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Abstract
In the context of the non-relativistic Snyder-de Sitter model, this research aims to investigate

the relativistic oscillators and non-relativistic quantum mechanics in momentum space using

the path integral formalism. This examination is demonstrated in three main parts. In the first

part, we formulated the D-dimensional momentum space path integral transition amplitude

for both harmonic oscillators and free particles. Through the application of quantum correc-

tion rules, we derived the exact energy spectrum and the normalized radial momentum space

eigenfunctions, while also investigating limiting cases for small parameter values. In the sec-

ond part, we examined the relativistic Green function employing the same algebraic model,

under the influence of a homogeneous electric field, for a Dirac oscillator particle with mass m

and charge e. This analysis is followed by computing the propagator function and determin-

ing the associated spectral energies. Additionally, we examine the thermodynamic properties

of an electron gas at high temperatures across four deformation parameter sets, analyzing their

impact and deducing limiting cases for small parameter values. In the last part, we applied

the path integral formalism to the Green function equation of a (1+ 2)−dimensional Dirac

oscillator under a homogeneous magnetic field, utilizing the modified Snyder algebra by S.

Mignemi (2012). Across radial coordinates transformation, we computed the Green function

and electron propagator, extracting exact bound states and their associated spectral energies.

Our investigation unveiled that when mω̄ → mωc/2 and c→VF , the behavior of the Dirac os-

cillator system under a uniform magnetic field within the Snyder-de Sitter algebra mirrors the

dynamics of the monolayer Graphene problem within the same algebraic framework. More-

over, we derived the thermodynamic properties of the electron gas at elevated temperatures

across four deformation parameter cases, assessing their influence and deducing limiting be-

haviors for small parameters.

Keywords: Propagator, Green function, Dirac oscillator equation, Snyder-de Sitter model,

Homogeneous electric field, Homogeneous magnetic field, thermos dynamic properties.



Résumé
Dans le contexte du modèle de Snyder-de Sitter non relativiste, cette recherche vise à étudier

les oscillateurs relativistes et la mécanique quantique non relativiste dans l’espace des impul-

sions en utilisant le formalisme du l’intégrale de chemin. Cette étude est présentée en trois

parties principales. Dans la première partie, nous avons formulé l’amplitude de transition du

l’intégrale de chemin de l’espace des impulsions D-dimensionnelles pour les oscillateurs har-

moniques et les particules libres. En appliquant les règles de correction quantique, nous avons

dérivé le spectre d’énergie exact et les fonctions propres normalisées de l’espace des impul-

sions radiales, tout en examinant les cas limites pour de petites valeurs de paramètres. Dans

la deuxième partie, nous avons examiné la fonction de Green relativiste en utilisant le même

modèle algébrique, sous l’influence d’un champ électrique homogène, pour une particule os-

cillateur de Dirac avec une masse m et une charge e. Cette analyse est suivie par le calcul

de la fonction de propagateur et la détermination des énergies spectrales associées. De plus,

nous examinons les propriétés thermodynamiques d’un gaz d’électrons à haute température

à travers quatre ensembles de paramètres de déformation, en analysant leur impact et en dé-

duisant des cas limites pour de petits paramètres. Dans la dernière partie, nous avons appliqué

le formalisme du l’intégrale de chemin à l’équation de la fonction de Green d’un oscillateur

de Dirac (1+2) dimensionnel sous un champ magnétique homogène, en utilisant l’algèbre de

Snyder modifiée par S. Mignemi (2012). À travers la transformation des coordonnées radiales,

nous avons calculé la fonction de Green et le propagateur d’électrons, extrayant les états liés

exacts et leurs énergies spectrales associées. Notre étude a révélé que lorsque mω̄ → mωc/2

et c→ VF , le comportement du système d’oscillateur de Dirac sous un champ magnétique

uniforme dans l’algèbre de Snyder-de Sitter reflète la dynamique du problème du Graphène

monocouche dans le même cadre algébrique. De plus, nous avons dérivé les propriétés thermo-

dynamiques du gaz d’électrons à des températures élevées à travers quatre cas de paramètres

de déformation, évaluant leur influence et déduisant des comportements limites pour de petits

paramètres.

Mots clés: Propagateur, Fonction de Green, Équation de l’oscillateur de Dirac, Modèle de

Snyder-de Sitter, Champ électrique homogène, Champ magnétique homogène, Propriétés ther-

modynamiques.



ه

 ص ـــــــــــــــــــخلم
᥃ᣐ
ᤆ سᚖانس جذومن قاᙵرد(Snyder)غᤫ᣾ لاᛩسᤷ᣽ᤆ ، لا اذه فدهيᚁإ ثح᥉  ذملا ةساردᙠذᙠلا تاᛩسᛔᚖة  
᥃ᣐ ةᛔᚖسᛩلا ᤫ᣾غ م៌لا اᚖ᝼ناᚖ᝼مو

ᤆ مخزلا ءاضف ᙠت  مادختسا᝼ةساردلا ەذه تمت دقو ،نامنيافل راسملا لما
᥃ᣐ
ᤆ ئر ءازجأ ةثلاث᝜سᚖة. ᥃ᣐ

ᤆ انمق ،لولأا ءزجلا ᙠصᚖتل  لاقتنلاا ةعس ةغا᝼اضفلا مخزلا   راسم لماᤶᣦ
ᤆ وذ

،᥎ᤆ៌لا حيحصتلا دعاوق قيبطت للاخ نم .ةرحلا تامᚖسجلاو ةᚖقفاوتلا تاᙠذᙠذملا نم ل៌ل  D  دعᚁلا
  قيقحتلا عم ،ᚖ᥂ᤆبطلا ᥁ᤆاعشلا مخزلا ةحاسمل ةᚖتاذلا فئاظولاو قيقدلا ةقاطلا فᚖط قاقتشاᙠ انمق
᥃ᣐ اᡶضᙵأ

ᤆ قل ةدودحملا تلااحلاᚖغصلا تاملعملا مᤫ᣾ة. ᥃ᣐ
ᤆ اثلا ءزجلاᤶᣐ

ᤆ، انمق ᙠلا ةلادلا ةساردᛩسᛔᚖج  ةᗪᙔن  
(Green)  ᙠجلا جذومنلا سفن مادختساᤫ᣽ثأت تحت ،يᤫ᣾ هك لاجمᗪᘿاᤶᣦ

ᤆ اجتمᚸسجل ،سᚖذم مᙠبذ
  ةᚖفᚖطلا تاقاطلا دᙵدحتو  نامنياف ᛕ᤭ᣔنم  باسح لᚖلحتلا اذه عبᙔᛕو .e  ةنحشلاو  m  ةلتឤلا وذ كاريد
  دنع نوឤᤫᣑللإا زاغل ةᙔرارحلا ةᚖكᚖمانيدلا صئاصخلا صحفᙠ انمق ،كلذ ᥉إ ةفاضلإاᙠ .اهب ةطᚁترملا
  تلااحلا طاᚁنᛕساو اهᤫ᣾ثأت لᚖلحتو ،ەوشᛕلا تاملعم نم تاعومجم عــᘿرأ ᤫ᣽ع ةᚖلاع ةرارح تاجرد
᥃ᣐ .ةᤫ᣾غصلا تاملعملا مᚖقل ةددحملا

ᤆ خلأا ءزجلاᤫ᣾، ت  قيبطتب انمق᝼ع  نامنيافل راسملا لما᥋ ةلداعم
ᤶᣦانث  (Dirac)كاريد بذᙠذمل)Green(  نᗪᙔج  ةلاد

ᤆ لأاᙠطانغم لاجم تحت )2+1( داع᝜᤼ᤆ اجتمᚸس،  
لᗽᙔحت قᗪᙔط نع  .S. Mignemi)2012(ةطساوب لدّعملا(Snyder)ردᙵانس ᤫ᣽ج مادختساᙠ كلذو
  تلااحلا جارختسا عم ،نوឤᤫᣑللإا ᛕ᤭ᣔنمو  (Green)  نᗪᙔج  ةلاد باسحᙠ انمق ،ةᚖعاعشلا تاᚖثادحلإا
ഥ߱݉  نوكᙵ امدنع هنأ انقᚖقحت فشك دقو .اهب ةطᚁترملا ةᚖفᚖطلا تاقاطلاو ةقᚖقدلا ةددحملا →

݉߱௖/2  و    ܿ → ிܸ،  ذم ماظن كولس نإفᙠكاريد بذ (Dirac)  طانغم لاجم تحت᝜᤼ᤆ دحوم  
 ᤵ᣾ᣐفارجلا ةل᝼شم تاᚖكᚖمانيد سكعᤫᣑ (Snyder de-Sitter)ᙵيس يد-ردᙵانس ᤫ᣽ج لخاد

(Graphene)  طلا يداحأᚁجلا راطلإا سفن نمض ةقᤫ᣽ع ةولاع .ي᥋ انمق ،كلذ ᙠصئاصخلا قاقتشا  
  ،ەوشᛕلا تاملعمل تلااح عــᘿرأ ᤫ᣽ع ةعفترم ةرارح تاجرد دنع نوឤᤫᣑللإا زاغل ةᙔرارحلا ةᚖكᚖمانيدلا

 . ةᤫ᣾غصلا تاملعملل ةدᚖقملا تاᚖكولسلا طاᚁنᛕساو اهᤫ᣾ثأت مᚖيقتو

  جذومن ،ᤫ᣾ᣐيمت ةطقن ،(Dirac)كاريد بذᙠذم ةلداعم ،Green  ةلاد ،ᛕ᤭ᣔنملا   :ةᘭحاتفملا  تاملᝣلا
ᤶᣦاᗪᘿهك لاجم ،ᤫᣑ (Snyder de-Sitter)يس يد- ردᙵانس

ᤆ اجتمᚸطانغم لاجم ،س᝜᤼ᤆ اجتمᚸس،  
 .ةᙔرارح ةᚖكᚖمانيد صئاصخ
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Chapter 1

General Introduction
In the late 19th century, the main focus of physics revolved around classical Newtonian me-

chanics to explain the dynamics of material bodies, along with Maxwell’s electromagnetic

theory to described radiation in the form of electromagnetic waves. Thermodynamics was also

effectively utilized to study interactions between matter and radiation. Building upon these

accomplishments, physicists believed they had attained a comprehensive understanding of na-

ture, grounded in the principle of determinism. However, as the 20th century dawned, classical

physics faced major challenges and complexities, especially in light of its inability to explain

phenomena at the microscopic level. This shortcoming has become clear with the emergence

of modern techniques for examining atomic and subatomic structures, such as studying atomic

and molecular structures and the interactions of light with them. Phenomena like the emission

of radiation by a black body, the occurrence of the photoelectric effect, and the stability of

atoms have played crucial roles in motivating the exploration of quantum mechanics. In 1900,

Planck presented a precise explanation of black body radiation (the concept of the quantum

of energy), which subsequently initiated a cascade of new discoveries, leading to solutions for

some of the most significant problems of that era. These developments include Compton’s

confirmation in 1923 of the photoelectric effect and the scattering of X-ray photons, Bohr’s

demonstration in 1913 of atomic stability in his model of the hydrogen atom, and Einstein’s

solution in 1905 to the photoelectric effect problem. which have the characteristics of particles

with momentum hν/c where ν is the frequency of the X-rays. Up until 1925, all these discov-

eries were collectively referred to as "old quantum mechanics". Only when Heisenberg, Dirac,

and Schrödinger established the accurate mathematical framework governing these microphys-

ical phenomena, which is rooted in the principle of probability. Historically, three independent

formulations of quantum mechanics have emerged. The first, known as matrix mechanics or

relies "matrix algebra", was developed by Heisenberg-Dirac in 1925. Schrödinger introduced

wave mechanics as the second theory, which is an extension of de Broglie’s hypothesis. This
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formulation, which is more straightforward compared to matrix mechanics, explains the be-

haviour of tiny particles through a wave equation called the Schrödinger equation, instead of

the eigenvalue matrix employed by Heisenberg. In 1948, Feynman introduced his well-known

path integral representation of the kernel of the Schrödinger equation in his renowned paper

published in Reviews of Modern Physics. This method merged the concepts of probability

and determinism. As is well known, the transition from classical to quantitative description

primarily depends on the Hamiltonian function, On the other hand, the quantum mechanics

formulation essentially ignored the Lagrangian formulation. In 1933, Paul. A. M. Dirac was

the first to highlight the potential importance of the Lagrangian in quantum mechanics in a pa-

per (referred to as Paper Dirac). Building on Dirac’s insights, Feynman developed what he

called the Lagrangian formulation of quantum mechanics. Feynman initiated his exploration

of the classical action S(x(t)) and linked it to the principles of quantum mechanics probabil-

ities. In this connection, he illustrated that the probability amplitude of a particle following

a specific path or trajectory x(t) is linked to the exponential factor exp
[ i

h̄S (x(t))
]
. The path

integral method provides an effective and adaptable framework for studying various physical

systems and phenomena. This approach has become an essential tool in theoretical physics,

encompassing quantum mechanics, quantum field theory, statistical physics, condensed matter

physics, cosmology, and black hole physics.

After Feynman successfully established his approach based on Heisenberg’s uncertainty prin-

ciple in standard quantum mechanics 4xi4p j ≥ h̄
2δi j [1–3], the practical applications of this

approach continued in both relativistic and non-relativistic cases [4–9]. Subsequently, this

approach experienced a broadening of its applications to systems that stem from the generali-

sation of Heisenberg’s principle. For instance, in the domain of quantum gravity [10, 11], the

behaviour of systems deformed quadratic algebra is used to model the dynamics of systems

with variable masses in semiconductor heterostructures [12], the description of the low energy

excitations of Graphene, and the Fermi velocity. This results in the momentum commutator

being proportional to pseudo-spin [13] ... etc.

Our research attempts to cover the recent developments in the field of path integrals within

these kind of deformed algebras, especially the context of quantum gravity and string theory
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[14–17]. In 1947, Snyder [18] presented his model to address the divergences that arise in

Quantum Field Theory (QFT) when discretizing spacetime. Snyder’s model can be understood

as a form of Doubly Special Relativity (DSR) that includes an additional universal constant

alongside c, the speed of light in a vacuum

[
Ĵµν , X̂σ

]
= ih̄

(
ηµσ X̂ν −ηνσ X̂µ

)
,
[
Ĵµν , P̂σ

]
= ih̄

(
ηµσ P̂ν −ηνσ P̂µ

)
,[

X̂µ , P̂ν

]
= ih̄

(
ηµν +β P̂µ P̂ν

)
,
[
X̂µ , X̂ν

]
= ih̄β Ĵµν ;

[
P̂µ , P̂ν

]
= 0. (1.1)

With ηµν = (−1,1,1,1). The coupling constant denoted by β is approximately equal to the

Planck length and has dimensions[β ] = [momentum]−2. The operators Ĵµν = X̂µ P̂ν − P̂ν X̂µ

serve as the generators that maintain the Lorentz symmetry. In addition, the generalisation

of this model to spacetimes with uniform curvature involves the introduction of a novel fun-

damental constant that is directly proportional to the cosmological constant. This modified

model is characterised by three unchanging scales: the velocity of light in a vacuum c, a mass

β , and a length α . It is known as Triply Special Relativity (TSR) or the Snyder de Sitter (SdS)

model [20–24].

[
Ĵµν , X̂σ

]
= ih̄

(
ηµσ X̂ν −ηνσ X̂µ

)
,
[
Ĵµν , P̂σ

]
= ih̄

(
ηµσ P̂ν −ηνσ P̂µ

)
,[

X̂µ , P̂ν

]
= ih̄

(
ηµν +αX̂µ X̂ν +β P̂µ P̂ν +

√
αβ
(
P̂µ X̂ν + X̂ν P̂µ − Ĵµν

))
,[

X̂µ , X̂ν

]
= ih̄β Ĵµν ;

[
P̂µ , P̂ν

]
= ih̄α Ĵµν . (1.2)

To the best of our knowledge, only a limited studies have used the path integral approach to

investigate the characteristics of SdS space in relativistic and nonrelativistic quantum mechan-

ical systems.

The primary objective of this thesis is to employ the path integral approach within the frame-

work of Snyder model. It aims to explore the behavior of both relativistic and non-relativistic

particles with spin 1/2 travelling in a homogeneous magnetic and electric field within momen-

tum space representations.

Structured into four chapters, the thesis begins with an introduction and ends with a conclusion.

In chapter two, we provide an overview of the path integral approach in quantum mechanical
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systems without deformation. Chapter three, formulates the D-dimensional momentum space

path integral transition amplitude for the harmonic oscillator and free particle, deriving exact

expressions for energy spectrum and relative wave functions. Chapter four, focusing on the

employment of the path integral approach to derive the relativistic Green function for a (1+1)-

Dirac oscillator system under a uniform electric field within the SdS model. It computes

the propagator function, relevant spectral energies, and thermodynamic characteristics of a

single electron at high temperatures. In Chapter five, we analyze the behavior of the (1+2)-

dimensional Dirac oscillator system in a uniform magnetic field within the SdS algebra model,

demonstrating its similarity to monolayer Graphene dynamics. It derives precise bound states,

energy eigenvalues, and plots thermodynamic functions for the system. The final chapter

presents a summary of findings and overall conclusions drawn from the study.



Chapter 2

Concept of Path Integral Formalism in

Standard Quantum Mechanics
2.1 Historic backgrounds
In the general introduction to this thesis, we have outlined the historical evolution of the

mathematical frameworks governing quantum physics. These frameworks are primarily

based on two fundamentally distinct formulations: Schrödinger’s differential equation and

Heisenberg’s matrix mechanics, introduced between 1925 and 1926. Quantum mechanics

builds upon the Hamiltonian formulation of classical mechanics, where the quantum Hamil-

tonian operator Ĥ(x̂, p̂) is derived from the classical Hamiltonian H(x, p) by simply replacing

p→ p̂ = −ih̄∂/∂x. This concept may be illustrated schematically as follows: [3]: While the

Figure 2.1: Classical description versus quantum description

formulation of quantum mechanics is not directly based on the Lagrangian function (see Ta-

ble 2.1), implying the impossibility of precisely measuring a quantum particle’s position and

momentum simultaneously, it was from this conceptual framework that the third mathemat-

ical formulation of quantum mechanics emerged, devised by Richard Feynman in 1948. On

the other hand, the probability of an event is represented by the square of the modulus of the

amplitude. In other words, for an event such as a particle leaving point (a) at time (ta) and ar-

riving at point (b) at time (tb) with (tb ≥ ta), the event’s probability is expressed as the square
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of the amplitude. The probability amplitude associated with this event is denoted as K (a,b),

the probability of event is given by [25]

P(b,a) = |K (a,b)|2 . (2.1)

Physically, from slit experiment, in quantum mechanics, there are multiple ways for an event

to happen. The probability amplitude of the event is the sum of the probability amplitudes

corresponding to each way.

K (a,b) = ∑
i

Ki (a,b) . (2.2)

Moreover, if the particle travels from point (a) to (b) via point (c) at time (tc), where (ta ≤

tc ≤ tb), the probability amplitude of transitioning from (a) to (c) and then from (c) to (b)

(Intermediate Principle) is defined as

K (a,b) = K (a,c)K (c,b) . (2.3)

Unlike classical particle, which follow specific paths (classical paths) from point (a) to point

(b), quantum particle traverse all possible paths between these two points. Therefore, ac-

cording to the principle of superposition, the probability amplitude of such an event can be

expressed as

K (a,b) = ∑
All the path

possible

Φ(x(t)) . (2.4)

Where Φ(x(t)) is the probability amplitude of path x(t) linking (a) and (b) .

Let us postulate, additionally, that the contribution of each path acquires a phase proportional

to the action S(x(t)), corresponding to the path x(t)

Φ(x(t)) =C exp
[

i
h̄

S(x(t))
]
, (2.5)

where

S(x(t)) =
∫ tb

ta
L(x, ẋ, t)dt. (2.6)
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Here, C represents the normalization constant of the amplitude, appropriately chosen. How-

ever, the selection of Φ(x(t)) and S(x(t)) is not arbitrary. It results from an analogy between

quantum systems and their classical correspondents, particularly when h̄→ 0. It is easy to see

that S(x(t)) defined by equation (2.6) becomes the classical action and the probability ampli-

tude takes the classical form K (a,b) =C exp
[ i

h̄Scl
]

where Scl = S (x̄) is the classic action,with

(x̄) denoting the classical path of the particle.

To sum over all paths, we initially divide the time interval (tb− ta) into N intervals, where

t j− t j−1 = ε , tb− ta = Nε . Consequently, each path can be discretely defined by a sequence of

points(x0 = a,x1........xN−1,xN = b), which, as ε → 0, converges to the continuous path x(t).

Thus, the amplitude of the path x(t) becomes a function of this sequence of points and is

denoted as φ (x0, ....,xN). In the limit as ε → 0, it essentially depends on the continuous path

x(t).

Now, applying the principle given by the equation (2.3), it follows that

φ (x1, ......,xn) =
N

∏
j=1

φ
(
x j,x j−1

)
, (2.7)

where φ
(
x j,x j−1

)
represents the probability amplitude of the part of the path bounded by the

points x j and x j−1, which we will determine subsequently. The sum over all paths is then

obtained by integrating over all points (x0, x1, ...xN−1, xN), with the initial and final points

(a) and (b) being fixed. This yields the following rough expression for the amplitude:

K (a,b)'
∫ N−1

∏
j=1

dx j

N

∏
j=1

φ
(
x j,x j−1

)
. (2.8)

By taking the limit ε→ 0 of this expression, we include all points along the paths, resulting in

the correct expression:

K (xb, tb;xa, ta) = lim
ε→0

∫ N−1

∏
j=1

dx j

N

∏
j=1

φ
(
x j,x j−1

)
, (2.9)

where

φ
(
x j,x j−1

)
=

1
A

exp
[

i
h̄

S
(
x j,x j−1

)]
, (2.10)



8 Concept of Path Integral Formalism in Standard Quantum Mechanics

(A) represents the amplitude normalization constant, and S denotes the action between the

instants (t j) and (t j−1). Furthermore, we require S to be a classical action.

S
(
x j,x j−1

)
=
∫ t j

t j−1

L(x, ẋ, t)dt, (2.11)

and finally we obtain

K (xb, tb;xa, ta) = lim
ε→0

∫ N−1

∏
j=1

dx j

N

∏
j=1

[
1
A

exp
[

i
h̄

S
(
x j,x j−1

)]]
. (2.12)

So the Eq. (2.12) is written as

K (xb, tb;xa, ta) =
∫ (xb,tb)

(xa,ta)
D [x(t)]exp

[
i
h̄

∫ tb

ta
L(x, ẋ, t)dt

]
. (2.13)

The expression for S defined by equation (2.11) is challenging to compute for arbitrary ε .

However, an approximation can be made on S
(
x j,x j−1

)
by retaining only the first order in

ε . This approximation arises from the fact that errors of order higher than ε . i.e ε1+η>1 in

S
(
x j,x j−1

)
, will not contribute significantly to the calculation of expression (2.12). These

errors accumulate into an error ε that vanishes as ε→ 0. In the case of a quadratic Lagrangian

in (ẋ), a good approximation of S
(
x j,x j−1

)
is given by

S
(
x j,x j−1

)
= εL

(
x j + x j−1

2
,
x j− x j−1

ε
,
t j + t j−1

2

)
, (2.14)

here, we already observe the emergence of that we term mid-point principle.

For a Lagrangian independent of time and not containing a linear term in (ẋ), expression (4.14)

can be simplified to

S
(
x j,x j−1

)
= εL

(
x j,

x j− x j−1

ε

)
. (2.15)
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Figure 2.2: In between kicks by potential the system moves a very short time

For instance, given a particle subjected to the scalar potential V (x) we have:

S
(
x j,x j−1

)
=

m
2

((
x j− x j−1

)2

ε

)
− εV

(
x j
)
. (2.16)

Note that from Eq. (2.9) an interesting property of the amplitude follows:

K (xb, tb;xa, ta) =
∫ N−1

∏
j=1

dxcK (xb, tb;xc, tc)K (xc, tc;xa, ta) , (2.17)

with ta < tc < tb, indicating that events occur sequentially in time. Let us select an instant

(tk) from the subdivision t0,t1..., tk...tN , positioned between (t0) and (tN) but sufficiently dis-

tant from them so that the durations tk − t0 and tN − tk are measurable. In other words,

t0...., tk...., tk+l , where (k) and (l) both tend to infinity. Then, we write:

K (xb, tb;xa, ta) = lim
ε→0

(k,l→∞)

∫ k−1

∏
j=1

dx j

k

∏
j=1

φ
(
x j,x j−1

)
dxk

k+l−1

∏
j=k+1

dx j

k+l

∏
j=k+1

φ
(
x j,x j−1

)
, (2.18)

or

K (xb, tb;xa, ta) =
∫

dxcK (xb, tb;xc, tc)K (xc, tc;xa, ta) , (2.19)
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where tk = tc, this relation remains valid only for systems having an action which verifies the

locality relation

S (b,a) = S (b,c)+S (c,b) . (2.20)

2.2 Wave Function
Previously, we established that K (xb, tb;xa, tb) represents the probability amplitude for the

particle to transition from (xa) at time (ta) to (xb) at time (tb), where (xa, ta) and (xa, ta) denote,

respectively, the past and future states of the event. Disregarding its past (xa, ta), given the

knowledge that it previously existed somewhere, this probability amplitude can then signify

the likelihood of presence at point (xb) at time (tb), commonly referred to as the particle’s wave

function.

K (xb, tb, ., .) = ψ (xb, tb) . (2.21)

The dots signify that the past is irrelevant. With this definition, it becomes evident that this

wave function satisfies the following integral equation:

ψ (x, t) =
∫ +∞

−∞

K (x, t;x0, t0)ψ (x0, t0)dx0, (2.22)

where K (x, t;x0, t0) is the amplitude of probability of going from (x0, t0) to (x, t) often called

propagator of the particle, K (x, t, ., .) =ψ (x, t) and K (x0, t0, ., .) =ψ (x0, t0), the dots designate

a past tense before (x0, t0). Equation (2.22) implies that given the wave function at time (t0) it

is possible to determine its future at time (t � t0), all its past prior to (t0) enclosed in the initial

wave function ψ (x0, t0). Taking the limit as (t→ t0) in equation (2.22) it comes

ψ (x, t) =
∫ +∞

−∞

lim
t→t0

K (x, t;x0, t0)ψ (x0, t0)dx0, (2.23)

which shows that K (x, t;x0, t0) satisfies the following property called "normalization condi-

tion".

lim
t→t0

K (x, t;x0, t0) = δ (x− x0) . (2.24)
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2.3 Schrödinger Equation
We will examine the case of a particle subject to the scalar potential V (x) using expression

(2.24) for S
(
x j,x j−1

)
. Conversely, for the case of a vector potential, the incorporation of the

midpoint principle becomes essential. Considering a duration t− t0 = ε → 0, equation (2.24)

represents the propagator expression, which we can express as

ψ (x, t + ε) =
∫ 1

A
exp

[
i
h̄

[
m
2
(x− x0)

2

ε
− εV (x)

]]
ψ (x0, t0)dx0, (2.25)

setting x− x0 = η , t0 = t, becomes

ψ (x, t + ε) =
∫

dη
1
A

exp
[

i
h̄

[
m
2

η2

ε

]
exp
[
−iεV (x)

h̄

]]
ψ (x−η , t) . (2.26)

The first exponential varies quickly, perhaps jump to the neighborhood of η ∼ 0 so that η is of

the order of
√

ε . Knowing that the other actors are slitally variable with η (continuity of the

wave function ψ (x(t))), it follows that the only paths that contribute to the path integral are

for which one 4x j '
√

ε which shows the Brownian character of quantum motion (velocity

discontinuity 4x j
ε

). Let us expand ψ (x−η , t) in a Taylor series to order 2 in η therefore to

order (i) in ε then let us integrate on η and let us expand ψ (x, t + ε) and exp
[

iεV (x)
h̄

]
to order

i in ε , we easily deduce the Schrödinger equation for ψ (x, t), after having identified (A) to

A =
√

2πih̄ε

m

ih̄
∂ψ

∂ t
= Ĥψ, (2.27)

or Ĥ = p̂2

2m +V̂ (x) and p̂ =−ih̄ ∂

∂x .

A generalization to the time-dependent potential V (x, t) is possible, giving a result analogous

to equation (2.27). Except perhaps we should use discretization t j+t j−1
2 for the time axis.

Let us now show that the propagator can be considered as a Green function of the Schrödinger

equation. It was defined for (t), as a wave function at the point (tb � ta) then we can say that it

satisfied the Schrödinger equation (2.27).

[
ih̄

∂

∂ tb
−Hb

]
K = 0 pour tb � ta.
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Furthermore, let us impose the condition K (xb, tb;xa, ta) = 0, tb ≺ ta which expresses the fact

that the propagator does not propagate the wave functions towards the past, which is consistent

with a non-relativistic theory. It is then appropriate to pose:

K̄ (xb, tb;xa, ta) = θ (tb− ta)K (xb, tb;xa, ta) , (2.28)

and easily shows, using the property (2.24) that K̄ satisfies the following Schrödinger equation

(
ih̄

∂

∂ tb
−H

)
K̄ = ih̄δ (tb− ta)δ (xb− xa) . (2.29)

For a time-independent Hamiltonian, the solution wave functions of the Schrödinger equa-

tion have the simple form exp
(
− itE

h̄

)
φ (x), where the φ (x) satisfy the eigenvalue equation

Hφ = Eφ and thus constitute a closed orthogonal system for the Hilbert space "space of wave

functions". Let us then expand the wave function on this basis and compare the expression

obtained with equation (2.24), we will obtain the following property

K (xb, tb;xa, ta) =

 ∑
∫

φ (xb)φ∗ (xa)exp
[
− iE

h̄ (tb− ta)
]

pour tb � ta

0 pour tb ≺ ta

 , (2.30)

which expresses the development of the propagator as a wave function, the symbol ∑
∫

desig-

nates a summation over the discrete and continuous states. The developments carried out so

far are valid for one-dimensional systems.

2.4 Path Integral Formalism in Phase Space (Trotter’s For-

mula)
Follows the well-known canonical steps of Trotter’s formula, and in non-relativistic quantum

mechanics, the construction of the phase space path integral representation of the transition

amplitude for standard quantum systems is:

K (xb, tb;xa; ta) =
〈
xb | Û (tb, ta) | xa

〉
,
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with Û (tb, ta) = exp
(
− iT

h̄ Ĥ (x̂, p̂)
)

is the evolution operator and T = (tb− ta). Formally, let’s

divide the time interval [tb, ta] in (N +1) intervals equal to ε = T
N+1 , and we note that we can

write this expenential as

K (xb, tb;xa; ta) =

〈
xb

∣∣∣∣∣
{

exp
[
−iε

h̄
Ĥ (x̂, p̂)

]}N+1
∣∣∣∣∣xa

〉
. (2.31)

Now let’s insert the following closure relation based on the coordinates
∫ ∣∣x j

〉〈
x j
∣∣dx j = 1 by

N times between even exp
[−iε

h̄ Ĥ (x̂, p̂)
]
, with the standard form of the Hamiltonian (Ĥ (x̂, p̂) =

p̂2

2m +V (x̂)). Then Eq. (2.31) becomes as

K (xb, tb;xa; ta) = lim
N→∞

N

∏
j=1

[∫
dx j

]N+1

∏
j=1

K
(
x j, t j;x j−1; t j−1

)
. (2.32)

Where the infinitesimal transition amplitude is defined by

K
(
x j, t j;x j−1; t j−1

)
=

〈
x j

∣∣∣∣exp
[
−iε

h̄
Ĥ (x̂, p̂)

]∣∣∣∣x j−1

〉
. (2.33)

As we know, since ε � 1 when N� 1, following Trotter formula we have

exp
{
− iε

h̄

[
p̂2

2m
+V (x̂)

]}
= exp

[
− iε

h̄
p̂2

2m

]
exp
[
− iε

h̄
V (x̂)

]
. (2.34)

For a second time, let’s insert the closure relation based on the momentum
∫ ∣∣p j

〉〈
p j
∣∣d p j = 1,

where we record each p j as a pulse corresponding to each of the time periods, and we find

obtain

K
(
x j, t j;x j−1; t j−1

)
=
∫

d p j
〈
x j
∣∣exp

[
− iε

h̄
p̂2

2m

]∣∣p j
〉〈

p j
∣∣exp

(
− i

h̄
V (x̂)ε

)∣∣x j−1
〉
.

Furthermore, we have the actions of the following operators

p̂
∣∣p j
〉
= p j

∣∣p j
〉
, and x̂

∣∣x j−1
〉
= x j−1

∣∣x j−1
〉
, (2.35)
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more general

e−
iε
h̄

p̂2
2m
∣∣p j
〉
= e−

iε
h̄

p2
j

2m
∣∣p j
〉
, and e−

iε
h̄ V (x̂) ∣∣x j−1

〉
= e−

iε
h̄ V (x j−1)

∣∣x j−1
〉
. (2.36)

The propagator can be expressed like this:

K
(
x j, t j;x j−1; t j−1

)
=
∫

d p je−
iε
h̄

p2
j

2m e−
iε
h̄ V (x j−1)

〈
x j
∣∣p j
〉〈

p j
∣∣x j−1

〉
. (2.37)

As we know in standard quantum mechanics
〈
x j
∣∣ p j〉 represents the plane wave

〈
x j
∣∣ p j〉=

1√
2π h̄

e
i
h̄ p jx j ,

〈
p j
∣∣x j−1〉=

1√
2π h̄

e−
i
h̄ p jx j−1 . (2.38)

We will then write

K
(
x j, t j;x j−1; t j−1

)
=
∫

d p je−
iε
h̄

p2
j

2m e−
iε
h̄ V (x j−1)e

i
h̄ p j(x j−x j−1). (2.39)

Substituting the equality of Eq. (2.39) into Eq. (2.32) The path integral representation of the

transition amplitude for a particle in the potential V (x) is expressed by

K (xb, tb;xa; ta)= lim
N→∞

∫ N

∏
j=1

dx j

N+1

∏
j=1

∫ d p j

2π h̄
exp

{
iε
h̄

N

∑
j=1

[
p j

(
x j− x j−1

ε

)
−

p2
j

2m
−V (x j−1)

]}
.

(2.40)

Note that the integrations with respect to p j are Gaussian and can be readily performed

∫ d p j

2π h̄
exp

[
− i

h̄

p2
j

2m
ε +

i
h̄

p j
(
x j− x j−1

)]
=

√
m

2iπ h̄ε
exp
[

i
h̄

m
2ε

(
x j− x j−1

)2
]
, (2.41)

then

K (xb, tb;xa; ta)= lim
N→∞

N

∏
j=1

[∫
dx j

]( m
2iπ h̄ε

)(N+1)/2
exp

[
i
h̄

N+1

∑
j=1

( m
2ε

(
x j− x j−1

)2− εV (x j−1)
)]

.

(2.42)
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Note that at the limit N → ∞ where the time interval ε tends to zero, the exponential in the

integral seen as Rienmman integral is proportional to the classical Lagrangian of the system

N+1

∑
j=1

( m
2ε

(
x j− x j−1

)2−V (x j−1)ε
)
=

N+1

∑
j=1

ε

[(
m
2

(
x j− x j−1

ε

)2

−V (x j−1)

)]

=
∫ tb

ta

(m
2

ẋ2
j −V (x j)

)
dt =

∫ tb

ta
L
(
x j, ẋ j, t j

)
dt, (2.43)

where ẋ j = limε→o
x j−x j−1

ε
is the speed of the particle at time t j. Finally, we have the path

integral formulation for the propagator K (xb, tb;xa; ta) given by Feynman and which we will

write in the following continuous form:

K (xb, tb;xa; ta) =
∫ (xb,tb)

(xa,ta)
D [x(t)]exp

[
i
h̄

S [x(t)]
]
, (2.44)

S [x(t)] is called classical action

S [x(t)] =
∫ tb

ta
L
(
x j, ẋ j, t j

)
dt. (2.45)

The Feynman measure is denoted by

D [x(t)] = lim
N→∞

N

∏
j=1

[
dx j
]( m

2iπ h̄ε

)N+1
2
. (2.46)

2.5 Green Function
In non-relativistic quantum mechanics the propagation takes place towards the future (non-

relativistic causality) we then define the propagation by the Green function in following time

G(tb, ta) = Θ(tb− ta)exp
(
− i

h̄
(tb− ta) Ĥ

)
, (2.47)

where Θ(tb− ta) is the Heaviside function ensures this causality.
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The matrix element between states |xa〉 and |xb〉 is then written as

G(xb,xa; tb, ta) = 〈xb|G(tb, ta) |xa〉= Θ(tb− ta)〈xb|exp
(
− i

h̄
(tb− ta) Ĥ

)
|xa〉

= Θ(tb− ta)K (xb, tb;xa, ta) . (2.48)

In this case, G(xb,xa; tb, ta) is a solution of the equation

[
ih̄

∂

∂ tb
+ Ĥ (xb)

]
G(xb,xa; tb, ta) =−ih̄δ (xb− xa)δ (tb− ta) . (2.49)

By introducing the Fourier transform of this Green function in time, we obtain the Green

function in energy defined by

G(xb,xa;E) =
1
ih̄

∫
dTe

i
h̄ E(tb−ta)G(xb,xa; tb, ta) . (2.50)

For Ĥ independent of time, this Green function satisfies

(
E− Ĥ

)
G(xb,xa;E) = δ (xb− xa) , (2.51)

G(xb,xa;E) is the matrix element of an operator Ĝ(E)

G(xb,xa;E) = 〈xb| Ĝ(E) |xa〉 , (2.52)

and where formally we will write

Ĝ(E) =
1(

E− Ĥ
) , (2.53)

and as

K (xb, tb;xa, ta) = ∑
n

e
i
h̄ E(tb−ta)ϕn (xb)ϕ

∗
n (xa) , (2.54)

then this energy-dependent Green function will be written as

Ĝ(E) = ∑
n

ϕn (xb)ϕ∗n (xa)(
E− Ĥ

) . (2.55)
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2.6 The Path Integral in D-dimensional Polar Coordinates
The Feynman propagator of a particle of mass m moving in D−dimensional Euclidean space

in a scalar potential V (x) is given by

K (xb,xa;T ) =
∫

D [x(t)]exp
[

i
h̄

∫ T

0

(m
2

(−→̇
x 2
)
−V (x)

)
dt
]
.

In discrete form, it is defined by:

K (xb,xa;T ) = lim
N→∞

( m
2iπ h̄ε

)(N+1) d
2
∫ N

∏
j=1

dx j exp

[
i
h̄

N+1

∑
j=1

S ( j, j−1)

]
, (2.56)

with

S ( j, j−1) =
m
2ε
4x2

j − εV
(
x j
)
, (2.57)

where ε = t j− t j−1 and4u j = u j−u j−1, (u = x1, ...,xd) are respectively the elementary time

interval and the interval position. Let’s go to polar coordinates:

xi = r
i−1

∏
k=1

sinθk cosθ j , j = 1,2, ...,d−1,xd = r
d−1

∏
k=1

sinθk sinφ , (2.58)

for convenience, we have set θ0 = π/2, θd−1 = φ and

0≤ θk ≤ π; (k = 1,2...,d−2), 0≤ φ ≤ 2π.

r =

(
d

∑
k=1

x2
k

)1/2

. (2.59)

Following the usual polar decomposition, the propagator will be written in the polar represen-

tation as

K (rb,ra;T ) = lim
N→∞

( m
2iπ h̄ε

)N+1
2 d ∫ N

∏
j=1

rd−1
j dr jdΩ j exp

[
i
h̄

N+1

∑
j=1

S ( j, j−1)

]
, (2.60)

with

dΩ j =
d−1

∏
ν=1

(
sinθ

ν
j
)d−1−ν dθ

ν
j , (2.61)
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which can also be put as follows

S ( j, j−1) =
m
2ε

[
r2

j + r2
j−1−2r jr j−1 cosψ j, j−1

]
− εV

(
r̄ j
)
. (2.62)

with

cosψ j, j−1 =
d−2

∑
ν=0

cosθ
( j)
ν+1 cosθ

( j−1)
ν+1

ν

∏
µ=0

sinθ
( j)
µ sinθ

( j−1)
µ +

d−−1

∏
ν=1

sinθ
( j)
ν sinθ

( j−1)
ν . (2.63)

We separate the radial part from the angular part by utilizing an alternate formula.

ezcosψ =
( z

2

)−ν

Γ(ν)
∞

∑
l=0

(l +ν) Il+ν (z) Cν
l (cosψ) , (2.64)

where Cν
l are Gegenbauer polynomals. In our case ν = (d−2)/2. for d = 2. On the other hand

for d = 3, ν = 1/2, C1/2
l (cosψ) = P1 (cosψ) (Legender polynomal) and Eq.(2.64) reduces to

another familiar formula

ezcosψ =

√(
π

2z

)
∞

∑
l=0

(2l +1) Il+1/2 (z) P1 (cosψ) . (2.65)

Now if ψ j, j−1 is the angle between two D-dimensional unit vectors
−→
Ω ( j−1) and

−→
Ω ( j) the

following addition theorem applies

M

∑
µ=1

Sµ

l

(−→
Ω

( j−1)
)

Sµ

l

(−→
Ω

( j)
)
=

Γ(d/2)
2πd/2

(2l +d−2)
(d−2)

C(d−2)/2
l

(
cosψ j, j−1

)
, (2.66)

where Sµ

l

(−→
Ω

)
are the real hyperspherical harmonic of degree 1 associated with unit vector

−→
Ω , l = 0,1,2, ....,∞ while µ = 1,2, .....,M, with

M =
(2l +d−2)(l +d−3)

l!(d−2)!
. (2.67)

The function Sµ

l

(−→
Ω

)
satisfy theorthonormality condition

∫
dΩSµ

l (Ω)Sµ
′

l′
(Ω) = δll′,δµµ ′. (2.68)
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For d = 3, the formula (2.66) reduces to

l

∑
m=l

Y ∗lm
(−→

Ω
( j−1)

)
Ylm

(−→
Ω

( j)
)
=

2l +1
4π

P1
(
cosψ j, j−1

)
, (2.69)

where Ylm

(−→
Ω

)
are the usual spherical harmonic. Using Eq. (2.64) and Eq. (2.66) in the path

integral and performing the angular integrations with the help of the relation (2.68), we obtain

K(d) =
Γ(d/2)
2πd/2

∞

∑
l=0

(2l +d−2)
(d−2)

C(d−2)/2
l (cosψ0,N)K(d)

l

(
r′′,r′;T

)
, (2.70)

for which the path integral defines the radial propagator.

Kl =
(
r′r′′
)(d−1)/2 lim

N→∞

( m
ih̄ε

)N/2 ∫ ∞

0

N−1

∏
j=1

∫
dr j

N

∏
j=1

R j; j−1, (2.71)

where

R j; j−1 =
(mr jr j−1

ih̄ε

)1/2
Il+(d−2)/2

(mr jr j−1

ih̄ε

)
exp
{

i
h̄

[ m
2ε

(
r2

j + r2
j−1
)
− εV (r j)

]}
. (2.72)

The integrations over r j can be readily performed according to the analytical expression for

the potential function.



Chapter 3

Path Integral Approach to The D-dimensional

Quantum Mechanics of The Non-Relativistic

Snyder-de Sitter Model

3.1 Introduction
In physics, the theory of deformation often arises when considering systems in which the usual

algebraic rules, such as commutativity, are not obeyed, through the introduction of parameters.

For example, in quantum mechanics, operators representing physical observables like position

and momentum may not commute with each other, leading to noncommutative algebraic struc-

tures. As it allows for a more general description of physical systems, it has applications in

various areas of physics, including quantum field theory, string theory, and condensed matter

physics. Over the past decades, noncommutativity in spacetime has garnered increasing inter-

est. Historically, the Snyder model was the first attempt to study quantum spacetime, intro-

ducing a minimum measurable length [18]. This concept of fundamental length was predicted

across all approaches related to quantum gravity on a Planck scale, leading to appearance of

the Generalized Uncertainty Principle (GUP). Additionally, the Extended Uncertainty Prin-

ciple (EUP) naturally arose from the preservation of local momentum symmetry or derived

alternatively from the (anti)-de Sitter spacetime geometry.

In the latter context, the SdS algebra is defined as a nonlinear extension of the Poincaré alge-

bra and also represents a generalization of the proposed minimal length uncertainty relation

[10, 11]. It is the first proposal of quantum spacetime relying on an algebra constructed by

spacetime coordinates and Lorentz generators, thus warranting special attention for its impact
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on quantum systems. In recent times, the study of quantum mechanical models within the SdS

framework has gained significant attention. This model is regarded as an example of Doubly

Special Relativity (DSR)[20], featuring a fundamental constant β . Depending on the positive

or negative values of parameter β , it is also referred to as the Snyder or anti-Snyder model,

respectively.

In light of this, the SdS model was created by extending the Snyder algebra to a curved de Sitter

background, characterized by a positively curved spacetime that corresponds to the accelerated

expansion of the universe. It can also be considered an example of Triply Special Relativity

(TSR) or Yang’s model [20]. In addition to the speed of light, the resulting model includes two

more essential deformation parameters: the Planck energy and the Sitter ray, which are related

to the cosmological constant. Its linked algebra is defined by the following commutation

relationship [26–32],

[
xi, p j

]
= ih̄

(
δi j +αxix j +β pi p j +

√
αβ
(

pix j + x j pi
))

,[
xi,x j

]
= ih̄βεi jkLk and

[
pi, p j

]
= ih̄αεi jkLk, (3.1)

where Lk are components of angular momentum operator.

As a consequence, this algebra has captured particular interest in research and extensive stud-

ies of deformed physical models. In this regard, notable examples include the classical and

quantum mechanics of a free particle and the harmonic oscillator [27], the two-dimensional

relativistic Bosonic oscillator equation moving in a uniform magnetic field [33], the three-

dimensional Dirac oscillator [32], and the exact solutions of the (1+1)-dimensional relativis-

tic Klein-Gordon and Dirac equations with linear vector and scalar potentials [34].

Furthermore, the introduction of these deformed algebras into the path integral framework is

crucial because the diffusion amplitudes in the ultraviolet regime are naturally regularised by

this deformation. Additionally, it provides some insights into the regularization and renormal-

ization of perturbed quantum field theory and statistical partition function, where the defor-

mation parameters being the cut off of the theory. Thanks to the path integral approach, some

problems have found solutions with a single deformation parameter. We mention some exam-
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ples: the one-dimensional propagator for the DO [35], the one dimension relativistic spinning

particle with vector and scalar linear potentials [36] the two dimensions relativistic DO [37],

the one dimension harmonic oscillator [38], the Coulomb potential [39], the Klein Gordon

particle [40], the D-dimensional harmonic oscillator [41] and the kernel for a free particle by

[42]. Nevertheless, despite its successful outcomes, the Feynman approach still requires re-

finement as a quantification tool. This is particularly evident in cases involving deformation or

constraints, where one does not know a priori how to select the discretization procedure. For

instance, it has been found that the use of the mid-point prescription technique is privileged

to be consistent with the direct method in the context of quantification with constraints, also

known as the Faddeev-Senjanovic formulation [43–47]. Similarly, when studying the dynam-

ics of quantum particles represented by deformed algebras using the path integral and only

one deformation parameter, the discretization problem still exists [35–37]. In the following,

the discretization problem will reappear, but this time in the presence of two deformation pa-

rameters. The primary aim of this chapter is to establish a path integral formulation for the

SdS algebra in D-dimensional momentum space with two deformation parameters and inves-

tigate both the free particle and harmonic oscillator cases. As previously mentioned, for the

discretization problem, the difficulty is identifying the most suitable quantum fluctuations as-

sociated with it. To transform the action and measure to the usual ones defined in the standard

path integral. We employ the general form of the δ -point discretization method. It is worth not-

ing that the overall correction depends on this δ -point discretization, and in this case, choosing

the mid-point the discretization does not yield satisfactory and consistent results for computing

the quantum corrections, as seen in the standard case [3]. In Section 2, we provide a concise

overview of the quantum mechanics associated with the deformed SdS model. Section 3 out-

lines the construction of the path integral formalism within this deformed algebra framework.

Subsequently, we compute the transition amplitude for both the free particle and the Harmonic

oscillator in D-dimensional momentum space. To achieve this, we employ spherical coordi-

nate transformation and relative angular decomposition [48], facilitating the conversion of the

radial part to that of the Pöschel–Teller potential. This enables us to derive exact expressions

for the energy spectrum and relative wave functions of the problem. Finally, in Section 4, we
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summarize our findings.

3.2 Quantum Mechanics with Generalized Snyder Model
According to [27], the generalized Snyder model’s Heisenberg commutation relation in one

dimension is as follows:

[x̂, p̂] = ih̄
(
1+α

2x̂2 +β
2 p̂2 +αβ (x̂ p̂+ p̂x̂)

)
, (3.2)

α and β denote a small positive parameters of deformation. The following Heisenberg uncer-

tainty relation can be obtained directly from the above equation

∆x∆p≥ h̄
2

∣∣∣1+α2 (∆x)2 +β 2 (∆p)2
∣∣∣

1+ h̄αβ
. (3.3)

The above-mentioned relation (3.3) results in a non zero minimum length in position and

momentum uncertainties

∆xmin =
h̄β√

1+2h̄αβ
, ∆pmin =

h̄α√
1+2h̄αβ

. (3.4)

According to Mignemi in [27] and Stetsko in [32], in D-dimensions, the connection between

this deformed algebra and the Snyder algebra has been established, from which the represen-

tation of these position and momentum operators follows the SdS Heisenberg algebra, where

x̂i = x̄i +
β

α
λ p̄i, p̂i = (1−λ ) p̄i− α

β
x̄i, (3.5)

to obtain the Hamiltonian symmetric, we can select a free parameter λ in each case. The

following commutation relations are satisfied by the pair of operators (x̄i, p̄i) [27].

[
x̄i, p̄ j

]
= ih̄

(
1+β

2 p̄2
i
)
,
[
x̄i, x̄ j

]
= β

2 (x̄i p̄ j− x̄ j p̄i
)
,
[
p̄i, p̄ j

]
= 0. (3.6)

Hence, it is feasible to redefine the expressions for these position and momentum coordinate

operators to match to the Snyder-Heisenberg brackets (3.6) using auxiliary operators X̂ and P̂,
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which adhere to the standard commutation relations, as described in [27].

x̂i =

√
1−β 2P̂2X̂i +

λβ

α

P̂i√
1−β 2P̂2

i

, p̂i =−
α

β

√
1−β 2P̂2X̂i +(1−λ ) P̂i√

1−β 2P̂2
. (3.7)

Within the framework of the anti-SdS (aSdS) algebra model, all real values of P are permissi-

ble. However, if α2, β 2 > 0, the permissible range of P̂ is limited by P2 < 1/β 2. The operators

of x̂ and p̂ are symmetric only within the subspace L2(R2,dP/
√

1−β
2P2), where the scalar

product is defined as follows

〈ψ | φ〉=
∫ 1/β

−1/β

dP√
1−β 2P2

ψ
∗ (P)φ (P) , (3.8)

the wave function satisfies the periodic boundary conditions, with ψ (−1/β ) = ψ (1/β ) . This

results in the following closure relation

∫ 1/β

−1/β

dP√
1−β 2P2

|P〉〈P|= 1. (3.9)

We define, following the approach of [10, 11], the projection relation for the free case as follow

〈
P|P

′
〉
=

(
1−β 2P′2

1−β 2P2

) γ

2
√

1−β
2P2δ

(
P−P′

)
,and γ = i(1−λ )/2h̄αβ , (3.10)

on the other hand, regarding the harmonic oscillator potential, we have

〈
P|P

′
〉
=

(
1−β 2P′2

1−β 2P2

) γ

2
√

1−β
2P2δ

(
P−P′

)
,and γ = iλ/2h̄αβ . (3.11)

When α2,β 2 < 0, it results in maximum momentum but no minimum positional uncertainty,

this is known as the SdS algebra representation. In this instance, we alter the integration limits

across the space in the equation above.
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3.3 The Schrödinger Picture of the NR Snyder de-Sitter

Model
As evident from this chapter, there are only a few cases where exact solvability is achievable.

Next, we will proceed to calculating the solutions dynamics of a free particle and the harmonic

oscillator potential, both in one and D dimensions.

3.3.1 Free Particle in 1D
Initially, we consider the Schrödinger equation for a free particle in one dimension for unit

mass, as follows

∂ 2ψ

∂P2 −
(

β − 2i
h̄α

)
βP

1−β 2P2
dψ

dP
− β 2

h̄2
α2

[
P2− ih̄α/β

(1−β 2P2)
2 −

2E
1−β 2P2

]
ψ = 0. (3.12)

For SdS case, there are solutions of (3.12) that vanish at P =±1/β . These solutions have the

following form:

ψ = const×
(
1−β

2P2) i
2h̄αβ cos

[√
2E

h̄α
arcsinβP

]
, (3.13)

assuming an odd integer n in E = h̄2
α2n2

2 , the values of4x in these solutions are finite. Addi-

tionally, for an SdS, the energy is not quantized, rather, the momentum eigenfunctions provide

the pertinent solutions.

3.3.2 Harmonic Oscillator in 1D
We now consider the one-dimensional quantum harmonic oscillator, where the Hamiltonian is

given below:

Ĥ =
p̂2

2m
+

mω2
0 x̂2

2
, (3.14)

to simplify the computations, we exploit the flexibility to choose the coefficient λ in the rep-

resentation 3.6 such that the cross terms P̂X̂+ X̂P̂ in the Hamiltonian vanish, setting

λ =
α2

β 2ω2
0 +α2 , (3.15)
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given this selection, the Schrödinger equation takes the following form:

1
2

β 2ω2
0

β 2ω2
0 +α2

[
P̂2 +

(
β 2ω2

0 +α2)2

β 4ω2
0

X̂2

]
ψ = Eψ. (3.16)

Using the realization (3.6) of the operators, (3.16) can be written as

∂ 2ψ

∂P2 −
β 2P

1−β 2P2
dψ

dP
− 1

h̄2
ω2

[
P2

(1−β 2P2)
2 −

2E
1−β 2P2

]
ψ = 0, (3.17)

where ω =
(

1+ α2

β 2ω20

)
ω0 and E=

(
1+ α2

β 2ω20

)
E.

Specifically, when
(
α2,β 2) � 0, the equation takes a form similar to that of the flat Snyder

model, albeit with distinct coefficients, and can be solved through the same methodology,

from (3.17) we derive the standard Schrödinger equation for a potential by definig a variable

P̄ = arcsinβP is defined

V =
1

ω2 tan2 P̄. (3.18)

To obtain the explicit solution for (3.17), it is more practical to define the variable z = (1+

βP)/2, which allows the equation to be expressed in the hypergeometric form

∂ 2ψ

∂ z2 +
z−1/2
z(z−1)

dψ

dz
−

[
µ (z−1/2)2

z2 (z−1)2 +
ε

z(z−1)

]
ψ = 0, (3.19)

with

µ =
ω2

0

h̄2 (
β 2ω2

0 +α2
)2 , ε =

2E
h̄2 (

β 2ω2
0 +α2

) . (3.20)

Subsequently, the hypergeometric function F(a,b,c;z) can yield the solution through standard

methods,

ψ = const×
(
1−β

2P2)(1+√1+4µ/4)F(a,b,c;
1+βP

2
), (3.21)

where

a =
1
2

(
1+
√

1+4µ

)
−
√

µ + ε,b =
1
2

(
1+
√

1+4µ

)
+
√

µ + ε,c = 1+
1
2

√
1+4µ.

(3.22)
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It is necessary for ψ to disappear at P =±1/β , i.e.at z = 0,1. This happens in the cases where

either a =−n or b =−n,

ε =

(
n+

1
2

)(
1+
√

1+4µ

)
+n2. (3.23)

Additionally, Gegenbauer polynomials Cα
n can be used to express the solution as follow

ψ = const×
(
1−β

2P2)α/2
Cα

n (βP) , (3.24)

with α = 1
2 (1+

√
1+4µ) . The energy spectrum is followed from (3.23),

E =

(
n+

1
2

)
h̄ω0

√√√√1+
h̄2 (

β 2ω2
0 +α2

)2

4ω2
0

+

(
n2 +n+

1
2

)
h̄2 (

β 2ω2
0 +α2)

2
. (3.25)

This shows corrections of order h̄
(
β 2ω2

0 +α2/ω0
)

regarding the standard case and a duality

for β 2ω2
0 ↔ α2/ω0.

The results for a flat Snyder space are recovered in the limit λ → 0, while the energy spectrum

on a 3-sphere is obtained in the case of β → 0,

E =

(
n+

1
2

)
h̄ω0

√
1+

h̄2
α4

4ω2
0
+

(
n2 +n+

1
2

)
h̄α2

2
, (3.26)

wherein ω0 is independent of the energy shift with respect to the standard oscillator at first

order.

When α2,β 2 < 0, the calculation can be done the same way. The energy spectrum is obtained

by analytically continuing (3.25) for negative values of α2 and β 2,In this case, the energy

becomes negative for large n. Therefore, an upper bound on the permitted values of n must be

applied in order to guarantee the positivity of energy.
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3.3.3 The Free Particle in 3D
In the Pi-space, the representation (3.6) is adapted to three-dimensional spherical coordinates.

First, we provide a definition for the operators

P̂r= Pr :=
√

P2
i =

√
P2

i

1−β 2P2
i
, X̂r =

√
1−β 2P2

r

(
i

∂

∂Pr
+

1
Pr

)
, (3.27)

with [X̂r, P̂r] = i. Following the rules of ordinary quantum mechanics, it follows that

P̂2
i = P̂2

r , X̂2
i = X̂2

r +
L̂2

P2
r

, X̂i P̂i + P̂iX̂i = X̂r P̂r + P̂rX̂r, (3.28)

where L̂2 is the square of the angular momentum operator. Afterwards, the square of the

momentum and position operators (3.6) can be expressed in terms of the radial operators like

x̂2
i =

(
X̂r +

β

α
λ P̂r

)2

+
L̂2

P2
r

, p̂2
i =

(
(1−λ ) P̂r−

α

β
X̂r

)2

+
α é

β 2
L̂2

P2
r
, (3.29)

and

ψ
(
Pr,Pθ ,Pφ

)
= ∑

l,m
ψrlm (Pr)Ylm

(
Pθ ,Pφ

)
, (3.30)

and only the radial functions need to be investigated in detail. Then, we will delete the (lm)

indices in the radial functions.

In the space of the radial functions, the scalar product can be expressed as

(ψr,φr) =
∫ 1/β

0

P2
r dPr√

1−β 2 p2
r

ψ
∗
r (Pr)φr (Pr) . (3.31)

The spectrum of the radial momentum and position operators is similar to that of the equivalent

one-dimensional operators, with the exception that Pr can only take positive values. As a result,

rather than delving deeper into it, we will move on to our examination of the Schrödinger equa-

tion. The framework utilized in this section additionally enables the prompt to discriminate

single out the states that minimise the uncertainty relations between the position coordinates

in various orientations.
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4xi4x j ≥
∣∣∣∣β 2

2
〈
Ĵi j
〉∣∣∣∣ , (3.32)

it is also easy to extend the previous discussion to include the anti-Snyder model. Moreover,

vanishing angular momentum states are those that minimise these uncertainty relations, and

the momentum components are subject to the same considerations.

We will examine at the Schrödinger equation for a free particle in three dimensions. The radial

part of the equation can also be expressed by choosing the gauge λ = 0, using the represen-

tation in equations ( 3.27), ( 3.29), and expanding the Eq. (3.30) in spherical harmonics as

demonstrated below:

d2ψr

dP2
r
−

(
3β 2−2i β

α

)
P2

r −2

Pr (1−β 2P2
r )

dψr

dPr
− β 2

α2

[
(1−4iαβ )P2

r +3iα

β

(1−β 2P2
r )

2 +
l (l +1)α2

β 2P2
r
− 2E

1−β 2P2
r

]
ψr = 0.

(3.33)

Defining now a function u(Pr) such that ψr =
(
1−β 2P2

r
)i/2αβ u, Eq. ( 3.33) simplifies to

d2u
dP2

r
+

(
2
Pr
− β 2Pr

(1−β 2P2
r )

)
du
dPr
−
[

l (l +1)
P2

r
− 2β 2E

α2 (1−β 2P2
r )

]
u = 0. (3.34)

Eventually, the equation assumes the form of a hypergeometric differential equation following

a change in the variable z = β 2P2
r ,

d2u
dz2 +

(
3−4z

2z(1− z)

)
du
dz
− 1

4

[
l (l +1)

z2 − ε

z(1− z)

]
u = 0, (3.35)

where ε = 2E/α2, with the solution

u(Pr) = const×
√

1−β 2P2
r (βPr)

l F
(
a,b,c;β

2P2
r
)
, (3.36)

F represents a hypergeometric function of parameters

a = 1+
l
2
+

√
1+ ε + l (l +1)

2
, b = 1+

l
2
−
√

1+ ε + l (l +1)
2

, c = l +
3
2
. (3.37)
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The solution of Eq. (3.33) is therefore

ψr =
(
1−β

2P2
r
) 1

2 (1+i/αβ )
(βPr)

l F
(
a,b,c;β

2P2
r
)
. (3.38)

It is necessary to set the boundary conditions so that ψr vanishes at Pr = 1/β , i.e. at z = 1,

when b =−n, with an integer n, this happens, leading to

E = α
2
(

2n2 +4n+2nl +
3
2

l +
3
2

)
. (3.39)

Thus, the energy’s eigenvalues are quantized in the SdS case. Naturally, this is a result of the

coordinate Pr having a finite range. The radial wave function can be written as

ψr = const×
(
1−β

2P2
r
) 1

2 (1+i/αβ )
(βPr)

l P(
l+ 1

2 ,
1
2)

n
(
1−2β

2P2
r
)
, (3.40)

with P(µ,ν)
n a Jacobi polynomial. The solution (3.40) for the spherical wave with l = 0 has

a simple form. By utilising the characteristics of the hypergeometric functions, one easily

obtains

ψr0 =
(
1−β

2P2
r
)i/2αβ sin

[√
1+ ε arcsinβPr

]
√

1+ εβPr
. (3.41)

That in the limit α → 0,β → 0 coincides with the standard quantum-mechanical solution

ψr0 = sin(
√

2EPr)/(
√

2EPr).

Assuming negative values of α2 and β 2, the Schrödinger equation in the aSdS case is the

analytical continuation of (3.33), requiring regularity for Pr→ ∞, the solution reads

ψr = const×
(
1−β 2P2

r
)i/2αβ

(β 2P2
r )

α F
(

a,a− c+1,a−b+1;
1

β 2P2
r

)
, (3.42)

and makes no indication of energy quantization.
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3.3.4 The Harmonic Oscillator in 3D
One can follow the same steps as for the free particle to formulate the Schrödinger equation

for a three-dimensional harmonic oscillator. Nevertheless, in this case, it is advantageous to

choose λ to eliminate the mixed terms from the equation, as indicated by equation (3.15).

After making this choice, one gets

1
2

β 2ω2
0

β 2ω2
0 +α2

[
P̂2

i +

(
β 2ω2

0 +α2)2

β 4ω2
0

X̂2
i

]
ψ = Eψ. (3.43)

Following certain algebraic modifications, the radial wave function equation expands into

spherical harmonics, as in (3.30).

d2ψr

dP2
r
+

(
2
Pr
− β 2Pr

1−β 2P2
r

)
dψr

dPr
−

[
l (l +1)

P2
r

+
1

ω2
P2

r

(1−β 2P2
r )

2 −
(

2E
ω2 −β

2
)

1
1−β 2P2

r

]
ψr = 0,

(3.44)

where ω =
(

1+ α

β 2ω2
0

)
ω0 and E=

(
1+ α

β 2ω2
0

)
E.

Defining a new variable z = β 2P2
r , (3.44) is possible to express as a hypergeometric equation

d2ψr

dz2 +
3−4z

2z(1− z)
dψr

dz
− 1

4

[
l (l +1)

z2 +
u

(1− z)2 −
ε

z(1− z)

]
ψr = 0, (3.45)

with

u =
1

β 4ω2 , ε =
2E

β 2ω2 =−1.

Note that (3.45) differs from the free particle equation (3.35) only for the term proportional to

µ . Eq. (3.45) can be solved as

ψr = const× (βPr)
l (1−β

2P2
r
)(1+√1+4µ)/4 F

(
a,b,c;β

2P2
r
)
, (3.46)
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with

a =
1
2

(
l +

3
2
+

√
1+4µ

2
+
√

1+µ + ε + l (l +1)
)
, (3.47)

b =
1
2

(
l +

3
2
+

√
1+4µ

2
−
√

1+µ + ε + l (l +1)
)
, (3.48)

c = l +
3
2
. (3.49)

It is necessary for ψ to disappear at Pr = 1/β , i.e. at z = 1. This happens when b = −n, and

after that

ε =

(
2n+ l +

3
2

)√
1+4u+4n2 +4nl +6n+2l +

3
2
, (3.50)

and

ψr = const× (βPr)
l (1−β

2P2
r
)(1+√1+4µ)/4 P(

l+ 1
2 ,
√

1+4µ)
n

(
1−2β

2P2
r
)
,

with P(µ,ν)
n a Jacobi polynomial. From (3.50) it follows that

E =

(
2n+ l +

3
2

)
ω0

√√√√1+

(
β 2ω2

0 +α2
)2

4ω2
0

+

(
2n2 +3n+2nl + l +

5
4

)(
β

2
ω

2
0 +α

2) .
(3.51)

An alternative way to express the preceding expression is in terms of a new quantum number,

N = 2n+ l, which is commonly introduced for the three-dimensional oscillator

E =

(
N +

3
2

)
ω0

√√√√1+

(
β 2ω2

0 +α2
)2

4ω2
0

+

(
N2 +3N− l (l +1)+

5
2

) (
β 2ω2

0 +α2)
2

. (3.52)

Similarly to the one-dimensional, the harmonic oscillator’s spectrum experiences corrections

of order (β 2ω0 +α2/ω0) in ordinary quantum mechanics. The result for flat Snyder space is

recovered in the limit α → 0, while the oscillator’s spectrum on a 3-sphere can be derived in

the case of β → 0. Here, ω0 has no bearing on the energy shift at first order with respect to

the standard oscillator. By analytically continuing the energy spectrum of the SdS oscillator

to negative α2 and β 2, the energy spectrum of the 3-dimensional aSdS harmonic oscillator

is obtained, and is therefore still governed by equation (3.51). To guarantee the positivity
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of the energy, some conditions on the quantum numbers need to be placed, just like in the

one-dimensional case.

3.4 Path Integral Formalism in D-dimensional Momentum

Space
In this section, we develop the path integral in momentum representation space in the D-

dimensional for the non-relativistic propagator of a free particle and the harmonic oscillator,

taking into account the presence of a nonzero minimum uncertainty in both momentum and po-

sition. The evolution operator (Û (tb, ta)) provides the standard formalism of path integration,

which can be expressed as follows:

K (Pb, tb,Pa, ta) = 〈Pb|Û (tb, ta) |Pa〉

= lim
N−→∞

N

∏
j=1

∫ 1/β

−1/β

dP j√
1−β 2P2

j

N+1

∏
j=1

〈
P j
∣∣e− iε

h̄ Ĥ
∣∣P j−1

〉
, (3.53)

the standard form of the Hamiltonian defined on the D-dimensional sphere with the symmetry

SO(D+1) is represented by Ĥ, meaning that it is invariant under this group.

3.4.1 The Free Particle
For this algebra, the new Hamiltonian in the free case is expressed as

Ĥ =
1

2m

[
p̂2

i +α
2L̂2

i
]
. (3.54)

We construct the corresponding transition amplitude for this Hamiltonian (3.54), in D−dimensions,

by formulate the propagator corresponding to the old Hamiltonian Ĥ = p̂2
i /2m, and then in-

tegrating it with energy values for α2L̂2
i /2m. And the other energy term are obtained from

the spectral decomposition of the radial transition amplitude. This means that the operator

Ĥ = p̂2
i /2m can be written like this

Ĥ =
1

2m

[
P2(1−ih̄αβ (1−D))−ih̄D α

β

1−β 2P2 +

(
α

2h̄2−2ih̄
α

β

)
Pi

∂

∂Pi
− h̄2 α2

β 2

(
1−β

2P2) ∂ 2

∂P2
i

]
. (3.55)
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The latter is achieved by substituting the operator p̂i with expressions involving auxiliary oper-

ators X̂i and P̂i obeying the canonical commutation relations (in this free case we select λ = 0).

After doing simple calculations, we get the following outcome:

K (Pb, tb,Pa, ta)

= lim
N−→∞

N

∏
j=1

∫ 1/β

−1/β

dP j√
1−β 2P2

j

N+1

∏
j=1

[∫ dq j

(2π h̄)D

(
1−β 2P2

j−1

1−β 2P2
j

) γ

2 √
1−β 2P2

j

]

×exp

[
N+1

∑
j=1

iε
h̄

{
−

q j∆P j

ε
− α2

2mβ 2

(
1−β

2P2
j
)

q2
j − ih̄2α2(2γ−3+2i/αβ h̄)

2m q jP j

+ h̄2
α2

2mβ 2
(γ−1)β 2(D+β 2P2

j(γ+(1−D)))
(1−β 2P2

j)
− 1

2m
P2

j(1−ih̄αβ (1−D))−ih̄D α

β

1−β 2P2
j

−
h̄2

β 2
(

α2−2i α

β h̄

)
(γ−1)

2m
P2

j

(1−β 2P2
j)

]}
. (3.56)

After executing the multiple Gaussian integrations over q j, The equation above can be simpli-

fied to the following form

K (Pb, tb,Pa, ta) =

lim
N−→∞

N

∏
j=1

∫ 1/β

−1/β

dP j√
1−β 2P2

j

N+1

∏
j=1

[(
1−β 2P2

j−1

1−β 2P2
j

) γ

2
[√

m
2πih̄εα2/β 2

]D [
1−β

2P2
j
] 1−D

2

]

×exp

{
iε
h̄

N+1

∑
j=1

[
mβ 2(∆P j)

2

2α2ε2(1−β 2P2
j)
+

ih̄β 2

ε

(
γ− 3

2
+ i/αβ h̄

)
P j∆P j

1−β 2P2
j

− h̄2
α2β 2(γ− 3

2+i/αβ h̄)
2

2m
P2

j

(1−β 2P2
j)
+

h̄2
α2

2mβ 2
(γ−1)β 2(D+β 2P2

j(γ+(1−D)))
(1−β 2P2

j)

− 1
2m

P2
j(1−ih̄αβ (1−D))−ih̄D α

β

1−β 2P2
j

−
h̄2

β 2
(

α2−2i α

β h̄

)
(γ−1)

2m
P2

j

(1−β 2P2
j)

 . (3.57)



36
Path Integral Approach to The D-dimensional Quantum Mechanics of The

Non-Relativistic Snyder-de Sitter Model

Moreover, all terms associated with γ will be nullified by the term terms associated with(
1−β 2P2

j−1

1−β 2P2
j

) γ

2

, will be nullified by the term

1
2

ln

(
1−β 2P2

j

1−β 2P2
j−1

)
=−

β 2P j∆P j

1−β 2P2
j
+

β 2

2

−
(

1−β 2P2
j

)(
∆P j

)2−2β 4
∑i P2

j
(
∆Pj
)2(

1−β 2P2
j

)2

 ,
(3.58)

then, next making up this term
(
−i

αβ h̄
β 2P j∆P j

1−β 2P2
j

)
by the above equivalence (3.58). Then Eq.

(3.57) can be written as

K (Pb, tb,Pa, ta) = lim
N−→∞

N

∏
j=1

∫ 1/β

−1/β

dP j√
1−β 2P2

j

×
N+1

∏
j=1

(1−β 2P2
j−1

1−β 2P2
j

) γ

2 [√ m
2πih̄εα2/β 2

]D [
1−β

2P2
j
] 1−D

2


×exp

 iε
h̄

N+1

∑
j=1

 mβ 2 (∆P j
)2

2α2ε2
(

1−β 2P2
j

) +
ih̄β 2

ε

(
γ− 3

2
+ i/αβ h̄

)
P j∆P j

1−β 2P2
j

−
h̄2

α2β 2 (γ− 3
2 + i/αβ h̄

)2

2m

P2
j(

1−β 2P2
j

) +
h̄2

α2

2mβ 2
(γ−1)β 2(D+β 2P2

j(γ+(1−D)))
(1−β 2P2

j)

− 1
2m

P2
j (1− ih̄αβ (1−D))− ih̄Dα

β

1−β 2P2
j

−
h̄2

β 2
(

α2−2i α

β h̄

)
(γ−1)

2m

P2
j(

1−β 2P2
j

)
 . (3.59)

Next, we present spherical coordinates for momentum variables P in the D-dimension, which

are defined by

PΩ1 = Pcosφ1

PΩ2 = Psinφ1 cosφ2

...

PΩD−1 = Psinφ1...sinφD−2 cosφD−1

PΩD = Psinφ1...sinφD−2 sinφD−1, (3.60)
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with P2 = ∑
D
ν=1 (P

ν)2 . and 0 ≤ φν ≤ π (ν = 1, ...D− 2), 0 ≤ φD−1 ≤ 2π. This results in a

transformation over the measure term, as shown below

N

∏

∫
j=1

dP j√
1−β 2P2

j

=
N

∏

∫
j=1

PD−1
j dPj√
1−β 2P2

j

dPΩ j , dPΩ j =
D−1

∏
k

(
sinφ

k
)D−1−k

dφk, (3.61)

where dPΩ j is the (D− 1)-dimensional surface element on the unit sphere, and ∆PΩn is the

relative angle between D -dimensional vectors p j and p j−1. As we known in polar coordinates,

we can conclude the correction of
(
∆PΩ j

)2 from the kinetic energy term like

exp

 i
h̄

mβ 2 (∆P j
)2

2α2ε

(
1−β 2P2

j

)
= exp

 i
h̄

mβ 2

2α2ε

(
P2

j +P2
j−1−2PjPj−1 cos∆PΩ j

)
1−β 2P2

j

 . (3.62)

We must simplify this term
(
−3

2
β 2(P j∆P j)
(1+βp2

j)

)
in order to execute the path integration over the

angular variables as follows

3
2

β 2(P j∆P j)
(1+βp2

j)
=

[
3
2

β 2Pj∆Pj

(1−β 2P2
j )
+

3
2

β 2PjPj−1(1−cosΩ j)
(1−β 2P2

j )

]
, (3.63)

and

2
(
1− cosΩ j

)
=

D−1

∑
k=1

(
k−1

∏
l=1

sin2
φ̄
( j)
l

)(
∆φ

( j)
k

)2
≈ iε

h̄
α2h̄2 (D−1)

mβ 2

(
1−β 2P2

j

)
PjPj−1

. (3.64)

As a result, in the first order of ε, Eq. (3.63) takes the following form

exp
(

3
2

β 2(P j∆P j)
(1+βp2

j)

)
= exp

[
3
2

β 2Pj∆Pj

(1−β 2P2
j )
+

iε
h̄

3
2

α2h̄2 (D−1)
2m

]
. (3.65)

To execute the PΩ j-integrals. And according to [3], it is helpful to expand (3.62) into a fac-

torised series

ehcos∆PΩ j = (h/2)−
D−2

2 Γ
(D−2

2

) +∞

∑
l j=0

(
l j +(D/2)−1

)
Il j+(D/2)−1 (h)

×C (D/2)−1
l j

(
cos∆PΩ j

)
, (3.66)
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where C ν
l (x) are Gegenbauer polynomials, and it checks the following addition theorem

Ml j

∑
m=1

S m
l j

(
PΩ j−1

)
S m

l j

(
PΩ j

)
=

(2l j+D−2)Γ(D/2)

(2π)D/2(D−2)
C (D/2)−1

l j

(
cos∆PΩ j

)
, (3.67)

where Ml =
(2l+D−2)(l+D−3)!

l!(D−2)! and S m
l (PΩ) are the real hyperspherical harmonics of degree l

associated with unit vector PΩ. While Il (h) are related to the modified Bessel functions Ĩl (h)

Il (h) = eh (2πh)−1/2 Ĩl (h) . (3.68)

This leads to the following D-dimensional time-sliced path integral

K (Pb,Pa,T ) =
−i

(PbPa)
(D−1)/2

× lim
N→∞

(
1−β 2P2

a
1−β 2P2

b

)−i/2αβ h̄
e

iT
h̄

3α2h̄2(D−1)
4m

N

∏
j=1

(∫
∞

0

dPj√
1−β 2P2

j

∫
dPΩ j

)

×
N+1

∏
j=1

√ m
2πih̄εα2/β 2

+∞

∑
l j=0

Ml j

∑
m j=1

S m j
l j

(
PΩ j−1

)
S m j

l j

(
PΩ j

)
Ĩl j+

D
2−1

(
− i

h̄
mβ 2PjPj−1

α2ε2(1−β 2P2
j )

)
×exp

{
iε
h̄

N+1

∑
j=1

[
mβ 2(∆Pj)

2

2α2ε2(1−β 2P2
j )
− 3ih̄

2ε

β 2Pj∆Pj

1−β 2P2
j
− 5h̄2

α2

8m
β 2P2

j

(1−β 2P2
j )
− h̄2

α2(D+(1−D)β 2P2
j )

2m(1−β 2P2
j )

]}
.

(3.69)

Now, the N symbols δ of Kronecker can be obtained by performing the N-integrations over

the PΩ j-variables. ∫
dPΩS m

l
(
PΩ j

)
S m′

l′
(
PΩ j

)
= δl;l′δm,m′. (3.70)

By using these, all angular integrations can be eliminated, allowing the amplitude of the time

evolution to follow as an expansion.

K (pb, p0b,pa, p0a) =
+∞

∑
l=0

Ml

∑
m=1

1

(PbPa)
D−1

2
Kl (Pb,Pa,T )S m

l
(
PΩb

)
S m

l (PΩa) , (3.71)

where the Kl (Pb,Pa,T ) is obviously given by the radial path integral
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Kl (Pb,Pa,T ) = (−i) lim
N→∞

(
1−β 2P2

a
1−β 2P2

b

)−i/2αβ h̄
exp
[

iT
h̄

3α2h̄2(D−1)
4m

]
×

N

∏
j=1

(∫
∞

0

βdPj√
1−β 2P2

j

)
N+1

∏
j=1

[ m
2πih̄εα2

]1/2
Ĩl+D

2−1

(
− i

h̄
mβ 2PjPj−1

α2ε(1−β 2P2
j )

)

×exp

{
iε
h̄

N+1

∑
j=1

[
mβ 2(∆P2

j )
2α2ε2(1−β 2P2

j )
− 3ih̄

2ε

β 2Pj∆Pj

1−β 2P2
j
− 5h̄2

α2

8m
β 2P2

j

(1−β 2P2
j )
− h̄2

α2(D+(1−D)β 2P2
j )

2m(1−β 2P2
j )

]}
.

(3.72)

In the continuum limit ε → 0, the asymptotic expression for the modified Bessel function

Ĩl(z)z→∞ = exp
(
− l2−1/4

2z

)
, (3.73)

it allows the radial function Kl (Pb,Pa,T ) to be obtained as the following

Kl (Pb,Pa,T ) =

(−i)
(

1−β 2P2
a

1−β 2P2
b

)−i/2αβ h̄

exp
[

iT
h̄

3α2h̄2 (D−1)
4m

]
lim

N→∞

N

∏
j=1

(∫
∞

0

βdPj√
1−β 2P2

j

)

×
N+1

∏
j=1

[√
m

2πih̄εα2

]
exp

{
iε
h̄

N+1

∑
j=1

[
mβ 2(∆Pj)

2

2α2ε2(1−β 2P2
j )
− 3ih̄

2ε

β 2Pj∆Pj

1−β 2P2
j

−5h̄2
α2

8m
β 2P2

j

(1−β 2P2
j )
− h̄2

α2(D+(1−D)β 2P2
j )

2m(1−β 2P2
j )

− h̄2 α2
[
(l+D

2−1)
2−1/4

]
2mβ 2

(1−β 2P2
j )

PjPj−1

]}
. (3.74)

The propagator (3.74) takes on a more complex shape as a result of the term measure. To sim-

plify, we will employ the point transformation method (see, Ref. [48]), in which the δ−point

discretization interval is

P(δ ) = δP+(1−δ )P−1. (3.75)

Based on [35, 37], three quantum corrections are extracted by the expression (3.74) as fol-

lows: the term measure
(

dPj/
√

1−β 2P2
j

)
, the kinetic energy term, and the second term

in action (3.74). Therefore, we use the δ−point discretization interval to expand all of

these terms. Then, we adopt the coordinate transformation P = g(x), to return the stan-

dard kinetic term
(

m(∆x)2 /2α2ε

)
. The selection of g is based on the following condition:
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((∂g(x)/∂x) =
√

1−β 2P2). Next, we use the δ−point discretization interval to develop the

measure terms and the kinetic energy [48]. Assuming the δ−point discretization, we can de-

termine the correction total CT as

CT = ih̄α2ε

2m

[5
4 tan2 (

βx j
)
−
(
2δ

2−δ −1
)

cos−2 (
βx j
)]
, (3.76)

then this new propagator expression is obtained.

Kl (Pb,Pa,T ) = (−i)
(

cos2 (βxa)

cos2 (βxb)

)−i/2αβ h̄

e
i(tb−ta)

h̄

[
h̄2α2

2m

[
(l+D

2−1)
2−1/4

]
+

h̄2α2(D−1)
4m

]

× lim
N→∞

N

∏
j=1

(∫
∞

0
dx j

)N+1

∏
j=1

√
m

2πih̄εα2 exp

{
i
h̄

N+1

∑
j=1

[
m(∆x j)

2

2α2ε
− h̄2

α2ε

2m

[
(l+D

2−1)
2−1/4

]
sin2(βx j)

]}
.

(3.77)

As stated in reference [49], the transition amplitude pertaining to the Pöschel–Teller potential

leads to the following result. Thus, the ultimate expression for the radial transition amplitude

in the context of the D-dimensional free particle under SdS space is provided as:

Kl (xb,xa,T ) = (−i)
(

cos2 (βxa)

cos2 (βxb)

)−i/2αβ h̄ ∞

∑
n=0

e
iT
h̄

[
h̄2α2

2m

[
(l+D

2−1)
2−1/4+ (D−1)

2

]]

×e−
iT
h̄

α2h̄2
2m (k+λ+2n)2

Φ
∗
n (xa)Φn (xb) , (3.78)

where

Φn (x) =

[
2n(k+λ +2n)Γ(k+λ +n)
Γ
(
k+ 1

2 +n
)

Γ
(
λ + 1

2 +n
) ]1/2

sinκ (x)cosλ (x)

×P(κ−1/2,λ−1/2)
n

(
2sin2 (x)−1

)
, (3.79)

when the following parameters have been employed:

κ = 1, λ =±
(

l +
D
2
−1
)
+

1
2
, (3.80)
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and P(κ−1/2,λ−1/2)
n denotes Jacobi polynomials. As a result, the energy eigenvalues En have

the following expression:

En =
α2h̄2

2m

[(
l +2n+

D+1
2

)2

− (D−1)
2

]
. (3.81)

For D = 3, we obtain the exact result reported in [27].

3.4.2 Harmonic Oscillator
Here, the D-dimensional harmonic oscillator’s Hamiltonian is as follows

Ĥ =
1

2m

(
p̂2

i +α
2L̂2

i
)
+

mω2
0

2
(
x2

i +β
2L̂2

i
)
. (3.82)

This Hamiltonian is defined on the D-dimensional sphere having the symmetry SO(D+ 1)

meaning it remains invariant under this group. For this Hamiltonian (3.82), we take the same

steps as in the free case to obtain the path integral, namely

K (Pb, tb,Pa, ta) = 〈Pb|Û (tb, ta) |Pa〉

= lim
N−→∞

N

∏
j=1

∫ 1/β

−1/β

dP j√
1−β 2P2

j

N+1

∏
j=1

〈
P j
∣∣e− iε

h̄ Ĥ ∣∣P j−1
〉
, (3.83)

where the harmonic oscillator standard Hamiltonian is provided by

Ĥ =
ω0

2mω

[
P2

i
1−β 2P2

i
+ h̄2m2

ω
2
β

2Pi
∂

∂Pi
− h̄2m2

ω
2 (1−β

2P2
i
) ∂ 2

∂P2
i

]
. (3.84)

Following the definition of the delta Dirac function in equation (3.11), we obtain the phase

space path integral expression for the kernel by applying the Hamiltonian operator to it



42
Path Integral Approach to The D-dimensional Quantum Mechanics of The

Non-Relativistic Snyder-de Sitter Model

K (Pb, tb,Pa, ta) =

lim
N−→∞

N

∏
j=1

[∫ 1/β

−1/β

dP j√
1−β 2P2

j

∫ dq j

(2π h̄)D

]
N+1

∏
j=1

[(
1−β 2P2

j−1

1−β 2P2
j

) γ

2 √
1−β 2P2

j

]

×exp

{
N+1

∑
j=1

iε
h̄

[
q j∆P j

ε
− mωω0

2
[(

1−β
2P2

j
)

q2
j + ih̄β

2 (2γ−3)q jP j
]

+
h̄2mωω0

2
(γ−1)2

β 4P2
j +(γ−1)(β 2D(1−β 2P2

j ))
(1−β 2P2

j)
− ω0

2mω

P2
j

1−β 2P2
j

]}
. (3.85)

After executing the multiple Gaussian integrations over q j, The equation above can be simpli-

fied to the following form

K (Pb, tb,Pa, ta) = lim
N−→∞

N

∏
j=1

(∫ 1/β

−1/β

dP j√
1−β 2P2

j

)

×
N+1

∏
j=1

[(
1−β 2P2

j−1

1−β 2P2
j

) γ

2 [√
1

2πih̄εmωω0

]D [
1−β

2P2
j
] 1−D

2

]

×exp

{
iε
h̄

N+1

∑
j=1

[
(∆P j)

2

2mωω0ε2(1−β 2P2
j)
+

ih̄β 2

ε
(γ−3/2) P j∆P j

1−β 2P2
j
− h̄2

β 4mωω0(γ− 3
2)

2

2
P2

j

(1−β 2P2
j)

+
h̄2mωω0

2
(γ−1)2

β 4P2
i +(γ−1)β 2D(1−β 2P2

j)
(1−β 2P2

j)
− ω0

2mω

P2
j

1−β 2P2
j

]}
, (3.86)

moreover, all terms associated with γ will be nullified by the term terms associated with(
1−β 2P2

j−1

1−β 2P2
j

) γ

2

will be nullified by the term

K (Pb, tb,Pa, ta) =

lim
N−→∞

N

∏
j=1

[∫ 1/β

−1/β

dP j√
1−β 2P2

j

]
N+1

∏
j=1

[[√
1

2πih̄εmωω0

]D [
1−β

2P2
j
] 1−D

2

]

×exp

{
iε
h̄

N+1

∑
j=1

[
(∆P j)

2

2mωω0ε2(1−β 2P2
j)
− 3ih̄

2ε

β 2Pj∆Pj

1−β 2P2
j
− 9h̄2

β 4mωω0
8

P2
j

(1−β 2P2
j)

−3(D−1)
4 mωω0β

2h̄2 + h̄2mωω0β 2D
2 − ω0

2mω

P2
j

1−β 2P2
j

]}
, (3.87)
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through this path integral, the radial propagator Kl (Pb,Pa,T ) associated with this kernel (3.87)

is obtained

Kl (Pb,Pa,T ) = (−i) lim
N→∞

e−
iT mωω0β2

h̄

(
3(D−1)

4 −D
2

) N

∏
j=1

(∫
∞

0

dPj√
1−β 2P2

j

)

×
N+1

∏
j=1

√
1

2πih̄εmωω0
exp

{
iε
h̄

N+1

∑
j=1

[
(∆Pj)

2

2mωω0ε2(1−β 2P2
j )
− 3ih̄

2ε

β 2Pj∆Pj

1−β 2P2
j
− ω0

2mω

P2
j

1−β 2P2
j

+
mωω0h̄2

2
β 4P2

j (−9/4)

(1−β 2P2
j )
− mωω0h̄2[(l+(D/2)−1)2−1/4]

2
(1−β 2P2

j )
PjPj−1

]}
. (3.88)

Where CT , the corresponding total quantum correction, is provided as

CT = i
h̄

mωω0h̄2
β 2ε

2

[
5
4

tan2 (x j
)
−
(
2δ

2−δ −1
)

cos−2 (x j
)]

. (3.89)

In this case, the problem is transformed into the relative the Pöschel–Teller radial propagator,

by employing the coordinate transformation βP = sin(x) .

Kl (xb,xa,T ) = (−i) lim
N→∞

e

[
− iT mωω0β2h̄2

2h̄ [D
2−

5
2−[(l+(D/2)−1)2−1/4]]+ i

h̄
ω0T

2mωβ2

]

×
N

∏
j=1

(∫
∞

0
dx j

)N+1

∏
j=1

[√
1

2πih̄εmωω0β 2

]
exp

{
i
h̄

N+1

∑
j=1

[
(∆x j)

2

2mωω0β 2ε

−mωω0β 2ε

2

(
1/m2ω2β 4

cos2(x j)

)
− mωω0β 2h̄2

ε[(l+(D/2)−1)2−1/4]
2

1
sin2(x j)

]}
, (3.90)

furthermore, [49] provides the solution to the latter path integral

Kl (Pb,Pa,T ) = (−i) lim
N→∞

e

[
− iT mωω0β2h̄2

2h̄ [D
2−

5
2−[(l+(D/2)−1)2−1/4]]+ i

h̄
ω0T

2mωβ2

]

×
∞

∑
n=0

exp
[
−imωω0β 2

2h̄ (k+λ +2n)2 T
]

Φ
∗
n (Pa)Φn (Pb) , (3.91)

with

Φn (x) =
[

2n(k+λ+2n)Γ(k+λ+n)
Γ(k+ 1

2+n)Γ(λ+ 1
2+n)

]1/2

sinκ (x)cosλ (x)P(κ−1/2,λ−1/2)
n

(
2sin2 (x)−1

)
, (3.92)
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where P(κ−1/2,λ−1/2)
n indicates Jacobi polynomials, and κ , λ parameters are defined as

λ =
1
2
+

1
2

√
1+

4
m2ω2β 4 , κ =±

(
l +

D
2
−1
)
+

1
2
. (3.93)

Consequently, the energy eigenvalues En can be expressed as follows:

En =

[
mωω0β 2

2

[(
2n+ l +

D
2

)2

−
(

D
2
− 5

2

)]

+ω0

(
2n+ l +

D
2

)√
1+

m2ω2β 4

4

]
. (3.94)

For D = 3 we find the exact result obtained in [27].

3.5 Conclusion

In this section, we study the path integral of a free particle and an isotropic harmonic oscil-

lator in the momentum space representation in D-dimensional within the framework of the

SdS algebra with two fundamental deformation parameters. To perform this path integral, we

simplify the problem to a purely radial one using the D-dimensional spherical coordinates for

momentum variables. Next, we apply the coordinate transformation method with a δ−point

discretization interval to convert the problem to that of a particle in a symmetric Pöschel–Teller

potential. Notably, this approach is consistent with the choice made in the single-parameter

cases, indicating that the discretization is dependent on the δ−point discretization in a similar

way [35, 37]. Through radial spectral decomposition of the transition amplitude, we deter-

mine the momentum space wave functions and energy levels. The energy levels exhibit a

dependence on (2n+ l)2, just like the energy levels of a particle trapped in a potential well.



Chapter 4

Thermal Properties of a One-Dimensional

Dirac Oscillator in a Homogeneous Elec-

tric Field with Generalized Snyder Model:

Path Integral Treatment

4.1 Introduction
Snyder’s 1947 work [18, 19], which proposed the Heisenberg generalisation principle in quan-

tum field theory to solve the divergence problem, has been of great interest to the field of

quantum physics. Such as dynamics based on variable masses in semiconductor heterostruc-

tures, as expressed by the generalised displacement operator [50], the behaviour of an impu-

rity atom with 3He in a Bose liquid, as examined in [51], and the description of low-energy

excitations in Graphene in conjunction with Fermi velocity through the application of the

generalised Heisenberg algebra, which involves determining the momentum commutator that

is proportional to pseudo-spin [13]. Furthermore, It also plays a fundamental role in non-

commutative geometries [53], string theory [52], black hole physics [54], and quantum gravity

[55]. According to the concept of the (GUP), these theories require the existence of a minimum

length on the order of the Planck mass (mP =
√

h̄c/G),
√

β ∼ 108 kg−1 (i.e., β ∼ (mP)
−2),

or the presence a minimum momentum on the order of the square root of the cosmological

constant,
√

α ∼ 10−24 cm−1, as in the context of the (EUP) [56]. The combination of these re-

sults in the (SdS) model, or (TSR) [27]. TSR relates three invariant scales: the cosmological

constant Λ [27] , the Snyder parameter β , and the speed of light in vacuum c. Through different
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methods, these theories have provided solutions to a number of quantum mechanical problems

[57–64]. However, the Feynman path integral formalism is a mathematical framework derived

from ideas regarding classical trajectories that is used to explain quantum mechanics. Choos-

ing the discretization interval period is necessary in order to use this mathematical technique.

For an exact result curved spaces, choosing the midpoint as the discretization schema pro-

vides in the context of usual Heisenberg commutation relations, for details see the reference

[65]. But when we generalise the Heisenberg principle, this choice quickly becomes problem-

atic as we see in the cases of non-zero minimal momentum [66, 67] and non-zero minimal

length [35, 37]. Moreover, the path integral approach in D−dimensional quantum mechanics

has been developed by the authors of [68], who took into account the coexistence of minimal

position and momentum uncertainty.

In this chapter, we extend our study to the relativistic case focusing, in particular, on the 1D-

DO in a uniform electric field. After that, the difference in the midpoint discretization interval

within the aSdS-model is then confirmed. According to [27], the alteration of the commutation

relation between the position and momentum operators in one dimension is articulated as

follows: [
X̂ , P̂

]
= ıh̄

(
1+β P̂2 +αX̂2 +

√
αβ
(
X̂ P̂+ P̂X̂

))
. (4.1)

Eq. (4.1) yields the generalised uncertainty relation shown below if we put (〈X〉= 〈P〉= 0).

(∆X)(∆P)≥ h̄
2

(
1+α (∆X)2 +β (∆P)2

)
1+ h̄

√
αβ

. (4.2)

Thus, modifying this deformed algebra yields minimal uncertainty in momentum and position.

(∆X)min =
h̄
√

β

1+2h̄
√

αβ
, (∆P)min =

h̄
√

α

1+2h̄
√

αβ
. (4.3)

In momentum representation, the position operator X̂ and momentum operator P̂ that adhere

to the algebra (4.1) can be expressed as follows:

X̂ = X̂+

√
β

α
κP̂, P̂ =−

√
α

β
X̂+(1−κ) P̂, (4.4)
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small positive parameters (α,β ) are used here. Moreover, κ is a free parameter that ensuring

the Hamiltonian’s hermiticity (in all scenarios). According to [69], the operators (X̂ , P̂) satisfy

the commutation relation: [
X̂, P̂

]
= ıh̄

(
1+β P̂2

)
. (4.5)

Alternatively, by utilizing the auxiliary operators x̂ and p̂, these position and momentum co-

ordinate operators can be written in a way that satisfies the Snyder-Heisenberg commutation

relation p̂, obeying standard commutation relation (i.e., [x̂, p̂] = ıh̄), defined by the following

relations

X̂=
√

1−β p̂2x̂, P̂=
p̂√

1−β p̂2
. (4.6)

In the aSdS-model case, all real values of p are acceptable, but if α,β > 0, the permitted range

of values of p is limited by p2 < 1/β in the SdS-model. Additionally, the operators of X̂ and P̂

for the SdS-model are only symmetric in the subspace L2(R,d p/
√

1−β p2), where the scalar

product has the following definition

〈ψ | φ〉=
∫ 1/
√

β

−1/
√

β

d p√
1−β p2

ψ
∗ (p)φ (p) , (4.7)

periodic boundary conditions are satisfied by the wave function, ψ

(
−1/

√
β

)
= ψ

(
1/
√

β

)
,

resulting to the following closure relation:

∫ 1/
√

β

−1/
√

β

d p√
1−β p2

|p〉〈p|= I. (4.8)

Notably, the (α,β ) parameters in the aSdS-model are negative. Thus, we modify the integra-

tion limits in Eq. (5.9) across all spaces. In addition, as described in [27], the corresponding

formal eigenvectors coincide with those of the X̂−position operator.

〈p|x〉
α,β =

1√
2π h̄

(
1−β p2)− γ

2 exp
(
− ıx

h̄
arcsin
√

β p√
β

)
, γ = ıκ/h̄

√
αβ . (4.9)

Afterwards, the closure relation for the maximally localised states is applied to Eq. (4.9), and

we utilise the properties of the delta function δ f (x) = ∑
i
δ (x− xi)/ | f ′(xi)| , where xi are the
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roots of f (x) [68]. At last, we have:

〈
p j|p j−1

〉
α,β

=
∫ dx j

2π h̄

(
1−β p2

j−1

1−β p2
j

) γ

2 √
1−β p2

j exp
(
−

ıx j

h̄

(
p j− p j−1

))
. (4.10)

It is appropriate to apply the delta functions (4.10) on the subspace L2(R,d p/
√

1−β p2),

when both α and β (i.e., SdS or aSdS) signs are taken. Moreover, regaining the standard

projection relation 〈p|p′〉(α,β )→0 = δ (p− p′) occurs when both α and β are equal to zero.

On the other hand, the time p0−component is expressed as follows since no deformation is

applied to it 〈
p0|p′0

〉
= δ

(
p0− p′0

)
=
∫ dt

2π h̄
e−

ı
h̄ t(p0−p′0). (4.11)

Consequently, the elements matrix of the operators X̂ and X̂2 are provided, respectively, by

〈
p j

∣∣∣X̂∣∣∣ p j−1

〉
α,β

=
〈

p j|p j−1
〉

α,β

(γ−1)
ıh̄β p√
1−β p2

j

+

√
1−β p2x j

 , (4.12)

〈
p j

∣∣∣X̂2
∣∣∣ p j−1

〉
α,β

=
〈

p j|p j−1
〉

α,β

[
−γ (γ−1)

h̄2
β 2 p2

j

1−β p2
j
− h̄2

β (γ−1)+
(

1−β p2
j

)
x2

j +2ıh̄β

(
γ− 3

2

)
p jx j

]
.

(4.13)

We introduce in section 2 the formulation of the path integral in one-dimensional momentum

space of the SdS model for DO particles exposed to a uniform electric field, without the need

for Grassmann variables, as demonstrated in [35, 70]. This method, which was previously

used in [71, 72], entails executing the path integration over the components of the Green func-

tion matrix for 1D-DO particles exposed to the uniform electric field using the SdS model. In

section 3, we use the coordinate transformation method to obtain the local kinetic part, which

leads to the propagator of Rosen-Morse type I and II [49]. The precise propagator and the as-

sociated energy eigenvalues are inferred. In section 4, we assess the thermodynamic properties

of this system and offer a detailed physical analysis of the associated plotted graphs.
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4.2 Path Integral Formulation in (anti) Snyder de Sitter
The Green function for a relativistic DO particle in one-dimensional space is defined as the

inverse of the Dirac operator in the absence of electric field interaction.

(
γ

0ıh̄∂t− Ĥ
)

Ŝ =−I, (4.14)

where Ĥ denotes the DO equation’s Hamiltonian operator and is provided by

Ĥ = cγ
1 (P̂− ımωγ

0X̂
)
+mc2, (4.15)

where ω is the oscillator’s classical frequency and mc2 denotes the rest mass. For further de-

tailed consideration, we select that the time component (P̂0 = ıh̄∂0 = ıh̄∂/∂ct, X̂0 = x̂0 := ct) is

deformation-free, and that the momenta P̂ and position X̂ operators verify the Eq. (4.6). Ac-

cordingly, we can generalize the Green’s function (4.14) equation for the (1+1)−dimensional

DO in the presence of a uniform electric field E to include the following:

[
γ

0 (ıh̄∂t + eEX̂
)
− cγ

1 (P̂− ımωγ
0X̂
)
−mc2] Ŝ =−I. (4.16)

The γµ−Dirac matrices in the (1+ 1) dimension are represented by the Pauli matrices after

the choice

γ
0 = σ3, γ

1 = ıσ2, γ
2 =−ıσ1. (4.17)

Following that, the solution to Eq. (4.15) is given as

Ŝ =
[
OD
−
]−1

=
[
OD
+

][
OD
−O

D
+

]−1
, (4.18)

the operator OD
± is defined by

OD
± =

[
γ

0 (ıh̄∂t + eEX̂
)
− cγ

1 (P̂− ımωγ
0X̂
)
±mc2] . (4.19)
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Using the Schwinger proper-time method [73], and noting that Ŝ =
[
OD
+

][
OD
−O

D
+

]−1, it is more

practical to express the Ŝ Green’s function in this way.

Ŝ =
[
OD
+

][
OD
−O

D
+

]−1
= (ı/h̄)

[
OD
+

]∫ ∞

0
dλ exp

( ı
h̄

λ
[
OD
−O

D
+

])
, (4.20)

the parameter λ in the above equation indicates is a invariant parameter and is an even variable,

with the
[
OD
−O

D
+

]
operator acting as a Hamiltonian, and it can be expressed as follows

[
OD
−O

D
+

]
=
{(

P̂0 + eEX̂
)2− c2P̂2− c2m2

ω
2X̂2−m2c4−

(
ceEγ

0
γ

1− ımωc2
γ

0)[X̂ , P̂
]}

.

(4.21)

Using the SdS algebra provided by Eq. (4.1), we obtain:

[
OD
−O

D
+

]
=
{

P̂2
0 −m2c4 +2eEP̂0X̂−ϖ

2X̂2− c2P̂2

−ıh̄
(
ecEγ

0
γ

1− ıc2mωγ
0)(1+β P̂2 +αX̂2 +

√
αβ
(
X̂ P̂+ P̂X̂

))}
, (4.22)

with ϖ2 =
(
c2m2ω2− e2E2) .

Moreover, we need to express this Hamiltonian using position and momentum operators con-

sistent with the flat Snyder model, characterized by the modified commutation relationship

defined in Eq. (4.5) [27]. By substituting operators
(
X̂, P̂

)
into an expression

[
OD
−O

D
+

]
, the

Eq. (4.22) becomes,

[
OD
−O

D
+

]
=

{
P̂2

0 −m2c4 +2eEP̂0X̂+2eEP̂0κ

√
β

α
P̂+ c2

(
−ϖ2

c2
β

α
κ

2− (1−κ)2
)
P̂2

+

(
c2 (1−κ)

√
α

β
−κϖ

2
√

β

α

)(
X̂P̂+ P̂X̂

)
−
(

ϖ
2 + c2 α

β

)
X̂2− ıh̄

(
ecEγ

0
γ

1− ıc2mωγ
0)(1+β P̂2

)}
. (4.23)

In order for the previously mentioned term
(
X̂P̂+ P̂X̂

)
to terminate at zero, we impose a

condition on κ,

κ =

(
1− β

α
ϖ

2/c2
)−1

. (4.24)
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As a result, the Hamiltonian operator becomes as

[
OD
−O

D
+

]
=

P̂2
0 −m2c4 +2eEP̂0X̂+

2eEP̂0

√
β

α(
1+ β

α

ϖ2

c2

) P̂−(ϖ
2 + c2 α

β

)
X̂2

−
β

α
ϖ2(

1+ β

α

ϖ2

c2

) P̂2− ıh̄
(
ecEγ

0
γ

1− ıc2mωγ
0) F̂

(
P̂
) , (4.25)

with

F̂
(
P̂
)
= 1+β P̂2. (4.26)

In momentum representation, the
[
OD
−O

D
+

]
serves as

G(pb, pa, p0b, p0a) = (ı/h̄)
∫

∞

0
dλ

〈
pb, p0b

∣∣∣exp
(
− ı

h̄
λ
[
−OD
−O

D
+

])∣∣∣ pa, p0a

〉
. (4.27)

Before moving further,in order to avoid computing their Feynman path integral expression for

matrices, it is appropriate to introduce the following exponential matrix and simplify its form

as follows

eλ(ecEγ0γ1−ıc2mωγ0)F̂(P̂) =
1
2 ∑

s=±1

I−

 scmω

ϖ
ıs eE

cϖ

ıs eE
cϖ
−s cmω

ϖ


eısλcϖ F̂(P̂), (4.28)

subsequently, we execute the following equality [71]:

cosh(δ ) =
cmω

ϖ
, sinh(δ ) =

eE
cϖ

, (4.29)

after conducting a few computational calculations, we obtain:

e−λ(ecEγ0γ1−ıc2mωγ0)F̂(P̂) = ∑
s=±1

exp
(
−δ

2
σ2

)
XsX+

s exp
(

δ

2
σ2

)
eısλcϖ F̂(P̂). (4.30)

Here, Xs =
1
2

(
(1+ s) (1− s)

)T

and X+
s is the transpose of the vector Xs, denoted as

X+
s = XT

s .



52
Thermal Properties of a One-Dimensional Dirac Oscillator in a Homogeneous

Electric Field with Generalized Snyder Model: Path Integral Treatment

Thus, the expression (4.27) can be presented as follows:

G(pb, pa, p0b, p0a)= (ı/h̄) ∑
s=±1

exp
(
−δ

2
σ2

)
XsX+

s exp
(

δ

2
σ2

)∫
∞

0
dλ 〈pb, p0b|exp

(
− ı

h̄
Ĥ(s)

)
|pa, p0a〉 ,

(4.31)

with

Ĥ(s) =−λ

P̂2
0 −m2c4 +2eEP̂0X̂+

2eEP̂0

√
β

α(
1+ β

α

ϖ2

c2

) P̂−(ϖ
2 + c2 α

β

)
X̂2

−
ϖ2 β

α(
1+ β

α

ϖ2

c2

) P̂2 + sh̄cϖ F̂
(
P̂
) . (4.32)

Following this, we will use the path integral framework to construct the Green function, which

decomposes the exponential exp(−ıĤ(s)) into (N + 1) exponential exp(−ıεĤ(s)), with ε =

τ j− τ j−1 = 1/(N +1). Then, we insert N times resolution identity (4.8) between each pair of

infinitesimal operator exp(−ıεĤ(s)). We shall obtain

G(pb, pa, p0b, p0a) = (ı/h̄) ∑
s=±1

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]

lim
N−→∞

∫
∞

0
dλ

N

∏
j=1

[∫ +∞

−∞

d p0 j

∫ 1/
√

β

−1/
√

β

d p j√
1−β p2

j

]

×
N+1

∏
j=1

〈
p j, p0 j

∣∣exp(− ıε
h̄
Ĥ(s))

∣∣p j−1, p0 j−1
〉

α,β
. (4.33)

It is convenient to develop the exponential up to the first order of ε to facilitate the calculation.

Thus, we write

lim
N−→∞,ε→0

〈
p j, p0 j

∣∣e− ıε
h̄ Ĥ

(s) ∣∣p j−1, p0 j−1
〉

α,β

= lim
N−→∞,ε→0

[〈
p j, p0 j | p j−1, p0 j−1

〉
α,β
− ıε

h̄

〈
p j, p0 j

∣∣Ĥ(s) ∣∣p j−1, p0 j−1
〉

α,β

]
. (4.34)

The Hamiltonian operator represented in the SdS framework on the projection relation〈
p j | p j−1

〉
α,β

given in Eq. (4.10) is then eliminated by replacing all of the operators (X̂,P̂,

X̂2, P̂2). As a result, the expression G(pb, pa, p0b, p0a) is converted into the following path in-

tegral in phase-space
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G(pb, pa, p0b, p0a) = (ı/h̄) lim
N→∞

ε→0

∑
s=±1

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]∫ ∞

0
dλ

N

∏
j=1

[∫ +∞

−∞

d p0 j

∫ 1/
√

β

−1/
√

β

d p j√
1−β p2

j

]

×
N+1

∏
j=1

[(
1−β p2

j−1

1−β p2
j

) γ

2 √
1−β p2

j

∫ dx j

2π h̄
dt j

2π h̄
e

ı
h̄ t j∆p0 j

]
exp

{
ı
h̄

N+1

∑
j=1

[
−x j∆p j +λε

(
p2

0 j−m2c4)
+λεγ (γ−1)

(
ϖ

2 + c2 α

β

) h̄2
β 2 p2

j

1−β p2
j
+λε h̄2

β (γ−1)
(

ϖ
2 + c2 α

β

)
−λε

(
ϖ

2 + c2 α

β

)(
1−β p2

j

)
x2

j −λε2ıh̄β

(
γ− 3

2

)(
ϖ

2 + c2 α

β

)
p jx j

+λε2eEp0 j

√
1−β p2x j +λε

2eEp0 j

√
β

α(
1+ β

α

ϖ2

c2

) p j√
1−β p2

j

+2λεeEp0 j (γ−1)
ıh̄β p j√
1−β p2

j

−λε
ϖ2 β

α(
1+ β

α

ϖ2

c2

) p2
j

1−β p2
j
+ εsh̄λcϖ

(
1+

β p2
j

1−β p2
j

) . (4.35)

As is customary, we perform Gaussian integration over t j and x j, for this system, we determine
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the Lagrangian expression

G(pb, pa, p0b, p0a) = (ı/h̄) lim
N→∞

ε→0

∑
s=±1

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]∫ ∞

0
dλ

N

∏
j=1

[∫ +∞

−∞

d p0 j

∫ 1/
√

β

−1/
√

β

d p j√
1−β p2

j

]

×
N+1

∏
j=1

δ
(

p0 j− p0 j−1
)(1−β p2

j−1

1−β p2
j

) γ

2 √
1−β p2

j

√√√√ 1

4ıπ h̄λε

(
ϖ2 + c2 α

β

)(
1−β p2

j

)


exp

 ı
h̄

N+1

∑
j=1

 ∆p2
j

4λε

(
ϖ2 + c2 α

β

)(
1−β p2

j

) +
ıh̄β
(
γ− 3

2

)(
1−β p2

j

) p j∆p j +λε
(

p2
0 j−m2c4)

−
λε h̄2

β 2 (γ− 3
2

)2
(

ϖ2 + c2 α

β

)
(

1−β p2
j

) p2
j +λεγ (γ−1)

(
ϖ

2 + c2 α

β

) h̄2
β 2 p2

j

1−β p2
j

+λε h̄2
β (γ−1)

(
ϖ

2 + c2 α

β

)
−2ıh̄βλεeEp0 j

(
γ− 3

2

)
p j√

1−β p2
j

−
eEp0 j(

ϖ2 + c2 α

β

) ∆p j√
1−β p2

j

+
λεe2E2 p2

0 j(
ϖ2 + c2 α

β

) +λε
2eEp0 j

√
β

α(
1− β

α

e2E2

c2

) p j√
1−β p2

j

+λε2eEp0 j (γ−1)
ıh̄β p j√
1−β p2

j

−λε
ϖ2 β

α(
1+ β

α

ϖ2

c2

) p2
j

1−β p2
j
+ εsh̄λcϖ

(
1+

β p2
j

1−β p2
j

) .

(4.36)

We execute the following equality to the first order of ε, in order to simplify the above expres-

sion,

eEp0 j(
ϖ2 + c2 α

β

) ∆p j√
1−β p2

j

=
eEp0 j(

ϖ2 + c2 α

β

) ∆arcsin
(√

β p j

)
√

β

+
eEp0 j(

ϖ2 + c2 α

β

) (∆p j
)2

2
β p j(

1−β p2
j

)3/2 , (4.37)

where (
∆p j
)2 ∼ 2ıh̄λε

(
ϖ

2 + c2 α

β

)(
1−β p2

j
)
. (4.38)

By substituting Eq. (4.38) in Eq. (4.37) and then into Eq. (4.36), can be written the below
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equation

G(pb, pa, p0b, p0a) = (ı/h̄) ∑
s=±1

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]

δ (p0b− p0a)
∫

∞

0
dλ

×e
ı
h̄ λ

[
p2

0b−m2c4+λε h̄2
β (γ−1)

(
ϖ2+c2 α

β

)]
× e
− ı

h̄
eEp0b(

ϖ2+c2 α

β

) arcsin(
√

β pb)−arcsin(
√

β pa)√
β

× lim
N→∞

ε→0

N

∏
j=1

[∫ 1/
√

β

−1/
√

β

d p j√
1−β p2

j

]
N+1

∏
j=1

(1−β p2
j−1

1−β p2
j

) γ

2
√√√√ 1

4πıh̄λε

(
ϖ2 + c2 α

β

)


×exp

 ı
h̄

N+1

∑
j=1

 ∆p2
j

4λε

(
ϖ2 + c2 α

β

)(
1−β p2

j

) +
ıh̄β
(
γ− 3

2

)(
1−β p2

j

) p j∆p j

−λε

(
γ− 3

2

)2(
ϖ

2 + c2 α

β

) h̄2
β 2 p2

j(
1−β p2

j

) +λεγ (γ−1)
(

ϖ
2 + c2 α

β

) h̄2
β 2 p2

j

1−β p2
j

−2ıh̄βλε

(
γ− 3

2

)
eEp0 p j√
1−β p2

j

− ıh̄λε
eEp0β p j√

1−β p2
j

+2ıh̄λε (γ−1)
eEp0β p j√

1−β p2
j

+λε
2eEp0

√
β

α(
1+ β

α

ϖ2

c2

) p j√
1−β p2

j

−λε
β

α

(
c2m2ω2− e2E2)(

1+ β

α

ϖ2

c2

) p2
j

1−β p2
j

+λε
e2E2 p2

0(
ϖ2 + c2 α

β

) +λεsh̄cϖ

(
1+

β p2
j

1−β p2
j

) , (4.39)
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and with some simplifications, we will find

G(pb, pa, p0b, p0a) = (ı/h̄) ∑
s=±1

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]

δ (p0b− p0a)
∫

∞

0
dλ

N

∏
j=1

[∫ 1/
√

β

−1/
√

β

d p j√
1−β p2

j

]

×e
− ı

h̄
eEp0(

ϖ2+c2 α

β

) arcsin(
√

β pb)−arcsin(
√

β pa)√
β

e

ı
h̄ λ

p2
0 j+

e2E2 p2
0(

ϖ2+c2 α

β

)−m2c4+h̄2
β (γ−1)

(
ϖ2+c2 α

β

)

× lim
N→∞

ε→0

N+1

∏
j=1

(1−β p2
j−1

1−β p2
j

) γ

2
√√√√ 1

4πıh̄ελ

(
ϖ2 + c2 α

β

)


×exp

 ı
h̄

N+1

∑
j=1

 ∆p2
j

4λε

(
ϖ2 + c2 α

β

)(
1−β p2

j

) +
ıh̄β
(
γ− 3

2

)
1−β p2

j
p j∆p j

−λε h̄2
β

2
(

γ
2−3γ +

9
4

)(
ϖ

2 + c2 α

β

) p2
j

1−β p2
j

+λε
(
γ

2− γ
)(

ϖ
2 + c2 α

β

) h̄2
β 2 p2

j

1−β p2
j
+λε

2eEp0

√
β

α(
1+ β

α

ϖ2

c2

) p j√
1−β p2

j

−λε

(
c2m2ω2− e2E2) β

α(
1+ β

α

ϖ2

c2

) p2
j

1−β p2
j
+ εsh̄λcϖ

(
1+

β p2
j

1−β p2
j

) . (4.40)

Moreover, all terms associated with (γ) in Eq. (4.40) will be nullified by the term((
1−β p2

j−1

)
/
(

1−β p2
j

)) γ

2 [68],

(
1−β p2

j−1

1−β p2
j

) γ

2

= exp

−γ

2
∆p j

−2β p j(
1−β p2

j

) +
γ

2
ıh̄λε

(
ϖ

2 + c2 α

β

)[
−2β −

4β 2 p2
j

1−β p2
j

] .
(4.41)

When we substitute the aforementioned result (4.1) into Eq. (4.40), we get

G(pb, pa, p0b, p0a) = (ı/h̄) ∑
s=±1

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]

δ (p0b− p0a)
∫

∞

0
dλ

×e
− ı

h̄
eEp0

ϖ2+c2 α

β

arcsin(
√

β pb)−arcsin(
√

β pa)√
β

e

ı
h̄ λ


(

c2m2ω2+c2 α

β

)
p2
0

ϖ2+c2 α

β

−m2c4−h̄2
β

(
ϖ2+c2 α

β

)
×K(pb, pa,λ ) ,

(4.42)
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where the kernel propagator K(pb, pa,λ ) is defined by the following path integral

K(pb, pa,λ ) = lim
N→∞

N

∏
j=1

[∫ 1/
√

β

−1/
√

β

d p j√
1−β p2

j

]
N+1

∏
j=1

√√√√ 1

4πıh̄λε

(
ϖ2 + c2 α

β

)


×exp

 ı
h̄

N+1

∑
j=1

 (
∆p j
)2

4λε

(
ϖ2 + c2 α

β

)(
1−β p2

j

) − 3
2

ıh̄β(
1−β p2

j

) p j∆p j

−λε h̄2
β

2 9
4

(
ϖ

2 + c2 α

β

) p2
j(

1−β p2
j

) +λε
2eEp0

√
β

α(
1+ β

α

ϖ2

c2

) p j√
1−β p2

j

−λε
ϖ2 β

α(
1+ β

α

ϖ2

c2

) p2
j

1−β p2
j
+λεsh̄cϖ

(
1+

β p2
j

1−β p2
j

) . (4.43)

Typically, in order to obtain the conventional form of the Feynman path integral for sys-

tems based on the principle of generalization, three quantum corrections must be applied: the

measure term (d p j/
√

1−β p2
j), the action term (

(
∆p j
)2
/2ε

(
1−β p2

j

)
), and the factor term

(p j∆p j/
(

1−β p2
j

)
. The quantum corrections from these three terms can be computed using

a two-step process, as per [35, 37, 66, 67]. Initially, this Kernel is written at the η−point dis-

cretization interval (p(η)
j = η p j +

(
1−η)p j−1

)
. This avoids the use of the midpoint interval

in the case of the presence of the SdS model [35, 37, 66, 67]. Throughout the second step, we

need to use the momentum coordinate transformation method given by (
√

β p = sin
√

β q̃) to

obtain the usual kinetic term(
(
∆q̃ j
)2
/2ε). According to [35, 67], the formal treatment of the

selection of the η−point discretization interval in the presence of the deformation coefficient

has been addressed. Following simple calculations, we obtain the total quantum correction,

CT = ıh̄λεβ

(
ϖ

2 + c2 α

β

)[
1+

9
4

tan2
(√

β q̃
)]

, (4.44)

and this corresponds to fixing η = 1
2(1±1/

√
2).
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Substituting Eq. (4.44) in Eq. (4.43) and then into Eq. (4.42) we get:

G(pb, pa, p0b, p0a) = (ı/h̄) ∑
s=±1

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]

δ (p0b− p0a)
∫

∞

0
dλ

×e
− ı

h̄
eEp0(

ϖ2+c2 α

β

) arcsin(
√

β pb)−arcsin(
√

β pa)√
β

e

ı
h̄ λ

(βm2ω2+α)p2
0(

α+β
ϖ2
c2

) − ϖ2(
α+β

ϖ2
c2

)−m2c4


× K̄ (q̃b, q̃a,λ ) , (4.45)

the propagator kernel K̄ (q̃b, q̃a,λ ) is precisely the path integral representation of the transition

amplitude in relation to the Rosen–Morse of kind (I) potential [74]:

K̄ (q̃b, q̃a,λ ) = lim
N→∞

N

∏
j=1

[∫
dq̃ j

]N+1

∏
j=1

√√√√ 1

4πıh̄λε

(
ϖ2 + c2 α

β

)


×exp

 ı
h̄

N+1

∑
j=1

 (
∆q̃ j
)2

4λε

(
ϖ2 + c2 α

β

) +λε
2eEp0

√
α(

α +β
ϖ2

c2

) tan
(√

β q̃ j

)

−λε

(
ϖ2

α +β
ϖ2

c2

− sh̄cϖ

)
1

cos2
(√

β q̃ j

)
 . (4.46)

In this case, Eq. (4.46) transforms as follows when (α, β ) are negative,

K̄ (qb,qa,λ ) =
√

β

∫
D [q(t)]exp

{
ı
h̄

∫ 1

0

[
M
2

q̇2 (t)−A tanh(q(t))+
B

cosh2 (q(t))

]
dt
}
,

(4.47)

with q(t) , M, A and B defined by

q(t) =
√

β q̃(t) , M =
1

2λc2θ̄
and A = λ

2eEp0
√

α

θ̄
,B = λ h̄cϖ

(
ϖ

h̄cθ̄
+ s
)
, (4.48)

here θ̄ =
(
α +βϖ2/c2) . Following Ref. [3, 49], we can express K̄ (qb,qa,λ ) ,

K̄ (qb,qa,λ ) =
√

β

∞

∑
n=0

Ψn (qb)Ψ
∗
n (qa)exp

(
− ı

h̄
λ Ēn

)
, (4.49)
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where

Ψ(q) =

[(
1− 4MA

h̄(s̄−2n−1)2

)
(s̄−2k2−2n)n!Γ(s−n)

Γ(s̄+1−n−2k2)Γ(2k2 +n)

]1/2

2n+(1−s̄)/2

× (1− tanhq)
s̄
2−k2−n (1+ tanhq)k2− 1

2 P(s̄−2k2−2n,2k2−1)
n (tanhq) . (4.50)

P(η1,η2)
n (z) signifies the Jacobi polynomial, and

Ēn =−

[
h̄2 (s̄−2n−1)2

8M
+

2MA2

h̄2 (s̄−2n−1)2

]
, (4.51)

where

s̄ =
√

1+8MB/h̄2, k1 =
1
2
(1+ s̄) , k2 =

1
2

(
1+

1
2
(s̄−2n−1)− 2MA

h̄(s̄−2n−1)

)
. (4.52)

After recompensing for every value (M, A, B, s̄) in Eq. (4.51), we get

Ēn =−λ h̄2c2
θ̄

[(
νs−n− 1

2

)2

+
αe2E2 p2

0

h̄4c4θ̄ 4
(
νs−n− 1

2

)2

]
, (4.53)

with

νs =

√
m2ω2− e2E2

c2

h̄θ̄
+

s
2
. (4.54)

Thus, the values (s̄, k2, 2k2−1 and (s̄−2k2−2n)) are transformed into the following formulas:

s̄ = 2νs, k2 =
1
2

(
1+

1
2
(2νs−2n−1)− 2eEp0

√
α

h̄c2θ̄ 2
1

(2νs−2n−1)

)
, (4.55)

and

2k2−1 =
1
2
(2νs−2n−1)− 2eEp0

√
α

h̄c2θ̄ 2
1

(2νs−2n−1)
= η

−
n,s, (4.56)

s̄−2k2−2n =
1
2
(2νs−2n−1)+

2eEp0
√

α

h̄c2θ̄ 2
1

(2νs−2n−1)
= η

+
n,s. (4.57)
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We can now write

G(pb, pa, p0b, p0a) = (ı/h̄)δ (p0b− p0a)
√

β ∑
s=±1

∑
n

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]∫ ∞

0
dλ

×exp

[
ıλ
h̄

((
βm2ω2+α

α+β
ϖ2

c2

p2
0− ϖ2

α+β
ϖ2

c2

−m2c4

)

+h̄2c2
(

α +β
ϖ2

c2

)[(
νs−n− 1

2

)2

+
αe2E2 p2

0

h̄4c4
(

α+β
ϖ2

c2

)4
(νs−n− 1

2)
2

])]

× (s̄−2k2−2n)n!Γ(s̄−n)
Γ(s̄+1−n−2k2)Γ(2k2 +n)

22n+(1−2νs)e

− ı
h̄

eEp0(
ϖ2+c2 α

β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)
h̄
√

β



×(1− tanhqb)
η
+
n,s
2 (1+ tanhqb)

η
−
n,s
2 P(

η+
n,s,η

−
n,s)

n (tanhqb)

×(1− tanhqa)
η
+
n,s
2 (1+ tanhqa)

η
−
n,s
2 P(

η+
n,s,η

−
n,s)

n (tanhqa) . (4.58)

In the following section, we will compute the propagator within the framework of the aSdS

model. Next, we will extract the energy levels and their mapping in specific special cases of

deformation parameters.

4.3 Extracting Energy Levels for (1D-DO) in a Homoge-

neous Electric Field
For an accurate assessment of the propagator expression, it is convenient to integrate at the

proper time λ and perform the Fourier transformation to Eq. (4.58). Following a straightfor-

ward calculation, we get

G(pb, pa, tb, ta) =
√

β ∑
s=±1

∑
n

[
e−

δ

2 σ2XsX+
s e

δ

2 σ2
]∫ d p0

2π h̄
e−

ı
h̄ p0(tb−ta)

p2
0−
(

E(α,β )
n,s

)2

× (s̄−2k2−2n)n!Γ(s̄−n)
Γ(s̄+1−n−2k2)Γ(2k2 +n)

22n+(1−s̄)e

− ı
h̄

eEp0

h̄
(

ϖ2+c2 α

β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)√
β



×(1− tanhqb)
η
+
n,s
2 (1+ tanhqb)

η
−
n,s
2 P(

η+
n,s,η

−
n,s)

n (tanhqb)

×(1− tanhqa)
η
+
n,s
2 (1+ tanhqa)

η
−
n,s
2 P(

η+
n,s,η

−
n,s)

n (tanhqa) , (4.59)
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where

(
E(α,β )

n,s

)2
=

θ̄

βm2ω2 +α

(
1+ e2E2/h̄2c2

θ̄ 2(νs−n− 1
2)

2

) [m2c4 + h̄cϖ (2n+1− s)− h̄2c2
θ̄

(
n+

1
2
− s

2

)2
]
.

(4.60)

The energy spectrum is determined by integrating over the variable p0. One way to accomplish

this integration is to turn the problem into a complex integral along a specific choice of contour

C. The residue theorem is employed for obtaining

∫ +∞

−∞

f (p0)
d p0

2π h̄
e−

ı
h̄ p0(tb−ta)

p2
0−
(

E(α,β )
n,s

)2 =−ı ∑
ε=±1

f (εE(α,β )
n,s )

e
−ı
h̄ εE(α,β )

n,s,ε (tb−ta)

2E(α,β )
n,s

Θ(ε (tb− ta)) , (4.61)

which has the poles

εE(α,β )
n,s = E(α,β )

n,s,ε = ε

√√√√√ θ̄

βm2ω2 +α

(
1+ e2E2

ϖ2−2θ̄ h̄cϖ(n+ 1
2−

s
2)+θ̄ 2h̄2c2(n+ 1

2−
s
2)

2

)

×

[
m2c4 + h̄cϖ (2n+1− s)− h̄2c2

θ̄

(
n+

1
2
− s

2

)2
] 1

2

, (4.62)

here, Θ denote the Heaviside function. In Eq. (4.62), n is a quantum number, and the Dirac

spinor’s two components are described by the parameter s =±1. Here, ε =+1 corresponds to

positive energy states, while ε = −1 corresponds to negative energy states. A negatively (for

(e = −1)) or positively (for (e = +1) charged particle is described by the parameter e = ∓1

where ω is the oscillator’s angular frequency and E denotes the strength of the uniform electric

field. For the DO in the context of the aSdS model, the corresponding spectral energy is as

follows when the electric field E is set to zero:

E(α,β )
n,s (E= 0) =±

[
m2c4 + h̄c2mω (2n+1− s)− h̄2c2 (

α +βm2
ω

2)(n+
1
2
− s

2

)2
] 1

2

.

(4.63)
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Also, for ω = E= 0, the corresponding energy levels drop to

E(α,β )
n,s (ω = E= 0) =±

[
m2c4− h̄2c2

α

(
n+

1
2
− s

2

)2
] 1

2

. (4.64)

As can be seen from Eq. (4.64), even in the absence of ω−oscillation and E− electric fields,

the energy levels that depend on n2 remain continuous within the context of the aSdS model.

In the presence of a uniform electric field, we were able to extract the interacting Dirac oscil-

lator’s spectral energy. Although the corresponding normalised eigenspinors are complex and

long, for the purposes of this discussion, we will only be concerned with finding the Green

function in momentum space. Thus, we can write the elements matrix of S(α,β ) (pb, pa, tb, ta)

as follows using Eqs. (4.20) and (4.27)

S(α,β ) (pb, pa, tb, ta) =
[
OD
+

]
bG(pb, pa, tb, ta) , (4.65)

in this case, Eq. (4.19) defines OD
+ and Eq. (4.59) precisely calculates G(pb, pa, tb, ta). There-

fore, we obtain,

S(α,β ) (pb, pa, tb, ta) =−ı
√

β ∑
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∑
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s e

δ

2 σ2
]

× ∑
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ı
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1− 4MA
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]
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(
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2 P(
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n,s,η
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η
+
n,s
2 (1+ tanhqa)

η
−
n,s
2 P(

η+
n,s,η

−
n,s)

n (tanhqa) . (4.66)

Afterward, writing the relations

∑
ε=±1

f (ε)Θ(ε (tb− ta)) = f (s)Θ(s(tb− ta))+ f (−s)Θ(−s(tb− ta)) , (4.67)
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and

γ
3eAσ2 = σ3eAσ2 =−eAσ2σ3, σ3χs = sχs, (4.68)

γ
1eAσ2 = ıσ2eAσ2 = ıeAσ2σ2, σ2χs = ısχ−s, (4.69)

γ
2eAσ2 =−ıσ1eAσ2 = ıσ1eAσ2,σ1χs = χ−s. (4.70)

The propagator S(α,β ) (pb, pa) in the momentum space can then be expressed as follows

S(α,β ) (pb, pa) =−ı
√
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. (4.71)

The expression of the Heaviside function Θ(−s(tb− ta)) must be unified by substituting s to

(−s) for all terms multiplied by Θ(−s(tb− ta)). Furthermore, to unify the same energy, we

make the following mapping

n→ n− s. (4.72)
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So, in the context of the aSdS model in the momentum space, the propagator S(α,β ) (pb, pa) of

the (1+1)-dimensional DO subjected to an electric field becomes as

S(α,β ) (pb, pa,T ) =−ı
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β ∑
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n
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. (4.73)

Additionally, by substituting (−α,−β ) for α and β , one can construct the SdS space from

the propagator’s function and spectral energies, which are defined in Eqs. (4.73) and (4.62),

respectively. Also, the Jacobi polynomial is replaced by Romanovski polynomials [75],

P(
η+

n,s,η
−
n,s)

n (ı tanq)→ R(
η+

n,s,η
−
n,s)

n (tanq) . (4.74)

Further, the energy levels are expressed in n2 in both cases for the signal parameters α and β .

Since the values of α and β are typically very small according to theory of deformation, we



4.3 Extracting Energy Levels for (1D-DO) in a Homogeneous Electric Field 65

expand (4.62) to first order in α and β , and as a result, we find

E(α,β )
n,s =±

√
c2m2ω2− e2E2

c2m2ω2

[
m2c4 + h̄c

√
c2m2ω2− e2E2 (2n+1− s)

]
∓ θ̄

2

√
c2m2ω2−e2E2

c2m2ω2 h̄2c2 (n+ 1
2 −

s
2

)2

[
m2c4 + h̄c

√
c2m2ω2− e2E2 (2n+1− s)

] 1
2
. (4.75)

The first term in this case denotes the Dirac oscillator’s Landau levels in a homogeneous elec-

tric field without deformation, and the second term denotes the quantum gravity correction.

Remarkably, the bounded eigenstates are absent at large electric field value then critical one

eE
c > mω the bounded eigenstates are absent. Now, let us consider the following particular

cases.

1- In limit case α→ 0, the expression of Eq. (4.62) reduces to that of the flat Snyder model,

E(α=0)
n,s =± ϖ

cmω

[
m2c4 + h̄cϖ (2n+1− s)− h̄2

βϖ
2
(

n+
1
2
− s

2

)2
] 1

2

. (4.76)

1. In limit case β → 0, one recovers the spectral energies for the Heisenberg algebra in an

(anti-)de Sitter background [69],

E(β=0)
n,s =±

1+
e2E2(

ϖ2−2θ̄ h̄cϖ
(
n+ 1

2 −
s
2

)
+ θ̄ 2h̄2c2

(
n+ 1

2 −
s
2

)2
)
−1/2

×

[
m2c4− h̄2c2

α

(
n+

1
2
− s

2

)2

+ h̄cϖ (2n+1− s)

] 1
2

. (4.77)

To investigate the differences caused by the presence or absence of (aSdS) algebra, as well as to

understand the impact of incorporating one parameter without the other on the energy levels,

we plot the energy levels E(α,β )
n,s=+1 as a function of the quantum numbers n. we employ the

natural unit system, setting h̄, c to 1, which leads to dimensionless parameters. Furthermore,

we specify the electron mass as m = 0.5MeV ȧnd an electric field E of 0.2MeV 2, e = 0.303,

ω = 2MeV . We use four different deformation parameter values for this: (i.e., (α = 10−77MeV,

β = 10−40MeV ), (α = 10−77MeV, β = 0.0MeV ), (α = 0.0MeV, β = 10−40MeV ) and (α =

0.0, β = 0.0)), as illustrated in Fig. 4.1. This later is broken down into three sub-figures (Fig.
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4.1a, Fig. 4.1b, Fig. 4.1c).

(a) First observation . (b) Second observation.

(c) Third observation.
Figure 4.1: En,α,β versus the quantum number n for different values of the deformation parameters.

We observe that all energy level cases in Fig. 4.1a apply when the quantum number principle

n between 0 and 2× 1038. Meanwhile, Fig. 4.1b illustrates this separation, which happens,

when n = 1038 and n = 1040. Curves β 6= 0 no longer appear when n > 1041. On the other

hand, in Figure 4.1c, the case (α = 10−77, β = 0.0) plot is shown at {n > 1076 and vanishes

at n > 1077. These data clearly show that the α− parameter has a greater effect than the β−

parameter.

Figure 4.2: The energy spacing between adjacent levels as a function of n

As we also see in Fig. 4.2, the energy spacing between adjacent levels is constant, which

indicates strong confinement.
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Just as in the case of SdS algebra, we can plot all the energy level curves. For instance, we can

see in Fig. 4.1c that the HUP algebra’s energy spectrum curve is below the case of (α = 10−77,

β = 0.0).

Additionally, the nonrelativistic energy level is determined by taking into account that a larger

portion of the system’s total energy is contained in the rest energy (mc2) of the particle [76],

which is, E(α,β )
n,s = mc2 +E(NR)

n,s,α,β , where mc2� E(NR)
n,s,α,β and mc2�

√
m2ω2− e2E2/c2. The

energy spectrum of a nonrelativistic particle in the context of the Snyder (anti-)de Sitter model

at first-order approximation can therefore be obtained by applying this prescription in Eq.

(4.62),

E(NR)
n,s,α,β =

√√√√√√
θ̄

βm2ω2 +α

(
1+ e2E2(

ϖ2−2θ̄ h̄cϖ(n+ 1
2−

s
2)+θ̄ 2h̄2c2(n+ 1

2−
s
2)

2
)
)

×

[
h̄

2m
(ϖ/c)(2n+1− s)− h̄2

2m
θ̄

(
n+

1
2
− s

2

)2
]
. (4.78)

In limit case α → 0, Eq. (4.78) becomes as,

E(NR)
n,s,α=0,β =

√
m2ω2− e2E2/c2

m2ω2

[
h̄

2m

√
m2ω2− e2E2

c2 (2n+1− s)

− h̄2

2m
β

(
m2

ω
2− e2E2

c2

)(
n+

1
2
− s

2

)2
]
. (4.79)

In limit case β → 0, Eq. (4.78) transforms as,

E(NR)
n,s,α,β=0 =±

1+
e2E2(

ϖ2−2α h̄cϖ
(
n+ 1

2 −
s
2

)
+α2h̄2c2

(
n+ 1

2 −
s
2

)2
)
−1/2

×

[
h̄

2m
(ϖ/c)(2n+1− s)− h̄2

2m
α

(
n+

1
2
− s

2

)2
]
. (4.80)

In accordance with Equation (4.78) and in the first order of (α,β ), we can derive the energy

spectrum for a spinless non-relativistic particle (s = 0) subject to a uniform electric field
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E(NR)
n,s,α,β =

[
h̄
(

m2ω2− e2E2/c2

m2ω

)(
n+

1
2

)
− h̄2

2m
θ̄

√
m2ω2− e2E2/c2

m2ω2

(
n+

1
2

)2
]
. (4.81)

The first term of the equation (4.81) corresponds to the energy level of a spinless non-

relativistic oscillator with frequency, interacting with a uniform electric field within conven-

tional quantum mechanics (HUP). The second term signifies the relativistic correction within

the framework of a modified Heisenberg algebra. Additionally, if we consider the limit as

E→ 0, Eq. (4.81) transforms to:

E(NR)
n,s,α,β =

[
h̄ω

(
n+

1
2

)
− h̄2

2m
θ̄

(
n+

1
2

)2
]
. (4.82)

The initial term in this case represents the energy level of a spinless non-relativistic oscilla-

tor with a frequency of ω particles in HUP, while the subsequent term represents the initial

correction of deformation in the non-relativistic case.

4.4 Thermodynamic Functions
Within the context of the aSdS model, we will talk about the thermodynamic properties of the

DO particle interacting with a homogenous electric field using modified algebra (4.1). Deter-

mining the appropriate partition function is necessary in order to arrive at these thermodynamic

properties. And so we have:

Z =
∞

∑
n=0

e−β̄En , (4.83)

where T represents the system’s equilibrium temperature, kB denotes the Boltzmann constant,

so that β̄ = 1/(kBT ). To simplify, we chose the first order of (α,β ) positive energy level for

spin up (s =+1), as provided by Eq. (4.91). So, the sum (4.83) reads,

Z(T,α,β ) =
∞

∑
n=0

exp

[
−β̄
√

b+an− β̄
θ̄

2
(ϖ/c)2

m2ω2
h̄2c2n2
√

b+an

]
, (4.84)

with a = 2(
h̄c2)(ϖ/c)3

m2ω2 , b = (ϖ/c)2m2c4

m2ω2 .
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At the first order of (α,β ), the partition function (4.83) becomes

Z(T,α,β ) = Z0(β̄ )+ θ̄∆Z(1)(β̄ ), (4.85)

where

Z0(β̄ ) =
∞

∑
n=0

e−β̄
√

b+an and ∆Z(1)(β̄ ) =−β̄
h̄2c2

2
(ϖ/c)2

m2ω2

∞

∑
n=0

n2
√

b+an
e−β̄

√
b+an. (4.86)

By applying the Euler-Maclaurin summation formula [77], we can assess the sums in (4.85).

∞

∑
n=0

f (n) =
1
2

f (0)+
∫

∞

0
f (x)dx−∑

k=1

B2k

(2k−1)!
f (2k−1)(0), (4.87)

here, the Bernoulli numbers are denoted by B2p, where B2 = 1/6, B4 = −1/30, ..., and

f (2k−1)(0) is the order (2k−1) derivative at x = 0, and its values are as follows:

f (0) = e−β̄
(ϖ/c)

mω
mc2

, f (1)(0) =−
(
h̄c2)

β̄
(ϖ/c)2

mω

e−β̄
(ϖ/c)

mω
mc2

mc2 , (4.88)

f (3)(0) =

{
−
(
h̄c2)3

(ϖ/c)6

(mc2)
3
(mω)3 β̄

3− 3(h̄c)3
ϖ5

(cmω)4 (mc2)
4 β̄

2−
3
(
h̄c2)3

(ϖ/c)4

mω (mc2)
5 β̄

+6θ̄ β̄
2 h̄3c3

2
ϖ3

(c2m2ω2)(m2c4)
+6θ̄ β̄

h̄3c3

2
ϖ2

2cmω (mc2)
3

}
e−β̄

(ϖ/c)
mω

mc2
. (4.89)

Next, in Eq. (4.87), the integral over (x) has the form

∫
∞

0
f (x)dx =

{
2
√

b
aβ̄

+
2

aβ̄ 2
− θ̄

2
h̄2c2 (ϖ/c)2

m2ω2

[
16b

a3β̄ 2
+

48
√

b
a3β̄ 3

+
48

a3β̄ 4

]}
e−β̄

√
b. (4.90)

As a result, the partition function is expressed as

Z(T,α,β ) =

{
1
2
+

(mω)
(
mc2)

(h̄c2)(ϖ2/c2)

1
β̄
+

m2ω2

(h̄c2)(ϖ2/c2)
3/2

1
β̄ 2

− θ̄

c2

[ (
m2ω2)(m2c4)

(h̄c2)(ϖ/c)5
β̄ 2

+
3
(
m3ω3)(mc2)

(h̄c2)(ϖ/c)6
β̄ 3

+
3m4ω4

(h̄c2)(ϖ/c)7
β̄ 4

]}
e−β̄

(ϖ/c)
mω

mc2
−∑

k=1

B2k

(2k−1)!
f (2k−1)(0). (4.91)
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To calculate this partition function, we are required to compute the sum outlined in the above

expression. However, in our case, this computation can only be executed using numerical

methods. Up to k = 2, this sum can be represented as

∑
k=1

B2k

(2k−1)!
f (2k−1)(0) =− β̄

6
h̄c2 (ϖ/c)2

mω

e−β̄
(ϖ/c)

mω
mc2

mc2 − 1
180

[
−β̄

3
(
h̄c2)3

(ϖ/c)4

mω (mc2)
5

−β̄
2 3

(
h̄c2)3

(ϖ/c)5

c2 (m4ω4)(m2c4)
2 +6θ̄ β̄

2

(
h̄c2)3

2
(ϖ/c)3

c2 (m2ω2)(m2c4)
− β̄

3

(
h̄c2)3

(ϖ/c)6

(mc2)
3
(mω)3

+3θ̄ β̄

(
h̄c2)3

2
(ϖ/c)2

c2 (mω)(mc2)
3

]
e−β̄

(ϖ/c)
mω

mc2
. (4.92)

When the high temperature (β̄ � 1), every term in the sum of Eq. (4.92) has a positive power

in β̄ , which is significantly smaller than the other term in Eq. (4.91). Therefore, we can neglect

the terms that have β̄ n and the terms that do not have β̄ . Furthermore, we expand the function

(e−β̄
(ϖ/c)

mω
mc2

) to the orders of β̄ in Eq. (4.91), and then, after making a few simplifications, we

disregard all of the positive exponents of β̄ . Eq. (4.91) is given the following result:

Z(T,α,β )' m2ω2

(h̄c2)(ϖ/c)3
1

β̄ 2
− θ̄

c2

[
3m4ω4

(h̄c2)(ϖ/c)7
1

β̄ 4
−
(
m2ω2)(mc2)2

2(h̄c2)(ϖ/c)5
1

β̄ 2

]
. (4.93)

We can see that the θ̄−deformation parameter is relatively small, so the partition function is

reformulated as:

Z(T,α,β )' m2ω2

(h̄c2)(ϖ/c)3 (kBT )2 e
−θ̄

[
3m2ω2

(ϖ/c)4
(kBT )2− 1

2
m2c4

(ϖ/c)2

]
. (4.94)

The term associated with θ̄ represents a contribution of the SdS algebra to the Z−function,

and when θ̄ tends to zero, it gives the partition function for a DO with (1+ 1)−dimensions

subject to a uniform electric field in the HUP algebra. We can now obtain all thermodynamic

functions, including the F−Helmholtz free energy, the Ξ−mean energy, the C−heat capacity,

and the S−entropy, with the aid of the partition function in Eq. (4.94).

F(T,α,β ) =−(kBT ) ln(Z) = F0
(
β̄
)
+ θ̄∆F1 (

β̄
)
. (4.95)
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First, let us discuss the Helmholtz free energy for a (1+1)-dimensional DO with a homogenous

electric field in HUP algebra, and with F0
(
β̄
)
.

F0
(
β̄
)
=−2(kBT ) ln

 mω(kBT )√
h̄c2
(

m2ω2− e2E2

c2

)3/2

 , (4.96)

where ∆F1 (β̄) is the first-order correction for the SdS deformation

∆F1 (
β̄
)
=− 1

2kB

m2c2(
m2ω2− e2E2

c2

) (kBT )+ 3m2ω2

c2kB

(
m2ω2− e2E2

c2

)2 (kBT )3 . (4.97)

The following expression gives the relation of the mean energy and the partition function

Ξ(T,α,β ) =−∂ ln(Z)
∂ β̄

= 2kBT exp

−3θ̄
m2ω2

c2
(

m2ω2− e2E2

c2

)2 (kBT )2

 , (4.98)

then

Ξ(T,α,β ) =−∂ ln(Z)
∂ β̄

= 2kBT −6θ̄
m2ω2

c2
(

m2ω2− e2E2

c2

)2 (kBT )3 (4.99)

In HUP algebra, the usual case of mean energy is recovered when θ̄ → 0.

Regarding heat capacity, we have

C(T,α,β ) =
∂Ξ

∂T
=C0

(
β̄
)
+ θ̄∆C1 (

β̄
)
, (4.100)

where, in the absence of aSdS algebra, C0
(
β̄
)
= 2kB is constant, and the first correction to the

heat capacity, ∆C1 (β̄) is dependent on T 2.

∆C1 (
β̄
)
= 18

m2ω2k3
BT 2

c2
(

m2ω2− e2E2

c2

)2 . (4.101)

At last, entropy is presented as

S(T,α,β ) = kB ln(Z)− kBβ̄
∂ ln(Z)

∂ β̄
= S0

(
β̄
)
+ θ̄∆S1 (

β̄
)
. (4.102)
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The entropy of the (1+1)-dimensional DO under the uniform electric field in HUP algebra is

denoted by S0
(
β̄
)

which can be expressed as follows:

S0
(
β̄
)
= 2kB +2kB ln

 mω√
h̄c2
(

m2ω2− e2E2

c2

)3/2
(kBT )

 , (4.103)

whereas, the term correction of entropy in the first order of (α,β ) is denoted by ∆S1 (β̄)
∆S1 (

β̄
)
= kB

[
m2c2

2
(

m2ω2− e2E2

c2

) − 9m2ω2

c2
(

m2ω2− e2E2

c2

)2 (kBT )2

]
. (4.104)

We illustrate the thermodynamic properties of our system under various deformation param-

eters in the following figures. For simplicity, we employ the natural unit system, where h̄, c,

and kB are all set to 1, rendering all parameters dimensionless. This necessitates precise esti-

mations of the relevant physical quantities. Therefore, in the high-temperature range, we have

chosen an oscillator value of about 2MeV , an electron mass of m = 0.5MeV , and an electric

field E at 0.2MeV 2. As a result, as functions of temperature ( (kBT )), the thermodynamic

properties are depicted in figures (4.3), (4.4), (4.5), (4.6), and (4.7), four distinct deforma-

tion parameter values were used, namely, (α = 10−77MeV, β = 10−35MeV ), (α = 0.0MeV,

β = 10−35MeV ), (α = 10−77MeV, β = 0.0MeV ) and (α = 0.0MeV, β = 0.0MeV ).
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 4.3: Partition function for the DO with uniform electric field as a function of temperature kBT
for different values of the deformation parameters.

As evident from the sub-figure (4.3a), the aSdS algebra produces an increase in the partition

function from kBT = 1×1019 to approximately kBT ∼ 2.5×1019MeV . Then, after the temper-

ature kBT ∼ 1020MeV., the curves (4.3b) corresponding to (α = 10−77MeV, β = 10−35MeV )

and (α = 0.0MeV, β = 10−35MeV ) decrease to zero. Meanwhile, in Fig. (4.3c), the curves for

(α = 10−77MeV, β = 0.0MeV ) are close to zero when kBT exceeds 1039MeV . In contrast, the

other two curves closely align up to kBT ∼ 5×1038MeV .
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 4.4: The Helmholtz free energy function for the DO with uniform electric field as a function of
temperature kBT for different values of the deformation parameters.

Figure (4.4) presents the Helmholtz free energy for the one-dimensional DO within the aSdS

context in terms of kBT . This representation shows that the aSdS algebra results in a decrease

in the F-function, which varies from kBT = 1× 1019 to kBT ∼ 6× 1019MeV for each of the

four deformation parameter cases in Fig. (4.4a). After kBT > 1039, the curves (4.4b) for

((α = 10−77MeV, β = 10−35MeV ) and (α = 0.0MeV, β = 10−35MeV )) disappear when β 6= 0.

In the meantime, Fig. (4.4c) shows that the case represented by (α = 10−77MeV, β = 0.0MeV )

has an effect up to temperature kBT > 1021MeV .
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 4.5: The mean energy function for the DO with uniform electric field as a function of temperature
kBT for different values of the deformation parameters.

Moreover, as Figure (4.5a) illustrates, the mean energy in the aSdS model increases with tem-

perature. In Fig. (4.5b) it is demonstrated that in the cases (α = 10−77MeV, β = 10−35MeV )

and (α = 0.0MeV, β = 10−35MeV ), the curves decline to zero after reaching the temperature

kBT ∼ 1021MeV . But in this case, (α = 10−77MeV, β = 0.0MeV ), the curve (4.5c) goes down

to zero when kBT surpasses 5×1039MeV .
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 4.6: The heat capacity function for the DO with uniform electric field as a function of tempera-
ture kBT for different values of the deformation parameters.

In addition, the heat capacity in Fig. (4.6a) is a constant C = 2kB when kBT < 1011.

When kBT > 1019MeV , the cases (α = 10−77MeV, β = 10−35MeV ) and (α = 0.0MeV,

β = 10−35MeV ) show an increase with temperature, as shown in Fig. (4.6b). Figure (4.6c) de-

picts the capacity increase for the case (α = 10−77MeV, β = 0.0MeV ) with rising temperature

at kBT > 1032.
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 4.7: The entropy function for the DO with uniform electric field as a function of temperature
kBT for different values of the deformation parameters.

Lastly, we plot the effect of aSdS on the entropy function in three graphs in Fig. (4.7a). As per

Fig. (4.7b), at temperature kBT > 1019, the aSdS reduces the values of entropy with tempera-

ture for the cases (α = 10−77MeV, β = 10−35MeV ) and (α = 0.0MeV, β = 10−35MeV )). On

the other hand, the entropy function for the case (α = 10−77MeV, β = 0.0MeV ) in Fig. (4.7c)

decreases as the temperature rises, with kBT > 1038.

As we mentioned earlier, it has been observed that the α−parameter in the aSdS algebra

affects energy eigenvalues more strongly than the β−parameter, the same holds true for ther-

modynamic functions. Likewise, simply by substituting (α and β ) with (−α ,−β ), we can

deduce thermodynamic properties and suitable curves for the SdS model case. Ultimately,

our findings coincide precisely with those reported in Ref. [78] when the aSdS parameters

α = β = 0 and the electric field E→ 0.
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4.5 Conclusion
This chapter outlines the formulation of the 1D-DO within the framework of the Snyder (anti-

)de Sitter model, along with its exposure to a uniform electric field, all represented in mo-

mentum space. We derive the precise causal Green function and its corresponding propagator

using the coordinate transformation technique, from which we extract the relevant energy val-

ues. The Green function and its corresponding propagator are expressed in terms of Jacobi

polynomials when (α , β ) are negative, and in terms of Romonovski polynomials when (α , β )

are positive, in both cases for the sign deformation parameters. Moreover, we have shown that

within the framework of Snyder (anti)-de Sitter space, the energy depends on n2 and remains

continuous even in the absence of oscillation and electric fields.Furthermore, we have con-

structed the non-relativistic energy level in the context of the aSdS algebra and derived limit

cases for deformation parameters, taking into account both spin and non-spin situations.

The thermodynamic quantities of our system, including the partition function Z, the Helmholtz

free energy F , the mean energy Ξ, the entropy S, and the heat capacity C, have all been deter-

mined in the first order of (α,β ) at high temperatures using the Euler-MacLaurin formula. And

we have demonstrated the importance of the α−deformation parameter over the β−parameter

by plotting the EUP terms of thermodynamic functions at temperature kBT . Nevertheless,

current experimental techniques are unable to identify these effects.



Chapter 5

Exact Green’s Function for 2D Dirac Os-

cillator in Constant Magnetic Field within

Snyder model, and its Thermal Properties

5.1 Introduction
The Dirac oscillator (DO) model combines harmonic oscillator (HO) elements with the Dirac

equation to describe a relativistic quantum mechanical system. It describes the behavior of a

relativistic particle with spin one half in the presence of a HO potential type, derived by trans-

forming the momentum vector (p→ p− imωγ0x), where γ0 is the Dirac matrix. Because of

its tight link with several physical phenomena in quantum physics, many different versions

of this physical system have been described. The original study by Ito et al. [79] was later

developed upon by Moshinsky and Szczepaniak in [80]. When the non-relativistic limit is

considered, the behaviour of the quantum HO may be restored, however, a spin-orbit coupling

factor emerges in this limit as well. References such as [81–86] provide several examples

from various branches of physics. Moreover, following the appearance of deformation the-

ories grounded in Heisenberg’s generalization principle [10, 27, 69], many researchers have

promptly sought to explore its impact on relativistic oscillators. The Green’s function tech-

nique is used in referencesfthermodynamic functions for this system. [35, 37] to present the

DO model with a minimum length in one and two dimensions. In addition to determining

the high-temperature thermodynamic properties of the DO in one dimension, see Ref. [62].

Furthermore, anti-de Sitter commutation relations result in the appearance of minimal uncer-

tainty. Ref. [87] describes the DO in one dimension using the position space representation,
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and analyses the properties thermodynamic functions for relativistic harmonic oscillators in

high temperatures. Later, within the extended uncertainty principle framework, Benzair et al.

[88, 89] calculated the energy spectrum of the DO using the path integral formulation in one

and two dimensions, respectively. Further, the study of thermodynamic properties for rela-

tivistic oscillator particles within deformed algebra is proved by the citations [34, 62, 89–93].

Referring to [94] as well, where the authors examine the relativistic spinning massless parti-

cle in the presence of a constant magnetic field within the Graphene layer. The behaviour of

the DO in the Som–Raychaudhuri space-time was also examined by de Montigny et al. [95],

with particular attention to the impact of the vorticity parameter and frequency. Then, as dis-

cussed in Ref. [96], this study was generalized to the DKP oscillator case for a zero spin field

under cosmic-string background space-time, which is characterized by a stationary cylindrical

symmetric metric.

Despite extensive discussions, only a limited number of studies have explored the DO using

the path integral formulation. These applications are grounded in 3-model deformed algebras:

the first one, known as GUP [10, 97], is based on DSR theories and confirms the presence of

a minimum measurable length. Moreover, the second requires the existence of a minimum

measurable momentum, which calls for an EUP to be created in place of the HUP [69, 98, 99].

On the other hand, the third is created by fusing GUP and EUP, which is prominent from a

DSR model on a anti de-Sitter background. This results in the SdS model, also known as TSR

[27, 94].

The following algebraic relationship is followed by the operators for position X̂µ , momentum

P̂µ , momentum P̂µ , and Lorentz generator Ĵµν to construct of the SdS model algebra.

[
Ĵµν , X̂σ

]
= ih̄

(
ηµσ X̂ν −ηνσ X̂µ

)
,
[
Ĵµν , P̂σ

]
= ih̄

(
ηµσ P̂ν −ηνσ P̂µ

)
,[

X̂µ , P̂ν

]
= ih̄

(
ηµν +αX̂µ X̂ν +β P̂µ P̂ν +

√
αβ
(
P̂µ X̂ν + X̂ν P̂µ − Ĵµν

))
,[

X̂µ , X̂ν

]
= ih̄β Ĵµν ;

[
P̂µ , P̂ν

]
= ih̄α Ĵµν . (5.1)

In this context, Ĵµν = X̂µ P̂ν − X̂ν P̂µ denotes the Lorentz symmetry generators and ηµν =

diag(1,−1,−1,−1) is the flat Minkowski space-time metric. The coupling constants, denoted
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as α and β , have inverse mass and inverse length, respectively. When the limit as α → 0,

the above commutations relations (5.1) give to the Snyder model in flat space [69]. Moreover,

the algebra (5.1) becomes the de Sitter algebra when β → 0, and this parameter has an effect

corresponding to the Λ =−3α cosmological constant [69, 98, 99].

In this chapter, our objective is to rigorously formulate the path integral approach in momen-

tum space representation for the (2+1)-dimensional 2D-DO subjected to a uniform magnetic

field and the Snyder model (SdS). Additionally, as outlined in [27], it furnishes the deformed

Heisenberg algebra in the three-dimensional case within the non-relativistic SdS model.

[
X̂i, P̂j

]
= ıh̄

(
δi j +αX̂iX̂ j +β P̂iP̂j +

√
αβ
(
P̂iX̂ j + X̂ jP̂i

))
,[

X̂i, X̂ j
]
= ıh̄β Ĵi j,

[
P̂i, P̂j

]
= ıh̄α Ĵi j. (5.2)

Where Ĵi j = X̂iP̂j− X̂ jP̂i. In the limits α→ 0, β → 0 and ((α,β )→ 0), the Snyder model in flat

space is recovered to the de Sitter algebra and the undeformed Heisenberg algebra, respectively

[69]. Given these commutation relations, it becomes vital to investigate the transformation that

links this deformed algebra with the Snyder algebra. Mignemi citeMignemi2one first presented

this transformation, and it is described as,

X̂i = X̂i +

√
β

α
κP̂i = ıh̄

√
1−βp2 ∂

∂ pi
+

√
β

α
κ

pi√
1−βp2

, (5.3)

P̂i =−
√

α

β
X̂i +(1−κ) P̂i =−ıh̄

√
α

β

√
1−βp2 ∂

∂ pi
+(1−κ)

pi√
1−βp2

. (5.4)

The index (i = 1,2) stand the components vector of the position X̂i := (X̂ ,Ŷ )or P̂i :=
(
P̂X , P̂Y

)
momentum operators. Here, κ is a free parameter that can be selected in each case. And

in order to guarantee the symmetry of the Hamiltonian and that (X̂i, P̂i) satisfies the below

deformed Heisenberg commutation relations [69],

[
X̂i, P̂ j

]
= ıh̄

(
δi j +β P̂iP̂ j

)
,
[
X̂i, X̂ j

]
= β

(
X̂iP̂ j− X̂ jP̂i

)
,
[
P̂i, P̂ j

]
= 0. (5.5)

Thus, the position X̂i and momentum P̂i operators of the Snyder Heisenberg brackets (5.5)

can therefore be expressed in terms of auxiliary operators x̂i = ıh̄∂/∂ pi and p̂i = pi, which
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maintain the following relations:

X̂i =
√

1−βp2x̂i, P̂i =
p̂i√

1−βp2
. (5.6)

It’s crucial to stress that for positive values of α and β the momentum operator pi is constrained

within the interval (−1/
√

β ) to (1/
√

β ). Specifically, when 〈Pi〉 and 〈Xi〉 are both equal to

zero, the uncertainty relation appears in the following form:

(∆X)i (∆P) j≥
h̄
2

(
δi j +α (∆X)i (∆X) j +β (∆P)i (∆P) j +

√
αβ

(
(∆P)i (∆X) j +(∆X)i (∆P) j

))
.

(5.7)

It is important to note that the concept of minimal uncertainties fails to apply in the cases where

(α and β )< 0 (i.e., aSdS), meaning that all real values of pi are allowed. Prior to delving into

the specifics, which are covered in the section that follows, Notably, the scalar product has

changed. It seems that the symmetry of the operators of X̂i and P̂i appears to be limited to the

subspace L2(R2,dp/
√

1−βp2)), we use the following form shown in [27],

〈ψ | φ〉=
∫ 1/
√

β

−1/
√

β

dp√
1−βp2

ψ
∗ (p)φ (p) , (5.8)

these wave functions satisfy the periodic boundary conditions ψ(−1/
√

β ) = ψ(1/
√

β ), and

accordingly, the modified closure relation is provided by [68], where,

∫ 1/
√

β

−1/
√

β

dp√
1−βp2

|p〉〈p|= I. (5.9)

Thus, we derive the following expression by applying the closure relation to the maximally

localised states [68]:

〈
p|p

′
〉

α,β
=
(

1−βp′2
1−βp2

) γ

2
√

1−βp2δ
2 (p−p′

)
,and γ = iκ/h̄

√
αβ . (5.10)

It is noteworthy to observe that for (α < 0, β < 0), in the above equation, we adjust the limits of

integration to encompass the entire space. Furthermore, in the case that α and β are both equal

to zero, we recover the standard projection relation, denoted by
〈

p|p′
〉
(α,β )→0

= δ 2 (p−p′).
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Recalling that the time-momentum relationship in the time component is not deformed is es-

sential. 〈
p0|p′0

〉
= δ

(
p0− p′0

)
=
∫ dt

2π h̄
e−

ı
h̄ t(p0−p′0). (5.11)

In turn, the operators matrix elements P2
i ,
(
P̂1X̂2− P̂2X̂1

)
and X2

i are given, respectively, as

follows,

P2
i
〈
p | p′

〉
α,β

=
〈
p | p′

〉
α,β

[
p2

i

1−β p2
i

]
, (5.12)

and (
P̂1X̂2− P̂2X̂1

)〈
p | p′

〉
α,β

=
〈
p | p′

〉
α,β

(pyx− pxy) , (5.13)

then

X̂2
i
〈
p | p′

〉
α,β

=
〈
p | p′

〉
α,β

[
−γ (γ−1)

h̄2
β 2 p2

i

1−β p2
i
− h̄22β (γ−1)

−2ıh̄β

(
γ− 3

2

)
(pxx+ pyy)+

(
1−β p2

i
)

x2
i

]
. (5.14)

This chapter is structured in six sections. section 2, our focus lies on formulating the path

integral for particles have spin 1/2 within the context of Snyder model space-time. It is signif-

icant to note that, as proved in [35, 70], this formulation is achieved here without the need of

Grassmann variables. This method relies on calculating the path integral on the Green func-

tion’s elements matrix. A similar technique has been applied in previous studies [72, 89]. We

perform to separate the radial part from the angular part, in section 3 by applying the polar

coordinate transformation. The process of separating variables leads to the derivation of the

Pöschel–Teller radial propagator [37, 49]. In contrast, for section 4, we have derived The exact

solutions of the bound states and the appropriate energy eigenvalues. As section 5, we illus-

trates, the behaviour of the DO system in the presence of a uniform magnetic field, within the

SdS algebra closely resembles the dynamics of the monolayer Graphene problem, assuming

the following equality mω̄ → mωc/2 and c→ VF . In section 6, we examined and discussed

the special cases that result from these studies. We conclude section 7 by testing and plotting

the thermodynamic functions for this system.
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5.2 Path Integral analysis in Snyder-de Sitter space for

(2+1)-Dirac oscillator
Now, we proceed to study the Green function Ŝ for the (2+1)-dimensional DO in momen-

tum space representation, within the context of SdS space, and in the presence of a uniform

magnetic field (B =Bk), which is given by the following equation [5],

(
Ĥ− ι h̄∂t

)
Ŝ = I. (5.15)

In this case, the unit matrix is I. The Hamiltonian expression for the DO without electromag-

netic interaction is defined by [5],

Ĥ = cα.
(−→̂

P − ιmωβ
−→̂
X
)
+βmc2, (5.16)

Eq. (5.6) is used to verify the momenta
−→̂
P− and position

−→̂
X − operators in this case. Where

the parameters denote m, c and ω to the mass of the particle, the speed of light, and the angular

frequency of the oscillator, respectively. For each α and β , the σi−Pauli matrices serve as:

α1 =

 0 1

1 0

 , α2 =

 0 −ı

ı 0

 , β =

 1 0

0 −1

 . (5.17)

Following the application of minimal electromagnetic coupling in Eq. (5.16) [5], Eq. (5.15)

minimises: [
γ

0P̂0− γ.(
−→̂
P − e

c
A)+ ımωγ

0
γ.
−→̂
X −mc

]
Ŝ =−I. (5.18)

For a relativistic particle, the parameter e =∓|e| describes a particle with positive charge (e =

|e|) or negative charge (e = −|e|). Moreover, the Pauli matrices in two dimensions represent

the γµ−Dirac matrices

γ
0 = σ3, γ

1 = ıσ2, γ
2 =−ıσ1. (5.19)

Observe that the time component is not deforming.(P̂0 = ıh̄∂0 = ıh̄∂/∂ct, X̂0 = x̂0 := ct). The

two components of the vector potential (A = B
2c

(
−X̂2, X̂1

)
) are the potential of a uniform
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magnetic field B. Eq. (5.18) can therefore be expressed as stated in [5],

[
γ

0ıh̄∂/∂ t− cγ
1 (P̂1 +mω̄X̂2

)
− cγ

2 (P̂2−mω̄X̂1
)
−mc2] Ŝ =−I, (5.20)

here, ω̄ denotes to ω̄ = ω ∓ωc/2, with ωc =
|e|B
mc is the cyclotron frequency. The formal

solution of Eq. (5.20) is

Ŝ =−
[
OD
−
]−1

=−OD
+

[
OD
−O

D
+

]−1
, (5.21)

where OD
± is defined by

OD
± =

[
γ

0ıh̄∂/∂ t− cγ
1 (P̂1 +mω̄X̂2

)
− cγ

2 (P̂2−mω̄X̂1
)
±mc2] . (5.22)

Using the Schwinger proper-time method [73], and after mentioning that Ŝ=−
[
OD
+

][
OD
−O

D
+

]−1,

the Green’s matrix operator Ŝ can be conveniently expressed as

Ŝ =
[
OD
+

]
Ĝ, (5.23)

with

Ĝ=
ı
h̄

∫
∞

0
dλ exp

(
− ı

h̄
λĤ
)
, (5.24)

where an even variable is denoted by λ . The formula Ĥ−operator is represented below:

Ĥ =−
[
γ

0ıh̄∂/∂ t− cγ
1 (P̂1 +mω̄X̂2

)
− cγ

2 (P̂2−mω̄X̂1
)
−mc2]

×
[
γ

0ıh̄∂/∂ t− cγ
1 (P̂1 +mω̄X̂2

)
− cγ

2 (P̂2−mω̄X̂1
)
+mc2] . (5.25)

After the equation (5.25) is simplified, we obtain:

Ĥ =−
[
−h̄2

∂
2
t −m2c4− c2 (P̂2

1 + P̂2
2
)
− c2 (mω̄)2 (X̂2

1 + X̂2
2
)

−c2mω̄
[(

X̂2P̂1 + P̂1X̂2
)
−
(
X̂1P̂2 + P̂2X̂1

)]
+c2

γ
1
γ

2
{[

P̂1, P̂2
]
+(mω̄)2 [X̂1, X̂2

]
+mω̄

[
X̂2, P̂2

]
+mω̄

[
X̂1, P̂1

]}]
. (5.26)
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To express this Hamiltonian, we must use the position and momentum operators, which

achieve the deformed quantum algebra described by Snyder and are predicated on the adapted

commutation relation provided in the previous section (see, Eq. (5.5)) [27]. By inserting the

operators (
(
X̂i, P̂ j

)
) into the Hamiltonian expression Ĥ−, we find:

Ĥ =−
[
−h̄2

∂
2
t −m2c4− c2

(
(mω̄)2 +

α

β

)(
X̂2

1 + X̂2
2

)
−2c2mω̄

(
X̂2P̂1− X̂1P̂2

)
−c2

(
(1−κ)2 +κ

2 β

α
(mω̄)2

)(
P̂2

1 + P̂2
2

)
− ıh̄γ

1
γ

2F̂(X̂i, P̂i)

]
, (5.27)

with

F̂(X̂i, P̂i) = c2
β

(
α

β
+(mω̄)2

)(
X̂2P̂1− X̂1P̂2

)
− c2mω̄

(
2+β

(
P̂2

1 + P̂2
2

))
. (5.28)

Based on the given value of κ , the equation above indicates that the term (P̂iX̂i+ P̂iX̂i) will be

evidently absent.

κ =
1

1+ β

α
(mω̄)2

. (5.29)

When Ĝ is represented in momentum space, the corresponding element matrix is

G(pb,pa, p0b, p0a) =−
ı
h̄

∫
∞

0
dλ

〈
pb, p0b

∣∣∣exp
(
− ı

h̄
λĤ
)∣∣∣pa, p0a

〉
. (5.30)

Before going into building the Green function G(pb,pa, p0b, p0a) using the path integral for-

mulation. First, we need to remove the Pauli matrices, as they are not in line with Feynman’s

formulation, by constructing the following exponential matrix. Then, we can simplify it as

follows

exp
(

λγ
1
γ

2F̂
(
X̂i, P̂i

))
= cos

(
λ F̂
(
X̂i, P̂i

))
+ γ

1
γ

2 sin
(

λ F̂
(
X̂i, P̂i

))
, (5.31)
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given that (γ1γ2)2 = −1, considering the properties of Dirac matrices, Eq. (5.31) can be

expressed:

exp
(

λγ
1
γ

2F̂
(
X̂i, P̂i

))
=

1
2 ∑

s=±1

[
1+ ısγ

1
γ

2]exp
(
− ı

h̄
sλ h̄F̂

(
X̂i, P̂i

))
. (5.32)

As a result, Eq. (5.33) may be expressed as follows:

G(pb,pa, p0b, p0a) =
ı

2h̄ ∑
s=±1

[
1+ ısγ

1
γ

2]∫ ∞

0
dλ 〈pb, p0b|exp

(
− ı

h̄
Ĥ(s)

)
|pa, p0a〉 , (5.33)

with

Ĥs =−λ

[
−h̄2

∂
2
t − c2

(
α

β
+(mω̄)2

)(
X̂2

1 + X̂2
2

)
− c2(mω̄)2

α

β
+(mω̄)2

(
P̂2

1 + P̂2
2

)
−2c2mω̄

(
P̂1X̂2− P̂2X̂1

)
− sh̄F̂

(
X̂i, P̂i

)
−m2c4

]
. (5.34)

We break down the exponential exp(−ıλĤ(s)) for the kernel of (5.33) into (N+1) exponential

exp(−ıεĤ(s)), with ε = τ j − τ j−1 = 1/(N + 1). Next, between every pair of infinitesimal

operator exp(−ıεĤ(s)) we insert N resolutions of identities (5.9). In fact, we have [68],

G(pb,pa, p0b, p0a)=
ı

2h̄ ∑
s=±1

[
1+ ısγ

1
γ

2] lim
N−→∞

∫
∞

0
dλ

N

∏
j=1

∫
d p0 jdp j√

1−βp2
j

N+1

∏
j=1

〈
p j, p0 j

∣∣e− ıε
h̄ Ĥ

(s) ∣∣p j−1, p0 j−1
〉

α,β
.

(5.35)

To proceed further, the exponential can be developed to the first order of ε . Consequently, we

obtain

lim
N−→∞,ε→0

〈
p j, p0 j

∣∣e− ıε
h̄ Ĥ

(s) ∣∣p j−1, p0 j−1
〉

α,β

= lim
N−→∞,ε→0

[〈
p j, p0 j | p j−1, p0 j−1

〉
α,β
− ıε

h̄

〈
p j, p0 j

∣∣Ĥ(s) ∣∣p j−1, p0 j−1
〉

α,β

]
. (5.36)

Next, we add each and every operators (X2
i , P

2
i , P̂1X̂2− P̂2X̂1) to the projection relationship〈

p j | (.) | p j−1
〉

α,β
. In order to remove the Hamiltonian operator in the SdS framework, the

expression G(pb,pa, p0b, p0a) is converted into the following path integral in phase space:
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G(pb,pa, p0b, p0a) =−
ı

2h̄
lim

N→∞

ε→0

∑
s=±1

[
1+ ısγ

1
γ

2]∫ ∞

0
dλ

N

∏
j=1

[∫ 1/
√

β

−1/
√

β

d p0 jdp j√
1−βp2

j

]

×
N+1

∏
j=1

[(
1−βp2

j−1

1−βp2
j

) γ

2 √
1−βp2

j

∫ dxµ

j

(2π h̄)3

]
exp

{
ı
h̄

N+1

∑
j=1

[
−xµ

j ∆p jµ +λε
[
p2

0 j−m2c4

−c2
(

α

β
+(mω̄)2

)(
−γ (γ−1)

h̄2
β 2p2

j

1−βp2
j
−2β h̄2 (γ−1)

+2ıh̄β

(
γ− 3

2

)(
x j px j + y j py j

)
+
(
1−βp2

j
)(

x2
j + y2

j
))

+ sh̄c2mω̄

(
2+

βp2
j

1−βp2
j

)

− c2(mω̄)2

α

β
+(mω̄)2

p2
j

1−βp2
j
+ c2

(
2mω̄ + sh̄β

(
α

β
+(mω̄)2

))(
py jx j− px jy j

)]}
. (5.37)

It is convenient to eliminate all terms multiply by the γ−parameter by applying the term((
1−βp2

j−1

)
/
(

1−βp2
j

)) γ

2 . With the following analysis, this can be made clear [68],

ln
(

1−βp2
j−1

1−βp2
j

)γ/2

=−γ

2
ln

(
1−βp2

j

1−βp2
j−1

)

= βγ

(
px j∆px j + py j∆py j

)
1−βp2

j
− 2ıε

h̄
γβc2

(
α

β
+(mω̄)2

)
− ıε

h̄
2β

2
γc2
(

α

β
+(mω̄)2

) p2
j

1−βp2
j
. (5.38)

Furthermore, after performing the multiple Gaussian integrations over (x,y, t) , the La-

grangian path integral representation will be obtained by converting the Green function

G(pb,pa, p0b, p0a) to the following form:
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G(pb,pa, p0b, p0a) =−
ı

2h̄
lim

N−→∞
∑

s=±1

[
1+ ısγ

1
γ

2]
δ (p0b− p0a)

∫
∞

0
dλ

N

∏
j=1

[∫ 1/
√

β

−1/
√

β

dp j√
1−βp2

j

]

×
N+1

∏
j=1

√1−βp2
j

 1
(2π h̄)

√√√√ π

ı
h̄εc2

(
α

β
+(mω̄)2

)(
1−βp2

j

)


2


×exp

 ı
h̄

N+1

∑
j=1

 (
∆p j
)2

4εc2
(

α

β
+(mω̄)2

)(
1−βp2

j

) +λε
(

p2
0−m2c4)

−9
4

h̄2
β

2c2
λε

(
α

β
+(mω̄)2

) p2
j

1−βp2
j
− 3

2
ıh̄β

(
py j∆py j + px j∆px j

)(
1−βp2

j

)
+λε

c2
(

2mω̄ + sh̄β

(
α

β
+(mω̄)2

))2

4
(

α

β
+(mω̄)2

) p2
j

1−βp2
j
−2βc2h̄2

λε

(
α

β
+(mω̄)2

)

+
2mω̄ + sh̄β

(
α

β
+(mω̄)2

)
2
(

α

β
+(mω̄)2

) (
px j∆py j − py j∆px j

)(
1−βp2

j

)
−λε

c2(mω̄)2

α

β
+(mω̄)2

p2
j

1−βp2
j
+ sh̄c2mω̄λε

(
2+

βp2
j

1−βp2
j

)]}
. (5.39)

In the following section, using spherical two-dimensional coordinates, we were able to suc-

cessfully complete the calculation. Given the established importance of symmetries in pre-

serving the physical quantities of this system, we need to determine the best way to account

for them.

5.3 Green Function Analysis In Polar Coordinates
Firstly, let us start by using relative polar coordinates (pρ , pθ ) in order to simplify the path

integrals above (5.39), where in the 2-dimensional spherical coordinates of the momentum

variables p are given by

px = pρ cos(pθ ) , py = pρ sin(pθ ) , (5.40)
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with 0 < pθ < π and p2 = p2
x + p2

y . This leads to the transformation of the measure term,

kinetic term, and the action terms [68],

N

∏
j=1

[∫ 1/
√

β

−1/
√

β

dp j√
1−βp2

j

]
=

N

∏
j=1

[∫
pρ j d pρ j√
1−β p2

ρ j

d pθ j

]
. (5.41)

(∆p j)
2 = p2

ρ j
+ p2

ρ j−1
−2pρ j pρ j−1 cos

(
∆pθ j

)
. (5.42)

p j∆p j = pρ j∆pρ j + pρ j pρ j−1(
1
2
(
∆pθ j

)2
+ ...). (5.43)

px j∆py j − py j∆px j = pρ j pρ j−1 sin
(
∆pθ j

)
, (5.44)

the kinetic energy term is used to calculate the correction
(
∆pθ j

)2, which is equal to [68],

(
∆pθ j

)2 ∼ 2ıh̄λεc2(
α

β
+(mω̄)2)

1−β p2
ρ j

pρ j pρ j−1

. (5.45)

After incorporating that into the Eq. (5.39), the Green function becomes:

G
(

pρb, pρa, pθb , pθa; p0b, p0a
)
=− ı

2h̄
lim

N−→∞
∑

s=±1

[
1+ ısγ

1
γ

2]
δ (p0b− p0a)

×
∫

∞

0
dλ

N

∏
j=1

∫ pρ jd pρ j√
1−β p2

ρ j

d pθ j

N+1

∏
j=1


√

1−β p2
ρ j

4πıh̄εc2
(

α

β
+(mω̄)2

)(
1−β p2

ρ j

)


×exp

 ı
h̄

N+1

∑
j=1

 p2
ρ j
+ p2

ρ j−1
−2pρ j pρ j−1 cos

(
∆pθ j

)
4εc2

(
α

β
+(mω̄)2

)(
1−β p2

ρ j

) − ıh̄
3
2

β pρ j∆pρ j(
1−β p2

ρ j

) +λε
(

p2
0−m2c4)

−9
4

h̄2
β

2
λεc2

(
α

β
+(mω̄)2

) p2
ρ j(

1−β p2
ρ j

) −2β h̄2
λεc2

(
α

β
+(mω̄)2

)

+
3
2

β h̄2c2
λε

(
α

β
+(mω̄)2

)
+λε

c2
(

2mω̄ + sh̄β

(
α

β
+(mω̄)2

))2
p2

ρ j

4
(

α

β
+(mω̄)2

)(
1−β p2

ρ j

)
+

2mω̄ + sh̄β

(
α

β
+(mω̄)2

)
2
(

α

β
+(mω̄)2

) pρ j pρ j−1 sin
(

∆p
θ j

)
(

1−β p2
ρ j

) + sh̄c2mω̄λε

(
2+

β p2
ρ j

1−β p2
ρ j

)

−λε
c2(mω̄)2

α

β
+(mω̄)2

p2
ρ j

1−β p2
ρ j

]}
. (5.46)
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The third term in the kinetic energy, along with the final term in the procedure, indicates the

possibility of an angle shift according to the following relation

pθ j → pθ j + τ jλc2
(

2mω̄ + sh̄β

(
α

β
+(mω̄)2

))
, (5.47)

The τ represents time in physics. The path integral over the angle pθ j will then be calculated

using the well-known relation [3]

exp(acos pθ ) =
+∞

∑
`=−∞

I` (a)exp(ı`pθ ) , (5.48)

where the modified Bessel functions are denoted by I` (a). Following simple calculation, Eq.

(5.46) can be expressed as

G
(

pρb, pρa, pθb , pθa; p0b, p0a
)
=− ı

2h̄
lim

N−→∞
∑

s=±1

[
1+ ısγ

1
γ

2]
δ (p0b− p0a)

∫
∞

0
dλ

N

∏
j=1

[∫
pρ j d pρ j√
1−β p2

ρ j

]

×
N+1

∏
j=1

[( √
1−β p2

ρ j

4πıh̄εc2
(

α

β
+(mω̄)2

)(
1−β p2

ρ j

)
)

+∞

∑
` j=−∞

I` j

(
− ı

h̄
pρ j pρ j−1

2εc2
(

α

β
+(mω̄)2

)(
1−β p2

ρ j

)
)]

×
N

∏
j=1

[∫
d pθ j

]N+1

∏
j=1

[
eı` j

(
∆pθ j+λεc2

(
2mω̄+sh̄β

(
α

β
+(mω̄)2

)))]

×exp

{
ı
h̄

[
p2

ρ j
+p2

ρ j−1

4εc2
(

α

β
+(mω̄)2

)(
1−β p2

ρ j

) +λε
(

p2
0−m2c4)− 9

4
λε h̄2c2

β
2
(

α

β
+(mω̄)2

) p2
ρ j

1−β p2
ρ j

−ıh̄
3
2

β pρ j∆pρ j

1−β p2
j
+

3
2

λε h̄2c2
β

(
α

β
+(mω̄)2

)
−2λε h̄2c2

β

(
α

β
+(mω̄)2

)

−λε
c2(mω̄)2

α

β
+(mω̄)2

p2
ρ j

1−β p2
ρ j

+λεc2sh̄mω̄

(
2+

β p2
ρ j

1−β p2
ρ j

)]}
, (5.49)

it is now possible to perform the N−integrations over the pθ j−variables, yielding the N sym-

bols of Kronecker [3],

N

∏
j=1

[∫ 2π

0
d pθ j

]N+1

∏
j=1

[
eı` j∆pθ j

]
=

N

∏
j=1

(
2πδ` j,` j+1

)
eı`N+1 pθN+1−ı`1 pθ0 . (5.50)
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With the exception of `, these symbols can remove all summations. The radial time evolution

amplitudes are defined as follows in relation to the azimuthal `-quantum numbers [3]:

G
(

pρb, pρa, pθb, pθa; p0b, p0a
)
=

1
2π

1
√pρb pρa

+∞

∑
`=−∞

eı`(pθb−pθa)G`

(
pρb, pρa; p0b, p0a

)
, (5.51)

and

G`

(
pρb , pρa; p0b, p0a

)
=− ı

2h̄
δ (pb0− pa0) ∑

s=±1

[
1+ ısγ

1
γ

2] lim
N−→∞

∫
∞

0
dλe

ı
h̄ λ(p2

0−m2c4)

×
N

∏
j=1

∫ 1/β

−1/β

[
d pρ j√
1−β p2

ρ j

]
N+1

∏
j=1

[
4πıh̄λεc2

(
α

β
+(mω̄)2

)]−1/2

×exp

 ı
h̄

N+1

∑
j=1

 (
∆pρ j

)2

4λεc2
(

α

β
+(mω̄)2

)(
1−β p2

ρ j

) − ıh̄
3
2

β pρ j∆pρ j(
1−β p2

ρ j

)
+λε

(
−9

4
h̄2

β
2c2
(

α

β
+(mω̄)2

) p2
ρ j

1−β p2
ρ j

− c2(mω̄)2

α

β
+(mω̄)2

p2
ρ j

1−β p2
ρ j

+sh̄c2mω̄
β p2

ρ j

1−β p2
ρ j

− h̄2c2
(

α

β
+(mω̄)2

) (`2−1/4
)(

1−β p2
ρ j

)
pρ j pρ j−1

−c2h̄2
β

2

(
α

β
+(mω̄)2

)
+2c2sh̄mω̄ + h̄`c2

[
2mω̄ + sh̄β

(
α

β
+(mω̄)2

)])]}
. (5.52)

This is accomplished while considering the following relationship

I` (z) = ez (2πz)−1/2 Ĩ` (z) . (5.53)

The modified Bessel functions Ĩ` (z) = exp
(
− `2−1/4

2z

)
exhibit asymptotic equality as |z| → ∞,

with |argz|< 0 [3].

This propagator’s expression (5.52) takes on a more complex form because it contains the

term measure. Using the point transformation method (refer to Ref. [35]) to simplify this, the

ϒ-point discretization interval is defined as

p(δ )ρ j = ϒpρ j +(1−ϒ) pρ j−1. (5.54)
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Based on Refs. [35, 37], this usually gives rise to three quantum corrections: a momentum

measure term (d pρ j/
√

1−β p2
ρ j
), a kinetic energy term, and the last term in action (5.52).

We extend these corrections using the discretization interval of p(ϒ)ρ j -points in order to analyse

these corrections even more. Subsequently, we employ a coordinate transformation to restore

the conventional kinetic term ( (∆x j)
2

4εc2
(

α

β
+(mω̄)2

)). The function f (x) is defined by the following

condition:

d f (x)/dx =
√

1−β p2
ρ ⇒

√
β pρ = sinx. (5.55)

Subsequently, we utilize discretization intervals, referred to as ϒ-points, to express the kinetic

energy and measurement terms. This facilitates the determination of the overall correction,

denoted by the symbol CT .

CT = ıh̄εc2
(

α +β (mω̄)2
)[5

4
tan2 x−

(
2ϒ

2−ϒ−1
) 1

cos2 x

]
. (5.56)

With the predefined ϒ-values (i.e., ϒ= 0,1/2) given in Refs.[35, 37], CT assumes the following

form:

CT = ıh̄εβc2
(

α

β
+(mω̄)2

)[
1+

9
4

tan2 x
]
. (5.57)

In doing so, the radial propagator G`(xb,xa; p0b, p0a) is converted into the following expres-

sion:

G` (xb,xa; p0b, p0a) =−
ı

2h̄
δ (pb0− pa0) ∑

s=±1

[
1+ ısγ

1
γ

2]
×
∫

∞

0
dλ exp

{
ıλ
h̄

[
p2

0−m2c4 +
1
2

h̄2c2
(

α +β (mω̄)2
)
+ h̄`c2

[
2mω̄ + sh̄

(
α +β (mω̄)2

)]
+2c2sh̄mω̄ + h̄2c2

(
α +β (mω̄)2

)(
`2−1/4

)
− c2

sh̄mω̄− (mω̄)2(
α +β (mω̄)2

)
K` (xb,xa,λ ) .

(5.58)

As shown in reference [49], the kernel radial propagator K` (xb,xa,λ ) equates precisely to the

path integral of a particle subjected to the Pöschel–Teller potential (PTP),
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K` (xb,xa,λ ) = lim
N−→∞

N

∏
j=1

[∫
dx j

]N+1

∏
j=1

[
4πıh̄εβc2

(
α

β
+(mω̄)2

)]−1/2

×exp

{
ı
h̄

N+1

∑
j=1

[
(∆x j)

2

4εc2(α+β (mω̄)2)
− ε h̄2c2

(
α +β (mω̄)2

)[ (mω̄)2

α+β (mω̄)2
−sh̄mω̄

h̄2(α+β (mω̄)2)

1
cos2 x

+
`2−1/4

sin2 x

]]}
.

(5.59)

According to Grosch [49], the transition amplitude with respect to the PTP results is defined

by:

K = lim
N−→∞

N

∏
j=1

∫
dx j

N+1

∏
j=1

(√
M

2πıh̄ε

)
exp

{
ı
h̄

N+1

∑
j=1

[
M
2ε

(
∆x j
)2− ε

h̄2

2M

[
(ν2−1/4)

cos2 x +
(δ 2−1/4)

sin2 x

]]}

= ∑
n

Φn (xb)Φ
∗
n (xa)exp

[
− ı

h̄

(
h̄2

2M
(δ +ν +2n+1)2

)]
, (5.60)

and

Φ
(δ ,ν)
n (x)=

[
2(δ +ν +2n+1)

n!Γ(δ +ν +n+1)
Γ(δ +n+1)Γ(ν +n+1)

]1/2

(sinx)δ+1/2 (cosx)ν+1/2 P(δ ,ν)
n (cos2x) .

(5.61)

In contrast, M, δ , and ν , respectively, can be identified as:

M :=
1

2c2
(

α +β (mω̄)2
) , δ = |`| , (5.62)

and

νs =±

(
1
2
− s

mω̄/h̄

α +β (mω̄)2

)
. (5.63)

Following the condition of the generalized uncertainty principle, as outlined in the introduc-

tion, we will adopt the following values:

ν+ =−1
2
+

mω̄

h̄
(

α +β (mω̄)2
) , ν− =

1
2
+

mω̄

h̄
(

α +β (mω̄)2
) , (5.64)
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negative values, on the other hand, are discarded, resulting in the following outcome

ν−s = νs + s, with νs =−
s
2
+

mω̄

h̄θ̄
, (5.65)

here, θ̄ = α +β (mω̄)2 . Subsequently, in accordance with the γµ− properties outlined below,

the expression 1
2 ∑s=±1

[
1+ ısγ1γ2] = ∑s=±1 χsχ

+
s holds, where χ+

s = 1
2

(
1+ s 1− s

)
.

Equation (5.52) is then transformed into the following form

G` (xb,xa; p0b, p0a) =
ı
h̄

δ (p0b− p0a)∑
n

∑
s=±1

χsχ
+
s

∫
dλe

ıλ
h̄ (p2

0−ω2
s,`,n)

×
[

2(|`|+νs +2n+1)
n!Γ(|`|+νs +n+1)

Γ(|`|+n+1)Γ(νs +n+1)

]
× (sinxb)

|`|+1/2 (cosxb)
νs+1/2 P(|`|,νs)

n (cos2xb)

× (sinxa)
|`|+1/2 (cosxa)

νs+1/2 P(|`|,νs)
n (cos2xa) , (5.66)

with

ω
2
s,`,n = m2c4 + h̄2c2

θ̄ [2n+1− s+ |`|− `] [|`|+ `+2νs +2n+1+ s] . (5.67)

To accurately assess the propagator expression, we shall apply the Fourier transformation of

(5.66) with regard to the p0b and p0a variables. At this point, integrating over λ results in the

equation,

G
(

pρb, pρa, pθb, pθa; p0b, p0a
)
= ∑

n
∑

s=±1

+∞

∑
`=−∞

eı`(pθb−pθa)

2π
χsχ

+
s

∫ d p0

2π h̄
e−

ı
h̄ p0(tb−ta)

p2
0−ω2

s,`,n

×
[

2(|`|+νs +2n+1)
n!Γ(|`|+νs +n+1)

Γ(|`|+n+1)Γ(νs +n+1)

]
× (sinxb)

|`| (cosxb)
νs+1/2 P(|`|,νs)

n (cos2xb)

× (sinxa)
|`| (cosxa)

νs+1/2 P(|`|,νs)
n (cos2xa) . (5.68)
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Now, let us apply the theorem of residue at the pole p0 which allows us to express

∫ d p0

2π h̄
e−

ı
h̄ p0(tb−ta)

p2
0−ω2

n,s,`
=−ı ∑

ε=±1

e−
ı
h̄ εEn,s,`(tb−ta)

2En,s,`
Θ(ε (tb− ta)) , (5.69)

which has the poles

En,s,` =±

√
m2c4 +4h̄2c2θ̄

[
n+

1
2
− s

2
+
|`|
2
− `

2

][
|`|
2
+

`

2
+νs +n+

1
2
+

s
2

]
. (5.70)

Moreover, it confirms the identity that follows for an arbitrary function

∑
s=±1

∑
ε=±1

f (ε)Θ(ε (tb− ta)) = ∑
s=±1

f (s)Θ(s(tb− ta))+ f (−s)Θ(−s(tb− ta)) , (5.71)

we refer to Θ(x) as the Heaviside function. As a consequence, the Green function is expressed

as:

G
(
xb,xa, pθb, pθa ; p0b, p0a

)
= ı∑

n
∑

s=±1

+∞

∑
`=−∞

eı`(pθb−pθa)

2π
χsχ

+
s

{[
e−

ı
h̄ sEn,s(tb−ta)

2En,s
Θ(s(tb− ta))

]

×
[

2(|`|+νs +2n+1)
n!Γ(|`|+νs +n+1)

Γ(|`|+n+1)Γ(νs +n+1)

]
×(sinxb)

|`| (cosxb)
νs+1/2 P(|`|,νs)

n (cos2xb)(sinxa)
|`| (cosxa)

νs+1/2 P(|`|,νs)
n (cos2xa)

+

[
eısEn,s(tb−ta)

2En,s
Θ(−s(tb− ta))

][
2(|`|+ν−s +2n+1)

n!Γ(|`|+ν−s +n+1)
Γ(|`|+n+1)Γ(ν−s +n+1)

]
×(sinxb)

|`| (cosxb)
ν−s+1/2 P(|`|,ν−s)

n (cos2xb)(sinxa)
|`| (cosxa)

ν−s+1/2 P(|`|,ν−s)
n (cos2xa)

}
.

(5.72)

Furthermore, we apply the transformation (s→−s) to the terms multiplied by Θ(−s(tb− ta))

to unify the energy expression between the terms Θ(s(tb− ta)) and Θ(−s(tb− ta)). This

results in

n→ n− s, |`| → |`|+ s, ν−s = νs + s. (5.73)
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Thus, the Green function is represented by:

G
(
xb,xa, pθb , pθa; p0b, p0a

)
= ı∑

n
∑

s=±1

+∞

∑
`=−∞

eı`(pθb−pθa)

2π

e−
ı
h̄ sEn,s(tb−ta)

2En,s
Θ(s(tb− ta))

×
{[

2(|`|+νs +2n+1)
n!Γ(|`|+νs +n+1)

Γ(|`|+n+1)Γ(νs +n+1)

]
F(|`|,νs)

n (xb)F(|`|,νs)
n (xa)χs

+
s

+

[
2(|`|+νs +2n+1)

(n− s)!Γ(|`|+νs + s+n+1)
Γ(|`|+n+1)Γ(νs +n+1)

]
F(|`|+s,νs+s)

n−s (xb)F(|`|+s,νs+s)
n−s (xa)χ−s

+
−s

}
,

(5.74)

where

F(|`|,νs)
n (x) = (u)|`| (υ)νs+1/2 P(|`|,νs)

n
(
1−2u2) . (5.75)

F(|`|+s,νs+s)
n−s (x) = (u)|`|+s (υ)νs+s+1/2 P(|`|,νs+s)

n−s
(
1−2u2) , (5.76)

so that u = sinx, υ = cosx.

In the subsequent section, we leverage the symmetrical properties of the propagator to derive

a precise solution for our problem, enabling us to compute the normalized wave functions and

their associated energy spectra.

5.4 Spinor Eigenstates and Energy Levels
In order to obtain an accurate assessment of the Green function S (pb, pa) expression, we utilise

the operator
[
OD
+

]
b on the function (5.72).Using the relationships that are provided, we can

apply the operator
[
OD
+

]
b to χsχ

+
s , represented as follows:

[
OD
+

]
b χsχ

+
s =

[
χsχ

+
s
(
sıh̄∂tb +mc2)+χ−sχ

+
s
{(

sP̂1b + ıP̂2b
)
+mω̄

(
sX̂2b− ıX̂1b

)}]
. (5.77)
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Expressed as follows in polar coordinates:

[
OD
+

]
b χsχ

+
s = χsχ

+
s
(
sıh̄∂tb +mc2)

+χ−sχ
+
s



[
sh̄
√

α

β

√
1−β p2

beıspθb

[
−ı ∂

∂ pb
+ s

pρb

∂

∂ pθb

]
+ s (1−κ)pe

ıspθb√
1−β p2

b

]
+mω̄

ıh̄
√

1−β p2
beıspθb

[
−ı ∂

∂ pb
+ s

pb

∂

∂ pθb

]
− ı

κ

√
β

α
pe

ıspθb
√

1−β p2
b


 . (5.78)

Finally, we obtain the spectral decomposition of the Green function S (pb, pa), that is shown

below:

S (pb,pa; tb, ta) =
ı√
2π

∑
s=±1

∑
n

e−
ı
h̄ sEn,s(tb−ta)

2En,s
Θ(s(tb− ta))

×
{[

2(|`|+νs +2n+1)
n!Γ(|`|+νs +n+1)

Γ(|`|+n+1)Γ(νs +n+1)

]
F(`,νs)

n (xa)

×



χsχ
+
s
(
En,s,`+mc2)+ eısθb χ−sχ

+
s

×



[
sh̄
√

α

β

√
1−β p2

ρb

[
−ı ∂

∂ pρb
+ s

pρb

∂

∂ pθb

]
+

β

α
(mω̄)2

1+ β

α
(mω̄)2

spρb√
1−β p2

ρb

]

+ımω̄

h̄
√

1−β p2
ρb

[
−ı ∂

∂ pρb
+ s

pρb

∂

∂ pθb

]
−

√
β

α

1+ β

α
(mω̄)2

pρb√
1−β p2

ρb






eı`(pθb−pθa)F(`,νs)

n (xb)

+

[
2(|`|+νs +2n+1)

(n− s)!Γ(|`|+νs + s+n+1)
Γ(|`|+n+1)Γ(νs +n+1)

]
F(`+s,νs+s)

n−s (xa)

×



χ−sχ
+
−s
(
−En,s,`+mc2)+ e−ıspθb χsχ

+
−s

×



[
−sh̄

√
α

β

√
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ρb
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∂ pρb
− s

pρb

∂

∂ pθb

)
− s

β

α
(mω̄)2

1+ β

α
(mω̄)2

pρb√
1−β p2

ρb

]

+mω̄

h̄
√

1−β p2
ρb

(
∂

∂ pρb
− ı s

pρb

∂

∂ pθb

)
− ı

√
β

α

1+ β

α
(mω̄)2

pρb√
1−β p2

ρb






×eı(`+s)(pθb−pθa)F(`+s,βs+s)

n−s (xb)
}
. (5.79)
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As demonstrated below, we used a simple calculation to express the Green function

S (pb,pa; tb, ta) =
ıβ√
2π

∑
s=±1

∑
n

e−
ı
h̄ sEn,s(tb−ta)

2En,s
Θ(s(tb− ta))

×
{[

2(|`|+νs +2n+1)
n!Γ(|`|+νs +n+1)

Γ(|`|+n+1)Γ(νs +n+1)

]

×


χsχ

+
s
(
En,s,`+mc2)eı`(pθb−pθa) + eıspθb eı`(pθb−pθa)χ−sχ

+
s

h̄
√

β√
1−η2

b

×


ı
√

α

β

{
(1− s) [(|`|−νs)+(|`|+νs)ηb]P

(`,νs)
n (ηb)+2s

(
1−η2

b

) dP(`,νs)
n (ηb)

dηb

}
+mω̄

{
(1− s) [(|`|−νs)+(|`|+νs)ηb]P

(`,νs)
n (ηb)−2

(
1−η2

b

) dP(`,νs)
n (ηb)

dηb

}



×(sinxb)

|`| (cosxb)
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|`| (cosxa)

νs+1/2 P(|`|,νs)
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+

[
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]

×



−χ−sχ
+
−s
(
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+
−s

h̄
√

β√
(1−η2

b)

×



ı
√

α

β

 (1+ s) [(|`|+1)− (νs +1)+((|`|+1)+(νs +1))ηb]P
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n−s (ηb)

−2s
(
1−η2

b

) d
dηb

P(|`|+s,νs+s)
n−s (ηb)


+mω̄
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


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n−s (ηa)

}
.

(5.80)

Based on the characteristics of Jacobi’s polynomials, as detailed in [100], we find,

dP(|`|,νs)
n (η)

dη
=

1
2

Γ(n+ |`|+νs +2)
Γ(n+ |`|+νs +1)

P(|`|+1,νs+1)
n−1 (η) , (5.81)

and

(1−η)α1 (1+η)β1 d
dη

P(α1,β1)
n (η) =−2(n+1)(1−η)α1−1 (1+η)β1−1 P(α1−1,β1−1)

n+1 (η)

+
(

α (1−η)α1−1 (1+η)β1−β1 (1−η)α1 (1+η)β1−1
)

P(α1,β1)
n .

(5.82)
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So, the following expression can be used to reformulate the Green’s function:

S (pb,pa; tb, ta) =
ıβ√
2π

∑
s=±1

∑
n

e−
ı
h̄ sEn,s(tb−ta)

2En,s
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+
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√
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(
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+
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
.

(5.83)

It can be expressed in compressed form by taking advantage of the propagator’s symmetry

properties:

Sc (pb,pa; tb, ta)= ı
∞

∑
n=0

∑
`

∑
s=±1

[
sΦ

s
n,`
(

pρb , pθb; tb
)(

Φ
s
n,`
(

pρa, pθa ; ta
))†

σ3e−
ı
h̄ sEn,s,`(tb−ta)Θ(s(tb− ta))

]
.

(5.84)

It is possible to deduce that our system’s normalised eigenspinors are as follows :

Φ
s
n,`
(

pρ , pθ

)
=

√
β√

2En,s,`

{√
2
(
En,s,`+mc2

) n!(`+νs+2n+1)Γ(`+νs+n+1)
Γ(`+n+1)Γ(νs+n+1) F(`,νs)

n (η)eı`pθ χs

+

√
−2
(
En,s,`−mc2

) (n−s)!(`+νs+2n+1)Γ(`+νs+s+n+1)
Γ(`+n+1)Γ(νs+n+1) F(`+s,νs+s)

n−s (η)e−ı(`+s)pθ χ−s

}
,

(5.85)

here, η = cos2x = 1−2β p2
ρ serves to revert us back to the original variables.

It is worth noting that for ω = 0, we can substitute mω̄ with (eB/2c) and θ̄ with
(
α +β (eB/2c)2)

in Eq. (5.70). However, the spectral energies remain as the pole expressions given in Eq.

(5.70). As B approaches 0, we get the following outcome:

E±s,`,n =±

√
m2c4 +4h̄2c2α

[
n+

1
2
− s

2
+
|`|
2
− `

2

][
n+

1
2
+
|`|
2
+

`

2

]
. (5.86)
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This result highlights the fact that, within the framework of the aSdS model, the energy levels

remains depends on n2 even when magnetic field B and ω−oscillation are absent. Given

that the values of α and β are typically very small in deformation theory, we can perform a

first-order expansion of Eq. (5.70) with respect to α and β . This leads us to the following

outcome:

Es,`,n = E0
s,`,n + θ̄∆E1

s,`,n, (5.87)

the first term in this equation represents the Landau levels of a (2+1)-dimensional DO,

E0
s,`,n =±

√
m2c4 +4h̄c2mω̄

[
n+

1
2
− s

2
+
|`|
2
− `

2

]
, (5.88)

and the quantum gravity correction adjustment is the second term,

∆E1
s,`,n = 2h̄2c2

(
n+ 1

2 −
s
2 +

|`|
2 −

`
2

)(
n+ 1

2 +
|`|
2 + `

2

)
√

m2c4 +4h̄c2mω̄

(
n+ 1

2 −
s
2 +

|`|
2 −

`
2

) . (5.89)

1- In limit case as α → 0, the expression of the flat Snyder model can be obtained by

reducing Eq. (5.70).

Es,`,n = E0
s,`,n +β∆Eα=0

s,`,n , (5.90)

with

∆Eα=0
s,`,n = 2h̄2c2 (mω̄)2

(
n+ 1

2 −
s
2 +

|`|
2 −

`
2

)(
n+ 1

2 +
|`|
2 + `

2

)
√

m2c4 +4h̄c2mω̄

[
n+ 1

2 −
s
2 +

|`|
2 −

`
2

] . (5.91)

1. In limit case β → 0, in a anti de-Sitter background, the spectral energies of the Heisen-

berg algebra are recovered [21],

Es,`,n = E0
s,`,n +α∆Eβ=0

s,`,n , (5.92)
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with

∆Eβ=0
s,`,n = 2h̄2c2

(
n+ 1

2 −
s
2 +

|`|
2 −

`
2

)(
n+ 1

2 +
|`|
2 + `

2

)
√

m2c4 +4h̄c2mω̄

[
n+ 1

2 −
s
2 +

|`|
2 −

`
2

] . (5.93)

Using natural units (h̄ = c = 1), we calculated the conventional energy eigenvalues of

the DO and the corrections introduced within in the context of SdS model for a single

electron. This calculation is carried out using Eqs. (5.88), (5.89), (5.91) and (5.93), with

α = 10−70 and β = 10−40, m = 0.5MeV , and mω = 1MeV 2, while considering the case

s =+1. Thus, table (5.1) displays the specific energy spectrum values corresponding to

various combinations of n and `. It is worth mentioning that the ground energy values in

table (5.1) remain unaltered due to the SdS model.

Table 5.1: The energy eigenvalues, both ordinary and corrected, of the 2D-DO in the presence of a
homogeneous magnetic field (in MeV) for a single electron at various values of n with s =+1

state n ` E0
s,`,n ∆E1

s,`,n× (10−70 +0.9×10−43) ∆Eα=0
s,`,n ×

(
10−70) ∆Eβ=0

s,`,n ×
(
10−40)

0 0 0.510999 0 0 0
1 -1 0.709591 8.45557 0.007763 8.45557

0 0.61832 4.851854 0.004454 4.851854
1 0.61832 8.086424 0.007424 8.086424

2 -2 0.863667 23.157084 0.02126 23.157084
-1 0.790392 18.977918 0.017423 18.977918
0 0.709591 14.092617 0.012938 14.092617
1 0.709591 19.729664 0.018114 19.729664
2 0.709591 25.36671 0.023289 25.36671

3 -3 0.994143 42.2474 0.038787 42.24745
-2 0.931193 37.586202 0.034508 37.586202
-1 0.863667 32.419918 0.029764 32.419918
0 0.790392 26.569085 0.024393 26.569085
1 0.790392 34.160252 0.031362 34.160252
2 0.790392 41.751419 0.038332 41.751419
3 0.790392 49.342586 0.045301 49.342586

Hence, it can be noted that the energy level spacing produces a stable case in the subsequent

Fig. (5.1)
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Figure 5.1: The energy spacing between neighboring levels as a function of n and `= 0 for s = 1.

Similar results were obtained for the (2D-DO) in the context of the EUP model algebra [89].

Further, comparable outcomes were obtained for the 1-dimensional DO in anti-de Sitter space

[87] and in scenarios involving minimal lengths [38]. That is, the energy level spacing of the

2D-DO is obviously zero in the absence of the SdS algebra. The energy level spacing for the

2D-DO is zero. In conventional space, energy levels tend to converge to continuous states

for large values of n, whereas the deformation coefficient preserves the separation of energy

levels.

5.5 Dirac Fermions in Graphene Layers
In this scenario, massless Dirac fermions are confined within a Graphene layer configured for

the SdS mode and subjected to an external uniform magnetic field. We obtain the energy and

wave function expressions by substituting mω̄ → mωc/2 and c→ VF into Eqs. (5.70) and

(5.85). Consequently, we obtain the resulting energy spectra and corresponding eigenspinors:

Es,`,n =±2h̄VF

√
α +β

(
eB
2c

)2

√√√√√√(n+
1
2
− s

2
+
|`|
2
− `

2

)n+
1
2
+
|`|
2
+

`

2
+

eB
2h̄c

α +β

(
eB
2c

)2

,

(5.94)

and

Φ
s
n,`
(

pρ , pθ

)
=
√

β

{√
n!(`+νs+2n+1)Γ(`+νs+n+1)

Γ(`+n+1)Γ(νs+n+1) F(`,νs)
n (η)eı`pθ χs

+

√
(n−s)!(`+νs+2n+1)Γ(`+νs+s+n+1)

Γ(`+n+1)Γ(νs+n+1) F(`+s,νs+s)
n−s (η)e−ı(`+s)pθ χ−s

}
. (5.95)
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Our findings are consistent alongside those in Graphene within the Snyder model, as docu-

mented in Ref. [94]. It is noteworthy to emphasize that the wave function expressions were

not calculated by these authors, so an exact solution was not provided. Nevertheless, we can

use Eqs. (5.94) to produce plots that show the energy states of a single electron for α = 10−70,

and β = 10−40, VF = 0.00373, while considering the case s =+1.

(a) First observation . (b) Second observation.

(c) Third observation.
Figure 5.2: En,α,β−Energy levels versus the quantum number n for different values of the deformation
parameters.

As we can see, all cases of the energy level curves in Fig. 5.2a are identical when the quan-

tum number principle n lies between 0 and 1.5× 1038. After n > 1041, the two cases’ curves

((α 6= 0, β 6= 0) and (α = 0, β 6= 0)) diverge from those of the cases ((α 6= 0, β = 0) and

(α = 0, β = 0)) as displayed in Fig. 5.2b. In contrast, the plot for t he state (α 6= 0, β = 0)

plot in Fig. 5.2c is separated from the state (α = 0, β = 0) when the quantum number n> 1069.
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5.6 Non-Relativistic Approximation
The energy levels in the non-relativistic regime for the 2D-DO under a uniform magnetic

field and within the anti de-Sitter space system are obtained by taking the limit as mc2→ ∞.

Employing a second-order Taylor expansion of the equation (5.70), this yields the following

outcome:

Es,`,n = mc2 + h̄ω̄ [2n+1− s+ |`|− `]

+2θ̄
(
h̄2/m

)[
n+

1
2
− s

2
+
|`|
2
− `

2

][
n+

1
2
+
|`|
2
+

`

2

]
, (5.96)

the first term mc2 represents the particle’s rest energy, where the second and third terms repre-

sent the energy of the non-relativistic 2D HO with frequency ω̄ and the correction within the

framework of Snyder model. In the non-relativistic limit, the normalized wave functions with

spin 1/2 are provided by

Φ
s
n,`
(

pρ , pθ

)
=
√

βeı`pθ

√
n!(`+νs+2n+1)Γ(`+νs+n+1)

Γ(`+n+1)Γ(νs+n+1)

(√
β pρ

)|`|(
1−β p2

ρ

)νs+1/2
P(|`|,νs)

n

(
1−2β p2

ρ

)
χs,

(5.97)

where we have used the following limits:

lim
m→∞

En,s,`+mc2

En,s,`
= 2, lim

m→∞

En,s,`−mc2

En,s,`
= 0. (5.98)

As α → 0, Eq. (5.96) simplifies to,

Es,`,n = mc2 + h̄ω̄ [2n+1− s+ |`|− `]

+2β (mω̄)2 (h̄2/m
)[

n+
1
2
− s

2
+
|`|
2
− `

2

][
n+

1
2
+
|`|
2
+

`

2

]
. (5.99)

As β → 0, Eq. (5.96) transforms into,

Es,`,n = mc2 + h̄ω̄ [2n+1− s+ |`|− `]

+2α
(
h̄2/m

)[
n+

1
2
− s

2
+
|`|
2
− `

2

][
n+

1
2
+
|`|
2
+

`

2

]
. (5.100)
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The energy spectrum of a spinless nonrelativistic particle (s = 0) in the presence of a uniform

magnetic field can be found using Eq. (5.96) and in the first order of (α,β ),

E(NR)
n,s=0 = h̄ω̄ (2n+1+ |`|− `)+2θ̄

(
h̄2/m

)[
n+

1
2
+
|`|
2
− `

2

][
n+

1
2
+
|`|
2
+

`

2

]
. (5.101)

When a spinless non-relativistic oscillator with a frequency of ω interacts with a uniform mag-

netic field in usual quantum mechanics HUP, the first and second terms in Eq. (5.101) denote,

respectively, the energy level and the relativistic correction, pertaining to the modification of

the Heisenberg algebra. Moreover, in the limit as B approaches 0, Eq. (5.101) changes to

E(NR)
n,s=0 = h̄ω [2n+1+ |`|− `]+2

(
α +β (mω)2)(h̄2/m

)[
n+

1
2
+
|`|
2
− `

2

][
n+

1
2
+
|`|
2
+

`

2

]
.

(5.102)

This case involves two terms: The first represents the energy level for a spinless non-relativistic

oscillator of frequency ω particle within the HUP, while the second corresponds to the initial

deformation correction in the non-relativistic scenario.

5.7 Deformationless Scenario
We address the two limits to obtain the ordinary case:

1- Limit α → 0,β 6= 0 :

To derive the conventional wave functions for the 2D-DO under a uniform magnetic field, we

set α = 0, resulting in Eq. (5.85) becoming:

Φ
s
n,`
(

pρ , pθ

)
=

√
β√

2Eα=0
n,s,`


√√√√2

(
Eα=0

n,s,` +mc2
) n!

(
`+ν

β
s +2n+1

)
Γ

(
`+ν

β
s +n+1

)
Γ(`+n+1)Γ

(
ν

β
s +n+1

) F

(
`,ν

β
s

)
n (η)eı`pθ χs

+

√√√√−2
(

Eα=0
n,s,` −mc2

) (n−s)!
(
`+ν

β
s +2n+1

)
Γ

(
`+ν

β
s +s+n+1

)
Γ(`+n+1)Γ

(
ν

β
s +n+1

) F

(
`+s,νβ

s +s
)

n−s (η)e−ı(`+s)pθ χ−s

 ,

(5.103)
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in Snyder space, the energy spectrum for the 2D-DO is denoted by E(α=0)
n,`,s

Eα=0,±
s,`,n =±

√√√√m2c4 +4h̄2c2β (mω̄)2
[

n+
1
2
− s

2
+
|`|
2
− `

2

][
n+

1
2
+
|`|
2
+

`

2
+

mω̄/h̄

β (mω̄)2

]
.

(5.104)

While ν
β
s and F

(
`,ν

β
s

)
n (η) are provided by, respectively,

ν
β
s =− s

2
+

1
β h̄mω̄

, F

(
`,ν

β
s

)
n (η) = (u)|`| (υ)ν

β
s +1/2 P

(
|`|,νβ

s

)
n

(
1−2u2) . (5.105)

2- Limit β → 0,α → 0 :

To return to the standard case, we set β → 0 and α → 0 (i.e., θ̄ → 0) in the momentum space

representation of the standard DO and derive the spinorial wave functions. So, we can write

ν
β
s in Eq. (5.105) as follows:

ν
β
s =

1
β h̄mω̄

. (5.106)

Indeed, according to Ref. [100] we get

Lµ
n (x) = lim

νs→∞
P(µ,νs)

n (1− 2x
νs

), lim
µ̄→+∞

Γ(µ̄ +µ)

Γ(µ̄)
e−µ ln(µ̄) = 1, (5.107)

with x =
p2

ρ

h̄mω̄
and µ̄ = νs +n+1, noting that (to O(β ))

lim
α,β→0

(
1−β p2

ρ

) mω̄/h̄

2(β (mω̄)2) = e−
p2
ρ

2h̄mω̄ . (5.108)

Lγ

k(x) is the formula for Laguerre polynomials. Consequently, the spinorial wave functions

become in the limit θ̄ → 0 as follows:

lim
α→0,β→0

Ψn,`,s(pρ , pθ ) = (−1)neı`pθ

√
mω̄n!

2πΓ(n+ `+1)
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√
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ρ
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ρ
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)χs

−(−1)nıeı(`+s)pθ

√
mω̄(n− s)!

2πΓ(n+ `+1)

√√√√√E(θ̄=0)
n,`,s −m

E(θ̄=0)
n,`,s

(
pρ/
√

mω̄

)`+s
e−

p2
ρ

2mω̄ h̄ L`+s
n−s(

p2
ρ

mω̄ h̄
)χ−s,

(5.109)
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where E(θ̄=0)
n,`,s is the usual energy spectrum for the 2D-DO (see Refs. [82, 101, 102])

E(θ̄=0)
n,`,s =±

√
m2 +2mω̄ (2n+1− s+ |`|− `). (5.110)

Hence, it is noteworthy that Chetouani et al. [5] addressed the identical issue utilizing the path

integral approach without deformation parameters, resulting in the same formula for the con-

ventional energy levels of the 2D-DO, as illustrated in Eq. (5.110). Conversely, the spinorial

eigenfunction is revealed to be the Fourier transform of the eigenfunction previously derived

in [5], as depicted in Eq. (5.109).

5.8 Thermodynamic Functions
We delve into the thermodynamic characteristics of a lone electron interacting with the DO

within the altered algebra described by Eq. (5.2). Initially, we need to ascertain the partition

function for this particular system in order to calculate these attributes. It is represented by the

equation below:

Z =
∞

∑
n=0

e−β̄En . (5.111)

In this case, the β̄ = 1/(kBT ) appears. The Boltzmann constant is denoted by kB, and the

system temperature is indicated by T . Here, Eq. (5.87) determines the energy levels En. In our

research, we focus specifically on: the positive energy levels because the summation in Eq.

(5.111) diverges for negative energies. We also take into account s =+1 and `= 0,

Z =
∞

∑
n=0

exp

[
−β̄
√

b+an− θ̄ β̄
2h̄2c2 (n2 + n

2

)
√

b+an

]
. (5.112)

The partition function expression that we obtain in the first-order approximation with respect

to θ̄ is as follows:

Z(T,α) = Z0(β̄ )+ θ̄∆Z(1)(β̄ ), (5.113)

where

Z0(β̄ ) =
∞

∑
n=0

e−β̄
√

b+an, ∆Z(1)(β̄ ) =−2h̄2
β̄c2

∞

∑
n=0

(
n2 +n/2

)
√

b+an
e−β̄

√
b+an, (5.114)
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with a = 4h̄mω̄c2,b = m2c4. By utilizing the Euler-Maclaurin summation formula, we are

able to assess the sums in (5.113), we assert

∞

∑
n=0

f (n) =
1
2

f (0)+
∫

∞

0
f (x)dx−∑

k=1

B2k

(2k−1)!
f (2k−1)(0), (5.115)

where B2p are the Bernoulli numbers, B2 = 1/6, B4 =−1/30, ..., and f (2k−1)(0) is the deriva-

tive of order (2k−1) at x = 0

f (0) = e−β̄mc2
, f (1)(0) =−2β̄ h̄ω̄e−β̄mc2

−2θ̄ β̄ h̄2c2 e−β̄mc2

2
, (5.116)

f (3)(0) =−8β̄ (h̄ω̄)3
(
β̄mc2)2

+3β̄mc2 +3
m2c4 e−β̄mc2

(5.117)

+2θ̄ β̄ h̄2c2 6h̄ω̄
(
2mc2 (β̄mc2 +1

)
− h̄ω̄

(
m2c4β̄ 2 +3β̄mc2 +3

))
(mc2)

3 e−β̄mc2
. (5.118)

Eq. (5.113) provides the integral over x. It is determined by

∫
∞

0
f (x)dx =

e−β̄mc2 (
β̄mc2 +1

)
2β̄ 2h̄ω̄mc2

−2θ̄ h̄2c2
β̄

[
3e−β̄mc2

4(h̄ω̄mc2)
3

β̄ 5
+

3e−β̄mc2

4(h̄ω̄)3 m2c4β̄ 4

+
e−β̄mc2

2(h̄ω̄)3 mc2β̄ 3
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8(h̄ω̄mc2)
2

β̄ 3
+

e−β̄mc2

8(h̄ω̄)2 mc2β̄ 2

]
. (5.119)

As a result, the partition function has the following expression:

Z(T,α) =
1
2

e−β̄mc2
+

1+ β̄mc2

2β̄ 2h̄ω̄mc2
e−β̄mc2

−2θ̄ h̄2c2
β̄

[
3

4(h̄ω̄mc2)
3

β̄ 5
+

3

4(h̄ω̄)3 m2c4β̄ 4

+
1

2(h̄ω̄)3 mc2β̄ 3
+

1

8(h̄ω̄mc2)
2

β̄ 3
+

1

8(h̄ω̄)2 mc2β̄ 2

]
e−β̄mc2

−∑
k=1

B2k

(2k−1)!
f (2k−1)(0).

(5.120)

To compute the partition function, we need to evaluate the sum presented in equation (5.120).

In our specific scenario, this computation can only be accomplished using numerical methods.
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Until k = 2, it is possible to express the sum as:

∑
k=1

B2k

(2k−1)!
f (2k−1)(0) =− β̄

6
(
2h̄ω̄ + θ̄ h̄2c2)e−β̄mc2

− 1
180

[
−8β̄ (h̄ω̄)3

(
β̄mc2)2

+3β̄mc2 +3
m2c4

+2θ̄ β̄ h̄2c2 6h̄ω̄
(
2mc2 (β̄mc2 +1

)
− h̄ω̄

(
m2c4β̄ 2 +3β̄mc2 +3

))
(mc2)

3

]
e−β̄mc2

. (5.121)

It should be noted here that at high temperatures (β̄ � 1), all terms in the sum in Eq. (5.121)

have positive powers of β̄ , these terms are notably smaller than the remaining term in Eq.

(5.120). Therefore, we will eliminate the terms that include β̄ n and the ones that do not contain

β̄ , resulting in the following:

Z(T,α,β )' (kBT )2

2h̄ω̄mc2 − θ̄

[
3h̄2c2 (kBT )4

2(h̄ω̄mc2)
3 +

h̄2c2 (kBT )2

4(h̄ω̄)3 mc2
+

h̄2c2 (kBT )2

4(h̄ω̄)2 (mc2)
2

]
. (5.122)

According to standard quantum physics, the partition function’s first term reflects the tradi-

tional 2D-DO. The terms indicate the effects of spatial deformation caused by the existence

of the SdS model. Using the partition function, we may generate a variety of thermodynamic

functions. For instance, the Helmholtz free energy of the 2D-DO in a uniform magnetic field

at high temperatures may be represented as follows:

F(T, θ̄) =−(kBT ) ln(Z)

=−2T ln
(

kBT√
2h̄ω̄mc2

)
+ θ̄

[
3h̄2c2 (kBT )3

(h̄ω̄)2 (mc2)
2 +

h̄2c2T

2(h̄ω̄)2 +
h̄2c2T

2(h̄ω̄)(mc2)

]
. (5.123)

One can define the relationship between the partition function and the mean energy as follows:

Ξ(T,α,β ) =−∂ ln(Z)
∂ β̄

= 2kBT +6θ̄
h̄2c2 (kBT )3

(h̄ω̄)2 (mc2)
2 . (5.124)

As θ̄ → 0, we recover the standard mean energy associated with the HUP algebra.

In terms of the heat capacity, we find:

C(T,α,β ) =
∂Ξ

∂T
= 2kB +18θ̄

h̄2c2 (kB)
3 T 2

(h̄ω̄)2 (mc2)
2 . (5.125)
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As θ̄→ 0, which corresponds to the absence of the SdS algebra, the heat capacity remains con-

stant, specifically C = 2kB. Still, it is clear that the heat capacity shows exhibits temperature-

dependent variations due to the modification brought by the standard Heisenberg algebra when

SdS algebra is present. Finally, entropy can be expressed as:

S(T,α,β ) = kB ln(Z)− kBβ̄
∂ ln(Z)

∂ β̄
= S0

(
β̄
)
+ θ̄∆S1 (

β̄
)
. (5.126)

For the 2D-DO in the HUP algebra, the entropy is denoted by S0
(
β̄
)
. The following expression

provides it:

S0
(
β̄
)
= 2kB +2kB ln

(
kBT√

2h̄ω̄mc2

)
. (5.127)

Meanwhile, the entropy expression is written at the first-order of (α,β ) is indicated by

∆S1 (β̄), it can be written as follows:

∆S1 (
β̄
)
=−kB

[
9h̄2c2 (kBT )2

(h̄ω̄)2 (mc2)
2 +

h̄2c2

2(h̄ω̄)2 +
h̄2c2

2(h̄ω̄)(mc2)

]
. (5.128)

Let’s present, in the following figures, a comparative analysis of our system’s thermodynamic

properties under different deformation parameters, in the following figures. To make this pre-

sentation easier, we use the natural unit system, setting h̄, c, and kB to 1, which makes all

parameters dimensionless. To guarantee accuracy, we have selected particular values for the

relevant physical quantities, such as an oscillator parameter in the high-temperature regime of

about 2MeV , an electron mass of m = 0.5MeV , and a magnetic field B of 0.2MeV 2.

Thus, we display the thermodynamic properties as functions of temperature (kBT ) in figures

(5.3), (5.4), (5.5), (5.6) and (5.7). All the figures depict the behavior of these properties for

four distinct sets of deformation parameters, namely, (α = 10−70, β = 10−40), (α = 0.0, β =

10−40), (α = 10−70, β = 0.0) and (α = 0.0, β = 0.0).
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 5.3: The Z(T,α,β ) Partition function for the 2D-DO in homogeneous magnetic field as a func-
tion of temperature kBT for various values of the deformation parameters.

Specifically, Fig. (5.3a) shows that the SdS algebra causes the partition function to surge from

kBT = 1×1019 to about kBT ∼ 2.5×1019MeV . Following this, the curves (5.3b) correspond-

ing to (α 6= 0, β 6= 0) and (α = 0.0, β 6= 0) decrease to zero at the temperature kBT ∼ 1020MeV.

Hence, Fig. (5.3c) shows that the curve for (α 6= 0, β = 0) collapses to zero when kBT exceeds

1035MeV . The other two curves, however, closely align up to kBT ∼ 5×1038MeV .
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 5.4: The F(T, θ̄) Helmholtz free energy function for the 2D-DO in homogeneous magnetic field
as a function of temperature kBT for various values of the deformation parameters.

The Helmholtz free energy for 2D-DO in the SdS setting is shown in Figure (5.4) as a function

of kBT . This representation shows that the SdS algebra results in a decrease in the F−function,

which proceeds from kBT = 1×1019 to kBT ∼ 6×1019MeV for each of the four deformation

parameter cases in Fig. (5.4a). Beyond kBT > 1039, the curves (5.4b) for both ((α 6= 0, β 6= 0)

and (α = 0, β 6= 0)) vanish when β 6= 0. Meanwhile, the case characterized by ((α 6= 0, β = 0))

has an effect up to temperature kBT > 1021MeV in Fig. (5.4c).
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 5.5: The Ξ(T,α,β ) mean energy function for the 2D-DO in homogeneous magnetic field as a
function of temperature kBT for various values of the deformation parameters.

Moreover, the SdS model shows an increase in mean energy with temperature, as figure (5.5a)

illustrates. while the curves for the cases (α 6= 0, β 6= 0) and (α = 0, β 6= 0) decrease to zero

upon reaching the temperature kBT ∼ 1021MeV , as illustrated in Fig. (5.5b). Nevertheless, in

the case where α 6= 0, β = 0, the curve (5.5c) approaches zero at the point where kBT exceeds

5×1039MeV .



5.8 Thermodynamic Functions 115

(a) First observation . (b) Second observation .

(c) Third observation.
Figure 5.6: The C(T,α,β ) heat capacity function for the 2D-DO in homogeneous magnetic field as a
function of temperature kBT for various values of the deformation parameters.

Additionally, for kBT < 1011, the heat capacity in Fig. (5.6a) is constant, C = 2kB. Next, as

kBT > 1019MeV , the cases (α 6= 0, β 6= 0) and (α = 0, β 6= 0)) increase with rising temperature,

as shown in Fig. (5.6b). The capacity increases for the case (α 6= 0, β = 0) as the temperature

rises to kBT > 1032, as shown in Fig. (5.6c).
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(a) First observation . (b) Second observation .

(c) Third observation.
Figure 5.7: The S(T,α,β ) entropy function for the 2D-DO in homogeneous magnetic field as a function
of temperature kBT for various values of the deformation parameters.

Lastly, we plot the SdS model’s effect on the entropy function in three different images in Fig.

(5.7a). As illustrated in Fig. (5.7b), at temperature kBT > 1019, the aSdS reduces the entropy

values with temperature for the cases ((α 6= 0, β 6= 0) and (α = 0, β 6= 0)). In contrast, the

entropy function of the case (α 6= 0, β = 0) decreases in Fig. (5.7c) when the temperature

kBT > 1038. The above figures show that SdS algebra has a greater impact on thermodynamic

functions when the α−parameter is present compared to the β−parameter. Similarly, we can

determine the thermodynamic functions and suitable all curves for the aSdS model scenario

by simply replacing (α and β ) with (−α ,−β ). Finally, when α = β = 0 and the magnetic

field approaches zero, (B→ 0), our findings are quite accurate. Ref. [103] examines the

thermal properties of a three-dimensional DO in the framework of standard Heisenberg uncer-

tainty principle. We can obtain the thermodynamic functions for massless Dirac fermions in a

Graphene layer within the Snyder model by considering the limits mω̄ → mωc/2 and c→VF

(see Ref. [94]).
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5.9 Conclusion
This chapter has examined the behavior of the 2D-DO under a uniform magnetic field using

the momentum space representation within the framework of the SdS Heisenberg principle. In

the beginning, we presented a new model for the Green function that works with the general-

ized SdS algebra. Subsequently, we straightforward integrate over even trajectories, leading to

the precise calculation of the Green’s function in polar coordinates. Transitioning to polar co-

ordinates has made it possible to delineate the energy spectrum and identify the corresponding

wave functions, streamlining the analysis of the system’s quantum states. The SdS model has

shown that energy levels exhibit a dependency on both quantum numbers n and `, regardless of

the absence of oscillations and magnetic fields. This effect leads to the emergence of phenom-

ena such as harmonic oscillation, anharmonic vibration, and confinement. Additionally, our

study has shown that the energy level spacing does not change as n takes on large values, this is

because the deformation parameter θ̄ efficiently preserves the distance between energy levels.

The same observation was also made in the reference mentioned. [89]. In analysis we clarify

that, under specific conditions when mω̄→mωc/2 and c→VF , the behavior of the DO system

in the presence of a uniform magnetic field within the SdS algebra closely resembles to the

dynamics of the monolayer Graphene problem within the same algebraic framework. More-

over, we have investigated all the different scenarios and special cases of the DO problem in

the presence of a uniform magnetic field, using the framework of the SdS model.

Finally, at high temperatures, we used the Euler-MacLaurin formula to calculate the system’s

various thermodynamic properties up to the first order of (α,β ). These properties include the

partition function Z, the Helmholtz free energy F , the mean energy Ξ, the entropy S, and the

heat capacity C. Through graphical representations of the SdS terms in these thermodynamic

functions against temperature kBT , we have illustrated that the influence of the α-deformation

parameter is more significant than that of the β -parameter. It is important to note that, cur-

rently, these effects cannot be experimentally detected.



Chapter 6

General Conclusion
This thesis aims to investigate the Feynman approach within the context of the non-relativistic

SdS model applied both to one and two Dirac oscillators subjected to constant electric and

magnetic fields, respectively. Additionally, we formulate the D-dimensional momentum space

path integral transition amplitude for both the harmonic oscillator and the free particle. These

issues were previously addressed by [27, 34, 94], where the authors employed differential

equations methods.

In the second chapter, we attempted to provide a penetrating insight into the concept of Feyn-

man’s formulation and what it depends on. Then, we developed the mathematical approach to

this finfing as formulated by Trotter in various dimensions of space. Ultimately, our research

culminated in deriving the non-relativistic propagator within polar coordinates, a primary ob-

jective of this thesis.

The third chapter, we were able to successfully find a model of Feynman path integral for D-

dimensional non-relativistic quantum mechanical systems with two basic deformation param-

eters, built on the basis of the generalized Snyder model aSdS by means of our use of the co-

ordinate transformation method in momentum space. As applications to our model, we inves-

tigated both the free particle and the harmonic oscillator potential, employing D-dimensional

spherical coordinates for momentum variables. This approach simplifies the problem to one

that is purely radial, facilitating a more straightforward analysis of the system’s dynamics.

Then, employing the method of coordinate transformation with the δ -point discretization in-

terval, this maps problem to the one of a particle in the symmetric Pöschel–Teller potential.

Moreover, it is noted that this choice is consistent with the approach used with a single pa-

rameter, suggesting that the discretization is similarly dependent on the δ -point discretization

as demonstrated by [35, 37]. Through the application of the radial spectral decomposition of
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the transition amplitude the energy levels and the momentum space wave functions have been

identified. Notably, the energy levels depend on (2n+`)2, which is similar to the energy levels

of a particle trapped in a potential well.

On the other hand, the fourth chapter covered the SdS model using the path integral formalism

to study the Green function of the Dirac oscillator propagator in (1+1)-dimensional energy-

momentum space. Through the application of the coordinate transformation method, the exact

causal Green function and associated propagator were determined. As a result, we were able

to derive the relevant energy values. The Green function and its associated propagator are ex-

pressed using Romonovski polynomials in the case of positives (α,β ) and Jacobi polynomials

in the case of negatives (α,β ). Both cases involve sign deformation parameters. Furthermore,

we have demonstrated that within the aSdS space framework, dependencies of energy on n2

persist in cases where oscillation and electric fields are absent. In addition, we have derived

limit cases for deformation parameters as well as created the non-relativistic energy levels

with and without spin. Lastly, by employing the Euler-MacLaurin formula at high tempera-

tures, we determined all thermodynamic quantities of our system to the first order of (α , β ),

including the partition function Z, the Helmholtz free energy F , the mean energy Ξ, the heat

capacity C and the entropy S. By plotting the thermodynamic functions (GEUP) terms against

the temperaturekBT , we proved that the α−deformation parameter has a greater effect than the

β−parameter. Nevertheless, it is crucial to remember, though, that these effects can still not

be detected using the current experimental means.

The fifth chapter covered the study of relativistic particles with spin 1/2, under the effect of a

constant magnetic field on the behavior of 2D-DO in representing the momentum space within

the framwork of SdS model. Initially, Initially, for the generalised SdS algebra, we presented

a new model for the Green function. This approach allowed us to directly integrate over even

trajectories, resulting in an accurate calculation of Green’s function in polar coordinates. The

use of polar coordinates led to the simplification of the process in identifying the energy spec-

trum and corresponding wave functions. We shown that the SdS framework induces an energy

dependency on both quantum numbers n and `, even in the absence of oscillations and mag-

netic fields. As a result, phenomena like confinement, anharmonic vibration and also harmonic
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oscillation arise. Our study has also uncovered that as the quantum number n grows larger, the

spacing between energy remains constant, with the deformation parameter θ̄ effectively main-

taining the separation between energy levels, a finding consistent with observations reported

in reference [89]. We also explain that in some cases, namely at mω̄ → mωc/2 and c→ VF ,

the behavior of the Dirac oscillator under the action of a uniform magnetic field in the SdS

algebra is very similar to the dynamics seen in graphene problem, within the same algebraic

framework. In addition, we have applied the SdS model framework to all the distinct scenarios

and special cases of the Dirac oscillator problem in the presence of a uniform magnetic field.

Ultimately, at increased temperatures, we used the Euler-MacLaurin method to calculate the

thermodynamic characteristics of our system up to the first order of (α,β ). Properties include

partition function Z, Helmholtz free energy F , mean energy Ξ, heat capacity C, and entropy S.

Graphically representing the SdS terms inside these thermodynamic functions versus the tem-

perature kBT , we proved that the influence of the α−deformation parameter is more important

than that of the β−parameter. It is important to note that these effects cannot be detected

experimentally at this time.
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Abstract In this paper, we derive the relativistic Green function using a path integral formulation for a (1 + 1)-Dirac oscillator
system under a homogeneous electric field within the framework of the Snyder de Sitter model. Consequently, we calculate the
propagator function and the corresponding spectral energies. The thermodynamic properties of a single electron are then extracted
under high-temperature conditions for four sets of deformation parameters. We examine the impact of the deformation parameters
on these properties and infer the limit cases for small parameters.

1 Introduction

After Snyder’s work in 1947 [1, 2], where he introduced the Heisenberg generalization principle in quantum field theory to address
the issue of divergence, this generalization has become crucial in quantum physics. Examples include dynamics based on variable
masses in semiconductor heterostructures formulated by the generalized displacement operator [3], the movement of a 3He impurity
atom in a Bose liquid by [4], and the description of low-energy excitations of graphene and Fermi velocity using the generalized
Heisenberg algebra, making the commutator of momentum proportional to pseudo-spin [5]. Moreover, it plays a fundamental role
in string theory [6], non-commutative geometries [7], black hole physics [8], and quantum gravity [9]. These theories require the
existence of a minimum length on the order of the Planck mass (mP � √

�c/G),
√

β ∼ 108kg−1 (i.e., β ∼ (mP )−2), under the
concept of the generalized uncertainty principle (GUP), or the existence of a minimum momentum on the order of the square root of
the cosmological constant,

√
α ∼ 10−24cm−1, as in the context of the extended uncertainty principle (EUP) [10]. Their combined

presence gives the Snyder de Sitter (SdS) model, or in other words, triply special relativity (TSR), which relates three invariant
scales: the speed of light in vacuum c, the Snyder parameter β, and the cosmological constant � [11]. These theories have solved
several problems in quantum mechanics using different methods [12–19].

On the other hand, the Feynman path integral formalism is a mathematical framework used to understand the quantum mechanics
starting from the notion of classical trajectories. The effective application of this mathematical technique depends on the choice
of the discretization interval. In the realm of usual Heisenberg commutation relations, opting for the midpoint as the discretization
schema gives an exact result for curved spaces, for all details, refer to the reference [20]. However, this choice swiftly becomes
problematic when the Heisenberg principle is generalized, as exemplified by cases involving a nonzero minimal length [21, 22],
and a nonzero minimal momentum [23, 24]. Furthermore, in [25], the authors have formulated the path integral approach in D-
dimensional quantum mechanics, considering the coexistence of both minimal position and momentum uncertainty. In this paper, we
extend this study to the relativistic case, focusing on the system of one-dimensional Dirac oscillator within a homogeneous electric
field. Subsequently, we confirm the existence of a difference in the midpoint discretization interval in the Snyder (anti-)de Sitter
((a)SdS) model. Following [11], the generalization of the commutation relation between the position and momentum operators in
one dimension is expressed as, [

X̂ , P̂
]

� ı�
(

1 + β P̂2 + α X̂2 +
√

αβ
(
X̂ P̂ + P̂ X̂

))
. (1)

If we consider (〈X〉 � 〈P〉 � 0), Eq. (1) results in the following generalized uncertainty relation:

(�X)(�P) ≥ �

2

(
1 + α(�X)2 + β(�P)2)

1 + �
√

αβ
. (2)
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Consequently, modifying this deformed algebra gives minimal uncertainty both in position and momentum,

(�X)min � �
√

β

1 + 2�
√

αβ
, (�P)min � �

√
α

1 + 2�
√

αβ
. (3)

In momentum representation, we can express the position X̂ and momentum P̂ operators obeying the algebra (1) in the following
way

X̂ � X̂ +
√

β
α
κP̂ , P̂ � −

√
α
β
X̂ + (1 − κ)P̂ , (4)

here, (α, β) are small and positive parameters. Meanwhile, κ is a free parameter that can be selected in each case to ensure the
Hermiticity of the Hamiltonian in the dynamics. The operators (X̂ , P̂) satisfy the following commutation relation [26]:[

X̂ , P̂
]

� ı�
(

1 + βP̂2
)
. (5)

On another side, it is possible to write these position and momentum coordinate operators as to satisfy the Snyder-Heisenberg
commutation relation (5) by using auxiliary operators x̂ and p̂, obeying standard commutation relation (i.e.,

[
x̂ , p̂

] � ı�), defined
by the following relations

X̂ �
√

1 − β p̂2 x̂ , P̂ � p̂√
1 − β p̂2

. (6)

If α, β > 0, the range of allowed values of p is bound by p2 < 1/β in the (SdS)-model and otherwise all real values of p are allowed
in (aSdS)-model case. For the (SdS)-model, the operators of X̂ and P̂ are symmetric only in subspace L2(R, dp/

√
1 − βp2), where

the scalar product is defined as follows

〈ψ | φ〉 � ∫ 1/
√

β

−1/
√

β

dp√
1 − βp2

ψ∗(p)φ(p), (7)

here the wave function satisfies the periodic boundary conditions, ψ
(−1/

√
β
) � ψ

(
1/

√
β
)
, and this leads to the following closure

relation:
∫ 1/

√
β

−1/
√

β

dp√
1 − βp2

|p〉〈p| � 1. (8)

We note that for (aSdS)-model, the (α, β) paramaters are negative, and we change the limits of integration in Eq. (8) in all the space.
Additionally, the associate formal eigenvectors are those of the X̂ -position operator as given by [11],

〈p|x〉α,β � 1√
2π�

(
1 − βp2)− γ

2 exp
(
− ı x

�

arcsin
√

β p√
β

)
, γ � ıκ/�

√
αβ. (9)

Then, we apply the closure relation for the maximally localized states to Eq. (9) and use the properties of the delta function
δ f (x) �∑iδ(x − xi )/ f ′(xi ), where xi are the roots of f (x) [25]. Finally, we obtain:

〈
p j |p j−1

〉
α,β �

∫
dx j
2π�

(
1−βp2

j−1

1−βp2
j

) γ
2√

1 − βp2
j exp

(
− ı x j

�

(
p j − p j−1

))
. (10)

These delta functions (10) are valid for the subspace L2(R, dp/
√

1 − βp2) when α and β take both signs (i.e., SdS or aSdS). In the
case of α and β being equal to zero, we recover the usual projection relation

〈
p|p′〉

(α, β)→0 � δ
(
p − p′).

Otherwise, for the time p0-component, there is no deformation applied to it, and thus we express it as follows:
〈
p0|p′

0

〉 � δ
(
p0 − p′

0

) �
∫

dt

2π�
e− ı

�
t(p0−p′

0). (11)

As a consequence, the elements matrix of the operators X̂ and X̂ 2 are, respectively, given by

〈
p j

∣∣∣X̂
∣∣∣p j−1

〉
α,β

� 〈p j |p j−1
〉
α,β

⎡
⎣(γ − 1)

ı�βp√
1 − βp2

j

+
√

1 − βp2x j

⎤
⎦, (12)

〈
p j

∣∣∣X̂ 2
∣∣∣p j−1

〉
α,β

� 〈p j |p j−1
〉
α,β

[
−γ (γ − 1)

�
2β2 p2

j

1 − βp2
j

− �
2β(γ − 1) +

(
1 − βp2

j

)
x2
j + 2ı�β

(
γ − 3

2

)
p j x j

]
. (13)

In Sect. 2, we present the formulation of the path integral for Dirac oscillator particles subjected to a uniform electric field within the
Snyder–de Sitter model in one-dimensional momentum space, avoiding the use of Grassmann variables as proven in [21, 27]. This

123
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approach involves performing the path integration over the elements of the Green function matrix for 1D-Dirac oscillators particles
subjected to the uniform electric field with Snyder–de Sitter model, a methodology previously employed in [28, 29]. In Sect. 3, we
employ the coordinate transformation method to obtain the local kinetic part, resulting in the Rosen-Morse type I and II propagator
[30]. The exact propagator and the corresponding energy eigenvalues are deduced. In Sect. 4, we evaluate the thermodynamic
properties and provide a physical discussion of the corresponding plotted graphs for this system.

2 Path integral formulation in (anti) Snyder de Sitter

In the absence of electric field interaction, the Green function for relativistic Dirac oscillator particle in one-dimensional space is
defined as the inverse of the Dirac operator (

γ 0ı�∂t − Ĥ
)
Ŝ � −I , (14)

where Ĥ is the Hamiltonian operator of the Dirac oscillator equation is given by

Ĥ � cγ 1
(
P̂ − ımωγ 0 X̂

)
+ mc2. (15)

where mc2 is the rest mass and ω is the classical frequency of the oscillator. For detailed consideration, we choose that there is no
deformation for the time component (P̂0 � ı�∂0 � ı�∂/∂ct , X̂0 � x̂0 ≡ ct) and that the momenta P̂ and position X̂ operators
verify Eq. (6). Based on this, we can generalize the equation of the Green’s function (14) for the (1 + 1)-dimensional Dirac oscillator
under the influence of a uniform electric field E as follows:[

γ 0
(
ı�∂t + eE X̂

)
− cγ 1

(
P̂ − ımωγ 0 X̂

)
− mc2

]
Ŝ � −I. (16)

In the (1 + 1) dimension, the γ μ-Dirac matrices are represented by the Pauli matrices following the choice

γ 0 � σ3, γ 1 � ıσ2, γ 2 � −ıσ1. (17)

Then, the solution of Eq. (14) is written as

Ŝ �
[
OD−
]−1 �

[
OD

+

][
OD−OD

+

]−1
, (18)

with the operator OD± defined by

OD± �
[
γ 0
(
ı�∂t + eE X̂

)
− cγ 1

(
P̂ − ımωγ 0 X̂

)
± mc2

]
. (19)

According to the Schwinger proper-time method [31] and noting that Ŝ � [OD
+

][OD−OD
+

]−1
, it is convenient to write the Ŝ Green’s

function as follows

Ŝ �
[
OD

+

][
OD−OD

+

]−1 � (ı/�)
[
OD

+

] ∫ ∞

0
dλ exp

( ı
�

λ
[
OD−OD

+

])
, (20)

here λ represents an invariant parameter and is an even variable, and the operator
[OD−OD

+

]
playing the role of an Hamiltonian is

expressed by the following expression
[
OD−OD

+

]
�
{(

P̂0 + eE X̂
)2 − c2 P̂2 − c2m2ω2 X̂2 − m2c4 − (ceEγ 0γ 1 − ımωc2γ 0)[X̂ , P̂

]}
. (21)

By following the SdS algebra given by Eq. (1), we have:[
OD−OD

+

]
�
{
P̂2

0 − m2c4 + 2eE P̂0 X̂ − � 2 X̂2 − c2 P̂2

−ı�
(
ecEγ 0γ 1 − ıc2mωγ 0)(1 + β P̂2 + α X̂2 +

√
αβ
(
X̂ P̂ + P̂ X̂

))}
, (22)

with � 2 � (c2m2ω2 − e2E2
)
.

Furthermore, we have to write this Hamiltonian in terms of position and momentum operators that satisfy the flat Snyder model

based on the modified commutation relationship, and defined by Eq. (5) [11]. By substituting operators
(
X̂ , P̂

)
into an expression[OD−OD

+

]
, Eq. (22) becomes,

[
OD−OD

+

]
�
{
P̂2

0 − m2c4 + 2eE P̂0X̂ + 2eE P̂0κ

√
β
α
P̂ + c2

(
−� 2

c2
β
α
κ2 − (1 − κ)2

)
P̂2

+

(
c2(1 − κ)

√
α
β

− κ� 2
√

β
α

)(
X̂ P̂ + P̂X̂

)
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−
(
� 2 + c2 α

β

)
X̂ 2 − ı�

(
ecEγ 0γ 1 − ıc2mωγ 0)(1 + βP̂2

)}
. (23)

To make the term
(
X̂ P̂ + P̂X̂

)
mentioned above end to zero, we put the condition on κ ,

κ �
(

1 − β

α
� 2/c2

)−1

. (24)

As a result, the Hamiltonian operator becomes as

[
OD−OD

+

]
�
⎧
⎨
⎩P̂2

0 − m2c4 + 2eE P̂0X̂ +
2eE P̂0

√
β
α(

1 + β
α

� 2

c2

) P̂ −
(
� 2 + c2 α

β

)
X̂ 2

−
β
α
� 2

(
1 + β

α
� 2

c2

) P̂2 − ı�
(
ecEγ 0γ 1 − ıc2mωγ 0)

�̂

(
P̂
)
⎫⎬
⎭, (25)

with

�̂

(
P̂
)

� 1 + βP̂2. (26)

The corresponding element matrix of
[OD−OD

+

]
in momentum representation is

G(pb, pa , p0b, p0a) � (ı/�)

∫ ∞

0
dλ
〈
pb, p0b

∣∣∣exp
(
− ı

�
λ
[
−OD−OD

+

])∣∣∣pa , p0a

〉
. (27)

Before proceeding further, it is appropriate to avoid the calculation of their Feynman path integral expression for matrices by
introducing the following exponential matrix and simplifying its form as follows

e
λ
(
ecEγ 0γ 1−ıc2mωγ 0

)
�̂

(
P̂
)

� 1

2

∑
s�±1

{
I − s

( cmω
�

ı eE
c�

ı eE
c� − cmω

�

)}
e
ısλc��̂

(
P̂
)
. (28)

Then, we perform the following equality [28]:

cosh(δ) � cmω

�
, sinh(δ) � eE

c�
, (29)

after performing some calculations, we obtain:

e
−λ
(
ecEγ 0γ 1−ıc2mωγ 0

)
�̂

(
P̂
)

�
∑
s�±1

exp

(
− δ

2
σ2

)
XsX

+
s exp

(
δ

2
σ2

)
e
ısλc��̂

(
P̂
)
. (30)

Here, Xs � 1
2

(
(1 + s) (1 − s)

)T
and X

+
s is the transpose of the vector Xs , denoted as X

+
s � X

T
s .

Hence, the expression (27) can be formulated as follows:

G(pb, pa , p0b, p0a) � (ı/�)
∑
s�±1

exp

(
− δ

2
σ2

)
XsX

+
s exp

(
δ

2
σ2

)∫ ∞

0
dλ〈pb, p0b| exp

(
− ı

�
Ĥ(s)

)
|pa , p0a〉, (31)

with

Ĥ(s) � −λ

⎧⎨
⎩P̂2

0 − m2c4 + 2eE P̂0X̂ +
2eE P̂0

√
β
α(

1 + β
α

� 2

c2

) P̂ −
(
� 2 + c2 α

β

)
X̂ 2

− � 2 β
α(

1 + β
α

� 2

c2

) P̂2 + s�c� �̂

(
P̂
)
⎫⎬
⎭. (32)

After this stage, we will construct the Green function using path integral framework, and thus we decompose the exponential
exp(−ıλĤ(s)) into (N + 1) exponential exp(−ıεĤ(s)), with ε � τ j − τ j−1 � 1/(N + 1). Then, we insert N times resolution identity
(8) between each pair of infinitesimal operator exp(−ıεĤ(s)). Indeed, we will obtain

G(pb, pa , p0b, p0a) � (ı/�)
∑
s�±1

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
]

lim
N−→∞

∫ ∞

0
dλ

N∏
j�1

[∫ +∞

−∞
dp0 j

∫ 1/
√

β

−1/
√

β

dp j√
1−βp2

j

]

×
N+1∏
j�1

〈
p j , p0 j

∣∣ exp(− ıε

�
Ĥ(s))

∣∣p j−1, p0 j−1
〉
α,β . (33)
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To go further, it is convenient to develop the exponential up to the first order of ε. Thus, we write

lim
N−→∞,ε→0

〈
p j , p0 j

∣∣e− ıε
�
Ĥ(s) ∣∣p j−1, p0 j−1

〉
α,β

� lim
N−→∞,ε→0

[〈
p j , p0 j | p j−1, p0 j−1

〉
α,β − ıε

�

〈
p j , p0 j

∣∣Ĥ(s)
∣∣p j−1, p0 j−1

〉
α,β

]
. (34)

Then, to eliminate the Hamiltonian operator which represened in the (SdS)-framework, we substitute all the operators (X̂ , P̂ , X̂ 2,
P̂2) on the projection relation

〈
p j | p j−1

〉
α, β given in Eq. (10). Consequently, the expression G(pb, pa , p0b, p0a) is transformed

into the following path integral in phase-space

G(pb, pa , p0b, p0a) � (ı/�) lim
N→∞
1ε→0

∑
s�±1

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
] ∫ ∞

0
dλ

N∏
j�1

[∫ +∞

−∞
dp0 j

∫ 1/
√

β

−1/
√

β

dp j√
1−βp2

j

]

×
N+1∏
j�1

[(
1−βp2

j−1

1−βp2
j

) γ
2√

1 − βp2
j

∫
dx j
2π�

dt j
2π�

e
ı
�
t j�p0 j

]
exp

⎧
⎨
⎩
ı

�

N+1∑
j�1

[
−x j�p j + λε

(
p2

0 j − m2c4
)

+ λεγ (γ − 1)
(
� 2 + c2 α

β

) �
2β2 p2

j

1 − βp2
j

+ λε�
2β(γ − 1)

(
� 2 + c2 α

β

)

− λε
(
� 2 + c2 α

β

)(
1 − βp2

j

)
x2
j − λε2ı�β

(
γ − 3

2

)(
� 2 + c2 α

β

)
p j x j

+ λε2eE p0 j

√
1 − βp2x j + λε

2eE p0 j

√
β
α(

1 + β
α

� 2

c2

) p j√
1 − βp2

j

+ 2λεeE p0 j (γ − 1)
ı�βp j√
1 − βp2

j

−λε
� 2 β

α(
1 + β

α
� 2

c2

) p2
j

1 − βp2
j

+ εs�λc�

(
1 +

βp2
j

1 − βp2
j

)⎤
⎦
⎫
⎬
⎭. (35)

As usually done and after performing the Gaussian integration over t j and x j , we find the Lagrangian expression for this system

G(pb, pa , p0b, p0a) � (ı/�) lim
N→∞
1ε→0

∑
s�±1

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
] ∫ ∞

0
dλ

N∏
j�1

[∫ +∞

−∞
dp0 j

∫ 1/
√

β

−1/
√

β

dp j√
1−βp2

j

]

×
N+1∏
j�1

⎡
⎢⎣δ
(
p0 j − p0 j−1

)( 1−βp2
j−1

1−βp2
j

) γ
2√

1 − βp2
j

√√√√ 1

4ıπ�λε
(
� 2 + c2 α

β

)(
1 − βp2

j

)

⎤
⎥⎦

exp

⎧⎨
⎩
ı

�

N+1∑
j�1

⎡
⎣ �p2

j

4λε
(
� 2 + c2 α

β

)(
1 − βp2

j

) +
ı�β
(
γ − 3

2

)
(

1 − βp2
j

) p j�p j + λε
(
p2

0 j − m2c4
)

−
λε�

2β2
(
γ − 3

2

)2(
� 2 + c2 α

β

)
(

1 − βp2
j

) p2
j + λεγ (γ − 1)

(
� 2 + c2 α

β

) �
2β2 p2

j

1 − βp2
j

+ λε�
2β(γ − 1)

(
� 2 + c2 α

β

)
− 2ı�βλεeE p0 j

(
γ − 3

2

)
p j√

1 − βp2
j

− eE p0 j(
� 2 + c2 α

β

) �p j√
1 − βp2

j

+
λεe2E2 p2

0 j(
� 2 + c2 α

β

) + λε
2eE p0 j

√
β
α(

1 − β
α
e2E2

c2

) p j√
1 − βp2

j

+λε2eE p0 j (γ − 1)
ı�βp j√
1 − βp2

j

− λε
� 2 β

α(
1 + β

α
� 2

c2

) p2
j

1 − βp2
j

+ εs�λc�

(
1 +

βp2
j

1 − βp2
j

)⎤
⎦
⎫
⎬
⎭. (36)

In order to simplify the above expression, we perform the following equality to the first order of ε,

eE p0 j(
� 2 + c2 α

β

) �p j√
1 − βp2

j

� eE p0 j(
� 2 + c2 α

β

) � arcsin
(√

β p j
)

√
β
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+
eE p0 j(

� 2 + c2 α
β

)
(
�p j

)2
2

βp j(
1 − βp2

j

)3/2 , (37)

where
(
�p j

)2 ∼ 2ı�λε
(
� 2 + c2 α

β

)(
1 − βp2

j

)
. (38)

By substituting Eq. (38) in Eq. (37) and then into Eq. (36), we can write

G(pb, pa , p0b, p0a) � (ı/�)
∑
s�±1

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
]
δ(p0b − p0a)

∫ ∞

0
dλ

× e
ı
�

λ
[
p2

0b−m2c4+λε�2β(γ−1)
(
� 2+c2 α

β

)]
× e

− ı
�

eE p0b(
�2+c2 α

β

) arcsin(
√

β pb)−arcsin(
√

β pa)√
β

× lim
N→∞
1ε→0

N∏
j�1

[∫ 1/
√

β

−1/
√

β

dp j√
1−βp2

j

]
N+1∏
j�1

⎡
⎢⎣
(

1−βp2
j−1

1−βp2
j

) γ
2
√√√√ 1

4π ı�λε
(
� 2 + c2 α

β

)

⎤
⎥⎦

× exp

⎧⎨
⎩
ı

�

N+1∑
j�1

⎡
⎣ �p2

j

4λε
(
� 2 + c2 α

β

)(
1 − βp2

j

) +
ı�β
(
γ − 3

2

)
(

1 − βp2
j

) p j�p j+

− λε

(
γ − 3

2

)2(
� 2 + c2 α

β

) �
2β2 p2

j(
1 − βp2

j

) + λεγ (γ − 1)
(
� 2 + c2 α

β

) �
2β2 p2

j

1 − βp2
j

− 2ı�βλε

(
γ − 3

2

)
eE p0 p j√
1 − βp2

j

− ı�λε
eE p0βp j√

1 − βp2
j

+ 2ı�λε(γ − 1)
eE p0βp j√

1 − βp2
j

+ λε
2eE p0

√
β
α(

1 + β
α

� 2

c2

) p j√
1 − βp2

j

− λε
β
α

(
c2m2ω2 − e2E2

)
(

1 + β
α

� 2

c2

) p2
j

1 − βp2
j

+λε
e2E2 p2

0(
� 2 + c2 α

β

) + λεs�c�

(
1 +

βp2
j

1 − βp2
j

)⎤
⎦
⎫⎬
⎭, (39)

and with some simplifications we will obtain

G(pb, pa , p0b, p0a) � (ı/�)
∑
s�±1

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
]
δ(p0b − p0a)

∫ ∞

0
dλ

N∏
j�1

[∫ 1/
√

β

−1/
√

β

dp j√
1−βp2

j

]

× e

− ı
�

eE p0(
�2+c2 α

β

) arcsin(
√

β pb)−arcsin(
√

β pa)√
β

e

ı
�

λ

⎛
⎝p2

0 j+
e2E2 p2

0(
�2+c2 α

β

)−m2c4+�2β(γ−1)
(
� 2+c2 α

β

)⎞⎠

× lim
N→∞
1ε→0

N+1∏
j�1

⎡
⎢⎣
(

1−βp2
j−1

1−βp2
j

) γ
2
√√√√ 1

4π ı�ελ
(
� 2 + c2 α

β

)

⎤
⎥⎦

× exp

⎧
⎨
⎩
ı

�

N+1∑
j�1

⎡
⎣ �p2

j

4λε
(
� 2 + c2 α

β

)(
1 − βp2

j

) +
ı�β
(
γ − 3

2

)

1 − βp2
j

p j�p j

− λε�
2β2
(

γ 2 − 3γ +
9

4

)2(
� 2 + c2 α

β

) p2
j

1 − βp2
j

+ λε
(
γ 2 − γ

)(
� 2 + c2 α

β

) �
2β2 p2

j

1 − βp2
j

+ λε
2eE p0

√
β
α(

1 + β
α

� 2

c2

) p j√
1 − βp2

j

−λε

(
c2m2ω2 − e2E2

)β
α(

1 + β
α

� 2

c2

) p2
j

1 − βp2
j

+ εs�λc�

(
1 +

βp2
j

1 − βp2
j

)⎤
⎦
⎫
⎬
⎭. (40)

123



Eur. Phys. J. Plus         (2024) 139:204 Page 7 of 20   204 

Additionally, all terms related to (γ ) in Eq. (40) will be invalidated by the term
((

1 − βp2
j−1

)
/
(

1 − βp2
j

)) γ
2

[25],

(
1−βp2

j−1

1−βp2
j

) γ
2 � exp

⎡
⎣
⎛
⎝−γ

2
�p j

−2βp j(
1 − βp2

j

) +
γ

2
ı�λε

(
� 2 + c2 α

β

)[
−2β − 4β2 p2

j

1 − βp2
j

]⎞
⎠
⎤
⎦. (41)

After substituting the above result (41) into Eq. (40), we obtain

G(pb, pa , p0b, p0a) � (ı/�)
∑
s�±1

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
]
δ(p0b − p0a)

∫ ∞

0
dλ

× e
− ı

�

eE p0

�2+c2 α
β

arcsin(
√

β pb)−arcsin(
√

β pa)√
β

e

ı
�

λ

⎛
⎝
(
c2m2ω2+c2 α

β

)
p2
0

�2+c2 α
β

−m2c4−�2β
(
� 2+c2 α

β

)⎞⎠
× K(pb, pa , λ), (42)

where the kernel propagator K(pb, pa , λ) is defined by the following path integral

K(pb, pa , λ) � lim
N→∞

N∏
j�1

[∫ 1/
√

β

−1/
√

β

dp j√
1−βp2

j

]
N+1∏
j�1

⎡
⎢⎣
√√√√ 1

4π ı�λε
(
� 2 + c2 α

β

)

⎤
⎥⎦

× exp

⎧⎨
⎩
ı

�

N+1∑
j�1

⎡
⎣

(
�p j

)2

4λε
(
� 2 + c2 α

β

)(
1 − βp2

j

) − 3

2

ı�β(
1 − βp2

j

) p j�p j

− λε�
2β2 9

4

(
� 2 + c2 α

β

) p2
j(

1 − βp2
j

) + λε
2eE p0

√
β
α(

1 + β
α

� 2

c2

) p j√
1 − βp2

j

−λε
� 2 β

α(
1 + β

α
� 2

c2

) p2
j

1 − βp2
j

+ λεs�c�

(
1 +

βp2
j

1 − βp2
j

)⎤
⎦
⎫⎬
⎭. (43)

As usual for systems based on the principle of generalization, three quantum corrections must be applied: the measure term

(dp j/
√

1 − βp2
j ), the action term (

(
�p j

)2
/2ε
(

1 − βp2
j

)
), and the factor term (p j�p j/

(
1 − βp2

j

)
) to achieve the conventional

form of the Feynman path integral. Following [21–24], we can calculate the quantum corrections from these three terms through
two-step process. The first one is to write this Kernel at the η-point discretization interval (p(η)

j � ηp j +
(
1 − ηp j−1

)
because the

midpoint interval is not suitable in the presence of the SdS model [21–24]. In the second step, to obtain the usual kinetic term ((
�q̃ j

)2
/2ε), we must utilize the momentum coordinate transformation method defined by (

√
β p � sin

√
βq̃). The formal treatment

of the choice of the η-point discretization interval in the presence of the deformation coefficient has been formally addressed in
previous references [21, 24], and after straightforward calculations, we obtain the total quantum correction,

CT � ı�λεβ
(
� 2 + c2 α

β

)[
1 +

9

4
tan2

(√
βq̃
)]

. (44)

and this corresponds to fixing η � 1
2 (1 ± 1/

√
2).

Substituting Eq. (44) in Eq. (43) and then into Eq. (42) we get:

G(pb, pa , p0b, p0a) � (ı/�)
∑
s�±1

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
]
δ(p0b − p0a)

∫ ∞

0
dλ

× e

− ı
�

eE p0(
�2+c2 α

β

) arcsin(
√

β pb)−arcsin(
√

β pa)√
β

e

ı
�

λ

⎛
⎝ (βm2ω2+α)p2

0(
α+β �2

c2

) − �2(
α+β �2

c2

)−m2c4

⎞
⎠

× K̄ (q̃b, q̃a , λ), (45)

where the kernel propagator K̄ (q̃b, q̃a , λ) becomes exactly the path integral representation of the transition amplitude relative to
the Rosen–Morse of kind (I) potential [32]:

K̄ (q̃b, q̃a , λ) � lim
N→∞

N∏
j�1

[∫
dq̃ j

] N+1∏
j�1

⎡
⎢⎣
√√√√ 1

4π ı�λε
(
� 2 + c2 α

β

)

⎤
⎥⎦

× exp

⎧
⎨
⎩
ı

�

N+1∑
j�1

⎡
⎣

(
�q̃ j

)2

4λε
(
� 2 + c2 α

β

) + λε
2eE p0

√
α(

α + β � 2

c2

) tan
(√

βq̃ j

)
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−λε

(
� 2

α + β � 2

c2

− s�c�

)
1

cos2
(√

βq̃ j
)
]}

. (46)

Immediately, let us study the case when (α, β) are negative, Eq. (46) transforms as,

K̄ (qb, qa , λ) � √β

∫
D[q(t)] exp

{
ı

�

∫ λ

0

[
M

2
q̇2(t) − A tanh(q(t)) +

B

cosh2(q(t))

]
dt

}
, (47)

with q(t), M , A and B defined by

q(t) � √βq̃(t), M � 1

2λc2θ̄
and A � λ

2eE p0
√

α

θ̄
, B � λ�c�

(
�

�cθ̄
+ s

)
, (48)

here θ̄ � (α + β� 2/c2
)
. Following Ref. [30, 33], we can write,

K̄ (qb, qa , λ) � √β

∞∑
n�0

�n(qb)�
∗
n (qa) exp

(
− ı

�
λĒn

)
, (49)

where

�(q) �
[(

1 − 4MA

�(s̄ − 2n − 1)2

)
(s̄ − 2k2 − 2n)n! �(s − n)

�(s̄ + 1 − n − 2k2)�(2k2 + n)

]1/2

2n+(1−s̄)/2

× (1 − tanh q)
s̄
2 −k2−n(1 + tanh q)k2− 1

2 P(s̄−2k2−2n,2k2−1)
n (tanh q). (50)

P(η1, η2)
n (z) denotes the Jacobi polynomial, and

Ēn � −
[

�
2(s̄ − 2n − 1)2

8M
+

2MA2

�2(s̄ − 2n − 1)2

]
, (51)

with

s̄ �
√

1 + 8MB/�2, k1 � 1

2
(1 + s̄), k2 � 1

2

(
1 +

1

2
(s̄ − 2n − 1) − 2MA

�(s̄ − 2n − 1)

)
. (52)

Compensating for each of the values (M , A, B, s̄) in Eq. (51), we obtain

Ēn � −λ�
2c2θ̄

[(
νs − n − 1

2

)2

+
αe2E2 p2

0

�4c4θ̄4
(
νs − n − 1

2

)2
]

, (53)

with

νs �
√
m2ω2 − e2E2

c2

�θ̄
+
s

2
. (54)

As consequence, the values (s̄, k2, 2k2 − 1 and (s̄ − 2k2 − 2n)) transform into the following formulas:

s̄ � 2νs , k2 � 1

2

(
1 +

1

2
(2νs − 2n − 1) − 2eE p0

√
α

�c2θ̄2

1

(2νs − 2n − 1)

)
, (55)

and

2k2 − 1 � 1

2
(2νs − 2n − 1) − 2eE p0

√
α

�c2θ̄2

1

(2νs − 2n − 1)
� η−

n,s , (56)

s̄ − 2k2 − 2n � 1

2
(2νs − 2n − 1) +

2eE p0
√

α

�c2θ̄2

1

(2νs − 2n − 1)
� η+

n,s . (57)

At this stage, we can write

G(pb, pa , p0b, p0a) � (ı/�)δ(p0b − p0a)
√

β
∑
s�±1

∑
n

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
] ∫ ∞

0
dλ

× exp

[
ıλ

�

((
βm2ω2+α

α+β �2

c2

p2
0 − � 2

α+β �2

c2

− m2c4

)

+�
2c2
(

α + β
� 2

c2

)[(
νs − n − 1

2

)2

+
αe2E2 p2

0

�4c4
(
α+β �2

c2

)4(
νs−n− 1

2

)2

])]
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× (s̄ − 2k2 − 2n)n! �(s̄ − n)

�(s̄ + 1 − n − 2k2)�(2k2 + n)
22n+(1−2νs )e

⎡
⎣− ı

�

eE p0(
�2+c2 α

β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)
�

√
β

⎤
⎦

× (1 − tanh qb)
η+
n,s
2 (1 + tanh qb)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qb)

× (1 − tanh qa)
η+
n,s
2 (1 + tanh qa)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qa). (58)

In the following section, we will calculate the propagator within the framework of anti-Snyder de Sitter model. Subsequently, we
will extract the energy levels with their mapping in special cases of deformation parameters.

3 Extracting energy levels for (1D-DO) in a homogeneous electric field

In order to evaluate exactly the propagator expression, it is convenient to integrate on the proper time λ and to write the Fourier
transformation of Eq. (58), and after simple calculation we find

G(pb, pa , tb, ta) � √β
∑
s�±1

∑
n

[
e− δ

2 σ2XsX
+
s e

δ
2 σ2
] ∫ dp0

2π�

e− ı
�
p0(tb−ta)

p2
0 −

(
E (α,β)
n,s

)2

× (s̄ − 2k2 − 2n)n! �(s̄ − n)

�(s̄ + 1 − n − 2k2)�(2k2 + n)
22n+(1−s̄)e

⎡
⎣− ı

�

eE p0

�

(
�2+c2 α

β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)√
β

⎤
⎦

× (1 − tanh qb)
η+
n,s
2 (1 + tanh qb)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qb)

× (1 − tanh qa)
η+
n,s
2 (1 + tanh qa)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qa). (59)

where

(
E (α,β)
n,s

)2 � θ̄

βm2ω2 + α

(
1 + e2E2/�2c2

θ̄2
(
νs−n− 1

2

)2

)
[
m2c4 + �c�(2n + 1 − s) − �

2c2θ̄

(
n +

1

2
− s

2

)2
]
. (60)

To determine the energy spectrum, let us integrate over the p0 variable. This can be done by converting the problem to a complex
integral along the special choice of the contour C, using the residue theorem, we get

∫ +∞

−∞
f (p0)

dp0

2π�

e− ı
�
p0(tb−ta)

p2
0 −

(
E (α,β)
n,s

)2 � −ı
∑

ε�±1

f (εE (α,β)
n,s )

e
−ı
�

εE (α,β)
n,s,ε (tb−ta)

2E (α,β)
n,s

�(ε(tb − ta)), (61)

which has the poles

εE (α,β)
n,s � E (α,β)

n,s,ε � ε

√√√√√√
θ̄

βm2ω2 + α

(
1 + e2E2

� 2−2θ̄�c�
(
n+ 1

2 − s
2

)
+θ̄2�2c2

(
n+ 1

2 − s
2

)2

)

×
[
m2c4 + �c�(2n + 1 − s) − �

2c2θ̄

(
n +

1

2
− s

2

)2
] 1

2

, (62)

where � is the Heaviside function. In Eq. (62) n is a quantum number, and the parameter s � ±1 describes the two components of
the Dirac spinor. ε � +1 corresponds to the positive energy states, ε � −1 corresponds to the negative energy states. The parameter
e � ∓1 describes a negatively (e � −1) or positively (e � +1) charged particle, where E is the strength of the uniform electric field,
and ω is the angular frequency of the oscillator. When the electric field E is set to zero in the context of the aSdS model applied to
the Dirac oscillator, the corresponding spectral energy becomes:

E (α,β)
n,s (E � 0) � ±

[
m2c4 + �c2mω(2n + 1 − s) − �

2c2(α + βm2ω2)
(
n +

1

2
− s

2

)2
] 1

2

. (63)
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In addition, for ω � E � 0, the corresponding energy levels reduce to

E (α,β)
n,s (ω � E � 0) � ±

[
m2c4 − �

2c2α

(
n +

1

2
− s

2

)2
] 1

2

. (64)

This result demonstrates that, within the framework of Snyder (anti)-de Sitter model, the energy levels dependency on n2 persist
even in the absence of ω-oscillation and E-electric fields.

At this stage, we have successfully extracted the spectral energy for the Dirac oscillator coupled to a uniform electric field.
Although the corresponding normalized eigenspinors are lengthy and complex, we will proceed solely to find the Green function in
momentum space. Consequently, from Eqs. (20) and (27) we can write the elements matrix of S(α, β)(pb, pa , tb, ta) as:

S(α,β)(pb, pa , tb, ta) �
[
OD

+

]
b
G(pb, pa , tb, ta), (65)

here, OD
+ is defined in Eq. (19) and G(pb, pa , tb, ta) is calculated exactly in Eq. (59), thus, we obtain,

S(α,β)(pb, pa , tb, ta) � −ı
√

β
∑
s�±1

∑
n

[
γ 0
(
p̂0b + eE X̂b

)
− cγ 1

(
P̂b − ımωγ 0 X̂b

)
+ mc2

][
e− δ

2 σ2XsX
+
s e

δ
2 σ2
]

×
∑

ε�±1

e− ı
�

εE (α,β)
n,s (tb−ta)

2E (α,β)
n,s

�(ε(tb − ta))
θ̄
[(

1 − 4MA
�(s̄−2n−1)2

)
(s̄−2k2−2n)n!�(s̄−n)

�(s̄+1−n−2k2)�(2k2+n)

]

(
βm2ω2 + α

)
+ e2E2α

�2c2 θ̄2
(
νs−n− 1

2

)2

× 22n+(1−s̄)e

⎡
⎣− ı

�

eE p0

�

(
�2+c2 α

β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)√
β

⎤
⎦

× (1 − tanh qb)
η+
n,s
2 (1 + tanh qb)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qb)

× (1 − tanh qa)
η+
n,s
2 (1 + tanh qa)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qa). (66)

After that, writing the relations∑
ε�±1

f (ε)�(ε(tb − ta)) � f (s)�(s(tb − ta)) + f (−s)�(−s(tb − ta)), (67)

and

γ 3eAσ2 � σ3e
Aσ2 � −eAσ2σ3, σ3χs � sχs , (68)

γ 1eAσ2 � ıσ2e
Aσ2 � ıeAσ2σ2, σ2χs � ısχ−s , (69)

γ 2eAσ2 � −ıσ1e
Aσ2 � ıσ1e

Aσ2 , σ1χs � χ−s . (70)

This leads to the following expression of the propagator S(α, β)(pb, pa) in the momentum space

S(α,β)(pb, pa) � −ı
√

β
∑
s�±1

∑
n

{[
e

−ı
�

E (s)
n,s (tb−ta)

2E (s)
n,s

�(s(tb − ta))

× e− δ
2 σ2
[(

−
(
E (s)
n,s + seE X̂b

)
+ mc2

)
XsX

+
s − ısc

(
P̂b − ımω X̂b

)
X−sX

+
s

]
e

δ
2 σ2

× θ̄

[(
1 − 4MA

�(s̄−2n−1)2

)
(s̄−2k2−2n)n!�(s̄−n)

�(s̄+1−n−2k2)�(2k2+n)

]

(
βm2ω2 + α

)
+ e2E2α

�2c2 θ̄2
(
νs−n− 1

2

)2

22n+(1−s̄)

× e

⎡
⎣− ı

�

eEE(s)
n,s(

c2m2ω2−e2E2+c2 α
β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)
�

√
β

⎤
⎦

× (1 − tanh qb)
η+
n,s
2 (1 + tanh qb)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qb)

× (1 − tanh qa)
η+
n,s
2 (1 + tanh qa)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qa)

+

[
e

−ı
�

E (−s)
n,s (tb−ta)

2E (−s)
n,s

�(−s(tb − ta)) θ̄

[(
1 − 4MA

�(s̃−2n−1)2

)
(s̃−2k2−2n)n!�(s̃−n)

�(s̃+1−n−2k2)�(2k2+n)

]

(
βm2ω2 + α

)
+ e2E2α

�2c2 θ̄2
(
νs−n− 1

2

)2

22n+(1−s̃)
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×
[
e− δ

2 σ2
[[(

E (−s)
n,s − seE X̂b

)
+ mc2

]
XsX

+
s − ısc

(
P̂b − ımωγ 0 X̂b

)
X−sX

+
s

]
e

δ
2 σ2
]

× e

⎡
⎣− ı

�

eEE(−s)
n,s(

c2m2ω2−e2E2+c2 α
β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)
�

√
β

⎤
⎦

× (1 − tanh qb)
η+
n,s
2 (1 + tanh qb)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qb)

×(1 − tanh qa)
η+
n,s
2 (1 + tanh qa)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qa)

}
. (71)

To unify the expression of Heaviside function �(−s(tb − ta)) by �(s(tb − ta)), one must replace all term which are multiplied by
�(−s(tb − ta)) by s to (−s). Additionaly, to unify the same energy we make the the following mapping

n → n − s. (72)

Therefore, the propagator S(α, β)(pb, pa) of the (1 + 1)-dimensional Dirac oscillators subjected to an electric field in the context of
the Snyder (anti-)de Sitter model in the momentum space becomes as

S(α,β)(pb, pa , T ) � −ı
√

β
∑
s�±1

∑
n

{
e

−ı
�

E (s)
n,s (tb−ta)

2E (s)
n,s

�(s(tb − ta))

×

⎡
⎢⎢⎣θ̄

[(
1 − 4MA

�(s̄−2n−1)2

)
(s̄−2k2−2n)n!�(s̄−n)

�(s̄+1−n−2k2)�(2k2+n)

]

(
βm2ω2 + α

)
+ e2E2α

�2c2 θ̄2
(
νs−n− 1

2

)2

22n+(1−s̄)

× e− δ
2 σ2
[(

−
(
E (s)
n,s + seE X̂b

)
+ mc2

)
XsX

+
s − ısc

(
P̂b − ımω X̂b

)
X−sX

+
s

]
e

δ
2 σ2

× e

⎡
⎣− ı

�

eEE(s)
n,s

�

(
c2m2ω2−e2E2+c2 α

β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)√
β

⎤
⎦

× (1 − tanh qb)
η+
n,s
2 (1 + tanh qb)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qb)

× (1 − tanh qa)
η+
n,s
2 (1 + tanh qa)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n (tanh qa)

+

⎡
⎢⎢⎣θ̄

[(
1 − 4MA

�(s̄−2n−1)2

)
(s̄−2k2−2n)n!�(s̄−n)

�(s̄+1−n−2k2)�(2k2+n)

]

(
βm2ω2 + α

)
+ e2E2α

�2c2 θ̄2
(
νs−n− 1

2

)2

22n+(1−s̄)

×
[
e− δ

2 σ2
[((

E (s)
n,s + seE X̂b

)
+ mc2

)
X−sX

+−s + ısc
(
P̂b − ımωγ 0 X̂b

)
XsX

+−s

]
e

δ
2 σ2
]

× e

⎡
⎣− ı

�

eEE(s)
n,s

�

(
c2m2ω2−e2E2+c2 α

β

) sinh−1(
√

β pb)−sinh−1(
√

β pa)√
β

⎤
⎦

× (1 − tanh qb)
η+
n,s
2 (1 + tanh qb)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n−s (tanh qb)

×(1 − tanh qa)
η+
n,s
2 (1 + tanh qa)

η
−
n,s
2 P

(
η+
n,s ,η−

n,s
)

n−s (tanh qa)

}
. (73)

Furthermore, in the case of Snyder de-Sitter space, which can be constructed from propagator’s function and spectral energies
defined, respectively, in Eq. (73) and (62) by replacing α and β by (−α, −β). Also, the Jacobi polynomial is replaced by Romanovski
polynomials [34],

P
(
η+
n,s ,η−

n,s
)

n (ı tan q) → R
(
η+
n,s ,η−

n,s
)

n (tan q). (74)

Moreover, in both cases for the sign parameters α and β, the expression for energy levels is related to n2.
Usually, from theory of deformation the value of α and β is very small, so we expand (62) to first order in α and β, thus we find

E (α,β)
n,s � ±

√
c2m2ω2 − e2E2

c2m2ω2

[
m2c4 + �c

√
c2m2ω2 − e2E2(2n + 1 − s)

]
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Fig. 1 En, α, β versus the quantum number n for different values of the deformation parameters

∓ θ̄

2

√
c2m2ω2−e2E2

c2m2ω2 �
2c2
(
n + 1

2 − s
2

)2
[
m2c4 + �c

√
c2m2ω2 − e2E2(2n + 1 − s)

] 1
2

. (75)

Here, the first term represents the Landau levels of Dirac oscillator in homogeneous electric field without deformation, while the
second term is the quantum gravity correction. It is interesting to note that when the value of electric field is large then critical one
eE
c > mω the bounded eigenstates are absent. Now, let us consider the following particular cases.

1- In limit case α → 0, the expression of Eq. (62) reduces to that of the flat Snyder model,

E (α�0)
n,s � ± �

cmω

[
m2c4 + �c�(2n + 1 − s) − �

2β� 2
(
n +

1

2
− s

2

)2
] 1

2

. (76)

1. In limit case β → 0, one recovers the spectral energies for the Heisenberg algebra in an (anti-)de Sitter background [26],

E (β�0)
n,s � ±

⎛
⎝1 +

e2E2
(
� 2 − 2θ̄�c�

(
n + 1

2 − s
2

)
+ θ̄2�2c2

(
n + 1

2 − s
2

)2)
⎞
⎠

−1/2

×
[
m2c4 − �

2c2α

(
n +

1

2
− s

2

)2

+ �c�(2n + 1 − s)

] 1
2

. (77)

To explore the distinction between the presence and absence of the aSdS algebra, as well as the effect of having the one but not
the other on energy levels, we graph the energy levels E (α, β)

n, s�+1 against the quantum numbers, n. To facilitate this presentation, we
adopt the natural unit system, where �, c, are all set to 1, resulting in dimensionless parameters, and the electron mass set at m �
0.5 MeV and an electric field E of 0.2 MeV2, e � 0.303, ω � 2 MeV. We use four different deformation parameter values for this:
(i.e., (α � 10−77 MeV, β � 10−40 MeV), (α � 10−77 MeV, β � 0.0 MeV), (α � 0.0 MeV, β � 10−40 MeV) and (α � 0.0,
β � 0.0)), as illustrated in Fig. 1. This figure is broken down into three sub-figures (Fig. 1a–c).
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Fig. 2 The energy spacing
between adjacent levels as a
function of n

We note that in Fig. 1a, all energy levels cases are the same when the quantum number principle n between 0 and 2 × 1038. Then,
the separation occurs from n � 1038 to n � 1040, and the appearance state of curves β �� 0 disappear when ṅ > 1041, and is
shown in Fig. 1b. Whereas in Fig. 1c, the plot of the case (α � 10−77, β � 0.0) appears at ṅ > 1076, and disappears at ṅ > 1077.
From this data, it is evident that the α-parameter has a more pronounced influence than the β-parameter.

It is also shown in Fig. 2 that the energy spacing between adjacent levels is constant, which is a sign of hard confinement.
Likewise, we can plot all the energy levels curves in the case SdS algebra, where we will find, for example, in Fig. 1c that the

energy spectrum curve for the HUP algebra is below the case (α � 10−77, β � 0.0).
Moreover, the nonrelativistic energy level is obtained considering that greater part of the total energy of the system lies in the

rest energy (mc2) of the particle [35], i.e., E (α, β)
n, s � mc2 + E (N R)

n, s, α, β , where mc2 � E (N R)
n, s, α, β and mc2 � √

m2ω2 − e2E2/c2. So,
applying this prescription in Eq. (62), we obtain the following energy spectrum for a nonrelativistic particle in the presence of an
uniform electric field and in the context of the Snyder (anti-)de Sitter model at the first order approximation,

E (N R)
n,s,α,β �

√√√√√√√

θ̄

βm2ω2 + α

⎛
⎝1 + e2E2(

� 2−2θ̄�c�
(
n+ 1

2 − s
2

)
+θ̄2�2c2

(
n+ 1

2 − s
2

)2
)

⎞
⎠

×
[

�

2m
(�/c)(2n + 1 − s) − �

2

2m
θ̄

(
n +

1

2
− s

2

)2
]
. (78)

In limit case α → 0, Eq. (78) becomes as,

E (N R)
n,s,α�0,β �

√
m2ω2 − e2E2/c2

m2ω2

⎡
⎣ �

2m

√
m2ω2 − e2E2

c2 (2n + 1 − s)

− �
2

2m
β

(
m2ω2 − e2E2

c2

)(
n +

1

2
− s

2

)2
]
. (79)

In limit case β → 0, Eq. (78) transforms as,

E (N R)
n,s,α,β�0 � ±

⎛
⎝1 +

e2E2
(
� 2 − 2α�c�

(
n + 1

2 − s
2

)
+ α2�2c2

(
n + 1

2 − s
2

)2)
⎞
⎠

−1/2

×
[

�

2m
(�/c)(2n + 1 − s) − �

2

2m
α

(
n +

1

2
− s

2

)2
]
. (80)

From Eq. (78) and in first order of α, β, we can find the energy spectrum for a spinless nonrelativistic particle (s � 0) in the presence
of an uniform electric field

E (N R)
n,s,α,β �

⎡
⎣�

(
m2ω2 − e2E2/c2

m2ω

)(
n +

1

2

)
− �

2

2m
θ̄

√
m2ω2 − e2E2/c2

m2ω2

(
n +

1

2

)2
⎤
⎦. (81)
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The first and second terms in Eq. (81) represent, respectively, the energy level for a spinless non-relativistic oscillator of frequency
ω particle interacting with a uniform electric field in usual quantum mechanics (HUP), and the relativistic correction both in the
context of the modification of the Heisenberg algebra. Also, if we take the limit E → 0, Eq. (81) transforms to

E (N R)
n,s,α,β �

[
�ω

(
n +

1

2

)
− �

2

2m
θ̄

(
n +

1

2

)2
]
. (82)

Here, the first term is the energy level for a spinless non-relativistic oscillator of frequency ω particle in HUP, and the second term
is the first correction of deformation in non relativistic case.

4 Thermodynamic functions

Now, let us study the thermodynamical properties for the problem of the Dirac oscillator particle interacting with a uniform electric
field in the modified algebra (1) in the context of the aSdS model. To get these thermodynamic properties, we must first find the
corresponding partition function. Indeed, we have,

Z �
∞∑
n�0

e−β̄En , (83)

where β̄ � 1/(kBT ), kB is the Boltzmann constant and T is the equilibrium temperature of system. For simplicity, we take the
positive energy level for spin up (s � +1) at the first order of (α, β) given by Eq. (75). So, the sum (83) reads,

Z (T , α, β) �
∞∑
n�0

exp

[
−β̄

√
b + an − β̄

θ̄

2

(�/c)2

m2ω2

�
2c2n2

√
b + an

]
, (84)

with a � 2
(
�c2)(�/c)3

m2ω2 , b � (�/c)2m2c4

m2ω2 . At the first order of (α, β), the partition function (83) becomes

Z (T , α, β) � Z0(β̄) + θ̄�Z (1)(β̄), (85)

where

Z0(β̄) �
∞∑
n�0

e−β̄
√
b+an and �Z (1)(β̄) � −β̄

�
2c2

2

(�/c)2

m2ω2

∞∑
n�0

n2

√
b + an

e−β̄
√
b+an . (86)

We can evaluate the sums in (85) by using the Euler–Maclaurin summation formula [36]
∞∑
n�0

f (n) � 1

2
f (0) +

∫ ∞

0
f (x)dx −

∑
k�1

B2k

(2k − 1)!
f (2k−1)(0), (87)

where B2p are the Bernoulli numbers, with B2 � 1/6, B4 � −1/30, ..., and f (2k−1)(0) is the derivative of order (2k − 1) at x � 0,
which are given as follows

f (0) � e−β̄
(�/c)
mω

mc2
, f (1)(0) � −(�c2)β̄ (�/c)2

mω

e−β̄
(�/c)
mω

mc2

mc2 , (88)

f (3)(0) �
{

−
(
�c2
)3

(�/c)6

(
mc2

)3
(mω)3

β̄3 − 3(�c)3� 5

(cmω)4(mc2
)4 β̄2 − 3

(
�c2
)3

(�/c)4

mω
(
mc2

)5 β̄

+6θ̄ β̄2 �
3c3

2

� 3
(
c2m2ω2

)(
m2c4

) + 6θ̄ β̄
�

3c3

2

� 2

2cmω
(
mc2

)3
}
e−β̄

(�/c)
mω

mc2
. (89)

Then, the integral over x in Eq. (87) is written as
∫ ∞

0
f (x)dx �

{
2
√
b

aβ̄
+

2

aβ̄2
− θ̄

2

�
2c2(�/c)2

m2ω2

[
16b

a3β̄2
+

48
√
b

a3β̄3
+

48

a3β̄4

]}
e−β̄

√
b. (90)

Consequently, the partition function is now written as

Z (T , α, β) �
{

1

2
+

(mω)
(
mc2

)
(
�c2
)(

� 2/c2
) 1

β̄
+

m2ω2

(
�c2
)(

� 2/c2
)3/2

1

β̄2

− θ̄

c2

[ (
m2ω2

)(
m2c4

)
(
�c2
)
(�/c)5β̄2

+
3
(
m3ω3

)(
mc2

)
(
�c2
)
(�/c)6β̄3
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Fig. 3 Partition function for the DO with uniform electric field as a function of temperature T for different values of the deformation parameters

+
3m4ω4

(
�c2
)
(�/c)7β̄4

]}
e−β̄

(�/c)
mω

mc2 −
∑
k�1

B2k

(2k − 1)!
f (2k−1)(0). (91)

To compute this partition function, we need to calculate the sum in the above expression, and for our case, it can be done only by
numerical methods. Up to k � 2, this sum can be written as

∑
k�1

B2k

(2k − 1)!
f (2k−1)(0) � − β̄

6

�c2(�/c)2

mω

e−β̄
(�/c)
mω

mc2

mc2 − 1

180

[
−β̄

3
(
�c2
)3

(�/c)4

mω
(
mc2

)5

− β̄2 3
(
�c2
)3

(�/c)5

c2
(
m4ω4

)(
m2c4

)2 + 6θ̄ β̄2

(
�c2
)3

2

(�/c)3

c2
(
m2ω2

)(
m2c4

) − β̄3

(
�c2
)3

(�/c)6

(
mc2

)3
(mω)3

+3θ̄ β̄

(
�c2
)3

2

(�/c)2

c2(mω)
(
mc2

)3
]
e−β̄

(�/c)
mω

mc2
. (92)

At high temperature (β̄ � 1), all terms in the sum of Eq. (92) have a positive power in β̄, which are very small compared with the
other term in Eq. (91). Hence, we can neglect the terms with β̄n and the terms without β̄. In addition to this, we also expand the

function (e−β̄
(�/c)
mω

mc2
) to the orders of β̄ in Eq. (91), and then, with some simplifications, we neglect all the positive exponents of

β̄. The result of Eq. (91) becomes as:

Z (T , α, β) � m2ω2

(
�c2
)
(�/c)3

1

β̄2
− θ̄

c2

[
3m4ω4

(
�c2
)
(�/c)7

1

β̄4
−
(
m2ω2

)(
mc2

)2
2
(
�c2
)
(�/c)5

1

β̄2

]
. (93)

As the θ̄ -deformation parameter is very small, we can rewrite the partition function as follows:

Z (T , α, β) � m2ω2

(
�c2
)
(�/c)3 (kBT )2e

−θ̄
[

3m2ω2

(�/c)4
(kBT )2− 1

2
m2c4

(�/c)2

]
. (94)
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Fig. 4 The Helmholtz free energy function for the DO with uniform electric field as a function of temperature T for different values of the deformation
parameters

The limit θ̄ → 0 gives the partition function for the (1 + 1)-dimensional Dirac oscillator subjected to uniform electric field in HUP
algebra. The term related to θ̄ represents a contribution of the SdS algebra on Z-function. Now, the partition function in Eq. (94)
will help us getting all thermodynamic functions, such as, the F-Helmholtz free energy, the �-mean energy, the S-entropy and the
C-heat capacity. For example, the Helmholtz free energy for our problem in high temperature becomes as

F(T , α, β) � −T ln(Z ) � F0
(
β̄
)

+ θ̄�F1(β̄), (95)

with F0
(
β̄
)

begin the Helmholtz free energy for (1 + 1)-dimensional Dirac oscillator with homogenous electric field in HUP algebra.

F0
(
β̄
) � −2T ln

⎛
⎝ mω(kBT )√

�c2
(
m2ω2− e2E2

c2

)3/2

⎞
⎠, (96)

and �F1
(
β̄
)

represents the first-order correction for the SdS deformation

�F1(β̄) � − 1

2kB

m2c2(
m2ω2− e2E2

c2

) (kBT ) + 3m2ω2

c2kB

(
m2ω2− e2E2

c2

)2 (kBT )3. (97)

The relation between mean energy and partition function gives us the following expression

�(T , α, β) � −∂ ln(Z )

∂β̄
� 2kBT exp

⎛
⎜⎝−3θ̄

m2ω2

c2
(
m2ω2 − e2E2

c2

)2 (kBT )2

⎞
⎟⎠. (98)

When θ̄ → 0, we recover the usual case of mean energy in HUP algebra.
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Fig. 5 The mean energy function for the DO with uniform electric field as a function of temperature T for different values of the deformation parameters

For the heat capacity, we have

C(T , α, β) � ∂�

∂T
� C0

(
β̄
)

+ θ̄�C1(β̄), (99)

whereC0
(
β̄
) � 2kB is constant in the absence of (a)SdS algebra, whereas �C1

(
β̄
)

represents the first correction of the heat capacity,
which dependent of T 2.

�C1(β̄) � 18
m2ω2k3

BT
2

c2
(
m2ω2 − e2E2

c2

)2 . (100)

Finally, the entropy is given as

S(T , α, β) � kB ln(Z ) − kBβ̄
∂ ln(Z )

∂β̄
� S0

(
β̄
)

+ θ̄�S1(β̄), (101)

where S0
(
β̄
)

stands to the entropy for (1 + 1)-dimensional Dirac oscillator under the uniform electric field in HUP algebra and reads
as

S0
(
β̄
) � 2kB + 2kB ln

⎛
⎝ mω√

�c2
(
m2ω2− e2E2

c2

)3/2
(kBT )

⎞
⎠, (102)

while �S1
(
β̄
)

is the term correction of entropy in first order of (α, β) and is written as,

�S1(β̄) � kB

[
m2c2

2
(
m2ω2− e2E2

c2

) − 9m2ω2

c2
(
m2ω2− e2E2

c2

)2 (kBT )2

]
. (103)
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Fig. 6 The heat capacity function for the DO with uniform electric field as a function of temperature T for different values of the deformation parameters

In the subsequent figures, we juxtapose the thermodynamic properties of our system across varying deformation parameters. To
streamline our presentation, we have employed the natural unit system, where �, c, and kB are all set to 1, rendering all parameters
dimensionless. This demands accurate estimations of the relevant physical quantities. As such, we have selected the oscillator value
at roughly 2 MeV within the high-temperature range, the electron mass as m � 0.5 MeV, and the electric field E at 0.2 MeV2.
Consequently, the thermodynamic properties are illustrated in Figs. 3, 4, 5, 6 and 7, as functions of temperature (T ), with four
different values of deformation parameters, namely, (α � 10−77 MeV, β � 10−35 MeV), (α � 0.0 MeV, β � 10−35 MeV),
(α � 10−77 MeV, β � 0.0 MeV) and (α � 0.0 MeV, β � 0.0 MeV).

Notably, Fig. 3a demonstrates that the aSdS algebra leads to a surge in the partition function from kBT � 1×1019 to approximately
kBT ∼ 2.5×1019 MeV. Subsequently, the curves Fig. 3b corresponding to (α � 10−77 MeV, β � 10−35 MeV) and (α � 0.0 MeV,
β � 10−35 MeV) goes down to zero after the temperature kBT ∼ 1020 MeV. However, the other two curves line up closely up to
kBT ∼ 5 × 1038 MeV, after which the curve for (α � 10−77 MeV, β � 0.0 MeV) collapses to zero when kBT surpasses 1039 MeV
in Fig. 3c.

In Fig. 4, we have the Helmholtz free energy for the one-dimensional Dirac oscillator within the aSdS context as a function of
kBT and this depiction indicates that the aSdS algebra leads to a decline in the F-function, spanning from kBT � 1 × 1019 to
kBT ∼ 6 × 1019 MeV across all four cases of deformation parameters in Fig. 4a. Beyond kBT > 1039, the curves Fig. 4b for both
((α � 10−77 MeV, β � 10−35 MeV) and (α � 0.0 MeV, β � 10−35 MeV)) vanish when β �� 0. Meanwhile, the case characterized
by ((α � 10−77 MeV, β � 0.0 MeV)) has an effect up to temperature kBT > 1021 MeV in Fig. 4c.

Furthermore, within the aSdS model, the mean energy exhibits a growth as the temperature rises, as depicted in Fig. 5a.
In Fig. 5b, it is shown that for the cases (α � 10−77 MeV, β � 10−35 MeV) and (α � 0.0 MeV, β � 10−35 MeV), the curves

decline to zero after reaching the temperature kBT ∼ 1021 MeV. However, for the case (α � 10−77 MeV, β � 0.0 MeV), the curve
Fig. 5c goes down to zero when kBT surpasses 5 × 1039 MeV.

Also, the heat capacity in Fig. 6a is a constant C � 2kB when kBT < 1011. Then, when kBT > 1019 MeV the cases (α �
10−77 MeV, β � 10−35 MeV) and (α � 0.0 MeV, β � 10−35 MeV) exhibit an increase with temperature, as presented in Fig. 6b.
Figure 6c shows the increasing of the capacity for the case (α � 10−77 MeV, β � 0.0 MeV) with the increasing temperature at
kBT > 1032.
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Fig. 7 The entropy function for the DO with uniform electric field as a function of temperature T for different values of the deformation parameters

Finally, in Fig. 7a, we plot the effect of aSdS on entropy function in three graphs. According to Fig. 7b, the aSdS makes the values
of entropy smaller with temperature for the cases ((α � 10−77 MeV, β � 10−35 MeV) and (α � 0.0 MeV, β � 10−35 MeV)) at
temperature kBT > 1019, whereas, in Fig. 7c, the entropy function of the case (α � 10−77 MeV, β � 0.0 MeV) decreases with
temperature kBT > 1038.

Just as we observed, the aSdS algebra has a more significant impact on energy eigenvalues when the α-parameter is present
compared to the β -parameter, a similar pattern holds true for thermodynamic functions. Likewise, we can deduce the thermodynamic
properties and appropriate curves for the SdS model case simply by substituting (α and β) by (−α, −β). Finally, when (a)SdS
parameters α � β � 0 and electric field E → 0 our results align exactly with that of Ref. [37].

5 Conclusion

In the present paper, we have constructed the 1D Dirac oscillator subjected to the uniform electric field in the momentum space
representation and in the presence of Snyder (anti-)de Sitter model. Using the coordinate transformation method, the exact casual
Green function and its corresponding propagator are calculated, and then appropriate energy values are derived from it. In both cases
for the sign deformation parameters, the Green function and its corresponding propagator are expressed in terms of Romonovski
polynomials when (α, β) are positive, and in terms of Jacobi polynomials when (α, β) are negative. Furthermore, we have demon-
strated that within the framework of Snyder (anti)-de Sitter space, energy dependencies on n2 persist even in the absence of oscillation
and electric fields. Additionally, we have derived limit cases for deformation parameters and constructed the non-relativistic energy
level in this context of aSdS algebra with and without spin.

Finally, at high temperatures, we use the Euler–MacLaurin formula, all thermodynamic quantities of our system have been
determined in first order of (α, β), such as, the partition function Z , the Helmholtz free energy F, the mean energy �, the entropy S
and the heat capacity C. By plotting the EUP terms of thermodynamic functions with temperature kBT , we have shown the influence
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of the α-deformation parameter important than the β-parameter. However, these effects cannot be detected by current experimental
means.

Data Availability Statement No data associated in the manuscript.
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Abstract
Following the path integral approach, and in the context of curved Snyder space, we formulate the
Green function for a (1+1)-dimensional Dirac oscillator system subject to a homogeneousmagnetic
field. Using the radial coordinates transformation theGreen function and the electron propagator are
calculated. Consequently, the exact bound states and their corresponding spectral energies are
extracted. Our analysis has revealed that, under specific conditionswhen w w¯m m 2c and c→VF,
the behavior of theDirac oscillator system in the presence of a uniformmagneticfieldwithin the SdS
algebra closely resembles the dynamics of themonolayer graphene problem in the same algebraic
framework. At high temperatures, the thermodynamic properties of the electron gas in the four cases
of deformation parameters were extracted. The effect of the deformation parameters on these
properties are tested, and also the limit cases for small parameters were inferred.

1. Introduction

TheDirac oscillator (DO)model describes a relativistic quantummechanical system that combines the aspects
of theDirac equation and those of the harmonic oscillator. It describes the behavior of a relativistic particle with
spin 1/2 in the presence of a harmonic potential typewhich is obtained by the following transformation on the
momentumvector (

  
wg -p p im x0 ), here γ0 refers to theDiracmatrix. Several versions of this systemhave

been introduced in various forms due to its close connectionwithmultiple physical phenomena in quantum
physics. Atfirst it was introduced by Ito et al [1] and developed byMoshinsky and Szczepaniak in [2]. Taking the
non-relativistic limit into account, the behavior of the quantumharmonic oscillator can be then recovered;
however, a spin–orbit coupling term also arises in this limit.Many examples have been studied in differentfields
of physics and let us cite for example the references [3–8].

In addition, with the emergence of deformation theories based onHeisenberg’s generalization principle
[9–11], numerous researchers promptly look for investigating its influence on relativistic oscillators. In [12, 13],
thisDirac oscillatormodel in the presence of aminimal length in one and twodimensions is presented by using
theGreen’s function technique. Also the high-temperature thermodynamic properties of aDirac oscillator in
one dimension are determined in [14].Moreover, the anti-de Sitter commutation relations give rise to the
appearance ofminimal uncertainty and then in [15] it is described theDirac oscillator in one dimension using
the position space representation, where analysis is performed on the thermodynamic properties of relativistic
harmonic oscillators at high-temperatures. Later, Benzair et al computed the energy spectrumof theDirac
Oscillator (DO) using the path integral formulation in one and two dimensions, respectively, within the
extended uncertainty principle framework [16, 17].Moreover, the investigation of thermodynamic properties
for relativistic oscillator particles under deformed algebra resonated in this aspect, as evidenced by the references
[14, 17–22]. Also [23]where the authors have studied the relativistic spinningmassless particle inGraphene layer
in the presence of an homogeneousmagnetic field. Additionally, deMontigny et al [24] investigated the behavior
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of theDirac oscillator in the Som–Raychaudhuri space-time, focusing on the influence of its frequency and the
vorticity parameter. This studywas then extended to theDKPoscillator for a spin-zero field in a cosmic-string
background space-time, characterized by a stationary cylindrical symmetricmetric, as discussed in [25].
However, in spite of that this DOhas beenmuch discussed, there are only a few studies that have been
established through the path integral approach. These latter applications are based on three deformed algebras.
Thefirst, doubly special relativity theories (DSR), is referred to as generalized uncertainty principle (GUP)
[9, 26], confirming the existence of aminimummeasurable length. Furthermore, the second involves the
existence of aminimummeasurablemomentum, necessitating themodification of theHeisenberg uncertainty
principle into an extended uncertainty principle (EUP) [11, 27, 28]. Meanwhile, the third is obtained by
combiningGUP and EUP, derived from amodel ofDSR on a (anti)-de Sitter background, giving rise to triply
special relativity (TSR) or named the Snyder de Sitter (SdS)model [10, 23].

The algebra of the SdSmodel is built using operators for position mX̂ , momentum m̂P , and Lorentz generator

mnĴ , which adhere to the following algebraic relationship

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

h h h h

h a b ab

b a

= - = -

= + + + + -

= =

mn s ms n ns m mn s ms n ns m

m n mn m n m n m n n m mn

m n mn m n mn

( )
( ) ( )

( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ( )

J X i X X J P i P P

X P i X X P P P X X P J

X X i J P P i J

, , , ,

, ,

, ; , . 1

 



 

Here, ημν= diag(1,− 1,− 1,− 1) is theflatMinkowski space-timemetric and = -mn m n n mˆ ˆ ˆ ˆ ˆJ X P X P are the
generators of the Lorentz symmetry.Whileα andβ are the coupling constants have dimensions of inverse length
and inversemass, respectively. In the limitα→ 0, the algebra (1) reduces to the Snydermodel inflat space [11].
Additionally, asβ→ 0, the algebra (1) becomes the de Sitter algebra, with this parameter playing a role
proportional to the cosmological constantΛ=− 3α [11, 27, 28].

In this paper, our aim is to formulate exactly the path integral approach inmomentum space representation
for the two dimensionsDO (2D-DO) in the context of curved Snydermodel (SdS) and in the presence of a
homogeneousmagnetic field. Furthermore, in the non-relativistic Snyder-de Sittermodel, the deformed
Heisenberg algebra in 3-dimensional case is given by [10],

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

d a b ab

b a

= + + + +

= =

( )( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ( )

X P ı X X P P P X X P

X X ı J P P ı J

, ,

, , , . 2

i j ij i j i j i j j i

i j ij i j ij



 

Here, a b( ), are small and positive parameters, and = -ˆ ˆ ˆ ˆ ˆJ X P X P .ij i j j i In the limitsα→ 0,β→ 0 and
a b ( )0, 0 one recovers the Snydermodel inflat space, to the de Sitter algebra, and the undeformed
Heisenberg algebra, respectively [11]. Therefore, given these commutation relations, it becomes crucial to
examine the transformation that connects this deformed algebrawith the Snyder algebra. This transformation
was originally introduced byMignemi in [10] and is defined as,

k b k
b

= + = -
¶
¶

+
-

b
a

b
a

ˆ ˆ ˆ ( )X ı
p

p
p

p
1

1
, 3i i i

i

i2

2
  

k b k
b

= - + - = - -
¶
¶

+ -
-

a
b

a
b

ˆ ˆ ( ) ˆ ( ) ( )P ı
p

p
p

p
1 1 1

1
. 4i i i

i

i2

2
  

The index (i=1,2) for º º( ˆ ( ˆ ˆ ) ˆ ( ˆ ˆ ))X X Y P P P, , ,i i X Y denotes the coordinates andmomentum components
operators.κ is a free parameter that can be chosen in each case to ensure that theHamiltonian is symmetric and
that ( ˆ ˆ,i i  ) satisfy the following commutation relations [11],

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦d b b= + = - =( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )ı, , , , , 0. 5i j ij i j i j i j j i i j           

Hence, it becomes feasible to express the position ˆ
i andmomentum ˆ

i coordinate operators of the Snyder
Heisenberg brackets (5) in terms of auxiliary operators = ¶ ¶x̂ ı pi i and =p̂ pi i, which keep to the following
relationships:

b
b

= - =
-

ˆ ˆ ˆ ˆ
( )x

p
p

p
1 ,

1
. 6i i i

i2

2
 

It is important to emphasize that whenα,β> 0, themomentumoperator pi is constrainedwithin the interval of
( b- )1 to ( b )1 . In particular, in a case where both á ñPi and á ñXi are equal to zero, the uncertainty relation
takes the following form:
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d a b abD D + D D + D D + D D + D D( ) ( ) ( ( ) ( ) ( ) ( ) (( ) ( ) ( ) ( ) )) ( )X P X X P P P X X P
2

. 7i j ij i j i j i j i j


It isworthhighlighting that in the caseswhereα,β< 0 (i.e., aSdS), the concept ofminimal uncertainties does not
arise, and all real values of pi remain permissible. Beforewe to go to the details which are in the next subsequent
section, it is important to note a change in the definitionof the scalar product. As seems that the operators of X̂i and
P̂i are symmetric only in subspace


b-( )L R dp p, 12 2 2 ), we adopt the following formas presented in [10],

*


òy f
b

y fá ñ =
-b

b

-
∣ ( ) ( ) ( )dp

p p
p1

, 8
1

1

2

where thewave-functions satisfied the periodic boundary conditions, y b y b- =( ) ( )1 1 , and thus the
modified closure relation is given by [29],

 

ò ñá =
b

b

b- -
∣ ∣ ( )p p 1. 9

dp

p1

1

1 2

Now,by employing the closure relation for themaximally localized states, wederive the following expression [29]:

   
b d g k ab= - - ¢ =¢

a b
b
b

¢ -
-

g

( )∣ ( ) ( )/p p p p ip1 , and . 10p

p,
1

1
2 2

2

2

2 

It is important to notice that for (α< 0,β< 0), wemodify the limits of integration in the above equation to all
the space. In addition, where bothα andβ are equal to zero, we regain the standard projection relation, denoted
by

   
dá ñ = - ¢a b

¢
∣ ( )( )p p p p, 0

2 . However, it is important to note that in the time component, there is no
deformation observed in the time-momentum relationship.

òd
p

¢ = - ¢ = - - ¢( )∣ ( )( )p p p p
dt

e
2

. 11t p p
0 0 0 0

ı
0 0




As a result, thematrix elements of the operators ,i
2 -( ˆ ˆ ˆ ˆ )1 2 2 1    and i

2 are respectively given as follows,

⎡
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   
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i
i

i
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2
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2
2

2 2








This paper is organized as follows: In section 2,we are interested into the formulationof the path integral for
spinorial particleswithin curved Snyder space-time. It is important to notice that this formulation is here achieved
without relying onGrassmann variables as substantiated in [12, 30]. This approach is basedonperforming path
integral calculation on the elementsmatrix of theGreen function.A similar techniquehas been applied in previous
studies [17, 31]. In section 3, the use of the polar coordinate transformation allowsus to separate the angular part
from the radial one. This separation led to the derivationof the Poschl–Teller radial propagator [13, 32]. Section 4 is
dedicated to deriving the precise bound states and their associated energy eigenvalues.Under specific conditions
when w w¯m m 2c and c→VF, the behavior of theDirac oscillator system in the presence of a uniformmagnetic
fieldwithin the SdS algebra closely resembles the dynamics of themonolayerGraphene problemwithin the same
and this has beendemonstrated in section 5. In section 6,we examine anddiscuss the special cases arising from
these studies. Finally, the thermodynamic functions are tested andplotted for this system in section 7.

2. Path integral formulation of 2DDO in curved snyder space-time

Weproceed to derive theGreen function Ŝ for the problemof the 2DDirac oscillator (DO) in the presence of the
uniformmagnetic field (

 
=B k ), which is given by the following equation [7],

i- ¶ =( ˆ ) ˆ ( )H S . 15t

Here,  is the unitmatrix. In the absence of electromagnetic interaction, theHamiltonian expression for the
Dirac oscillator is as follows [7],
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⎛
⎝

⎞
⎠

a i wb b=


-
¾

+ˆ ˆ ˆ ( )H c P m X mc. , 162

here, the


-P̂ momenta and
¾

-X̂ position operators are verified the equation (6).While c denotes the speed of
light,m is themass of the particle, andω is the angular frequency of the oscillator. The

a andβmatrices are
represented by theσi− Paulimatrices as

a a b= = - =
-( ) ( ) ( ) ( )ı

ı
0 1
1 0

, 0
0

, 1 0
0 1

. 171 2

Equation (15) reduces after applyingminimal electromagnetic coupling in equation (16) [7]:

⎡
⎣

⎤
⎦

  g g wg g-


- +
¾

- = -ˆ ( ˆ ) ˆ ˆ ( )P P
e

c
A ım X mc S. . . 180

0
0

The parameter = ∣ ∣e e describes a particle with negative charge ( = -∣ ∣e e ) or positively ( = ∣ ∣e e ) positive
charge. The γμ−Diracmatrices are then represented by the Paulimatrices in the two dimensions

g s g s g s= = = - ( )ı ı, , . 190
3

1
2

2
1

Note that there is no deformation occurring in the time component ( = ¶ = ¶ ¶P̂ ı ı ct ,0 0  = ºˆ ˆX x ct0
0 ).

The vector potential

A is the potential of a constantmagnetic field  and has the two components

(

= -( ˆ ˆ ))A X X,

c2 2 1
 . Thus, equation (18) is written as [7],

g g w g w¶ ¶ - + - - - = -[ ( ˆ ¯ ˆ ) ( ˆ ¯ ˆ ) ] ˆ ( )ı t c P m X c P m X mc S , 200 1
1 2

2
2 1

2

where w̄ denotes to w w w=¯ 2,c with w = ∣ ∣
c

e

mc

 is the cyclotron frequency. The formal solution of
equation (20) is

⎡⎣ ⎤⎦= - = --
-

+ - +
-ˆ [ ] ( )S , 21D D D D1 1

   

with the operators 
D defined by

g g w g w= ¶ ¶ - + - -  [ ( ˆ ¯ ˆ ) ( ˆ ¯ ˆ ) ] ( )ı t c P m X c P m X mc . 22D 0 1
1 2

2
2 1

2

According to the Schwinger proper-timemethod [33] and noting that = - + - +
-ˆ [ ][ ]S D D D 1   , it is convenient

towrite theGreen’smatrix operator Ŝ as follows

⎡⎣ ⎤⎦= +
ˆ ˆ ( )S , 23D 

where

⎛
⎝

⎞
⎠ò l l= -

¥ˆ ˆ ( )ı
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ı
exp , 24

0 
 

and hereλ represents an even variable. As for -̂ operator, it is expressed by the following equation:

g g w g w
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After simplifying, wewillfind

⎡
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w

w

g g w w w

=- - ¶ - - + - +

- + - +

+ + + +
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Further, we have towrite thisHamiltonian by the position andmomentumoperators which achieve the
deformed quantumalgebra introduced by Snyder and are based on themodified commutation relation defined
in previous section (see, equation (5)) [10]. Performing the operators ( ˆ ˆ ),i j  on -̂ expression, as a result,
equation (26) becomes
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The equation above reveals that the term ( +ˆ ˆ ˆ ˆ
i i i i  )will be obviously absent according to the provided value

ofκ

k
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The corresponding elementmatrix of ̂ inmomentum representation is
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Before, we start to construct theGreen’s function using path integral formalism, wemust get rid of thematrices
that do not settle with the formalismbymaking the following exponentialmatrix. Evidently, we can simplify it as

lg g l g g l= +( ) ( ) ( )( ) ( ) ( )ϝ̂ ˆ ˆ ϝ̂ ˆ ˆ ϝ̂ ˆ ˆ ( )exp , cos , sin , , 31i i i i i i
1 2 1 2     

and this is done taking into account the properties ofDirac’smatrices g g = -( ) 1.1 2 2 Hence, the equation (31)
becomes in another form
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As a result, equation (30) can bewritten as follow
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For the kernel of (33), we decompose the exponential l-( ˆ )( )
ıexp

s into (N+ 1) exponential e-( ˆ )( )
ıexp

s ,
with ε= τj− τj−1= 1/(N+ 1). Thenwe insertN resolutions of identities (9) between each pair of infinitesimal

operator e-( ˆ )( )
ıexp

s . Indeedwe have [29],
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To go further, it is convenient to develop the exponential up to the first order of ε. Thus, wefind
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After this stage for eliminating theHamiltonian operator which represent in the (SdS)-framework, we inject all
the operators ( ,i

2 i
2 , -ˆ ˆ ˆ ˆ

1 2 2 1    ) in the projection relation
 

á ña b-∣( )∣p p.j j 1 , given in equation (10).
Consequently, the expression

 
( )p p p p, , ,b a b a0 0 is transformed into the following path integral in phase-space
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It is worth observing that all terms scaled by the γ− parameter can be removed by utilizing the term 
b b- --

g
(( ) ( ))p p1 1j j1

2 2
2 . This can be understood through the subsequent analysis [29],
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Furthermore, after performing themultiple Gaussian integrations over ( )x y t, , , theGreen function 
( )p p p p, , ,b a b a0 0 will be transformed to the Lagrangian path integral representation as follows:
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In the next section, wewill successfully complete the calculations if we use 2D spherical coordinates. Because it is
known the symmetries play a preponderant role in the preservation of the physical quantities of the system
which requires us to seek the best way of taking them into account.
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3.Green function in polar coordinates

Let us develop the above path integrals (39) in the relative polar coordinates (pρ, pθ)where the two dimensions
spherical coordinates formomentum variables
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Then inserting this in equation (39), theGreen functionwill transform as
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The third term in kinetic energy together with the last term in the procedure indicates the possibility of an angle
shift according to the following relation
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here τ is the time physics. After this step to perform the path integral over angle qp
j
, wewill use thewell-known

relation [34]
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where ( )ℓI a are themodified Bessel functions and after straightforward calculations, equation (46) can be
written as
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where ( )ℓI z are themodifiedBessel functions. TheN− integrations over the -qp
j

variables can nowbe

performed and produce theN symbols of Kronecker [34],
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These symbols can eliminate all the summations except onewhich is notedℓ.We nowdefine the radial time
evolution amplitudes by the following expressionwith respect to the azimuthal quantumnumbersℓ [34]:
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This is done taking into account the following relation
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Due to the presence of termmeasure in this expression of the propagator (52), it assumes amore
complicated form. For simplify this, wewill use the point transformationmethod (see, [12])where theϒ-point
discretization interval is defined as
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Byusing the predeterminedϒ-values outlined in [12, 13] (specifically,ϒ= 0, 1/2),CT takes on the following form:
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This transforms the radial function ( )ℓ x x p p, ; ,b a b a0 0 into the form
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The kernel propagator l( )ℓ x x, ,b a corresponds precisely to the path integral of a particle in the Poschl-Teller
(PT) potential as presented in reference [32],
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As reported in [32], the transition amplitude concerning the Poschl-Teller potential yields the following
outcome:
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and
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By adhering to the conditionof the generalizeduncertaintyprinciple outlined in the introduction,we accept the values
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while rejecting other negative values. Consequently, it leads to the following result
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In order to evaluate exactly the propagator expression, wewill formulate the Fourier transformation of (66)with
respect to p0b and p0a variables. After integration overλ at this step gives the expression,
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which has the poles
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This also validates the subsequent identity for any arbitrary function
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Moreover, to unify the expression of energy between the termsQ -( ( ))s t tb a andQ - -( ( ))s t tb a , wemake the
following change (s→− s) in the terms thatmultiplied byQ - -( ( ))s t tb a , these lead to
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n n -  + = +-ℓ ℓ∣ ∣ ∣ ∣ ( )n n s s s, , . 73s s

Hence, the representation of theGreen function takes the form
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In the following section, we provide a precise solution for our problemby benefiting fromvarious symmetry

properties of the propagator to calculate the normalized eigenspinors and their corresponding energy spectrum.

4. Eigenspinors and energy spectrum

Toobtain an exact evaluationof the propagator expression,we apply theoperator +[ ]D
b to the function (72).

Utilizing the provided relationships,we can then apply the operator +[ ]D
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In conclusion, we arrive at the spectral decomposition of theGreen function ( )S p p,b a as presented below:
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TheGreen function can be expressed through a straightforward calculation as outlined below
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Taking help from the properties of Jacobi’s polynomials, as elucidated in reference [35],
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Wecan reformulate theGreen’s function in the following expression:

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

 
å åb

p

n n
n

h h c c

b w n n
n

n

n

h h c c

n n
n

h h c c

b w n n
n

n

n

h h c c

= Q -

´

+ + + + G + + +
G + + G + +

+
- - + + + + G + + +

G + + G + +

G + + + + +

G + + +

´

+

-
- - + + + G + + + +

G + + G + +

+
+ - +

-
- + + + G + + + +

G + + G + +
G + + +

G + + - +

´

n n

a
b

n n

n n

a
b

n n

=

- -

- +

-
+ + -

-
+

-
+ +

-
+ + + -

- -
+

-

-

-
+ + - + -

-
+

q q

q q q

q q

q q q

( )

( )

( ) ( )

( )
( )

( )

( )

( )

( )

( )

( )

ℓ ℓ
ℓ

ℓ ℓ
ℓ

ℓ

ℓ

ℓ ℓ
ℓ

ℓ ℓ
ℓ

ℓ
ℓ

( ( ))

( ) !(∣ ∣ ) (∣ ∣ )
(∣ ∣ ) ( )

ϝ ( )ϝ ( )

¯ !

!
! (∣ ∣ ) (∣ ∣ )

(∣ ∣ ) ( )

∣ ∣

( ∣ ∣ )

ϝ ( )ϝ ( )

( )( )!(∣ ∣ ) (∣ ∣ )
(∣ ∣ ) ( )

ϝ ( )ϝ ( )

¯ !

( )!
( )!(∣ ∣ ) (∣ ∣ )

(∣ ∣ ) ( )
( ∣ ∣ )

∣ ∣

ϝ ( )ϝ ( )

ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

( )

(∣ ∣ ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

83

S p p t t
ı e

E
s t t

E mc n n n

n n
e

ı sm n

n

n n n

n n

n

n

e e

E mc n s n s n

n n
e

s ı sm n

n s

n s n s n

n n

n

n

e e

, ; ,
2 2

2 2 1 1

1 1

2
2 2 1 1

1 1

1

1

2 2 1 1

1 1

2
2 2 1 1

1 1

1

.

b a b a
s n

sE t t

n s
b a

n s s s

s
n b n a

ı p p
s s

s

s s

s

s
s

s

n s
s s

b n a
ısp ı p p

s s

n s s s

s
n s

s s
b n s

s s
a

ı s p p
s s

s

s s

s

s

s
s

n b n s
s s

a
ısp ı s p p

s s

1 ,

, ,
2

, ,

2

1

2 2

1

2

, ,

, ,
2

, ,

2

1

2

2

1

2

, ,

ı
n s b a

s s b a

s s b b a

s s b a

s s b b a

,







12

Phys. Scr. 99 (2024) 045223 TBenzair et al



By utilizing the symmetry properties of the propagator, we can express it in compressed form:
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From this perspective, we can conclude that the normalized eigenspinors of our system are defined by:
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andwe can return to the old variables bymeans of the following relations h b= = - rx pcos 2 1 2 .2

While the spectral energies remain as the pole expressions given in equation (70), it is observed that for
ω= 0, we can substitute w̄m with (e c2 )and q̄ with a b+( ( ) )e c2 2 in equation (70).Meanwhile, as 
approaches 0, we obtain the following result:
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Thisfinding underscores that, in the context of the Snyder (anti)-de Sittermodel, the energy levels still exhibit a
dependence on n2 even in the absence ofω− oscillation andmagnetic fields  . Typically, in deformation theory,
the values ofα andβ are very small. Therefore, we can perform afirst-order expansion of (70)with respect toα
andβ. This leads us to the following result:
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Here, thefirst term represent the Landau levels of (2+1)-dimensional Dirac oscillator in the presence of
homogeneousmagnetic fieldwithout deformation (HUP),
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and the second term is the quantumgravity correction.
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In limit caseα→ 0, the expression of equation (70) reduces to that of the flat Snydermodel,
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1. In limit case β→ 0, one recovers the spectral energies for the Heisenberg algebra in an (anti-)de Sitter
background [11],
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Using natural units (ÿ= c= 1), we compute the conventional energy eigenvalues of theDO and the
corrections introducedwithin in the context of SdSmodel for a single electron. This calculation is carried out
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using equations (88), (89), (91) and (93), withα= 10−70 andβ= 10−40,m= 0.5MeV, andmω= 1MeV2,
while considering the case s=+ 1. Thus, table 1 displays the specific energy spectrum values corresponding
to various combinations of n andℓ. It is worthmentioning that the ground energy values in table 1 remain
unaltered due to the SdSmodel.

Moreover, we can observe that the spacing of the energy levels gives a stable result in the following figure 1
Comparable outcomeswere achieved for the two-dimensional DiracOscillator (2D-DO) in the presence of

the ExtendedUncertainty Principle (EUP) [17]. Additionally, similar results were obtained in the case of the
one-dimensional DOwithin anti-de Sitter space [15] and in scenarios involvingminimal lengths [14]. It is
evident that in the absence of the SdS (Snyder-de Sitter) algebra, the energy level spacing for the 2D-DO is zero.
This implies that in regular space, energy levels tend to become continuous for large values of n, while the
deformation coefficient continues tomaintain the separation of energy levels.

5.Massless dirac particle in graphene layer

In this context, we are consideringmassless Dirac fermionswithin aGraphene layer situated for the SdSmode
and subjected to an external uniformmagnetic field.We obtain the expressions for energy andwave functions by
setting w w¯m m 2c and c→ VF in equations (70) and (85). Thus, the resulting energy spectra and
corresponding eigenspinors are given by:

Figure 1.The energy spacing between adjacent levels as a function of n andℓ = 0with s= 1.

Table 1.The ordinary energy eigenvalues and the corrected ones of the 2DDirac oscillator in the presence of homogenuse
magnetic field (inMeV) for a single electron at different values of n andwith s = + 1.

state n ℓ ℓEs n, ,
0 D ´ + ´- -( )ℓE 10 0.9 10s n, ,

1 70 43 D ´a= -( )ℓE 10s n, ,
0 70 D ´b= -( )ℓE 10s n, ,

0 40

0 0 0.510 999 0 0 0

1 −1 0.709 591 8.455 57 0.007 763 8.455 57

0 0.618 32 4.851 854 0.004 454 4.851 854

1 0.618 32 8.086 424 0.007 424 8.086 424

2 −2 0.863 667 23.157 084 0.021 26 23.157 084

−1 0.790 392 18.977 918 0.017 423 18.977 918

0 0.709 591 14.092 617 0.012 938 14.092 617

1 0.709 591 19.729 664 0.018 114 19.729 664

2 0.709 591 25.366 71 0.023 289 25.366 71

3 −3 0.994 143 42.2474 0.038 787 42.247 45

−2 0.931 193 37.586 202 0.034 508 37.586 202

−1 0.863 667 32.419 918 0.029 764 32.419 918

0 0.790 392 26.569 085 0.024 393 26.569 085

1 0.790 392 34.160 252 0.031 362 34.160 252

2 0.790 392 41.751 419 0.038 332 41.751 419

3 0.790 392 49.342 586 0.045 301 49.342 586
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These results is in accordance with those ofGraphene in curved Snyder space as reported in reference [23]. It’s
important to highlight that these authors did not provide an exact solution due to the omission of calculating the
wave function expressions.Moreover, we can generate plots illustrating the energy levels for a single electron
using equations (94) , forα= 10−70,β= 10−40,VF= 0.00373, while considering the case s=+ 1.

Wenote that infigure 2(a), all cases of curves energy levels are the samewhen the quantumnumber principle
n between 0 and 1.5× 1038. Then the curves of the two cases ((α≠ 0,β≠ 0) and (α= 0,β≠ 0)) separates from
the two cases ((α≠ 0,β= 0) and (α= 0,β= 0))when n> 1041, which is shown in thefigure 2(b).Whereas in
figure 2(c), the plot of the state (α≠ 0,β= 0) is separated from state (α= 0,β= 0) if the quantumnumber
n> 1069.

6.Non-relativistic limit

Toderive the energy levels in the non-relativistic limit for the 2D-DOwithin the framework of a uniform
magnetic field and the anti-de Sitter space system, we take the limit asmc2→∞ . Employing a second-order
Taylor expansion of equation (70), we obtain the following result:

Figure 2.En,α,β versus the quantumnumber n for different values of the deformation parameters.
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withmc2 represents the rest energy of the particle, the second and third terms represent, respectively, the energy
of the non-relativistic 2Dharmonic oscillator of frequency w̄ and the correction in the context of the curved
Snyder space. In the non-relativistic limit, the normalizedwave functionswith spin 1/2 are given by
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In limit caseα→ 0, equation (96) becomes as,
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In limit caseβ→ 0, equation (96) transforms as,
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From equation (96) and infirst order of (α,β), we can find the energy spectrum for a spinless nonrelativistic
particle (s= 0) in the presence of an uniformmagneticfield
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Thefirst and second terms in equation (101) represent respectively the energy level for a spinless non-relativistic
oscillator of frequencyω particle interactingwith a uniformmagnetic field in usual quantummechanics (HUP),
and the relativistic correction both in the context of themodification of theHeisenberg algebra. Also, if we take
the limit  0, equation (101) transforms to
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Here, thefirst term is the energy level for a spinless non-relativistic oscillator of frequencyω particle inHUP, and
the second is the first correction of deformation in non relativistic case.

7.Without deformation case

In order to obtain the ordinary case, we discuss the two limits:

1- Limitα→ 0,β≠ 0:

To get the usual wave functions for the 2DDirac oscillator in the presence of uniformmagnetic field, we
replaceα= 0, equation (85) becomes as
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where a=
ℓ

( )En s, ,
0 is the energy spectrum for theDirac oscillator in two dimensions and in Snyder space
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2- Limitβ→ 0,α→ 0:

In order to obtain the ordinary case, let us derive the spinorial wave functions inmomentum space
representation of the usual Dirac oscillator by puttingβ→ 0 andα→ 0 (i.e., q ¯ 0), andwe canwrite nb

s in
equation (105) as
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g ( )L xk are Laguerre polynomials. Therefore, in the limit q ¯ 0, the spinorial wave functions become
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where q=
ℓ

(¯ )En s, ,
0 is the usual energy spectrum for theDirac oscillator in two dimensions (see [4, 36, 37])

w=  + + - + -q= ℓ ℓ¯ ( ∣ ∣ ) ( )ℓ
(¯ )E m m n s2 2 1 . 110n s, ,

0 2

In addition, in the absence of deformation parameters, the authors in [7] have formulated the same problem
using the path integralmethod, deriving the same formula for the standard energy levels of the 2DDirac
oscillator as given in equation (110). However, the spinorial eigenfunction, as presented in equation (109), is
discovered to be the Fourier transformof the eigenfunction computed in a previous paper.

8. Thermodynamic functions

Next, let us delve into the thermodynamic properties of a solitary electron engagedwith theDirac oscillator
operatingwithin themodified algebra outlined in equation (2). To compute these properties, our first task is to
derive the partition function for this particular system. The partition function is given by the following
expression

å= b

=

¥
- ( )¯Z e . 111

n

E

0

n

Here, we introduce the parameter b =¯ ( )k T1 B , where kB represents the Boltzmann constant, andT signifies
the temperature of the system. In this context, the energy levels En are determined by equation (87).We
specifically concentrate on the positive energy levels since for negative energies, the summation in equation (111)
becomes divergent. Additionally, we consider s=+ 1 andℓ= 0,
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In thefirst-order approximationwith respect to q̄, we obtain the following expression for the partition function:
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with w= =¯a m c b m c4 ,2 2 4 .We can evaluate the sums in (113) by applying the Euler-Mclaurin summation
formula, we have
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whereB2p are the Bernoulli numbers,B2= 1/6,B4=− 1/30, ..., and f (2k−1)(0) is the derivative of order (2k− 1)
at x= 0
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The integral over x in equation (113) is given by
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Thus, the partition function can be expressed as follows:
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To compute the partition function, it is necessary to evaluate the sumpresented in the expression above. In our
particular case, this summation can only be accomplished through numerical techniques. Up to k= 2, the sum
can be represented as follows:
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At high temperatures ( b̄ 1), it is important to note that all the termswithin the sumpresented in
equation (121) exhibit positive powers of b̄ , and these terms are considerably smaller when compared to the
remaining term in equation (120). As a result, we can safely omit the terms involving b̄n and the terms that do
not contain b̄ , leading to the following simplified formof the partition function:
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Thefirst term in the partition function corresponds to the conventional two-dimensional Dirac oscillator in
standard quantummechanics. The terms involving represent the effects of spatial deformation due to the
presence of SdSmodel.With the partition function established, we can derive various thermodynamic functions.
For instance, theHelmholtz free energy of the 2DDirac oscillator subject to a homogeneousmagnetic field at
high temperatures can bewritten as follows:
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The connection between themean energy and the partition function can be defined
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As q ¯ 0, we regain the standardmean energy corresponding to theHeisenberg uncertainty principle (HUP)
algebra.

For the heat capacity, we have
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In the limit q ¯ 0, which corresponds to the absence of the SdS algebra, the heat capacity remains constant,
specificallyC= 2kB. However, in the presence of SdS algebra, it is evident that the heat capacity exhibits
temperature-dependent variations due to themodification introduced by the standardHeisenberg algebra.
Finally, the entropy is defined as
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Here, b( ¯ )S0 represents the entropy for the (2+1)−dimensional Dirac oscillator under a uniformmagnetic field
within theHUP algebra. It is given by the following expression:
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Figure 3.Partition function for the 2D-DOwith uniformmagneticfield as a function of temperature kBT for different values of the
deformation parameters.
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Figure 4.TheHelmholtz free energy function for the 2D-DOwith uniformmagnetic field as a function of temperature kBT for
different values of the deformation parameters.

Figure 5.Themean energy function for the 2D-DOwith uniformmagnetic field as a function of temperature kBT for different values
of the deformation parameters.
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Meanwhile, bD ( ¯ )S1 denotes thefirst-order correction term for entropy in terms of (α,β), and it is expressed as,
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In the subsequent figures, we present a comparative analysis of the thermodynamic properties of our system
across different deformation parameters. To facilitate this presentation, we adopt the natural unit system,where
ÿ, c, and kB are all set to 1, resulting in dimensionless parameters. To ensure accuracy, we have carefully chosen
specific values for the relevant physical quantities. These values include the oscillator parameter at approximately
2MeVwithin the high-temperature range, the electronmass set atm= 0.5MeV, and anmagnetic field  of
0.2MeV2. Consequently, we depict the thermodynamic properties infigures 3–7 as functions of temperature
(kBT). Thesefigures showcase the behavior of these properties for four distinct sets of deformation parameters,
specifically, (α= 10−70,β= 10−40), (α= 0.0,β= 10−40), (α= 10−70,β= 0.0) and (α= 0.0,β= 0.0).

Notably, the figure 3(a) demonstrates that the SdS algebra leads to a surge in the partition function from
kBT= 1× 1019 to approximately kBT∼ 2.5× 1019MeV. Subsequently, the curves 3(b) corresponding to (α≠ 0,
β≠ 0) and (α= 0.0, β≠ 0) goes down to zero after the temperature kBT ∼ 1020MeV. However, the other two
curves line up closely up to kBT ∼ 5 × 1038MeV, after which the curve for (α≠ 0,β= 0) collapses to zero
when kBT surpasses 1035MeV infigure 3(c).

Infigure 4, we have theHelmholtz free energy for the one-dimensional Dirac oscillator within the SdS
context as a function of kBT and this depiction indicates that the SdS algebra leads to a decline in the
F− function, spanning from kBT= 1× 1019 to kBT ∼ 6× 1019MeV across all four cases of deformation
parameters infigure 4(a). Beyond kBT> 1039, the curves 4(b) for both ((α≠ 0,β≠ 0) and (α= 0,β≠ 0)) vanish
whenβ≠ 0. Meanwhile, the case characterized by ((α≠ 0,β= 0)) has an effect up to temperature
kBT> 1021MeV infigure 4(c).

Furthermore, within the SdSmodel, themean energy exhibits a growth as the temperature rises, as depicted
infigure 5(a). Infigure 5(b) it is shown that for the cases (α≠ 0,β≠ 0) and (α= 0,β≠ 0), the curves decline to

Figure 6.The heat capacity function for the 2D-DOwith uniformmagneticfield as a function of temperature kBT for different values
of the deformation parameters.
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zero after reaching the temperature kBT ∼ 1021MeV. However, for the case (α≠ 0,β= 0), the curve 5(c) goes
down to zerowhen kBT surpasses 5 × 1039MeV.

Also, the heat capacity infigure 6(a) is a constantC= 2kBwhen kBT< 1011. Then, when kBT> 1019MeV the
cases ((α≠ 0,β≠ 0) and (α= 0,β≠ 0)) increase with the increasing temperature, which is presented in
figure 6(b). Thefigure 6(c) shows the increasing of the capacity for the case (α≠ 0,β= 0)with the increasing
temperature at kBT> 1032.

Finally, infigure 7(a), we plot the effect of SdSmodel on entropy function in three images. According to the
figure 7(b), the aSdSmakes the values of entropy smaller with temperature for the cases ((α≠ 0,β≠ 0) and
(α= 0,β≠ 0)) at temperature kBT> 1019.Whereas, infigure 7(c), the entropy function of the case (α≠ 0,
β= 0)decreases with temperature kBT> 1038.

From the above figures, the effect SdS algebra on the thermodynamic functions have amore significant
impact when theα− parameter is present compared to theβ-parameter. Likewise, we can deduce the
thermodynamic properties and appropriate curves for the aSdSmodel case simply by substituting (α andβ) by
(−α,−β). Finally, whenα= β= 0 andmagnetic field tends to zero ( )0 , our results are very accurate. The
thermal properties of the three-dimensional Dirac oscillator without deformed commutation relation of the
Heisenberg uncertainty principle are consider in [38]. Alsowe can recover all thermodynamic functions for the
massless Dirac fermions inGraphene layer in a curved Snyder spacewhen takes the limits w w¯m m 2c and
c→ VF (see [23]).

9. Conclusion

In this paper, we have investigated the behavior of the 2DDirac oscillator subjected to a constantmagnetic field,
using themomentum space representationwithin the framework of the SdSmodel principle. Infirst, we
introduced a novelmodel for theGreen function that is applicable to the generalized SdS algebra. Subsequently,
we straightforward integrate over even trajectories, leading to the precise calculation of theGreen’s function in
polar coordinates. The passage to polar coordinates has facilitated the determination of the energy spectrum and

Figure 7.The entropy function for the 2D-DOwith uniformmagnetic field as a function of temperature kBT for different values of the
deformation parameters.
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the associatedwave functions. It has been demonstrated that the SdS introduces a dependence of energies on
both n andℓ, evenwhen oscillations andmagnetic field are not present. This effect leads to the emergence of
phenomena such as harmonic oscillation, anharmonic vibration, and confinement. Furthermore, our
investigation has revealed that as n assumes large values, the energy level spacing remains constant, with the
deformation parameter q̄ effectivelymaintaining the separation between energy levels. The same observation
was alsomade in the referencementioned. [17]. In analysis we clarify that, under specific conditionswhen
w w¯m m 2c and c→ VF, the behavior of theDirac oscillator system in the presence of a uniformmagnetic

fieldwithin the SdS algebra closely resembles to the dynamics of themonolayerGraphene problemwithin the
same algebraic framework. Furthermore, we have thoroughly examined all the distinct scenarios and special
cases of theDirac oscillator problem in the presence of a uniformmagnetic field, using the framework of the SdS
model.

Finally, when considering high temperatures, we applied the Euler-MacLaurin formula to compute various
thermodynamic properties of our systemup to thefirst order of (α,β). These properties include the partition
functionZ, theHelmholtz free energy F, themean energyΞ, the entropy S, and the heat capacityC. Through
graphical representations of the SdS terms in these thermodynamic functions against temperature kBT, we have
illustrated that the influence of theα-deformation parameter ismore significant than that of theβ-parameter. It
is important to note that, currently, these effects cannot be experimentally detected.
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