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Abstract

In the context of the non-relativistic Snyder-de Sitter model, this research aims to investigate
the relativistic oscillators and non-relativistic quantum mechanics in momentum space using
the path integral formalism. This examination is demonstrated in three main parts. In the first
part, we formulated the D-dimensional momentum space path integral transition amplitude
for both harmonic oscillators and free particles. Through the application of quantum correc-
tion rules, we derived the exact energy spectrum and the normalized radial momentum space
eigenfunctions, while also investigating limiting cases for small parameter values. In the sec-
ond part, we examined the relativistic Green function employing the same algebraic model,
under the influence of a homogeneous electric field, for a Dirac oscillator particle with mass m
and charge e. This analysis is followed by computing the propagator function and determin-
ing the associated spectral energies. Additionally, we examine the thermodynamic properties
of an electron gas at high temperatures across four deformation parameter sets, analyzing their
impact and deducing limiting cases for small parameter values. In the last part, we applied
the path integral formalism to the Green function equation of a (1 4 2)—dimensional Dirac
oscillator under a homogeneous magnetic field, utilizing the modified Snyder algebra by S.
Mignemi (2012). Across radial coordinates transformation, we computed the Green function
and electron propagator, extracting exact bound states and their associated spectral energies.
Our investigation unveiled that when m® — ma@, /2 and ¢ — VF, the behavior of the Dirac os-
cillator system under a uniform magnetic field within the Snyder-de Sitter algebra mirrors the
dynamics of the monolayer Graphene problem within the same algebraic framework. More-
over, we derived the thermodynamic properties of the electron gas at elevated temperatures
across four deformation parameter cases, assessing their influence and deducing limiting be-
haviors for small parameters.

Keywords: Propagator, Green function, Dirac oscillator equation, Snyder-de Sitter model,

Homogeneous electric field, Homogeneous magnetic field, thermos dynamic properties.



Résumeé

Dans le contexte du modele de Snyder-de Sitter non relativiste, cette recherche vise a étudier
les oscillateurs relativistes et la mécanique quantique non relativiste dans I’espace des impul-
sions en utilisant le formalisme du I’intégrale de chemin. Cette étude est présentée en trois
parties principales. Dans la premiere partie, nous avons formulé I’amplitude de transition du
I’intégrale de chemin de 1’espace des impulsions D-dimensionnelles pour les oscillateurs har-
moniques et les particules libres. En appliquant les regles de correction quantique, nous avons
dérivé le spectre d’énergie exact et les fonctions propres normalisées de 1’espace des impul-
sions radiales, tout en examinant les cas limites pour de petites valeurs de parametres. Dans
la deuxieme partie, nous avons examiné la fonction de Green relativiste en utilisant le méme
modele algébrique, sous I’influence d’un champ électrique homogene, pour une particule os-
cillateur de Dirac avec une masse m et une charge e. Cette analyse est suivie par le calcul
de la fonction de propagateur et la détermination des énergies spectrales associées. De plus,
nous examinons les propriétés thermodynamiques d’un gaz d’électrons a haute température
a travers quatre ensembles de parametres de déformation, en analysant leur impact et en dé-
duisant des cas limites pour de petits parametres. Dans la derniere partie, nous avons appliqué
le formalisme du I’intégrale de chemin a 1’équation de la fonction de Green d’un oscillateur
de Dirac (1+2) dimensionnel sous un champ magnétique homogene, en utilisant 1’algebre de
Snyder modifiée par S. Mignemi (2012). A travers la transformation des coordonnées radiales,
nous avons calculé la fonction de Green et le propagateur d’électrons, extrayant les états liés
exacts et leurs énergies spectrales associées. Notre étude a révélé que lorsque m® — mm,/2
et ¢ — Vp, le comportement du systeme d’oscillateur de Dirac sous un champ magnétique
uniforme dans 1’algebre de Snyder-de Sitter reflete la dynamique du probleme du Graphene
monocouche dans le méme cadre algébrique. De plus, nous avons dérivé les propriétés thermo-
dynamiques du gaz d’électrons a des températures élevées a travers quatre cas de parametres
de déformation, évaluant leur influence et déduisant des comportements limites pour de petits
parametres.

Mots clés: Propagateur, Fonction de Green, Equation de I'oscillateur de Dirac, Modele de
Snyder-de Sitter, Champ électrique homogene, Champ magnétique homogene, Propriétés ther-

modynamiques.
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Chapter 1

General Introduction

In the late 19" century, the main focus of physics revolved around classical Newtonian me-
chanics to explain the dynamics of material bodies, along with Maxwell’s electromagnetic
theory to described radiation in the form of electromagnetic waves. Thermodynamics was also
effectively utilized to study interactions between matter and radiation. Building upon these
accomplishments, physicists believed they had attained a comprehensive understanding of na-
ture, grounded in the principle of determinism. However, as the 20" century dawned, classical
physics faced major challenges and complexities, especially in light of its inability to explain
phenomena at the microscopic level. This shortcoming has become clear with the emergence
of modern techniques for examining atomic and subatomic structures, such as studying atomic
and molecular structures and the interactions of light with them. Phenomena like the emission
of radiation by a black body, the occurrence of the photoelectric effect, and the stability of
atoms have played crucial roles in motivating the exploration of quantum mechanics. In 1900,
Planck presented a precise explanation of black body radiation (the concept of the quantum
of energy), which subsequently initiated a cascade of new discoveries, leading to solutions for
some of the most significant problems of that era. These developments include Compton’s
confirmation in 1923 of the photoelectric effect and the scattering of X-ray photons, Bohr’s
demonstration in 1913 of atomic stability in his model of the hydrogen atom, and Einstein’s
solution in 1905 to the photoelectric effect problem. which have the characteristics of particles
with momentum /v /c where V is the frequency of the X-rays. Up until 1925, all these discov-
eries were collectively referred to as "old quantum mechanics". Only when Heisenberg, Dirac,
and Schrodinger established the accurate mathematical framework governing these microphys-
ical phenomena, which is rooted in the principle of probability. Historically, three independent
formulations of quantum mechanics have emerged. The first, known as matrix mechanics or
relies "matrix algebra", was developed by Heisenberg-Dirac in 1925. Schrodinger introduced

wave mechanics as the second theory, which is an extension of de Broglie’s hypothesis. This



2 General Introduction

formulation, which is more straightforward compared to matrix mechanics, explains the be-
haviour of tiny particles through a wave equation called the Schrodinger equation, instead of
the eigenvalue matrix employed by Heisenberg. In 1948, Feynman introduced his well-known
path integral representation of the kernel of the Schrédinger equation in his renowned paper
published in Reviews of Modern Physics. This method merged the concepts of probability
and determinism. As is well known, the transition from classical to quantitative description
primarily depends on the Hamiltonian function, On the other hand, the quantum mechanics
formulation essentially ignored the Lagrangian formulation. In 1933, Paul. A. M. Dirac was
the first to highlight the potential importance of the Lagrangian in quantum mechanics in a pa-
per (referred to as Paper Dirac). Building on Dirac’s insights, Feynman developed what he
called the Lagrangian formulation of quantum mechanics. Feynman initiated his exploration
of the classical action S(x(¢)) and linked it to the principles of quantum mechanics probabil-
ities. In this connection, he illustrated that the probability amplitude of a particle following
a specific path or trajectory x(¢) is linked to the exponential factor exp [%S (x(t))]. The path
integral method provides an effective and adaptable framework for studying various physical
systems and phenomena. This approach has become an essential tool in theoretical physics,
encompassing quantum mechanics, quantum field theory, statistical physics, condensed matter
physics, cosmology, and black hole physics.

After Feynman successfully established his approach based on Heisenberg’s uncertainty prin-
ciple in standard quantum mechanics Ax;Ap; > %& i [1-3], the practical applications of this
approach continued in both relativistic and non-relativistic cases [4-9]. Subsequently, this
approach experienced a broadening of its applications to systems that stem from the generali-
sation of Heisenberg’s principle. For instance, in the domain of quantum gravity [10, 11], the
behaviour of systems deformed quadratic algebra is used to model the dynamics of systems
with variable masses in semiconductor heterostructures [12], the description of the low energy
excitations of Graphene, and the Fermi velocity. This results in the momentum commutator
being proportional to pseudo-spin [13] ... etc.

Our research attempts to cover the recent developments in the field of path integrals within

these kind of deformed algebras, especially the context of quantum gravity and string theory



[14=17]. In 1947, Snyder [18] presented his model to address the divergences that arise in
Quantum Field Theory (QFT) when discretizing spacetime. Snyder’s model can be understood
as a form of Doubly Special Relativity (DSR) that includes an additional universal constant

alongside c, the speed of light in a vacuum

Vv, Xo] = ih (NuoXv = veXu) , [Juv. Ps] = it (MuoPy = NvePu) |

With 1,y = (—1,1,1,1). The coupling constant denoted by f is approximately equal to the
Planck length and has dimensions|B] = [momentum)~2. The operators Jy,y = X, P, — P,X,,
serve as the generators that maintain the Lorentz symmetry. In addition, the generalisation
of this model to spacetimes with uniform curvature involves the introduction of a novel fun-
damental constant that is directly proportional to the cosmological constant. This modified
model is characterised by three unchanging scales: the velocity of light in a vacuum ¢, a mass
B, and a length «. It is known as Triply Special Relativity (TSR) or the Snyder de Sitter (SdS)
model [20-24].

[fuon} =ih (nucﬁv - nvchu) ) [fuwpo} =ih (nuopv - nvcpu) )
R, B = i (M + @ Xy + BB, + /@B (B + KBy — ) )

To the best of our knowledge, only a limited studies have used the path integral approach to
investigate the characteristics of SdS space in relativistic and nonrelativistic quantum mechan-
ical systems.

The primary objective of this thesis is to employ the path integral approach within the frame-
work of Snyder model. It aims to explore the behavior of both relativistic and non-relativistic
particles with spin 1/2 travelling in a homogeneous magnetic and electric field within momen-
tum space representations.

Structured into four chapters, the thesis begins with an introduction and ends with a conclusion.

In chapter two, we provide an overview of the path integral approach in quantum mechanical
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systems without deformation. Chapter three, formulates the D-dimensional momentum space
path integral transition amplitude for the harmonic oscillator and free particle, deriving exact
expressions for energy spectrum and relative wave functions. Chapter four, focusing on the
employment of the path integral approach to derive the relativistic Green function for a (1+1)-
Dirac oscillator system under a uniform electric field within the SdS model. It computes
the propagator function, relevant spectral energies, and thermodynamic characteristics of a
single electron at high temperatures. In Chapter five, we analyze the behavior of the (1+2)-
dimensional Dirac oscillator system in a uniform magnetic field within the SdS algebra model,
demonstrating its similarity to monolayer Graphene dynamics. It derives precise bound states,
energy eigenvalues, and plots thermodynamic functions for the system. The final chapter

presents a summary of findings and overall conclusions drawn from the study.



Chapter 2

Concept of Path Integral Formalism in

Standard Quantum Mechanics

2.1 Historic backgrounds

In the general introduction to this thesis, we have outlined the historical evolution of the
mathematical frameworks governing quantum physics. These frameworks are primarily
based on two fundamentally distinct formulations: Schrédinger’s differential equation and
Heisenberg’s matrix mechanics, introduced between 1925 and 1926. Quantum mechanics
builds upon the Hamiltonian formulation of classical mechanics, where the quantum Hamil-
tonian operator H (%, p) is derived from the classical Hamiltonian H (x, p) by simply replacing

p — p = —ihd/dx. This concept may be illustrated schematically as follows: [3]: While the

Classical Mechanics Quantum Mechanics

1. Variables: x, p {c-numbers),{x,p} = 1 x, p (operators), [x,p] = 1

2. Hamiltonian: H(x, p) ﬁ[;, ;]

3. Dynamical Law:  df(x,p)/dt = {f,H} a) Heisenberg Eq : m% = [f,H]
e ay _ -

H. J. equation ? b) Schridinger Eq : ih 3 - Hy

H = H(x, -1hd/dx)

4: Lagrangian: L(x, x) ?

Figure 2.1: Classical description versus quantum description
formulation of quantum mechanics is not directly based on the Lagrangian function (see Ta-
ble 2.1), implying the impossibility of precisely measuring a quantum particle’s position and
momentum simultaneously, it was from this conceptual framework that the third mathemat-
ical formulation of quantum mechanics emerged, devised by Richard Feynman in 1948. On
the other hand, the probability of an event is represented by the square of the modulus of the
amplitude. In other words, for an event such as a particle leaving point (@) at time (#,) and ar-

riving at point (b) at time (,) with (7, > 1), the event’s probability is expressed as the square
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of the amplitude. The probability amplitude associated with this event is denoted as K (a,b),

the probability of event is given by [25]
P(b,a) = |K (a,b)|*. (2.1)

Physically, from slit experiment, in quantum mechanics, there are multiple ways for an event
to happen. The probability amplitude of the event is the sum of the probability amplitudes
corresponding to each way.

K(a,b) =) K;(a,b). (2.2)

Moreover, if the particle travels from point (a) to (b) via point (c) at time (¢.), where (¢, <
tc <tp), the probability amplitude of transitioning from (a) to (¢) and then from (c) to (b)

(Intermediate Principle) is defined as
K (a,b) =K (a,c)K(c,b). (2.3)

Unlike classical particle, which follow specific paths (classical paths) from point (a) to point
(b), quantum particle traverse all possible paths between these two points. Therefore, ac-
cording to the principle of superposition, the probability amplitude of such an event can be

expressed as

K(a,b)= Y ®(x(1)). (2.4)
All the path
possible

Where @ (x (7)) is the probability amplitude of path x() linking (@) and (b).
Let us postulate, additionally, that the contribution of each path acquires a phase proportional
to the action S(x(¢)), corresponding to the path x(r)

i

@ (x (1)) = Cexp [ hs@@))} , (2.5)

where

S(x(1)) = /t "Lk t) dr. (2.6)
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Here, C represents the normalization constant of the amplitude, appropriately chosen. How-
ever, the selection of ® (x (7)) and S(x(¢)) is not arbitrary. It results from an analogy between
quantum systems and their classical correspondents, particularly when 2 — 0. It is easy to see
that S(x(7)) defined by equation (2.6) becomes the classical action and the probability ampli-
tude takes the classical form K (a,b) = Cexp [%Sd} where S.; = S (X) is the classic action,with
(x) denoting the classical path of the particle.

To sum over all paths, we initially divide the time interval (7, —7,) into N intervals, where
tj—tj_1 = &, 1, —t, = N€. Consequently, each path can be discretely defined by a sequence of
points(xg = @, X]........ xXn—1,xy = b), which, as € — 0, converges to the continuous path x (7).
Thus, the amplitude of the path x(z) becomes a function of this sequence of points and is
denoted as ¢ (xp, ....,xy). In the limit as € — 0, it essentially depends on the continuous path
x(t).

Now, applying the principle given by the equation (2.3), it follows that

(P(xl, ...... ,xn):H(Z)()Cj,Xj,l), (27)

where @ (x iy X j,l) represents the probability amplitude of the part of the path bounded by the
points x; and x;_1, which we will determine subsequently. The sum over all paths is then
obtained by integrating over all points (xp, xi,...xy—1, Xn), with the initial and final points

(a) and () being fixed. This yields the following rough expression for the amplitude:

N—1 N
K(a,b) ~ / Hldxjnl¢ (xj.j-1). (2.8)
j: j:

By taking the limit € — O of this expression, we include all points along the paths, resulting in

the correct expression:

N-1 N
K (Xp, tps Xasta) = glg(l)/ [Tdx 19 (xjoxj1), (2.9)
=1 =l

where
]

1
¢ (xjvxj—l) = ZGXP &S (prj—l)} ) (2.10)
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(A) represents the amplitude normalization constant, and S denotes the action between the

instants (¢;) and (¢;_1). Furthermore, we require S to be a classical action.

tA
S (xj,xj-1) :/’ L(x,%,1)dt, (2.11)
ti—1
and finally we obtain
I =L A i
K (Xp,tp;Xg,tq) = 3:1_%/ ]1;11 d)cjjIJ1 [Z exp &S (xj,xj_l)H . (2.12)
So the Eq. (2.12) is written as
(xb:tp) i [t
K (Xpsty3 X ) :/ Dx(t)]exp &/ L(x,x,t)dt] . (2.13)
(xaala) la

The expression for S defined by equation (2.11) is challenging to compute for arbitrary €.
However, an approximation can be made on S (x iy X j,l) by retaining only the first order in
€. This approximation arises from the fact that errors of order higher than €. i.e €'77>! in
S (x ir X j_l), will not contribute significantly to the calculation of expression (2.12). These
errors accumulate into an error € that vanishes as € — 0. In the case of a quadratic Lagrangian

in (X), a good approximation of S (x s X j_l) is given by

Xj+Xj_1 Xj—Xj fj+fj—1)
)

S(xj,xj_l)zsﬁ( 3 R , 3

; (2.14)

here, we already observe the emergence of that we term mid-point principle.
For a Lagrangian independent of time and not containing a linear term in (X), expression (4.14)

can be simplified to

S (xj,x; 1) = €L G,’%) . (2.15)
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', X Xa X X Kyoa
X, N N I : ' 4
x|
J:J,,f
X — \\

Figure 2.2: In between kicks by potential the system moves a very short time

For instance, given a particle subjected to the scalar potential V (x) we have:

2 €

2
m Xi—Xi—1
S(xj,xj,l) = — <M> —&vV (Xj). (2.16)
Note that from Eq. (2.9) an interesting property of the amplitude follows:
N-1
K(Xb,lb;xa,ta) - / H d-xCK (xbatb;xatc)K(xmtc;xayta) ) (21 7)
j=1

with 7, < t. < 15, indicating that events occur sequentially in time. Let us select an instant
(t;) from the subdivision #g,t...,1...ty, positioned between (fy) and (¢y) but sufficiently dis-
tant from them so that the durations #; — fy and #y — #; are measurable. In other words,

10....,t%....,tx+1, where (k) and (/) both tend to infinity. Then, we write:

k—1 k
Kotz = T [ TTdx TT0 (xjvxj1) dx
(ko)™ J=1 0 J=1
k+1—1 k41

IT ax IT ¢ (xjoxim1), (2.18)

j=k+1  j=k+1

or

K (xXp,tp3xq,t4) = /dch(xb,tb;xc,tc)K(xc,tc;xa,ta), (2.19)
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where #; = 1., this relation remains valid only for systems having an action which verifies the
locality relation

S(b,a)=S(b,c)+S(c,b). (2.20)

2.2 Wave Function

Previously, we established that K (xp,f,;x4,,) represents the probability amplitude for the
particle to transition from (x,) at time (z,) to (x;) at time (), where (x,,?,) and (x,,2,) denote,
respectively, the past and future states of the event. Disregarding its past (x,,7,), given the
knowledge that it previously existed somewhere, this probability amplitude can then signify
the likelihood of presence at point (x;,) at time (), commonly referred to as the particle’s wave

function.

K(-x/ntb, * ) = W(Xb,fb) : (221)

The dots signify that the past is irrelevant. With this definition, it becomes evident that this

wave function satisfies the following integral equation:

o0
y(x,1) = / K (x,t;x0,t0) W (x0,%0) dxo, (2.22)

—o00

where K (x,;x0,%o) is the amplitude of probability of going from (xg,#y) to (x,¢) often called
propagator of the particle, K (x,?,.,.) = ¥ (x,t) and K (xo, o, .,.) = ¥ (x0,%p), the dots designate
a past tense before (xg,7y). Equation (2.22) implies that given the wave function at time (7o) it
is possible to determine its future at time (¢ > f), all its past prior to (#p) enclosed in the initial
wave function ¥ (xg, ). Taking the limit as (f — #() in equation (2.22) it comes

~+oo
W o) = [ lim K (i, 0) W (xo.t0) dxo (2.23)

oo I

which shows that K (x,;x0,%) satisfies the following property called "normalization condi-
tion".

limK(x,t;X(),t()) =0 (x—xo) . (2.24)

t—ty
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2.3 Schrodinger Equation

We will examine the case of a particle subject to the scalar potential V (x) using expression
(2.24) for S (x s X j—l)- Conversely, for the case of a vector potential, the incorporation of the
midpoint principle becomes essential. Considering a duration ¢t — ) = € — 0, equation (2.24)

represents the propagator expression, which we can express as

1 ' —x0)?
yixite)= [ Loy [% [g% e <x>” Vion)do,  (225)
setting x — xo = 1, to = ¢, becomes
B 1 i [mn? —ieV (x)
l[/(x,t—ke)—/d’ngexp |:];l |:E?:| exp [T l//(x—n,t) (226)

The first exponential varies quickly, perhaps jump to the neighborhood of 11 ~ 0 so that 7} is of

the order of /€. Knowing that the other actors are slitally variable with 1) (continuity of the

wave function y (x(¢))), it follows that the only paths that contribute to the path integral are

for which one Ax; ~ /€ which shows the Brownian character of quantum motion (velocity

discontinuity %). Let us expand y (x—n,7) in a Taylor series to order 2 in 7 therefore to
ieV (x)

order (i) in € then let us integrate on 7 and let us expand y (x,7 + €) and exp [T} to order

i in €, we easily deduce the Schrodinger equation for v (x,7), after having identified (A) to

_ 2mihe
A= m

Loy .
i~ - =Hy. (2.27)

or H= %—FV()C) and p=—ihs.

A generalization to the time-dependent potential V (x,7) is possible, giving a result analogous
to equation (2.27). Except perhaps we should use discretization tﬁ% for the time axis.

Let us now show that the propagator can be considered as a Green function of the Schrodinger
equation. It was defined for (¢), as a wave function at the point (#;, > ,) then we can say that it
satisfied the Schrodinger equation (2.27).

d
{ih— —Hb} K=0 pour t, >~ t,.
8t1,
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Furthermore, let us impose the condition K (x,25;x4,%,) = 0, t;, < t, which expresses the fact
that the propagator does not propagate the wave functions towards the past, which is consistent

with a non-relativistic theory. It is then appropriate to pose:
K(Xb,tb;xa,ta) =6 (tb - ta)K(xbatb;xaata) ’ (228)
and easily shows, using the property (2.24) that K satisfies the following Schrodinger equation

(ihi —H) R=ihd (tp —12) 8 (xp — xa) - (2.29)
al‘b

For a time-independent Hamiltonian, the solution wave functions of the Schrédinger equa-
tion have the simple form exp (—%) ¢ (x), where the ¢ (x) satisfy the eigenvalue equation
H¢$ = E¢ and thus constitute a closed orthogonal system for the Hilbert space "space of wave

functions". Let us then expand the wave function on this basis and compare the expression

obtained with equation (2.24), we will obtain the following property

K (Xp,tp3Xasta) = LJ0(x)¢" (ua)exp [_% - ta)] pour o = fa , (2.30)

0 pour 1, <ty

which expresses the development of the propagator as a wave function, the symbol Y [ desig-
nates a summation over the discrete and continuous states. The developments carried out so

far are valid for one-dimensional systems.

2.4 Path Integral Formalism in Phase Space (Trotter’s For-

mula)
Follows the well-known canonical steps of Trotter’s formula, and in non-relativistic quantum
mechanics, the construction of the phase space path integral representation of the transition

amplitude for standard quantum systems is:

K(xbatb;xaﬂa) = <xb | U(tb,ta) ’Xa>,
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with U (t5,t,) = exp (—LH (%, p)) is the evolution operator and T = (t, —t,). Formally, let’s

T

N7 and we note that we can

xa>. (2.31)

Now let’s insert the following closure relation based on the coordinates [ |x;) (x;|dx; = 1 by

divide the time interval [t;,7,] in (N + 1) intervals equal to € =

write this expenential as

A

N times between even exp [ £ H (£, p)], with the standard form of the Hamiltonian (H (£, p) =

P L vis
£+ V(%)). Then Eq. (2.31) becomes as

N+1

K (xXp,tp;xa5ts) = hm H [/dxj} HK XjtjiXj—13tj— 1) (2.32)

Where the infinitesimal transition amplitude is defined by

K (xj,tjsxj-15tj-1) = <xj xj_1>. (2.33)

As we know, since € < 1 when N > 1, following Trotter formula we have

{22 vo] b o[22 exp[-Ev 1] 234

For a second time, let’s insert the closure relation based on the momentum [ } p j> < pj ’ dpj=1,
where we record each p; as a pulse corresponding to each of the time periods, and we find

obtain
K (xj,tj3xj-15j-1) :/dp-<x-‘exp e p 1pj){pj|exp —EV(X)e lxj—1)-
Pt Xj=151] J\rJ hoom | 1PI7\P 7 J
Furthermore, we have the actions of the following operators

plpi) =pilpj), and £|x; 1) =x;-1|x;-1), (2.35)
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more general
p;), and e V@ xj—1) = e~ 7V 1) lxj1). (2.36)

The propagator can be expressed like this:

tspl

K (xj,1j5%-151j-1) :/dpje_“me_i W) (x) i) (P |xj-1)- (2.37)

As we know in standard quantum mechanics <x | } pj) represents the plane wave

1 1

(xj|p;)= znheépm, (pj|xj-1) = zﬂhe—%lﬂm—l. (2.38)
We will then write
zsl% i€ i
K(xjvt],xj 150j— 1 /dpje_mme_hv(le)ehpj(xjle)- (2.39)

Substituting the equality of Eq. (2.39) into Eq. (2.32) The path integral representation of the

transition amplitude for a particle in the potential V (x) is expressed by

NAL g Ly 2
Di i£ Xi—Xi_1 p
K(xb,l‘b xa,ta = hm /I Ide /2 ;_l p{ [pj <%> —ﬁ—V(xj_l)] }
:1
0

Note that the integrations with respect to p; are Gaussian and can be readily performed

dpj P] i m i m 2
L) =/ L e —xi 2.41
27h Xp[ 7o T P =i 1)] Dinthe P {hZe (xj =xj-1) } (2.41)

then
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Note that at the limit N — oo where the time interval € tends to zero, the exponential in the

integral seen as Rienmman integral is proportional to the classical Lagrangian of the system

Ag (% (xj_xj—l)z—v(xj—l)e) :1%18 [(% (’%)Z—V(xj_l)”

j=1
b /m X 1 '
:/m (Exi_v(xf» d’:/l L(xj%).t)) dt, (2.43)

a

where x; = limg_,, =/~ is the speed of the particle at time ;. Finally, we have the path

integral formulation for the propagator K (xp,#5;x4;1,) given by Feynman and which we will

write in the following continuous form:

(Xpstp) i
Kt = [ Dls(oexp | 15000 (2.44)
Xasla
S[x(2)] is called classical action
Iy
S[x(7)] :/ L (x}.5;1;) dr. (2.45)
ta
The Feynman measure is denoted by
N m %
Dlx(1)] = 1313;]1;11 [dx;] (%> . (2.46)

2.5 Green Function
In non-relativistic quantum mechanics the propagation takes place towards the future (non-

relativistic causality) we then define the propagation by the Green function in following time

G(tbata) = ®(tb - ta) exp <_% (tb - ta)ﬁ) ) (2.47)

where O (t, — 1) is the Heaviside function ensures this causality.
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The matrix element between states |x,) and |x;) is then written as

I N
G(xb,xa;tb,ta) = (xb\ G(l‘b,l‘a) \xa> = @(tb —la) (xb\ exp <_ﬁ (tb —ta)H) \xa>

= 0 (lb - ta) K(Xb,tb;xa,la) . (248)
In this case, G (xp,Xx4;1p,1,) is a solution of the equation
d .
ih=—+H (xp) | G (xp,Xa3tp,ta) = —ihd (xp —x4) 8 (tp — ) - (2.49)

o,

By introducing the Fourier transform of this Green function in time, we obtain the Green

function in energy defined by
G (xp,xg; E) = %/dTeigE(’bt”)G(xb,xa;tb,tu). (2.50)
For H independent of time, this Green function satisfies
(E—H) G (xp,x5;E) = & (xp — xq), (2.51)
G (xp,X4; E) is the matrix element of an operator G (E)
G (xp,x0:E) = (x| G (E) |xa) (2.52)

and where formally we will write

G(E)= : (2.53)

and as

K (b tpi%asta) = Y eFEGTD 0, () 97 (xa), (2.54)

then this energy-dependent Green function will be written as

(Pn ) @ (xa)
Z A (2.55)

)
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2.6 The Path Integral in D-dimensional Polar Coordinates
The Feynman propagator of a particle of mass m moving in D—dimensional Euclidean space

in a scalar potential V(x) is given by

KewxaT) = [Dxlexs |+ [ (5 (77) -V ) ar].

In discrete form, it is defined by:

(N+1)4
K (xp,X4;T) = lim <2177:h8 2/ITa,’X]exp[ Z S(j,j—1 ] (2.56)

N—yoo

with

.. m
S(],]—I)Z§Ax§—8V (x;), (2.57)

where € =t; —t;_yand Au; =u;—uj_1, (u=xi,...,xg) are respectively the elementary time

interval and the interval position. Let’s go to polar coordinates:

i—1 d—1

xi=r[]sin6ccos®; ,j=1.2,..d—1xs=r][]sin6sing, (2.58)
k=1 k=1
for convenience, we have set 6y = 7/2, 6;_1 = ¢ and

0<6.<m (k=1,2....d—2), 0<¢ <2r.
J 1/2
r=Y x| . (2.59)
k=1

Following the usual polar decomposition, the propagator will be written in the polar represen-

tation as

N—H
K (rporiT) = lim () Z S(j.j—1) (2.60)

N+1
/ Hrd 'dridQ;exp

with

H (sin6})"' "V a6y, (2.61)
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which can also be put as follows

.. m —
S(],] — 1) = % [’”?‘f””?—l —2I’jrj_1COS llfj,j—l] 4 (l’j) . (2.62)

with
d—2 , 1) 4 . -y 41 . i1
cosyY ji—1 = Z cos 9\(,21 cos 9‘(,];1 ) H sin Ol(lj) sin Qﬁ(/_ )+ H sin 6\(/) sin 9\(/_ ), (2.63)
v=0 n=0 v=I1
We separate the radial part from the angular part by utilizing an alternate formula.

oo

PZCOS Y _ (E) 7v1"(\/) Z (I+V) Iy (2) Clv (cosy), (2.64)
2 =0

where C) are Gegenbauer polynomals. In our case v = (d —2) /2. for d = 2. On the other hand
ford=3,v=1/2, Cl1 /2 (cos y) = Py (cos y) (Legender polynomal) and Eq.(2.64) reduces to

another familiar formula

eV = | (g) i (21+1) L1412 (2) Pi(cosy). (2.65)
</ =0

— —
Now if y; ;1 is the angle between two D-dimensional unit vectors QU= and G the

following addition theorem applies

U i oo\ T(d/2) 204+d—2) 4
Y. st (4U7) st (8Y) = o @3 ) D2 (cosy ), (266)
‘L:

%
where S;L (Q) are the real hyperspherical harmonic of degree 1 associated with unit vector

G.1=0,1,2,.... 00 while g = 1,2, ..., M, with

(2l+d—2)(l4+d-3)

M =
11(d—2)!

(2.67)

_>
The function Sfl (Q) satisfy theorthonormality condition

/ dQS! () S () = 8y, Sy (2.68)
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For d = 3, the formula (2.66) reduces to

l

Y v, (807, (80) - 214 : Lp (coswy 1), (2.69)

m=I

%
where Y}, (Q) are the usual spherical harmonic. Using Eq. (2.64) and Eq. (2.66) in the path

integral and performing the angular integrations with the help of the relation (2.68), we obtain

I'd/2) & 21+d—-2 _
KD = 2(71?‘1//2) Z ( d-2) )Cl(d /2 (cos l//07N)Kl(d) (r”,r/;T), (2.70)
=0

for which the path integral defines the radial propagator.

o N—1

_ (o (@=1)/2 .. ﬂN/z/ / .N .
K = (") ﬁlirio(mg) i ,I:[. drjjI:I]RJ;JI, (2.71)

where

mriri_1\1/2 mrir;_ i (m
Rj;j71:< z]hé 1) Il+(d72)/2( ZJFZFJJ 1>GXP{E[g(r?Jrrjz'—l)—EV(rj)]}- (2.72)

The integrations over r; can be readily performed according to the analytical expression for

the potential function.



Chapter 3

Path Integral Approach to The D-dimensional
Quantum Mechanics of The Non-Relativistic

Snyder-de Sitter Model

3.1 Introduction

In physics, the theory of deformation often arises when considering systems in which the usual
algebraic rules, such as commutativity, are not obeyed, through the introduction of parameters.
For example, in quantum mechanics, operators representing physical observables like position
and momentum may not commute with each other, leading to noncommutative algebraic struc-
tures. As it allows for a more general description of physical systems, it has applications in
various areas of physics, including quantum field theory, string theory, and condensed matter
physics. Over the past decades, noncommutativity in spacetime has garnered increasing inter-
est. Historically, the Snyder model was the first attempt to study quantum spacetime, intro-
ducing a minimum measurable length [ 8]. This concept of fundamental length was predicted
across all approaches related to quantum gravity on a Planck scale, leading to appearance of
the Generalized Uncertainty Principle (GUP). Additionally, the Extended Uncertainty Prin-
ciple (EUP) naturally arose from the preservation of local momentum symmetry or derived
alternatively from the (anti)-de Sitter spacetime geometry.

In the latter context, the SdS algebra is defined as a nonlinear extension of the Poincaré alge-
bra and also represents a generalization of the proposed minimal length uncertainty relation
[10, 11]. It is the first proposal of quantum spacetime relying on an algebra constructed by

spacetime coordinates and Lorentz generators, thus warranting special attention for its impact
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on quantum systems. In recent times, the study of quantum mechanical models within the SdS
framework has gained significant attention. This model is regarded as an example of Doubly
Special Relativity (DSR)[20], featuring a fundamental constant 3. Depending on the positive
or negative values of parameter f, it is also referred to as the Snyder or anti-Snyder model,
respectively.

In light of this, the SdS model was created by extending the Snyder algebra to a curved de Sitter
background, characterized by a positively curved spacetime that corresponds to the accelerated
expansion of the universe. It can also be considered an example of Triply Special Relativity
(TSR) or Yang’s model [20]. In addition to the speed of light, the resulting model includes two
more essential deformation parameters: the Planck energy and the Sitter ray, which are related
to the cosmological constant. Its linked algebra is defined by the following commutation

relationship [26-32],

[xi,pj] =in <5ij + axixj+ Bpipj+ o (pix +iji)> ,

[x,-,xj} = ihﬁeijkLk and [pi,pj] = ih(XSijkLk, (3.1)

where L; are components of angular momentum operator.

As a consequence, this algebra has captured particular interest in research and extensive stud-
ies of deformed physical models. In this regard, notable examples include the classical and
quantum mechanics of a free particle and the harmonic oscillator [27], the two-dimensional
relativistic Bosonic oscillator equation moving in a uniform magnetic field [33], the three-
dimensional Dirac oscillator [32], and the exact solutions of the (1 + 1)-dimensional relativis-
tic Klein-Gordon and Dirac equations with linear vector and scalar potentials [34].
Furthermore, the introduction of these deformed algebras into the path integral framework is
crucial because the diffusion amplitudes in the ultraviolet regime are naturally regularised by
this deformation. Additionally, it provides some insights into the regularization and renormal-
ization of perturbed quantum field theory and statistical partition function, where the defor-
mation parameters being the cut off of the theory. Thanks to the path integral approach, some

problems have found solutions with a single deformation parameter. We mention some exam-
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ples: the one-dimensional propagator for the DO [35], the one dimension relativistic spinning
particle with vector and scalar linear potentials [36] the two dimensions relativistic DO [37],
the one dimension harmonic oscillator [38], the Coulomb potential [39], the Klein Gordon
particle [40], the D-dimensional harmonic oscillator [4 1] and the kernel for a free particle by
[42]. Nevertheless, despite its successful outcomes, the Feynman approach still requires re-
finement as a quantification tool. This is particularly evident in cases involving deformation or
constraints, where one does not know a priori how to select the discretization procedure. For
instance, it has been found that the use of the mid-point prescription technique is privileged
to be consistent with the direct method in the context of quantification with constraints, also
known as the Faddeev-Senjanovic formulation [43—47]. Similarly, when studying the dynam-
ics of quantum particles represented by deformed algebras using the path integral and only
one deformation parameter, the discretization problem still exists [35—37]. In the following,
the discretization problem will reappear, but this time in the presence of two deformation pa-
rameters. The primary aim of this chapter is to establish a path integral formulation for the
SdS algebra in D-dimensional momentum space with two deformation parameters and inves-
tigate both the free particle and harmonic oscillator cases. As previously mentioned, for the
discretization problem, the difficulty is identifying the most suitable quantum fluctuations as-
sociated with it. To transform the action and measure to the usual ones defined in the standard
path integral. We employ the general form of the §-point discretization method. It is worth not-
ing that the overall correction depends on this §-point discretization, and in this case, choosing
the mid-point the discretization does not yield satisfactory and consistent results for computing
the quantum corrections, as seen in the standard case [3]. In Section 2, we provide a concise
overview of the quantum mechanics associated with the deformed SdS model. Section 3 out-
lines the construction of the path integral formalism within this deformed algebra framework.
Subsequently, we compute the transition amplitude for both the free particle and the Harmonic
oscillator in D-dimensional momentum space. To achieve this, we employ spherical coordi-
nate transformation and relative angular decomposition [48], facilitating the conversion of the
radial part to that of the Poschel-Teller potential. This enables us to derive exact expressions

for the energy spectrum and relative wave functions of the problem. Finally, in Section 4, we
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summarize our findings.

3.2 Quantum Mechanics with Generalized Snyder Model
According to [27], the generalized Snyder model’s Heisenberg commutation relation in one

dimension is as follows:
[%,p] = ih (1+ 0% + B*p* + o (£p+ pR)) , (3.2)

o and B denote a small positive parameters of deformation. The following Heisenberg uncer-
tainty relation can be obtained directly from the above equation
2 2
7 |1+ 0 (Ax)"+B*(Ap)

AxAp > 2
P=3 1+ hof

(3.3)
The above-mentioned relation (3.3) results in a non zero minimum length in position and

momentum uncertainties

hp ho

—F Ap =
J1t2naB T T 2haB

According to Mignemi in [27] and Stetsko in [32], in D-dimensions, the connection between

Axpin = (3-4)

this deformed algebra and the Snyder algebra has been established, from which the represen-

tation of these position and momentum operators follows the SdS Heisenberg algebra, where
ﬁizfﬂrglﬁi, pi=(1-2)pi— gxi, (3.5)

to obtain the Hamiltonian symmetric, we can select a free parameter A in each case. The

following commutation relations are satisfied by the pair of operators (X;, p;) [27].
[%:.p,;] =in (1+B°p7), [%.%;] = B> (xipj—%;pi), [pipj] =0. (3.6)

Hence, it is feasible to redefine the expressions for these position and momentum coordinate

operators to match to the Snyder-Heisenberg brackets (3.6) using auxiliary operators X and P,
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which adhere to the standard commutation relations, as described in [27].

- Aro A 2 P %4 8500 2
:\/l—ﬁZPin—f—FBm,Pi—_E\/l—ﬁZPZXi—i—(l—l) 5 (3.7)

Within the framework of the anti-SdS (aSdS) algebra model, all real values of P are permissi-

3

ble. However, if o, B2 > 0, the permissible range of P is limited by P> < 1/B2. The operators
of £ and p are symmetric only within the subspace L2(R2,dP//1 — B*P2), where the scalar

product is defined as follows

1/B dP
<W|¢>:/l/ﬁ\/1_—ww*(f’)¢(f’)a (3.8)

the wave function satisfies the periodic boundary conditions, with y(—1/8) = w(1/B). This

results in the following closure relation

1/B
Pl=1. 3.9
[ i (3.9
We define, following the approach of [ 10, 1 1], the projection relation for the free case as follow

<P|P’> - (11—1;—?’[,22) "J1-B2P25 (P—P) and y=i(1—A) /2haB, (3.10)

on the other hand, regarding the harmonic oscillator potential, we have

Y
<P|P’> - (11_‘;#1,22) "\J1- B%P25 (P—P') ,and v = iA /200t (3.11)

When o2, B2 < 0, it results in maximum momentum but no minimum positional uncertainty,
this is known as the SdS algebra representation. In this instance, we alter the integration limits

across the space in the equation above.
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3.3 The Schrodinger Picture of the NR Snyder de-Sitter

Model

As evident from this chapter, there are only a few cases where exact solvability is achievable.
Next, we will proceed to calculating the solutions dynamics of a free particle and the harmonic

oscillator potential, both in one and D dimensions.

3.3.1 Free Particle in 1D

Initially, we consider the Schrodinger equation for a free particle in one dimension for unit

mass, as follows

2 i 2 2
Iy (ﬁ_z) pr _dv B [P na/b 2B 1o (@12)

oP? ha ) 1-B2P2dP R | (1-p2p2)2 1—B2P?

For SdS case, there are solutions of (3.12) that vanish at P = +1/f3. These solutions have the

following form:

i V2E
W = const X (1 — [32P2) 2B cos [ o arcsin 3P|, (3.13)
assuming an odd integer n in E = hz‘éz"z , the values of Ax in these solutions are finite. Addi-

tionally, for an SdS, the energy is not quantized, rather, the momentum eigenfunctions provide

the pertinent solutions.

3.3.2 Harmonic Oscillator in 1D
We now consider the one-dimensional quantum harmonic oscillator, where the Hamiltonian is

given below:

A2 242

~ D mayx

H=_— 3.14
T (3.14)

to simplify the computations, we exploit the flexibility to choose the coefficient A in the rep-

resentation 3.6 such that the cross terms PX + X% in the Hamiltonian vanish, setting

o

- 3.15
B2wf + a? 3.15)
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given this selection, the Schrodinger equation takes the following form:

o, (BPag+a)
Biag

1 pog 52
—— X =Evy. 3.16
2 B0y + o v=Ev (3.18)

Using the realization (3.6) of the operators, (3.16) can be written as

92 P d 1 P? 28
y BP dy _ w=0, (3.17)
0P 1-B2P2dP R’ @2 (1 _ﬁ2P2>2 1— 2P
. a2 o (XZ

where @ = (1 + —[52(»20) @p and & = (1 + —ﬁ2@0> E.

Specifically, when (az, [52) > 0, the equation takes a form similar to that of the flat Snyder
model, albeit with distinct coefficients, and can be solved through the same methodology,
from (3.17) we derive the standard Schrodinger equation for a potential by definig a variable
P = arcsin B P is defined

1 _

V= EtanZP. (3.18)

To obtain the explicit solution for (3.17), it is more practical to define the variable z = (1 +

BP)/2, which allows the equation to be expressed in the hypergeometric form

I’y z—1/2dy |u(z—1/2) e

=0, 3.19
072 Z(Z—l) dz 22(2—1)2 Z(Z—l) L4 ( )
with
2
g 2E
u= , €= . (3.20)
12 (B2aR + a2)? n* (B2a} +a?)

Subsequently, the hypergeometric function F(a, b, c;z) can yield the solution through standard

methods,
1+ BP
y = const x (1—g2P?)! "™ '*4”/4>F(a,b,c;+TB), (3.21)
where
1 1 1
a=s (1+V1+4p) - VEFe b= 5 (14 VT+4u) + Vi Fe,c= L5/ T+,

(3.22)
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It is necessary for y to disappear at P = +1/f3, i.e.at z =0, 1. This happens in the cases where

eithera = —norb = —n,

1
£— <n—|—§) <1+\/1+4[u>—|—n2. (3.23)
Additionally, Gegenbauer polynomials C% can be used to express the solution as follow
2p2\%/2 ~at
v = const x (1-B°P°)"""CY (BP), (3.24)

with o = % (1++/T+4u). The energy spectrum is followed from (3.23),

2 ) 2 2 (822 + 2
i” (B0} +0?) +<n2+n+l>h Banto) (305

i
E=(n+=)hap1
(”+2) | R —r 2 2

This shows corrections of order 7 (ﬁzwg +a?/ a)o) regarding the standard case and a duality
for B2wd < a?/wy.
The results for a flat Snyder space are recovered in the limit A — 0, while the energy spectrum

on a 3-sphere is obtained in the case of § — 0,

1 n ot 5 1\ ha?
E= ~ | hapy |1+ — ) — 3.26
(n—|—2) wy +4wg+(n +n+2) 5 (3.26)

wherein @y is independent of the energy shift with respect to the standard oscillator at first
order.

When a2, B2 < 0, the calculation can be done the same way. The energy spectrum is obtained
by analytically continuing (3.25) for negative values of a? and B2In this case, the energy
becomes negative for large n. Therefore, an upper bound on the permitted values of » must be

applied in order to guarantee the positivity of energy.
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3.3.3 The Free Particle in 3D

In the P;-space, the representation (3.6) is adapted to three-dimensional spherical coordinates.

First, we provide a definition for the operators

A ‘2 N a 1
. 2 i — 2p2 | 5
fP,—fPr.—\/fPi—Hl 252’ X, =14/1 [31’,(1a r—I— r), (3.27)

with [56,, UA’,] = i. Following the rules of ordinary quantum mechanics, it follows that

P2 = P2 ,x§:x3+ﬁ,:xrp +PX; =X, P+ PX,, (3.28)

where 12 is the square of the angular momentum operator. Afterwards, the square of the

momentum and position operators (3.6) can be expressed in terms of the radial operators like

B >, oag\t all?
(fx + A%, +ﬂ>% , pi=((1—-1)P, Bx, +B2ﬂ>%’ (3.29)
and
v (P, Py, Py) Zwm )Yy (Po,Py) (3.30)

and only the radial functions need to be investigated in detail. Then, we will delete the (/m)
indices in the radial functions.

In the space of the radial functions, the scalar product can be expressed as

1/B 2d
(o) = [ v ()0 (R). (3.31)

N

The spectrum of the radial momentum and position operators is similar to that of the equivalent
one-dimensional operators, with the exception that P. can only take positive values. As aresult,
rather than delving deeper into it, we will move on to our examination of the Schrédinger equa-
tion. The framework utilized in this section additionally enables the prompt to discriminate
single out the states that minimise the uncertainty relations between the position coordinates

in various orientations.
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2
nxox = P75, (3.32)

it is also easy to extend the previous discussion to include the anti-Snyder model. Moreover,
vanishing angular momentum states are those that minimise these uncertainty relations, and
the momentum components are subject to the same considerations.

We will examine at the Schrodinger equation for a free particle in three dimensions. The radial
part of the equation can also be expressed by choosing the gauge A = 0, using the represen-
tation in equations ( 3.27), ( 3.29), and expanding the Eq. (3.30) in spherical harmonics as

demonstrated below:

Py, (3[3221'%)&2261%[3—2[(141'05/3)P,2+3i% li+1)a?  2E

- - —0.
R R(-BF) R @ (1-ppp) pr 1-pr) "
(3.33)

Defining now a function u(P;) such that y;, = (1 — BZP,Z)i/ 20p u, Eq. ( 3.33) simplifies to

K (1-pP)

dP;

d*u 2 2p. du [I1(I+1 2B2E
e e ) F ol e EEU R

r

Eventually, the equation assumes the form of a hypergeometric differential equation following

a change in the variable z = %P2,

d*u 3—4z \du 1[I1(I+1) £
_Z _ =0 3.35
d22+<2Z(1—Z)) dz 4{ 2 )}u ’ (35

where € =2E/ o2, with the solution

u(P,) = const x \/1— B2P2(BP.)'F (a,b,c;B*P7), (3.36)

F represents a hypergeometric function of parameters

I 1 1(I+1 ! 1 1(I+1
_+\/ +e+1(1+1) b=1+——‘/ +e+I(1+1)

—
a=lts3 2 ) 2 2 ’

3
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The solution of Eq. (3.33) is therefore
1 .
e = (1= B2P2) 2P (BP)F (4,5, c: 2PP) . (3.38)

It is necessary to set the boundary conditions so that y, vanishes at . = 1/f, i.e. atz=1,

when b = —n, with an integer n, this happens, leading to
’ 2 3.3
E=a(2n —|—4n+2nl+§l—|—§ . (3.39)

Thus, the energy’s eigenvalues are quantized in the SdS case. Naturally, this is a result of the
coordinate P, having a finite range. The radial wave function can be written as
1 i 1 171
v, = const x (1— p2P2) 209D (gpyip{33) (| _op2p2) (3.40)
with P,§” V)a Jacobi polynomial. The solution (3.40) for the spherical wave with [ = 0 has

a simple form. By utilising the characteristics of the hypergeometric functions, one easily

obtains
i/20p sin [/1+ garcsin B P, ]
V1+eBP, '

That in the limit o — 0,8 — 0 coincides with the standard quantum-mechanical solution
v, = sin(v2EP,)/(V2EP,).

Assuming negative values of o> and 2, the Schrodinger equation in the aSdS case is the

v, = (1-B*F}) (3.41)

analytical continuation of (3.33), requiring regularity for P, — oo, the solution reads

(1 . szg)i/Zaﬁ
(B2r)°

and makes no indication of energy quantization.

1
F(a,a—c—l—l,a—b—l—l;ﬁz—Prz), (3.42)

Y, = const X
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3.3.4 The Harmonic Oscillator in 3D

One can follow the same steps as for the free particle to formulate the Schrodinger equation
for a three-dimensional harmonic oscillator. Nevertheless, in this case, it is advantageous to
choose A to eliminate the mixed terms from the equation, as indicated by equation (3.15).
After making this choice, one gets

B}

2
1 (B +o?) .
2 B2wg + a?

. X | w=Ewy. 3.43
1 B4(D02 1 II/ W ( )

Following certain algebraic modifications, the radial wave function equation expands into

spherical harmonics, as in (3.30).

I(1+1) 1 P? 26, 1
- r N _ =0
P? +a)2(1_132pr2)2 (a)2 P 1 — B2P? ¥r=5
(3.44)

d*y, (2 B2P, >d1//r

dP> " \P. 1-B2P2) dP,

_ o - o
where @ = (1+B2—w§)woand8—(1+ﬁz_wg>E-

Defining a new variable z = B2P?, (3.44) is possible to express as a hypergeometric equation

d’y,  3—4z dy,

1|I(I+1) u €
dz2  2z(1—z) dz 4

Z2 +(1—Z)2 Z(l_Z)

¥, =0,  (3.45)

with
1 2&

= Ba?’ €= B2w? =-1

u

Note that (3.45) differs from the free particle equation (3.35) only for the term proportional to

u. Eq. (3.45) can be solved as

v, = const x (BP.) (1— p2p2) VI (4 b 1 B2P2) (3.46)
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with
1 3 V144
a = 5<1+§+Tu+\/1+u+.€+l(l+1)>, (3.47)
1 3 1+4
b — §<l+§+_v ; ‘u—\/l+u+£+l(l+1)>, (3.48)
3
¢ = 1l (3.49)

It is necessary for y to disappear at P, = 1/, i.e. at z = 1. This happens when b = —n, and

after that

3 3
€= (2n—|—l+§> \/1+4u+4n2—|—4nl+6n—|—21+§, (3.50)

and
(ﬁPr)l (1 _’BZPZ)(IJF\/W)/“’PI(IH'%’\/W) (1 _2’82P2)

Y, = const X

with P,S“ V) a Jacobi polynomial. From (3.50) it follows that

(B0} + o)’

3
E:(2n+l+—>a)o 1+ 5
40)0

5
5 +(2n2+3n+2nl+l+z) (B*w5+0o?).

(3.51)
An alternative way to express the preceding expression is in terms of a new quantum number,

N = 2n+1, which is commonly introduced for the three-dimensional oscillator

(ﬁ2w§+a2)2

212 2
: 5) By +) 550,
4o,

+(N2+3N—l(1+1)+— 5

3
E:<N+—)a)0 1+ >

2

Similarly to the one-dimensional, the harmonic oscillator’s spectrum experiences corrections
of order (B2ay + a? /) in ordinary quantum mechanics. The result for flat Snyder space is
recovered in the limit o — 0, while the oscillator’s spectrum on a 3-sphere can be derived in
the case of B — 0. Here, my has no bearing on the energy shift at first order with respect to
the standard oscillator. By analytically continuing the energy spectrum of the SdS oscillator
to negative o> and B2, the energy spectrum of the 3-dimensional aSdS harmonic oscillator

is obtained, and is therefore still governed by equation (3.51). To guarantee the positivity
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of the energy, some conditions on the quantum numbers need to be placed, just like in the

one-dimensional case.

3.4 Path Integral Formalism in D-dimensional Momentum

Space
In this section, we develop the path integral in momentum representation space in the D-
dimensional for the non-relativistic propagator of a free particle and the harmonic oscillator,
taking into account the presence of a nonzero minimum uncertainty in both momentum and po-
sition. The evolution operator (U (t,,1,)) provides the standard formalism of path integration,

which can be expressed as follows:
K(PbutbuPa7ta) = <Pb| U (tb?ta) |Pa>

= lim
N—seo

NoB e N s
1/—1/;3 1—]2p2, 1<PJ"6 " |Pj71>v (3.53)

] J=

the standard form of the Hamiltonian defined on the D-dimensional sphere with the symmetry

SO(D+ 1) is represented by H, meaning that it is invariant under this group.

3.4.1 The Free Particle

For this algebra, the new Hamiltonian in the free case is expressed as

A | .
= [pi+o’Li]. (3.54)
We construct the corresponding transition amplitude for this Hamiltonian (3.54), in D—dimensions,
by formulate the propagator corresponding to the old Hamiltonian A = ﬁiz /2m, and then in-
tegrating it with energy values for azf,l? /2m. And the other energy term are obtained from
the spectral decomposition of the radial transition amplitude. This means that the operator

H = p? /2m can be written like this

A 1 P2(1—ihaﬁ(1—D))—ihD% 9.2 o . 0 2052 - 92
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The latter is achieved by substituting the operator p; with expressions involving auxiliary oper-
ators X; and P; obeying the canonical commutation relations (in this free case we select A = 0).

After doing simple calculations, we get the following outcome:

K(Pb7tbapa,ta)

N r1/B N+1 dq; [1-p°p i
— | J—1 _ R2Pp2
—Nlinm / B /1- [32P§H[/ 27mh)P ( B2P2) \/1 B*P;
Noie [ qAP; o 2p2 202(2y—3+2i/ah
J:
mo? ( —1)B2(D+B2P§(y+(1—D))) 1 PX(1—ihap(1-D))—ihD§
N () BT
n2p? 052721'13ﬂ (y-1) p2
) (l_ﬁ’zP§>]}- (3.56)

After executing the multiple Gaussian integrations over q;, The equation above can be simpli-

fied to the following form

K(Pb,tb,Pa,ta) -

. N VB gp, MM P2 : m P 2152772
Nh_n}oo /1/;3 \/WHKIWPZ) {\/ Znihsaz/ﬁz} - BF]

W N+1 ) 2 202
i€ mp?(AP;) inf 3 . P;AP;
Xexp{?é [w%zoéw;)* e \/7 2P ) e

PB(y-3tifapn)’ P N R*a? (y-1)p? (D+B*P(y+(1-D)))
2m (1-B2P3) * 2mp2 (1-pP3)
e o e 2R (az—ziﬂ) (7=1)
_LPJ(I ihaB(1-D)) ihD _ Bh P’ (3.57)

m PT 2m (- 5°%)
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Moreover, all terms associated with y will be nullified by the term terms associated with

1-p7P7  \ 2 . .
7P , will be nullified by the term
J

! ( 1-pB2p? >_ g2pap, g2 |~ (1-B%P2) (aP))* —28* %P2 (AP))?

—1In LN ,
2 \1-B2P% 1—B2P2 2 <1 —/321’;)2
(3.58)
. . —i B?P;AP; .
then, next making up this term aph 1 by the above equivalence (3.58). Then Eq.
j

(3.57) can be written as

1/B dP'
K (Py,t,,P,,1,) = lim H/

N—oo 1/B B2P2
wp2 \ 5
I (S5t [ ]D BT
i) 1—p2P3 2mhsa2 /B?
ieNE | mB2 (AP;)? ihB> 3 P.AP;
cepd £y (AP))"  inB <y_§+z/aﬁh>ﬁ
=1 |2a%e? <1—[32P§> € —B°P;
. 2
- Wa?B(y—3+i/apn) P: N B 0% (y-1)B2 (D+B2P2(y+(1-D)))
" (l—ﬁZP?) 2mp? (1-5°F)

| P2(1-ihaB(1-D))—inD 1*B% (o2 =2if) (y=1) P2

2m 1— ’321)3 B om (1 B ﬁ2P3) (359)

Next, we present spherical coordinates for momentum variables P in the D-dimension, which

are defined by
Po, = Pcos ¢

Pq, = Psin ¢ cos ¢,

Pg, , =Psing;...sin¢p_>cosPp_|

Pq,, = Psin¢;...sin@p_»sinPp_1, (3.60)
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with P2 =YD (PV)?. and 0 < ¢, <7 (v=1,..D—2), 0 < ¢p_; < 27. This results in a

transformation over the measure term, as shown below

PP~a D1 D—1—k
H/ H/ L ipo,, dPo, =] (sing*)” " “dg..  (@s1)
/1 ﬁzpz /1 ﬁz p2 ! 5
where dPq; is the (D — 1)-dimensional surface element on the unit sphere, and APq, is the
relative angle between D -dimensional vectors p; and p;_;. As we known in polar coordinates,
we can conclude the correction of (APQj)Z from the kinetic energy term like
2, p2

J
TP s . (362
P 20%¢ (1 — [321)?) Pl h20% 1-B2P? (3.62)

p*(P;AP))
Tobw)

We must simplify this term (—% > in order to execute the path integration over the

angular variables as follows

EM — % B*P;AP; zﬁ P;P (l—cost)
2 (1+8p2) 2(17132132)*2 (1 5777) , (3.63)
and
D=1 (k=1 N2 i 2R (D—1) (1—132Pj2>
21 meosf) = g | (a0) ~ % . (3.64
(1—cosQ;)) ; (ZI:[lSlH o, )( O ) i mp? PP, (3.64)
As aresult, in the first order of €, Eq. (3.63) takes the following form
3p2(PjaP;) \ _ prrap, | i€3 0’ (D—1)
oo (3T ) o T )

To execute the Po;-integrals. And according to [3], it is helpful to expand (3.62) into a fac-

torised series

hcosAPQ D—2 iy
e = (/2" T T(22) Y 1+ (D/2) ~ 1) o)1 ()
1;=0
><Cl](,D/2)_1 (COSAPQj) , (3.66)
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where C,¥ (x) are Gegenbauer polynomials, and it checks the following addition theorem

My,
m m 21;+D—2)T(D/2) -
L 57 (1o )37 00 = LRG0 eosar). 8

(21+D—2)(1+D-3)!

where M; = GE

and /" (Pq) are the real hyperspherical harmonics of degree /

associated with unit vector Po. While /; (1) are related to the modified Bessel functions 7; (h)
I (h) =" 2mh) V2T (n). (3.68)

This leads to the following D-dimensional time-sliced path integral

—i
(PbP )(D*l)/z

I 1—B2P2 —i/2aBh ,T3a2th 1)
<m () I %% [ are
N+1

o gm [ mB2p;P;
% H thsaz/ﬁz Z Z Si I<PQJ 1) ' (Po, )Il,+9—1 (‘gwl&%)

=1 omj=1

K (Py,P,,T) =

N B G R O BT )

. 1 .
X exp { 3 Nf. [ mp2(ap)° i ppap,  sp2er  BPP hzaz(D+(1D)ﬁ2Pf2)} } :
(3.69)

Now, the N symbols 0 of Kronecker can be obtained by performing the N-integrations over

the ng-variables.

/ dPaS!" (Pa,) S (Po,) = 818y (3.70)

By using these, all angular integrations can be eliminated, allowing the amplitude of the time

evolution to follow as an expansion.

oo M)

K (py, Pob, Pas Poa) = ZZ K; (Py, Py, T)S™ (Po,) S (Pay,) (8.71)
=0m=1 PbP

where the K; (P, P,,T) is obviously given by the radial path integral
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202\ —i/20Bh iT 2n2e2
s 7o) = -3 g (1) e 25

N+1 1/2 . -
ﬁdP L i _i mﬁ PjP]—l
: H (/ W) [theaz} feg-1 ( h—azs(l—[}2212))

! 2
p{_glvﬂ G T B L h2“2(0+(lD)ﬁ2P?)]}.

i (B 2e BT 8 (B (1P

(3.72)

In the continuum limit € — 0, the asymptotic expression for the modified Bessel function

2 _
1B —— (—’ 1/ 4) , (3.73)

2z

it allows the radial function Kj (P, P,,T) to be obtained as the following

K; (P, Py, T) =

<_) —ﬁzpz _i/zaﬁhex E—?’Oﬂhz <D lim - Bde
1—[32P2 P h 4m Neo iy ,/1_/321{].2

Xlﬁ ex Efo _mpA(ap)*  3ihppap
27Tlh8062 p h = 205282(17/32})]_2) e lfﬁsz

_57’12062 p2P2 1202 (D+(1-D)B2P?) 2062[(”%—1)2—1/4] (1—[321’,2)] }

8m (lfﬁﬂsz) o 2m(17ﬁ2Pj2) szZ PPy (374)

The propagator (3.74) takes on a more complex shape as a result of the term measure. To sim-
plify, we will employ the point transformation method (see, Ref. [4£]), in which the d —point

discretization interval is

=8P+ (1-8)P_,. (3.75)

Based on [35, 37], three quantum corrections are extracted by the expression (3.74) as fol-
lows: the term measure (de /4/1— ﬁZPjZ> , the kinetic energy term, and the second term
in action (3.74). Therefore, we use the 0—point discretization interval to expand all of
these terms. Then, we adopt the coordinate transformation P = g(x), to return the stan-

dard kinetic term (m (Ax)*/ 2062€>. The selection of g is based on the following condition:
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((dg(x) /dx) = \/1 — B2P?). Next, we use the § —point discretization interval to develop the
measure terms and the kinetic energy [48]. Assuming the d —point discretization, we can de-

termine the correction total Cr as

Cr = he’e [%tan2 (Bxj) — (252 —8—1)cos” (ﬁxj)} (3.76)

2m

then this new propagator expression is obtained.

cos? (Bxg)\ /24P eii(’br?”) {% [(1+53-1)*-1/4] RSN
cos? (ﬁxb) ’

N N+1 P N+l 2 D_1)’-1/4] ]
| P n(ae)? e [048-1-1/]
Xl\lfgllqzl (/0 dx]) H 27'Clh8062 p{ﬁ Z [ 2ate - am sin® (Bx; ) .

K (Py, Py, T) = (—i) (

J=1 J=1

(3.77)

As stated in reference [49], the transition amplitude pertaining to the Poschel-Teller potential
leads to the following result. Thus, the ultimate expression for the radial transition amplitude

in the context of the D-dimensional free particle under SdS space is provided as:

il — na? D—1
Kl(xb,xa,T) — (—l) <COS (,Bxa)) 2 ﬁhzeh [ a [(H_ _1) _1/4_|_( )H

cos? (Bxp) o
o TG (et A+2n)’ D (x4) Py (1), (3.78)
where
D, (x) = 2n(k+ ? +2m) 'k +ll +n) sin® (x) cos* (x)
L(k+534+n)T(A+75+n)
x PYT2ATR) (062 (x) — 1)) (3.79)

when the following parameters have been employed:

D 1
=1, A=4(l+=—1)+= .
k=1, A (l+2 )+2, (3.80)
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(k—1/2,A—1/2)

and P, denotes Jacobi polynomials. As a result, the energy eigenvalues E,, have
poly

the following expression:

232
oh D+1 (D—1)
=—({[+2n+—— ) — .81
E, 2m[(+ +2> > (3.81)
For D = 3, we obtain the exact result reported in [27].
3.4.2 Harmonic Oscillator
Here, the D-dimensional harmonic oscillator’s Hamiltonian is as follows
. L o aany  MOG 5 oan
F= oo (7 +0L7) + =2 (7 + BLY). (3.82)

This Hamiltonian is defined on the D-dimensional sphere having the symmetry SO(D + 1)
meaning it remains invariant under this group. For this Hamiltonian (3.82), we take the same

steps as in the free case to obtain the path integral, namely

K(P[ﬂtb?Pa?ta) = <Pb‘ U (tb?ta) ’Pa>

_ i 1/B dP; EI:I

i =1

where the harmonic oscillator standard Hamiltonian is provided by

(92
opr?

i

N o 0
i [1 ﬁ2P2+h2 0’B*P— 3 —n*m*o* (1 - B*P?) (3.84)

Following the definition of the delta Dirac function in equation (3.11), we obtain the phase

space path integral expression for the kernel by applying the Hamiltonian operator to it
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K(Pb,tb,Pa,fa) =
N l/ﬁ dP: dq N+l 1 BZP %/
lim / L / J (—11> /1_ B2Pp2
N—eoi ] [ ~1/B \/lfﬁsz (27th)D ]I;Il 1-p2P; B J

Ntlje o oo o
xexp{ Z % [@—@ (1 —ﬁzP?) q?+ihﬁ2(2y—3)quj}

=
hzma)wo(y—1)2ﬁ4P-2+(7—1)(ﬁzD(l—ﬁzf"Z)) W P
2 j ) T BzPZH (3.85)

After executing the multiple Gaussian integrations over (j, The equation above can be simpli-

fied to the following form

1/B A
K(PbathPaata) = lim H (/ L) )

N—>oo 1/B 1—/32P§

N+1 2 % 1-D
G
j=1

. N+1 2 22 2

i€ (aP)) ihB P;AP; hzﬁ“mwwo(y—%) P?
X CXP {E Z’l {mea)oﬁ(]—ﬁzP%) T € (y=3/2) 1- ﬁ2P2 2 (1—[312P3)
J= ’ ’

2 C12B4P2 4 (v—1)82D( 1—B2P2 2
+hma)wo(y )RR +(y-1)BD(1-B°P})  @p P }} (3.86)

2 (1-p7P2) " 2me 1B}

moreover, all terms associated with y will be nullified by the term terms associated with

1-p2P% | : , ,
W will be nullified by the term
J

K(Pb,tb,Pa,fa) =

. N 1/B Y N+1 . D - %
Nhi>nw [/ 1/B 1_[3J2P§] ]I:II |i[\/ M} [I_B P]} 1

X exp { %Nil [ (ap))’ 3ih p2PAP;  owBimaway P}

2mome?(1-p2P7) — 2¢ 1- P8 (1-p2p3)

2 wy P
_ 3(D— l)ma)coo[j’zhz n? ma)g)oﬁ D 5 ]_ﬁfzpz] } , (3.87)
J
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through this path integral, the radial propagator K; (P, P,, T) associated with this kernel (3.87)

is obtained

_M<7“ N
Kl (Pb,Pa,T) = (—i) lim e h

N—yeo i 1(/ V1= ﬁ2P2>
N+1

.o N+1 .
H exp Ei (an)”  3ihppar, &
27Tlh8ma)a)0 ) P 2ma)a)0£2(lfB2Pj2) 2e 1-BP2 2 1-B7P;

2
+ma)a)0h [34Pj2(;9£4) _ moay?[(I+(D/2)—1)*—1/4] <17,B,2P-"2) ' (3.88)
2 (1-p*P}) 2 PiPi—
Where Cr, the corresponding total quantum correction, is provided as
Cr = jmoope [4tan (x)) — (28% — 5 — 1) cos 2 (x,-)]. (3.89)

In this case, the problem is transformed into the relative the Poschel-Teller radial propagator,

by employing the coordinate transformation BP = sin (x).

TP D s 14 (pja)-1)2- 1/4]]%2;:2);2]

X I—[l </0 dxj) I_Il [\/ 2rinemoayp? | EXP B Z’I {mecooﬁ%
J= J= J=

232 1%
mowge (1/m2w2134) _ moaRefr+ 02171/ )H (3.90)

cos? (x j) sin? (x j

furthermore, [49] provides the solution to the latter path integral

_M Q_i_ l D 2 —1/4 i COOT
Kl (PbapaaT) - (—l)]\lflm e|: 2 [2 [ + / ) ) / ]]+h2mwﬁ2:|
—>0
X Zexp[ lmwwoﬁ (k4 A 42n)°T| ®F (P,) @, (P,), (3.91)

with

1/2
n(k+A+2n A+n . —1/2,A— .
D, (x) = {2((:: :5))(;? :”))1 sin® (x) cos? (x) p{x1/2A=1/2) (2s1n2 (x)—1), (3.92)
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where P,E K=1/22-1/2) ihdicates Jacobi polynomials, and k, A parameters are defined as
1 1 4 D 1
A==+ —=4]/1 =+ |l+=-1 =. 3.93
2 2\ et * (+2 )+2 (3.93)

Consequently, the energy eigenvalues E, can be expressed as follows:

2
moaoB? D D 5
E, ‘ (2n+l+2) (2 2)]
D 202 %
+ay (2n+l+5) 1+# . (3.94)

For D = 3 we find the exact result obtained in [27].

3.5 Conclusion

In this section, we study the path integral of a free particle and an isotropic harmonic oscil-
lator in the momentum space representation in D-dimensional within the framework of the
SdS algebra with two fundamental deformation parameters. To perform this path integral, we
simplify the problem to a purely radial one using the D-dimensional spherical coordinates for
momentum variables. Next, we apply the coordinate transformation method with a § —point
discretization interval to convert the problem to that of a particle in a symmetric Poschel-Teller
potential. Notably, this approach is consistent with the choice made in the single-parameter
cases, indicating that the discretization is dependent on the § —point discretization in a similar
way [35, 37]. Through radial spectral decomposition of the transition amplitude, we deter-
mine the momentum space wave functions and energy levels. The energy levels exhibit a

dependence on (2n+1 )2, just like the energy levels of a particle trapped in a potential well.



Chapter 4

Thermal Properties of a One-Dimensional
Dirac Oscillator in a Homogeneous Elec-
tric Field with Generalized Snyder Model:

Path Integral Treatment

4.1 Introduction

Snyder’s 1947 work [ 18, 19], which proposed the Heisenberg generalisation principle in quan-
tum field theory to solve the divergence problem, has been of great interest to the field of
quantum physics. Such as dynamics based on variable masses in semiconductor heterostruc-
tures, as expressed by the generalised displacement operator [50], the behaviour of an impu-
rity atom with 3He in a Bose liquid, as examined in [51], and the description of low-energy
excitations in Graphene in conjunction with Fermi velocity through the application of the
generalised Heisenberg algebra, which involves determining the momentum commutator that
is proportional to pseudo-spin [13]. Furthermore, It also plays a fundamental role in non-
commutative geometries [53], string theory [52], black hole physics [54], and quantum gravity
[55]. According to the concept of the (GUP), these theories require the existence of a minimum
length on the order of the Planck mass (mp = \/hic/G), \/B ~ 108kg™! (ie., B ~ (mp)~2),
or the presence a minimum momentum on the order of the square root of the cosmological
constant,\/o ~ 10~2*cm ™1, as in the context of the (EUP) [56]. The combination of these re-
sults in the (SdS) model, or (TSR) [27]. TSR relates three invariant scales: the cosmological

constant A [27], the Snyder parameter 3, and the speed of light in vacuum c. Through different
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methods, these theories have provided solutions to a number of quantum mechanical problems
[57-64]. However, the Feynman path integral formalism is a mathematical framework derived
from ideas regarding classical trajectories that is used to explain quantum mechanics. Choos-
ing the discretization interval period is necessary in order to use this mathematical technique.
For an exact result curved spaces, choosing the midpoint as the discretization schema pro-
vides in the context of usual Heisenberg commutation relations, for details see the reference
[65]. But when we generalise the Heisenberg principle, this choice quickly becomes problem-
atic as we see in the cases of non-zero minimal momentum [66, 67] and non-zero minimal
length [35, 37]. Moreover, the path integral approach in D—dimensional quantum mechanics
has been developed by the authors of [68], who took into account the coexistence of minimal
position and momentum uncertainty.

In this chapter, we extend our study to the relativistic case focusing, in particular, on the 1D-
DO in a uniform electric field. After that, the difference in the midpoint discretization interval
within the aSdS-model is then confirmed. According to [27], the alteration of the commutation
relation between the position and momentum operators in one dimension is articulated as

follows:

A

X, P] =i (14 B>+ aX? + /o (RP+ PR)). (4.1)
Eq. (4.1) yields the generalised uncertainty relation shown below if we put ((X) = (P) = 0).

(1 Fo(AX) 4B (AP)2>

1+h/af

Thus, modifying this deformed algebra yields minimal uncertainty in momentum and position.

(ax) (aP) > § 42

_ B __ ha
(AX)min_ 1—|—2h\/@7 (AP)min_ 1—|—2h\/@' (43)

In momentum representation, the position operator X and momentum operator P that adhere

to the algebra (4.1) can be expressed as follows:

;z:m@x@, P:—\/%ﬁu(l—x)?, (4.4)
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small positive parameters (¢, B) are used here. Moreover, k is a free parameter that ensuring
the Hamiltonian’s hermiticity (in all scenarios). According to [69], the operators (X, P) satisfy

the commutation relation:

[I)C?] —ih (1 +ﬁ§>2> . (4.5)

Alternatively, by utilizing the auxiliary operators X and p, these position and momentum co-
ordinate operators can be written in a way that satisfies the Snyder-Heisenberg commutation
relation p, obeying standard commutation relation (i.e., [£, p| = i), defined by the following

relations
X=1/1-Bp2%, 7 ___r (4.6)
v JT-BP
In the aSdS-model case, all real values of p are acceptable, but if o, B > 0, the permitted range
of values of p is limited by p? < 1/ in the SdS-model. Additionally, the operators of X and P

for the SdS-model are only symmetric in the subspace L*(R,dp/+/1 — Bp?), where the scalar

product has the following definition

/B dp .
<W|¢>_f‘1/ﬁ—mw (P)o(p), (4.7)

periodic boundary conditions are satisfied by the wave function, v (— 1/ \/E ) =y (1 / \/B ) ,

resulting to the following closure relation:

/‘/\/E dp
~1/y/B /1= Bp?

Notably, the (a, ) parameters in the aSdS-model are negative. Thus, we modify the integra-

p) (pl =1 (4.8)

tion limits in Eq. (5.9) across all spaces. In addition, as described in [27], the corresponding

formal eigenvectors coincide with those of the X —position operator.

P)ap = g (1-B17) Ferp (-0 )y ein/aB. (49

Afterwards, the closure relation for the maximally localised states is applied to Eq. (4.9), and

we utilise the properties of the delta function 8 f(x) = Y.6 (x —x;) /| f'(x;)| , where x; are the
i
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roots of f(x) [68]. At last, we have:

Y
dx; (1-Bp% \?2 IX;
(oo = [ 5 (‘g ) V1= Bree (<5 (0 pi). @10

It is appropriate to apply the delta functions (4.10) on the subspace L?>(R,dp/+/1— Bp?),

when both o and B (i.e., SdS or aSdS) signs are taken. Moreover, regaining the standard
projection relation (p|p’ )(ap)—0 =0 (P~ p’) occurs when both ¢ and 8 are equal to zero.
On the other hand, the time po—component is expressed as follows since no deformation is
applied to it

dt . /
<p0|p6>:5(p0—p6) :/%e_hf(PO—pO), (411)

Consequently, the elements matrix of the operators X and X2 are provided, respectively, by

(i

IS lh,Bp 2
X Pj—1>aﬁ = (Pilpj-1)gp |(¥—1) \/ﬁJr 1-Bpx;|, (4.12)
Pj

<Pj iz Pj-1 >(x,ﬁ

1)+ (1B )+ 2 (7 3) pjxj] -

h2ﬁ2p§
1—-Bp3

=(PilPj-1) 4 [—?’(Y— 1)

(4.13)

We introduce in section 2 the formulation of the path integral in one-dimensional momentum
space of the SAS model for DO particles exposed to a uniform electric field, without the need
for Grassmann variables, as demonstrated in [35, 70]. This method, which was previously
used in [71, 72], entails executing the path integration over the components of the Green func-
tion matrix for 1D-DO particles exposed to the uniform electric field using the SdS model. In
section 3, we use the coordinate transformation method to obtain the local kinetic part, which
leads to the propagator of Rosen-Morse type I and II [49]. The precise propagator and the as-
sociated energy eigenvalues are inferred. In section 4, we assess the thermodynamic properties

of this system and offer a detailed physical analysis of the associated plotted graphs.
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4.2 Path Integral Formulation in (anti) Snyder de Sitter
The Green function for a relativistic DO particle in one-dimensional space is defined as the

inverse of the Dirac operator in the absence of electric field interaction.
(Yiho, —A) 8 = I, (4.14)

where H denotes the DO equation’s Hamiltonian operator and is provided by

A

H=cy' (ﬁ — lma)’)/O)A() +mc?, (4.15)

where @ is the oscillator’s classical frequency and mc* denotes the rest mass. For further de-
tailed consideration, we select that the time component (Py = 11dy = thd /dct, Xg = 0 := ct) is
deformation-free, and that the momenta P and position X operators verify the Eq. (4.6). Ac-
cordingly, we can generalize the Green’s function (4.14) equation for the (1 + 1)—dimensional

DO in the presence of a uniform electric field € to include the following:
[VO (lh&,—l—eEX) —cy! (ﬁ—lma)}/OX) —mcz} S=-I (4.16)

The y* —Dirac matrices in the (1+ 1) dimension are represented by the Pauli matrices after

the choice

Y =03 7' =102, ¥ = —i10. (4.17)

Following that, the solution to Eq. (4.15) is given as
$=1[0]7" = [0?] [0P0P] ", (4.18)
the operator O% is defined by

Oli) = [}/0 (lh&t —l—eE)A() —cy! (}3— zma)yo)?) j:mcz} . (4.19)
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Using the Schwinger proper-time method [73], and noting that § = [Olﬂ [Ol,) (92] 71, itis more

practical to express the S Green’s function in this way.

$=[02][0P0P] " = (/1) [02] /0 dAexp (34 [0208]). (4.20)

the parameter A in the above equation indicates is a invariant parameter and is an even variable,

with the [O? Oﬂ operator acting as a Hamiltonian, and it can be expressed as follows

A

[OL_)OIJZ] = { (ﬁo + 68)2)2 — PP —PmP X —mPt — (ceEyO'yl — zma)cz'yo) [X,ﬁ} } .
(4.21)

Using the SdS algebra provided by Eq. (4.1), we obtain:

[(913 OQ] = {}A’g —m*ct +2eEP R — @*X? — P P?

—1h (ecE}/Oyl — zczma)yo) (1 + ﬁﬁz +oX?+ of ()?f’—l— Af()) } , (4.22)

with @2 = (02m2w2 — e282) )

Moreover, we need to express this Hamiltonian using position and momentum operators con-
sistent with the flat Snyder model, characterized by the modified commutation relationship
defined in Eq. (4.5) [27]. By substituting operators (f)AC,iT)) into an expression [OP O], the
Eq. (4.22) becomes,

2
[O?OQ] _ {poz _mzc4+26813056+2e8ﬁok\/§ﬁ3+c2 (_w_zgxz — (1 — K)z) @2
c
+ (c2 (1—x) \/%— sz\/g) (DAC@JF%AC)

- ((‘02 +czg> X2 —ih (ec&yoyl — zczma)}/o) (l + ﬁj’2> } . (4.23)

=

In order for the previously mentioned term (fCiT’—l—‘jDDAC) to terminate at zero, we impose a

condition on K,

—1
K= (1 - ﬁwz/02> . (4.24)

(04
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As a result, the Hamiltonian operator becomes as

_ 2eEP)/E A
[0P0R] = B2 —m*ct 4 2eEP)X + u?— <wz+cz%> %2
(r+22)
a c
Ea)'z . R
——<1 % 5 o P2 _ih (ecEyoyl —lczmeO)F (T) , (4.25)
+ac_2>
with
j2 (:P) =1+ pP2. (4.26)

In momentum representation, the (02 0?] serves as

S(PbsPas Pob> POa) = (l/f'l)/0 dA <PbaPOb

exp (—%l [—0P07] >

Papa).  (4.27)

Before moving further,in order to avoid computing their Feynman path integral expression for
matrices, it is appropriate to introduce the following exponential matrix and simplify its form

as follows

L . 1 SCm® lsé A
e/l(ecé:yoy —1c ma)yo)F(fP) _ Z I— o co ‘ng/lch(fP)7 (4.28)
2 s—t1 lsi _gmao
cO )

subsequently, we execute the following equality [71]:

cosh (§) = ? sinh(8) = % (4.29)

after conducting a few computational calculations, we obtain:

e—l(ecSVO}'l—lczmeO)ﬁ(j)) = Z exp (—ng> Xsz exp (262> ezslcwﬁ(ﬂs)‘ (4.30)

s==%1

T
Here, X; = % < (1+s) (1—s) ) and X is the transpose of the vector X, denoted as
X; =XT.



Thermal Properties of a One-Dimensional Dirac Oscillator in a Homogeneous
52 Electric Field with Generalized Snyder Model: Path Integral Treatment

Thus, the expression (4.27) can be presented as follows:

0 o 0 I A
S (Pbs Pa> Pobs Poa) = (1/7) Y, exp (—502) XX exp (502)/0 dA {pp, pop| exp <—ﬁ9{(3)> |Pas Poa) »

s==+1
(4.31)
with
) . _2e8h, A
T = AL P22t 1208 BT+ (e ﬁ\i{)ﬂ) (w2+c2%> 72
(1?:—5;2)?2 + shc@F (?) . (4.32)

Following this, we will use the path integral framework to construct the Green function, which
decomposes the exponential exp(—iF(*)) into (N + 1) exponential exp(—ieFH ), with &€ =
Tj—Tj—1 = 1/(N+1). Then, we insert N times resolution identity (4.8) between each pair of

infinitesimal operator exp(—:e5((*)). We shall obtain

+oo 1//B .
S (s paspons o) = 1/) X, [ 8t ede] tim [ cMH[ dpo; [ ]

s=t1 N—seo —oo 1/v/B \/1-Bp;
N1
X H (pj,poj|exp(— h F)) ‘Pj717P0j71>a7ﬁ~ (4.33)

j=1

It is convenient to develop the exponential up to the first order of € to facilitate the calculation.

Thus, we write

- >(x,B

lim  (pj,po;|e #7"

N—00,6—0

1€

7

HOpj 1m0 1)gp| - (4:39)

= lim [<Pj>P0j ‘ pj—l?poj—1>oc7ﬁ o

N—>00,6—0

The Hamiltonian operator represented in the SdS framework on the projection relation
(pilrj-1), s given in Eq. (4.10) is then eliminated by replacing all of the operators (X, P,
§C2, @2). As a result, the expression G (pp, pa, Pob, Poa) is converted into the following path in-

tegral in phase-space
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o B,
Pas Pobs Poa) = (/) | “exxtede] [0 dx / d / _dn_

N+1 1-Bp?_, L B 2 [ dx; dij L1:Apo;

><;I 672 ) V' TPPi | onnonn®
h2ﬁ2p2

1 Bp? 2

—Ae€ (sz—l—cz%) <1 —ﬁpj> X5 —Aehf <)/— %) (Giz—l—cz%) PjXj

2eEpo; B KB p;
—|—l€2e8poj\/l—,l3p2xj—|—l€ j\/; Pj +2A€e€poj(y—1) PP,

<l+§?_—22>1/1—[3p1 1—ﬁp§

ol P Br;
+esidem [ 1+ —— . (4.35)
(1+£2) 1-Fp] 1—Bp;

lN+1 ) 5 4
exp P Z [—xjApj—I-/le (poj—m c )
i=1

+Aey(y—1) (af +c2°‘> L+ Aen*B (y— )(m2+c2%>

—AE

As is customary, we perform Gaussian integration over ¢; and x;, for this system, we determine
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the Lagrangian expression

oo /\/_ dn;:
S (Pb, Pas Pobs Poa) = (1/R) lim ) [e 30X, X+€202 / CMH [/ deJ/ £ ]
prg2 - VB 1)

N+1 L By? i 1
xl_ll 5(p0j—P0j—1)( 1_[3[1;1’)?) \/lﬁp§J
=

MiThAE (62 —|—c2%> (1 —ﬁp?)

R Ap? hp (v 3)
%P\ 7 L 4ze(wz+cz%1> (1-875) (I_Bp%
renp? (y-3)" (@ +§
- (212;1?(];;7 . ﬁ>p§+/187(7—1)<62+c

pjAp;+ A€ (pg; —m*c?)

2

> B p?

o)y _~ "~ J
P)1-pp?

+2en2B(y—1) (07 +c*§ ) —2npAeet p AN/
" 2/ \J1-Bp3

J

eSPOj Apj 7(«88282]?(2” A 26((:])0]\/E D

_<wz+c2%> \/1_731,@+ (a;2+cz%> i 8(1_Ee282> —Bp?

hBp; o2k 2 2
+A€2e€poj(y—1) thBp; —Ae & P + eshAc@ <1+ ll_gszz
' J

(4.36)

We execute the following equality to the first order of €, in order to simplify the above expres-

sion,
e€poj Ap;j e€po; Aaresin (\/BPj)
<62+62a> Bp] (wz—i-czg) \/B
e€poy;  (Ap)°  Bp; (4.37)
<072+C2a> 2 (1—[31)3)3/2
where
(Apj)2~2zms( +C2a> (1 51,}) (4.38)

By substituting Eq. (4.38) in Eq. (4.37) and then into Eq. (4.36), can be written the below
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equation

_3 1] “
S (s paspons o) = (/) E e 838 & (o — pua) [
s==1

L eEpgp arcsin(\/ﬁph)—arcsin(\/ﬁpa)
s I C

xe
y
X lim /1/\/_ _dpj Nﬁl (1_[31’%—1)2 1
N_>°° \B \J1-BP | =i 1=brj 4mihde (G)z—f—cz%)

N+l Ap? ihp (y_é) s
XeXp{h 2 [416 <w2+c2gj) (1-827) : (1 —ﬁp?Z) P

—Ae (y— %)2 <w2+c2%> %jtkey(y 1) (ZD' +c2°‘> 12_ﬁ;p2

8 .
—21h[37t8<y 3) _eEpop; . e€poPpj e (y—1) 5 poPp;

\/ ﬁp \/l—ﬁp l—ﬁp?
Zeﬁpo\/E P

Pl e? —2€?) P
+Ae —/leﬁ( /
(1+82) Ji-pt  © (1+E%) 1-Bp

282

Bp;
tAe——P0 4 Aeshem |1+ SRy
<w2+c2g) L =Bpj

(4.39)
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and with some simplifications, we will find

1) 5 o0 N .
yPas yP0a) = h 7762XSX;F 29216 — POa £
v o 5

s=+

SH

o eepy  woin(yBpy)wesin(VBpa) o 5 Pe2) 5 o 2, 20
(02+2F ) VB eﬁ’l 1’0/+<w2ﬂ2a> 1B (y=1) (@2 )

xe

1 2
2
0= ) Amihed w2+c2°‘ :|
N+1 Ap? hﬁ _2
l P l
xexpq - Z ! + 2 PJAPJ
=1 |4Ae <(D‘2—|—c2%> (1—[3p§> —Bp;
2
9 P
—)\eh*B? (y2—3y+ —) <w2+c22> /
L P)1—Bp3

hZBZPZ 268}70\/E Pj
#2e(r=7) (00 F) =5 *“(ngf—;ﬁ m
2.2 32

o282 B 2
_;Lg(c’"a’ . Ja_ P 5 +eshAdcm | 1 ﬁp/ . (4.40)
(1+§‘f—2) 1 - Bp? —ﬁp,

Moreover, all terms associated with (y) in Eq. (4.40) will be nullified by the term

((1-822)/(1-B22)) 165

X 2

1-Bp ) 2 Y. —2Bp; 2 B
— = exp —~Apj——<+ zh?Ls o>+ 2B — 2
( 1 ﬁpj <1_Bp§) 2 ( ) ﬁpj

When we substitute the aforementioned result (4.1) into Eq. (4.40), we get

(4.41)

_$ I e
S (Pbs Pas Pobs Poa) = (1/1) Y [e 2"2xsxjezoz}5(p0b_p0a)/o di
s==+1

A : 220242 %) 2
. e€py arcsm(\/Bph)—arcsm(\/Epa) 7y (C m= W=+ ﬁ)pO _m2c4_h2B <02+C2Q)
"o2i2Z VB g o242 2 B
xXe B e B

) X K(phpa:l) )
(4.42)
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where the kernel propagator K (pj, ps,A) is defined by the following path integral

N 1/v/B ' N+1 1
K(pbapaal) = lim H [/ Lz] H
o A

N (Ap)) 3 B
X expi - - = piAp
hi= 4l£<wz+czg) <1—[3p?> 2(1—[317?) o

—lehzﬁzz (2 + )

o2k : 2
—Ae “_ P +/leshcar< + Prj ) . (4.43)
(1+82)1-Bpj :

Typically, in order to obtain the conventional form of the Feynman path integral for sys-
tems based on the principle of generalization, three quantum corrections must be applied: the
measure term (dp;/,/1— Bp?), the action term ((Ap j)2 /2€ (1 -B p?) ), and the factor term
(pjAp;/ (1 -B p?) The quantum corrections from these three terms can be computed using
a two-step process, as per [35, 37, 66, 67]. Initially, this Kernel is written at the n—point dis-
cretization interval ( pE.n) =nNp;+ (1 —-n)p j,l). This avoids the use of the midpoint interval
in the case of the presence of the SAS model [35, 37, 66, 67]. Throughout the second step, we
need to use the momentum coordinate transformation method given by (\/E p = sin \/ﬁ q) to
obtain the usual kinetic term( (Aq j)z /2€). According to [35, 67], the formal treatment of the
selection of the 1 —point discretization interval in the presence of the deformation coefficient

has been addressed. Following simple calculations, we obtain the total quantum correction,

Cr =hAep <w2+c2%> [ ~ tan <\/_q>} (4.44)

and this corresponds to fixing n = %(1 +1/v/2).
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Substituting Eq. (4.44) in Eq. (4.43) and then into Eq. (4.42) we get:

_3 3 °°
S (Pb, Pas Pobs Poa) = (1/1) Y [e 2°2szs+ez<’z}6(pob—l70a)/o dA
s==+1

eEpg arcsin(\/pr)—arcsin(\/Epa) ll((ﬁnﬁgﬂ-&-a)p%_ o2 24

(2+25) v o \ (%) (%) mc)xmb,w% (4.45)

St~

xe

the propagator kernel K (G, Gq, A ) is precisely the path integral representation of the transition

amplitude in relation to the Rosen—Morse of kind (I) potential [74]:

. ﬁ N+1 1
N ! =1 ATihAE <(D’2—|—cz%)

e 2etpo@
ol [ e Pt

(4.46)

In this case, Eq. (4.46) transforms as follows when (a, ) are negative,

Rlanaet) = VB [ Dlgwles {1 [ [500) ~anh(q0)+ ).
(4.47)

with g (t), M, A and B defined by

1 2eé 0]
:\/Eq(t)v M:m andA =1 ¢ pOO\/_ B = Alico (ﬁ‘{ﬂf)» (4.48)

here 6 = (a+ B®w?/c?) . Following Ref. [3, 49], we can express K (¢p,qq, 1),

CIb CIm \/_ Z lP Qb Qa) exXp ( ;lEn> ) (4.49)
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where
1/2
4MA (§—2ky —2n)n!I" (s —n) nt(1-5)/2
Y(g)=|[1-— 5 — 2
h(s—2n—1) C(5+1—n—2ky)T(2ky+n)
x (1 —tanhg) ™27 (1 4 tanhg)>~2 B* 2722 (tanh g) (4.50)

pimm) (z) signifies the Jacobi polynomial, and

2 /(= 2
_ [h (5—2n—1) 2MA? ] @51

Ey=— +
! M R (5—2n—1)

where

s 1 MB h2 = —(1 § =—(1 SE=2n—1)——F—-]. (452
N S(1+49), & 2( +5G=2n-1) h(s—_zn—l)) (4.52)

After recompensing for every value (M, A, B, §) in Eq. (4.51), we get

} _ 1\? ae*E?p?
E, = —AR:c20 (vs—n——) + qe P 51 (4.53)
2 K464 (vs—n—%)
with
m2e? — £ p
= S . 4.54
Vs =5 ) (4.54)

Thus, the values (3, k2, 2k, — 1 and (§— 2k, — 2n)) are transformed into the following formulas:

_ 1 1 2eEpor/ o 1
=2 k== (14+=2v,—2n—1)— = 4.55
and

1 2eEpov/ o 1 _
2k —1=-2vy—2n—1) — = = 4.56
2 2( VS n ) hczez (ZVS _2n_ 1) nn,s= ( )

~ 1 2eEpov/ o 1 "
— 2k —2n=-2v,—2n—1 — = . 4.57
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We can now write

S (Pb, Pa> Pob Poa) = (1/1) 8 (Po» — Poa) VB Y Z[egczxsxjegoz}/o JA

s==x1 n

1A pm*e’+a 2 o? 2 4
X exp | — - -
Xp[h (<+ﬁ R B

o2 1\2 202 2
+h26‘2 <(X+ﬁ—2) (Vs —n— —) + a6284p0 >
¢ 2) it (atp) (von-i)

e€pg sinhfl(\/gpb)fsinhfl(\/ﬁpa)
T

St~

(§—2ky —2n)n'T" (5§ —n) 22n+(1-2vy), [
L(5+1—n—2k)T(2k +1n)

B s s (M soTs)
X (1 —tanhgp) 2 (1+tanhgp) 2 P, (tanhgp)
nl;L,s Nn,s + no
x (I —tanhg,) 2 (1 +tanhg,) 2 P,f"”’“”“) (tanhg,) . (4.58)

In the following section, we will compute the propagator within the framework of the aSdS
model. Next, we will extract the energy levels and their mapping in specific special cases of

deformation parameters.

4.3 Extracting Energy Levels for (1D-DO) in a Homoge-

neous Electric Field
For an accurate assessment of the propagator expression, it is convenient to integrate at the
proper time A and perform the Fourier transformation to Eq. (4.58). Following a straightfor-

ward calculation, we get

_d ) d efépO(tbfta)
9 (pbapaatlnta) = \/E Z Z |:€ ZGZXSX;‘_QZGZ} 25;(})1 >
s==+1 n p% - (Er(lf?ﬁ))

SH~

e€pg sinhfl(\/ﬁpb)—sinhfl (\/Bl’a)
(§—2kp —2n)n'T'(§—n) 22"+(1s_)e[ h(,gzﬂ.z%) VB
['(§+1—n—2k))T'(2ky +n)
ni:s Mn,s
5 ;

T s (Moo
X (1 —tanhgp) 2 (1+tanhg,) 2 P, (tanhgp)

n;l‘:S
2

Mn.s + n—
x (1—tanhg,) 2 (1+tanhg,)? plmnns) (tanhg,), (4.59)
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where

<E<a,ﬁ> 2 0

n,s >,
20 a1 282 /% c
pre ( T ety

_ 1 2
m?c* +he® (2n+1—s) — 2?6 (n+§—%> ] :

(4.60)
The energy spectrum is determined by integrating over the variable pg. One way to accomplish
this integration is to turn the problem into a complex integral along a specific choice of contour

C. The residue theorem is employed for obtaining

! —i op(aB)
+oo dpo eiﬁpo([bita) (a ﬁ) e?EEn,s,E (thita)
f(po) =1 ), f(EEns" ) (5Ot —1a)), (4.61)
oo 2mh p% _ <Er(lasﬁ))2 et 2E}'(las7ﬁ)
which has the poles
6
eELSD) _ E@D _ g ~
22 1 e’&
pme +a( + aﬂ—2éhcw(n+§—§)+é2h2c2(n+§—§)2)
2]z
~ 1
x| m2c* + hew (2n+ 1 —s) — H2c?6 (n-l— - %) ] , (4.62)

here, ® denote the Heaviside function. In Eq. (4.62), n is a quantum number, and the Dirac
spinor’s two components are described by the parameter s = 1-1. Here, € = 41 corresponds to
positive energy states, while € = —1 corresponds to negative energy states. A negatively (for
(e = —1)) or positively (for (e = +1) charged particle is described by the parameter e = F1
where @ is the oscillator’s angular frequency and € denotes the strength of the uniform electric
field. For the DO in the context of the aSdS model, the corresponding spectral energy is as

follows when the electric field € is set to zero:

E,(lf:’ﬁ) (£ =0)== |m*c* +hc*mw 2n+1—s5) —h>c? (a+ Bmsz) <n+ 3~ %) .
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Also, for @ = € = 0, the corresponding energy levels drop to

ES%P) (w=e=0)=

1 SZ%
2 4 2.2
—h + - —= . .6
m-c ca(n > 2)] (4.64)

As can be seen from Eq. (4.64), even in the absence of w—oscillation and €— electric fields,

2 remain continuous within the context of the aSdS model.

the energy levels that depend on n
In the presence of a uniform electric field, we were able to extract the interacting Dirac oscil-
lator’s spectral energy. Although the corresponding normalised eigenspinors are complex and
long, for the purposes of this discussion, we will only be concerned with finding the Green

function in momentum space. Thus, we can write the elements matrix of S (a.B) (Db Pastpsta)

as follows using Eqgs. (4.20) and (4.27)

S(aﬁ) (Pbapaatb7ta) = [Oﬂb g (pbvpchtbata) ’ (465)

in this case, Eq. (4.19) defines OQ and Eq. (4.59) precisely calculates G (py, pa,tp,t,). There-

fore, we obtain,

S@B) (py. pastyita) = —1n/B Z Z [}’0 (Pop + EXp) —cy! (B, — zma)}pf(b) +mc2] [e*gGZXSX;“egGZ}

s=+1 n
A AMA (5—2ko—2n)n'T'(5—n)
e hsE,Ssﬁ)(tb—ta) 0 [(1 — h(s‘f2n*1)2> 1"(s'+1—2n—2k2)1"(2k2+n)}
X (a.B) ®<8 (tb_ta)) PP 2820,
1 2B (B0 + )+ g (v 1)
L eEpg sinhfl(\/Ele—sinh*l(\/Epa)

% 22n+(17§)e " h<w2+c2%> \/E

s Bt b (M o)
X (1 —tanhgp) 2 (1+4tanhg,) 2 B, ™" (tanhgp)

Mos

x (1 —tanhg,) 2 (1 —|—tanhqa) n(n” s) (tanhg,) . (4.66)

Afterward, writing the relations

Z f tb_ta)) —f(S)@( (tb_ta))+f( ) ( (tb_ta))a (4.67)

e==1
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and

Pt = 03¢'% = %03, o3, = sy, (4.68)
leAG2 = leeAcz = leAGZGz, 02 Xs = ISX—s, (4.69)
}/ZeAG2 = —101"% = 101", 01 s = s (4.70)

The propagator § (@) (pp, Pa) in the momentum space can then be expressed as follows

e ;,lEr(lSs (tb [a)
— O(s(ty—1a))
2En K

9w

s==x1 n

S%B) (o) = —1/B T z{

X e -0 [(— <E,$fs) +se8Xb> —l—mcz> Xsz —15c (15;, — lma)f(b) X_SXﬂ ez

[(1_ AMA ) (5—2kr—2n)n'T'(5—n) }
h(s—2n—1)% ) T(3+1—n—2k)T'(2kr+n) 22n+(17§)
212 2&%a
(Bm* @ +a>+h2c2(§:(vfnf%)2

eEE,(lfA). sinh ™1 (\/pr) —sinh—! (\/,Epa) ]

x 0

s

St~

(L'21n2w2762€2+62%) h\/ﬁ
nrf,s nn s
X (1 —tanhgp) 2 (1+tanhg,) 2 P<n"“n'”) (tanhgp)
_ s Mo (i 15s)
x (1 —tanhg,) 2 (14tanhg,) 2 B, (tanhg,)

e ;ItE( )(fb*ta)

(-t e
®(—s (tb_ta)) 0 h(§—2n—1) (§+1—n—2ky )T (2ky+n) 22n+(1_§)

(—s) 22 _ e&a
2E”>S (Bm ® +a)+h2c262(vs—n—%)2

_|_

X [e §0, H(E,S;S) — seEXb> -l—mcz] Xsz —1sc (Pb — lm(opo'b) X_sz] eg@]

|: . eeEr(z,;s> sinhl(\/pr)—sinhl(\/Epa)]
_ﬁ m=<—e C g h ﬁ
e (222 2£2+2ﬁ> VB
i s (nnwnns)
x (1 —tanhgp) 2 (1+tanhg,) 2 P, (tanhgp)
s s (M)
X (1 —tanhg,) 2 (1+tanhg,) 2 P, (tanhg,) ¢ . (4.71)

The expression of the Heaviside function ® (—s(#, —1,)) must be unified by substituting s to
(—s) for all terms multiplied by ® (—s(f, —1,)). Furthermore, to unify the same energy, we
make the following mapping

n—n-—s. (4.72)
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So, in the context of the aSdS model in the momentum space, the propagator S (@.) (Pps pa) Of

the (14 1)-dimensional DO subjected to an electric field becomes as

ethnV Ip— ttl)
S(a’ﬁ)(pb,pa, = —l\/_ Z Z ®(S(tb_ta))

s=+1 n 2E,(lss

|:( . 4MA ) (5—2kp—2n) n’F(s n) }
~ —2n—1)? ) T(8+1-n—2k)I'(2kz+n) 2n+(1-5)

w2+ a £E%g
(ﬁm MRy T P—

El

X

)

X e 292 [(— <E,SYS) + seEXb) + mcz) XX —1sc (ﬁb — lma)Xb) X,SX;F} 2%

[ . eSE,(,‘_?S) sinh~ ! (\/pr)fsinh_] (\/Epa) ]
Ta(2nrar 26212 % B
e h<L2m2 2_2g2, 2ﬁ> VB
A B2 p(ilsos)
X (1 —tanhgj) 2 (1—|—tanhqb) ¥ Py (tanhgp)

n+
x (1 —tanhg,) 2 (1 -I-tanhqa) P(n"“n’“) (tanhg,)

[(1_ AMA ) (§—2ky—2n)n!T(5—n)
_ n(5—2n—1)* ) T+1-n—2ky)T'(2kr+n)

2,30 282
(ﬁma) +a)+h2 292( ni%)z

+ } 22n+(17s')

5 () ) 5, e - B

_L eEE,(l‘iz Sinhil(\/pr)*sinhil(\/gpa)
g
’Jr L (nnvnnv)
X (1 —tanhgp) 2 (14 tanhg,) 2 P, (tanhgp,)
T’LJT‘Y rInv (n+ o )
x (1—tanhgy) ? (1+tanhg) > P,""™ (tanhgq) ¢ . (4.73)

Additionally, by substituting (—o, —f) for a and 8, one can construct the SAS space from
the propagator’s function and spectral energies, which are defined in Eqgs. (4.73) and (4.62),

respectively. Also, the Jacobi polynomial is replaced by Romanovski polynomials [75],

Mo Mns
BT

+ -
itang) — R,(,n”’"n"’s) (tang). (4.74)

Further, the energy levels are expressed in n” in both cases for the signal parameters o and f3.

Since the values of o and B are typically very small according to theory of deformation, we
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expand (4.62) to first order in o and 3, and as a result, we find

-

2wk — 2e2
\/C m 3 zwj |:m204+hC\/62m2602 —e282(2n+1 —s)]
c2m

AEmPw?—e28232 2 1 512
\/ o 5=hct (n+5—35
R (r+3-3) . (4.75)

[mzc4 +hcvVetm?w? —e2E2 (2n+1— s)}

q:

| D

D=

The first term in this case denotes the Dirac oscillator’s Landau levels in a homogeneous elec-
tric field without deformation, and the second term denotes the quantum gravity correction.
Remarkably, the bounded eigenstates are absent at large electric field value then critical one
% > m® the bounded eigenstates are absent. Now, let us consider the following particular

cases.
I- Inlimit case ¢ — 0, the expression of Eq. (4.62) reduces to that of the flat Snyder model,
(a=0)

0)
En,s ==x
cm@

1 212
m2c4+hc®'(2n+1—s)—h2B052<n+§—%>] . (4.76)

1. In limit case B — 0, one recovers the spectral energies for the Heisenberg algebra in an

(anti-)de Sitter background [69],

- —1/2
_ 3
EPY— 1|1+ - —— 5 5
(mz—zehcw(n+%—§)+92h 2(n+4-3%) )
L o\2 3
X [m2c4—h2c206 (’H—E_E) +hc® (2n+1—y) (4.77)

To investigate the differences caused by the presence or absence of (aSdS) algebra, as well as to

understand the impact of incorporating one parameter without the other on the energy levels,

(a,B)

Z .1 as a function of the quantum numbers n. we employ the

we plot the energy levels E,
natural unit system, setting 7, ¢ to 1, which leads to dimensionless parameters. Furthermore,
we specify the electron mass as m = 0.5MeVand an electric field & of 0.2MeV?, e = 0.303,
o =2MeV. We use four different deformation parameter values for this: (i.e., (&t = 1077 MeV,

B =10"MeV), (« = 107" MeV, B = 0.0MeV), (o = 0.0MeV, B = 107*°MeV) and (a =

0.0, B =0.0)), as illustrated in Fig. 4.1. This later is broken down into three sub-figures (Fig.
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4.1a, Fig. 4.1b, Fig. 4.1c).
1.8 x 10" - 1.8 % 1071 =
1 //"‘ ] ///
14 x 10" - L4 x 102 -
4 T ///
E 1.x10"] / E, 1x10" e
4 ~ 4 /(/ -* S~ ~.
6.x10" 6.x10% 7 >
17 V4
2. %108/ 2 %103/
0 . . 0 . .
0 5.x107 1.x10%% 1.5x10% 0 5. % 10%° 1. % 10%° 1.5x 10
n n
— — o:=E(-77),8=0.00 o:=0.00,3=0.00 -+ o:=E(-77),p=E(-40) = — o:=0.00,3=E(-40)
o:=E(-77),B=E(-40) — - — 0:=0.00,3=E(-40) :=0.00,=0.00 — — o:=E(-77),8=0.00
(a) First observation . (b) Second observation.
4. % 10°% ]
. 3.%x10% ////
" 38 =
2. % 10°* ~
v
1.x10°%1 /
0 . . . .
0 2.x10°  4.x10°  6.x10°  8.x10°  1.x10"
n
[ 0:=0.00,8=0.00 — - o:=E(-77),8=0.00 |

(c) Third observation.
Figure 4.1: E, o g versus the quantum number n for different values of the deformation parameters.

We observe that all energy level cases in Fig. 4.1a apply when the quantum number principle
n between 0 and 2 x 10%8. Meanwhile, Fig. 4.1b illustrates this separation, which happens,
when 1 = 10°® and n = 10*. Curves B # 0 no longer appear when n > 10*!. On the other
hand, in Figure 4.1c, the case (o = 10777, B = 0.0) plot is shown at {n > 107 and vanishes

at n > 10”7, These data clearly show that the a— parameter has a greater effect than the f—

parameter.
2.x107%]
1.5x 107%4
AEn
1.x 10784
5.x107
0 __-_-__-_-_T_-_-_'_-_-._-_
1.x10 3. x10" 5.x 10" 7.x 1083 1.x10"
n

0:=E(-77),8=0.00 —-— 0:=0.00,3=E(-40)
o:=E(-77),8=E(-40) —* — 0::20.00,3=0.00

Figure 4.2: The energy spacing between adjacent levels as a function of n

As we also see in Fig. 4.2, the energy spacing between adjacent levels is constant, which

indicates strong confinement.
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Just as in the case of SdS algebra, we can plot all the energy level curves. For instance, we can
see in Fig. 4.1c that the HUP algebra’s energy spectrum curve is below the case of (a =107,
B =0.0).

Additionally, the nonrelativistic energy level is determined by taking into account that a larger

portion of the system’s total energy is contained in the rest energy (mc?) of the particle [76],

which is, E,(,?sc’ﬁ) 2 +E( 02[3, where mc? > E( 03;3 and mc? > \/m2? — e2€2/c2. The

energy spectrum of a nonrelativistic particle in the context of the Snyder (anti-)de Sitter model

at first-order approximation can therefore be obtained by applying this prescription in Eq.

4.62),
(NR) d
Emsﬂﬁ_
. 1 6282
Bm*w +oc< " (wz—Zéhcw(nJré—3)+92h202(”+5_5)2>)
. e 1 s\
P 47
x[2m( fe)@n+1=s)— 5 (n+2 2>] -

In limit case & — 0, Eq. (4.78) becomes as,

22 202 /.2 2
(NR) _mfe*—eE?c e2E2
En,s,a:Oﬁ = \/ P % m2@w? — 2 —— (2n+1—y)
hz ) 3282 1 S 2

In limit case B — 0, Eq. (4.78) transforms as,

~1/2
WR)  — 4|1+ et
ns,o,f=0 " 2 1 _ s 2522 1_5)2
02 —20hc® (n+5—35) +o?h°c? (n+5— %)
h 1> 1 s)\?
— 2n+1—s)—— —— = . 4.
m(a)'/c)( n+ s) 2m0€<n—i—2 2) ] (4.80)

In accordance with Equation (4.78) and in the first order of (&, ), we can derive the energy

spectrum for a spinless non-relativistic particle (s = 0) subject to a uniform electric field
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m2w? — o282 2 22 _ 202 /.2 2
(NR) &2/c? 1 h \/m w? —e?E%/c 1
E = — Z
n.5,0.3 [h( m2m ) (n+2 2m6 m2m? n+2

The first term of the equation (4.81) corresponds to the energy level of a spinless non-

. (4.81)

relativistic oscillator with frequency, interacting with a uniform electric field within conven-
tional quantum mechanics (HUP). The second term signifies the relativistic correction within
the framework of a modified Heisenberg algebra. Additionally, if we consider the limit as

€ — 0, Eq. (4.81) transforms to:

2 2
(NR) I\ _mj 1
En,s7a7ﬁ = [hw <n+ 2) 2m6 (n—i— > .

The initial term in this case represents the energy level of a spinless non-relativistic oscilla-

(4.82)

tor with a frequency of w particles in HUP, while the subsequent term represents the initial

correction of deformation in the non-relativistic case.

4.4 Thermodynamic Functions

Within the context of the aSdS model, we will talk about the thermodynamic properties of the
DO particle interacting with a homogenous electric field using modified algebra (4.1). Deter-
mining the appropriate partition function is necessary in order to arrive at these thermodynamic

properties. And so we have:

Z=Y P (4.83)

where T represents the system’s equilibrium temperature, kp denotes the Boltzmann constant,
so that B = 1/(kgT). To simplify, we chose the first order of (c, 3) positive energy level for

spin up (s = +1), as provided by Eq. (4.91). So, the sum (4.83) reads,

0 (@/c)® W2c*n

m2? \/b—i—an ’

Z(T,a,B) = Zexp B\/b-l-an—ﬁ— (4.84)

L (1)@ (@/efmet

PP P R PRp)

with a =
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At the first order of (&, ), the partition function (4.83) becomes

Z(T,a, B) = 2°(B) + 64z (B), (4.85)
where
R - an R _hz 2 (D' —B an
:Z PV and az(B) = B mz/acﬂ Z b+an e PVBan (4.86)

By applying the Euler-Maclaurin summation formula [77], we can assess the sums in (4.85).

Y ) = 3O+ [ e ¥ i), (4.8

here, the Bernoulli numbers are denoted by B,,, where B, = 1/6, B4 = —1/30, ..., and

F@k=1)(0) is the order (2k — 1) derivative at x = 0, and its values are as follows:

@/c) .,

F0) = e_ﬁ ’ f(l)<0) - (h 2) B mo mc? ) (4.88)
B0 = J ("wz)3 (@/c) 5 3@’ o, 3(ne)(@/e)
(0) { (mc2)3 (mw)> B (cmw)? (mcz)4 I (m62)5 B
3c3 3 33 2 o
+66 pzh (szz(;’) e +66 hz 2cmww( 5 } o BZdme (4.89)

Next, in Eq. (4.87), the integral over (x) has the form

2f 6’2 (@w/c)* | 16b  48Vb 48 5
/f dx_{aﬁ af? 2 mie? a3[§2+a353+a334 . 90)

As a result, the partition function is expressed as

)1 (mo) (mcz) 1 m? w? 1
Z(T,a,p) = {5 * (hc?) (@2/c2) B * (hc?) (62/62)3/2ﬁ
_g [ (m*w?) (m?c*) N 3 (m*w?) (mc?)

(hc?) (@/c)’ B (he?) (@/c)° B>

e’ B Gme® _ B k)
+(hC2) (@/c) B4] }e kzl (2k— 1)!f (0). (4.91)
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To calculate this partition function, we are required to compute the sum outlined in the above
expression. However, in our case, this computation can only be executed using numerical

methods. Up to k = 2, this sum can be represented as

B e B @/ e BT 1 [ 3 () (@)
k;l (2kik1)!f(2k D(0) = 6 mo m 180 P e (mc)’
p 30V @) | an () (@) g () @)
2 (mto*) (m2ch)? 2 A (mro?)(mct) (mc?)? (mw)?
()’ (@) B2
+30p Y . (4.92)

When the high temperature (8 < 1), every term in the sum of Eq. (4.92) has a positive power
in B, which is significantly smaller than the other term in Eq. (4.91). Therefore, we can neglect
the terms that have B” and the terms that do not have B. Furthermore, we expand the function

(e_B o ’”62) to the orders of B in Eq. (4.91), and then, after making a few simplifications, we

disregard all of the positive exponents of B. Eq. (4.91) is given the following result:

Z(T,a,B) ~

e 1 é[ tet 1 (m2e?) (mc?)’ 1

(he2) (@/c) B2 | (he2)(@/c) B*  2(he?) (@/c) ﬁ]’ (99

We can see that the 8 —deformation parameter is relatively small, so the partition function is

reformulated as:

5 | 3m??

(keT)?e ~ LioloF

2 4
(kBT)Z—% m 6)2

m2w?
(he2) (@ /c)’

(@/c

Z(T,a, B) ~ (4.94)

The term associated with 6 represents a contribution of the SdS algebra to the Z—function,
and when 6 tends to zero, it gives the partition function for a DO with (1 + 1)—dimensions
subject to a uniform electric field in the HUP algebra. We can now obtain all thermodynamic
functions, including the F —Helmholtz free energy, the Z—mean energy, the C—heat capacity,

and the S—entropy, with the aid of the partition function in Eq. (4.94).

F(T,a,B) = — (kgT)In(Z) = Fy (B) + 6AF' (B). (4.95)
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First, let us discuss the Helmholtz free energy for a (1+1)-dimensional DO with a homogenous

electric field in HUP algebra, and with F ().

Fo(B) = —2(ksT)In m(kpT) , (4.96)

i a2y

where AF'! (B) is the first-order correction for the SdS deformation

A 1 e e 5
F'(B) = szm(kBT) o (mz”;z 2y s (kgT)?. (4.97)

The following expression gives the relation of the mean energy and the partition function

1 _ )
2(7,a,p) = —2D) _oprexp | 36— "0 S (ksT)? | (4.98)
2 <m2w2 _ &)
CZ
then

dIn(Z _ 2?

(T, B) = — ;‘(_ ) ks 65— (kg7 (4.99)
B 2 <m2a)2 _ ezc_§2>

In HUP algebra, the usual case of mean energy is recovered when 8 — 0.

Regarding heat capacity, we have

(x]

C(T.a.p) = 2=

Co (B) +6AC' (B), (4.100)

QJ
ﬂ

where, in the absence of aSdS algebra, C (B) — 2kpg 1s constant, and the first correction to the

heat capacity, AC' () is dependent on T2.

. 2 023 T2
AC! (B) = 18— O (4.101)

2
282
2 (m2a? — €€
C

At last, entropy is presented as

dIn(Z)

S(T,a, B) = kpIn(Z) — kpB o5

=So (B) +6AS' (B). (4.102)
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The entropy of the (1+1)-dimensional DO under the uniform electric field in HUP algebra is

denoted by Sy (B) which can be expressed as follows:

So (B) = 2kp + 2kp1 mo
A W

kgT) | , (4.103)

whereas, the term correction of entropy in the first order of (e, 8) is denoted by AS! (B)

= 2.2 2,32
AS' (B) =k [2< M — Mo (kgT)?| . (4.104)

262
mzwzfg—z> Cz(mzwzfe £ )
¢ c

We illustrate the thermodynamic properties of our system under various deformation param-
eters in the following figures. For simplicity, we employ the natural unit system, where 7, c,
and kg are all set to 1, rendering all parameters dimensionless. This necessitates precise esti-
mations of the relevant physical quantities. Therefore, in the high-temperature range, we have
chosen an oscillator value of about 2MeV, an electron mass of m = 0.5MeV, and an electric
field & at 0.2MeV?2. As a result, as functions of temperature ( (kgT)), the thermodynamic
properties are depicted in figures (4.3), (4.4), (4.5), (4.6), and (4.7), four distinct deforma-
tion parameter values were used, namely, (o = 10*77MeV, B = 10*35MeV), (ot =0.0MeV,

B =10"3MeV), (a =10"""MeV, B =0.0MeV) and (ot = 0.0MeV, B = 0.0MeV).
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(c) Third observation.

Figure 4.3: Partition function for the DO with uniform electric field as a function of temperature kgT

for different values of the deformation parameters.

As evident from the sub-figure (4.3a), the aSdS algebra produces an increase in the partition

function from kT = 1 x 10'° to approximately kgT ~ 2.5 x 101°MeV . Then, after the temper-

ature kgT ~ 102°MeV., the curves (4.3b) corresponding to (¢ = 107" MeV, B = 10-3¥MeV)

and (¢ =0.0MeV, B = 10~3MeV) decrease to zero. Meanwhile, in Fig. (4.3c¢), the curves for

(a=10"""MeV, B =0.0MeV) are close to zero when kgT exceeds 103°MeV . In contrast, the

other two curves closely align up to kgT ~ 5 x 1033MeV .
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(c) Third observation.

Figure 4.4: The Helmholtz free energy function for the DO with uniform electric field as a function of
temperature kgT for different values of the deformation parameters.

Figure (4.4) presents the Helmholtz free energy for the one-dimensional DO within the aSdS

context in terms of kg7 . This representation shows that the aSdS algebra results in a decrease

in the F-function, which varies from kgT = 1 x 10! to kgT ~ 6 x 101°MeV for each of the

four deformation parameter cases in Fig. (4.4a). After kgT > 10°°, the curves (4.4b) for

(¢ =10"""MeV, B =10"3MeV) and (a0 = 0.0MeV, B = 10~ MeV)) disappear when 8 # 0.

In the meantime, Fig. (4.4c) shows that the case represented by (o = 10~7"MeV, B =0.0MeV)

has an effect up to temperature kgT > 10>'MeV .
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Figure 4.5: The mean energy function for the DO with uniform electric field as a function of temperature
kgT for different values of the deformation parameters.

Moreover, as Figure (4.5a) illustrates, the mean energy in the aSdS model increases with tem-

perature. In Fig. (4.5b) it is demonstrated that in the cases (ot = 1077 MeV, B = 10-3¥MeV)

and (o = 0.0MeV, B = 103 MeV), the curves decline to zero after reaching the temperature

kgT ~ 102'MeV. But in this case, (ot = 107" MeV, B =0.0MeV), the curve (4.5¢) goes down

to zero when kpT surpasses 5 x 103°MeV .
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(c) Third observation.

Figure 4.6: The heat capacity function for the DO with uniform electric field as a function of tempera-
ture kgT for different values of the deformation parameters.

In addition, the heat capacity in Fig.

(4.6a) is a constant C = 2kg when kgT < 10'l.

When kgT > 10'°MeV, the cases (o = 107" MeV, B = 1073 MeV) and (a = 0.0MeV,

B =

1033MeV) show an increase with temperature, as shown in Fig. (4.6b). Figure (4.6¢) de-

picts the capacity increase for the case (ot = 107"’ MeV, B = 0.0MeV) with rising temperature

at kgT > 1032,
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(c) Third observation.
Figure 4.7: The entropy function for the DO with uniform electric field as a function of temperature
kgT for different values of the deformation parameters.

Lastly, we plot the effect of aSdS on the entropy function in three graphs in Fig. (4.7a). As per
Fig. (4.7b), at temperature kgT > 10'°, the aSdS reduces the values of entropy with tempera-
ture for the cases (& = 107""MeV, B = 107MeV) and (ot = 0.0MeV, B = 1073°>MeV)). On
the other hand, the entropy function for the case (@ = 1077 MeV, B =0.0MeV) in Fig. (4.7¢)
decreases as the temperature rises, with kg7 > 1038,

As we mentioned earlier, it has been observed that the a—parameter in the aSdS algebra
affects energy eigenvalues more strongly than the 3 —parameter, the same holds true for ther-
modynamic functions. Likewise, simply by substituting (¢ and ) with (—a,—f), we can
deduce thermodynamic properties and suitable curves for the SdS model case. Ultimately,
our findings coincide precisely with those reported in Ref. [

] when the aSdS parameters

o = B = 0 and the electric field & — 0.
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4.5 Conclusion

This chapter outlines the formulation of the 1D-DO within the framework of the Snyder (anti-
)de Sitter model, along with its exposure to a uniform electric field, all represented in mo-
mentum space. We derive the precise causal Green function and its corresponding propagator
using the coordinate transformation technique, from which we extract the relevant energy val-
ues. The Green function and its corresponding propagator are expressed in terms of Jacobi
polynomials when (a, 3) are negative, and in terms of Romonovski polynomials when (¢, )
are positive, in both cases for the sign deformation parameters. Moreover, we have shown that
within the framework of Snyder (anti)-de Sitter space, the energy depends on n? and remains
continuous even in the absence of oscillation and electric fields.Furthermore, we have con-
structed the non-relativistic energy level in the context of the aSdS algebra and derived limit
cases for deformation parameters, taking into account both spin and non-spin situations.

The thermodynamic quantities of our system, including the partition function Z, the Helmholtz
free energy F, the mean energy Z, the entropy S, and the heat capacity C, have all been deter-
mined in the first order of (¢, B) at high temperatures using the Euler-MacLaurin formula. And
we have demonstrated the importance of the ¢ —deformation parameter over the § —parameter
by plotting the EUP terms of thermodynamic functions at temperature kg7T. Nevertheless,

current experimental techniques are unable to identify these effects.



Chapter 5

Exact Green’s Function for 2D Dirac Os-
cillator in Constant Magnetic Field within

Snyder model, and its Thermal Properties

5.1 Introduction

The Dirac oscillator (DO) model combines harmonic oscillator (HO) elements with the Dirac
equation to describe a relativistic quantum mechanical system. It describes the behavior of a
relativistic particle with spin one half in the presence of a HO potential type, derived by trans-
forming the momentum vector (p — p — im®}°x), where 7 is the Dirac matrix. Because of
its tight link with several physical phenomena in quantum physics, many different versions
of this physical system have been described. The original study by Ito et al. [79] was later
developed upon by Moshinsky and Szczepaniak in [80]. When the non-relativistic limit is
considered, the behaviour of the quantum HO may be restored, however, a spin-orbit coupling
factor emerges in this limit as well. References such as [81-86] provide several examples
from various branches of physics. Moreover, following the appearance of deformation the-
ories grounded in Heisenberg’s generalization principle [10, 27, 69], many researchers have
promptly sought to explore its impact on relativistic oscillators. The Green’s function tech-
nique is used in referencesfthermodynamic functions for this system. [35, 37] to present the
DO model with a minimum length in one and two dimensions. In addition to determining
the high-temperature thermodynamic properties of the DO in one dimension, see Ref. [62].
Furthermore, anti-de Sitter commutation relations result in the appearance of minimal uncer-

tainty. Ref. [87] describes the DO in one dimension using the position space representation,
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and analyses the properties thermodynamic functions for relativistic harmonic oscillators in
high temperatures. Later, within the extended uncertainty principle framework, Benzair et al.
[88, 89] calculated the energy spectrum of the DO using the path integral formulation in one
and two dimensions, respectively. Further, the study of thermodynamic properties for rela-
tivistic oscillator particles within deformed algebra is proved by the citations [34, 62, 89-93].
Referring to [94] as well, where the authors examine the relativistic spinning massless parti-
cle in the presence of a constant magnetic field within the Graphene layer. The behaviour of
the DO in the Som—Raychaudhuri space-time was also examined by de Montigny et al. [95],
with particular attention to the impact of the vorticity parameter and frequency. Then, as dis-
cussed in Ref. [96], this study was generalized to the DKP oscillator case for a zero spin field
under cosmic-string background space-time, which is characterized by a stationary cylindrical
symmetric metric.

Despite extensive discussions, only a limited number of studies have explored the DO using
the path integral formulation. These applications are grounded in 3-model deformed algebras:
the first one, known as GUP [10, 97], is based on DSR theories and confirms the presence of
a minimum measurable length. Moreover, the second requires the existence of a minimum
measurable momentum, which calls for an EUP to be created in place of the HUP [69, 98, 99].
On the other hand, the third is created by fusing GUP and EUP, which is prominent from a
DSR model on a anti de-Sitter background. This results in the SdS model, also known as TSR
[27, 94].

The following algebraic relationship is followed by the operators for position X#, momentum

ﬁu, momentum fA’u, and Lorentz generator J, v to construct of the SAS model algebra.

[f,LLwXO'] =ih (Tl,uc;Xv - rlvchu) ) [fuv,pa} =ih (rlucpv - nvalsu) )

(X, Xv] = inBJuy; [Py, Py = inadyy. (5.1)

In this context, fuv = Xuﬁv —Yvﬁu denotes the Lorentz symmetry generators and 1,y =

diag(1,—1,—1,—1) is the flat Minkowski space-time metric. The coupling constants, denoted
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as o and 3, have inverse mass and inverse length, respectively. When the limit as o — 0,
the above commutations relations (5.1) give to the Snyder model in flat space [69]. Moreover,
the algebra (5.1) becomes the de Sitter algebra when B — 0, and this parameter has an effect
corresponding to the A = —3 cosmological constant [69, 98, 99].

In this chapter, our objective is to rigorously formulate the path integral approach in momen-
tum space representation for the (2+1)-dimensional 2D-DO subjected to a uniform magnetic
field and the Snyder model (SdS). Additionally, as outlined in [27], it furnishes the deformed

Heisenberg algebra in the three-dimensional case within the non-relativistic SdS model.

[A,’,Xj] = lhﬁj}j, [ﬁ,,pj} = lhOtJij. (52)

Where J;; = X;P; — X;B;. In the limits & — 0, § — 0 and ((ot, ) — 0), the Snyder model in flat
space is recovered to the de Sitter algebra and the undeformed Heisenberg algebra, respectively
[69]. Given these commutation relations, it becomes vital to investigate the transformation that
links this deformed algebra with the Snyder algebra. Mignemi citeMignemi2one first presented

this transformation, and it is described as,

A A A a .

A B — b /1_ Bp2 B Pi__

X,_DC,+\/;K'P, thy/1—PBp 8p,~+\/;1< l—ﬁp27 (5.3)

. N R d Di

P=—/%X;+(1—K)P;i=—1h,/%/1 -Bp?—+ (1 — k) ——. 54
VBT (10 Pi=—any [/ 1- B2 - (15 — (5.4)

The index (i = 1,2) stand the components vector of the position X = ()A( , )4 )or P .= (ISX,ISy)
momentum operators. Here, k is a free parameter that can be selected in each case. And
in order to guarantee the symmetry of the Hamiltonian and that (X;, ;) satisfies the below

deformed Heisenberg commutation relations [69],
%35 = (854 898)), [Xu%| =B (NP -%P), |99 =0.  (65)

Thus, the position X; and momentum P; operators of the Snyder Heisenberg brackets (5.5)

can therefore be expressed in terms of auxiliary operators £; = 17id /dp; and p; = p;, which
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maintain the following relations:

Xi=1/1-Bp, (R o — (5.6)
V1-Bp?
It’s crucial to stress that for positive values of & and 8 the momentum operator p; is constrained

within the interval (—1/1/B) to (1/+/B). Specifically, when (P;) and (X;) are both equal to

zero, the uncertainty relation appears in the following form:

(AX), (AP), ;(&ﬁa(Ax)( )+ B (AP), +\/_<AP +(Ax)l.(AP)j)).

(5.7)
It is important to note that the concept of minimal uncertainties fails to apply in the cases where
(a and B)< 0 (i.e., aSdS), meaning that all real values of p; are allowed. Prior to delving into
the specifics, which are covered in the section that follows, Notably, the scalar product has
changed. It seems that the symmetry of the operators of X; and P, appears to be limited to the

subspace L*(R%,dp/+/1 — Bp?)), we use the following form shown in [27],

wio) =10 \/% (7). 58)

these wave functions satisfy the periodic boundary conditions y(—1/ \/B )=wy(l/ \/[_3 ), and

accordingly, the modified closure relation is provided by [68], where,

[

l/fmypﬂp‘:L (5.9)

Thus, we derive the following expression by applying the closure relation to the maximally

localised states [08]:

(o), , = ()

It is noteworthy to observe that for (o < 0, < 0), in the above equation, we adjust the limits of

\/1-Bp25* (p—p'),and y = ik /h\/ . (5.10)

integration to encompass the entire space. Furthermore, in the case that o and 3 are both equal

to zero, we recover the standard projection relation, denoted by <p\p/>( 850 =8%(p—p).
o,fB)—
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Recalling that the time-momentum relationship in the time component is not deformed is es-

sential.

dt Ly

{polpy) =6 (po—py) = | === 7

o (o=rp). (5.11)

In turn, the operators matrix elements ﬂ)?, <3A313A62 — ?25@) and DClZ are given, respectively, as

follows,
2

PRI )0 =(PIP)p [l—p—bp-z] , (5.12)

and
<j31§C2 —@23%1) (p| P/>aﬁ =(p| P/>a_‘/3 (PyX—Dpxy) (5.13)

then

/ / ZBZP'Z 2
X PIP )= PIP)gp Yr=D1 =g, 2B =1
3

—~2:nB (y— 5) (pox+pyy) + (1= Bpi) 7 | (5.14)

This chapter is structured in six sections. section 2, our focus lies on formulating the path
integral for particles have spin 1/2 within the context of Snyder model space-time. It is signif-
icant to note that, as proved in [35, 70], this formulation is achieved here without the need of
Grassmann variables. This method relies on calculating the path integral on the Green func-
tion’s elements matrix. A similar technique has been applied in previous studies [72, 89]. We
perform to separate the radial part from the angular part, in section 3 by applying the polar
coordinate transformation. The process of separating variables leads to the derivation of the
Poschel-Teller radial propagator [37, 49]. In contrast, for section 4, we have derived The exact
solutions of the bound states and the appropriate energy eigenvalues. As section 5, we illus-
trates, the behaviour of the DO system in the presence of a uniform magnetic field, within the
SdS algebra closely resembles the dynamics of the monolayer Graphene problem, assuming
the following equality m@ — ma,/2 and ¢ — Vr. In section 6, we examined and discussed
the special cases that result from these studies. We conclude section 7 by testing and plotting

the thermodynamic functions for this system.



Exact Green’s Function for 2D Dirac Oscillator in Constant Magnetic Field within
84 Snyder model, and its Thermal Properties

5.2 Path Integral analysis in Snyder-de Sitter space for

(2+1)-Dirac oscillator
Now, we proceed to study the Green function $ for the (2+1)-dimensional DO in momen-
tum space representation, within the context of SdS space, and in the presence of a uniform

magnetic field (B = BK), which is given by the following equation [5],
(A —1h9,)S=1. (5.15)

In this case, the unit matrix is /. The Hamiltonian expression for the DO without electromag-

netic interaction is defined by [5],
. = —= )
H:ca.(P—lmcoﬁX)+[3mc, (5.16)

= =
Eq. (5.6) is used to verify the momenta P — and position X — operators in this case. Where
the parameters denote m, ¢ and @ to the mass of the particle, the speed of light, and the angular

frequency of the oscillator, respectively. For each o and 3 , the o;—Pauli matrices serve as:
o) = , O = R /3: . (5.17)

Following the application of minimal electromagnetic coupling in Eq. (5.16) [5], Eq. (5.15)
minimises:

=
P

[}’0130 Al

e = N
~A) +moy’y.X — mc} S=—1I (5.18)
C

For a relativistic particle, the parameter ¢ = F |e| describes a particle with positive charge (e =
le|) or negative charge (e = — |e|). Moreover, the Pauli matrices in two dimensions represent

the y* —Dirac matrices

Y =03 7 =100, ¥ = —i01. (5.19)

Observe that the time component is not deforming.(Py = 1hdy = 1hd /dct, Xy = £° := ct). The

two components of the vector potential (A = 2% (—)?2,)21)) are the potential of a uniform
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magnetic field B. Eq. (5.18) can therefore be expressed as stated in [5],
[yolha/at —cy! (131 +md))22) —cy (132 - m(DXl) — mcz] S=-I, (5.20)

here, @ denotes to @ = ® F @, /2, with @, = % is the cyclotron frequency. The formal

solution of Eq. (5.20) is

§=—[0P] " =—0P[0PoP] !, (5.21)
where OF is defined by
OR = [y*17d /91 — cy* (Bl + m@Xy) — ¢ (B — mdXy) £mc?]. (5.22)

Using the Schwinger proper-time method [73], and after mentioning that § = — [O_ﬂ [Ol_) OQ] - ,

the Green’s matrix operator S can be conveniently expressed as

A

§=[02]8, (5.23)

with
G = i/ dA exp (—ilff'f) : (5.24)
hJo h
where an even variable is denoted by A. The formula H —operator is represented below:

H=— [yozha/at —cy! (f’l -I—m(Z))A(Q) —cy (132 —md))?l) —mcz]

X [y01h8/8t —cyt (P +mdX,) — ¢y (P, —m®X,) +mc2} . (5.25)
After the equation (5.25) is simplified, we obtain:

H=- [—hza} —m*ct — ¢ (ﬁlz +ﬁ22) — % (m@)? ()A(lz +X22)
—md [(Xzﬁl —f-ﬁlf(z) — (Xlﬁz +132)A(1)}

+y P {[PLB] + m0) [R1,%] +m@ [, 5] +mo[%1,A]}| . (5.26)
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To express this Hamiltonian, we must use the position and momentum operators, which
achieve the deformed quantum algebra described by Snyder and are predicated on the adapted
commutation relation provided in the previous section (see, Eq. (5.5)) [27]. By inserting the

operators ((I)ACi, P j>) into the Hamiltonian expression F—, we find:

Fe— _ [_rfa,z YR (<ma>>2 i %) (4+3) —22md (Tor - 2,,)
—c? <(1 k)% + 2F (ma))z) (@ﬂﬁ% — iy PE(XL D) (5.27)

with
F(& 50 = 2B (% + (m)Z) (201~ 2% —m (24 (91 +93)). (5:28)

Based on the given value of k, the equation above indicates that the term (i]A’,-DAC i+ ,OACi) will be

evidently absent.

P (5.29)

1+ E(ma)

When § is represented in momentum space, the corresponding element matrix is

1 [ I A
9(pb7pa7p0b7p0a) = _E 0 dA <pb,p0b‘exp <_£lg—f>

Pupoa).  (530)

Before going into building the Green function G (pp, Pa, Pos, Poa) Using the path integral for-
mulation. First, we need to remove the Pauli matrices, as they are not in line with Feynman’s
formulation, by constructing the following exponential matrix. Then, we can simplify it as

follows

exp <7Ly1 }/ZF <§Ci,§>i>> = cos (Mf“ (56,-,@%)) + ylyzsin (Mf“ (f)ACi,ff)i)) , (5.31)
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given that (yl }/2)2 = —1, considering the properties of Dirac matrices, Eq. (5.31) can be
expressed:

exp (),}/Iyzﬁ <§Ci,j3i)> ==Y [1+usy'V]exp (—%slhﬁ (fJAC,-,ij’i)) . (5.32)

s==+1

As aresult, Eq. (5.33) may be expressed as follows:

1

9 (Pb;meOb,POa) = o .

Y [1+57'7] [ Ao poslexe (~7560) Ipaspoa) . (633
=1 0 h

with
oos 22 2@ —2) (42, &2 A (mad)
o= |07 (% o) (513) - 0
—2c2m6) <j)1§(:2 - ?2&1) — Shp <X,‘, A,') — m2c4] . (534)
We break down the exponential exp(—z/’LffC (“)) for the kernel of (5.33) into (N + 1) exponential

exp(—1eH)), with e = 7, —7;_; = 1/(N +1). Next, between every pair of infinitesimal

operator exp(—zsiﬁf(s)) we insert N resolutions of identities (5.9). In fact, we have [68],

l . = P [ dpodp; YT _ £ qe(s)
9(pb,pa,p%,poa):Es;il [1+lsylf]Nhg1w/0 dlg/ﬁg@ww\e A TR TR
(5.35)

To proceed further, the exponential can be developed to the first order of €. Consequently, we

obtain

12 ()

lim <pj,p0j’e*

N—>00,6—0

Pj—1,1?0j—1>a7ﬁ

: € .
= lim [<pja1?0j|Pj71,p0j71>a,/3—%<pj,p0j|9{(s)|pj71,p0j71>aﬁ}. (5.36)

N—00.—0

Next, we add each and every operators (X? iPiz, jﬁjCz — j’gf)ACl) to the projection relationship

17

(p;j | ()| Pj- >a’ p- In order to remove the Hamiltonian operator in the SdS framework, the

expression G (pp, Pa, Pob, Poa) is converted into the following path integral in phase space:
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1 .. /\/_ dp()jdp]
9(Pb,Pa,p0b,P0a)——ﬁl\l,lf{}os_zﬂ [1+157'7] / dA H [/1/\/_m
xl—[l [( 1B;j)§1) l_ﬁIﬁ
ph

{iNnLl[_uA._i_)bs[z_ 2.4
Xp hzl X;Apj, poj—m’c
(DN (o R g

(ﬁ+( w))(?’()’ D1 Br’ 2B (y—1)

3 _ Bp;
+2hp (Y— 5) (xjpx; +yipy;) + (1= BP) (5 +y§)) +she’m® <2+ - ij2>
2
_ 2
(m®)?  Pj

T (@) 1- Bp? (2m@+5hﬁ<%+(m(b)2)>(pijj_pxjyj)]}. (5.37)

It is convenient to eliminate all terms multiply by the y—parameter by applying the term
Y

((1 - Bp?fl) / (1 — ﬁp?)) *. With the following analysis, this can be made clear [64],

! (l_ﬁp%—l)Y/z _ Y 1-Bp3
n . =—=In| ————
1-Bp; 2 1 _pp§_1
(PxjApxj+ pyjApy;)  2ug_, 5 (06 _ 2)
= - — — 4+ (md
2
1€ o P;
— 2% yc? (- + (m® 2) A (5.38)

Furthermore, after performing the multiple Gaussian integrations over (x,y,t), the La-

grangian path integral representation will be obtained by converting the Green function

S (PpsPas Pob, Poa) to the following form:
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oo N 1/\/3 .
S (Pb,Pa> Pob: Poa) = —éNli_r>nw Y [1+wsy'Y] 5(p0b—poa)/0 dA]] [/ " \/%]
S:il j=l — i
2
N+1 ! -
X \/1—Bp?
1‘1;11 T\ BN tec (& + (ma)?) (1- Br?)
lN+1 (Ap])2

xexpq - Y + e (p§—m*c?)

j=1 | dec? (% + (m(D)2> (1 —ﬁp?)
P; 3. (pyApy,+pxApx,)
P) b gt 2P <1y_ o)

c? <2m(D+sh[3 (% + (ma'))2>>2 p> o )
4(§+may) gy P (E ! (mw)2>

S

99000 o
4hﬁcl£(ﬁ+(m

+Ae

2, 22 p2 2
e M@ P S+ shPmdle <2+ Ppj 2)]} (5.39)

In the following section, using spherical two-dimensional coordinates, we were able to suc-
cessfully complete the calculation. Given the established importance of symmetries in pre-
serving the physical quantities of this system, we need to determine the best way to account

for them.

5.3 Green Function Analysis In Polar Coordinates
Firstly, let us start by using relative polar coordinates (pp, pg) in order to simplify the path
integrals above (5.39), where in the 2-dimensional spherical coordinates of the momentum

variables p are given by

Px = Ppcos(pg), py = ppsin(pg), (5.40)
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with 0 < pg < 7 and p? = p)zc + p%. This leads to the transformation of the measure term,

kinetic term, and the action terms [08],

N 1/v/B dp; . al Pp,dl’p,
TV | R

(Apj)? = p[z)j + pgﬂ —2pp;Pp;_, €0 (Apg;) - (5.42)
1 2

PjAP; = Pp;APp; + Pp;Pp; (5 (Ape,)”+--)- (5.43)

PxjAPy; = Py;Apx; = Pp;Pp;-, sin (Apo,) (5.44)

the kinetic energy term is used to calculate the correction (Apgj)z, which is equal to [68],

1-Bpj3,
(Apgj)z ~ 21717L£c2(g + (md))z)ﬂ

(5.45)
B Pp;Ppj

After incorporating that into the Eq. (5.39), the Green function becomes:

l

S (Ppy>Ppas P8y > P83 POb POa) = —ﬁNﬁ_n)lw Z 1 +1SY17’2} 0 (Po» — Poa)
s==+1

N+1 \/1-Bp3,

/ dﬂ,H / pPJ ij dpej H ; J
=1 |7 /1-Bp, =1 | 4mihec? (% + (m®) ) <1 — ﬁp%,/,)

1 NI P,z)j +ij,1 —2pp;pp;_, €08 (Apej) .3 Bpp;App;

hE | gec (%"‘(””‘D)z) (1 _ﬁpi%f> ? (1 _ﬁp‘z’f)

X exp + e (p§—m?c?)

—zhzﬁzlecz <%+(m®)2) —<1 pf;; ) —2BH*Aec? (%—F(m@)z)
iy
_ Y N\2
+2pRAE (% )+ re @ (2m -+ 51 (§ -+ o)) ) rj,

4(§+ma)) (1-Bp3))
2m® + shf (% (m®) )Pp,Pp] sin <AP9 ) shm@he ( ﬁp%j )
2(g +(ma)?) (1-pr3,)

A(m@)* Py,
_M%Jr(mé))zl—ﬁp,%j”' (5.46)

+
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The third term in the kinetic energy, along with the final term in the procedure, indicates the

possibility of an angle shift according to the following relation

Peo; — Po; + ”L'jitc2 <2m(D+sh[3 (% + (mc?))2>) , (5.47)

The 7 represents time in physics. The path integral over the angle pg, will then be calculated

using the well-known relation [3]

exp (acos pg) Z Iy(a)exp (ilpg), (5.48)
—

where the modified Bessel functions are denoted by I; (a). Following simple calculation, Eq.

(5.46) can be expressed as

w N dpp.
S (Ppys Ppa> P8+ PO, POby POG) = —éNli_anm Y [1+wsy'Y] 5(P0b—poa)/0 dr]] [/M]
el

2
s==+1 V1B

Ntl J1-Br3; oo By .
Xjr:[l KW& (§roor) (s ””/>> ZJ@( W 2et (5 ) (1673,
et
j=1

coxpl - Po+lp; e (g —mPct) — —Ashz 252 < (ma_))z) Pp,
i |de(g+mo)) (pﬁpp,) . B 1-Bpj,
3BPp, Pp,

—ih lehz 2B < 5 (md))z) —20eR**P (%+ (m(D)z)

} : (5.49)

it is now possible to perform the N—integrations over the pg, —variables, yielding the N sym-

—Bp3

2 2

Pp; D5,

—leac (ma)z 5 P 5 + Aecishm® 2+h
3+(ma)) 1—ﬁppj

bols of Kronecker [3],

N 2 N+1 N
H [/O ndpej} H [ U Ape} H <27l'5p f,ﬂ) I€N+1p9N+1—l£11790‘ (5.50)

J=1 J=1
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With the exception of ¢, these symbols can remove all summations. The radial time evolution
amplitudes are defined as follows in relation to the azimuthal /-quantum numbers [3]:
1 1 iy

S (Ppys Ppa> PO,> PO, PObs POG) = 5=

— e’g(”"b""’a)Se Ppy> Ppai Pobs Poa) , (5.51)
2n prpPa f=—o0 ( Po2 P a)

and

1

St (Ppys Ppas Pobs Poa) = — 578 (Pro = Pao) Y [t+sy'] Jim / dAetH(pi-me’)

s==1
B [ ap, | { o “12
X J 4mihdec? <—+ mae 2)}
H/l/ﬁ[ 1- ﬁpp]] Jljl B (m@)
s (App,)° 3 Bpp;App,
xexpq 7 ) / —ths —L—

=i aaee (g war) (1-pr3) 2 (1-813)
+Az (-%hzﬁzcz (g+(m(z>)2) 7y, _ cma)” Ph,

B 1=Bp;, §+(md)>1-PBpj
2 (2 —1/4) (1-Bp3,
—i—shczma)& h2c? (g i (m(I))z) ( p,)
1=Brp, B Pp;Pp;
B c2h’B

: (% 4 (m@)z) + 2% shm@ + hlc? [2m@+shﬁ (% + (mcb)z)} )} } (5.52)

This is accomplished while considering the following relationship

I(z) = e (2m2) " 21 (2). (5.53)

. 2
The modified Bessel functions /; (z) = exp (— ¢ ZZI / 4) exhibit asymptotic equality as |z| — oo,

with |argz| < 0 [3].
This propagator’s expression (5.52) takes on a more complex form because it contains the
term measure. Using the point transformation method (refer to Ref. [35]) to simplify this, the

Y-point discretization interval is defined as

)
Py =Ypp, +(1-0) pp, .. (5.54)
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Based on Refs. [35, 37], this usually gives rise to three quantum corrections: a momentum

measure term (dpp,;/,/1— p,%j), a kinetic energy term, and the last term in action (5.52).

We extend these corrections using the discretization interval of pg) -points in order to analyse

these corrections even more. Subsequently, we employ a coordinate transformation to restore

the conventional kinetic term (@x—j)z_). The function f(x) is defined by the following
4ec? (%—i—(mw)z)

condition:

df (x) /dx = /1 —Bp3 = \/Bpp = sinx. (5.55)

Subsequently, we utilize discretization intervals, referred to as Y-points, to express the kinetic
energy and measurement terms. This facilitates the determination of the overall correction,

denoted by the symbol Cr.

5 1
Cr = ihec? (a +B (m(D)2> L_l tan’x — (2Y* - Y —1) coszx} : (5.56)

With the predefined Y-values (i.e., Y =0, 1/2) given in Refs.[35, 37], Cr assumes the following
form:

Cr = ihec? (% + (mca)2> {1 + ztanzx} . (5.57)

In doing so, the radial propagator G¢ (xb,x4; poy, Poq) is converted into the following expres-

sion:

9£(Xb,xa;p0b,190a)2—55(1%0—1%0) Y [1+usy'y]
s==1

X /Ooodl exp{% {p% —m*ct + %hzc2 (Oc +pB (m(I))2> + hlc? [Zm(D—i—sh <O£ +p (ma_))z)]

(m®)

(a 4B m(D)2>

+2c2stimd + W c? (a +B (md))z) (52 —1/4) - ¢ | shm@ — Ko (xp,xq,A) .
(5.58)

As shown in reference [49], the kernel radial propagator Ky (x,,x,, A) equates precisely to the

path integral of a particle subjected to the Poschel-Teller potential (PTP),
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KA%M@A):N@iii{/dw}iiPmmqhQ(%+«m@f>}lﬂ

2
Nl (Ax)) 22 _\2 alﬁi@f“‘hmd’ 1 ?—1/4
o { h Jg se(o+p(md)?) ehe <a + B (ma) > 7 (a+B(m®)?) cos?x * sin’x '

(5.59)

According to Grosch [49], the transition amplitude with respect to the PTP results is defined

by:
N+1 N+1 2
\2 I (vi-1/4) | (8%-1/4)
K—Nh_l’>n°oH/dx] ( 27'L'lh£> { 28 (Ax ) _8ﬁ [ cos2x + sin? x
72
_ZCID xp) D) (x4) exp {—E <W (6+v+2n+1) >] (5.60)
and

(8 +v+n+1)

1/2
CID,(f’v) (x) = [2(5+V+2n+ 1) J (sinx)‘s“/2 (cosx)VH/ZP,ga’v) (cos2x).

ro+n+1H)r'(v+n+1
(5.61)
In contrast, M, 8, and v, respectively, can be identified as:
1
M = , 0=/, (5.62)
2c2(a—kﬁ(mdﬁz>
and
1 0/h
Vo= + —ﬁinl—j . (5.63)
2 a+pB(ma)

Following the condition of the generalized uncertainty principle, as outlined in the introduc-

tion, we will adopt the following values:

vy = —Lg ( , (5.64)

2 g
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negative values, on the other hand, are discarded, resulting in the following outcome
. s mo
V_g = Vy+s, with vy = ) + =5 (5.65)

here, 8 = ot + B (mc?))z. Subsequently, in accordance with the y* — properties outlined below,

the expression ¥y [1+usy'¥?] = Yty xsx;h holds, where x;" = %( l4+s 1—s ) .

Equation (5.52) is then transformed into the following form

1
St (Xb,Xa3 Pob, P0a) =55(p0b—p0a Y Xk /d?Leh Pi=0%0s)
n s=+1

X (2(])+vs+2n+1)

nITC (|0 +vs+n+1) }
T +n+ DL (vs+n+1)

% (sinax) 12 (cosay) W2 BIY) (cos )
% (sinxg) 12 (cosxg) W2 BUYY (cos2xy), (5.66)
with
(l)ign—mc + R3O 2n+1—s+ 0] = [[€] + 0+ 2vs+2n+1+5]. (5.67)

To accurately assess the propagator expression, we shall apply the Fourier transformation of
(5.66) with regard to the pg, and pg, variables. At this point, integrating over A results in the
equation,

¢(pe,— Pea) dpo e*ﬁpo(fb*fa)

9(Ppbyppaapebapea;POb,POa Z Z Z — XXy
n s=+41f=—oo

2nth pO

sﬁn

n!l (4| +vs+n+1) }
C(|l|+n+1)T(vs+n+1)
vs+1/2 plltl; Vs)(

2([4)+vs+2n+1)
X (sinxb)w| (cosxp) cos2xp)

X (sinx,) Il (cosxa)vSH/2 p{lhvs) (cos2xy) . (5.68)
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Now, let us apply the theorem of residue at the pole pg which allows us to express

dpo e~ iPo(tp—la) e~ 7 €Ensi(ty—1a)

=—1 —0OEt—1)), (5.69)
27[71 p% - wlg,&z E—Zil 2En7s7£ ( ( a))
which has the poles
1 s | || 1
Ep ¢ =1 | m2c*+4r%c20 —-+—= 7
18,0 \/ + l+2 2+2 2}l2+2+vs+ +2+2 (5.70)

Moreover, it confirms the identity that follows for an arbitrary function

Y ) f(e)0(et—ta)= Y f()O(s(ty—1a) + f(=5)O(=s(tn—1a)),  (5.71)

s=xle==+1 s==%1

we refer to ®(x) as the Heaviside function. As a consequence, the Green function is expressed

as:

e*éSEn.s (th—ta) 0

—_——— fp — 1,
T (s (s —a))

nzr(|z|+vs+n+1) }
T +n+ DT (vs+n+1)
w12 plev)

¢(pe, peu)
S (XpsXa, PO, PO, PObs POa) =1Y Y, Z ———XsXs

n s=41{=—o0

X [2(|€|+vs+2n+1)

vs+1/2 Pr$|£|7vs) (

X (sinxb)w| (cosxp) cos2xp) (sinxa)w (cosx,) cos2x,)

elSEn,s(lb—la)

T T2k,

nU([l|+v_s+n+1) }
C([|+n+1)T(ves+n+1)

O(—s (1 —ta))] {2(|€| +v_+2n+1)

X (sinxp) 1l (cosxb)v““J“l/2 pllfv=) (cos2xp) (sinx,) 1l (cosxa)v"‘Jrl/2 pllfv=s) (cos2x,) } .

(5.72)

Furthermore, we apply the transformation (s — —s) to the terms multiplied by ® (—s (¢, —1,))
to unify the energy expression between the terms O (s (7, —1,)) and © (—s(t, —1,)). This
results in

n—n—s, |[l|=l+s, v_g=vVs+s. (5.73)
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Thus, the Green function is represented by:

174 (Peb —Po, ) e~ éSEnA,s (tb*ta)

= oe
9 ) ) ; 9 = G -
S (Xp,Xa, P, Po,: POb> P0a) lgséw_z_‘,w o 2, (s(tp—1a))

L ([ + Vs +nt1) ] (0v) -y glhvs) (o +
Fn S Fn , Vs ) Xsi
(0 +n+ DT (Ve +n+1) (x3) (xa) X.

X { [2(|€|+\/S+2n+1)F

(n—s)'C (|| + Vi +s+n+1) | C(lel4s.vits) (105, v5-+5) +
2 s 2 1 F — o F — T a —S5— )
2001 v 24 1) G Vb ] e 3, B0 ()
(5.74)
where
FL (o) = )l (0) 2 R (12 22). (5.75)
FULEYt) () — ()15 () wts 172 pllthvts) () _gy2) (5.76)

so that u = sinx, U = cosx.
In the subsequent section, we leverage the symmetrical properties of the propagator to derive
a precise solution for our problem, enabling us to compute the normalized wave functions and

their associated energy spectra.

5.4 Spinor Eigenstates and Energy Levels
In order to obtain an accurate assessment of the Green function S (pj, p,) expression, we utilise
the operator [OQ] , on the function (5.72).Using the relationships that are provided, we can

apply the operator [OQ] b 0 Xs %", represented as follows:

[Oﬂ bxsx;“ = [)(Sx;r (szh&tb + mcz) +X—sXS+ { (splb + lp2b) +m® (s)?zz, — zf(lb) }] . (6.77)



Exact Green’s Function for 2D Dirac Oscillator in Constant Magnetic Field within
Snyder model, and its Thermal Properties

98

Expressed as follows in polar coordinates:

—|—X—s%s+

[Oﬂbxsxi = XX (szhatb—I—mcz)

a1 _Bp2eBPe, |, 9 4 s 0
|:Sh\/g 1 ﬁpbe b |: lapb+pph apeb]+
= / 2 Isp d d
+m® | h 1—ﬁpbe O [—la—pb‘f‘i } —

pb 9pg,

((=K)pe ™

V1-Bp;

JB 57g,
K ape b

VB

(5.78)

Finally, we obtain the spectral decomposition of the Green function S (pp, p,), that is shown

below:

\

Ens(th—ta)

e s

n!l“(|€|+vs+n+1)
X { [ZWHVS“"“) Tl +nt DTV tn+1)

S (PpsPastp,ta) = ———O(s(tp — 1))

¥ )

%sxs ( n,s,0 T mc )+€”6”X—sxs

d
[sh NEN =B}, [~ T+ apeb}+
e B ﬁ
— 2 o
+im@® | h I_Bppb [_lm‘f’iap%] g

\/l ﬁppb

(0+5,Vs+s)
n—s

(e, —pey) F%»"s) (xp)

(Xa)

+ {2(|€|+Vs+2n+l)

X-sXts (=

+m@ |1\ /1-Bp3,

w o' (+5) (Pe, —peg ) pl+s:Bs-ts)

(n—s)!F(|€|+vs+s+n+1)}
C()+n+1)T(vs+n+1)

.
. o . 2 (_, 9 _ s 0
[ sh\/; 1—Bp;, ( Y9pe, oy 3P9,,>

E, o+ mc ) +e POyt

Ppb

B ma)?
L i

ﬁppb

(L_ZL J >_
dpp,  Pp, Do,

(xb)} :

n—s

]

(5.79)
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As demonstrated below, we used a simple calculation to express the Green function

—F SEn s (lb [a)

S (Pps Pastysta) = \/ﬁ Z Z O (s (tp —1a))

s=x1 n

n!F(|£\—|—vs—i—n—|—1)
X { [2(|€|+vs+2n+1) T En s DE(ve tn 1)

22" (Ensotme?) e (Po, ~Paa) . P8y ott(Po, = Pea)x X5 h/l\/;b
£,vs pllvs)
x l\/%{(l—S)[(M—Vs)+(|€|+Vs)nb]P,E N)(w,)—}-Zs(l—nﬁ#}

b
X

*”@{“‘”W“—WH%W+wwm¢““mw 2(1 m%i—iw}

b

x (sinxp)/‘! (cosxy) Vs H1/2 pllfv) (cos2x,) (sinxg)!! (cosx, )V +1/2 pllevs) (

Y
R POREAR S, Ly LSASREAR)

cos2x,)

T(Jf|+nt O (vs+ntl)

sttty (Bt — mc?) ez(€+s)(Peb—P9a)+e—zspebez(f—hv)(Peb—Poa)xsxi—s ?1\/:‘:2)
—p
( /
l|4s,Vs+s
2 | (L45) [(J0]+ 1) = (vs+ 1)+ (([€] + 1) + (vs + 1)) 1) PITFYH) (9,

((

~2s (1-7j)

) (s [ +1) = (vs+ 1) + (¢
)

(
= \ \ ( an Mo )

x (singy) T cosxp) *F 2 P () (sing) T (o) 2 AL () |

l)+s,vs+s
L) ()

|+ ><w+wwméﬂ““”mw
d_p +s Vs+s)
7P| (

n—s

(5.80)

Based on the characteristics of Jacobi’s polynomials, as detailed in [100], we find,

dpP1) () _ ll“(n—|—|€|+Vs+2)P(\f\+1:Vs+l)( ) (5.81)
dn 2T (n+]l]+ve+1) " | |

and

d ) 1
(1—m)* (1+7)P EPéal’ﬁ‘)(n)=—2(n+1)(1—n)0‘1 L)t pe A )

+ (oc(l A N a+n)P =B (1—n)* (1 +n)ﬁ1—1)PI§al,B1).

(5.82)
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So, the following expression can be used to reformulate the Green’s function:

e hSEns(tb ta)

S(pbapa’tbata I~ ( (tb_ta))
275521;
([ |2(Ensctme)nt([¢1+Vs+2nt DT(E[+Vstnt 1) | (], 0,Vs 1(pe, — ]
{ o )(|f|+n+1)r(v3+n+l) K, 'V)(nb)qu ") () e Pon=Poa)
« 2”1\/_([ m0) (=38! (v 420 DI v 1) Tt 43 41)
n! T([¢]+n+1)(vs+n+1) C(n+[{|+vs+1)
(+s,Vg+s) (L,vy) 1spg, 1l(pe, —Pe, +
ul XES) () B () e P (o —pa) g |

C([¢]4+n+1)L(vs+n+1) n—s n—s
I Zs”\f ( \f + S”’“’) ~3+2)! 21 ve 2 DLl Vebsbnt 1) T(ntfl4v_y 1)
(n—s)! ([l +n+ 1)L (vs+n+1) C(nte+v_—5+3)

<FL ) () B () e7opon (000 (P =) y

n—s

(5.83)

It can be expressed in compressed form by taking advantage of the propagator’s symmetry

properties:

S (pbapa’tbata =1 Z Z |: Pp;,,PG;,»tb) (q)fl’é (Ppaal?ea§ta>> G3eiﬁSE”"X’/'(tb ta)@ (S (tb — ta)) .
{ s==%1

n=0
(5.84)

It is possible to deduce that our system’s normalised eigenspinors are as follows :

\/B 7\ n! £+vs+2n+1)r(£+vs+n+1)F((,vs)

Fhe (po- o) :\/ﬁ{\/z (Ene+me?) bty E ™ (m) e 7o,

—5). E s f s g tAS) -
2 me) B o

(5.85)

here, n =cos2x=1-28 plz, serves to revert us back to the original variables.
It is worth noting that for @ = 0, we can substitute m@® with (¢B/2c¢) and 6 with (& + 8 (eB/2c)?)
in Eq. (5.70). However, the spectral energies remain as the pole expressions given in Eq.

(5.70). As B approaches 0, we get the following outcome:

1 s |0 ¢ 4
=+ 2
Esén—j:\/mzc4+4h o {n+§—§+? 2] { +2+ 5 +2 (5.86)

2(E,,_’§7[7m02)( ) (|£|+VJ+2’1+1) (‘€‘+VS+S<H’H*1)F((—i—s,vs-i-s) (nb) F(€+S7VS+S) (n )el(g+s)(p9b7p9u)%_ %—l—

T )
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This result highlights the fact that, within the framework of the aSdS model, the energy levels

remains depends on n?

even when magnetic field B and w—oscillation are absent. Given
that the values of o and 3 are typically very small in deformation theory, we can perform a
first-order expansion of Eq. (5.70) with respect to o and . This leads us to the following
outcome:

Espn= +6AE],,, (5.87)

sén

the first term in this equation represents the Landau levels of a (2+1)-dimensional DO,

1 s ¢ ¢
Egan = i\/m2c4+4hc2ma) [n—i— 5 5T 5 5] : (5.88)

and the quantum gravity correction adjustment is the second term,

(n+i-3+5-%) <n+—+ﬂ+§>

m2ct +4he’md (n

AE[,, =2h*c? (5.89)

/‘\
Nl‘ﬂ
l\)l_
|
[\SISN
—

I- In limit case as o — 0, the expression of the flat Snyder model can be obtained by

reducing Eq. (5.70).

Eson=EQs,+BAES, (5.90)
with
(15t 49
AEY ‘n — 202 c? (m(D) ] (5.91)
\/m204+4hc2ma)[ —1—%—%—#'—5'_%}

1. In limit case B — 0, in a anti de-Sitter background, the spectral energies of the Heisen-

berg algebra are recovered [21],

Eyin=E°,,+aAEP ! (5.92)

s,l.n’
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with " "
A 1 A
_ ("+%—%+7—z> ("+z+7+z>
AEPS) = 2n2c? . (5.93)

\/mzc4+4hc2m(b [n—l— T3+ |—§| - %}
Using natural units (&2 = ¢ = 1), we calculated the conventional energy eigenvalues of
the DO and the corrections introduced within in the context of SdS model for a single
electron. This calculation is carried out using Egs. (5.88), (5.89), (5.91) and (5.93), with
o= 10770 and B = 10740, m = 0.5MeV, and mow = 1MeV?2, while considering the case
s = +1. Thus, table (5.1) displays the specific energy spectrum values corresponding to
various combinations of n and /. It is worth mentioning that the ground energy values in
table (5.1) remain unaltered due to the SdS model.

Table 5.1: The energy eigenvalues, both ordinary and corrected, of the 2D-DO in the presence of a
homogeneous magnetic field (in MeV) for a single electron at various values of n with s = +1

staten | £ | E), | AEj,, x (10770 +0.9x107%) | AEZZ) x (1077°) AEf;fx(lo—“O)

0 [0]0.510999 0 0 0

1 [ -1]0.709591 8.45557 0.007763 8.45557

0 | 0.61832 4.851854 0.004454 4.851854

1] 0.61832 8.086424 0.007424 8.086424

2 |-2]0.863667 23.157084 0.02126 23.157084

-1[0.790392 18.977918 0.017423 18.977918

0.709591 14.092617 0.012938 14.092617

1] 0.709591 19.729664 0.018114 19.729664

2 | 0.709591 25.36671 0.023289 25.36671

3 |-3[0.994143 42.2474 0.038787 42.24745

-2 [ 0.931193 37.586202 0.034508 37.586202

-1]0.863667 32.419918 0.029764 32.419918

0 | 0.790392 26.569085 0.024393 26.569085

1 ]0.790392 34.160252 0.031362 34.160252

2 [ 0.790392 41.751419 0.038332 41.751419

3 [0.790392 49.342586 0.045301 49.342586

Hence, it can be noted that the energy level spacing produces a stable case in the subsequent

Fig. (5.1)
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0.00357
0.00304
0.002573
0.00204
0.00IS-H
0.00104
0.000573

AE

1.x 10 3. x10° 6.x 10
n

— o:=0.00,8=E(-40) — a:=E(-70),=0.00
0:=E(-70),B=E(-40) 0:=0.00,8=0.00
Figure 5.1: The energy spacing between neighboring levels as a function of n and { = 0 for s = 1.

Similar results were obtained for the (2D-DO) in the context of the EUP model algebra [59].
Further, comparable outcomes were obtained for the 1-dimensional DO in anti-de Sitter space
[87] and in scenarios involving minimal lengths [38]. That is, the energy level spacing of the
2D-DO is obviously zero in the absence of the SdS algebra. The energy level spacing for the
2D-DO is zero. In conventional space, energy levels tend to converge to continuous states
for large values of n, whereas the deformation coefficient preserves the separation of energy

levels.

5.5 Dirac Fermions in Graphene Layers

In this scenario, massless Dirac fermions are confined within a Graphene layer configured for
the SAS mode and subjected to an external uniform magnetic field. We obtain the energy and
wave function expressions by substituting m@ — ma,/2 and ¢ — Vr into Egs. (5.70) and

(5.85). Consequently, we obtain the resulting energy spectra and corresponding eigenspinors:

/ B> 1 o ¢ 1| ¢ 2
Egp=+2hVg a+/3(62—> <n+§—%+’—2|—5) n+§+%+§+¢2
¢ a+B(£)

and

s - 1 ((+Vy+2n+ 1D ((+Vgtn+1) (4, Vs) 1l
@, (pp,pe) = \/E{\/ ( F&—i—n—o—l)lz(\i—b—r:/-i-]) )Fn (1) e" " %s

n—s)!({+Vs+2n+ D)L+ Vs+s+n+1) (045, vs+s) —1(l+s
+\/( ) (F(Z—i-n—i-l)l"gvs(—i-n-\i/-l) )Fn—s (Tl)e (b )p"X—s} . (5-95)
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Our findings are consistent alongside those in Graphene within the Snyder model, as docu-
mented in Ref. [94]. It is noteworthy to emphasize that the wave function expressions were
not calculated by these authors, so an exact solution was not provided. Nevertheless, we can
use Eqgs. (5.94) to produce plots that show the energy states of a single electron for o = 10779,

and B = 107%, Vr = 0.00373, while considering the case s = +1.

1.5 x 101 —

3. % 1019.

16
1. x 10 2 x 10"

n n

5.x1001 1 x 10"

0 5.x 1077 1.x10°® 1.5x10% 0 5.x 10 1. x 10% 1.5 x 10%

n n
o:=E(-70),8=0.00 * - 0:=0.00,3=E(-40) ‘ ‘ * 0:=0.00,B=E(-40) — - 0:=0.00,=0.00
— - :=0.00,3=0.00 o:=E(-70),B=E(-40) 0:=E(-70),3=0.00 0:=E(-70),B=E(-40)

(a) First observation . (b) Second observation.

7. % 10321

6. x 10721

5. x 1032.

E 4. % 1032.
n

3. x 10%21

2. x 10°21

32 |
0=

0 2 x10% 4.x10° 6.x 10° 8. x10% 1.x 10"
n

1.x 10

e e —
—_—
—

—

|[— - 0:=0.00,8=0.00 - - * 0:=E(-70),8=0.00 |

(c) Third observation.
Figure 5.2: E, o g—Energy levels versus the quantum number n for different values of the deformation
parameters.

As we can see, all cases of the energy level curves in Fig. 5.2a are identical when the quan-
tum number principle 7 lies between 0 and 1.5 x 1038, After n > 10*!, the two cases’ curves
(¢ #0, B #0) and (o = 0, B # 0)) diverge from those of the cases ((& # 0, B = 0) and
(a =0, B =0)) as displayed in Fig. 5.2b. In contrast, the plot for t he state (a # 0, § = 0)

plotin Fig. 5.2c is separated from the state (ot = 0, B = 0) when the quantum number n > 109,
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5.6 Non-Relativistic Approximation
The energy levels in the non-relativistic regime for the 2D-DO under a uniform magnetic

2 3 oo,

field and within the anti de-Sitter space system are obtained by taking the limit as mc
Employing a second-order Taylor expansion of the equation (5.70), this yields the following

outcome:

Eson = mc* +hd Rn+1—s+ (| -]

3 (12 1.s |0 ¢ 14
+20 (7*/m) |n nts-5+5 -3 +2+2+2 (5.96)

the first term mc? represents the particle’s rest energy, where the second and third terms repre-
sent the energy of the non-relativistic 2D HO with frequency @ and the correction within the
framework of Snyder model. In the non-relativistic limit, the normalized wave functions with

spin 1/2 are provided by

¢ (U4+vs+2n+1)D(l4+Vs+n+1) g 2\ V2 () 2
@, (Pp,po) = V/Be' pe\/ £+n-nH) Vs+n+1n <\/_pp> ( P) Fa (1_2B‘DP>XS’

(5.97)
where we have used the following limits:
. Ens("f—mc2 . Ensﬁ_mc2
lim —— =2, lim —— =0. (5.98)
m—oo n,s,0 m—o0 n,s,l
As o — 0, Eq. (5.96) simplifies to,
Eson= mc? +hd2n+1—s+ || — 1]
_ 1 | ¢ 14|
2 2 (n? e .
+2B (m@)” (h*/m) |n n+t 5 2+2 2H+2+2+2 (5.99)

As B — 0, Eq. (5.96) transforms into,

Espn=mc* +h@d2n+1—s+ 0| -4

1 s | ¢ 1]
2 _—— — —_—
+20 (h* /m) nts-5+5 2} [ +2+ 5 +2 (5.100)
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The energy spectrum of a spinless nonrelativistic particle (s = 0) in the presence of a uniform

magnetic field can be found using Eq. (5.96) and in the first order of (¢, ),

(NR) _ - 4B (12 1. 1q_¢ T 1,¢
E, o=@ 2n+ 140 =€) +26 (n*/m) [n+2+2 5| |yt s G100

When a spinless non-relativistic oscillator with a frequency of @ interacts with a uniform mag-
netic field in usual quantum mechanics HUP, the first and second terms in Eq. (5.101) denote,
respectively, the energy level and the relativistic correction, pertaining to the modification of
the Heisenberg algebra. Moreover, in the limit as B approaches 0, Eq. (5.101) changes to
E,(I{Zi)ozha)[Zn%— 14+ [0 = 0 +2 (a+ B(mw)?) (12 /m) [n+%+%— g] [n—l—%—l—%%— g] .
(5.102)
This case involves two terms: The first represents the energy level for a spinless non-relativistic
oscillator of frequency @ particle within the HUP, while the second corresponds to the initial

deformation correction in the non-relativistic scenario.

5.7 Deformationless Scenario

We address the two limits to obtain the ordinary case:

1- Limit o« — 0,8 #0:

To derive the conventional wave functions for the 2D-DO under a uniform magnetic field, we

set ¢ = 0, resulting in Eq. (5.85) becoming:

nt (v +2n+ )0 (v nt1) (evf) ,
r(£+n+1)r<vf+n+1> Fn (n)e"ro xs

@,/ (Pp,po) =

\/B 2 (E(x:O

ZE(X:O n,s,l

n,st

+ mcz)

) (m)e "oy b,

n—s

) (n—s)! (€+vf +2n+1 ) F(va +s+n+ 1) <£+s,vf +s

+.] =2 <E°‘:0 —mc?
r(é+n+1)r<vf +n+1>

n,s,l

(5.103)
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in Snyder space, the energy spectrum for the 2D-DO is denoted by E (@=0)

n,l,s

- _ 1 s | ¢ 1 |4 ¢ mao/h
gO=0E _ 204 1L AR2 2 2 ST el —+—+ -+ —"—=.

s m?c* 4+ 4h”c?B (md) n+2 >t5 73 n—|—2+2 2" B (md)?
(5.104)

B (ﬂvsﬁ) . :
While v§ and F,, (n) are provided by, respectively,
Ky 1 f,Vsﬁ B ‘é‘vv?ﬁ

YW =3 Bme B )= @t 2R (202 (sa0s)

2- Limit 8 — 0,0 —0:
To return to the standard case, we set B — 0 and & — O (i.e., 8 — 0) in the momentum space
representation of the standard DO and derive the spinorial wave functions. So, we can write

vP in Eq. (5.105) as follows:
1

B
Vs = . 5.106
' Bhm® ( )
Indeed, according to Ref. [100] we get
wioy— g ) g 26y DI R) gy
Lt (x) vlsgnooP,, (1 v ﬁgnjm (i) e 1, (5.107)
2
with x = an—”@ and fi = vy+n+ 1, noting that (to O(f))
) (md)/hz) [7%
lim (1 _ )2 Bmd)?) _ o= 2ma 5.108
i Br, e ( )

LZ(x) is the formula for Laguerre polynomials. Consequently, the spinorial wave functions

become in the limit 8 — 0 as follows:

— (é:()) 2 2
. maon! v tm ~{ _ Pp p
1 ¥ = (=1)"!Po T < v (0) man L (P
oc—>(1),r[r31—>0 n,Z,s(pP»pG) (=1)" \/27:F(n+€+1) (9;0) pP/ m e n(m(bh)Xs
n,l,s

_ (6=0) 2 2

o(n—s)! ntls M \{+s _ pp 4
—(—1)" 1(l+5)pg m anl ( / (1)> zm@hLE—i-s P .

( ) e an<n+£+1) (eé:()) pP/ m e n—s(m(bh)x S
n,t,s
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where Er(léfso) is the usual energy spectrum for the 2D-DO (see Refs. [82, , )
ES =t m2 4 2m® (2n+1—s+]0] - £). (5.110)

Hence, it is noteworthy that Chetouani et al. [5] addressed the identical issue utilizing the path
integral approach without deformation parameters, resulting in the same formula for the con-
ventional energy levels of the 2D-DO, as illustrated in Eq. (5.110). Conversely, the spinorial
eigenfunction is revealed to be the Fourier transform of the eigenfunction previously derived

in [5], as depicted in Eq. (5.109).

5.8 Thermodynamic Functions

We delve into the thermodynamic characteristics of a lone electron interacting with the DO
within the altered algebra described by Eq. (5.2). Initially, we need to ascertain the partition
function for this particular system in order to calculate these attributes. It is represented by the

equation below:

z=Y e P, (5.111)

In this case, the 8 = 1/(kgT) appears. The Boltzmann constant is denoted by kg, and the
system temperature is indicated by 7. Here, Eq. (5.87) determines the energy levels E,,. In our
research, we focus specifically on: the positive energy levels because the summation in Eq.

(5.111) diverges for negative energies. We also take into account s = +1 and ¢ = 0,

o B __op22 (n2+g)
Z=Y exp|—-BvVb+an—6 2 5.112

The partition function expression that we obtain in the first-order approximation with respect
to O is as follows:

Z(T,a) = Z°(B) + 6AZV (B), (5.113)

where

) — S o~ BVbtan (@ 27 +”/2) _B/bTan
Z°(B) ZO , AZW(B) = —2n*Be ZO T : (5.114)
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with a = 4him@c?,b = m*c*. By utilizing the Euler-Maclaurin summation formula, we are

able to assess the sums in (5.113), we assert

Y f(n) +/ x)dx — Z Zk—_"l)f(zk—l)(O), (5.115)

n=0 k=1

where By, are the Bernoulli numbers, B, = 1/6, B4 = —1/30, ..., and f%*~1)(0) is the deriva-

tive of order (2k—1) atx =0

. . o—Pme
£(0) =ePme fD(0) = —2Bh(De’Bmc —26pR P —— — (5.116)
R 2
2028 2me (Bme +1) —hd (m*c + 3Bm02+3))e—5mc2. (5.118)

(me?)’

Eq. (5.113) provides the integral over x. It is determined by

oo —Bmc* (3 241 _ _ 3e —Bmc? 3 —Bmc?
/ F)dx = (ﬁfm ) —20122p R
2B2h@mc? 4 (hdmc?)® B3 4(h(D) m2c* 4
—Bmc? —Bmc? —Bmc?
— | (5.119)
2(h@)’ me*B3 8 (hdwmc?)” B3 8(hd) mc?B?
As aresult, the partition function has the following expression:
1 5 14 Bmc* 3 - 3 3
Z(T,a) = —ehme 4 j—ﬁf—_mce_ﬁmcz —26R%c*P 3 —
2 2B2hdmc? (ha)mc) B3 4(h(D) m2ct B4
1 1 1 1 g Bak k-1
+ — — N A ()}
2 (h®)* mc2 B3 8(h@mc2)2ﬁ3 8(ha_))2m02[32_ kgl (2k—1)! o)
(5.120)

To compute the partition function, we need to evaluate the sum presented in equation (5.120).

In our specific scenario, this computation can only be accomplished using numerical methods.
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Until £ = 2, it is possible to express the sum as:

Bmcz)2 +3Bmc*+3
m2c*

o™

(20 + 812c?) e P — L [—85 oyt

Bak  cr-1)gy — _
kzl (2k — 1)!f (0)= 180

2 , 61 ® (2m02 (Bm02 + 1) —h® (m2c4B2 +3Bmc? + 3))
c
3

e P (5.121)
(mc?)

+268

It should be noted here that at high temperatures (8 < 1), all terms in the sum in Eq. (5.121)
have positive powers of B, these terms are notably smaller than the remaining term in Eq.

(5.120). Therefore, we will eliminate the terms that include B " and the ones that do not contain

B, resulting in the following:

ksT)* = |3R2 (kgT)* W22 (kgT)*  R*c® (kgT)?
Z(T,a,[s)g“f—)z—e < (kg )3+ < <f L e (23 ) ;. (6.122)
2n@me 2 (hdmc?) 4(h®)’ mc*  4(h®@)" (mc?)

According to standard quantum physics, the partition function’s first term reflects the tradi-
tional 2D-DO. The terms indicate the effects of spatial deformation caused by the existence
of the SAS model. Using the partition function, we may generate a variety of thermodynamic
functions. For instance, the Helmholtz free energy of the 2D-DO in a uniform magnetic field

at high temperatures may be represented as follows:

F(T,0)=—(kgT)In(Z)
3h2c2 (kgT)? N h2c2T N R2AT
(h@)? (mc2)? 2 (h@)*  2(h@) (mc?)

kgT > _
=-2Tln| ——— | +0 5123
<\/ 2h@mc? ( )

One can define the relationship between the partition function and the mean energy as follows:

dIn(Z B2 (kpT)’
E(T,a,B) = — n( ):2k3T+69%. (5.124)
P (h@)~ (mc?)
As 6 — 0, we recover the standard mean energy associated with the HUP algebra.
In terms of the heat capacity, we find:
0% 122 (kp) T2
C(T,a,B) = :2k3+189%. (5.125)
JT (h@)* (mc?)
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As 0 — 0, which corresponds to the absence of the SdS algebra, the heat capacity remains con-
stant, specifically C = 2kp. Still, it is clear that the heat capacity shows exhibits temperature-
dependent variations due to the modification brought by the standard Heisenberg algebra when

SdS algebra is present. Finally, entropy can be expressed as:

S(T,a,B) = kgIn(Z) — ksf 8151[%2) =So(B) +6AS" (B). (5.126)

For the 2D-DO in the HUP algebra, the entropy is denoted by Sy ( B) . The following expression

provides it:

5 kpT

Meanwhile, the entropy expression is written at the first-order of (o, f3) is indicated by

AS! ( B) , it can be written as follows:

(5.128)

B h22 T2 2.2 2.2
ASI(B):_kBlg 2 (kgT)?  He % |

+ =
(h@)? (mc2)? 2 (h@)*  2(h@) (mc?)
Let’s present, in the following figures, a comparative analysis of our system’s thermodynamic
properties under different deformation parameters, in the following figures. To make this pre-
sentation easier, we use the natural unit system, setting 7, ¢, and kg to 1, which makes all
parameters dimensionless. To guarantee accuracy, we have selected particular values for the

relevant physical quantities, such as an oscillator parameter in the high-temperature regime of

about 2MeV, an electron mass of m = 0.5MeV, and a magnetic field B of 0.2M. ev2.

Thus, we display the thermodynamic properties as functions of temperature (kgT') in figures
(5.3), (5.4), (5.5), (5.6) and (5.7). All the figures depict the behavior of these properties for
four distinct sets of deformation parameters, namely, (& = 1077, B = 107%%), (0« = 0.0, B =

10749, (¢ = 1077°, B = 0.0) and (a = 0.0, B = 0.0).
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(c) Third observation.
Figure 5.3: The Z(T, a,B) Partition function for the 2D-DO in homogeneous magnetic field as a func-
tion of temperature kgT for various values of the deformation parameters.

Specifically, Fig. (5.3a) shows that the SdS algebra causes the partition function to surge from

kgT =1 x 10" to about kgT ~ 2.5 x 10'°MeV . Following this, the curves (5.3b) correspond-

ingto (ot #£0, B #0) and (a = 0.0, B # 0) decrease to zero at the temperature kgT ~ 10°°MeV.

Hence, Fig. (5.3c) shows that the curve for (o # 0, B = 0) collapses to zero when kT exceeds

1033MeV . The other two curves, however, closely align up to kgT ~ 5 x 1033MeV .
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(c) Third observation.
Figure 5.4: The F(T, ) Helmholtz free energy function for the 2D-DO in homogeneous magnetic field
as a function of temperature kgT for various values of the deformation parameters.

The Helmbholtz free energy for 2D-DO in the SdS setting is shown in Figure (5.4) as a function
of kgT . This representation shows that the SdS algebra results in a decrease in the F —function,
which proceeds from kpT = 1 x 109 to kgT ~ 6 x 101 MeV for each of the four deformation
parameter cases in Fig. (5.4a). Beyond kT > 103, the curves (5.4b) for both ((a #0,B #0)
and (o« =0, B # 0)) vanish when 8 # 0. Meanwhile, the case characterized by ((a # 0, B = 0))

has an effect up to temperature kg7 > 10! MeV in Fig. (5.4c).
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(c) Third observation.
Figure 5.5: The E(T, o, 3) mean energy function for the 2D-DO in homogeneous magnetic field as a
function of temperature kgT for various values of the deformation parameters.

Moreover, the SdS model shows an increase in mean energy with temperature, as figure (5.5a)

illustrates. while the curves for the cases (a0 # 0, B # 0) and (@ = 0, 8 # 0) decrease to zero

upon reaching the temperature kgT ~ 102! MeV, as illustrated in Fig. (5.5b). Nevertheless, in

the case where o # 0, B = 0, the curve (5.5¢) approaches zero at the point where kgT exceeds

5x103°MeV.
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(c) Third observation.
Figure 5.6: The C(T, o, 3) heat capacity function for the 2D-DO in homogeneous magnetic field as a
function of temperature kgT for various values of the deformation parameters.

Additionally, for kgT < 101, the heat capacity in Fig. (5.6a) is constant, C = 2kp. Next, as
kgT > 10 MeV , the cases (a # 0, B # 0) and (@ =0, B # 0)) increase with rising temperature,
as shown in Fig. (5.6b). The capacity increases for the case (& # 0, B = 0) as the temperature

rises to kgT > 1032, as shown in Fig. (5.6¢).
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(c) Third observation.
Figure 5.7: The S(T, a, B) entropy function for the 2D-DO in homogeneous magnetic field as a function
of temperature kgT for various values of the deformation parameters.

Lastly, we plot the SdS model’s effect on the entropy function in three different images in Fig.
(5.7a). As illustrated in Fig. (5.7b), at temperature kg7 > 10!°, the aSdS reduces the entropy
values with temperature for the cases ((a # 0, B # 0) and (o = 0, B # 0)). In contrast, the
entropy function of the case (a # 0, B = 0) decreases in Fig. (5.7¢) when the temperature
kgT > 1038, The above figures show that SAS algebra has a greater impact on thermodynamic
functions when the ov—parameter is present compared to the 8 —parameter. Similarly, we can
determine the thermodynamic functions and suitable all curves for the aSdS model scenario
by simply replacing (a and f8) with (—a,—f3). Finally, when o« = 8 = 0 and the magnetic
field approaches zero, (B — 0), our findings are quite accurate. Ref. [103] examines the
thermal properties of a three-dimensional DO in the framework of standard Heisenberg uncer-
tainty principle. We can obtain the thermodynamic functions for massless Dirac fermions in a
Graphene layer within the Snyder model by considering the limits m@® — ma,/2 and ¢ — Vp

(see Ref. [94]).
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5.9 Conclusion

This chapter has examined the behavior of the 2D-DO under a uniform magnetic field using
the momentum space representation within the framework of the SdS Heisenberg principle. In
the beginning, we presented a new model for the Green function that works with the general-
ized SdS algebra. Subsequently, we straightforward integrate over even trajectories, leading to
the precise calculation of the Green’s function in polar coordinates. Transitioning to polar co-
ordinates has made it possible to delineate the energy spectrum and identify the corresponding
wave functions, streamlining the analysis of the system’s quantum states. The SdS model has
shown that energy levels exhibit a dependency on both quantum numbers n and /, regardless of
the absence of oscillations and magnetic fields. This effect leads to the emergence of phenom-
ena such as harmonic oscillation, anharmonic vibration, and confinement. Additionally, our
study has shown that the energy level spacing does not change as n takes on large values, this is
because the deformation parameter 8 efficiently preserves the distance between energy levels.
The same observation was also made in the reference mentioned. [$9]. In analysis we clarify
that, under specific conditions when m@ — ma@, /2 and ¢ — Vr, the behavior of the DO system
in the presence of a uniform magnetic field within the SdS algebra closely resembles to the
dynamics of the monolayer Graphene problem within the same algebraic framework. More-
over, we have investigated all the different scenarios and special cases of the DO problem in
the presence of a uniform magnetic field, using the framework of the SdS model.

Finally, at high temperatures, we used the Euler-MacLaurin formula to calculate the system’s
various thermodynamic properties up to the first order of (o, 3). These properties include the
partition function Z, the Helmholtz free energy F, the mean energy E, the entropy S, and the
heat capacity C. Through graphical representations of the SdS terms in these thermodynamic
functions against temperature kg7, we have illustrated that the influence of the a-deformation
parameter is more significant than that of the B-parameter. It is important to note that, cur-

rently, these effects cannot be experimentally detected.



Chapter 6

General Conclusion

This thesis aims to investigate the Feynman approach within the context of the non-relativistic
SdS model applied both to one and two Dirac oscillators subjected to constant electric and
magnetic fields, respectively. Additionally, we formulate the D-dimensional momentum space
path integral transition amplitude for both the harmonic oscillator and the free particle. These
issues were previously addressed by [27, 34, 94], where the authors employed differential
equations methods.

In the second chapter, we attempted to provide a penetrating insight into the concept of Feyn-
man’s formulation and what it depends on. Then, we developed the mathematical approach to
this finfing as formulated by Trotter in various dimensions of space. Ultimately, our research
culminated in deriving the non-relativistic propagator within polar coordinates, a primary ob-
jective of this thesis.

The third chapter, we were able to successfully find a model of Feynman path integral for D-
dimensional non-relativistic quantum mechanical systems with two basic deformation param-
eters, built on the basis of the generalized Snyder model aSdS by means of our use of the co-
ordinate transformation method in momentum space. As applications to our model, we inves-
tigated both the free particle and the harmonic oscillator potential, employing D-dimensional
spherical coordinates for momentum variables. This approach simplifies the problem to one
that is purely radial, facilitating a more straightforward analysis of the system’s dynamics.
Then, employing the method of coordinate transformation with the §-point discretization in-
terval, this maps problem to the one of a particle in the symmetric Poschel-Teller potential.
Moreover, it is noted that this choice is consistent with the approach used with a single pa-
rameter, suggesting that the discretization is similarly dependent on the J-point discretization

as demonstrated by [35, 37]. Through the application of the radial spectral decomposition of
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the transition amplitude the energy levels and the momentum space wave functions have been
identified. Notably, the energy levels depend on (2n+ £)%, which is similar to the energy levels
of a particle trapped in a potential well.

On the other hand, the fourth chapter covered the SdS model using the path integral formalism
to study the Green function of the Dirac oscillator propagator in (141)-dimensional energy-
momentum space. Through the application of the coordinate transformation method, the exact
causal Green function and associated propagator were determined. As a result, we were able
to derive the relevant energy values. The Green function and its associated propagator are ex-
pressed using Romonovski polynomials in the case of positives (¢, ) and Jacobi polynomials
in the case of negatives (a, 3). Both cases involve sign deformation parameters. Furthermore,
we have demonstrated that within the aSdS space framework, dependencies of energy on n”
persist in cases where oscillation and electric fields are absent. In addition, we have derived
limit cases for deformation parameters as well as created the non-relativistic energy levels
with and without spin. Lastly, by employing the Euler-MacLaurin formula at high tempera-
tures, we determined all thermodynamic quantities of our system to the first order of (a, ),
including the partition function Z, the Helmholtz free energy F, the mean energy E, the heat
capacity C and the entropy S. By plotting the thermodynamic functions (GEUP) terms against
the temperaturekpT , we proved that the @ —deformation parameter has a greater effect than the
B —parameter. Nevertheless, it is crucial to remember, though, that these effects can still not
be detected using the current experimental means.

The fifth chapter covered the study of relativistic particles with spin 1/2, under the effect of a
constant magnetic field on the behavior of 2D-DO in representing the momentum space within
the framwork of SdS model. Initially, Initially, for the generalised SdS algebra, we presented
a new model for the Green function. This approach allowed us to directly integrate over even
trajectories, resulting in an accurate calculation of Green’s function in polar coordinates. The
use of polar coordinates led to the simplification of the process in identifying the energy spec-
trum and corresponding wave functions. We shown that the SdS framework induces an energy
dependency on both quantum numbers n and ¢, even in the absence of oscillations and mag-

netic fields. As a result, phenomena like confinement, anharmonic vibration and also harmonic
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oscillation arise. Our study has also uncovered that as the quantum number n grows larger, the
spacing between energy remains constant, with the deformation parameter 0 effectively main-
taining the separation between energy levels, a finding consistent with observations reported
in reference [89]. We also explain that in some cases, namely at m® — mo,/2 and ¢ — Vp,
the behavior of the Dirac oscillator under the action of a uniform magnetic field in the SdS
algebra is very similar to the dynamics seen in graphene problem, within the same algebraic
framework. In addition, we have applied the SdS model framework to all the distinct scenarios
and special cases of the Dirac oscillator problem in the presence of a uniform magnetic field.
Ultimately, at increased temperatures, we used the Euler-MacLaurin method to calculate the
thermodynamic characteristics of our system up to the first order of (a, 8). Properties include
partition function Z, Helmholtz free energy F', mean energy &, heat capacity C, and entropy S.
Graphically representing the SdS terms inside these thermodynamic functions versus the tem-
perature k7', we proved that the influence of the & —deformation parameter is more important
than that of the f—parameter. It is important to note that these effects cannot be detected

experimentally at this time.
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Abstract In this paper, we derive the relativistic Green function using a path integral formulation for a (1 + 1)-Dirac oscillator
system under a homogeneous electric field within the framework of the Snyder de Sitter model. Consequently, we calculate the
propagator function and the corresponding spectral energies. The thermodynamic properties of a single electron are then extracted
under high-temperature conditions for four sets of deformation parameters. We examine the impact of the deformation parameters
on these properties and infer the limit cases for small parameters.

1 Introduction

After Snyder’s work in 1947 [1, 2], where he introduced the Heisenberg generalization principle in quantum field theory to address
the issue of divergence, this generalization has become crucial in quantum physics. Examples include dynamics based on variable
masses in semiconductor heterostructures formulated by the generalized displacement operator [3], the movement of a 3He impurity
atom in a Bose liquid by [4], and the description of low-energy excitations of graphene and Fermi velocity using the generalized
Heisenberg algebra, making the commutator of momentum proportional to pseudo-spin [5]. Moreover, it plays a fundamental role
in string theory [6], non-commutative geometries [7], black hole physics [8], and quantum gravity [9]. These theories require the
existence of a minimum length on the order of the Planck mass (mp = /Ac/G), /B ~ logkg’1 (.e., B ~ (mp)~2), under the
concept of the generalized uncertainty principle (GUP), or the existence of a minimum momentum on the order of the square root of
the cosmological constant, /o ~ 10~>*cm™!, as in the context of the extended uncertainty principle (EUP) [10]. Their combined
presence gives the Snyder de Sitter (SdS) model, or in other words, triply special relativity (TSR), which relates three invariant
scales: the speed of light in vacuum c, the Snyder parameter 8, and the cosmological constant A [11]. These theories have solved
several problems in quantum mechanics using different methods [12—19].

On the other hand, the Feynman path integral formalism is a mathematical framework used to understand the quantum mechanics
starting from the notion of classical trajectories. The effective application of this mathematical technique depends on the choice
of the discretization interval. In the realm of usual Heisenberg commutation relations, opting for the midpoint as the discretization
schema gives an exact result for curved spaces, for all details, refer to the reference [20]. However, this choice swiftly becomes
problematic when the Heisenberg principle is generalized, as exemplified by cases involving a nonzero minimal length [21, 22],
and a nonzero minimal momentum [23, 24]. Furthermore, in [25], the authors have formulated the path integral approach in D-
dimensional quantum mechanics, considering the coexistence of both minimal position and momentum uncertainty. In this paper, we
extend this study to the relativistic case, focusing on the system of one-dimensional Dirac oscillator within a homogeneous electric
field. Subsequently, we confirm the existence of a difference in the midpoint discretization interval in the Snyder (anti-)de Sitter
((a)SdS) model. Following [11], the generalization of the commutation relation between the position and momentum operators in
one dimension is expressed as,

[}2, ﬁ] =zh(l+ﬁﬁ2+a)22+./aﬁ<)?ﬁ+ﬁ)2)). (1
If we consider ((X) = (P) = 0), Eq. (1) results in the following generalized uncertainty relation:
h(L+a(AX)? +B(AP)?)

(AX)(AP) = 5 T haB

(@)
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Consequently, modifying this deformed algebra gives minimal uncertainty both in position and momentum,

B NG

1+ 2hJaB’ (AP min = 1+ 2hJaB’ )

In momentum representation, we can express the position X and momentum P operators obeying the algebra (1) in the following

way
)2:22+\/§K75, ﬁ:—\/%ph(l—x)ﬁ, 4)

here, (o, B) are small and positive parameters. Meanwhile, « is a free parameter that can be selected in each case to ensure the
Hermiticity of the Hamiltonian in the dynamics. The operators (X, P) satisty the following commutation relation [26]:

[XP] - zh(l + 5752). o)

On another side, it is possible to write these position and momentum coordinate operators as to satisfy the Snyder-Heisenberg
commutation relation (5) by using auxiliary operators X and p, obeying standard commutation relation (i.e., [)2, ﬁ] =1h), defined
by the following relations

(AX)min =

0=/1-pp2k, P=——L ©)
V1—pp?

If o, B > 0, the range of allowed values of p is bound by p? < 1/8 in the (SdS)-model and otherwise all real values of p are allowed
in (aSdS)-model case. For the (SdS)-model, the operators of X and P are symmetric only in subspace L2(R, dp/+/1 — Bp?), where
the scalar product is defined as follows

dp
Wi =" ht/f*<p)¢(p), )

here the wave function satisfies the periodic boundary conditions, v (— 1/ JB) =y (1 / \/3), and this leads to the following closure
relation:

1/VB d
f P ipypl = 1. ®)

——
~1/VB /1 = Bp?

We note that for (aSdS)-model, the (¢, B) paramaters are negative, and we change the limits of integration in Eq. (8) in all the space.
Additionally, the associate formal eigenvectors are those of the X -position operator as given by [11],

1 -z arcsin
(PIX)ap = ﬁ(l —Bp?) exp( l; ﬁfp) y = i/h/apB. )

Then, we apply the closure relation for the maximally localized states to Eq. (9) and use the properties of the delta function
§f(x) =Y ;8(x —x;)/f'(x;), where x; are the roots of f(x) [25]. Finally, we obtain:

Y
dx; (1-8p2 \ 2 IX;
(Pilpi=t)yy = /zﬂ%< 1_;’;,51) J1=Bpexp(==L(p; = pi-1))- (10)

These delta functions (10) are valid for the subspace L2(R, dp/+/1 — Bp?) when a and g take both signs (i.e., SAS or aSdS). In the
case of & and § being equal to zero, we recover the usual projection relatlon p| p
Otherwise, for the time po-component, there is no deformation applied to it, an

r\ o) — i —+1(po—p})
(polb) = 8(po Po)—/znh" ki (pop}) (11)

é B)—0 = p P/)
thus we express it as follows:

As a consequence, the elements matrix of the operators X and X2 are, respectively, given by

<Pj‘)?‘17j—l>a’ﬁ = (Pjlpj-t)yp| ¥ = 1)\/%+ij , .
j

)2-2

Pj—1>

(pj o,B
202 .2
J

B p 3
= (p/|p,-_1)a,ﬁ[—y<y Dy s PR D+ (1= 8p2)s2 +2lh/3(7/ - z)p.,-x/-i|. (13)
J

In Sect. 2, we present the formulation of the path integral for Dirac oscillator particles subjected to a uniform electric field within the
Snyder—de Sitter model in one-dimensional momentum space, avoiding the use of Grassmann variables as proven in [21, 27]. This

@ Springer
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approach involves performing the path integration over the elements of the Green function matrix for 1D-Dirac oscillators particles
subjected to the uniform electric field with Snyder—de Sitter model, a methodology previously employed in [28, 29]. In Sect. 3, we
employ the coordinate transformation method to obtain the local kinetic part, resulting in the Rosen-Morse type I and II propagator
[30]. The exact propagator and the corresponding energy eigenvalues are deduced. In Sect. 4, we evaluate the thermodynamic
properties and provide a physical discussion of the corresponding plotted graphs for this system.

2 Path integral formulation in (anti) Snyder de Sitter

In the absence of electric field interaction, the Green function for relativistic Dirac oscillator particle in one-dimensional space is
defined as the inverse of the Dirac operator

(yozha, - H)s -1, (14)

where H is the Hamiltonian operator of the Dirac oscillator equation is given by

A

H = cy1 (13 - lma)yoff) +mc?. (15)

where mc? is the rest mass and w is the classical frequency of the oscillator. For detailed consideration, we choose that there is no
deformation for the time component (130 = 1hdy = thd/oct, )2’0 = %9 = ¢r) and that the momenta P and position X operators
verify Eq. (6). Based on this, we can generalize the equation of the Green’s function (14) for the (1 + 1)-dimensional Dirac oscillator
under the influence of a uniform electric field £ as follows:

[y0<lh8,+eé'f(> —cyl(ﬁ—lmwyo)?) —ch]S':—I. (16)
In the (1 + 1) dimension, the y#-Dirac matrices are represented by the Pauli matrices following the choice
V' =03y =100, y? = 01 (17
Then, the solution of Eq. (14) is written as
§= [09]_1 - [Of][@?@i’]_l, (18)
with the operator OF defined by
OjDE = [yo(zhat + eSX) - cyl (13 — zmwyo}?) + mcz]. (19)

According to the Schwinger proper-time method [31] and noting that § = [OP][0POP ]_1, it is convenient to write the § Green’s
function as follows

§=[0?] [OEOE]_I =a/m[of] /OOO di exp(%x[o?of]), (20)

here A represents an invariant parameter and is an even variable, and the operator [(’)? ob ] playing the role of an Hamiltonian is
expressed by the following expression

~ A\ 2 ~ ~ ~A A
[O?Of] = {(Po + eSX) — P — PmPe? X —mPt — (cec‘fyoyl - lma)chO) [X, P] } (21)
By following the SdS algebra given by Eq. (1), we have:
[0P0P] = | B3 = m2c* +2ee Bk — R = 22
—lh(ecEyOyl - tczma)yo)(l + ﬂﬁz +aX?+ vap (}A(f’ + 13)2))], (22)

with w? = (czmzw2 - 6252).
Furthermore, we have to write this Hamiltonian in terms of position and momentum operators that satisfy the flat Snyder model
based on the modified commutation relationship, and defined by Eq. (5) [11]. By substituting operators ()? R 75> into an expression

[OEOE], Eq. (22) becomes,

D AD 52 2 4 5 1 5 BAH, 2 wzﬁz 2\.52
[(9_(9+] = {PO —m?c +2e£P0X+2e£P0K\/;P+c <—C—2&K —(1—x) >7>
+ <c2(1 — /c)\/% — Icwz\/§> (2\?73+75)?)

@ Springer
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—(zzf2 + cz%))22 — zh(ecSyOyl — lczmw)/o)(l + ,8752) } (23)
To make the term ()3 P+PX ) mentioned above end to zero, we put the condition on «,
—1
‘= (1 - éwz/c2> . 24)
o

As a result, the Hamiltonian operator becomes as

5 2e5ﬁ0\/§ﬁ_( 2 20())22

[O?Of]: ﬁ()z—mzc4+2e81302\6+7 o+ %
(1+éw—22)
a’c

B
_(1,51112>752 - zh(ecSyOyl — lczma)yo)ﬁ(ﬁ> , (25)
to 2
with
F(P) = 1+pP% (26)

The corresponding element matrix of [(99 O+D ] in momentum representation is

G(Pbs Pa> POb> P0a) = (1/1) /Ooo d/\<pb, po;;‘exr)<—ihk[—090?])

Pa poa>. 27)

Before proceeding further, it is appropriate to avoid the calculation of their Feynman path integral expression for matrices by
introducing the following exponential matrix and simplifying its form as follows

0,,1_,.2 0/ (P 1 cmo e& ~ (A
e)»(ecé’y Yy —ictmoy )F(P) _ E Z {]I . S( ngg _lcg,niw ) }EISACWF(P>. (28)
s==1 @ @
Then, we perform the following equality [28]:
£
cosh(8) = % Ginh(s) = <=, (29)
o cw
after performing some calculations, we obtain:
_ 0,,1_,.2 0\ F (P S 5 ‘ SN
¢ MecEyy!l—1c?mowy )F(P) _ Z eXp<—EO'2>XSX: CXp(E(Iz)elYACWF(P). (30)
s==%1
Here, X, = %( (IT+s) (1—y¥) )T and X} is the transpose of the vector X, denoted as X} = XST.
Hence, the expression (27) can be formulated as follows:
8 " 8 o0 U rs)
G(Pb pas pove poa) = (/) Y exp( =502 )X XFexp( 502) [ dhlpn poslexp(= 1A Ipapoa) GD)
0

s==l1

with

N . - o 265130\/5 R N
HO = =310 B = mPct +2eE Byl 4+ —— P — (07 +.c25) &
o c2
o2t

— P shear (P) €. (32)
(1 +8 w—z)
o c2
After this stage, we will construct the Green function using path integral framework, and thus we decompose the exponential
exp(—zAH(s)) into (N + 1) exponential eXp(—lEH(S)), withe = 7; — 71 = 1/(N +1). Then, we insert N times resolution identity
(8) between each pair of infinitesimal operator exp(—w?:((s)). Indeed, we will obtain

s s . 00 N +00 1/JB .
G(Pb> Pa> Pobs poa) = (1/h) Y [677(’25&55@67”] lim / an]] / dpo]'/ "
s=%1 N0 Jo j=1L4—° —1/vB \1-Pp;

N+1
X H(Pj,l)oﬂ CXP(_%'}:[(S)”ijl,P0j71>a’ﬁ- (33)
j=1

@ Springer
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To go further, it is convenient to develop the exponential up to the first order of €. Thus, we write
_%ﬂw)

lim 0<Pj7P0j|e Pi=1:P0j-1)q 4
(34)

N—o00,&
. e ~ (s
= N_llgge_)o[@ppoj' | pj—hpOj—l)mﬂ - %(Pj,POj|H(Y)|Pj—]aP0j—l>a7ﬁi|-
Then, to eliminate the Hamiltonian operator which represened in the (SdS)-framework, we substitute all the operators (X, P, X2,
$2) on the projection relation ( pjlpj- 1) B given in Eq. (10). Consequently, the expression G(pp, pas Pob, Poa) is transformed
into the following path integral in phase-space
N +00 1/VB
G(Pb: Pa: P0b: Poa) = (1/h) lim [e 27X, X+€2"2]/ dkl_[{/ d Oj/ e
620 s=%1 =1 —1/VB V1=FP]
N+1 4 N+
1=Bri 1\ % | 2 [dxj dt iap 2 2,4
le_[l|:< 1—ﬂ;_§ ) 1 —Bp; 271h271heh] 07 | exp Z xjApj+A£(p0j—m c)
2p2 2
J +Aeh?B(y — 1)(w +c2%>

+Aey(y — 1)(w2 +c2%> -

—ks(w +czg>< ,Bp])x —A82lhﬂ(y—f>(w2+c %)

Zeé'poj\/g P
+Ae2eEpoj/1 — BpPx;j + Ae 5 +2xeeEpoj(y — )72
(1+L22) Ji—pp? 1— B’

2ﬂ 2
pP; P
l—ﬂpj

2
Bp;

(35)

—Ae 5
(1 +bz ) 1 - Bp;
As usually done and after performing the Gaussian integration over ¢; and x;, we find the Lagrangian expression for this system
N
. _s 5 o + 1/VB dp
G(Pb: Pa> Pob> Poa) = (1/) lim Z[e 2°2XsXIeZ"2]/ ] / dpo.// oy
16220 s=+1 0 j=tLlr=ee SUVE IR
N+1 Y
1-8p2_\ 2 2 1
X 8(poj —Po/'—l)< o) ) V11— 8p;
jljl 1=bp] ! 4lﬂhke<w2+cza)( ﬁp)
N+1 2 3
Ap* h _3
exp LZ J +l By 2)ijPj+)\8(poj_mzc4>
h = 4As<w2 020‘><1 — Bp? ) (1 - ﬂp?)
2
PGV ) (o) D
— P/ ey(y — (zzr c ﬂ)
(1-82) l—ﬂl’j
2 3 Pj
+reh”B(y — 1)<w +c? ) 2ihBreeEpoj|y — 5 | —=
2 1— 2
N ,Bpj
2022 /B
B eEpoj Ap; .\ ree & Po; ‘e 2e5p0]\/; pi
B e2&? 2
(w2+c2°‘) /1—ﬂp (w2+cz%) (l—a"’c2 ) /1= Bp;
hBp; @2l P Bp;
il L teshicr |1+ — (36)
1 - ﬂpj

+1e2eEpoj(y — 1) — e
/1 - pp? (1+ﬂw2)1—ﬁp,

In order to simplify the above expression, we perform the following equality to the first order of ¢
e€po;  Aarcsin(v/Bpj)

eEpoj Apj _
(zzr2 +02%> 1— ,Bp? <w2 +c2%> VB
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e€po;  (8p))°  Bp

) (37)
3/2
(m2+%%) 2 (1-p03)
where
(Ap;)* ~ 2 fz,\e(wz + c2%) (1 - ﬂp?). (38)
By substituting Eq. (38) in Eq. (37) and then into Eq. (36), we can write
G(Pb> Pa> Pobs Poa) = (/1) Y [6 1% X+€202:|5(P0b - POa)/ dx
s==1
7% eEpop  arcsin(y/Bpp)—arcsin(Bpa)
1 v a
% eﬁk[p b—m ¢ +Ash2ﬁ(y 1)(w +c E)] < e (wzﬂ'zﬁ) VB
i T /Wﬁ ap; ﬁ (1/317,2.1)5 I
x lim 7
iy j=1L/-1/VE 1=Bp} j=1 1=Fpj 4mhke(w2+c2%)
N+l 2 3
1 Ap; thB(y — 3
X exp EZ ] + ( 2)p]-Apj+
= 4A€(w2 +c2°‘)< — Bp? ) (1 - ﬁp%)
3\? h?p%p3 h?p%p3
—Ae(y—i) (w2+02%>7] +Aey(y—1)<w2+c2%) 12
(1 - ﬂp?) 1= pj
& g .
—21hﬂk5<y—7> ° pop/ CEPOPPI | gy — 1) EPOPPL p(’ﬁpfz
N ,/1—ﬂp, 1 —Bpj
e 2e5p0\/; pj o (Pm2a? — e2£2) p%
B =? 2 @ B @2 1 — Bp?
(”&?2) e (1+57) P’
2022 2
g Bp;
+kai +Aesheo |1+ 7]2 , 39)
(w2+02%) 1= Bp;

and with some simplifications we will obtain

VB
G(Pbs Pas Pob Poa) = (1/h) Y [ ~ox X+3202:|8(170b - p()a)/ dx H[/ 4, :|

s=+1 1/ 1-PP]

>~

. . 202 2

eEpo arcsin(/Bpp ) —arcsin(v/Bpa) s 2 e & o 4,32 ( bX )
(wzﬂzﬁ) N/ 7 p0j+7<w2“2a m2cA 2By —1) (@2 +c B
X e B e

B
. N+1 1—,3p2~,1 z 1
x lim 1_/3’2

Yo% =i Pi 4mhak<w2 +02%>

N+1 Ap2 A _ 3
X exp LZ il 4o plr —3)

"iA 4“(”2 ”2%)(1 - ﬂpf) 1 — Bp3

— Aeh?B? V2—3J/+2 2<w2+c25) p?
4 P71 - Bp3

h252p2. 2651)0\/E .
+re(y? — y)<w2 +c2%) L+ e . = Pj
1= Bp; (1+5§’—2) 1-8p?

2202 — 262\ 8 2 2

com w E)E ph Bp*

—ks( s ) / 2+gsh)\cw(1+ J 2) . (40)
(1+82)  1-pp 1 — Bp;

PjAp;
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Y
Additionally, all terms related to () in Eq. (40) will be invalidated by the term ((1 - ﬂp’j‘._l) /(1 - /3p2.>) 2 251,

=2 \T Yo\ —2Ppj 2 ﬁz
( l—ﬂp% ) = exp —EAPJW Elh)\.?)(m +L )|: 2;3 'Bp? . (41)
J

After substituting the above result (41) into Eq. (40), we obtain

s s o0
G(Pbs Pas Pob> Poa) = (/1) Z [6_7“2XsX§€§02]5(p0b - POa)/ di
s==+1 0

3 in(vBpp)—arcsin(vBpa) (Lszwzﬂzﬁ)p% 2432 2,00
eEpg  arcsin pp)—arcsin Pa) 1 _ _ @
75 Fr m=c"—h ﬂ(m +c B

e

M~

w242 [4 1272+6‘2 7

)
X e B B X K(plh pzh)")’ (42)

where the kernel propagator K(pp, ps, A) is defined by the following path integral

1/f . N+1 1
K(pp, par 1) = hm ]_[|:/ dp; 2:| 1_[

VB YI=PPj | 4mhk8<w2+c2%)

N+1 2

' (Apj)) 3 ubg '
P ; 4A8<w2 + 2 "‘J)(l ) ( — Br; )p] o
D4 e 26<€'p()\/E pj

2
J
2
1=g?) (1422 J1-pp2
T

; Bp;
e . s +heshea [ 1+ —— ) | 1. 43)
(1+ﬁ£)l—ﬁp.,- 11— Bp?

9
— k£h2ﬂzz (wz 24

5)(

As usual for systems based on the principle of generalization, three quantum corrections must be applied: the measure term
dpj//1— ﬂp?), the action term ((Apj)2/28(1 - ﬂp?)), and the factor term (p; Apj/(l — ﬂp?)) to achieve the conventional
form of the Feynman path integral. Following [21-24], we can calculate the quantum corrections from these three terms through

two-step process. The first one is to write this Kernel at the n-point discretization interval ( p(") =np;+ (1 —np j_l) because the

midpoint interval is not suitable in the presence of the SdS model [21-24]. In the second step, to obtain the usual kinetic term (

(Ac} j)2 /2€), we must utilize the momentum coordinate transformation method defined by (/B p = sin v/B§). The formal treatment
of the choice of the n-point discretization interval in the presence of the deformation coefficient has been formally addressed in
previous references [21, 24], and after straightforward calculations, we obtain the total quantum correction,

CT_zh)\aﬁ(w +c2°‘)|:1+ftan (fq)] (44)

and this corresponds to fixing n = %(l +1/ V2).
Substituting Eq. (44) in Eq. (43) and then into Eq. (42) we get:

G(Pp as Povs poa) = /1) Y [ 37X X5 [6(pos — poa) / i
s==l1
. eEpg arcsin(vBpp) —arcsin(vBpa) 1 (ﬂmz(vzﬂl)r%_ w2 24

s L —m=c
we ()Tt ( (wr)  (o0z) )xmh,éa,m, (5)

where the kernel propagator K (4p, Ga, A) becomes exactly the path integral representation of the transition amplitude relative to
the Rosen—Morse of kind (I) potential [32]:

N+1

N
_ . 5 1
K(qp.qa;}) = ngnoo]_[[/ dq]} [1

j=1

=1 4nlhk8(w2+c2%)

N+l (Aﬁ)z 2e€ por/a
X exp ;]X_; 4A8(w;]]+c2g)+A (e:; )tan(\/jlj)
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—\e Lz—shcw ;
atpz (VB ||

Immediately, let us study the case when (¢, B) are negative, Eq. (46) transforms as,

_ MM B
KWM%JJzJﬁ/DMMRw{;A[zéﬁﬂ—Awmw0D+mm%ﬂnJm}

with ¢(¢), M, A and B defined by

q(t) = Bi(t), M= Sy ad A= A%,B - AhczI;(h’je_ +s>,
here & = (o + Br?/c?). Following Ref. [30, 33], we can write,
o
K (gp,qas ) = \/E; W (g) V5 (q0) exp( =21 Er ).
where
W@)z[(l— _4MA 2) @‘*MZ—ZWHHYS—H)]V2mﬂ—W2
hs—2n—1~) TS +1—n—2k)l'(2k2 + 1)

x (1 — tanh q) > 2" (1 + tanh g)k2~2 pG-22=212=D (1anh ).

P () denotes the Jacobi polynomial, and

_ WG —2n—1)2 2M A2
E,=— + - 5 |
8M B2 —2n —1)

with

S J1+SMB/R, k= (45, o= t(14 Gty —2MA
- ) ) ) hG—2n—1))

Compensating for each of the values (M, A, B, 5) in Eq. (51), we obtain

. . 1\ 2 202,2
E, = —AR2c%0 <vs —n— 7> + _(xe Po 5 |
2 Bt c*04 (v —n — %)
with
2¢2
by VP s
T ho 2

As consequence, the values (5, k2, 2ko — 1 and (5§ — 2k, — 2n)) transform into the following formulas:

_ 1 1 2e€ po/a 1
=2v, ko=~ (1+=Qvy—2n—1)— A ,
ST 12 2( P = D G 2= 1)
and
1 2e€ por/a 1 _
2y — 1= ~Quy —2n—1)— A —
2 2( vy —2n—1) he5: @v—2n—1) Mg
_ 1 2e€ po/a 1
—2ky —2n=—-QRvy —2n—1)+ = =n..
§=2Zkp—2n= Qv —2n—1) W2 Qo —an—1) s

At this stage, we can write

6P pas o o) = 0/ 3(p0s = pu)VB 3 Y[ izl ] [T

s=+1 n 0

1A Bmlw +a 2 w? 2 4
X ex - — —m-c
P|: h (( oz+f3‘j—22 Po a+ﬁr‘c’—22

2 1\2 202 2
+h2c? (Ol + ﬂ%) (Vs —n— 7> + a62£4p0 5
c 2 ﬁ4c4((x+ﬁ’f—2> (usfnfé)
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47

(43)

(49)

(50)

(G

(52)

(33)

(54)

(55)

(36)

(57)
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{_’% eEpg Si“hl(ﬂl’b);“hl(ﬂl7a):|
§— — §— o B
5 (s_ 2ko —2n)n'T'(5 — n) SanH(1-2u), (mzﬂzﬁ)

resc+l—n-— 2k2)l"(2k2 + n)

(0 5os)

x (1 —tanhqb) - (1 +tanhqb) - P, (tanh gp)

P(nn\ Thus)

x (1 — tanhqa) (1 +tanhqa) (tanh g,). (58)

In the following section, we will calculate the propagator within the framework of anti-Snyder de Sitter model. Subsequently, we
will extract the energy levels with their mapping in special cases of deformation parameters.

3 Extracting energy levels for (1D-DO) in a homogeneous electric field

In order to evaluate exactly the propagator expression, it is convenient to integrate on the proper time A and to write the Fourier
transformation of Eq. (58), and after simple calculation we find

e~ T Pots—ta)

G(Pbs Pastirta) =B Y Z[e—i"zxsxiei“z]/jf;iz_w)z
Po (En,x )

s=£1 n

>~

eEpg s~ (VBpp)—sinh~! (VBpa)
h<m2+c2 g) VB

B

(=2 —2mn!TG —n) 22%(191
TG+1—n— 2k2)F(2k2 0

(0 5os)

x (1 —tanhqb) - (1 +tanhqb) - P, (tanh gp)
x (1 — tanhqa) = (1 +tanhqa) P(n"‘ n"‘)(tanhqa). (59)
where
2 0 2.4 225 1osy?
(E,g‘f;ﬁ>) - m2c* + hew 2n + 1 — 5) — e 0<n+§—5) . (60)

262 /12,2
,Bm2w2+oe<1+€5/hc 2>

Gz(vx—n—%)

To determine the energy spectrum, let us integrate over the po variable. This can be done by converting the problem to a complex
integral along the special choice of the contour C, using the residue theorem, we get

(@.f)
de e hPO(tb tq) h EEn,s,e (th—ta)
f fpo)y =1 Y fEES) T Ot — 1)), (61)
wh 2 ( (aﬂ)) P 2E%
which has the poles
o
CED = B =
282
Bm2w? +af 1+ £
w?2— 29hcw<n+%—7> Gzhzcz( +1- %)2
) 1 s\2 3
x | m2c* + hco 2n+1—3s) — 2?0 (n + 3~ E) , (62)
where O is the Heaviside function. In Eq. (62) n is a quantum number, and the parameter s = 31 describes the two components of
the Dirac spinor. € = +1 corresponds to the positive energy states, ¢ = —1 corresponds to the negative energy states. The parameter
e = F1 describes a negatively (e = —1) or positively (e = +1) charged particle, where £ is the strength of the uniform electric field,

and w is the angular frequency of the oscillator. When the electric field £ is set to zero in the context of the aSdS model applied to
the Dirac oscillator, the corresponding spectral energy becomes:

1 2712
E,(l‘f‘s’ﬁ)(g =0) = :|:|:mzc4 + hczmw(Zn +1—5)— hzcz(oz + ﬂmzwz) (n + 3~ %) :| . (63)
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In addition, for @ = £ = 0, the corresponding energy levels reduce to
272
EfSP (w=£=0) = :|:|:mzc4 - ’ca (n +o - 7> } : (64)

This result demonstrates that, within the framework of Snyder (anti)-de Sitter model, the energy levels dependency on n? persist
even in the absence of w-oscillation and £-electric fields.

At this stage, we have successfully extracted the spectral energy for the Dirac oscillator coupled to a uniform electric field.
Although the corresponding normalized eigenspinors are lengthy and complex, we will proceed solely to find the Green function in
momentum space. Consequently, from Eqgs. (20) and (27) we can write the elements matrix of § @B (py, Pa, ty, ta) as:

S(O‘,ﬁ) (Pb» Pa> tb’ ta) = [Of]bg([?b: Pas tb’ ta)’ (65)

here, Of is defined in Eq. (19) and G(p», pa, t», t4) is calculated exactly in Eq. (59), thus, we obtain,

S(a’ﬂ)(Ph, Da>thsta) = _l\/E Z Z[Vo<ﬁ0h + 65)2;,) — cyl (13;7 — lmwyo)?h> + mcz] [eiéJZXSX:e%"z]
s=+x1 n

' (o) n 4MA (5—2ko—2n)n'I"(s—n)
e—ﬁeEn,s (th—tq) 9[(1 — h(§—2n—1)2> F(§+1—n—2k2)r‘(2kz+n)]
x Y O(e(ty — 1))

(a, 2g2
—11 2E,&ﬂ) (,Bmza)2 + oz) +—L<
526‘202<U57}17%>

>~

e€pg  sinh™ ! (VBpp)—sinh ! (/Bpa)
h(m2+02 g) VB

x 22n+(1 75)6 |: B

Ths s (7 )
x (1 —tanhgp) 2 (1 +tanhgp) 2 P, (tanh gp)
Ths s (755 Ta)
x (1 —tanhg,) 2 (1 +tanhg,) 2 P, (tanh g,). (66)
After that, writing the relations
D F@OOEty — 1) = f()O(s(ty — 1)) + F(=5)O(=5(tp — 1)), 67)
e=+1
and
Y347 = 53647 = —eA%03, o3x5 = S5, (63)
)/1eA"2 = 107e4%? = 14%2¢,, 02 Xs = IS X—s» (69)
y2e? = —101e4? = 10142, 01 x5 = ¥—s. (70)

This leads to the following expression of the propagator S #) (py, p.) in the momentum space

o T Endth—ta)
S(“’ﬂ)(pb,Pa) =—1/B Z Z 7(3)(9@9(% — 1))

s=*1 n 2En,s
X e_%gz[(—<E,(lfg + seS)A(b) +mc2)X3~X;r — zsc(ﬁb — lma))A(b)X,SX:]e%UZ

[(1 _ 4MA ) (5—2ky—2m)n!T'(5—n) ]
g h(G—2n—1)2 ) TS+1—=n—2ky)T (2ka+n) H2n+(1-5)
x 2.2 2820
(,Bm w +(x) +——=
h20202<w7nf%>
|:_;L e'EE,(,'X:_g sinh_l(ﬁpb)sinh_l(ﬁpa):|
2?2242 % hB
« e ( E4+c ,B)
s s (ko)
x (1 —tanhgp) 2 (1 +tanhgp) 2 P, ™ ™" (tanh gp)
s s (k)
x (1 —tanhg,)2 (1 +tanhg,) 2 P, """ (tanh g,)
B (1) [(1 _ __4MA ) (=2ky=2m)n'T 5=n) ]
e hns a - hG—=2n—1)2 ) T(5+1—n—2k2)T (2kp+n) s
Oty — 1) T 2 2219
2E, (ﬂm2w2 + oz) + e

_ 2
h2c262 (vs —n— %)
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X [67%02 [[(E,ﬁ*j) — seS)A(b) +mc2]XSX:T — lsc(ﬁ;, — lma)yo)A(b)X,SX:]e%gz]

s eEE,(ITSJ) sinhfl(\/ﬁp[,)—sinhfl(\/?pa)
R (L‘2m2m2762£2+02g) /B
X e p
(nn 5 nll S)
X (1 — tanh qb) N (1 +tanhqb) - P, (tanh gp)
x (1 — tanh qa) “ (1 +tanh g) > P("“ ”“)(tanh qa)}. (71)

To unify the expression of Heaviside function ® (—s(#, — ;) by ®(s(t, — t,)), one must replace all term which are multiplied by
O(—s(tp — 7)) by s to (—s). Additionaly, to unify the same energy we make the the following mapping

n—n-—s. (72)

Therefore, the propagator S #) (py, ps) of the (1 + 1)-dimensional Dirac oscillators subjected to an electric field in the context of
the Snyder (anti-)de Sitter model in the momentum space becomes as

e TRt —ta)
S (pp, pa: T) = —thZ[

SO — 1)
s=+x1 n

n,s

[(1_ 4AMA )(5—2k2—2n)n!r(5—n)]
h(G—2n—1)% ) T+1—=n—2ky)T (2ka+n) 22n+(1—§)

e2E%q
_ 2
h2c262 (VS 7}17%>

x |6

(/SmZa)2 + oz) +

x e~ 3% [( (E(Y) +se€Xb) + mcz)XsX;’ — lsc(ﬁb - zma)f(b>X_sX;’]e%“2

{_ . £ES) sinh =1 (/B pp)—sinh~ ! (VBpa) :|
22222422 VB
< e h( E°+ 5)
s s (s )
x (1 —tanhqb) 2 (1 +tanhgp) 2 P, """ (tanh gp)
_ (3 5105
x (1 tanhqa) N (1 +tanhqa) P (tanh ¢g,)
1— 4MA (§—2kp—2n)n'I' (5—n)
- hG—2n—1)2 ) TE+1—n=2kz)T (2ko+n) 2n+(1—5)
+ 2
282

2,2
(Bm?0? +a) + 52029'2(\;54—%)2

X [e_%”[((E,(lfs) +se€)A(b) +mcz)X_ths + lSC(ﬁb - lma)yo)A(b)X Xt ] ”2]

{_ . £E) sinh=1 (ﬁ,,b)\;jinrl (VBra) :|
2% B
% e E<L2m2w2—(252+L25>
x (1 —tanhqb) " (1 +tanh gp) % P,f”"; ’”)(tanhqb)
x(1 —tanhqu) " (1 +tanh go) % P,f”"s‘ 7)(tanhqa)}. (73)

Furthermore, in the case of Snyder de-Sitter space, which can be constructed from propagator’s function and spectral energies
defined, respectively, in Eq. (73) and (62) by replacing @ and 8 by (—«, —B). Also, the Jacobi polynomial is replaced by Romanovski
polynomials [34],

P’Sﬂ;,s Jl{,.‘-)

(1tanq) — R,S”;'f’”'z‘) (tang). 74

Moreover, in both cases for the sign parameters « and B, the expression for energy levels is related to n?.
Usually, from theory of deformation the value of « and B is very small, so we expand (62) to first order in « and 8, thus we find

c2m2w?

2m20? — e2E2
E,(l‘f;ﬂ) = :I:\/C me 3 ¢ [mzc4 +hev 2m?w? — 282(2n+ 1 — s)]
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20 -
1.8 x 10" o 1.8 x 10 _
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1.4 x 10" - 1.4 x 10%%7 e
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19 20 // e ———
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- | e "~
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6.x 103 // 6.x101 S
17 17
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(a) First observation . (b) Second observation.
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(¢) Third observation.
Fig. 1 E, , p versus the quantum number n for different values of the deformation parameters

2m20p2 —p2£2 \2
ctmw*—esE h2c2(n+l_%)

2m2w? 2

N D

F (75)

T
[m204 +hed/2m?2w? — e222n+1 — s)] :

Here, the first term represents the Landau levels of Dirac oscillator in homogeneous electric field without deformation, while the
second term is the quantum gravity correction. It is interesting to note that when the value of electric field is large then critical one
€€ > maw the bounded eigenstates are absent. Now, let us consider the following particular cases.

1- Inlimit case « — 0, the expression of Eq. (62) reduces to that of the flat Snyder model,

| 272

ECY =+ 7 12t 4 hew@n+1—5) — 2w (n+=—2) | . (76)

’ cmw 2 2

1. Inlimit case § — 0, one recovers the spectral energies for the Heisenberg algebra in an (anti-)de Sitter background [26],
- —1/2
- &
EF= = 4|1+ _ ee .
<w2 —20hcw (n+ 4 — 5) + 02022 (n+ % — 3) )
L s\2 3

X |:mzc4 — h2cta <n + 3~ 5) +hco(2n+1— s):| . 7)

To explore the distinction between the presence and absence of the aSdS algebra, as well as the effect of having the one but not
the other on energy levels, we graph the energy levels Eflayﬁ )+] against the quantum numbers, n. To facilitate this presentation, we
adopt the natural unit system, where £, c, are all set to 1, resulting in dimensionless parameters, and the electron mass set at m =
0.5 MeV and an electric field € of 0.2 MeV?, e = 0.303, w = 2 MeV. We use four different deformation parameter values for this:
(e, (@ = 10777 MeV, B = 107*MeV), (¢ = 10777 MeV, B = 0.0MeV), (@ = 0.0MeV, g = 107**MeV) and (« = 0.0,
B = 0.0)), as illustrated in Fig. 1. This figure is broken down into three sub-figures (Fig. la—c).
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Fig. 2 The energy spacing
between adjacent levels as a %
function of n 2.x1077
1.5% 107
AE,
1.x 1077
5.%x 107
0 S U e
1.x10"7 3.x 10" 5.x 10" 7.x 10" 1.x 10"
n
o:=E(-77),8=0.00 —-— o:=0.00,=E(-40)
o:=E(-77),8=E(-40) —*— o:=0.00,8=0.00

We note that in Fig. 1a, all energy levels cases are the same when the quantum number principle 1 between 0 and 2 x 1038, Then,
the separation occurs from n = 103 to n = 10*°, and the appearance state of curves 8 # 0 disappear when 2 > 10*, and is
shown in Fig. 1b. Whereas in Fig. Ic, the plot of the case (¢ = 10~77, B = 0.0) appears at 2 > 107°, and disappears at 2 > 1077,
From this data, it is evident that the a-parameter has a more pronounced influence than the S-parameter.

It is also shown in Fig. 2 that the energy spacing between adjacent levels is constant, which is a sign of hard confinement.

Likewise, we can plot all the energy levels curves in the case SdS algebra, where we will find, for example, in Fig. 1c that the
energy spectrum curve for the HUP algebra is below the case (& = 10777, 8 = 0.0).

Moreover, the nonrelativistic energy level is obtained considering that greater part of the total energy of the system lies in the
rest energy (mc?) of the particle [35], i.e., E,(,?‘;ﬂ) =mc? + E,(IALRO)( p» Where me? > Er(ll\iRo)t p and me? > J/m2w? — 282 /¢2. So,
applying this prescription in Eq. (62), we obtain the following énérgy spectrum for a nonrelativistic particle in the presence of an
uniform electric field and in the context of the Snyder (anti-)de Sitter model at the first order approximation,

(NR) 6
En,s,a,ﬁ =
Bm2e? +a| 1+ 22 5
<w2—25hcw(n+l—%)+é2h262(n+%—%) )
" re@n+1 - ) R o(nsl 3 ’ (78)
X | — —5)— — ——= |
2m R Voo \"T2 72

In limit case « — 0, Eq. (78) becomes as,

2.2 2¢2 /.2 2¢2
NR m*w* — e*E%/c h e2&
EI(I,S,Q{):O,ﬂ = \/ m2w2 — 7(2n+1—S)

m2w? 2m
1> 2 9 e2&? 1 s\?
- - — +-—= . 79
2mﬂ<m“’ 2 )(" 2 2) 79
In limit case 8 — 0, Eq. (78) transforms as,
) =y
EVR =1+ i
b= (w2 —2ahew (n+ 4 — 5) +a2h2c2(n+ % — %)2)
" jeen et - - Pa(nsl o 2) (80)
x| — —5) — — ——=) |
PR P R

From Eq. (78) and in first order of &, 8, we can find the energy spectrum for a spinless nonrelativistic particle (s = 0) in the presence
of an uniform electric field

2,2 2022 2 2,2 _ g2£2 /02 2
(NR) m-w- —e“E/c 1 h™ - [m*w* —e*E?%/c 1
Ensap = E(T ") TN T e "t2) | @D

@ Springer



204  Page 14 of 20 Eur. Phys. J. Plus (2024) 139:204

The first and second terms in Eq. (81) represent, respectively, the energy level for a spinless non-relativistic oscillator of frequency
o particle interacting with a uniform electric field in usual quantum mechanics (HUP), and the relativistic correction both in the
context of the modification of the Heisenberg algebra. Also, if we take the limit £ — 0, Eq. (81) transforms to

EWNR) feon+ . R (n+ ] ’ (82)
= wl|n — _ n - .
5,03 2 2m 2

Here, the first term is the energy level for a spinless non-relativistic oscillator of frequency w particle in HUP, and the second term
is the first correction of deformation in non relativistic case.

4 Thermodynamic functions
Now, let us study the thermodynamical properties for the problem of the Dirac oscillator particle interacting with a uniform electric

field in the modified algebra (1) in the context of the aSdS model. To get these thermodynamic properties, we must first find the
corresponding partition function. Indeed, we have,

Oo -
Z= Ze—ﬁEn, (83)

where 8 = 1/(kgT), kg is the Boltzmann constant and T is the equilibrium temperature of system. For simplicity, we take the
positive energy level for spin up (s = +1) at the first order of («, ) given by Eq. (75). So, the sum (83) reads,

> 6 (w/c)® h2c?
Z(T,a, ) =Y _exp ﬂ\/b+an—,8 T | (84)
o b+an
3
witha = 2 (he )(w/ 9 b=/ o QZ" <* At the first order of (ar, B), the partition function (83) becomes
Z(T,a,B) = 2°(B) + 6 AZV(P), (85)
where
o0 22 2 n2
_ _ - hoc” (w/c) B/bran
Z°B) =) e VP and AZD(B) = e Pybran, (86)
p HX:(:) P —F m2w? nZ: b+ an
We can evaluate the sums in (85) by using the Euler-Maclaurin summation formula [36]
fiﬂmzlﬂm+/mﬂmw 2:—5——ﬂ%”w) (87)
— 2 0 2k — 1!

where B, are the Bernoulli numbers, with B, = 1/6, B4 = —1/30, ..., and f (@k=1)(0) is the derivative of order (2k — 1) at x = 0,
which are given as follows

@/
(zp‘/c)zg 'B mo

_g@/o,, 2
fO) =ePrmme £ D) = —(he?) B — (88)
, me me
0= |- (he?) (@ /0)® _, 3w o, 3(he ) (@/c)* -
(mcz)?’(mw)3 (c‘ma))“(mcz)4 ma)(mcz)5
__, B3 w3 __B3 w? (@ /<)
+60 82 +60 e P me, 89
3 (c2m?w?) (m?c*) = 2c;na)(11102)3 )
Then, the integral over x in Eq. (87) is written as
o 2Wb 2 ORKAP 2| 16b L8 48 5
/ fodr = | P 2Ok (/o) | 1o Vo, 48 s, (90)
0 ap algz 2 m2w a3ﬂ2 %lg% a3,34
Consequently, the partition function is now written as
1 (mw) (mcz) 1 m2w? 1

Z(T,a,B) = :2 + (hcz) (ZD'Z/CZ) E + (ﬁcz)(wz/CZ)S/z E

_ ] (m2a)2)(m204) N 3(m3w3)(mcz)
| (he)(@ /)32 (he2) (@ [c)°B3
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(¢) Third observation.

Fig. 3 Partition function for the DO with uniform electric field as a function of temperature 7 for different values of the deformation parameters

3mtot _a@/o), 2 Bk _
_— ﬁ me mes —_— (Zk 1) O . 91
+(h62)(w/c)7ﬂ4} }e ; = 1)!f (0) 20

To compute this partition function, we need to calculate the sum in the above expression, and for our case, it can be done only by
numerical methods. Up to k = 2, this sum can be written as

Z A f(Zkil)(O) o _é hCQ(w/C)Z e*lé(%f)mcz 1 |:_ _w
' 6

2k — 1)! mo mc® 180 ma(me?)’

k=1
L 30 @/’ (b)) (/o) _ (1) (@ /o)
Bt 0B Tm2ad) (m2ed) P 3
c2(m4w*) (m2c) 2 2 (m2w?)(m2c*) (me?)’ (mw)?
2)3 2 .
gl @/OF | pine 92)
2 c(mw)(mc?)

At high temperature (8 < 1), all terms in the sum of Eq. (92) have a positive power in B , which are very small compared with the
other term in Eq. (91). Hence, we can neglect the terms with 8" and the terms without 8. In addition to this, we also expand the

g @/c)

function (e ~# e ’””2) to the orders of 8 in Eq. (91), and then, with some simplifications, we neglect all the positive exponents of

B. The result of Eq. (91) becomes as:

Z(T.a. ) m2w? 1 0 3mtw? 1 (m2w2) (mcz)2 1 ©93)
B — — = — = |.
(hcz)(w/c)3 B> 2| (k) (@ /c) B 2(hc2)(w/c)5 B2
As the A-deformation parameter is very small, we can rewrite the partition function as follows:
2.2 5[ 3m2e? 21 m2ct
m-e [ 2 (ke T)P -4 20 |
Z(T.a, B) ~ knT)2e [(w/c)“ 2 (@/0? ], 94
T B) = o e o1 (94)
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(c) Third observation.

Fig. 4 The Helmholtz free energy function for the DO with uniform electric field as a function of temperature T for different values of the deformation
parameters

The limit & — 0 gives the partition function for the (1 + 1)-dimensional Dirac oscillator subjected to uniform electric field in HUP
algebra. The term related to 6 represents a contribution of the SdS algebra on Z-function. Now, the partition function in Eq. (94)
will help us getting all thermodynamic functions, such as, the F-Helmholtz free energy, the E-mean energy, the S-entropy and the
C-heat capacity. For example, the Helmholtz free energy for our problem in high temperature becomes as

F(T,a,p) = —TIn(Z) = Fy(B) + 0AF' (B), (95)

with Fy ( B ) begin the Helmholtz free energy for (1 + 1)-dimensional Dirac oscillator with homogenous electric field in HUP algebra.

Fo(B) = —2TIn mokpT) , (96)

2¢2\3/2
hcz(mzwz——e ‘28 )
C

and AF! (B) represents the first-order correction for the SdS deformation

AFI(B) _ 1 m%c

2 2.2
‘%mwﬂ) + e (kpT)’. 97)
s

2¢2
c2k3<m2w2——e g )
C

The relation between mean energy and partition function gives us the following expression

H a1n(Z2) - m2w? )
E(T,a,B)=— Y: = 2kgT exp| —360 s (ksT)” |. (98)

202
c2<m2w2 g )

When § — 0, we recover the usual case of mean energy in HUP algebra.
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(c) Third observation.

Fig. 5 The mean energy function for the DO with uniform electric field as a function of temperature 7 for different values of the deformation parameters

For the heat capacity, we have

=
= —

a7 = Co(B) + oAC' (), (99)

C(T,a,B) =

where Co (5) = 2kp is constant in the absence of (a)SdS algebra, whereas AC! (/§ ) represents the first correction of the heat capacity,
which dependent of T2.

_ m?w’ky T?
AC'(B) =18 B . (100)
c2<m2w2 _ eiifl)
Finally, the entropy is given as
_01In(Z) s
S(T,a,p) = kg In(Z) — kB Y; = So(B) +6A5' (). (101

where S (E ) stands to the entropy for (1 + 1)-dimensional Dirac oscillator under the uniform electric field in HUP algebra and reads
as

So(B) = 2kg + 2k 1 me ksT) |, 102
0(:3) B t+ 2kp In \/502(m2w27%)3/2(]3 ) (102)

while AS! (,3) is the term correction of entropy in first order of (¢, 8) and is written as,

1(R) — m2c? _ 9m?w? 2
AS'(B) = kB|:2<m2w2_eZC§2) c2(m2w2,e2€7§2)2 (ks T) :| (103)
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(¢) Third observation.

Fig. 6 The heat capacity function for the DO with uniform electric field as a function of temperature 7 for different values of the deformation parameters

In the subsequent figures, we juxtapose the thermodynamic properties of our system across varying deformation parameters. To
streamline our presentation, we have employed the natural unit system, where £, ¢, and kg are all set to 1, rendering all parameters
dimensionless. This demands accurate estimations of the relevant physical quantities. As such, we have selected the oscillator value
at roughly 2 MeV within the high-temperature range, the electron mass as m = 0.5MeV, and the electric field £ at 0.2 MeV?.
Consequently, the thermodynamic properties are illustrated in Figs. 3, 4, 5, 6 and 7, as functions of temperature (7'), with four
different values of deformation parameters, namely, (¢ = 1077 MeV, B = 1073 MeV), (¢ = 0.0MeV, B = 103 MeV),
(@ =10"""MeV, B =0.0MeV) and (@ = 0.0MeV, g = 0.0 MeV).

Notably, Fig. 3a demonstrates that the aSdS algebra leads to a surge in the partition function from kg T = 1x 10! to approximately
kgT ~ 2.5 x 10! MeV. Subsequently, the curves Fig. 3b corresponding to (@ = 10~77 MeV, 8 = 1073 MeV) and (@ = 0.0 MeV,
B = 1073 MeV) goes down to zero after the temperature kg T ~ 102° MeV. However, the other two curves line up closely up to
kgT ~ 5 x 1038 MeV, after which the curve for (¢ = 10~77 MeV, 8 = 0.0 MeV) collapses to zero when kg T surpasses 10 MeV
in Fig. 3c.

In Fig. 4, we have the Helmholtz free energy for the one-dimensional Dirac oscillator within the aSdS context as a function of
kgT and this depiction indicates that the aSdS algebra leads to a decline in the F-function, spanning from kg7 = 1 x 10'° to
kgT ~ 6 x 10'” MeV across all four cases of deformation parameters in Fig. 4a. Beyond kg7 > 10%, the curves Fig. 4b for both
(@ =10""MeV, 8 = 10~ MeV) and (« = 0.0 MeV, B = 10735 MeV)) vanish when B # 0. Meanwhile, the case characterized
by ((« = 10777 MeV, B = 0.0 MeV)) has an effect up to temperature kg7 > 102! MeV in Fig. 4c.

Furthermore, within the aSdS model, the mean energy exhibits a growth as the temperature rises, as depicted in Fig. Sa.

In Fig. 5b, it is shown that for the cases (o« = 10777 MeV, B = 10733 MeV) and (@ = 0.0MeV, B = 10735 MeV), the curves
decline to zero after reaching the temperature kg7 ~ 102! MeV. However, for the case (a = 10777 MeV, B = 0.0 MeV), the curve
Fig. 5¢ goes down to zero when kg7 surpasses 5 x 1037 MeV.

Also, the heat capacity in Fig. 6a is a constant C = 2kp when kg7 < 10!, Then, when kg7 > 10'° MeV the cases (¢ =
10777 MeV, g = 1073 MeV) and (@ = 0.0 MeV, g = 1073 MeV) exhibit an increase with temperature, as presented in Fig. 6b.
Figure 6¢ shows the increasing of the capacity for the case (@ = 107" MeV, 8 = 0.0 MeV) with the increasing temperature at
keT > 10%.
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(¢) Third observation.

Fig. 7 The entropy function for the DO with uniform electric field as a function of temperature 7 for different values of the deformation parameters

Finally, in Fig. 7a, we plot the effect of aSdS on entropy function in three graphs. According to Fig. 7b, the aSdS makes the values
of entropy smaller with temperature for the cases (¢ = 1077 MeV, 8 = 10~ MeV) and (¢ = 0.0MeV, B = 10~ MeV)) at
temperature kg7 > 10'°, whereas, in Fig. 7c, the entropy function of the case (@ = 1077 MeV, g = 0.0 MeV) decreases with
temperature kg7 > 1038,

Just as we observed, the aSdS algebra has a more significant impact on energy eigenvalues when the «-parameter is present
compared to the B -parameter, a similar pattern holds true for thermodynamic functions. Likewise, we can deduce the thermodynamic
properties and appropriate curves for the SdS model case simply by substituting (o and B) by (—«, —f). Finally, when (a)SdS
parameters « = 8 = 0 and electric field £ — 0 our results align exactly with that of Ref. [37].

5 Conclusion

In the present paper, we have constructed the 1D Dirac oscillator subjected to the uniform electric field in the momentum space
representation and in the presence of Snyder (anti-)de Sitter model. Using the coordinate transformation method, the exact casual
Green function and its corresponding propagator are calculated, and then appropriate energy values are derived from it. In both cases
for the sign deformation parameters, the Green function and its corresponding propagator are expressed in terms of Romonovski
polynomials when («, 8) are positive, and in terms of Jacobi polynomials when («, 8) are negative. Furthermore, we have demon-
strated that within the framework of Snyder (anti)-de Sitter space, energy dependencies on n? persist even in the absence of oscillation
and electric fields. Additionally, we have derived limit cases for deformation parameters and constructed the non-relativistic energy
level in this context of aSdS algebra with and without spin.

Finally, at high temperatures, we use the Euler-MacLaurin formula, all thermodynamic quantities of our system have been
determined in first order of («, B), such as, the partition function Z, the Helmholtz free energy F, the mean energy E, the entropy S
and the heat capacity C. By plotting the EUP terms of thermodynamic functions with temperature kg 7', we have shown the influence
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of the a-deformation parameter important than the 8-parameter. However, these effects cannot be detected by current experimental
means.

Data Availability Statement No data associated in the manuscript.
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Abstract

Following the path integral approach, and in the context of curved Snyder space, we formulate the
Green function for a (141)-dimensional Dirac oscillator system subject to a homogeneous magnetic
field. Using the radial coordinates transformation the Green function and the electron propagator are
calculated. Consequently, the exact bound states and their corresponding spectral energies are
extracted. Our analysis has revealed that, under specific conditions when m@w — mw,/2 and ¢ — Vg,
the behavior of the Dirac oscillator system in the presence of a uniform magnetic field within the SdS
algebra closely resembles the dynamics of the monolayer graphene problem in the same algebraic
framework. At high temperatures, the thermodynamic properties of the electron gas in the four cases
of deformation parameters were extracted. The effect of the deformation parameters on these
properties are tested, and also the limit cases for small parameters were inferred.

1. Introduction

The Dirac oscillator (DO) model describes a relativistic quantum mechanical system that combines the aspects
of the Dirac equation and those of the harmonic oscillator. It describes the behavior of a relativistic particle with
spin 1/2 in the presence of a harmonic potential type which is obtained by the following transformation on the
momentum vector (p — p — imwy"x), here 7° refers to the Dirac matrix. Several versions of this system have
been introduced in various forms due to its close connection with multiple physical phenomena in quantum
physics. At first it was introduced by Ito et al [ 1] and developed by Moshinsky and Szczepaniak in [2]. Taking the
non-relativistic limit into account, the behavior of the quantum harmonic oscillator can be then recovered;
however, a spin—orbit coupling term also arises in this limit. Many examples have been studied in different fields
of physics and let us cite for example the references [3-8].

In addition, with the emergence of deformation theories based on Heisenberg’s generalization principle
[9-11], numerous researchers promptly look for investigating its influence on relativistic oscillators. In [12, 13],
this Dirac oscillator model in the presence of a minimal length in one and two dimensions is presented by using
the Green’s function technique. Also the high-temperature thermodynamic properties of a Dirac oscillator in
one dimension are determined in [14]. Moreover, the anti-de Sitter commutation relations give rise to the
appearance of minimal uncertainty and then in [15] it is described the Dirac oscillator in one dimension using
the position space representation, where analysis is performed on the thermodynamic properties of relativistic
harmonic oscillators at high-temperatures. Later, Benzair et al computed the energy spectrum of the Dirac
Oscillator (DO) using the path integral formulation in one and two dimensions, respectively, within the
extended uncertainty principle framework [16, 17]. Moreover, the investigation of thermodynamic properties
for relativistic oscillator particles under deformed algebra resonated in this aspect, as evidenced by the references
[14, 17-22]. Also [23] where the authors have studied the relativistic spinning massless particle in Graphene layer
in the presence of an homogeneous magnetic field. Additionally, de Montigny et al [24] investigated the behavior

© 2024 IOP Publishing Ltd
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of the Dirac oscillator in the Som—Raychaudhuri space-time, focusing on the influence of its frequency and the
vorticity parameter. This study was then extended to the DKP oscillator for a spin-zero field in a cosmic-string
background space-time, characterized by a stationary cylindrical symmetric metric, as discussed in [25].
However, in spite of that this DO has been much discussed, there are only a few studies that have been
established through the path integral approach. These latter applications are based on three deformed algebras.
The first, doubly special relativity theories (DSR), is referred to as generalized uncertainty principle (GUP)
[9, 26], confirming the existence of a minimum measurable length. Furthermore, the second involves the
existence of a minimum measurable momentum, necessitating the modification of the Heisenberg uncertainty
principle into an extended uncertainty principle (EUP) [11, 27, 28]. Meanwhile, the third is obtained by
combining GUP and EUP, derived from a model of DSR on a (anti)-de Sitter background, giving rise to triply
special relativity (TSR) or named the Snyder de Sitter (SdS) model [10, 23].

The algebra of the SdS model is built using operators for position )2,,, momentum 13#, and Lorentz generator
IAW, which adhere to the following algebraic relationship

[j;w’ XO’] = Iﬁ (WM Al/ 771/0' /l)’ [flll” ﬁ”] = 15 (nuap 771/0' ,“)’
[ Aw 131,] =ik (nw/ + O‘XMXV + ﬁﬁupv + \/O‘_ﬁ(pﬁ}?v +X, A# - A;w))’
[X;p Xu] = iﬁﬁj;w; [pu) pl/] = iﬁaj;w- (1)

Here, 1),,,, = diag(1, — 1, — 1, — 1)is the flat Minkowski space-time metric and ]AW = X'Nﬁ,, - X, IS/, are the
generators of the Lorentz symmetry. While aand B are the coupling constants have dimensions of inverse length
and inverse mass, respectively. In the limit & — 0, the algebra (1) reduces to the Snyder model in flat space [11].
Additionally, as 3 — 0, the algebra (1) becomes the de Sitter algebra, with this parameter playing a role
proportional to the cosmological constant A = — 3« [11, 27, 28].

In this paper, our aim is to formulate exactly the path integral approach in momentum space representation
for the two dimensions DO (2D-DO) in the context of curved Snyder model (SdS) and in the presence of a
homogeneous magnetic field. Furthermore, in the non-relativistic Snyder-de Sitter model, the deformed
Heisenberg algebra in 3-dimensional case is given by [10],

+
[Xb Xj] = zﬁﬂfij, [151-, ISJ] = thaJjj. )

Here, («, [3) are small and positive parameters, and ]:-]- = Xilsj — )A(JIS, In thelimits« — 0, 3 — 0 and

(v — 0, B — 0) onerecovers the Snyder model in flat space, to the de Sitter algebra, and the undeformed
Heisenberg algebra, respectively [11]. Therefore, given these commutation relations, it becomes crucial to
examine the transformation that connects this deformed algebra with the Snyder algebra. This transformation
was originally introduced by Mignemi in [10] and is defined as,

fi= X+ [ZaPi= zﬁw/l—ﬁp f 3)
Ji
a3 (Y « p
h=-[CX+0-mh=-m[S1-5 —+(1— —— (4)
K l\/; P pl KR _ﬁp

Theindex (i=1,2) for (X; = (X, Y), B = (Py, Py)) denotes the coordinates and momentum components
operators.  is a free parameter that can be chosen in each case to ensure that the Hamiltonian is symmetric and
that (&, P;) satisfy the following commutation relations [11],

[)%,‘, 75]] = lﬁ((Sij + 575175]), [/%i, .)AC']] = ﬁ(j('j)] — .)?]'75,'), ['ﬁ,, 75]] = 0. (5)

Hence, it becomes feasible to express the position ; and momentum 7, coordinate operators of the Snyder
Heisenberg brackets (5) in terms of auxiliary operators £; = 120/0p;and p, = p,, which keep to the following
relationships:

b,
V1 - Bp?
Itis important to emphasize that when o, 8 > 0, the momentum operator p; is constrained within the interval of

(—1/{B)to (1/[B). In particular, in a case where both (P) and (X;) are equal to zero, the uncertainty relation
takes the following form:

/‘AY,' =41 - ﬁp%,-, 75,' = (6)
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(AX)i(AP); > g(éﬁ + a(AX);(AX); + B(AP)(AP); + JaB(AP)(AX); + (AX)i(AP))).  (7)

Itis worth highlighting that in the cases where o, 3 < 0 (i.e., aSdS), the concept of minimal uncertainties does not
arise, and all real values of p; remain permissible. Before we to go to the details which are in the next subsequent
sectlon, it is important to note a change in the definition of the scalar product. As seems that the operators of X; and
P, are symmetric only in subspace L2(R2, dp / J1 — Bp?)), weadopt the following form as presented in [10],

1/J8 p
wio) = [ =y procpy, ®

1/V8 /1 — Bp?

where the wave-functions satisfied the periodic boundary conditions, 1 (—1 / \/ﬁ ) =y / \/ﬁ ), and thus the
modified closure relation is given by [29],

A ST
Ll/ﬁ WU’MN =1 9

Now, by employing the closure relation for the maximally localized states, we derive the following expression [29]:

(pl_”) (17}1’ )«/ — Bp*é*(p — p'), and v = m/ﬁ\/a_ﬂ. (10)

Itis important to notice that for (o < 0, 5 < 0), we modify the limits of integration in the above equation to all
the space. In addition, where both o and 3 are equal to zero, we regain the standard projection relation, denoted
by (B1F Yaupy—0 = 6%(F — p'). However, it is important to note that in the time component, there is no
deformation observed in the time-momentum relationship.

(nleg) = 8(p, = pf) = [[5oe it oy

As aresult, the matrix elements of the operators P7, (Pl — PoA)and X, ? are respectively given as follows,

R p’
7)2 / 1 , 12
(Ip'), 8 = (plp >a,ﬁ|:71 — ﬁpiz l (12)
and
(P, = Po) (BIF"),.. 5 = (BIB')u s (0% — £, (13)
and
C2 - n*3%?
X?<P|Pl>a,g = <P|P')a,gl—7(W - )——= — #°2p(y— 1
1— ,Bpi
3
— 2156(’}/ — E)(pxx + py}/) + (1 — ﬁpf)x?jl, (14)

This paper is organized as follows: In section 2, we are interested into the formulation of the path integral for
spinorial particles within curved Snyder space-time. It is important to notice that this formulation is here achieved
without relying on Grassmann variables as substantiated in [ 12, 30]. This approach is based on performing path
integral calculation on the elements matrix of the Green function. A similar technique has been applied in previous
studies [17, 31]. In section 3, the use of the polar coordinate transformation allows us to separate the angular part
from the radial one. This separation led to the derivation of the Poschl-Teller radial propagator [13, 32]. Section 4 is
dedicated to deriving the precise bound states and their associated energy eigenvalues. Under specific conditions
when mo — muw,/2 and ¢ — Vg, the behavior of the Dirac oscillator system in the presence of a uniform magnetic
field within the SdS algebra closely resembles the dynamics of the monolayer Graphene problem within the same
and this has been demonstrated in section 5. In section 6, we examine and discuss the special cases arising from
these studies. Finally, the thermodynamic functions are tested and plotted for this system in section 7.

2. Path integral formulation of 2DDO in curved snyder space-time

We proceed to derive the Green function $ for the problem of the 2D Dirac oscillator (DO) in the presence of the
uniform magnetic field (B = Bk ), which is given by the following equation [7],

(H — 140)S8 =1L (15)

Here, [ is the unit matrix. In the absence of electromagnetic interaction, the Hamiltonian expression for the
Dirac oscillator is as follows [7],
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N =~ -
H = cé’z.(P — umwfBX ) + Bmc?, (16)

— —
here, the P — momentaand X — position operators are verified the equation (6). While c denotes the speed of
light, m is the mass of the particle, and wis the angular frequency of the oscillator. The & and 5 matrices are
represented by the o; — Pauli matrices as

_ (01 _ (0 —1 _ (1 O
=1 o) = (0 %) =0 L) a
Equation (15) reduces after applying minimal electromagnetic coupling in equation (16) [7]:
~ ~ e - e ~
['yOPo — (P — =A) + mwy’3.X — mc]S =L (18)
¢
The parameter e = F|e| describes a particle with negative charge (e = —|e|) or positively (e = |e|) positive
charge. The v — Dirac matrices are then represented by the Pauli matrices in the two dimensions
70 =03 Y =105 V2 = —10n (19)

Note that there is no deformation occurring in the time component By =150y =1/ 8/dct, Xy = £° = ct).
The vector potential A is the potential of a constant magnetic field B and has the two components
A= g(_XZ) X)). Thus, equation (18) is written as [7],

[y%/%z0/0t — cwl(f’l + m(DXZ) - cyz(ﬁz — mc‘uf(l) — mec?]§ = —1, (20)
where @ denotesto @ = w F w,/2, with w, = % is the cyclotron frequency. The formal solution of
equation (20) is

§ =107 = —oP[oPo?] ", 1)
with the operators OF defined by

O = (v%%0/0t — c'yl(lsl + ma)f(z) - 672(132 - m@Xl) + mc?). (22)
According to the Schwinger proper—tiAme method [33] and noting that S=— [OE] [OP OE]’I, itis convenient
to write the Green’s matrix operator S as follows

$=[02]4, (23)
where
G= éj;oo da\ exp(—;—i)\ﬂ), (24)

and here \ represents an even variable. As for 7{— operator, it is expressed by the following equation:
H=—[v%%40/0t — cvl(ﬁl + mw}z}) — C'yz(ﬁz — m@f(l) — mc?]
x [y%50/0t — c'yl(lsl + mng) - C’yz(f’z - m@f(l) + mc?]. (25)
After simplifying, we will find
H= —[—528,2 — m¥ct — cz(ﬁlz + }322) - cz(ma))z(f(l2 + }2'22)
— sz@[(szl + p1X2) — (lez + pzf(l)]
+ 2y [Py, P + (m@)[X), Xo] + mw[Xs, Pr] 4+ mo[X,, Pil}1. (26)

Further, we have to write this Hamiltonian by the position and momentum operators which achieve the
deformed quantum algebra introduced by Snyder and are based on the modified commutation relation defined
in previous section (see, equation (5)) [10]. Performing the operators (5(,-, ﬁj) on H— expression, as a result,
equation (26) becomes

H= —[—ﬁzaf — m%c* — cz((ma))2 + %)(i’f + 2%;) — 2czma)(2%2731 - /%1752)

- cZ((l — kP + m2—<mw>2)(f>f + ) - 'R, 75,»)], 27)
(@]
with
AR A o RN A A A2 A2
B, P = Czﬂ(g + (m@)z)(?fm — &iPs) - a2+ 5(P1 + P3)). (28)
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The equation above reveals that the term (751-/'%, + 75,»/%1-) will be obviously absent according to the provided value

of K

K= ; (29)

1+ Z(ma)?
«
The corresponding element matrix of G inmomentum representation is

g(ﬁb) ﬁw Pop> pOu) = _é fooo d)‘<ﬁb” > Pop | eXP(_éXH) |ﬁa” ’P0u>~ (30)

Before, we start to construct the Green’s function using path integral formalism, we must get rid of the matrices
that do not settle with the formalism by making the following exponential matrix. Evidently, we can simplify it as

exp ()"yl’yzﬁ('ﬁ(ﬁ 751)) = Cos (Ale(j(n 751)) + ’7172 sin ()‘ﬁ(i'n 751')>’ (31)
and this is done taking into account the properties of Dirac’s matrices (y'y?)> = —1. Hence, the equation (31)
becomes in another form

exp ()\7 ( 75)) _ 1 21[1 + 157'y7] exp(—és)\/iﬁ(é?i, 75,)) (32)

[\S}
“

Asaresult, equation (30) can be written as follow

g(ﬁb’ ﬁu’pOb’pOu) = Z [1 + 157172] j;oo d)\<ﬁb’ pob | eXp(_%rH(S)) | ﬁu’p0u>’ (33)

sil

with

T cz(ﬂ n (mw)z)(fff T
I5) m

— 2C2m@('ﬁ1X2 ’Pz/'\.’l) — 5ﬁF(i’ 75) m? 4]. (34)

For the kernel of (33), we decompose the exponential exp(— z)\’l:[(s)) into (N + 1) exponential exp(— 157:((5))
withe =7; —7j_; = 1 / (N + 1). Then we insert N resolutions of identities (9) between each pair of infinitesimal

operator exp(—zeH ) Indeed we have [29],

Z[1+15’Y’y hm f d/\H f by

Zﬁs £1 1= 05

B> Pojs )(m. (35)

g(ﬁh’ By Pop> pOa) =

1= 4/

><<pj,p0j | e it

To go further, it is convenient to develop the exponential up to the first order of €. Thus, we find

. = 7E*(s)
lim <pj,p0]. | e~ il

N—00,e—0

o [ <‘B] PojlPi-1> P >a,ﬁ

P pOj—1>a’ﬁ

= lim

N—00,6—

%<ﬁ}’p0j | G |1_’}71>P0j71>a,ﬁ]' (36)

After this stage for eliminating the Hamiltonian operator which represent in the (SdS)-framework, we inject all
the operators (X7, P?, PX, — P,A}) in the projection relation ( ﬁjl(.) | 1:7j_ 1)a,3 given in equation (10).
Consequently, the expression G(p,, B> Py,» Po,) is transformed into the following path integral in phase-space
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2 o N /B dp,,dp,
G(Py> D> Poy> Poa) = —— hrn [1 + 1572 d\ S
( b 0b> F0 ) cﬂo szizl f ]1_[1 jil/j—i ’1*3}7]»

1

N+1 7»31)1 _  NE1 )
le;[l l( )1 —ﬂzf(z /j)3l p{ﬁjz:[—x]’-APjﬂ—F/\E[pozj—chzl

_2l e -2 || = _ zzpz, 2y —
c ﬂ+(mw) vy =D = 2ph%(y — 1)

22
+Mg(7 - %)(xjpxj +p,) + (1= 052) (w3 + y})) + sﬁczmw[Z b _ﬂpéﬁz)

i

w2 B -~
% 1 51_7}2 + | 2mw + sAB| — 5 <+ (mw)? (py]_x] pxjyj) . (37)

Itis worth observing that all terms scaled by the v — parameter can be removed by utilizing the term
(1 - ﬁﬁ : ) / 1 - ﬁﬁ )). This can be understood through the subsequent analysis [29],

N 1*51_",;2721 "1/2:771 1_61)
l—ﬂpj 2 1 - ﬁp] 1
(pAp,; + p,; Ap,;)
Py Rb, f_’g Py) 2 52| & 4 (moy?
1 — 5, AN

22

] .
1 — (p?

J

—%wzwz(% + (mw)z) (38)

Furthermore, after performing the multiple Gaussian integrations over (x, y, t), the Green function
G(Py> B> Poy> Po,) Will be transformed to the Lagrangian path integral representation as follows:

N VB g,

g(f’b’l_’;»Pob»POa) = _2L lim 37 (1 + 1577216 (py, — pOa)f d\ ] lf_l/ﬂ_i W}

ﬁN_)OOs:il j=1

2

N+1

_ Y

X ]1;[1 \/—752 n ﬁ)\/ (% + (ma;)z)(l - ﬂf’f)
| (25)°
e 4ec(5 + 2’ ) (1 - 652)

+ )\E(poz — m2c4)

p; p, Ap, +p, Ap,
_25252C2)\E 2 + (mw)z)—]_.z _ El/’iﬂ( J/] Vi J )
4 B 1—6p; 2 (1 _ ﬂpjz)

cz(2maz + sﬁﬁ(% + (maj)z))2 52
‘ ! — - 256252)\8(% + (mw)z)

4(% + (mw)z) 1 — fp;

+ e

Imi + sfiﬁ( + (ma) ) ( Ap, - ijpxj)
2(% + (m@) ) (1 — ﬁpf)

20,2 p? Bp?
¢ (mb) L+ sictmare| 2 + —— || 1. (39)
5T (mw)? 1 — Bp? 1 — p]?

_|_

J

In the next section, we will successfully complete the calculations if we use 2D spherical coordinates. Because it is
known the symmetries play a preponderant role in the preservation of the physical quantities of the system
which requires us to seek the best way of taking them into account.

6
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3. Green function in polar coordinates

Let us develop the above path integrals (39) in the relative polar coordinates (p,, py) where the two dimensions
spherical coordinates for momentum variables p are defined by

px = pp COS(pe), P}, = Pp Sin(Pg)) (40)

here0 < py < mand p* = Pl + p;. This leads to the transformation over measure term, kinetic term and the

B, Py; p/,
Los 1_3;,}.2] 1 [f } (1)

rest action terms [29],

I

j=1

2\ 2 2
(Apj) =b, + P, 2p,p,, €08 (Apej). (42)
BAB =p A L(ap, )
BB = 5,8, + 1,0, G(8py) + - (43)
pydp, = p,Ap, = p,p, sin(Dp,), (44)
where the correction (Apé,] )? is determined from the kinetic energy term and is equal to [29],
1 - Bp;
(AP%)Z ~ Zz/i)\scz(g + (mw)z)ipj. (45)
ﬂ pjppj—l
Then inserting this in equation (39), the Green function will transform as
I(Dyy> By, Loy Pos P> Poa) = — = lim 37 (1 + 1579218 (py, — py)
_)Dos +1

d)\ N+1 1 - Bp;_
0 H f \/7 j= 1 47r1f2€cz(% + (m@)z)(l - ﬂppzj)

N+1 p +p = 2p,p, cos(Ap, Bp, Ap
X exp ﬁiz fi-1 A ( ) - 15%—1)} LA )\E(poz - mzc4)
i=1| 4ec (E + (mw)z)(l — ﬁpj}) (1 - ﬂpj})
] )

><

2
Pi

(me + sﬁﬂ( + (mw) ))

o5 + o) (1 - )

2m@ + i3 (% + m@)?) b, p,, s (Ap ) 50,
2(% . (ma))z) (1 - Bp;]) + s/c mw)\E[Z + ]

2
c2(mw)? pﬁj
a V1_52 |[
5 T m@)* 1 - bp,

—%fi%’z)\scz(% T (mw)z) - 255%&(% + (mw)Z)

+%ﬁﬁ%%(% + (m&))z) + e

+

e (46)

The third term in kinetic energy together with the last term in the procedure indicates the possibility of an angle
shift according to the following relation

Py, = Py, + TiAc? (me + sﬁﬁ(ﬁ + (mw) )) (47)

here 7 is the time physics. After this step to perform the path integral over angle Py we will use the well-known
relation [34]

+00

exp (acospy) = Z Iy (a) exp (i£py), (48)

=—00
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where I, (a) are the modified Bessel functions and after straightforward calculations, equation (46) can be
written as

i PojPy;
sy 1) = 5. 2 10~ [T |2 |
P s=+1

N+1 17/3p2 +00 PP
v »j Py
% H j Z If) 1 pitpj—1

2 —\2 an2 _E 2 —\2 A2
4mifiec (§+(mw) )(1 - ﬁpﬂj) f—— o0 2ec (§+(m.u) )(1 Jpﬂj)

X 11_\1[ [f dpe ] N+1 elfj(APBJ+/\ECZ(2mJ)+Sﬁﬂ(%+(mw)2))]

j=1 =1

[
\

2
P40

! P kit 2 2.4 9 2.2m2| & -2 bi
Xexpy— + Xe(p; — m*c —)\sficﬂ(—Jr(mw))
fl/ 4552<%+(m51)2)(1 7[31,;) ( 0 ) 4 /6 1 - ﬁpj
K 7 ]
Bp, Ap,
—p 20 e es[ Lt e | - e8| L + oy
21-06pF 2 6] B
2 2
2(1=\2 D b,
— e (YC (m) i > + Aec’sima| 2 + _p,z ,
5t (m@)? 1 — ﬂppj 1 - ﬂpp}_

(49)

where I, (z) are the modified Bessel functions. The N — integrations over the Py~ variables can now be
performed and produce the N symbols of Kronecker [34],

N P N+1 N
H [f dp@] H [elfjApoJ] = H (271’(5{).,/]“)elfN+lp0N+17"ﬁp()n. (50)
j=1 L0 =1 =1
These symbols can eliminate all the summations except one which is noted . We now define the radial time
evolution amplitudes by the following expression with respect to the azimuthal quantum numbers £ [34]:
1 1 +00

G(80y> B Pov P P> Poa) = 5= — 3 e 2)G (5 P P ) 51)
o, £=—00

with

g"(pm,’ ppﬂ; Pop> pou) = 6(Pb0 pu()) Z [1+ lS’yl’yz] hm f d)\e,,)\(Po*ch‘*)

s=+1

N 1/8 [ de» N+1 a —1/2
X — 4mifidec?| — + (mw)z)
]-:Hl f—l/ﬁ i /lﬂpﬁ}.l 1 [ (ﬁ

[ 2
N+1 (AP ) Gp, Ap,
<o LY g Ve L

s _4)\552(% + (mw)z)(l - ﬁppz,.) ’ ( N 6‘17;)

Pz 2 2 P2
+)e _gﬁzﬁzcz(ﬂ +(mw)z) Pj _ ac (mw)_ ! 0 :
4 B 1 - ﬁpp] 5+ mo)’ 1 - ﬁpp}_

Bp? N @ - 1/4)(1 - ﬁp,i)
+sﬁc2ma}7}2 — ﬁzcz( + (ma))z) ’
L= P, g

pﬂjppj—l

2225(5 (mw) ) + 2c%shmo + Bfc? [me + sﬁﬂ(% + (mw)z)])l}. (52)

This is done taking into account the following relation

L(2) = eQmz) 2, (2). (53)

The asymptotic equality of modified Bessel functions I, (z) = exp (— %) holdsas|z| — oo, and
|argz| < 0[34].
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Due to the presence of term measure in this expression of the propagator (52), it assumes a more
complicated form. For simplify this, we will use the point transformation method (see, [ 12]) where the Y-point
discretization interval is defined as

p;]‘” =Tp, + (1 =Tp, . (54)

In accordance with [12, 13], this yields three quantum corrections: the momentum term measure
(dp " / 1 - ﬁppz ), the kinetic energy term, and the second term in action (52). To further analyze these
{ )

corrections, we expand them using the discretization interval of pf)—points. Then, in order to recover the
7

(Axj)?

conventional kinetic term ( - ), we employ a coordinate transformation \/E b= f (x). The choice of

4ec? (% + (m@)

f(x) is determined by the following condition:

df(x)/dx= [1— ﬁpj = \/ﬁpp = sinx. (55)

Following this, we proceed to formulate the kinetic energy and measurement terms using the discretization
interval represented by Y-points. This allows us to arrive at the total correction denoted as Cr

Cr = 1hec*(a + ﬁ(ma))z)[gtanzx — QY2 -7 -1 ] (56)

cos?x

By using the predetermined Y-values outlined in [12, 13] (specifically, Y = 0, 1/2), Crtakes on the following form:

Cr= z/igﬁcz(% + (mw)z)[l + %tanzx]. (57)
This transforms the radial function G/(xp, X4; Py P,,) into the form

gf(xb) Xa5 Pop> PO,,) = *ié(pho - Pa()) Z 1+ 15’71’72]
s==+1
><fOO dX exp {%[poz — m2t 4 %/ﬁcz(a + B(m@)*) + Al [2me + s/ (o + B(m@)%)]
0

+2c%s/mw + 7 (a + B(mw)?)(£? — 1/4) — CZ[Sﬁm@ - %]

}Kf(xb’ Xa» )\) (58)

The kernel propagator K (xp, x,, A) corresponds precisely to the path integral of a particle in the Poschl-Teller
(PT) potential as presented in reference [32],

N N+1 o —-1/2
Ke(xp X0y A) =1limN — oo [ | [f dxj] IT [47rz/i€ﬁc2(5 + (mw)z)}

=1 =1
N+1 e 2
1 (Ax))? 22 N s il | £t —1/4
xexp 7 ng [4662((‘+ﬁ(m“’)2) efei (@ + fmo)y 7o+ BmaY) cos? x + sin® x ' >9)

As reported in [32], the transition amplitude concerning the Poschl-Teller potential yields the following
outcome:

N N+1 N+1 2
. M 1 M 7 V2 1/4) 2—1/4)
K= lim fdx» — |exp{ — —Ax'zfe—[( o T/ ]
im 1 iy (Vzmﬁe) p{ﬁjzl[zfs( TVl sin’x

j=1 j=1

= Z D, (x) Py (x,) exp [é(%(é + v+ 2n+ 1)2)], (60)

where

| 1/2
) (x) = [2(6 vvtomg L@yt ]

ré+n+NHI'v+n+1)
X (sinx)’+1/2 (cos x)"T1/2 PO (cos 2x). (61)
By comparison we can identify both values of M, § and v, respectively as
M= ! s
2c3(a + f(mw)?)

6=171, (62)
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and
S . (63)
2 a + B(ma)?
By adhering to the condition of the generalized uncertainty principle outlined in the introduction, we accept the values
1 m 1 mi

V=t oy == 64
N 2 (o + B(m)?) 2 7o+ f(mo)? 0

while rejecting other negative values. Consequently, it leads to the following result

. s mw

v_g =1, + s, with VSZ_E_F%’ (65)

with @ = a + (3(m@)?. Thereafter according to the following y* — properties, %ZS: Ll + sy =
Dt 1Xs X+ with X+ = l(1 + s 1 — s). Equation (52) transforms into the following form

Geti %65 P> Poa) = 78 (hy, = Pa) 30 32 Xy [ e i

n s==+1

!
X[2(|f|+1/5+2n+1) (¢ + v+ n+1) ]

r'qzl+n+ DI's +n+1)
X (sinxp)l7 17172 (cos xp ) 1/2 PUCE) (cos 2xy)
X (sinxg)?1H1/2 (cos x, )=+ 1/2 PUCE) (cos 2x,), (66)
with
wipy=mit 4+ 7%02n + 1 — s+ 12| — €1+ € + 2u + 2n + 1 + 5. (67)

In order to evaluate exactly the propagator expression, we will formulate the Fourier transformation of (66) with
respect to po, and py,, variables. After integration over )\ at this step gives the expression,

X e (Peb P0,) dp, e~ iPoti—ta)
g(ppb’ppa’Peb’pea;pOb’pOa) ZZ Z XX:rf_O—

2 2
n s=+1/=—c0 2wl p() — Wt

|
><[2(|f|+vs+2n+1) nl(¢| + vi+n+ 1) ]

T2 +n+ DL+ 1+ 1)
x (sin )71 (cos x, )=+ 1/2 PUCE) (cos 2x)
X (sinxq) ! (cos x,)% 172 PUCS) (cos 2x,). (68)

By employing the residue theorem at the pole p, enables us to express

d Po(tb—1a) 7€ Engs,e (th—1a)
f Po & = — Z #@(E(% — 1), (69)
2wl p() - wnsf e=+1 ZEH,Sf
which has the poles
Epse = i\/mzc‘* + 4/z“zc29[n flos A —][I"pl -t utn + + ] (70)
2 2 2 2 2
This also validates the subsequent identity for any arbitrary function
Y fOO(t — 1) = f(9)O(s(ty, — 1) + f(=9)O(—s(ty — 1)), (71)
e==%1

where O(x) is the Heaviside function. This leads to the following expression:

n s=x1£/=—o00 2m 2En,s

too it(pg,~a,) £SEns(th—ta
g(xb’ Xa> Pg,> Py5 Pop> Poa) =123 > Lxsxj{[wi@(s(tb - tu))]

|
x[2(|f| T L (L4 e 0 el ]

'zl +n+ DI's+n+1)
x(sin xp)17 1 (cos x3, )5 H1/2 PUCE) (o5 2x) (sin x4)1 71 (cos x,)%61/2 PUEI) (cos 2x,)
L€ + vs+ n + 1) ]
Tzl +n+ DL s+n+1)
X (sin x)¢1 (cos )5 T1/2 PULE-9) (cos 2x3) (sin x) 7T (cos x,)P=+1/2 PUCE-S) (cos 2x,) } (72)

eISEns(tb ta)
| Ot — ) || 20€1 + v+ 20 4 1)

Moreover, to unify the expression of energy between the terms O(s(#, — t,)) and ©(—s(t, — t,)), we make the
following change (s — — s) in the terms that multiplied by © (—s(t, — t,)), these lead to

10
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n—n—s, || —|f|+s vi=uv+s. (73)
Hence, the representation of the Green function takes the form
+oo elf(Pob*Pou) e~ 7 Ens(to—ta)

g(xba Xa> Py,> Py Pop> poa) = IZ Z Z Oty — ta)

n s=%x1/=—-o00 2m 2Eﬂ,$

(|| +vs+n+ 1)
Lzl +n+ D' +n+ 1)

x{[z(m F oyt 2n+ 1) ] FIOb) Gep ) PP () x4

[Z(W frtan F(Ifl)’-l;(lf—lﬁ)ll/i(z S++nn++1)1) ] P T (xa)X5%+5}> vy

where
(Ifl,us)(x) — (u)|f|(,U)VS+1/2pi§|f|)Vs)(1 — 2u?). (75)
Fsllfls+s,t/5+s) (x) = (u)lfl+S(U)VS+S+1/2P’5|E‘SI’V5+S)(1 _ 2u2), (76)

and u = sinx, v = cosX.
In the following section, we provide a precise solution for our problem by benefiting from various symmetry
properties of the propagator to calculate the normalized eigenspinors and their corresponding energy spectrum.

4. Eigenspinors and energy spectrum

To obtain an exact evaluation of the propagator expression, we apply the operator [O2]; to the function (72).
Utilizing the provided relationships, we can then apply the operator [O}]; to X, x> which s expressed as follows:

[(’)E]b X XE = [szj(szﬁath + me?) + x_ X (P + 1Pay) + mo(sXap — 1)2'1;,)}]. (77)

In polar coordinates is written as

0 (1 — ) pe"Poy
sh 11— ﬁp e=Poy 71— — | + s
[ ( l b b, 8%] 1= l (78)
9 s 0 R
+m@ | 1 — BplePo| —1— + T —— | — 1
wl ] Bp, b[ op, .

b, 9py,

L0, XX = XX (510 + mc®) + x_ T

In conclusion, we arrive at the spectral decomposition of the Green function S(p,, p,) as presented below:

#5Ens(th—ta)

S(By B tir ta) = J— Yt Oty — t,))

s=%x1 n ”S

x{[z(m tuntomy Ml tutnt D ] FO9 ()

¢ +n+ D@ +n+1)

XX Brr + me?) + ey xF

B (1m)2
o a s 8 f(mw) sp
o [T | s
J&j Po ap,, P, Opy, 1+§(m51)2 1=, e1f(pob—poa)F(f’,"s>(xb)

) 0 1o} JE P
+ma| A 1 — ﬁpz —1— + BRI e 2
P appb pﬂb 8p9b 1+ (mw)z Jl

=9I+ v+s+n+1 FEsmts) ()
D¢l +n+DIw+n+1) | "° ¢

XX (—Ense + me?) + e Poax X

a 9] s 0 _(mw)z
Y7 R PR AR B
s pb[ (9p pﬂbapﬁb] 1+ (mw)z Vlfgpﬂh
X
B
0 s 0 \/; p
rmo|h 1 — gt [ - 2O - "
7w\ dp, b, Opy, S B mawy? 1,

Xel(f+5)(pghfl’aa)Fﬁfjsxﬂsﬂ) (xp) } (79)

/1;,

+ 2021 + v+ 20+ 1)

11
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The Green function can be expressed through a straightforward calculation as outlined below

F#Ens(th—1a)

S(By B tiw ta) = F S o6 — 1)

s=+1 n

!
><<[2(|f|+1/5+2n+1) n.l“(|f|+1/5+n+1) ]

L] +n+ DLW +n+ 1)

+_ A8
s /1—772

Xs X:— (Ense + mCZ)elf(prfpeu) + €lspehelf(p9bfp9a)xfsx

Ap&v

<[ 1[50 = 9111 = w) + (2] + wn,1PC () + 25(1 — ni)”i("b)
B dn,

_ v 2 dP,ﬁf’W ;)

Fm (= 9WIET = 1)+ A1 + v P ) = 2(1 = m) ==
b

X (sin x)171 (cos x;,)7+1/2 PUCH) (cos 2x3) (sin xq) 7 (cos x,)%1/2 PUEI) (cos 2x,)

[ (n )’F(|f|+ys+s+n+1)]

+20¢] + v+ 21+ 1)
1] 'zl +n+ DI'vs +n+ 1)

_X—thS(En,s,f - mcz)el(f+5)(p5b7p9“) + 371517911el(f+5)(p9bipg")Xsth fZ\/ﬁ
(1 =m)

A+ 921+ 1D — @+ D+ (2] + D) + (% + D), JPIIF=5) ()

(6%
LN d S, Vs+s (
VB |2l = ) R )
un
X 3 d
A+ 9021+ 1D — @+ D+ (2] + D + (% + D), JPI =5 ()
+mio < d r

—2(1 = )i

X (sin xb)|f|+s (cos xb)1/5+5+1/2 Pr(tl—szs’VSJrS) (nb) (sin xﬂ)|f|+s (cos xa)l/5+s+1/2 Py(’l_f’sl+s,t/5+s) (77“) } (80)

Taking help from the properties of Jacobi’s polynomials, as elucidated in reference [35],

APt ) 1T+ 1] + %+ 2) PO (1)

(81)
dn 21"(n+|1f’|+u5+1)
and
_ 3 —1,6,—1
(1= (1 + ) np(al W) = —20n + DA — m(1 4 i P )

R GIUEE) R () K () SO LR VAR (82)

We can reformulate the Green’s function in the following expression:

N 3 —#5En,s(th—ta)
S(Bys B 1 ta) = RrRoRs HTM(”)(S(H: — )
2(Ense + meHn!l(|€] + v+ 20+ DOAZL+ v+ 1+ D | o100 ) i (po,—Poa)y 1+
[ T(f[ +nt DTGt nt D) ] ) F ™ () e \P XsXs
= « - s 1 s

2N Mﬁ(’ﬁ *5’”‘*’)(”* E+E)!n!2(|f| bt 2mh DTAA] 4 vt D11+t s+ 1 41)

n! Tl +n+ D'+ n+1) Tn+ || +v+1)
| FC 559 () ) (e Pane (o Pn) ot
2(Bpe —mc(n = ]+ v+ 2n+ DI + »+s+n+1) Ft 505t (st 1+9(poy—Poa)y, A+
T(Z| +n s DTGt nt D) (/9] =4 (e b X-sXCs
s 1
248 ( ( + 5’”“’) ne ) 2 — ) + v+ 20+ DI + v+ s+n+1) Dt €]+ v+ 1)
(n — s)! (¢l +n+ DI +n+1) p(,,+|f|+yﬂ_§+%)
_>< F&,f’u’c) (771;) F(ﬂfj;s,l/ﬁs) (m)e—zspgbez(fﬁ)(pgb*pga)xsth ]
(83)
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By utilizing the symmetry properties of the propagator, we can express it in compressed form:

Sc(ﬁba ﬁu; Ty, ta) = IZZ Z

n=0 ¢ s=%1
x [S‘Pif(l’pb’ Pyyi 1) ((I):t,f(pp,,’ Po,; ta)) o3 i Fnc IO (s (1, — ta))]- (84)

From this perspective, we can conclude that the normalized eigenspinors of our system are defined by:

<1>2,f<pp,p9>=—f {J2<Ew+mc2>”“+”5“”+‘>W+”5+“+“ P (e,

/2 nsf T&+n+DIws+n+1)

+ \/72(En,s,f o mcz) =) +vi+2n+DI'C+vs+s+n+1) F(f+$,1/5+$) (T])eil(f+s)p”X,s } , (85)

T +n+ DI+ n+1) n—s

and we can return to the old variables by means of the following relations = cos2x = 1 — 2 ﬁppz .

While the spectral energies remain as the pole expressions given in equation (70), it is observed that for
w = 0, we can substitute m with (e3/2c)and 6 with (o + 3(eBB/2c)?) in equation (70). Meanwhile, as B
approaches 0, we obtain the following result:

o j:\/mzc4 + 4ﬁzc2a[n + 1. + 1 f][ + -+ — 121 + ] (86)
T 2 2 2 2 2 2 2
This finding underscores that, in the context of the Snyder (anti)-de Sitter model, the energy levels still exhibita
dependence on n” even in the absence of w — oscillation and magnetic fields 3. Typically, in deformation theory,
the values of v and Fare very small. Therefore, we can perform a first-order expansion of (70) with respect to a
and (. Thisleads us to the following result:

ES,f,ﬂ = Es(,)f,n + 9AEsl,f,n‘ (87)

Here, the first term represent the Landau levels of (24-1)-dimensional Dirac oscillator in the presence of
homogeneous magnetic field without deformation (HUP),

E, = i\/m%‘* + 4ﬁc2mw[ + 5 - 5 + % - ;] (88)

and the second term is the quantum gravity correction.

[SEEAN

2

171 2 1 1] ¢
nts—s+ - Z)n+s+ 0+ 2
AE},f,nzzﬁzcz( = 2)< : 2 2)‘ (89)
\/m2c4 + 4f2c2mw(n +3-5+ 7| é)
2
1-
Inlimit case a — 0, the expression of equation (70) reduces to that of the flat Snyder model,
Esfn* sfn+ﬂAE5fn) (90)
with
b ir2 Yorirgr)
AESS) = 272X (mw)? ] (91)
s | 2]

\/m2c4 + 4ficzmw[n +5 -

1. In limit case § — 0, one recovers the spectral energies for the Heisenberg algebra in an (anti-)de Sitter
background [11],

E&f)” = s(,)f,n + O[AES?;,?, (92)
with
14 | | 14

(”+§—§+%—z>(’1+§+7+5)'
|

AEPY = 27%¢? 1 =
\/m2C4 + 4ﬁC2m(D|:T’l + E — % + T — E]

(93)

Using natural units (7 = ¢ = 1), we compute the conventional energy eigenvalues of the DO and the
corrections introduced within in the context of SAS model for a single electron. This calculation is carried out

13
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Figure 1. The energy spacing between adjacent levels as a function of nand ¢ = O withs=1.

Table 1. The ordinary energy eigenvalues and the corrected ones of the 2D Dirac oscillator in the presence of homogenuse
magnetic field (in MeV) for a single electron at different values of nand with s = + 1.

staten ¢ E, AE!,, x (10770 + 0.9 x 107%) AESS) % (10770 AEZ x (1071
0 0 0.510 999 0 0 0
-1 0.709 591 8.455 57 0.007 763 8.455 57
0 0.618 32 4.851 854 0.004 454 4.851 854
0.618 32 8.086 424 0.007 424 8.086 424
2 -2 0.863 667 23.157 084 0.021 26 23.157 084
-1 0.790 392 18.977 918 0.017 423 18.977 918
0 0.709 591 14.092 617 0.012 938 14.092 617
1 0.709 591 19.729 664 0.018 114 19.729 664
2 0.709 591 25.366 71 0.023 289 25.366 71
3 -3 0.994 143 42.2474 0.038 787 42.247 45
-2 0.931193 37.586 202 0.034 508 37.586 202
-1 0.863 667 32.419 918 0.029 764 32.419 918
0 0.790 392 26.569 085 0.024 393 26.569 085
1 0.790 392 34.160 252 0.031 362 34.160 252
2 0.790 392 41.751 419 0.038 332 41.751 419
3 0.790 392 49.342 586 0.045 301 49.342 586

using equations (88), (89), (91) and (93), with & = 10~ "®and 8 = 10~ *°, m = 0.5MeV, and mw = 1MeV?,
while considering the case s = + 1. Thus, table 1 displays the specific energy spectrum values corresponding

to various combinations of #n and Z. It is worth mentioning that the ground energy values in table 1 remain
unaltered due to the SdS model.

Moreover, we can observe that the spacing of the energy levels gives a stable result in the following figure 1

Comparable outcomes were achieved for the two-dimensional Dirac Oscillator (2D-DO) in the presence of
the Extended Uncertainty Principle (EUP) [17]. Additionally, similar results were obtained in the case of the
one-dimensional DO within anti-de Sitter space [15] and in scenarios involving minimal lengths [14]. It is
evident that in the absence of the SdS (Snyder-de Sitter) algebra, the energy level spacing for the 2D-DO is zero.
This implies that in regular space, energy levels tend to become continuous for large values of n, while the
deformation coefficient continues to maintain the separation of energy levels.

5. Massless dirac particle in graphene layer

In this context, we are considering massless Dirac fermions within a Graphene layer situated for the SdS mode
and subjected to an external uniform magnetic field. We obtain the expressions for energy and wave functions by
setting mw — mw,/2 and ¢ — Vgin equations (70) and (85). Thus, the resulting energy spectra and
corresponding eigenspinors are given by:
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Figure 2. E, , 3 versus the quantum number # for different values of the deformation parameters.

eBB

eB? 1 s 4 4 1 4 4 e
Eqp= +2/Vp a+ﬁ(—) (n+———+u——)n+—+u+—+L2,(94)

2c 2 2 2 2 2 2 2 a4+ ﬁ(é)
2c
and
_ @+ v+ 2n+ DIC+vs+n+1) (4,0 £
&5, ,(p, py) =B {\/ Lt DL D O (et
=)+ vi+2n+ DIC+vs+s+n+1) _(L4s,v+s) —1(C+s)p,

+\/ T +n+ DI+ n+1) Fa—s (77)6 e Xes (e (95)

These results is in accordance with those of Graphene in curved Snyder space as reported in reference [23]. It’s
important to highlight that these authors did not provide an exact solution due to the omission of calculating the
wave function expressions. Moreover, we can generate plots illustrating the energy levels for a single electron
using equations (94) , for a = 1077, 0= 107*°, Vi = 0.00373, while considering the cases = + 1.

We note that in figure 2(a), all cases of curves energy levels are the same when the quantum number principle
nbetween 0and 1.5 x 10°®%. Then the curves of the two cases (o = 0, 3= 0) and (o = 0, 3 = 0)) separates from
the two cases (o = 0, 3= 0)and (o = 0, 3 = 0)) when 1 > 10*', which is shown in the figure 2(b). Whereas in
figure 2(c), the plot of the state (o = 0, 3 = 0) is separated from state (o« = 0, 3 = 0) if the quantum number
n>10%.

6. Non-relativistic limit

To derive the energy levels in the non-relativistic limit for the 2D-DO within the framework of a uniform
magnetic field and the anti-de Sitter space system, we take the limit as mc* — oo . Employing a second-order
Taylor expansion of equation (70), we obtain the following result:
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Espn=mc®>+ w2n +1— s+ |¢| — ]

+29(ﬁz/m)[n+l—i+ﬂ—é][ RN A R ] (96)
2 2 2 2 2 2 2

with ¢ represents the rest energy of the particle, the second and third terms represent, respectively, the energy
of the non-relativistic 2D harmonic oscillator of frequency @ and the correction in the context of the curved
Snyder space. In the non-relativistic limit, the normalized wave functions with spin 1/2 are given by

s _ 1£p, n(l@+vi+2n+ DI+ vs+n+1)
‘I)n,f(Pp, pﬁ) \/Be \/ T +nt DIt nt1)

x (B (1 = ap2) R (1 - 2682 x, (97)

where we have used the following limits:

E 2 E — mc?
lim —eel T gy Dl T, (98)

m— 00 15,8 m— 00 n,5,¢
In limit case & — 0, equation (96) becomes as,

Ecpn=mc*+ o2n+1—s+ |£]| — ¢]
_ 1 s |Z] 14 1 |Z] 4
+2 mwzﬁzm[n+———+———][n+—+—+—. 99
B(ma)*(/2*/m) > 73 3 5 5 5 5 (99)
In limit case 3 — 0, equation (96) transforms as,
Esppn=mc*+ Tw2n +1 — s+ |£]| — £]
4 4 4
+2a(/iz/m)[n+——+u—][ + = +u+ ] (100)
2 2 2 2 2 2 2

From equation (96) and in first order of («, ), we can find the energy spectrum for a spinless nonrelativistic
particle (s = 0) in the presence of an uniform magnetic field

ENDy = /w@n + 1+ |£] — ¢) +29(ﬁz/m)[n +—+ |i| ;][ + -+ |'§| + 2]. (101)

The first and second terms in equation (101) represent respectively the energy level for a spinless non-relativistic
oscillator of frequency w particle interacting with a uniform magnetic field in usual quantum mechanics (HUP),
and the relativistic correction both in the context of the modification of the Heisenberg algebra. Also, if we take
thelimit B — 0, equation (101) transforms to

ENRy = molzn 4+ 1+ |£] — €] + 2(a + B(mw)?)(/2/m)

[+ + 1 é][ S 4 ] (102)
2 2 2 2

Here, the first term is the energy level for a spinless non-relativistic oscillator of frequency w particle in HUP, and
the second is the first correction of deformation in non relativistic case.

7. Without deformation case
In order to obtain the ordinary case, we discuss the two limits:
1- Limita — 0, 3= 0:

To get the usual wave functions for the 2D Dirac oscillator in the presence of uniform magnetic field, we
replace & = 0, equation (85) becomes as

s B (e +vl+2n+1)0(f+0v0+n+1 B l
(I)n,f(Pp> Pe) = L (Ensf + mc ) ( ) ( )Fﬁf’ s)(n)efpexs

a=0 L@ +n+ D0V +n+1)
n,s,¢

(nfs)!f+ugi+2n+lFf+1/f+s+n+1 8
+ J_z( a=0 _ mcz) ( ) ( )F(f+s,us+s)(n)e—z(f+s)pgx_s})

””ﬂ F(Z+n+1)r(uf+n+1) n—s

(103)
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where E,Ef;io) is the energy spectrum for the Dirac oscillator in two dimensions and in Snyder space
EO0F = £ [m2ct + 452c2ﬂ(m@)2[n Ll e f] py L L meh gy
. 2 2 2 2 22 2 [imw)?
While v? and V) (n) are given by, respectively,
vl = =S R = @) R (L - ), (105)

2 Bhme

2- Limit3 — 0, — 0:

In order to obtain the ordinary case, let us derive the spinorial wave functions in momentum space
representation of the usual Dirac oscillator by putting 3 — 0 and a — 0 (i.e., § — 0),and we can write v/ in
equation (105) as

vl = L (106)
Bhmo
Indeed using the [35] we have
LY(x) = lim P,E“”VS)(l - Z_x) lim SEF A g (107)
Vy— 00 Vs i—+oo  ['(f1)

2

with x = %and I = vs + n + 1,byobserving that (to O(3))
ma; /i 2
lim (1 . ﬁpj)z(ﬁwZ) — e, (108)

a,3—0

L] (x) are Laguerre polynomials. Therefore, in the limit § — 0, the spinorial wave functions become

- 2 p
lim  W,.(p,, pg)z(—n"elfpe\/ s (p, /D) e e — X,

a—0,3—0 2al'(n + ¢ + 1)

— 0=0) _ 2 2
—(—1)”zel(f+s)P()\/2ﬂ?:1(i f:)L' 5 n’f’gf_);?) " (Pp/«/m_@)ﬂse*zr%L,fff mpﬁ o
(109)
where Eﬁf 50) is the usual energy spectrum for the Dirac oscillator in two dimensions (see [4, 36, 37])
ED = £ m? + 2mo@n + 1 — s+ |£] — £). (110)

In addition, in the absence of deformation parameters, the authors in [7] have formulated the same problem
using the path integral method, deriving the same formula for the standard energy levels of the 2D Dirac
oscillator as given in equation (110). However, the spinorial eigenfunction, as presented in equation (109), is
discovered to be the Fourier transform of the eigenfunction computed in a previous paper.

8. Thermodynamic functions

Next, let us delve into the thermodynamic properties of a solitary electron engaged with the Dirac oscillator
operating within the modified algebra outlined in equation (2). To compute these properties, our first task is to
derive the partition function for this particular system. The partition function is given by the following
expression

Z=>5" el (111)
n=0

Here, we introduce the parameter 3 = 1/(kg T), where kg represents the Boltzmann constant, and T signifies
the temperature of the system. In this context, the energy levels E, are determined by equation (87). We
specifically concentrate on the positive energy levels since for negative energies, the summation in equation (111)
becomes divergent. Additionally, we consider s =+ 1and £ =0,
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2/%c? (nz + %)

Vb + an

In the first-order approximation with respect to #, we obtain the following expression for the partition function:

(112)

Z=> exp|-pBJb+an — OB
n=0

Z(T, a) = Z°(B) + 0AZV (D), (113)
where
Z°(B) = i e bran  AZzO(B) = —2/23¢ 22 W+ 1/ b frran, (114)

n=0 n=0 \/b+a1’l

with a = 47imc?, b = m*c*. We can evaluate the sums in (113) by applying the Euler-Mclaurin summation
formula, we have

—f(0) + dx — @k=D (0 115

Zf(m SO+ [T 1 Z(zk_ S, (115)

where B,, are the Bernoulli numbers, B, = 1/6, By = — 1/30, ..., and f 2k=1(0) is the derivative of order 2k — 1)
atx=0

—Bmc?

F(0) = e P, £ (0) = —23/wePme* — 285225 —— — (116)
2)2
£ 0) = —87 (i PmeY £ 30 3 e (117)
m*c
L 65@(2mc2(5m62 +1) — /z?D(mzc“Bz + 3Bmc? + 3)) o
+20B87%%* e~ Hme’, (118)
(mc?)?
The integral over x in equation (113) is given by
00 7Bmc2 2. 2 7Bmc2 75mcz
f Foo)dx = e _(zﬂmc + 1 2073 n 3e _
0 23 fiomc? 4(fz},umc2)3ﬁ 4( ) m2cB
—Bmc? —pBmc? —Bmc?
B . (119)
2(7)>mc?B 8(fiwmc?)* 3 8(/w)*mc?B
Thus, the partition function can be expressed as follows:
Z(T, a) = le*s‘?mcz + 1+ ﬁmc ~Bme _ 295223 3 _ 4 3 _
2 23 /z?umc 4(fiomc?)?B 4(/)>m2ciB
i 1 n 1 n 1 e~ Bme? _ Z f(zk D(0). (120)
20yme2 3 8(ome)2F 8(Jiw) mciB? Pt (2k - 1)'

To compute the partition function, it is necessary to evaluate the sum presented in the expression above. In our
particular case, this summation can only be accomplished through numerical techniques. Up to k = 2, the sum
canbe represented as follows:

3 . 4 ) 1 - (Bmc?)? + 3pmc* + 3
(2k—1) 0 _ﬁ 2@4_9522 fmes _ & —8 /ﬂus
,(Zl (2k — 1)vf O =—45¢ e w0 | U mc*
- 6&3(2mc2(5mc2 +1) — ﬁaz(mzc“ﬁz + 3Bmc? + 3)) o
+205/%c? g~ me, (121)

(mc?)’

Athigh temperatures (3 < 1), it is important to note that all the terms within the sum presented in

equation (121) exhibit positive powers of 3, and these terms are considerably smaller when compared to the
remaining term in equation (120). As a result, we can safely omit the terms involving 3" and the terms that do
not contain 3, leading to the following simplified form of the partition function:

(ks T)? 9[3ﬁzc2(kBT)4 72 (ks T)? iizcz(kBT)Z]

Z(T, a, ~ .
(T, a, B) 2 Fomc? 2(fome?)? 4(/0)Pme? 4(/)2(mc2)? (122)

The first term in the partition function corresponds to the conventional two-dimensional Dirac oscillator in
standard quantum mechanics. The terms involving represent the effects of spatial deformation due to the
presence of SdS model. With the partition function established, we can derive various thermodynamic functions.
For instance, the Helmholtz free energy of the 2D Dirac oscillator subject to a homogeneous magnetic field at
high temperatures can be written as follows:
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Figure 3. Partition function for the 2D-DO with uniform magnetic field as a function of temperature k5T for different values of the
deformation parameters.

F(T, a) = —Tn(Z)

2.2 3 2.2 2.2
2 TIn kg T Iy 3/%c* (kg T) 7T 7T ‘ (123)
2/wmc? (7w)*(me*)? — 2(/w)*  2(/w)(mc?)
The connection between the mean energy and the partition function can be defined
2.2 3
2T, 0) = ~20D) o1 ep i s T (124)
op (7)*(me?)?

As @ — 0, we regain the standard mean energy corresponding to the Heisenberg uncertainty principle (HUP)
algebra.
For the heat capacity, we have

= 22201 \3T2
8_“ = 2k + 189M.
oT (5)?(mc?)?
In thelimit # — 0, which corresponds to the absence of the SdS algebra, the heat capacity remains constant,
specifically C = 2kp. However, in the presence of SdS algebra, it is evident that the heat capacity exhibits

temperature-dependent variations due to the modification introduced by the standard Heisenberg algebra.
Finally, the entropy is defined as

C(T, o, B) = (125)

S(T, o, ) = ks In(2) — kgﬁalggz)

Here, Sy (3) represents the entropy for the (2+1)—dimensional Dirac oscillator under a uniform magnetic field
within the HUP algebra. It is given by the following expression:

kg T
2 /iomc?

= So(B) + OAS'(D).

(126)

So(B) = 2k + 2k ln( (127)
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Figure 4. The Helmholtz free energy function for the 2D-DO with uniform magnetic field as a function of temperature kg T for
different values of the deformation parameters.
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Figure 5. The mean energy function for the 2D-DO with uniform magnetic field as a function of temperature kg T for different values
of the deformation parameters.
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Figure 6. The heat capacity function for the 2D-DO with uniform magnetic field as a function of temperature kT for different values
of the deformation parameters.

Meanwhile, AS!(3) denotes the first-order correction term for entropy in terms of (o, ), and it is expressed as,

(128)

2.2 2 2.2 2.2
ASl(B)kB[%C (ks T) fi’e fic ]

(Zw)*(me)? — 2(/w)*  2(/w)(mc?)

In the subsequent figures, we present a comparative analysis of the thermodynamic properties of our system
across different deformation parameters. To facilitate this presentation, we adopt the natural unit system, where
h, ¢, and kg are all set to 1, resulting in dimensionless parameters. To ensure accuracy, we have carefully chosen
specific values for the relevant physical quantities. These values include the oscillator parameter at approximately
2 MeV within the high-temperature range, the electron mass set at m = 0.5 MeV, and an magnetic field B of
0.2 MeV?. Consequently, we depict the thermodynamic properties in figures 3—7 as functions of temperature
(kgT). These figures showcase the behavior of these properties for four distinct sets of deformation parameters,
specifically, (a = 1077% 3=10""*"),(a = 0.0, 3=10"*"), (a = 10 "°, 3= 0.0) and (o = 0.0, 3 = 0.0).

Notably, the figure 3(a) demonstrates that the SdS algebra leads to a surge in the partition function from
ksT =1 x 10" to approximately kzT ~ 2.5 x 10'” MeV. Subsequently, the curves 3(b) corresponding to (a = 0,
3= 0)and (a = 0.0, 3= 0) goes down to zero after the temperature kzT ~ 10°° MeV. However, the other two
curves line up closelyup to kgT ~ 5 x 10°® MeV;, after which the curve for (o = 0, 8 = 0) collapses to zero
when kg T surpasses 10°> MeV in figure 3(c).

In figure 4, we have the Helmholtz free energy for the one-dimensional Dirac oscillator within the SdS
context as a function of k3T and this depiction indicates that the SdS algebra leads to a decline in the
F — function, spanning from kgT =1 x 10" to kT ~ 6 x 10"*MeV across all four cases of deformation
parameters in figure 4(a). Beyond kg T > 10”7, the curves 4(b) for both ((a = 0, 3 = 0) and (a = 0, 3 = 0)) vanish
when (3 = 0. Meanwhile, the case characterized by (o« = 0, 5 = 0)) has an effect up to temperature
ksT > 10*' MeVin figure 4(c).

Furthermore, within the SdS model, the mean energy exhibits a growth as the temperature rises, as depicted
in figure 5(a). In figure 5(b) it is shown that for the cases (o = 0, 8 = 0) and (o = 0, § = 0), the curves decline to
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Figure 7. The entropy function for the 2D-DO with uniform magnetic field as a function of temperature k5T for different values of the
deformation parameters.

zero after reaching the temperature kT ~ 10*' MeV. However, for the case (e = 0, 3 = 0), the curve 5(c) goes
down to zero when kg T'surpasses 5 x 10°° MeV.

Also, the heat capacity in figure 6(a) is a constant C = 2kz when kzT < 10'". Then, when kzT > 10'°MeV the
cases ((a = 0, 3= 0)and (o = 0, B = 0)) increase with the increasing temperature, which is presented in
figure 6(b). The figure 6(c) shows the increasing of the capacity for the case (o = 0, 3 = 0) with the increasing
temperature at kg T > 1072,

Finally, in figure 7(a), we plot the effect of SdS model on entropy function in three images. According to the
figure 7(b), the aSdS makes the values of entropy smaller with temperature for the cases ((a = 0, 3 = 0) and
(=0, 3= 0)) at temperature kzT > 10'°. Whereas, in figure 7(c), the entropy function of the case (o = 0,

3 = 0) decreases with temperature kzT > 10°°,

From the above figures, the effect SdS algebra on the thermodynamic functions have a more significant
impact when the o — parameter is present compared to the 3-parameter. Likewise, we can deduce the
thermodynamic properties and appropriate curves for the aSdS model case simply by substituting (a and (3) by
(—a, —0). Finally, when o = # = 0 and magnetic field tends to zero (B — 0), our results are very accurate. The
thermal properties of the three-dimensional Dirac oscillator without deformed commutation relation of the
Heisenberg uncertainty principle are consider in [38]. Also we can recover all thermodynamic functions for the
massless Dirac fermions in Graphene layer in a curved Snyder space when takes the limits m@ — mw,/2 and
¢ — Vi(see[23]).

9. Conclusion

In this paper, we have investigated the behavior of the 2D Dirac oscillator subjected to a constant magnetic field,
using the momentum space representation within the framework of the SdS model principle. In first, we
introduced a novel model for the Green function that is applicable to the generalized SdS algebra. Subsequently,
we straightforward integrate over even trajectories, leading to the precise calculation of the Green’s function in
polar coordinates. The passage to polar coordinates has facilitated the determination of the energy spectrum and
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the associated wave functions. It has been demonstrated that the SdS introduces a dependence of energies on
both n and #, even when oscillations and magnetic field are not present. This effect leads to the emergence of
phenomena such as harmonic oscillation, anharmonic vibration, and confinement. Furthermore, our
investigation has revealed that as n assumes large values, the energy level spacing remains constant, with the
deformation parameter @ effectively maintaining the separation between energy levels. The same observation
was also made in the reference mentioned. [17]. In analysis we clarify that, under specific conditions when
mw — mw,/2 and ¢ — VF, the behavior of the Dirac oscillator system in the presence of a uniform magnetic
field within the SdS algebra closely resembles to the dynamics of the monolayer Graphene problem within the
same algebraic framework. Furthermore, we have thoroughly examined all the distinct scenarios and special
cases of the Dirac oscillator problem in the presence of a uniform magnetic field, using the framework of the SdS
model.

Finally, when considering high temperatures, we applied the Euler-MacLaurin formula to compute various
thermodynamic properties of our system up to the first order of (e, 3). These properties include the partition
function Z, the Helmholtz free energy F, the mean energy =, the entropy S, and the heat capacity C. Through
graphical representations of the SdS terms in these thermodynamic functions against temperature k3T, we have
illustrated that the influence of the a-deformation parameter is more significant than that of the 8-parameter. It
is important to note that, currently, these effects cannot be experimentally detected.

Data availability statement

The data cannot be made publicly available upon publication because no suitable repository exists for hosting
data in this field of study. The data that support the findings of this study are available upon reasonable request
from the authors.
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