1, which gets the upper bound estimate.
For the lower one, from (2.5) and (2.7) we actually know
Xint ()]0 — g1| S xint(f)6*0'5'4t(|ﬁo| + €17 | + |9;)|)

Xint (€)1 — Jota| S Xim(§)e™ 1|

we use the triangle inequality to obtain

Xint (€)1t — g1 + 61 — Joiua| < | Xint (€) (6 — G1)| + |Xint(§)(§1 — joﬂ1)|

Xint(E)] @ — Jotia] + (1 = xane(€)) (|8t — Jotia]) <|Xime () (i — G1)| + [ Xint(€) (61 — Jotin)]
+ (1 = xine(€)) (|0 — joﬁ1|)
it~ Joiin| < ‘Xint(f)(ﬁ_gl)‘+‘Xint<£>(§1_j0'&1)|+(1_Xint(’£))<‘{b|>+<1_Xint(g))(‘joﬁl‘)

i — Jotiy|*d€ S/ | Ximt (€) (@ — gl)‘zdf + / | Xint () (g1 — j0@1)|2d§
R Rn

Rn

[ 1 = X ©)alPdE + [ 1L = xane(€)) (Jotia)[Pd€

R™ R™

i = Jota |72 <[xine(€) (@ = G)lI72 + 1xane (€) (1 — Jotin) 172
+ (L = Xane(€))ll 72 + (1 = xine (€)) (o) 172

6 — Jotia || 22 <||Xine (€) (@ — G1) || 22 + [|xme (€) (G — Joita)|| 22
+ | (1 = Xine ()bl 2 + || (1 — th(f))(joﬁl)HLz
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3.1. THE VERTICAL DISPLACEMENT ESTIMATES CHAPTER 3.

by Plancherel’s theorem

lu(t, ) = Jot, |DDur(Ylze S [[xime(€)(@t,€) = Gt )|z + Ixine(§) (61 (2, €) = Jo(, 1)) (€))]] .2
+ (= Xane(€))a(t, E)llz2 + (L = xane(€)) Jo(t, €]Vt (€)]] 2

Jut.) = Tt P Ol S [ €)@= g + [ Po€)(ar = doin) e
# [ 0=l ©)alag + [ 0= xan() e, eDin(e) e

lu(t, ) = Jo(t, [ DDur()1z2

S xane(€)e 1 (Jao| + 1€ an] + 160]) [*dé + / it (€)™ 1€ a1y [*dg
R Rn

) sin(|€]%t) . A
[~ o ecw%(yum%\uwreo|>\2d£
/ (1= Xine Sm|s||§z~| T RCIGIRT

< /R | Xt (€)= | (|io] + 1€[2[@n] + |6o])| e + /R |\t (€)™ |2y | 2dle
4 ] 2¢ R
+/ (1= Xt (€)) e*cifltﬁ(a +m|(§|$\ﬁ1!+l%l)\2d§

/ ‘ Xont Sln’(gz‘ t) e~cléltty, ‘ de

St ||(U0,U1790)H (L2ULY)

u(t,.) = Jo(t, | D))ur()llzz St || (uo, ur, 00) |l z2urr)

for ¢t > 1. Here, (3.2) has been used.

For another thing, the decomposition




3.1. THE VERTICAL DISPLACEMENT ESTIMATES CHAPTER 3.

with a sufficiently small constant oy > 0, as well as Taylor’s expansion

[ Jo(t, & —y) — Jo(t, 2)| S lylIVJo(t, © = 0y (3:3)

with a constant vy € (0, 1), shows

[Jo(t; [DN)ur () = Jo(t, ) Py | < / [(Jo(t, @ = y) = Jo(t, z))ua (y)dy|

ly|<t>o

T /| o 1l = a0y + (e 2) s (y) | dy
y|=>t*0

ly|>t>0

< /| W7 200 )l + / ot — ) ())dy
y|<teo

ly|>t>0

+ [Jo(t, )| lu1(y)|dy

ly|>t>o

2

/n | Jo(t, [ D])ur () = Jo(t, .)Pul|2dx < / de

[
[

/ IV =)y
y|<teo

2

dx

[ et

2
dx

Jolt, z) / s (9) | dy
ly|>t>o

<.

2
[ It = oy de [y
ly|<t>o ly|<teo

2
+// ol — y)|dy dx/ s (9)dy
mJy[zto ly|>te0

2
+ [ do [ ulldy
n jyl2t20

16(t, [ Dlyur (@) = Jo(t, ) Py |72 S t*° IV Jo(t @ = yoy)llrelluall o + [1Jo(t, @ — ) 2|2

(1ot )] / s (y)dy

ly|>t0

SNV To(t €D 2 Nl + 1ot 1€ z2 luall s

ol JED 122 / s (3) |y

ly|>t>0

Jo(t, .I')
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3.1. THE VERTICAL DISPLACEMENT ESTIMATES CHAPTER 3.

Sin(|£|2t)e—c|§\4t
I3 L

it 5
St 1D, () ]| + || Jo (2, [€])]] 22

[ Jo(t; |D)ua(2) = Jo(t, 2) Py [ 2 S 17

Mz + 1o, |§|)||L2/ |ua(y)|dy

ly|>t>0

S %07 Dy (1) [ 11 + 0(Da(1)) (3-4)

for t»1, where we considered

1

2 3
d¢ )

1 2
(/ ess sup|[¢ |e-%'§'“\mf§#e—m df)

—y
R?’L

sin(€1%) e
g

Sin(|€1°) _cpeiry epeps
_ </ g SRUER) e -siere
n €7

L2

[\
N

A

[\
N[

St
sin([¢] t>e—§|§\4t

P dg)

: 2
< H!ﬂe’%‘g'” SI(|E]*t) e
~ Lee €[? L2
SJ tiiDn(t)v
and the fact that u; € L'associated with
lim lui(y)|dy = 0.

t—o00 |y‘2ta0

In conclusion, an application of Minkowski’s inequality immediately implies

1o, \EDIPuy | = ut, ) +ult, Iz < 1 Jo(t, (€)1 Puy| = ult, Yoz + [lult, )llee
lult, Mz Z 1ot (D2 Py | = l[ult, ) = Jo(t, ) Pyl 2
lult Mz Z 1ot (€D Py | = llult, ) = Jo(ts [DDur () + Jo(ts [DDun () = Jo(t, ) Pyl 2

sin(|€1%) e
R

~Y

| Puy | = [lult, ) = Jot, [DDur ()2 = [1Jo(t, [DDua () = Jo(t, ) Py |

L2

2 Dn(®)|Puy| = lJult, ) = Jo(t, [DNua ()l = [ Jo(t; [DD)ur () = Jo(t, ) Puy | 2
2 D) P = |0, un, 00) | z2nrys — 107 ¥ D8 |ua | 12 = o(Da(1)
2 Dn(t)| P, |

for t > 1 by taking sufficiently small. So, our proof of Theorem 10 is complete ®
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3.1. THE VERTICAL DISPLACEMENT ESTIMATES CHAPTER 3.

Remark 11 Let us recall the large-time behavior of the pure plate model

Wy + Azw = O,
(3.5)

<w7 wt)(()? I) - (w0> wl)(x>>

with (t,x) € Ry x R™. Where in [11] the author derived the optimal growth estimates

) 272 ifn < 3,
lw(t, )72 = (3.6)
Int if n =4,
for t > 1, where initial datum are taken in L*> N L.

For another, Wenhui Chen and Ryo Ikehata in [4] found the derived optimal estimates

for the classical thermoelastic plat system (or the model (4) with o = 0) as follows:

.

Vet +A2’U—|—A9 = 0,

0, — AO — Av, = 0, (3.7)

\(v,vt,H)(O,ac) = (vg, v1,00)(x).

To be specific, for all dimensions n > 1, they obtained
ot N7 = 1272 (3.8)

fort>1.
In Comparison with optimal estimates (3.5) in Theorem 2.1, (3.6) in [11], (3.8) in [4],

and the table

Table 3.1: Influence from the plate model, Fourier’s law and the lower-order term

Dimensions(dim.) n>3 (Lower-dim) n=4 (critical-dim) n<5(Higher-dim.)
pure plate 232 log t -
Thermoelastic plates with =0 273 1 2%
Thermoelastic plates with o > 0 273 log t -

we claim the following points :
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3.2. THE ASYMPTOTIC PROFILE OF SOLUTION CHAPTER 3.

e In the lower-dimensions n=1,2,3, the growth rates of the models(4) and (3.7) are
the same as those for the pure plate model (3.5). This implies that the plate equation

plays the decisive role in the general thermoelastic plat system (4) for any o > 0.

In the critical-dimension n= 4, the lower-order term +o6 subdues the estimates in
the classical thermoelastic plates (3.7) so that the plate equation has the decisive

influence again with the same growth rate logt as the one in the plate model (3.5).

In the higher-dimensions n > 5, the lower-order term 406 weakens the decay rates
from t2=% to t'=%. This weakened effect is originated from the lower-order term
propagates via the coupling (60, —duy)T. This effect is quit different from the evo-
lution equations with the mass term, e.g. heat equations with mass[8, chapter12.2],
Klein-Gordon equation [8, chapter11.3.4], damped waves with mass[21], and strongly
damped waves with mass[5]. To the best of authors’ knowledge, it seems to be the
first example that addition of lower-order term (sometimes we call it mass term)

causes weakened dissipative properties.

Remark 12 In our result for optimal estimates, we just require additional L' reqularity

for initial datum rather than LY regularity in [4, 11]. Indeed, the weighted L' assumption

for the plate model [/, 11] can be relazed by L' assumption by following our approach.

3.2 The asymptotic profile of solution

Before stating the result concerning asymptotic profiles, let us take
o(t,z) :=Jo(t,x) Py, + (Vo(t,z), My,) + H(t,x)P,,
Ji(t,2) Py, — o 0Jo(t, ) P,
where some functions originated from higher-order diffusion-plates are chosen by

: 2
) = P (B ester) o r0) = P (con(ePrreatan),

as well as

(3.9)
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H(t,x) = St — F1[((20 + 1) cos([€]?t) + 4sin([€]?)) [¢] Yo €],

We now may show the asymptotic profile of solution, where the time-dependent coefficient
of optimal estimates (3.1) has been improved as t>> 1 when we subtract the profile
¢ = @(t,z). Particularly, in the higher-dimensional case n> 3, we claim u(t,.) — ¢(¢,.)

as t — oo in the L? framework.

Theorem 13 Let us consider the thermoelastic plate system (4) with o > 0 and carrying
initial datum (ug,uy,6) € (L*NLYY)3. Then, its vertical displacement fulfills the following

refined estimates:

[u(t,.) =, )|z = o(Bn(t))
for > 1, where the time-dependent coefficient B, (t) was defined in (1).

Proof. Recalling the profile defined in (3.9), we indeed my find the next decomposition:
u(t,z) —p(t,z) = eo(t,x) + e1(t, x) + ea(t, )

with the components

co(t, ) == ult, ) — (Jo(t,|D]) + H(t, | D])un(z) — Ji(t, | D]Juolz) + o~ Adt, |D])6o(z),
ei(t,x) == Jo(t, D) ui(z) = Jo(t, 2) Py — (Vo(t, ), Mu,),

eo(t, x) = (H(t, [ D))ur(z) — H(E, ﬂf)P )+ (N1t [Dl)uo(x) — Ji(t, ) Puy)

—a L (AJy(t,|D])b(x) — Ady(t, ) Py,)

First for all, we employ the derived estimates (2.4),(2.8) as well as (2.9) to get

Xint (€)= g1 = G| S Xane (€)[€Pe™ ¥ ([aio] + [din] + |6o])

Xint (€)|61 — (Jo + Ho + H) || S Xint () [€[2 e~ iy |,

Xint(€)G2 — Jitto — o &2 Jofo| < Xine (&) 1€12 eI (Jaio] + |6o]),

so,by summation
Xint(§)| — g1 — g2+ G1 — (jo + ﬁo + H1)UA1 + ga — jlﬁo - 0_1|5|2j0é0|

< Xint ()€™ ([ato] + [a] + |6o])
Xint (€)] 0 — (jo + Hy+ ﬁl)dl — Jytig — U_1|f’2|j0éo| S th(f)|ﬂ2€_c|§|4t(’fbo| + |t | + |éo\)
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Xint(§)E0(t )| S Xome(€)[€[2e= ([0 + @] + (o))

Xint (€)[E0(8, )] 4 (1 = Xint ()20 (¢, 2))| S Xant (€)[€]7e™ " (o] + |1 | + |Go)
+ (1 = xine(€)|20(2, )
)
)

72 27 o

Xint (§)[€0(t, &) = Xint(§)|20(t, ) + E0(t, )| S Xime ()€1 (|0 + |4ia] + 60])

+ (1= xame(§)[E0 (¢, E))

[0(t, )| S Xine (€)1 (Jdig] + || + |6o]) + (1 = xame()[20 (L, E)])

J1Eo(t, OPAE S [ [Xint (©)IEPe™ " Jdio] + [ia] + [Bo])[PAE + [ (1 — Xine(€)[20(t, €)])[PdE
120(t, )22 S lxine(©)IEPe (o] + [da| + 1o ])I|22 + 111 — Xine(E)[E0(t, )12
120 (8, )12 S Nxint ()12 (o] + | + 160l 2 + 11 = Xame ()|20 (2, E)])] 2

by Plancherel’s theorem

leo(t, @)1z S Ixone(€)I€1Pe " (o] + liia] + 1Bo]) 2 + 11 = xnt(€)E0(E E)) 12

1l n
Stm2m s [ (uo, ur, 00) | (z2nzrys

for t > 1.

To treat the second error term, we re-formulate it by

Hlt) = /| o Gl =) = Jot2) = (0, Dot ) 0)dy
i /y|>t0‘1 <J0<t7 T — y) - Jo(t, .T))Ul <y)dy
" /;J|>tal <_y7 VJO(t> $)>U1 (y)dy’

equipping a sufficiently small constant a; > 0.

Again from (3.3) and
[Jo(t, & = y) = Jo(t, ) = (y, Vo (L, 2))| S [yP*|AJo(t, 2 = 1y

with v, € (0,1), on derives
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1t < [ =) = 0, ) {3 Tl ) )y

+ A@al \(Jo(t,z — ) — Jo(t, z))us (y)|dy +/| [(—y, VJo(t, x))ui (y)|dy,

y|>t*1

S/ll IyIQIAJo(t,x—%y)ul(y)|dy+/ ylIVJo(t, x — voy)|lui (v)|dy
y|<eo1

ly|>t1

! /| [(—y, VJo(t, x))ur (y)|dy

N

2
da:)

(/ Iel(t,az:)|2@1g;)é < (/
! (/ /Mal [yl ot 2 = 30y [us (9)]dy de>

([ de)é

lex(t, lzz S P AT(t & = vay) ez lurll e + [V Jo(t, & = yoy) 22 / [yllua(y)|dy

ly|>t>1

/ o P2 1) )y
y|<t*1

/l |>to1 [{(=y, Vdo(t, 2))u (y)]dy

HIThEDe [yl

ly|>t>1

S £ STt €Dl + 19T €Dl [ Il

ly|>t~1

IV ol [€D) 22 / Iyl (9)|dy

ly|>t1

S 1EP ot 16D 2 a2 + 1ELTo(E, 1) 22 / (Wil (y)ldy

ly|>t1

lex(t, Iz S 275 |z + o(Ba(?))

for ¢t > 1, where we used [10] and the weighted assumption u; € L.
Afterward, similarly to (3.4), we may calculate
(b, ) =(H (1, 1D )un () — H(t,2)Pu) + (u(t, [ D)uo(x) — (1, 2) Pro)
— o (AJo(t,|D))0o(x) — Ado(t, z)Py,)
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lea(t, )Lz = o(t™5)

for t > 1 also, which can be guaranteed by the hypothesis (ug, u1,6) € Lb'.Summing up

all obtained estimates from previous statements, we assert that

[ult,.) =@t ez S lleo(t, ez + llen(®, )z + llealt, )2 = o(Ba(t))

for large-time ¢ > 1, and our proof is complete now. m

Remark 14 The lower-order term +a6 enables the asymptotic profiles of the thermoelas-
tic plate system (4) to changey) = (t,x) in (3) of the model with o = 0 into ¢ = @(t,x) in
(3.9) of the model with o > 0. The crucial difference is the power of exponential function

wn the Fourier multipliers.

Remark 15 Physically, the three-dimensional thermoelastic plate system is more im-
portant than other cases because of its applications in practice. If we simply consider
Ysim(t,z) = Jo(t,x)P,, to be the asymptotic profile, then it is not difficult to prove
lu(t,.) = @sim(t, )lr2 = o(Dn(t)) as £ 1, which does not decay in R® as t — oo. For

this purpose, we construct the higher-order profile o(t,x) instead of Qgim(t,x).
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CONCLUTION

This dissertation studied the Cauchy problem for thermoelastic plate systems associated
with Newton’s law of cooling, by applying WKB method and Fourier analysis where,
optimal growth for (n < 4) or decay for (n > 5) estimates for the vertical displacement
and asymptotic profiles of solutions for large-time.

The additional lower-order term +o#6 in the temperature equation weakens the decay rates
of the vertical displacement. This lower-order term leads to anew leading term, which

differs from the classical thermoelastic plate model.
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